xref: /openbmc/linux/drivers/pci/controller/vmd.c (revision a8f4fcdd8ba7d191c29ae87a2315906fe90368d6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Volume Management Device driver
4  * Copyright (c) 2015, Intel Corporation.
5  */
6 
7 #include <linux/device.h>
8 #include <linux/interrupt.h>
9 #include <linux/iommu.h>
10 #include <linux/irq.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/msi.h>
14 #include <linux/pci.h>
15 #include <linux/pci-acpi.h>
16 #include <linux/pci-ecam.h>
17 #include <linux/srcu.h>
18 #include <linux/rculist.h>
19 #include <linux/rcupdate.h>
20 
21 #include <asm/irqdomain.h>
22 
23 #define VMD_CFGBAR	0
24 #define VMD_MEMBAR1	2
25 #define VMD_MEMBAR2	4
26 
27 #define PCI_REG_VMCAP		0x40
28 #define BUS_RESTRICT_CAP(vmcap)	(vmcap & 0x1)
29 #define PCI_REG_VMCONFIG	0x44
30 #define BUS_RESTRICT_CFG(vmcfg)	((vmcfg >> 8) & 0x3)
31 #define VMCONFIG_MSI_REMAP	0x2
32 #define PCI_REG_VMLOCK		0x70
33 #define MB2_SHADOW_EN(vmlock)	(vmlock & 0x2)
34 
35 #define MB2_SHADOW_OFFSET	0x2000
36 #define MB2_SHADOW_SIZE		16
37 
38 enum vmd_features {
39 	/*
40 	 * Device may contain registers which hint the physical location of the
41 	 * membars, in order to allow proper address translation during
42 	 * resource assignment to enable guest virtualization
43 	 */
44 	VMD_FEAT_HAS_MEMBAR_SHADOW		= (1 << 0),
45 
46 	/*
47 	 * Device may provide root port configuration information which limits
48 	 * bus numbering
49 	 */
50 	VMD_FEAT_HAS_BUS_RESTRICTIONS		= (1 << 1),
51 
52 	/*
53 	 * Device contains physical location shadow registers in
54 	 * vendor-specific capability space
55 	 */
56 	VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP	= (1 << 2),
57 
58 	/*
59 	 * Device may use MSI-X vector 0 for software triggering and will not
60 	 * be used for MSI remapping
61 	 */
62 	VMD_FEAT_OFFSET_FIRST_VECTOR		= (1 << 3),
63 
64 	/*
65 	 * Device can bypass remapping MSI-X transactions into its MSI-X table,
66 	 * avoiding the requirement of a VMD MSI domain for child device
67 	 * interrupt handling.
68 	 */
69 	VMD_FEAT_CAN_BYPASS_MSI_REMAP		= (1 << 4),
70 };
71 
72 static DEFINE_IDA(vmd_instance_ida);
73 
74 /*
75  * Lock for manipulating VMD IRQ lists.
76  */
77 static DEFINE_RAW_SPINLOCK(list_lock);
78 
79 /**
80  * struct vmd_irq - private data to map driver IRQ to the VMD shared vector
81  * @node:	list item for parent traversal.
82  * @irq:	back pointer to parent.
83  * @enabled:	true if driver enabled IRQ
84  * @virq:	the virtual IRQ value provided to the requesting driver.
85  *
86  * Every MSI/MSI-X IRQ requested for a device in a VMD domain will be mapped to
87  * a VMD IRQ using this structure.
88  */
89 struct vmd_irq {
90 	struct list_head	node;
91 	struct vmd_irq_list	*irq;
92 	bool			enabled;
93 	unsigned int		virq;
94 };
95 
96 /**
97  * struct vmd_irq_list - list of driver requested IRQs mapping to a VMD vector
98  * @irq_list:	the list of irq's the VMD one demuxes to.
99  * @srcu:	SRCU struct for local synchronization.
100  * @count:	number of child IRQs assigned to this vector; used to track
101  *		sharing.
102  */
103 struct vmd_irq_list {
104 	struct list_head	irq_list;
105 	struct srcu_struct	srcu;
106 	unsigned int		count;
107 };
108 
109 struct vmd_dev {
110 	struct pci_dev		*dev;
111 
112 	spinlock_t		cfg_lock;
113 	void __iomem		*cfgbar;
114 
115 	int msix_count;
116 	struct vmd_irq_list	*irqs;
117 
118 	struct pci_sysdata	sysdata;
119 	struct resource		resources[3];
120 	struct irq_domain	*irq_domain;
121 	struct pci_bus		*bus;
122 	u8			busn_start;
123 	u8			first_vec;
124 	char			*name;
125 	int			instance;
126 };
127 
128 static inline struct vmd_dev *vmd_from_bus(struct pci_bus *bus)
129 {
130 	return container_of(bus->sysdata, struct vmd_dev, sysdata);
131 }
132 
133 static inline unsigned int index_from_irqs(struct vmd_dev *vmd,
134 					   struct vmd_irq_list *irqs)
135 {
136 	return irqs - vmd->irqs;
137 }
138 
139 /*
140  * Drivers managing a device in a VMD domain allocate their own IRQs as before,
141  * but the MSI entry for the hardware it's driving will be programmed with a
142  * destination ID for the VMD MSI-X table.  The VMD muxes interrupts in its
143  * domain into one of its own, and the VMD driver de-muxes these for the
144  * handlers sharing that VMD IRQ.  The vmd irq_domain provides the operations
145  * and irq_chip to set this up.
146  */
147 static void vmd_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
148 {
149 	struct vmd_irq *vmdirq = data->chip_data;
150 	struct vmd_irq_list *irq = vmdirq->irq;
151 	struct vmd_dev *vmd = irq_data_get_irq_handler_data(data);
152 
153 	memset(msg, 0, sizeof(*msg));
154 	msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
155 	msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW;
156 	msg->arch_addr_lo.destid_0_7 = index_from_irqs(vmd, irq);
157 }
158 
159 /*
160  * We rely on MSI_FLAG_USE_DEF_CHIP_OPS to set the IRQ mask/unmask ops.
161  */
162 static void vmd_irq_enable(struct irq_data *data)
163 {
164 	struct vmd_irq *vmdirq = data->chip_data;
165 	unsigned long flags;
166 
167 	raw_spin_lock_irqsave(&list_lock, flags);
168 	WARN_ON(vmdirq->enabled);
169 	list_add_tail_rcu(&vmdirq->node, &vmdirq->irq->irq_list);
170 	vmdirq->enabled = true;
171 	raw_spin_unlock_irqrestore(&list_lock, flags);
172 
173 	data->chip->irq_unmask(data);
174 }
175 
176 static void vmd_irq_disable(struct irq_data *data)
177 {
178 	struct vmd_irq *vmdirq = data->chip_data;
179 	unsigned long flags;
180 
181 	data->chip->irq_mask(data);
182 
183 	raw_spin_lock_irqsave(&list_lock, flags);
184 	if (vmdirq->enabled) {
185 		list_del_rcu(&vmdirq->node);
186 		vmdirq->enabled = false;
187 	}
188 	raw_spin_unlock_irqrestore(&list_lock, flags);
189 }
190 
191 /*
192  * XXX: Stubbed until we develop acceptable way to not create conflicts with
193  * other devices sharing the same vector.
194  */
195 static int vmd_irq_set_affinity(struct irq_data *data,
196 				const struct cpumask *dest, bool force)
197 {
198 	return -EINVAL;
199 }
200 
201 static struct irq_chip vmd_msi_controller = {
202 	.name			= "VMD-MSI",
203 	.irq_enable		= vmd_irq_enable,
204 	.irq_disable		= vmd_irq_disable,
205 	.irq_compose_msi_msg	= vmd_compose_msi_msg,
206 	.irq_set_affinity	= vmd_irq_set_affinity,
207 };
208 
209 static irq_hw_number_t vmd_get_hwirq(struct msi_domain_info *info,
210 				     msi_alloc_info_t *arg)
211 {
212 	return 0;
213 }
214 
215 /*
216  * XXX: We can be even smarter selecting the best IRQ once we solve the
217  * affinity problem.
218  */
219 static struct vmd_irq_list *vmd_next_irq(struct vmd_dev *vmd, struct msi_desc *desc)
220 {
221 	unsigned long flags;
222 	int i, best;
223 
224 	if (vmd->msix_count == 1 + vmd->first_vec)
225 		return &vmd->irqs[vmd->first_vec];
226 
227 	/*
228 	 * White list for fast-interrupt handlers. All others will share the
229 	 * "slow" interrupt vector.
230 	 */
231 	switch (msi_desc_to_pci_dev(desc)->class) {
232 	case PCI_CLASS_STORAGE_EXPRESS:
233 		break;
234 	default:
235 		return &vmd->irqs[vmd->first_vec];
236 	}
237 
238 	raw_spin_lock_irqsave(&list_lock, flags);
239 	best = vmd->first_vec + 1;
240 	for (i = best; i < vmd->msix_count; i++)
241 		if (vmd->irqs[i].count < vmd->irqs[best].count)
242 			best = i;
243 	vmd->irqs[best].count++;
244 	raw_spin_unlock_irqrestore(&list_lock, flags);
245 
246 	return &vmd->irqs[best];
247 }
248 
249 static int vmd_msi_init(struct irq_domain *domain, struct msi_domain_info *info,
250 			unsigned int virq, irq_hw_number_t hwirq,
251 			msi_alloc_info_t *arg)
252 {
253 	struct msi_desc *desc = arg->desc;
254 	struct vmd_dev *vmd = vmd_from_bus(msi_desc_to_pci_dev(desc)->bus);
255 	struct vmd_irq *vmdirq = kzalloc(sizeof(*vmdirq), GFP_KERNEL);
256 	unsigned int index, vector;
257 
258 	if (!vmdirq)
259 		return -ENOMEM;
260 
261 	INIT_LIST_HEAD(&vmdirq->node);
262 	vmdirq->irq = vmd_next_irq(vmd, desc);
263 	vmdirq->virq = virq;
264 	index = index_from_irqs(vmd, vmdirq->irq);
265 	vector = pci_irq_vector(vmd->dev, index);
266 
267 	irq_domain_set_info(domain, virq, vector, info->chip, vmdirq,
268 			    handle_untracked_irq, vmd, NULL);
269 	return 0;
270 }
271 
272 static void vmd_msi_free(struct irq_domain *domain,
273 			struct msi_domain_info *info, unsigned int virq)
274 {
275 	struct vmd_irq *vmdirq = irq_get_chip_data(virq);
276 	unsigned long flags;
277 
278 	synchronize_srcu(&vmdirq->irq->srcu);
279 
280 	/* XXX: Potential optimization to rebalance */
281 	raw_spin_lock_irqsave(&list_lock, flags);
282 	vmdirq->irq->count--;
283 	raw_spin_unlock_irqrestore(&list_lock, flags);
284 
285 	kfree(vmdirq);
286 }
287 
288 static int vmd_msi_prepare(struct irq_domain *domain, struct device *dev,
289 			   int nvec, msi_alloc_info_t *arg)
290 {
291 	struct pci_dev *pdev = to_pci_dev(dev);
292 	struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
293 
294 	if (nvec > vmd->msix_count)
295 		return vmd->msix_count;
296 
297 	memset(arg, 0, sizeof(*arg));
298 	return 0;
299 }
300 
301 static void vmd_set_desc(msi_alloc_info_t *arg, struct msi_desc *desc)
302 {
303 	arg->desc = desc;
304 }
305 
306 static struct msi_domain_ops vmd_msi_domain_ops = {
307 	.get_hwirq	= vmd_get_hwirq,
308 	.msi_init	= vmd_msi_init,
309 	.msi_free	= vmd_msi_free,
310 	.msi_prepare	= vmd_msi_prepare,
311 	.set_desc	= vmd_set_desc,
312 };
313 
314 static struct msi_domain_info vmd_msi_domain_info = {
315 	.flags		= MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
316 			  MSI_FLAG_PCI_MSIX,
317 	.ops		= &vmd_msi_domain_ops,
318 	.chip		= &vmd_msi_controller,
319 };
320 
321 static void vmd_set_msi_remapping(struct vmd_dev *vmd, bool enable)
322 {
323 	u16 reg;
324 
325 	pci_read_config_word(vmd->dev, PCI_REG_VMCONFIG, &reg);
326 	reg = enable ? (reg & ~VMCONFIG_MSI_REMAP) :
327 		       (reg | VMCONFIG_MSI_REMAP);
328 	pci_write_config_word(vmd->dev, PCI_REG_VMCONFIG, reg);
329 }
330 
331 static int vmd_create_irq_domain(struct vmd_dev *vmd)
332 {
333 	struct fwnode_handle *fn;
334 
335 	fn = irq_domain_alloc_named_id_fwnode("VMD-MSI", vmd->sysdata.domain);
336 	if (!fn)
337 		return -ENODEV;
338 
339 	vmd->irq_domain = pci_msi_create_irq_domain(fn, &vmd_msi_domain_info, NULL);
340 	if (!vmd->irq_domain) {
341 		irq_domain_free_fwnode(fn);
342 		return -ENODEV;
343 	}
344 
345 	return 0;
346 }
347 
348 static void vmd_remove_irq_domain(struct vmd_dev *vmd)
349 {
350 	/*
351 	 * Some production BIOS won't enable remapping between soft reboots.
352 	 * Ensure remapping is restored before unloading the driver.
353 	 */
354 	if (!vmd->msix_count)
355 		vmd_set_msi_remapping(vmd, true);
356 
357 	if (vmd->irq_domain) {
358 		struct fwnode_handle *fn = vmd->irq_domain->fwnode;
359 
360 		irq_domain_remove(vmd->irq_domain);
361 		irq_domain_free_fwnode(fn);
362 	}
363 }
364 
365 static void __iomem *vmd_cfg_addr(struct vmd_dev *vmd, struct pci_bus *bus,
366 				  unsigned int devfn, int reg, int len)
367 {
368 	unsigned int busnr_ecam = bus->number - vmd->busn_start;
369 	u32 offset = PCIE_ECAM_OFFSET(busnr_ecam, devfn, reg);
370 
371 	if (offset + len >= resource_size(&vmd->dev->resource[VMD_CFGBAR]))
372 		return NULL;
373 
374 	return vmd->cfgbar + offset;
375 }
376 
377 /*
378  * CPU may deadlock if config space is not serialized on some versions of this
379  * hardware, so all config space access is done under a spinlock.
380  */
381 static int vmd_pci_read(struct pci_bus *bus, unsigned int devfn, int reg,
382 			int len, u32 *value)
383 {
384 	struct vmd_dev *vmd = vmd_from_bus(bus);
385 	void __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
386 	unsigned long flags;
387 	int ret = 0;
388 
389 	if (!addr)
390 		return -EFAULT;
391 
392 	spin_lock_irqsave(&vmd->cfg_lock, flags);
393 	switch (len) {
394 	case 1:
395 		*value = readb(addr);
396 		break;
397 	case 2:
398 		*value = readw(addr);
399 		break;
400 	case 4:
401 		*value = readl(addr);
402 		break;
403 	default:
404 		ret = -EINVAL;
405 		break;
406 	}
407 	spin_unlock_irqrestore(&vmd->cfg_lock, flags);
408 	return ret;
409 }
410 
411 /*
412  * VMD h/w converts non-posted config writes to posted memory writes. The
413  * read-back in this function forces the completion so it returns only after
414  * the config space was written, as expected.
415  */
416 static int vmd_pci_write(struct pci_bus *bus, unsigned int devfn, int reg,
417 			 int len, u32 value)
418 {
419 	struct vmd_dev *vmd = vmd_from_bus(bus);
420 	void __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
421 	unsigned long flags;
422 	int ret = 0;
423 
424 	if (!addr)
425 		return -EFAULT;
426 
427 	spin_lock_irqsave(&vmd->cfg_lock, flags);
428 	switch (len) {
429 	case 1:
430 		writeb(value, addr);
431 		readb(addr);
432 		break;
433 	case 2:
434 		writew(value, addr);
435 		readw(addr);
436 		break;
437 	case 4:
438 		writel(value, addr);
439 		readl(addr);
440 		break;
441 	default:
442 		ret = -EINVAL;
443 		break;
444 	}
445 	spin_unlock_irqrestore(&vmd->cfg_lock, flags);
446 	return ret;
447 }
448 
449 static struct pci_ops vmd_ops = {
450 	.read		= vmd_pci_read,
451 	.write		= vmd_pci_write,
452 };
453 
454 #ifdef CONFIG_ACPI
455 static struct acpi_device *vmd_acpi_find_companion(struct pci_dev *pci_dev)
456 {
457 	struct pci_host_bridge *bridge;
458 	u32 busnr, addr;
459 
460 	if (pci_dev->bus->ops != &vmd_ops)
461 		return NULL;
462 
463 	bridge = pci_find_host_bridge(pci_dev->bus);
464 	busnr = pci_dev->bus->number - bridge->bus->number;
465 	/*
466 	 * The address computation below is only applicable to relative bus
467 	 * numbers below 32.
468 	 */
469 	if (busnr > 31)
470 		return NULL;
471 
472 	addr = (busnr << 24) | ((u32)pci_dev->devfn << 16) | 0x8000FFFFU;
473 
474 	dev_dbg(&pci_dev->dev, "Looking for ACPI companion (address 0x%x)\n",
475 		addr);
476 
477 	return acpi_find_child_device(ACPI_COMPANION(bridge->dev.parent), addr,
478 				      false);
479 }
480 
481 static bool hook_installed;
482 
483 static void vmd_acpi_begin(void)
484 {
485 	if (pci_acpi_set_companion_lookup_hook(vmd_acpi_find_companion))
486 		return;
487 
488 	hook_installed = true;
489 }
490 
491 static void vmd_acpi_end(void)
492 {
493 	if (!hook_installed)
494 		return;
495 
496 	pci_acpi_clear_companion_lookup_hook();
497 	hook_installed = false;
498 }
499 #else
500 static inline void vmd_acpi_begin(void) { }
501 static inline void vmd_acpi_end(void) { }
502 #endif /* CONFIG_ACPI */
503 
504 static void vmd_attach_resources(struct vmd_dev *vmd)
505 {
506 	vmd->dev->resource[VMD_MEMBAR1].child = &vmd->resources[1];
507 	vmd->dev->resource[VMD_MEMBAR2].child = &vmd->resources[2];
508 }
509 
510 static void vmd_detach_resources(struct vmd_dev *vmd)
511 {
512 	vmd->dev->resource[VMD_MEMBAR1].child = NULL;
513 	vmd->dev->resource[VMD_MEMBAR2].child = NULL;
514 }
515 
516 /*
517  * VMD domains start at 0x10000 to not clash with ACPI _SEG domains.
518  * Per ACPI r6.0, sec 6.5.6,  _SEG returns an integer, of which the lower
519  * 16 bits are the PCI Segment Group (domain) number.  Other bits are
520  * currently reserved.
521  */
522 static int vmd_find_free_domain(void)
523 {
524 	int domain = 0xffff;
525 	struct pci_bus *bus = NULL;
526 
527 	while ((bus = pci_find_next_bus(bus)) != NULL)
528 		domain = max_t(int, domain, pci_domain_nr(bus));
529 	return domain + 1;
530 }
531 
532 static int vmd_get_phys_offsets(struct vmd_dev *vmd, bool native_hint,
533 				resource_size_t *offset1,
534 				resource_size_t *offset2)
535 {
536 	struct pci_dev *dev = vmd->dev;
537 	u64 phys1, phys2;
538 
539 	if (native_hint) {
540 		u32 vmlock;
541 		int ret;
542 
543 		ret = pci_read_config_dword(dev, PCI_REG_VMLOCK, &vmlock);
544 		if (ret || vmlock == ~0)
545 			return -ENODEV;
546 
547 		if (MB2_SHADOW_EN(vmlock)) {
548 			void __iomem *membar2;
549 
550 			membar2 = pci_iomap(dev, VMD_MEMBAR2, 0);
551 			if (!membar2)
552 				return -ENOMEM;
553 			phys1 = readq(membar2 + MB2_SHADOW_OFFSET);
554 			phys2 = readq(membar2 + MB2_SHADOW_OFFSET + 8);
555 			pci_iounmap(dev, membar2);
556 		} else
557 			return 0;
558 	} else {
559 		/* Hypervisor-Emulated Vendor-Specific Capability */
560 		int pos = pci_find_capability(dev, PCI_CAP_ID_VNDR);
561 		u32 reg, regu;
562 
563 		pci_read_config_dword(dev, pos + 4, &reg);
564 
565 		/* "SHDW" */
566 		if (pos && reg == 0x53484457) {
567 			pci_read_config_dword(dev, pos + 8, &reg);
568 			pci_read_config_dword(dev, pos + 12, &regu);
569 			phys1 = (u64) regu << 32 | reg;
570 
571 			pci_read_config_dword(dev, pos + 16, &reg);
572 			pci_read_config_dword(dev, pos + 20, &regu);
573 			phys2 = (u64) regu << 32 | reg;
574 		} else
575 			return 0;
576 	}
577 
578 	*offset1 = dev->resource[VMD_MEMBAR1].start -
579 			(phys1 & PCI_BASE_ADDRESS_MEM_MASK);
580 	*offset2 = dev->resource[VMD_MEMBAR2].start -
581 			(phys2 & PCI_BASE_ADDRESS_MEM_MASK);
582 
583 	return 0;
584 }
585 
586 static int vmd_get_bus_number_start(struct vmd_dev *vmd)
587 {
588 	struct pci_dev *dev = vmd->dev;
589 	u16 reg;
590 
591 	pci_read_config_word(dev, PCI_REG_VMCAP, &reg);
592 	if (BUS_RESTRICT_CAP(reg)) {
593 		pci_read_config_word(dev, PCI_REG_VMCONFIG, &reg);
594 
595 		switch (BUS_RESTRICT_CFG(reg)) {
596 		case 0:
597 			vmd->busn_start = 0;
598 			break;
599 		case 1:
600 			vmd->busn_start = 128;
601 			break;
602 		case 2:
603 			vmd->busn_start = 224;
604 			break;
605 		default:
606 			pci_err(dev, "Unknown Bus Offset Setting (%d)\n",
607 				BUS_RESTRICT_CFG(reg));
608 			return -ENODEV;
609 		}
610 	}
611 
612 	return 0;
613 }
614 
615 static irqreturn_t vmd_irq(int irq, void *data)
616 {
617 	struct vmd_irq_list *irqs = data;
618 	struct vmd_irq *vmdirq;
619 	int idx;
620 
621 	idx = srcu_read_lock(&irqs->srcu);
622 	list_for_each_entry_rcu(vmdirq, &irqs->irq_list, node)
623 		generic_handle_irq(vmdirq->virq);
624 	srcu_read_unlock(&irqs->srcu, idx);
625 
626 	return IRQ_HANDLED;
627 }
628 
629 static int vmd_alloc_irqs(struct vmd_dev *vmd)
630 {
631 	struct pci_dev *dev = vmd->dev;
632 	int i, err;
633 
634 	vmd->msix_count = pci_msix_vec_count(dev);
635 	if (vmd->msix_count < 0)
636 		return -ENODEV;
637 
638 	vmd->msix_count = pci_alloc_irq_vectors(dev, vmd->first_vec + 1,
639 						vmd->msix_count, PCI_IRQ_MSIX);
640 	if (vmd->msix_count < 0)
641 		return vmd->msix_count;
642 
643 	vmd->irqs = devm_kcalloc(&dev->dev, vmd->msix_count, sizeof(*vmd->irqs),
644 				 GFP_KERNEL);
645 	if (!vmd->irqs)
646 		return -ENOMEM;
647 
648 	for (i = 0; i < vmd->msix_count; i++) {
649 		err = init_srcu_struct(&vmd->irqs[i].srcu);
650 		if (err)
651 			return err;
652 
653 		INIT_LIST_HEAD(&vmd->irqs[i].irq_list);
654 		err = devm_request_irq(&dev->dev, pci_irq_vector(dev, i),
655 				       vmd_irq, IRQF_NO_THREAD,
656 				       vmd->name, &vmd->irqs[i]);
657 		if (err)
658 			return err;
659 	}
660 
661 	return 0;
662 }
663 
664 static int vmd_enable_domain(struct vmd_dev *vmd, unsigned long features)
665 {
666 	struct pci_sysdata *sd = &vmd->sysdata;
667 	struct resource *res;
668 	u32 upper_bits;
669 	unsigned long flags;
670 	LIST_HEAD(resources);
671 	resource_size_t offset[2] = {0};
672 	resource_size_t membar2_offset = 0x2000;
673 	struct pci_bus *child;
674 	int ret;
675 
676 	/*
677 	 * Shadow registers may exist in certain VMD device ids which allow
678 	 * guests to correctly assign host physical addresses to the root ports
679 	 * and child devices. These registers will either return the host value
680 	 * or 0, depending on an enable bit in the VMD device.
681 	 */
682 	if (features & VMD_FEAT_HAS_MEMBAR_SHADOW) {
683 		membar2_offset = MB2_SHADOW_OFFSET + MB2_SHADOW_SIZE;
684 		ret = vmd_get_phys_offsets(vmd, true, &offset[0], &offset[1]);
685 		if (ret)
686 			return ret;
687 	} else if (features & VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP) {
688 		ret = vmd_get_phys_offsets(vmd, false, &offset[0], &offset[1]);
689 		if (ret)
690 			return ret;
691 	}
692 
693 	/*
694 	 * Certain VMD devices may have a root port configuration option which
695 	 * limits the bus range to between 0-127, 128-255, or 224-255
696 	 */
697 	if (features & VMD_FEAT_HAS_BUS_RESTRICTIONS) {
698 		ret = vmd_get_bus_number_start(vmd);
699 		if (ret)
700 			return ret;
701 	}
702 
703 	res = &vmd->dev->resource[VMD_CFGBAR];
704 	vmd->resources[0] = (struct resource) {
705 		.name  = "VMD CFGBAR",
706 		.start = vmd->busn_start,
707 		.end   = vmd->busn_start + (resource_size(res) >> 20) - 1,
708 		.flags = IORESOURCE_BUS | IORESOURCE_PCI_FIXED,
709 	};
710 
711 	/*
712 	 * If the window is below 4GB, clear IORESOURCE_MEM_64 so we can
713 	 * put 32-bit resources in the window.
714 	 *
715 	 * There's no hardware reason why a 64-bit window *couldn't*
716 	 * contain a 32-bit resource, but pbus_size_mem() computes the
717 	 * bridge window size assuming a 64-bit window will contain no
718 	 * 32-bit resources.  __pci_assign_resource() enforces that
719 	 * artificial restriction to make sure everything will fit.
720 	 *
721 	 * The only way we could use a 64-bit non-prefetchable MEMBAR is
722 	 * if its address is <4GB so that we can convert it to a 32-bit
723 	 * resource.  To be visible to the host OS, all VMD endpoints must
724 	 * be initially configured by platform BIOS, which includes setting
725 	 * up these resources.  We can assume the device is configured
726 	 * according to the platform needs.
727 	 */
728 	res = &vmd->dev->resource[VMD_MEMBAR1];
729 	upper_bits = upper_32_bits(res->end);
730 	flags = res->flags & ~IORESOURCE_SIZEALIGN;
731 	if (!upper_bits)
732 		flags &= ~IORESOURCE_MEM_64;
733 	vmd->resources[1] = (struct resource) {
734 		.name  = "VMD MEMBAR1",
735 		.start = res->start,
736 		.end   = res->end,
737 		.flags = flags,
738 		.parent = res,
739 	};
740 
741 	res = &vmd->dev->resource[VMD_MEMBAR2];
742 	upper_bits = upper_32_bits(res->end);
743 	flags = res->flags & ~IORESOURCE_SIZEALIGN;
744 	if (!upper_bits)
745 		flags &= ~IORESOURCE_MEM_64;
746 	vmd->resources[2] = (struct resource) {
747 		.name  = "VMD MEMBAR2",
748 		.start = res->start + membar2_offset,
749 		.end   = res->end,
750 		.flags = flags,
751 		.parent = res,
752 	};
753 
754 	sd->vmd_dev = vmd->dev;
755 	sd->domain = vmd_find_free_domain();
756 	if (sd->domain < 0)
757 		return sd->domain;
758 
759 	sd->node = pcibus_to_node(vmd->dev->bus);
760 
761 	/*
762 	 * Currently MSI remapping must be enabled in guest passthrough mode
763 	 * due to some missing interrupt remapping plumbing. This is probably
764 	 * acceptable because the guest is usually CPU-limited and MSI
765 	 * remapping doesn't become a performance bottleneck.
766 	 */
767 	if (iommu_capable(vmd->dev->dev.bus, IOMMU_CAP_INTR_REMAP) ||
768 	    !(features & VMD_FEAT_CAN_BYPASS_MSI_REMAP) ||
769 	    offset[0] || offset[1]) {
770 		ret = vmd_alloc_irqs(vmd);
771 		if (ret)
772 			return ret;
773 
774 		vmd_set_msi_remapping(vmd, true);
775 
776 		ret = vmd_create_irq_domain(vmd);
777 		if (ret)
778 			return ret;
779 
780 		/*
781 		 * Override the IRQ domain bus token so the domain can be
782 		 * distinguished from a regular PCI/MSI domain.
783 		 */
784 		irq_domain_update_bus_token(vmd->irq_domain, DOMAIN_BUS_VMD_MSI);
785 	} else {
786 		vmd_set_msi_remapping(vmd, false);
787 	}
788 
789 	pci_add_resource(&resources, &vmd->resources[0]);
790 	pci_add_resource_offset(&resources, &vmd->resources[1], offset[0]);
791 	pci_add_resource_offset(&resources, &vmd->resources[2], offset[1]);
792 
793 	vmd->bus = pci_create_root_bus(&vmd->dev->dev, vmd->busn_start,
794 				       &vmd_ops, sd, &resources);
795 	if (!vmd->bus) {
796 		pci_free_resource_list(&resources);
797 		vmd_remove_irq_domain(vmd);
798 		return -ENODEV;
799 	}
800 
801 	vmd_attach_resources(vmd);
802 	if (vmd->irq_domain)
803 		dev_set_msi_domain(&vmd->bus->dev, vmd->irq_domain);
804 
805 	vmd_acpi_begin();
806 
807 	pci_scan_child_bus(vmd->bus);
808 	pci_assign_unassigned_bus_resources(vmd->bus);
809 
810 	/*
811 	 * VMD root buses are virtual and don't return true on pci_is_pcie()
812 	 * and will fail pcie_bus_configure_settings() early. It can instead be
813 	 * run on each of the real root ports.
814 	 */
815 	list_for_each_entry(child, &vmd->bus->children, node)
816 		pcie_bus_configure_settings(child);
817 
818 	pci_bus_add_devices(vmd->bus);
819 
820 	vmd_acpi_end();
821 
822 	WARN(sysfs_create_link(&vmd->dev->dev.kobj, &vmd->bus->dev.kobj,
823 			       "domain"), "Can't create symlink to domain\n");
824 	return 0;
825 }
826 
827 static int vmd_probe(struct pci_dev *dev, const struct pci_device_id *id)
828 {
829 	unsigned long features = (unsigned long) id->driver_data;
830 	struct vmd_dev *vmd;
831 	int err;
832 
833 	if (resource_size(&dev->resource[VMD_CFGBAR]) < (1 << 20))
834 		return -ENOMEM;
835 
836 	vmd = devm_kzalloc(&dev->dev, sizeof(*vmd), GFP_KERNEL);
837 	if (!vmd)
838 		return -ENOMEM;
839 
840 	vmd->dev = dev;
841 	vmd->instance = ida_simple_get(&vmd_instance_ida, 0, 0, GFP_KERNEL);
842 	if (vmd->instance < 0)
843 		return vmd->instance;
844 
845 	vmd->name = kasprintf(GFP_KERNEL, "vmd%d", vmd->instance);
846 	if (!vmd->name) {
847 		err = -ENOMEM;
848 		goto out_release_instance;
849 	}
850 
851 	err = pcim_enable_device(dev);
852 	if (err < 0)
853 		goto out_release_instance;
854 
855 	vmd->cfgbar = pcim_iomap(dev, VMD_CFGBAR, 0);
856 	if (!vmd->cfgbar) {
857 		err = -ENOMEM;
858 		goto out_release_instance;
859 	}
860 
861 	pci_set_master(dev);
862 	if (dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(64)) &&
863 	    dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(32))) {
864 		err = -ENODEV;
865 		goto out_release_instance;
866 	}
867 
868 	if (features & VMD_FEAT_OFFSET_FIRST_VECTOR)
869 		vmd->first_vec = 1;
870 
871 	spin_lock_init(&vmd->cfg_lock);
872 	pci_set_drvdata(dev, vmd);
873 	err = vmd_enable_domain(vmd, features);
874 	if (err)
875 		goto out_release_instance;
876 
877 	dev_info(&vmd->dev->dev, "Bound to PCI domain %04x\n",
878 		 vmd->sysdata.domain);
879 	return 0;
880 
881  out_release_instance:
882 	ida_simple_remove(&vmd_instance_ida, vmd->instance);
883 	kfree(vmd->name);
884 	return err;
885 }
886 
887 static void vmd_cleanup_srcu(struct vmd_dev *vmd)
888 {
889 	int i;
890 
891 	for (i = 0; i < vmd->msix_count; i++)
892 		cleanup_srcu_struct(&vmd->irqs[i].srcu);
893 }
894 
895 static void vmd_remove(struct pci_dev *dev)
896 {
897 	struct vmd_dev *vmd = pci_get_drvdata(dev);
898 
899 	sysfs_remove_link(&vmd->dev->dev.kobj, "domain");
900 	pci_stop_root_bus(vmd->bus);
901 	pci_remove_root_bus(vmd->bus);
902 	vmd_cleanup_srcu(vmd);
903 	vmd_detach_resources(vmd);
904 	vmd_remove_irq_domain(vmd);
905 	ida_simple_remove(&vmd_instance_ida, vmd->instance);
906 	kfree(vmd->name);
907 }
908 
909 #ifdef CONFIG_PM_SLEEP
910 static int vmd_suspend(struct device *dev)
911 {
912 	struct pci_dev *pdev = to_pci_dev(dev);
913 	struct vmd_dev *vmd = pci_get_drvdata(pdev);
914 	int i;
915 
916 	for (i = 0; i < vmd->msix_count; i++)
917 		devm_free_irq(dev, pci_irq_vector(pdev, i), &vmd->irqs[i]);
918 
919 	return 0;
920 }
921 
922 static int vmd_resume(struct device *dev)
923 {
924 	struct pci_dev *pdev = to_pci_dev(dev);
925 	struct vmd_dev *vmd = pci_get_drvdata(pdev);
926 	int err, i;
927 
928 	for (i = 0; i < vmd->msix_count; i++) {
929 		err = devm_request_irq(dev, pci_irq_vector(pdev, i),
930 				       vmd_irq, IRQF_NO_THREAD,
931 				       vmd->name, &vmd->irqs[i]);
932 		if (err)
933 			return err;
934 	}
935 
936 	return 0;
937 }
938 #endif
939 static SIMPLE_DEV_PM_OPS(vmd_dev_pm_ops, vmd_suspend, vmd_resume);
940 
941 static const struct pci_device_id vmd_ids[] = {
942 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_201D),
943 		.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP,},
944 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_28C0),
945 		.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW |
946 				VMD_FEAT_HAS_BUS_RESTRICTIONS |
947 				VMD_FEAT_CAN_BYPASS_MSI_REMAP,},
948 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x467f),
949 		.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP |
950 				VMD_FEAT_HAS_BUS_RESTRICTIONS |
951 				VMD_FEAT_OFFSET_FIRST_VECTOR,},
952 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x4c3d),
953 		.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP |
954 				VMD_FEAT_HAS_BUS_RESTRICTIONS |
955 				VMD_FEAT_OFFSET_FIRST_VECTOR,},
956 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_9A0B),
957 		.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP |
958 				VMD_FEAT_HAS_BUS_RESTRICTIONS |
959 				VMD_FEAT_OFFSET_FIRST_VECTOR,},
960 	{0,}
961 };
962 MODULE_DEVICE_TABLE(pci, vmd_ids);
963 
964 static struct pci_driver vmd_drv = {
965 	.name		= "vmd",
966 	.id_table	= vmd_ids,
967 	.probe		= vmd_probe,
968 	.remove		= vmd_remove,
969 	.driver		= {
970 		.pm	= &vmd_dev_pm_ops,
971 	},
972 };
973 module_pci_driver(vmd_drv);
974 
975 MODULE_AUTHOR("Intel Corporation");
976 MODULE_LICENSE("GPL v2");
977 MODULE_VERSION("0.6");
978