1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Volume Management Device driver 4 * Copyright (c) 2015, Intel Corporation. 5 */ 6 7 #include <linux/device.h> 8 #include <linux/interrupt.h> 9 #include <linux/irq.h> 10 #include <linux/kernel.h> 11 #include <linux/module.h> 12 #include <linux/msi.h> 13 #include <linux/pci.h> 14 #include <linux/pci-ecam.h> 15 #include <linux/srcu.h> 16 #include <linux/rculist.h> 17 #include <linux/rcupdate.h> 18 19 #include <asm/irqdomain.h> 20 #include <asm/device.h> 21 #include <asm/msi.h> 22 23 #define VMD_CFGBAR 0 24 #define VMD_MEMBAR1 2 25 #define VMD_MEMBAR2 4 26 27 #define PCI_REG_VMCAP 0x40 28 #define BUS_RESTRICT_CAP(vmcap) (vmcap & 0x1) 29 #define PCI_REG_VMCONFIG 0x44 30 #define BUS_RESTRICT_CFG(vmcfg) ((vmcfg >> 8) & 0x3) 31 #define VMCONFIG_MSI_REMAP 0x2 32 #define PCI_REG_VMLOCK 0x70 33 #define MB2_SHADOW_EN(vmlock) (vmlock & 0x2) 34 35 #define MB2_SHADOW_OFFSET 0x2000 36 #define MB2_SHADOW_SIZE 16 37 38 enum vmd_features { 39 /* 40 * Device may contain registers which hint the physical location of the 41 * membars, in order to allow proper address translation during 42 * resource assignment to enable guest virtualization 43 */ 44 VMD_FEAT_HAS_MEMBAR_SHADOW = (1 << 0), 45 46 /* 47 * Device may provide root port configuration information which limits 48 * bus numbering 49 */ 50 VMD_FEAT_HAS_BUS_RESTRICTIONS = (1 << 1), 51 52 /* 53 * Device contains physical location shadow registers in 54 * vendor-specific capability space 55 */ 56 VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP = (1 << 2), 57 58 /* 59 * Device may use MSI-X vector 0 for software triggering and will not 60 * be used for MSI remapping 61 */ 62 VMD_FEAT_OFFSET_FIRST_VECTOR = (1 << 3), 63 64 /* 65 * Device can bypass remapping MSI-X transactions into its MSI-X table, 66 * avoiding the requirement of a VMD MSI domain for child device 67 * interrupt handling. 68 */ 69 VMD_FEAT_CAN_BYPASS_MSI_REMAP = (1 << 4), 70 }; 71 72 /* 73 * Lock for manipulating VMD IRQ lists. 74 */ 75 static DEFINE_RAW_SPINLOCK(list_lock); 76 77 /** 78 * struct vmd_irq - private data to map driver IRQ to the VMD shared vector 79 * @node: list item for parent traversal. 80 * @irq: back pointer to parent. 81 * @enabled: true if driver enabled IRQ 82 * @virq: the virtual IRQ value provided to the requesting driver. 83 * 84 * Every MSI/MSI-X IRQ requested for a device in a VMD domain will be mapped to 85 * a VMD IRQ using this structure. 86 */ 87 struct vmd_irq { 88 struct list_head node; 89 struct vmd_irq_list *irq; 90 bool enabled; 91 unsigned int virq; 92 }; 93 94 /** 95 * struct vmd_irq_list - list of driver requested IRQs mapping to a VMD vector 96 * @irq_list: the list of irq's the VMD one demuxes to. 97 * @srcu: SRCU struct for local synchronization. 98 * @count: number of child IRQs assigned to this vector; used to track 99 * sharing. 100 */ 101 struct vmd_irq_list { 102 struct list_head irq_list; 103 struct srcu_struct srcu; 104 unsigned int count; 105 }; 106 107 struct vmd_dev { 108 struct pci_dev *dev; 109 110 spinlock_t cfg_lock; 111 void __iomem *cfgbar; 112 113 int msix_count; 114 struct vmd_irq_list *irqs; 115 116 struct pci_sysdata sysdata; 117 struct resource resources[3]; 118 struct irq_domain *irq_domain; 119 struct pci_bus *bus; 120 u8 busn_start; 121 u8 first_vec; 122 }; 123 124 static inline struct vmd_dev *vmd_from_bus(struct pci_bus *bus) 125 { 126 return container_of(bus->sysdata, struct vmd_dev, sysdata); 127 } 128 129 static inline unsigned int index_from_irqs(struct vmd_dev *vmd, 130 struct vmd_irq_list *irqs) 131 { 132 return irqs - vmd->irqs; 133 } 134 135 /* 136 * Drivers managing a device in a VMD domain allocate their own IRQs as before, 137 * but the MSI entry for the hardware it's driving will be programmed with a 138 * destination ID for the VMD MSI-X table. The VMD muxes interrupts in its 139 * domain into one of its own, and the VMD driver de-muxes these for the 140 * handlers sharing that VMD IRQ. The vmd irq_domain provides the operations 141 * and irq_chip to set this up. 142 */ 143 static void vmd_compose_msi_msg(struct irq_data *data, struct msi_msg *msg) 144 { 145 struct vmd_irq *vmdirq = data->chip_data; 146 struct vmd_irq_list *irq = vmdirq->irq; 147 struct vmd_dev *vmd = irq_data_get_irq_handler_data(data); 148 149 memset(msg, 0, sizeof(*msg)); 150 msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH; 151 msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW; 152 msg->arch_addr_lo.destid_0_7 = index_from_irqs(vmd, irq); 153 } 154 155 /* 156 * We rely on MSI_FLAG_USE_DEF_CHIP_OPS to set the IRQ mask/unmask ops. 157 */ 158 static void vmd_irq_enable(struct irq_data *data) 159 { 160 struct vmd_irq *vmdirq = data->chip_data; 161 unsigned long flags; 162 163 raw_spin_lock_irqsave(&list_lock, flags); 164 WARN_ON(vmdirq->enabled); 165 list_add_tail_rcu(&vmdirq->node, &vmdirq->irq->irq_list); 166 vmdirq->enabled = true; 167 raw_spin_unlock_irqrestore(&list_lock, flags); 168 169 data->chip->irq_unmask(data); 170 } 171 172 static void vmd_irq_disable(struct irq_data *data) 173 { 174 struct vmd_irq *vmdirq = data->chip_data; 175 unsigned long flags; 176 177 data->chip->irq_mask(data); 178 179 raw_spin_lock_irqsave(&list_lock, flags); 180 if (vmdirq->enabled) { 181 list_del_rcu(&vmdirq->node); 182 vmdirq->enabled = false; 183 } 184 raw_spin_unlock_irqrestore(&list_lock, flags); 185 } 186 187 /* 188 * XXX: Stubbed until we develop acceptable way to not create conflicts with 189 * other devices sharing the same vector. 190 */ 191 static int vmd_irq_set_affinity(struct irq_data *data, 192 const struct cpumask *dest, bool force) 193 { 194 return -EINVAL; 195 } 196 197 static struct irq_chip vmd_msi_controller = { 198 .name = "VMD-MSI", 199 .irq_enable = vmd_irq_enable, 200 .irq_disable = vmd_irq_disable, 201 .irq_compose_msi_msg = vmd_compose_msi_msg, 202 .irq_set_affinity = vmd_irq_set_affinity, 203 }; 204 205 static irq_hw_number_t vmd_get_hwirq(struct msi_domain_info *info, 206 msi_alloc_info_t *arg) 207 { 208 return 0; 209 } 210 211 /* 212 * XXX: We can be even smarter selecting the best IRQ once we solve the 213 * affinity problem. 214 */ 215 static struct vmd_irq_list *vmd_next_irq(struct vmd_dev *vmd, struct msi_desc *desc) 216 { 217 unsigned long flags; 218 int i, best; 219 220 if (vmd->msix_count == 1 + vmd->first_vec) 221 return &vmd->irqs[vmd->first_vec]; 222 223 /* 224 * White list for fast-interrupt handlers. All others will share the 225 * "slow" interrupt vector. 226 */ 227 switch (msi_desc_to_pci_dev(desc)->class) { 228 case PCI_CLASS_STORAGE_EXPRESS: 229 break; 230 default: 231 return &vmd->irqs[vmd->first_vec]; 232 } 233 234 raw_spin_lock_irqsave(&list_lock, flags); 235 best = vmd->first_vec + 1; 236 for (i = best; i < vmd->msix_count; i++) 237 if (vmd->irqs[i].count < vmd->irqs[best].count) 238 best = i; 239 vmd->irqs[best].count++; 240 raw_spin_unlock_irqrestore(&list_lock, flags); 241 242 return &vmd->irqs[best]; 243 } 244 245 static int vmd_msi_init(struct irq_domain *domain, struct msi_domain_info *info, 246 unsigned int virq, irq_hw_number_t hwirq, 247 msi_alloc_info_t *arg) 248 { 249 struct msi_desc *desc = arg->desc; 250 struct vmd_dev *vmd = vmd_from_bus(msi_desc_to_pci_dev(desc)->bus); 251 struct vmd_irq *vmdirq = kzalloc(sizeof(*vmdirq), GFP_KERNEL); 252 unsigned int index, vector; 253 254 if (!vmdirq) 255 return -ENOMEM; 256 257 INIT_LIST_HEAD(&vmdirq->node); 258 vmdirq->irq = vmd_next_irq(vmd, desc); 259 vmdirq->virq = virq; 260 index = index_from_irqs(vmd, vmdirq->irq); 261 vector = pci_irq_vector(vmd->dev, index); 262 263 irq_domain_set_info(domain, virq, vector, info->chip, vmdirq, 264 handle_untracked_irq, vmd, NULL); 265 return 0; 266 } 267 268 static void vmd_msi_free(struct irq_domain *domain, 269 struct msi_domain_info *info, unsigned int virq) 270 { 271 struct vmd_irq *vmdirq = irq_get_chip_data(virq); 272 unsigned long flags; 273 274 synchronize_srcu(&vmdirq->irq->srcu); 275 276 /* XXX: Potential optimization to rebalance */ 277 raw_spin_lock_irqsave(&list_lock, flags); 278 vmdirq->irq->count--; 279 raw_spin_unlock_irqrestore(&list_lock, flags); 280 281 kfree(vmdirq); 282 } 283 284 static int vmd_msi_prepare(struct irq_domain *domain, struct device *dev, 285 int nvec, msi_alloc_info_t *arg) 286 { 287 struct pci_dev *pdev = to_pci_dev(dev); 288 struct vmd_dev *vmd = vmd_from_bus(pdev->bus); 289 290 if (nvec > vmd->msix_count) 291 return vmd->msix_count; 292 293 memset(arg, 0, sizeof(*arg)); 294 return 0; 295 } 296 297 static void vmd_set_desc(msi_alloc_info_t *arg, struct msi_desc *desc) 298 { 299 arg->desc = desc; 300 } 301 302 static struct msi_domain_ops vmd_msi_domain_ops = { 303 .get_hwirq = vmd_get_hwirq, 304 .msi_init = vmd_msi_init, 305 .msi_free = vmd_msi_free, 306 .msi_prepare = vmd_msi_prepare, 307 .set_desc = vmd_set_desc, 308 }; 309 310 static struct msi_domain_info vmd_msi_domain_info = { 311 .flags = MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS | 312 MSI_FLAG_PCI_MSIX, 313 .ops = &vmd_msi_domain_ops, 314 .chip = &vmd_msi_controller, 315 }; 316 317 static void vmd_set_msi_remapping(struct vmd_dev *vmd, bool enable) 318 { 319 u16 reg; 320 321 pci_read_config_word(vmd->dev, PCI_REG_VMCONFIG, ®); 322 reg = enable ? (reg & ~VMCONFIG_MSI_REMAP) : 323 (reg | VMCONFIG_MSI_REMAP); 324 pci_write_config_word(vmd->dev, PCI_REG_VMCONFIG, reg); 325 } 326 327 static int vmd_create_irq_domain(struct vmd_dev *vmd) 328 { 329 struct fwnode_handle *fn; 330 331 fn = irq_domain_alloc_named_id_fwnode("VMD-MSI", vmd->sysdata.domain); 332 if (!fn) 333 return -ENODEV; 334 335 vmd->irq_domain = pci_msi_create_irq_domain(fn, &vmd_msi_domain_info, NULL); 336 if (!vmd->irq_domain) { 337 irq_domain_free_fwnode(fn); 338 return -ENODEV; 339 } 340 341 return 0; 342 } 343 344 static void vmd_remove_irq_domain(struct vmd_dev *vmd) 345 { 346 /* 347 * Some production BIOS won't enable remapping between soft reboots. 348 * Ensure remapping is restored before unloading the driver. 349 */ 350 if (!vmd->msix_count) 351 vmd_set_msi_remapping(vmd, true); 352 353 if (vmd->irq_domain) { 354 struct fwnode_handle *fn = vmd->irq_domain->fwnode; 355 356 irq_domain_remove(vmd->irq_domain); 357 irq_domain_free_fwnode(fn); 358 } 359 } 360 361 static void __iomem *vmd_cfg_addr(struct vmd_dev *vmd, struct pci_bus *bus, 362 unsigned int devfn, int reg, int len) 363 { 364 unsigned int busnr_ecam = bus->number - vmd->busn_start; 365 u32 offset = PCIE_ECAM_OFFSET(busnr_ecam, devfn, reg); 366 367 if (offset + len >= resource_size(&vmd->dev->resource[VMD_CFGBAR])) 368 return NULL; 369 370 return vmd->cfgbar + offset; 371 } 372 373 /* 374 * CPU may deadlock if config space is not serialized on some versions of this 375 * hardware, so all config space access is done under a spinlock. 376 */ 377 static int vmd_pci_read(struct pci_bus *bus, unsigned int devfn, int reg, 378 int len, u32 *value) 379 { 380 struct vmd_dev *vmd = vmd_from_bus(bus); 381 void __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len); 382 unsigned long flags; 383 int ret = 0; 384 385 if (!addr) 386 return -EFAULT; 387 388 spin_lock_irqsave(&vmd->cfg_lock, flags); 389 switch (len) { 390 case 1: 391 *value = readb(addr); 392 break; 393 case 2: 394 *value = readw(addr); 395 break; 396 case 4: 397 *value = readl(addr); 398 break; 399 default: 400 ret = -EINVAL; 401 break; 402 } 403 spin_unlock_irqrestore(&vmd->cfg_lock, flags); 404 return ret; 405 } 406 407 /* 408 * VMD h/w converts non-posted config writes to posted memory writes. The 409 * read-back in this function forces the completion so it returns only after 410 * the config space was written, as expected. 411 */ 412 static int vmd_pci_write(struct pci_bus *bus, unsigned int devfn, int reg, 413 int len, u32 value) 414 { 415 struct vmd_dev *vmd = vmd_from_bus(bus); 416 void __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len); 417 unsigned long flags; 418 int ret = 0; 419 420 if (!addr) 421 return -EFAULT; 422 423 spin_lock_irqsave(&vmd->cfg_lock, flags); 424 switch (len) { 425 case 1: 426 writeb(value, addr); 427 readb(addr); 428 break; 429 case 2: 430 writew(value, addr); 431 readw(addr); 432 break; 433 case 4: 434 writel(value, addr); 435 readl(addr); 436 break; 437 default: 438 ret = -EINVAL; 439 break; 440 } 441 spin_unlock_irqrestore(&vmd->cfg_lock, flags); 442 return ret; 443 } 444 445 static struct pci_ops vmd_ops = { 446 .read = vmd_pci_read, 447 .write = vmd_pci_write, 448 }; 449 450 static void vmd_attach_resources(struct vmd_dev *vmd) 451 { 452 vmd->dev->resource[VMD_MEMBAR1].child = &vmd->resources[1]; 453 vmd->dev->resource[VMD_MEMBAR2].child = &vmd->resources[2]; 454 } 455 456 static void vmd_detach_resources(struct vmd_dev *vmd) 457 { 458 vmd->dev->resource[VMD_MEMBAR1].child = NULL; 459 vmd->dev->resource[VMD_MEMBAR2].child = NULL; 460 } 461 462 /* 463 * VMD domains start at 0x10000 to not clash with ACPI _SEG domains. 464 * Per ACPI r6.0, sec 6.5.6, _SEG returns an integer, of which the lower 465 * 16 bits are the PCI Segment Group (domain) number. Other bits are 466 * currently reserved. 467 */ 468 static int vmd_find_free_domain(void) 469 { 470 int domain = 0xffff; 471 struct pci_bus *bus = NULL; 472 473 while ((bus = pci_find_next_bus(bus)) != NULL) 474 domain = max_t(int, domain, pci_domain_nr(bus)); 475 return domain + 1; 476 } 477 478 static int vmd_get_phys_offsets(struct vmd_dev *vmd, bool native_hint, 479 resource_size_t *offset1, 480 resource_size_t *offset2) 481 { 482 struct pci_dev *dev = vmd->dev; 483 u64 phys1, phys2; 484 485 if (native_hint) { 486 u32 vmlock; 487 int ret; 488 489 ret = pci_read_config_dword(dev, PCI_REG_VMLOCK, &vmlock); 490 if (ret || vmlock == ~0) 491 return -ENODEV; 492 493 if (MB2_SHADOW_EN(vmlock)) { 494 void __iomem *membar2; 495 496 membar2 = pci_iomap(dev, VMD_MEMBAR2, 0); 497 if (!membar2) 498 return -ENOMEM; 499 phys1 = readq(membar2 + MB2_SHADOW_OFFSET); 500 phys2 = readq(membar2 + MB2_SHADOW_OFFSET + 8); 501 pci_iounmap(dev, membar2); 502 } else 503 return 0; 504 } else { 505 /* Hypervisor-Emulated Vendor-Specific Capability */ 506 int pos = pci_find_capability(dev, PCI_CAP_ID_VNDR); 507 u32 reg, regu; 508 509 pci_read_config_dword(dev, pos + 4, ®); 510 511 /* "SHDW" */ 512 if (pos && reg == 0x53484457) { 513 pci_read_config_dword(dev, pos + 8, ®); 514 pci_read_config_dword(dev, pos + 12, ®u); 515 phys1 = (u64) regu << 32 | reg; 516 517 pci_read_config_dword(dev, pos + 16, ®); 518 pci_read_config_dword(dev, pos + 20, ®u); 519 phys2 = (u64) regu << 32 | reg; 520 } else 521 return 0; 522 } 523 524 *offset1 = dev->resource[VMD_MEMBAR1].start - 525 (phys1 & PCI_BASE_ADDRESS_MEM_MASK); 526 *offset2 = dev->resource[VMD_MEMBAR2].start - 527 (phys2 & PCI_BASE_ADDRESS_MEM_MASK); 528 529 return 0; 530 } 531 532 static int vmd_get_bus_number_start(struct vmd_dev *vmd) 533 { 534 struct pci_dev *dev = vmd->dev; 535 u16 reg; 536 537 pci_read_config_word(dev, PCI_REG_VMCAP, ®); 538 if (BUS_RESTRICT_CAP(reg)) { 539 pci_read_config_word(dev, PCI_REG_VMCONFIG, ®); 540 541 switch (BUS_RESTRICT_CFG(reg)) { 542 case 0: 543 vmd->busn_start = 0; 544 break; 545 case 1: 546 vmd->busn_start = 128; 547 break; 548 case 2: 549 vmd->busn_start = 224; 550 break; 551 default: 552 pci_err(dev, "Unknown Bus Offset Setting (%d)\n", 553 BUS_RESTRICT_CFG(reg)); 554 return -ENODEV; 555 } 556 } 557 558 return 0; 559 } 560 561 static irqreturn_t vmd_irq(int irq, void *data) 562 { 563 struct vmd_irq_list *irqs = data; 564 struct vmd_irq *vmdirq; 565 int idx; 566 567 idx = srcu_read_lock(&irqs->srcu); 568 list_for_each_entry_rcu(vmdirq, &irqs->irq_list, node) 569 generic_handle_irq(vmdirq->virq); 570 srcu_read_unlock(&irqs->srcu, idx); 571 572 return IRQ_HANDLED; 573 } 574 575 static int vmd_alloc_irqs(struct vmd_dev *vmd) 576 { 577 struct pci_dev *dev = vmd->dev; 578 int i, err; 579 580 vmd->msix_count = pci_msix_vec_count(dev); 581 if (vmd->msix_count < 0) 582 return -ENODEV; 583 584 vmd->msix_count = pci_alloc_irq_vectors(dev, vmd->first_vec + 1, 585 vmd->msix_count, PCI_IRQ_MSIX); 586 if (vmd->msix_count < 0) 587 return vmd->msix_count; 588 589 vmd->irqs = devm_kcalloc(&dev->dev, vmd->msix_count, sizeof(*vmd->irqs), 590 GFP_KERNEL); 591 if (!vmd->irqs) 592 return -ENOMEM; 593 594 for (i = 0; i < vmd->msix_count; i++) { 595 err = init_srcu_struct(&vmd->irqs[i].srcu); 596 if (err) 597 return err; 598 599 INIT_LIST_HEAD(&vmd->irqs[i].irq_list); 600 err = devm_request_irq(&dev->dev, pci_irq_vector(dev, i), 601 vmd_irq, IRQF_NO_THREAD, 602 "vmd", &vmd->irqs[i]); 603 if (err) 604 return err; 605 } 606 607 return 0; 608 } 609 610 static int vmd_enable_domain(struct vmd_dev *vmd, unsigned long features) 611 { 612 struct pci_sysdata *sd = &vmd->sysdata; 613 struct resource *res; 614 u32 upper_bits; 615 unsigned long flags; 616 LIST_HEAD(resources); 617 resource_size_t offset[2] = {0}; 618 resource_size_t membar2_offset = 0x2000; 619 struct pci_bus *child; 620 int ret; 621 622 /* 623 * Shadow registers may exist in certain VMD device ids which allow 624 * guests to correctly assign host physical addresses to the root ports 625 * and child devices. These registers will either return the host value 626 * or 0, depending on an enable bit in the VMD device. 627 */ 628 if (features & VMD_FEAT_HAS_MEMBAR_SHADOW) { 629 membar2_offset = MB2_SHADOW_OFFSET + MB2_SHADOW_SIZE; 630 ret = vmd_get_phys_offsets(vmd, true, &offset[0], &offset[1]); 631 if (ret) 632 return ret; 633 } else if (features & VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP) { 634 ret = vmd_get_phys_offsets(vmd, false, &offset[0], &offset[1]); 635 if (ret) 636 return ret; 637 } 638 639 /* 640 * Certain VMD devices may have a root port configuration option which 641 * limits the bus range to between 0-127, 128-255, or 224-255 642 */ 643 if (features & VMD_FEAT_HAS_BUS_RESTRICTIONS) { 644 ret = vmd_get_bus_number_start(vmd); 645 if (ret) 646 return ret; 647 } 648 649 res = &vmd->dev->resource[VMD_CFGBAR]; 650 vmd->resources[0] = (struct resource) { 651 .name = "VMD CFGBAR", 652 .start = vmd->busn_start, 653 .end = vmd->busn_start + (resource_size(res) >> 20) - 1, 654 .flags = IORESOURCE_BUS | IORESOURCE_PCI_FIXED, 655 }; 656 657 /* 658 * If the window is below 4GB, clear IORESOURCE_MEM_64 so we can 659 * put 32-bit resources in the window. 660 * 661 * There's no hardware reason why a 64-bit window *couldn't* 662 * contain a 32-bit resource, but pbus_size_mem() computes the 663 * bridge window size assuming a 64-bit window will contain no 664 * 32-bit resources. __pci_assign_resource() enforces that 665 * artificial restriction to make sure everything will fit. 666 * 667 * The only way we could use a 64-bit non-prefetchable MEMBAR is 668 * if its address is <4GB so that we can convert it to a 32-bit 669 * resource. To be visible to the host OS, all VMD endpoints must 670 * be initially configured by platform BIOS, which includes setting 671 * up these resources. We can assume the device is configured 672 * according to the platform needs. 673 */ 674 res = &vmd->dev->resource[VMD_MEMBAR1]; 675 upper_bits = upper_32_bits(res->end); 676 flags = res->flags & ~IORESOURCE_SIZEALIGN; 677 if (!upper_bits) 678 flags &= ~IORESOURCE_MEM_64; 679 vmd->resources[1] = (struct resource) { 680 .name = "VMD MEMBAR1", 681 .start = res->start, 682 .end = res->end, 683 .flags = flags, 684 .parent = res, 685 }; 686 687 res = &vmd->dev->resource[VMD_MEMBAR2]; 688 upper_bits = upper_32_bits(res->end); 689 flags = res->flags & ~IORESOURCE_SIZEALIGN; 690 if (!upper_bits) 691 flags &= ~IORESOURCE_MEM_64; 692 vmd->resources[2] = (struct resource) { 693 .name = "VMD MEMBAR2", 694 .start = res->start + membar2_offset, 695 .end = res->end, 696 .flags = flags, 697 .parent = res, 698 }; 699 700 sd->vmd_dev = vmd->dev; 701 sd->domain = vmd_find_free_domain(); 702 if (sd->domain < 0) 703 return sd->domain; 704 705 sd->node = pcibus_to_node(vmd->dev->bus); 706 707 /* 708 * Currently MSI remapping must be enabled in guest passthrough mode 709 * due to some missing interrupt remapping plumbing. This is probably 710 * acceptable because the guest is usually CPU-limited and MSI 711 * remapping doesn't become a performance bottleneck. 712 */ 713 if (!(features & VMD_FEAT_CAN_BYPASS_MSI_REMAP) || 714 offset[0] || offset[1]) { 715 ret = vmd_alloc_irqs(vmd); 716 if (ret) 717 return ret; 718 719 vmd_set_msi_remapping(vmd, true); 720 721 ret = vmd_create_irq_domain(vmd); 722 if (ret) 723 return ret; 724 725 /* 726 * Override the IRQ domain bus token so the domain can be 727 * distinguished from a regular PCI/MSI domain. 728 */ 729 irq_domain_update_bus_token(vmd->irq_domain, DOMAIN_BUS_VMD_MSI); 730 } else { 731 vmd_set_msi_remapping(vmd, false); 732 } 733 734 pci_add_resource(&resources, &vmd->resources[0]); 735 pci_add_resource_offset(&resources, &vmd->resources[1], offset[0]); 736 pci_add_resource_offset(&resources, &vmd->resources[2], offset[1]); 737 738 vmd->bus = pci_create_root_bus(&vmd->dev->dev, vmd->busn_start, 739 &vmd_ops, sd, &resources); 740 if (!vmd->bus) { 741 pci_free_resource_list(&resources); 742 vmd_remove_irq_domain(vmd); 743 return -ENODEV; 744 } 745 746 vmd_attach_resources(vmd); 747 if (vmd->irq_domain) 748 dev_set_msi_domain(&vmd->bus->dev, vmd->irq_domain); 749 750 pci_scan_child_bus(vmd->bus); 751 pci_assign_unassigned_bus_resources(vmd->bus); 752 753 /* 754 * VMD root buses are virtual and don't return true on pci_is_pcie() 755 * and will fail pcie_bus_configure_settings() early. It can instead be 756 * run on each of the real root ports. 757 */ 758 list_for_each_entry(child, &vmd->bus->children, node) 759 pcie_bus_configure_settings(child); 760 761 pci_bus_add_devices(vmd->bus); 762 763 WARN(sysfs_create_link(&vmd->dev->dev.kobj, &vmd->bus->dev.kobj, 764 "domain"), "Can't create symlink to domain\n"); 765 return 0; 766 } 767 768 static int vmd_probe(struct pci_dev *dev, const struct pci_device_id *id) 769 { 770 unsigned long features = (unsigned long) id->driver_data; 771 struct vmd_dev *vmd; 772 int err; 773 774 if (resource_size(&dev->resource[VMD_CFGBAR]) < (1 << 20)) 775 return -ENOMEM; 776 777 vmd = devm_kzalloc(&dev->dev, sizeof(*vmd), GFP_KERNEL); 778 if (!vmd) 779 return -ENOMEM; 780 781 vmd->dev = dev; 782 err = pcim_enable_device(dev); 783 if (err < 0) 784 return err; 785 786 vmd->cfgbar = pcim_iomap(dev, VMD_CFGBAR, 0); 787 if (!vmd->cfgbar) 788 return -ENOMEM; 789 790 pci_set_master(dev); 791 if (dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(64)) && 792 dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(32))) 793 return -ENODEV; 794 795 if (features & VMD_FEAT_OFFSET_FIRST_VECTOR) 796 vmd->first_vec = 1; 797 798 spin_lock_init(&vmd->cfg_lock); 799 pci_set_drvdata(dev, vmd); 800 err = vmd_enable_domain(vmd, features); 801 if (err) 802 return err; 803 804 dev_info(&vmd->dev->dev, "Bound to PCI domain %04x\n", 805 vmd->sysdata.domain); 806 return 0; 807 } 808 809 static void vmd_cleanup_srcu(struct vmd_dev *vmd) 810 { 811 int i; 812 813 for (i = 0; i < vmd->msix_count; i++) 814 cleanup_srcu_struct(&vmd->irqs[i].srcu); 815 } 816 817 static void vmd_remove(struct pci_dev *dev) 818 { 819 struct vmd_dev *vmd = pci_get_drvdata(dev); 820 821 sysfs_remove_link(&vmd->dev->dev.kobj, "domain"); 822 pci_stop_root_bus(vmd->bus); 823 pci_remove_root_bus(vmd->bus); 824 vmd_cleanup_srcu(vmd); 825 vmd_detach_resources(vmd); 826 vmd_remove_irq_domain(vmd); 827 } 828 829 #ifdef CONFIG_PM_SLEEP 830 static int vmd_suspend(struct device *dev) 831 { 832 struct pci_dev *pdev = to_pci_dev(dev); 833 struct vmd_dev *vmd = pci_get_drvdata(pdev); 834 int i; 835 836 for (i = 0; i < vmd->msix_count; i++) 837 devm_free_irq(dev, pci_irq_vector(pdev, i), &vmd->irqs[i]); 838 839 return 0; 840 } 841 842 static int vmd_resume(struct device *dev) 843 { 844 struct pci_dev *pdev = to_pci_dev(dev); 845 struct vmd_dev *vmd = pci_get_drvdata(pdev); 846 int err, i; 847 848 for (i = 0; i < vmd->msix_count; i++) { 849 err = devm_request_irq(dev, pci_irq_vector(pdev, i), 850 vmd_irq, IRQF_NO_THREAD, 851 "vmd", &vmd->irqs[i]); 852 if (err) 853 return err; 854 } 855 856 return 0; 857 } 858 #endif 859 static SIMPLE_DEV_PM_OPS(vmd_dev_pm_ops, vmd_suspend, vmd_resume); 860 861 static const struct pci_device_id vmd_ids[] = { 862 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_201D), 863 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP,}, 864 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_28C0), 865 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW | 866 VMD_FEAT_HAS_BUS_RESTRICTIONS | 867 VMD_FEAT_CAN_BYPASS_MSI_REMAP,}, 868 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x467f), 869 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP | 870 VMD_FEAT_HAS_BUS_RESTRICTIONS | 871 VMD_FEAT_OFFSET_FIRST_VECTOR,}, 872 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x4c3d), 873 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP | 874 VMD_FEAT_HAS_BUS_RESTRICTIONS | 875 VMD_FEAT_OFFSET_FIRST_VECTOR,}, 876 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_9A0B), 877 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP | 878 VMD_FEAT_HAS_BUS_RESTRICTIONS | 879 VMD_FEAT_OFFSET_FIRST_VECTOR,}, 880 {0,} 881 }; 882 MODULE_DEVICE_TABLE(pci, vmd_ids); 883 884 static struct pci_driver vmd_drv = { 885 .name = "vmd", 886 .id_table = vmd_ids, 887 .probe = vmd_probe, 888 .remove = vmd_remove, 889 .driver = { 890 .pm = &vmd_dev_pm_ops, 891 }, 892 }; 893 module_pci_driver(vmd_drv); 894 895 MODULE_AUTHOR("Intel Corporation"); 896 MODULE_LICENSE("GPL v2"); 897 MODULE_VERSION("0.6"); 898