1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Volume Management Device driver 4 * Copyright (c) 2015, Intel Corporation. 5 */ 6 7 #include <linux/device.h> 8 #include <linux/interrupt.h> 9 #include <linux/iommu.h> 10 #include <linux/irq.h> 11 #include <linux/kernel.h> 12 #include <linux/module.h> 13 #include <linux/msi.h> 14 #include <linux/pci.h> 15 #include <linux/pci-acpi.h> 16 #include <linux/pci-ecam.h> 17 #include <linux/srcu.h> 18 #include <linux/rculist.h> 19 #include <linux/rcupdate.h> 20 21 #include <asm/irqdomain.h> 22 23 #define VMD_CFGBAR 0 24 #define VMD_MEMBAR1 2 25 #define VMD_MEMBAR2 4 26 27 #define PCI_REG_VMCAP 0x40 28 #define BUS_RESTRICT_CAP(vmcap) (vmcap & 0x1) 29 #define PCI_REG_VMCONFIG 0x44 30 #define BUS_RESTRICT_CFG(vmcfg) ((vmcfg >> 8) & 0x3) 31 #define VMCONFIG_MSI_REMAP 0x2 32 #define PCI_REG_VMLOCK 0x70 33 #define MB2_SHADOW_EN(vmlock) (vmlock & 0x2) 34 35 #define MB2_SHADOW_OFFSET 0x2000 36 #define MB2_SHADOW_SIZE 16 37 38 enum vmd_features { 39 /* 40 * Device may contain registers which hint the physical location of the 41 * membars, in order to allow proper address translation during 42 * resource assignment to enable guest virtualization 43 */ 44 VMD_FEAT_HAS_MEMBAR_SHADOW = (1 << 0), 45 46 /* 47 * Device may provide root port configuration information which limits 48 * bus numbering 49 */ 50 VMD_FEAT_HAS_BUS_RESTRICTIONS = (1 << 1), 51 52 /* 53 * Device contains physical location shadow registers in 54 * vendor-specific capability space 55 */ 56 VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP = (1 << 2), 57 58 /* 59 * Device may use MSI-X vector 0 for software triggering and will not 60 * be used for MSI remapping 61 */ 62 VMD_FEAT_OFFSET_FIRST_VECTOR = (1 << 3), 63 64 /* 65 * Device can bypass remapping MSI-X transactions into its MSI-X table, 66 * avoiding the requirement of a VMD MSI domain for child device 67 * interrupt handling. 68 */ 69 VMD_FEAT_CAN_BYPASS_MSI_REMAP = (1 << 4), 70 }; 71 72 static DEFINE_IDA(vmd_instance_ida); 73 74 /* 75 * Lock for manipulating VMD IRQ lists. 76 */ 77 static DEFINE_RAW_SPINLOCK(list_lock); 78 79 /** 80 * struct vmd_irq - private data to map driver IRQ to the VMD shared vector 81 * @node: list item for parent traversal. 82 * @irq: back pointer to parent. 83 * @enabled: true if driver enabled IRQ 84 * @virq: the virtual IRQ value provided to the requesting driver. 85 * 86 * Every MSI/MSI-X IRQ requested for a device in a VMD domain will be mapped to 87 * a VMD IRQ using this structure. 88 */ 89 struct vmd_irq { 90 struct list_head node; 91 struct vmd_irq_list *irq; 92 bool enabled; 93 unsigned int virq; 94 }; 95 96 /** 97 * struct vmd_irq_list - list of driver requested IRQs mapping to a VMD vector 98 * @irq_list: the list of irq's the VMD one demuxes to. 99 * @srcu: SRCU struct for local synchronization. 100 * @count: number of child IRQs assigned to this vector; used to track 101 * sharing. 102 */ 103 struct vmd_irq_list { 104 struct list_head irq_list; 105 struct srcu_struct srcu; 106 unsigned int count; 107 }; 108 109 struct vmd_dev { 110 struct pci_dev *dev; 111 112 spinlock_t cfg_lock; 113 void __iomem *cfgbar; 114 115 int msix_count; 116 struct vmd_irq_list *irqs; 117 118 struct pci_sysdata sysdata; 119 struct resource resources[3]; 120 struct irq_domain *irq_domain; 121 struct pci_bus *bus; 122 u8 busn_start; 123 u8 first_vec; 124 char *name; 125 int instance; 126 }; 127 128 static inline struct vmd_dev *vmd_from_bus(struct pci_bus *bus) 129 { 130 return container_of(bus->sysdata, struct vmd_dev, sysdata); 131 } 132 133 static inline unsigned int index_from_irqs(struct vmd_dev *vmd, 134 struct vmd_irq_list *irqs) 135 { 136 return irqs - vmd->irqs; 137 } 138 139 /* 140 * Drivers managing a device in a VMD domain allocate their own IRQs as before, 141 * but the MSI entry for the hardware it's driving will be programmed with a 142 * destination ID for the VMD MSI-X table. The VMD muxes interrupts in its 143 * domain into one of its own, and the VMD driver de-muxes these for the 144 * handlers sharing that VMD IRQ. The vmd irq_domain provides the operations 145 * and irq_chip to set this up. 146 */ 147 static void vmd_compose_msi_msg(struct irq_data *data, struct msi_msg *msg) 148 { 149 struct vmd_irq *vmdirq = data->chip_data; 150 struct vmd_irq_list *irq = vmdirq->irq; 151 struct vmd_dev *vmd = irq_data_get_irq_handler_data(data); 152 153 memset(msg, 0, sizeof(*msg)); 154 msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH; 155 msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW; 156 msg->arch_addr_lo.destid_0_7 = index_from_irqs(vmd, irq); 157 } 158 159 /* 160 * We rely on MSI_FLAG_USE_DEF_CHIP_OPS to set the IRQ mask/unmask ops. 161 */ 162 static void vmd_irq_enable(struct irq_data *data) 163 { 164 struct vmd_irq *vmdirq = data->chip_data; 165 unsigned long flags; 166 167 raw_spin_lock_irqsave(&list_lock, flags); 168 WARN_ON(vmdirq->enabled); 169 list_add_tail_rcu(&vmdirq->node, &vmdirq->irq->irq_list); 170 vmdirq->enabled = true; 171 raw_spin_unlock_irqrestore(&list_lock, flags); 172 173 data->chip->irq_unmask(data); 174 } 175 176 static void vmd_irq_disable(struct irq_data *data) 177 { 178 struct vmd_irq *vmdirq = data->chip_data; 179 unsigned long flags; 180 181 data->chip->irq_mask(data); 182 183 raw_spin_lock_irqsave(&list_lock, flags); 184 if (vmdirq->enabled) { 185 list_del_rcu(&vmdirq->node); 186 vmdirq->enabled = false; 187 } 188 raw_spin_unlock_irqrestore(&list_lock, flags); 189 } 190 191 /* 192 * XXX: Stubbed until we develop acceptable way to not create conflicts with 193 * other devices sharing the same vector. 194 */ 195 static int vmd_irq_set_affinity(struct irq_data *data, 196 const struct cpumask *dest, bool force) 197 { 198 return -EINVAL; 199 } 200 201 static struct irq_chip vmd_msi_controller = { 202 .name = "VMD-MSI", 203 .irq_enable = vmd_irq_enable, 204 .irq_disable = vmd_irq_disable, 205 .irq_compose_msi_msg = vmd_compose_msi_msg, 206 .irq_set_affinity = vmd_irq_set_affinity, 207 }; 208 209 static irq_hw_number_t vmd_get_hwirq(struct msi_domain_info *info, 210 msi_alloc_info_t *arg) 211 { 212 return 0; 213 } 214 215 /* 216 * XXX: We can be even smarter selecting the best IRQ once we solve the 217 * affinity problem. 218 */ 219 static struct vmd_irq_list *vmd_next_irq(struct vmd_dev *vmd, struct msi_desc *desc) 220 { 221 unsigned long flags; 222 int i, best; 223 224 if (vmd->msix_count == 1 + vmd->first_vec) 225 return &vmd->irqs[vmd->first_vec]; 226 227 /* 228 * White list for fast-interrupt handlers. All others will share the 229 * "slow" interrupt vector. 230 */ 231 switch (msi_desc_to_pci_dev(desc)->class) { 232 case PCI_CLASS_STORAGE_EXPRESS: 233 break; 234 default: 235 return &vmd->irqs[vmd->first_vec]; 236 } 237 238 raw_spin_lock_irqsave(&list_lock, flags); 239 best = vmd->first_vec + 1; 240 for (i = best; i < vmd->msix_count; i++) 241 if (vmd->irqs[i].count < vmd->irqs[best].count) 242 best = i; 243 vmd->irqs[best].count++; 244 raw_spin_unlock_irqrestore(&list_lock, flags); 245 246 return &vmd->irqs[best]; 247 } 248 249 static int vmd_msi_init(struct irq_domain *domain, struct msi_domain_info *info, 250 unsigned int virq, irq_hw_number_t hwirq, 251 msi_alloc_info_t *arg) 252 { 253 struct msi_desc *desc = arg->desc; 254 struct vmd_dev *vmd = vmd_from_bus(msi_desc_to_pci_dev(desc)->bus); 255 struct vmd_irq *vmdirq = kzalloc(sizeof(*vmdirq), GFP_KERNEL); 256 unsigned int index, vector; 257 258 if (!vmdirq) 259 return -ENOMEM; 260 261 INIT_LIST_HEAD(&vmdirq->node); 262 vmdirq->irq = vmd_next_irq(vmd, desc); 263 vmdirq->virq = virq; 264 index = index_from_irqs(vmd, vmdirq->irq); 265 vector = pci_irq_vector(vmd->dev, index); 266 267 irq_domain_set_info(domain, virq, vector, info->chip, vmdirq, 268 handle_untracked_irq, vmd, NULL); 269 return 0; 270 } 271 272 static void vmd_msi_free(struct irq_domain *domain, 273 struct msi_domain_info *info, unsigned int virq) 274 { 275 struct vmd_irq *vmdirq = irq_get_chip_data(virq); 276 unsigned long flags; 277 278 synchronize_srcu(&vmdirq->irq->srcu); 279 280 /* XXX: Potential optimization to rebalance */ 281 raw_spin_lock_irqsave(&list_lock, flags); 282 vmdirq->irq->count--; 283 raw_spin_unlock_irqrestore(&list_lock, flags); 284 285 kfree(vmdirq); 286 } 287 288 static int vmd_msi_prepare(struct irq_domain *domain, struct device *dev, 289 int nvec, msi_alloc_info_t *arg) 290 { 291 struct pci_dev *pdev = to_pci_dev(dev); 292 struct vmd_dev *vmd = vmd_from_bus(pdev->bus); 293 294 if (nvec > vmd->msix_count) 295 return vmd->msix_count; 296 297 memset(arg, 0, sizeof(*arg)); 298 return 0; 299 } 300 301 static void vmd_set_desc(msi_alloc_info_t *arg, struct msi_desc *desc) 302 { 303 arg->desc = desc; 304 } 305 306 static struct msi_domain_ops vmd_msi_domain_ops = { 307 .get_hwirq = vmd_get_hwirq, 308 .msi_init = vmd_msi_init, 309 .msi_free = vmd_msi_free, 310 .msi_prepare = vmd_msi_prepare, 311 .set_desc = vmd_set_desc, 312 }; 313 314 static struct msi_domain_info vmd_msi_domain_info = { 315 .flags = MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS | 316 MSI_FLAG_PCI_MSIX, 317 .ops = &vmd_msi_domain_ops, 318 .chip = &vmd_msi_controller, 319 }; 320 321 static void vmd_set_msi_remapping(struct vmd_dev *vmd, bool enable) 322 { 323 u16 reg; 324 325 pci_read_config_word(vmd->dev, PCI_REG_VMCONFIG, ®); 326 reg = enable ? (reg & ~VMCONFIG_MSI_REMAP) : 327 (reg | VMCONFIG_MSI_REMAP); 328 pci_write_config_word(vmd->dev, PCI_REG_VMCONFIG, reg); 329 } 330 331 static int vmd_create_irq_domain(struct vmd_dev *vmd) 332 { 333 struct fwnode_handle *fn; 334 335 fn = irq_domain_alloc_named_id_fwnode("VMD-MSI", vmd->sysdata.domain); 336 if (!fn) 337 return -ENODEV; 338 339 vmd->irq_domain = pci_msi_create_irq_domain(fn, &vmd_msi_domain_info, NULL); 340 if (!vmd->irq_domain) { 341 irq_domain_free_fwnode(fn); 342 return -ENODEV; 343 } 344 345 return 0; 346 } 347 348 static void vmd_remove_irq_domain(struct vmd_dev *vmd) 349 { 350 /* 351 * Some production BIOS won't enable remapping between soft reboots. 352 * Ensure remapping is restored before unloading the driver. 353 */ 354 if (!vmd->msix_count) 355 vmd_set_msi_remapping(vmd, true); 356 357 if (vmd->irq_domain) { 358 struct fwnode_handle *fn = vmd->irq_domain->fwnode; 359 360 irq_domain_remove(vmd->irq_domain); 361 irq_domain_free_fwnode(fn); 362 } 363 } 364 365 static void __iomem *vmd_cfg_addr(struct vmd_dev *vmd, struct pci_bus *bus, 366 unsigned int devfn, int reg, int len) 367 { 368 unsigned int busnr_ecam = bus->number - vmd->busn_start; 369 u32 offset = PCIE_ECAM_OFFSET(busnr_ecam, devfn, reg); 370 371 if (offset + len >= resource_size(&vmd->dev->resource[VMD_CFGBAR])) 372 return NULL; 373 374 return vmd->cfgbar + offset; 375 } 376 377 /* 378 * CPU may deadlock if config space is not serialized on some versions of this 379 * hardware, so all config space access is done under a spinlock. 380 */ 381 static int vmd_pci_read(struct pci_bus *bus, unsigned int devfn, int reg, 382 int len, u32 *value) 383 { 384 struct vmd_dev *vmd = vmd_from_bus(bus); 385 void __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len); 386 unsigned long flags; 387 int ret = 0; 388 389 if (!addr) 390 return -EFAULT; 391 392 spin_lock_irqsave(&vmd->cfg_lock, flags); 393 switch (len) { 394 case 1: 395 *value = readb(addr); 396 break; 397 case 2: 398 *value = readw(addr); 399 break; 400 case 4: 401 *value = readl(addr); 402 break; 403 default: 404 ret = -EINVAL; 405 break; 406 } 407 spin_unlock_irqrestore(&vmd->cfg_lock, flags); 408 return ret; 409 } 410 411 /* 412 * VMD h/w converts non-posted config writes to posted memory writes. The 413 * read-back in this function forces the completion so it returns only after 414 * the config space was written, as expected. 415 */ 416 static int vmd_pci_write(struct pci_bus *bus, unsigned int devfn, int reg, 417 int len, u32 value) 418 { 419 struct vmd_dev *vmd = vmd_from_bus(bus); 420 void __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len); 421 unsigned long flags; 422 int ret = 0; 423 424 if (!addr) 425 return -EFAULT; 426 427 spin_lock_irqsave(&vmd->cfg_lock, flags); 428 switch (len) { 429 case 1: 430 writeb(value, addr); 431 readb(addr); 432 break; 433 case 2: 434 writew(value, addr); 435 readw(addr); 436 break; 437 case 4: 438 writel(value, addr); 439 readl(addr); 440 break; 441 default: 442 ret = -EINVAL; 443 break; 444 } 445 spin_unlock_irqrestore(&vmd->cfg_lock, flags); 446 return ret; 447 } 448 449 static struct pci_ops vmd_ops = { 450 .read = vmd_pci_read, 451 .write = vmd_pci_write, 452 }; 453 454 #ifdef CONFIG_ACPI 455 static struct acpi_device *vmd_acpi_find_companion(struct pci_dev *pci_dev) 456 { 457 struct pci_host_bridge *bridge; 458 u32 busnr, addr; 459 460 if (pci_dev->bus->ops != &vmd_ops) 461 return NULL; 462 463 bridge = pci_find_host_bridge(pci_dev->bus); 464 busnr = pci_dev->bus->number - bridge->bus->number; 465 /* 466 * The address computation below is only applicable to relative bus 467 * numbers below 32. 468 */ 469 if (busnr > 31) 470 return NULL; 471 472 addr = (busnr << 24) | ((u32)pci_dev->devfn << 16) | 0x8000FFFFU; 473 474 dev_dbg(&pci_dev->dev, "Looking for ACPI companion (address 0x%x)\n", 475 addr); 476 477 return acpi_find_child_device(ACPI_COMPANION(bridge->dev.parent), addr, 478 false); 479 } 480 481 static bool hook_installed; 482 483 static void vmd_acpi_begin(void) 484 { 485 if (pci_acpi_set_companion_lookup_hook(vmd_acpi_find_companion)) 486 return; 487 488 hook_installed = true; 489 } 490 491 static void vmd_acpi_end(void) 492 { 493 if (!hook_installed) 494 return; 495 496 pci_acpi_clear_companion_lookup_hook(); 497 hook_installed = false; 498 } 499 #else 500 static inline void vmd_acpi_begin(void) { } 501 static inline void vmd_acpi_end(void) { } 502 #endif /* CONFIG_ACPI */ 503 504 static void vmd_attach_resources(struct vmd_dev *vmd) 505 { 506 vmd->dev->resource[VMD_MEMBAR1].child = &vmd->resources[1]; 507 vmd->dev->resource[VMD_MEMBAR2].child = &vmd->resources[2]; 508 } 509 510 static void vmd_detach_resources(struct vmd_dev *vmd) 511 { 512 vmd->dev->resource[VMD_MEMBAR1].child = NULL; 513 vmd->dev->resource[VMD_MEMBAR2].child = NULL; 514 } 515 516 /* 517 * VMD domains start at 0x10000 to not clash with ACPI _SEG domains. 518 * Per ACPI r6.0, sec 6.5.6, _SEG returns an integer, of which the lower 519 * 16 bits are the PCI Segment Group (domain) number. Other bits are 520 * currently reserved. 521 */ 522 static int vmd_find_free_domain(void) 523 { 524 int domain = 0xffff; 525 struct pci_bus *bus = NULL; 526 527 while ((bus = pci_find_next_bus(bus)) != NULL) 528 domain = max_t(int, domain, pci_domain_nr(bus)); 529 return domain + 1; 530 } 531 532 static int vmd_get_phys_offsets(struct vmd_dev *vmd, bool native_hint, 533 resource_size_t *offset1, 534 resource_size_t *offset2) 535 { 536 struct pci_dev *dev = vmd->dev; 537 u64 phys1, phys2; 538 539 if (native_hint) { 540 u32 vmlock; 541 int ret; 542 543 ret = pci_read_config_dword(dev, PCI_REG_VMLOCK, &vmlock); 544 if (ret || vmlock == ~0) 545 return -ENODEV; 546 547 if (MB2_SHADOW_EN(vmlock)) { 548 void __iomem *membar2; 549 550 membar2 = pci_iomap(dev, VMD_MEMBAR2, 0); 551 if (!membar2) 552 return -ENOMEM; 553 phys1 = readq(membar2 + MB2_SHADOW_OFFSET); 554 phys2 = readq(membar2 + MB2_SHADOW_OFFSET + 8); 555 pci_iounmap(dev, membar2); 556 } else 557 return 0; 558 } else { 559 /* Hypervisor-Emulated Vendor-Specific Capability */ 560 int pos = pci_find_capability(dev, PCI_CAP_ID_VNDR); 561 u32 reg, regu; 562 563 pci_read_config_dword(dev, pos + 4, ®); 564 565 /* "SHDW" */ 566 if (pos && reg == 0x53484457) { 567 pci_read_config_dword(dev, pos + 8, ®); 568 pci_read_config_dword(dev, pos + 12, ®u); 569 phys1 = (u64) regu << 32 | reg; 570 571 pci_read_config_dword(dev, pos + 16, ®); 572 pci_read_config_dword(dev, pos + 20, ®u); 573 phys2 = (u64) regu << 32 | reg; 574 } else 575 return 0; 576 } 577 578 *offset1 = dev->resource[VMD_MEMBAR1].start - 579 (phys1 & PCI_BASE_ADDRESS_MEM_MASK); 580 *offset2 = dev->resource[VMD_MEMBAR2].start - 581 (phys2 & PCI_BASE_ADDRESS_MEM_MASK); 582 583 return 0; 584 } 585 586 static int vmd_get_bus_number_start(struct vmd_dev *vmd) 587 { 588 struct pci_dev *dev = vmd->dev; 589 u16 reg; 590 591 pci_read_config_word(dev, PCI_REG_VMCAP, ®); 592 if (BUS_RESTRICT_CAP(reg)) { 593 pci_read_config_word(dev, PCI_REG_VMCONFIG, ®); 594 595 switch (BUS_RESTRICT_CFG(reg)) { 596 case 0: 597 vmd->busn_start = 0; 598 break; 599 case 1: 600 vmd->busn_start = 128; 601 break; 602 case 2: 603 vmd->busn_start = 224; 604 break; 605 default: 606 pci_err(dev, "Unknown Bus Offset Setting (%d)\n", 607 BUS_RESTRICT_CFG(reg)); 608 return -ENODEV; 609 } 610 } 611 612 return 0; 613 } 614 615 static irqreturn_t vmd_irq(int irq, void *data) 616 { 617 struct vmd_irq_list *irqs = data; 618 struct vmd_irq *vmdirq; 619 int idx; 620 621 idx = srcu_read_lock(&irqs->srcu); 622 list_for_each_entry_rcu(vmdirq, &irqs->irq_list, node) 623 generic_handle_irq(vmdirq->virq); 624 srcu_read_unlock(&irqs->srcu, idx); 625 626 return IRQ_HANDLED; 627 } 628 629 static int vmd_alloc_irqs(struct vmd_dev *vmd) 630 { 631 struct pci_dev *dev = vmd->dev; 632 int i, err; 633 634 vmd->msix_count = pci_msix_vec_count(dev); 635 if (vmd->msix_count < 0) 636 return -ENODEV; 637 638 vmd->msix_count = pci_alloc_irq_vectors(dev, vmd->first_vec + 1, 639 vmd->msix_count, PCI_IRQ_MSIX); 640 if (vmd->msix_count < 0) 641 return vmd->msix_count; 642 643 vmd->irqs = devm_kcalloc(&dev->dev, vmd->msix_count, sizeof(*vmd->irqs), 644 GFP_KERNEL); 645 if (!vmd->irqs) 646 return -ENOMEM; 647 648 for (i = 0; i < vmd->msix_count; i++) { 649 err = init_srcu_struct(&vmd->irqs[i].srcu); 650 if (err) 651 return err; 652 653 INIT_LIST_HEAD(&vmd->irqs[i].irq_list); 654 err = devm_request_irq(&dev->dev, pci_irq_vector(dev, i), 655 vmd_irq, IRQF_NO_THREAD, 656 vmd->name, &vmd->irqs[i]); 657 if (err) 658 return err; 659 } 660 661 return 0; 662 } 663 664 static int vmd_enable_domain(struct vmd_dev *vmd, unsigned long features) 665 { 666 struct pci_sysdata *sd = &vmd->sysdata; 667 struct resource *res; 668 u32 upper_bits; 669 unsigned long flags; 670 LIST_HEAD(resources); 671 resource_size_t offset[2] = {0}; 672 resource_size_t membar2_offset = 0x2000; 673 struct pci_bus *child; 674 int ret; 675 676 /* 677 * Shadow registers may exist in certain VMD device ids which allow 678 * guests to correctly assign host physical addresses to the root ports 679 * and child devices. These registers will either return the host value 680 * or 0, depending on an enable bit in the VMD device. 681 */ 682 if (features & VMD_FEAT_HAS_MEMBAR_SHADOW) { 683 membar2_offset = MB2_SHADOW_OFFSET + MB2_SHADOW_SIZE; 684 ret = vmd_get_phys_offsets(vmd, true, &offset[0], &offset[1]); 685 if (ret) 686 return ret; 687 } else if (features & VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP) { 688 ret = vmd_get_phys_offsets(vmd, false, &offset[0], &offset[1]); 689 if (ret) 690 return ret; 691 } 692 693 /* 694 * Certain VMD devices may have a root port configuration option which 695 * limits the bus range to between 0-127, 128-255, or 224-255 696 */ 697 if (features & VMD_FEAT_HAS_BUS_RESTRICTIONS) { 698 ret = vmd_get_bus_number_start(vmd); 699 if (ret) 700 return ret; 701 } 702 703 res = &vmd->dev->resource[VMD_CFGBAR]; 704 vmd->resources[0] = (struct resource) { 705 .name = "VMD CFGBAR", 706 .start = vmd->busn_start, 707 .end = vmd->busn_start + (resource_size(res) >> 20) - 1, 708 .flags = IORESOURCE_BUS | IORESOURCE_PCI_FIXED, 709 }; 710 711 /* 712 * If the window is below 4GB, clear IORESOURCE_MEM_64 so we can 713 * put 32-bit resources in the window. 714 * 715 * There's no hardware reason why a 64-bit window *couldn't* 716 * contain a 32-bit resource, but pbus_size_mem() computes the 717 * bridge window size assuming a 64-bit window will contain no 718 * 32-bit resources. __pci_assign_resource() enforces that 719 * artificial restriction to make sure everything will fit. 720 * 721 * The only way we could use a 64-bit non-prefetchable MEMBAR is 722 * if its address is <4GB so that we can convert it to a 32-bit 723 * resource. To be visible to the host OS, all VMD endpoints must 724 * be initially configured by platform BIOS, which includes setting 725 * up these resources. We can assume the device is configured 726 * according to the platform needs. 727 */ 728 res = &vmd->dev->resource[VMD_MEMBAR1]; 729 upper_bits = upper_32_bits(res->end); 730 flags = res->flags & ~IORESOURCE_SIZEALIGN; 731 if (!upper_bits) 732 flags &= ~IORESOURCE_MEM_64; 733 vmd->resources[1] = (struct resource) { 734 .name = "VMD MEMBAR1", 735 .start = res->start, 736 .end = res->end, 737 .flags = flags, 738 .parent = res, 739 }; 740 741 res = &vmd->dev->resource[VMD_MEMBAR2]; 742 upper_bits = upper_32_bits(res->end); 743 flags = res->flags & ~IORESOURCE_SIZEALIGN; 744 if (!upper_bits) 745 flags &= ~IORESOURCE_MEM_64; 746 vmd->resources[2] = (struct resource) { 747 .name = "VMD MEMBAR2", 748 .start = res->start + membar2_offset, 749 .end = res->end, 750 .flags = flags, 751 .parent = res, 752 }; 753 754 sd->vmd_dev = vmd->dev; 755 sd->domain = vmd_find_free_domain(); 756 if (sd->domain < 0) 757 return sd->domain; 758 759 sd->node = pcibus_to_node(vmd->dev->bus); 760 761 /* 762 * Currently MSI remapping must be enabled in guest passthrough mode 763 * due to some missing interrupt remapping plumbing. This is probably 764 * acceptable because the guest is usually CPU-limited and MSI 765 * remapping doesn't become a performance bottleneck. 766 */ 767 if (iommu_capable(vmd->dev->dev.bus, IOMMU_CAP_INTR_REMAP) || 768 !(features & VMD_FEAT_CAN_BYPASS_MSI_REMAP) || 769 offset[0] || offset[1]) { 770 ret = vmd_alloc_irqs(vmd); 771 if (ret) 772 return ret; 773 774 vmd_set_msi_remapping(vmd, true); 775 776 ret = vmd_create_irq_domain(vmd); 777 if (ret) 778 return ret; 779 780 /* 781 * Override the IRQ domain bus token so the domain can be 782 * distinguished from a regular PCI/MSI domain. 783 */ 784 irq_domain_update_bus_token(vmd->irq_domain, DOMAIN_BUS_VMD_MSI); 785 } else { 786 vmd_set_msi_remapping(vmd, false); 787 } 788 789 pci_add_resource(&resources, &vmd->resources[0]); 790 pci_add_resource_offset(&resources, &vmd->resources[1], offset[0]); 791 pci_add_resource_offset(&resources, &vmd->resources[2], offset[1]); 792 793 vmd->bus = pci_create_root_bus(&vmd->dev->dev, vmd->busn_start, 794 &vmd_ops, sd, &resources); 795 if (!vmd->bus) { 796 pci_free_resource_list(&resources); 797 vmd_remove_irq_domain(vmd); 798 return -ENODEV; 799 } 800 801 vmd_attach_resources(vmd); 802 if (vmd->irq_domain) 803 dev_set_msi_domain(&vmd->bus->dev, vmd->irq_domain); 804 805 vmd_acpi_begin(); 806 807 pci_scan_child_bus(vmd->bus); 808 pci_assign_unassigned_bus_resources(vmd->bus); 809 810 /* 811 * VMD root buses are virtual and don't return true on pci_is_pcie() 812 * and will fail pcie_bus_configure_settings() early. It can instead be 813 * run on each of the real root ports. 814 */ 815 list_for_each_entry(child, &vmd->bus->children, node) 816 pcie_bus_configure_settings(child); 817 818 pci_bus_add_devices(vmd->bus); 819 820 vmd_acpi_end(); 821 822 WARN(sysfs_create_link(&vmd->dev->dev.kobj, &vmd->bus->dev.kobj, 823 "domain"), "Can't create symlink to domain\n"); 824 return 0; 825 } 826 827 static int vmd_probe(struct pci_dev *dev, const struct pci_device_id *id) 828 { 829 unsigned long features = (unsigned long) id->driver_data; 830 struct vmd_dev *vmd; 831 int err; 832 833 if (resource_size(&dev->resource[VMD_CFGBAR]) < (1 << 20)) 834 return -ENOMEM; 835 836 vmd = devm_kzalloc(&dev->dev, sizeof(*vmd), GFP_KERNEL); 837 if (!vmd) 838 return -ENOMEM; 839 840 vmd->dev = dev; 841 vmd->instance = ida_simple_get(&vmd_instance_ida, 0, 0, GFP_KERNEL); 842 if (vmd->instance < 0) 843 return vmd->instance; 844 845 vmd->name = kasprintf(GFP_KERNEL, "vmd%d", vmd->instance); 846 if (!vmd->name) { 847 err = -ENOMEM; 848 goto out_release_instance; 849 } 850 851 err = pcim_enable_device(dev); 852 if (err < 0) 853 goto out_release_instance; 854 855 vmd->cfgbar = pcim_iomap(dev, VMD_CFGBAR, 0); 856 if (!vmd->cfgbar) { 857 err = -ENOMEM; 858 goto out_release_instance; 859 } 860 861 pci_set_master(dev); 862 if (dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(64)) && 863 dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(32))) { 864 err = -ENODEV; 865 goto out_release_instance; 866 } 867 868 if (features & VMD_FEAT_OFFSET_FIRST_VECTOR) 869 vmd->first_vec = 1; 870 871 spin_lock_init(&vmd->cfg_lock); 872 pci_set_drvdata(dev, vmd); 873 err = vmd_enable_domain(vmd, features); 874 if (err) 875 goto out_release_instance; 876 877 dev_info(&vmd->dev->dev, "Bound to PCI domain %04x\n", 878 vmd->sysdata.domain); 879 return 0; 880 881 out_release_instance: 882 ida_simple_remove(&vmd_instance_ida, vmd->instance); 883 kfree(vmd->name); 884 return err; 885 } 886 887 static void vmd_cleanup_srcu(struct vmd_dev *vmd) 888 { 889 int i; 890 891 for (i = 0; i < vmd->msix_count; i++) 892 cleanup_srcu_struct(&vmd->irqs[i].srcu); 893 } 894 895 static void vmd_remove(struct pci_dev *dev) 896 { 897 struct vmd_dev *vmd = pci_get_drvdata(dev); 898 899 sysfs_remove_link(&vmd->dev->dev.kobj, "domain"); 900 pci_stop_root_bus(vmd->bus); 901 pci_remove_root_bus(vmd->bus); 902 vmd_cleanup_srcu(vmd); 903 vmd_detach_resources(vmd); 904 vmd_remove_irq_domain(vmd); 905 ida_simple_remove(&vmd_instance_ida, vmd->instance); 906 kfree(vmd->name); 907 } 908 909 #ifdef CONFIG_PM_SLEEP 910 static int vmd_suspend(struct device *dev) 911 { 912 struct pci_dev *pdev = to_pci_dev(dev); 913 struct vmd_dev *vmd = pci_get_drvdata(pdev); 914 int i; 915 916 for (i = 0; i < vmd->msix_count; i++) 917 devm_free_irq(dev, pci_irq_vector(pdev, i), &vmd->irqs[i]); 918 919 return 0; 920 } 921 922 static int vmd_resume(struct device *dev) 923 { 924 struct pci_dev *pdev = to_pci_dev(dev); 925 struct vmd_dev *vmd = pci_get_drvdata(pdev); 926 int err, i; 927 928 for (i = 0; i < vmd->msix_count; i++) { 929 err = devm_request_irq(dev, pci_irq_vector(pdev, i), 930 vmd_irq, IRQF_NO_THREAD, 931 vmd->name, &vmd->irqs[i]); 932 if (err) 933 return err; 934 } 935 936 return 0; 937 } 938 #endif 939 static SIMPLE_DEV_PM_OPS(vmd_dev_pm_ops, vmd_suspend, vmd_resume); 940 941 static const struct pci_device_id vmd_ids[] = { 942 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_201D), 943 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP,}, 944 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_28C0), 945 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW | 946 VMD_FEAT_HAS_BUS_RESTRICTIONS | 947 VMD_FEAT_CAN_BYPASS_MSI_REMAP,}, 948 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x467f), 949 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP | 950 VMD_FEAT_HAS_BUS_RESTRICTIONS | 951 VMD_FEAT_OFFSET_FIRST_VECTOR,}, 952 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x4c3d), 953 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP | 954 VMD_FEAT_HAS_BUS_RESTRICTIONS | 955 VMD_FEAT_OFFSET_FIRST_VECTOR,}, 956 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_9A0B), 957 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP | 958 VMD_FEAT_HAS_BUS_RESTRICTIONS | 959 VMD_FEAT_OFFSET_FIRST_VECTOR,}, 960 {0,} 961 }; 962 MODULE_DEVICE_TABLE(pci, vmd_ids); 963 964 static struct pci_driver vmd_drv = { 965 .name = "vmd", 966 .id_table = vmd_ids, 967 .probe = vmd_probe, 968 .remove = vmd_remove, 969 .driver = { 970 .pm = &vmd_dev_pm_ops, 971 }, 972 }; 973 module_pci_driver(vmd_drv); 974 975 MODULE_AUTHOR("Intel Corporation"); 976 MODULE_LICENSE("GPL v2"); 977 MODULE_VERSION("0.6"); 978