xref: /openbmc/linux/drivers/pci/controller/vmd.c (revision 8dda2eac)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Volume Management Device driver
4  * Copyright (c) 2015, Intel Corporation.
5  */
6 
7 #include <linux/device.h>
8 #include <linux/interrupt.h>
9 #include <linux/irq.h>
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/msi.h>
13 #include <linux/pci.h>
14 #include <linux/pci-ecam.h>
15 #include <linux/srcu.h>
16 #include <linux/rculist.h>
17 #include <linux/rcupdate.h>
18 
19 #include <asm/irqdomain.h>
20 #include <asm/device.h>
21 #include <asm/msi.h>
22 
23 #define VMD_CFGBAR	0
24 #define VMD_MEMBAR1	2
25 #define VMD_MEMBAR2	4
26 
27 #define PCI_REG_VMCAP		0x40
28 #define BUS_RESTRICT_CAP(vmcap)	(vmcap & 0x1)
29 #define PCI_REG_VMCONFIG	0x44
30 #define BUS_RESTRICT_CFG(vmcfg)	((vmcfg >> 8) & 0x3)
31 #define VMCONFIG_MSI_REMAP	0x2
32 #define PCI_REG_VMLOCK		0x70
33 #define MB2_SHADOW_EN(vmlock)	(vmlock & 0x2)
34 
35 #define MB2_SHADOW_OFFSET	0x2000
36 #define MB2_SHADOW_SIZE		16
37 
38 enum vmd_features {
39 	/*
40 	 * Device may contain registers which hint the physical location of the
41 	 * membars, in order to allow proper address translation during
42 	 * resource assignment to enable guest virtualization
43 	 */
44 	VMD_FEAT_HAS_MEMBAR_SHADOW		= (1 << 0),
45 
46 	/*
47 	 * Device may provide root port configuration information which limits
48 	 * bus numbering
49 	 */
50 	VMD_FEAT_HAS_BUS_RESTRICTIONS		= (1 << 1),
51 
52 	/*
53 	 * Device contains physical location shadow registers in
54 	 * vendor-specific capability space
55 	 */
56 	VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP	= (1 << 2),
57 
58 	/*
59 	 * Device may use MSI-X vector 0 for software triggering and will not
60 	 * be used for MSI remapping
61 	 */
62 	VMD_FEAT_OFFSET_FIRST_VECTOR		= (1 << 3),
63 
64 	/*
65 	 * Device can bypass remapping MSI-X transactions into its MSI-X table,
66 	 * avoiding the requirement of a VMD MSI domain for child device
67 	 * interrupt handling.
68 	 */
69 	VMD_FEAT_CAN_BYPASS_MSI_REMAP		= (1 << 4),
70 };
71 
72 /*
73  * Lock for manipulating VMD IRQ lists.
74  */
75 static DEFINE_RAW_SPINLOCK(list_lock);
76 
77 /**
78  * struct vmd_irq - private data to map driver IRQ to the VMD shared vector
79  * @node:	list item for parent traversal.
80  * @irq:	back pointer to parent.
81  * @enabled:	true if driver enabled IRQ
82  * @virq:	the virtual IRQ value provided to the requesting driver.
83  *
84  * Every MSI/MSI-X IRQ requested for a device in a VMD domain will be mapped to
85  * a VMD IRQ using this structure.
86  */
87 struct vmd_irq {
88 	struct list_head	node;
89 	struct vmd_irq_list	*irq;
90 	bool			enabled;
91 	unsigned int		virq;
92 };
93 
94 /**
95  * struct vmd_irq_list - list of driver requested IRQs mapping to a VMD vector
96  * @irq_list:	the list of irq's the VMD one demuxes to.
97  * @srcu:	SRCU struct for local synchronization.
98  * @count:	number of child IRQs assigned to this vector; used to track
99  *		sharing.
100  */
101 struct vmd_irq_list {
102 	struct list_head	irq_list;
103 	struct srcu_struct	srcu;
104 	unsigned int		count;
105 };
106 
107 struct vmd_dev {
108 	struct pci_dev		*dev;
109 
110 	spinlock_t		cfg_lock;
111 	void __iomem		*cfgbar;
112 
113 	int msix_count;
114 	struct vmd_irq_list	*irqs;
115 
116 	struct pci_sysdata	sysdata;
117 	struct resource		resources[3];
118 	struct irq_domain	*irq_domain;
119 	struct pci_bus		*bus;
120 	u8			busn_start;
121 	u8			first_vec;
122 };
123 
124 static inline struct vmd_dev *vmd_from_bus(struct pci_bus *bus)
125 {
126 	return container_of(bus->sysdata, struct vmd_dev, sysdata);
127 }
128 
129 static inline unsigned int index_from_irqs(struct vmd_dev *vmd,
130 					   struct vmd_irq_list *irqs)
131 {
132 	return irqs - vmd->irqs;
133 }
134 
135 /*
136  * Drivers managing a device in a VMD domain allocate their own IRQs as before,
137  * but the MSI entry for the hardware it's driving will be programmed with a
138  * destination ID for the VMD MSI-X table.  The VMD muxes interrupts in its
139  * domain into one of its own, and the VMD driver de-muxes these for the
140  * handlers sharing that VMD IRQ.  The vmd irq_domain provides the operations
141  * and irq_chip to set this up.
142  */
143 static void vmd_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
144 {
145 	struct vmd_irq *vmdirq = data->chip_data;
146 	struct vmd_irq_list *irq = vmdirq->irq;
147 	struct vmd_dev *vmd = irq_data_get_irq_handler_data(data);
148 
149 	memset(msg, 0, sizeof(*msg));
150 	msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
151 	msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW;
152 	msg->arch_addr_lo.destid_0_7 = index_from_irqs(vmd, irq);
153 }
154 
155 /*
156  * We rely on MSI_FLAG_USE_DEF_CHIP_OPS to set the IRQ mask/unmask ops.
157  */
158 static void vmd_irq_enable(struct irq_data *data)
159 {
160 	struct vmd_irq *vmdirq = data->chip_data;
161 	unsigned long flags;
162 
163 	raw_spin_lock_irqsave(&list_lock, flags);
164 	WARN_ON(vmdirq->enabled);
165 	list_add_tail_rcu(&vmdirq->node, &vmdirq->irq->irq_list);
166 	vmdirq->enabled = true;
167 	raw_spin_unlock_irqrestore(&list_lock, flags);
168 
169 	data->chip->irq_unmask(data);
170 }
171 
172 static void vmd_irq_disable(struct irq_data *data)
173 {
174 	struct vmd_irq *vmdirq = data->chip_data;
175 	unsigned long flags;
176 
177 	data->chip->irq_mask(data);
178 
179 	raw_spin_lock_irqsave(&list_lock, flags);
180 	if (vmdirq->enabled) {
181 		list_del_rcu(&vmdirq->node);
182 		vmdirq->enabled = false;
183 	}
184 	raw_spin_unlock_irqrestore(&list_lock, flags);
185 }
186 
187 /*
188  * XXX: Stubbed until we develop acceptable way to not create conflicts with
189  * other devices sharing the same vector.
190  */
191 static int vmd_irq_set_affinity(struct irq_data *data,
192 				const struct cpumask *dest, bool force)
193 {
194 	return -EINVAL;
195 }
196 
197 static struct irq_chip vmd_msi_controller = {
198 	.name			= "VMD-MSI",
199 	.irq_enable		= vmd_irq_enable,
200 	.irq_disable		= vmd_irq_disable,
201 	.irq_compose_msi_msg	= vmd_compose_msi_msg,
202 	.irq_set_affinity	= vmd_irq_set_affinity,
203 };
204 
205 static irq_hw_number_t vmd_get_hwirq(struct msi_domain_info *info,
206 				     msi_alloc_info_t *arg)
207 {
208 	return 0;
209 }
210 
211 /*
212  * XXX: We can be even smarter selecting the best IRQ once we solve the
213  * affinity problem.
214  */
215 static struct vmd_irq_list *vmd_next_irq(struct vmd_dev *vmd, struct msi_desc *desc)
216 {
217 	unsigned long flags;
218 	int i, best;
219 
220 	if (vmd->msix_count == 1 + vmd->first_vec)
221 		return &vmd->irqs[vmd->first_vec];
222 
223 	/*
224 	 * White list for fast-interrupt handlers. All others will share the
225 	 * "slow" interrupt vector.
226 	 */
227 	switch (msi_desc_to_pci_dev(desc)->class) {
228 	case PCI_CLASS_STORAGE_EXPRESS:
229 		break;
230 	default:
231 		return &vmd->irqs[vmd->first_vec];
232 	}
233 
234 	raw_spin_lock_irqsave(&list_lock, flags);
235 	best = vmd->first_vec + 1;
236 	for (i = best; i < vmd->msix_count; i++)
237 		if (vmd->irqs[i].count < vmd->irqs[best].count)
238 			best = i;
239 	vmd->irqs[best].count++;
240 	raw_spin_unlock_irqrestore(&list_lock, flags);
241 
242 	return &vmd->irqs[best];
243 }
244 
245 static int vmd_msi_init(struct irq_domain *domain, struct msi_domain_info *info,
246 			unsigned int virq, irq_hw_number_t hwirq,
247 			msi_alloc_info_t *arg)
248 {
249 	struct msi_desc *desc = arg->desc;
250 	struct vmd_dev *vmd = vmd_from_bus(msi_desc_to_pci_dev(desc)->bus);
251 	struct vmd_irq *vmdirq = kzalloc(sizeof(*vmdirq), GFP_KERNEL);
252 	unsigned int index, vector;
253 
254 	if (!vmdirq)
255 		return -ENOMEM;
256 
257 	INIT_LIST_HEAD(&vmdirq->node);
258 	vmdirq->irq = vmd_next_irq(vmd, desc);
259 	vmdirq->virq = virq;
260 	index = index_from_irqs(vmd, vmdirq->irq);
261 	vector = pci_irq_vector(vmd->dev, index);
262 
263 	irq_domain_set_info(domain, virq, vector, info->chip, vmdirq,
264 			    handle_untracked_irq, vmd, NULL);
265 	return 0;
266 }
267 
268 static void vmd_msi_free(struct irq_domain *domain,
269 			struct msi_domain_info *info, unsigned int virq)
270 {
271 	struct vmd_irq *vmdirq = irq_get_chip_data(virq);
272 	unsigned long flags;
273 
274 	synchronize_srcu(&vmdirq->irq->srcu);
275 
276 	/* XXX: Potential optimization to rebalance */
277 	raw_spin_lock_irqsave(&list_lock, flags);
278 	vmdirq->irq->count--;
279 	raw_spin_unlock_irqrestore(&list_lock, flags);
280 
281 	kfree(vmdirq);
282 }
283 
284 static int vmd_msi_prepare(struct irq_domain *domain, struct device *dev,
285 			   int nvec, msi_alloc_info_t *arg)
286 {
287 	struct pci_dev *pdev = to_pci_dev(dev);
288 	struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
289 
290 	if (nvec > vmd->msix_count)
291 		return vmd->msix_count;
292 
293 	memset(arg, 0, sizeof(*arg));
294 	return 0;
295 }
296 
297 static void vmd_set_desc(msi_alloc_info_t *arg, struct msi_desc *desc)
298 {
299 	arg->desc = desc;
300 }
301 
302 static struct msi_domain_ops vmd_msi_domain_ops = {
303 	.get_hwirq	= vmd_get_hwirq,
304 	.msi_init	= vmd_msi_init,
305 	.msi_free	= vmd_msi_free,
306 	.msi_prepare	= vmd_msi_prepare,
307 	.set_desc	= vmd_set_desc,
308 };
309 
310 static struct msi_domain_info vmd_msi_domain_info = {
311 	.flags		= MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
312 			  MSI_FLAG_PCI_MSIX,
313 	.ops		= &vmd_msi_domain_ops,
314 	.chip		= &vmd_msi_controller,
315 };
316 
317 static void vmd_set_msi_remapping(struct vmd_dev *vmd, bool enable)
318 {
319 	u16 reg;
320 
321 	pci_read_config_word(vmd->dev, PCI_REG_VMCONFIG, &reg);
322 	reg = enable ? (reg & ~VMCONFIG_MSI_REMAP) :
323 		       (reg | VMCONFIG_MSI_REMAP);
324 	pci_write_config_word(vmd->dev, PCI_REG_VMCONFIG, reg);
325 }
326 
327 static int vmd_create_irq_domain(struct vmd_dev *vmd)
328 {
329 	struct fwnode_handle *fn;
330 
331 	fn = irq_domain_alloc_named_id_fwnode("VMD-MSI", vmd->sysdata.domain);
332 	if (!fn)
333 		return -ENODEV;
334 
335 	vmd->irq_domain = pci_msi_create_irq_domain(fn, &vmd_msi_domain_info, NULL);
336 	if (!vmd->irq_domain) {
337 		irq_domain_free_fwnode(fn);
338 		return -ENODEV;
339 	}
340 
341 	return 0;
342 }
343 
344 static void vmd_remove_irq_domain(struct vmd_dev *vmd)
345 {
346 	/*
347 	 * Some production BIOS won't enable remapping between soft reboots.
348 	 * Ensure remapping is restored before unloading the driver.
349 	 */
350 	if (!vmd->msix_count)
351 		vmd_set_msi_remapping(vmd, true);
352 
353 	if (vmd->irq_domain) {
354 		struct fwnode_handle *fn = vmd->irq_domain->fwnode;
355 
356 		irq_domain_remove(vmd->irq_domain);
357 		irq_domain_free_fwnode(fn);
358 	}
359 }
360 
361 static void __iomem *vmd_cfg_addr(struct vmd_dev *vmd, struct pci_bus *bus,
362 				  unsigned int devfn, int reg, int len)
363 {
364 	unsigned int busnr_ecam = bus->number - vmd->busn_start;
365 	u32 offset = PCIE_ECAM_OFFSET(busnr_ecam, devfn, reg);
366 
367 	if (offset + len >= resource_size(&vmd->dev->resource[VMD_CFGBAR]))
368 		return NULL;
369 
370 	return vmd->cfgbar + offset;
371 }
372 
373 /*
374  * CPU may deadlock if config space is not serialized on some versions of this
375  * hardware, so all config space access is done under a spinlock.
376  */
377 static int vmd_pci_read(struct pci_bus *bus, unsigned int devfn, int reg,
378 			int len, u32 *value)
379 {
380 	struct vmd_dev *vmd = vmd_from_bus(bus);
381 	void __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
382 	unsigned long flags;
383 	int ret = 0;
384 
385 	if (!addr)
386 		return -EFAULT;
387 
388 	spin_lock_irqsave(&vmd->cfg_lock, flags);
389 	switch (len) {
390 	case 1:
391 		*value = readb(addr);
392 		break;
393 	case 2:
394 		*value = readw(addr);
395 		break;
396 	case 4:
397 		*value = readl(addr);
398 		break;
399 	default:
400 		ret = -EINVAL;
401 		break;
402 	}
403 	spin_unlock_irqrestore(&vmd->cfg_lock, flags);
404 	return ret;
405 }
406 
407 /*
408  * VMD h/w converts non-posted config writes to posted memory writes. The
409  * read-back in this function forces the completion so it returns only after
410  * the config space was written, as expected.
411  */
412 static int vmd_pci_write(struct pci_bus *bus, unsigned int devfn, int reg,
413 			 int len, u32 value)
414 {
415 	struct vmd_dev *vmd = vmd_from_bus(bus);
416 	void __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
417 	unsigned long flags;
418 	int ret = 0;
419 
420 	if (!addr)
421 		return -EFAULT;
422 
423 	spin_lock_irqsave(&vmd->cfg_lock, flags);
424 	switch (len) {
425 	case 1:
426 		writeb(value, addr);
427 		readb(addr);
428 		break;
429 	case 2:
430 		writew(value, addr);
431 		readw(addr);
432 		break;
433 	case 4:
434 		writel(value, addr);
435 		readl(addr);
436 		break;
437 	default:
438 		ret = -EINVAL;
439 		break;
440 	}
441 	spin_unlock_irqrestore(&vmd->cfg_lock, flags);
442 	return ret;
443 }
444 
445 static struct pci_ops vmd_ops = {
446 	.read		= vmd_pci_read,
447 	.write		= vmd_pci_write,
448 };
449 
450 static void vmd_attach_resources(struct vmd_dev *vmd)
451 {
452 	vmd->dev->resource[VMD_MEMBAR1].child = &vmd->resources[1];
453 	vmd->dev->resource[VMD_MEMBAR2].child = &vmd->resources[2];
454 }
455 
456 static void vmd_detach_resources(struct vmd_dev *vmd)
457 {
458 	vmd->dev->resource[VMD_MEMBAR1].child = NULL;
459 	vmd->dev->resource[VMD_MEMBAR2].child = NULL;
460 }
461 
462 /*
463  * VMD domains start at 0x10000 to not clash with ACPI _SEG domains.
464  * Per ACPI r6.0, sec 6.5.6,  _SEG returns an integer, of which the lower
465  * 16 bits are the PCI Segment Group (domain) number.  Other bits are
466  * currently reserved.
467  */
468 static int vmd_find_free_domain(void)
469 {
470 	int domain = 0xffff;
471 	struct pci_bus *bus = NULL;
472 
473 	while ((bus = pci_find_next_bus(bus)) != NULL)
474 		domain = max_t(int, domain, pci_domain_nr(bus));
475 	return domain + 1;
476 }
477 
478 static int vmd_get_phys_offsets(struct vmd_dev *vmd, bool native_hint,
479 				resource_size_t *offset1,
480 				resource_size_t *offset2)
481 {
482 	struct pci_dev *dev = vmd->dev;
483 	u64 phys1, phys2;
484 
485 	if (native_hint) {
486 		u32 vmlock;
487 		int ret;
488 
489 		ret = pci_read_config_dword(dev, PCI_REG_VMLOCK, &vmlock);
490 		if (ret || vmlock == ~0)
491 			return -ENODEV;
492 
493 		if (MB2_SHADOW_EN(vmlock)) {
494 			void __iomem *membar2;
495 
496 			membar2 = pci_iomap(dev, VMD_MEMBAR2, 0);
497 			if (!membar2)
498 				return -ENOMEM;
499 			phys1 = readq(membar2 + MB2_SHADOW_OFFSET);
500 			phys2 = readq(membar2 + MB2_SHADOW_OFFSET + 8);
501 			pci_iounmap(dev, membar2);
502 		} else
503 			return 0;
504 	} else {
505 		/* Hypervisor-Emulated Vendor-Specific Capability */
506 		int pos = pci_find_capability(dev, PCI_CAP_ID_VNDR);
507 		u32 reg, regu;
508 
509 		pci_read_config_dword(dev, pos + 4, &reg);
510 
511 		/* "SHDW" */
512 		if (pos && reg == 0x53484457) {
513 			pci_read_config_dword(dev, pos + 8, &reg);
514 			pci_read_config_dword(dev, pos + 12, &regu);
515 			phys1 = (u64) regu << 32 | reg;
516 
517 			pci_read_config_dword(dev, pos + 16, &reg);
518 			pci_read_config_dword(dev, pos + 20, &regu);
519 			phys2 = (u64) regu << 32 | reg;
520 		} else
521 			return 0;
522 	}
523 
524 	*offset1 = dev->resource[VMD_MEMBAR1].start -
525 			(phys1 & PCI_BASE_ADDRESS_MEM_MASK);
526 	*offset2 = dev->resource[VMD_MEMBAR2].start -
527 			(phys2 & PCI_BASE_ADDRESS_MEM_MASK);
528 
529 	return 0;
530 }
531 
532 static int vmd_get_bus_number_start(struct vmd_dev *vmd)
533 {
534 	struct pci_dev *dev = vmd->dev;
535 	u16 reg;
536 
537 	pci_read_config_word(dev, PCI_REG_VMCAP, &reg);
538 	if (BUS_RESTRICT_CAP(reg)) {
539 		pci_read_config_word(dev, PCI_REG_VMCONFIG, &reg);
540 
541 		switch (BUS_RESTRICT_CFG(reg)) {
542 		case 0:
543 			vmd->busn_start = 0;
544 			break;
545 		case 1:
546 			vmd->busn_start = 128;
547 			break;
548 		case 2:
549 			vmd->busn_start = 224;
550 			break;
551 		default:
552 			pci_err(dev, "Unknown Bus Offset Setting (%d)\n",
553 				BUS_RESTRICT_CFG(reg));
554 			return -ENODEV;
555 		}
556 	}
557 
558 	return 0;
559 }
560 
561 static irqreturn_t vmd_irq(int irq, void *data)
562 {
563 	struct vmd_irq_list *irqs = data;
564 	struct vmd_irq *vmdirq;
565 	int idx;
566 
567 	idx = srcu_read_lock(&irqs->srcu);
568 	list_for_each_entry_rcu(vmdirq, &irqs->irq_list, node)
569 		generic_handle_irq(vmdirq->virq);
570 	srcu_read_unlock(&irqs->srcu, idx);
571 
572 	return IRQ_HANDLED;
573 }
574 
575 static int vmd_alloc_irqs(struct vmd_dev *vmd)
576 {
577 	struct pci_dev *dev = vmd->dev;
578 	int i, err;
579 
580 	vmd->msix_count = pci_msix_vec_count(dev);
581 	if (vmd->msix_count < 0)
582 		return -ENODEV;
583 
584 	vmd->msix_count = pci_alloc_irq_vectors(dev, vmd->first_vec + 1,
585 						vmd->msix_count, PCI_IRQ_MSIX);
586 	if (vmd->msix_count < 0)
587 		return vmd->msix_count;
588 
589 	vmd->irqs = devm_kcalloc(&dev->dev, vmd->msix_count, sizeof(*vmd->irqs),
590 				 GFP_KERNEL);
591 	if (!vmd->irqs)
592 		return -ENOMEM;
593 
594 	for (i = 0; i < vmd->msix_count; i++) {
595 		err = init_srcu_struct(&vmd->irqs[i].srcu);
596 		if (err)
597 			return err;
598 
599 		INIT_LIST_HEAD(&vmd->irqs[i].irq_list);
600 		err = devm_request_irq(&dev->dev, pci_irq_vector(dev, i),
601 				       vmd_irq, IRQF_NO_THREAD,
602 				       "vmd", &vmd->irqs[i]);
603 		if (err)
604 			return err;
605 	}
606 
607 	return 0;
608 }
609 
610 static int vmd_enable_domain(struct vmd_dev *vmd, unsigned long features)
611 {
612 	struct pci_sysdata *sd = &vmd->sysdata;
613 	struct resource *res;
614 	u32 upper_bits;
615 	unsigned long flags;
616 	LIST_HEAD(resources);
617 	resource_size_t offset[2] = {0};
618 	resource_size_t membar2_offset = 0x2000;
619 	struct pci_bus *child;
620 	int ret;
621 
622 	/*
623 	 * Shadow registers may exist in certain VMD device ids which allow
624 	 * guests to correctly assign host physical addresses to the root ports
625 	 * and child devices. These registers will either return the host value
626 	 * or 0, depending on an enable bit in the VMD device.
627 	 */
628 	if (features & VMD_FEAT_HAS_MEMBAR_SHADOW) {
629 		membar2_offset = MB2_SHADOW_OFFSET + MB2_SHADOW_SIZE;
630 		ret = vmd_get_phys_offsets(vmd, true, &offset[0], &offset[1]);
631 		if (ret)
632 			return ret;
633 	} else if (features & VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP) {
634 		ret = vmd_get_phys_offsets(vmd, false, &offset[0], &offset[1]);
635 		if (ret)
636 			return ret;
637 	}
638 
639 	/*
640 	 * Certain VMD devices may have a root port configuration option which
641 	 * limits the bus range to between 0-127, 128-255, or 224-255
642 	 */
643 	if (features & VMD_FEAT_HAS_BUS_RESTRICTIONS) {
644 		ret = vmd_get_bus_number_start(vmd);
645 		if (ret)
646 			return ret;
647 	}
648 
649 	res = &vmd->dev->resource[VMD_CFGBAR];
650 	vmd->resources[0] = (struct resource) {
651 		.name  = "VMD CFGBAR",
652 		.start = vmd->busn_start,
653 		.end   = vmd->busn_start + (resource_size(res) >> 20) - 1,
654 		.flags = IORESOURCE_BUS | IORESOURCE_PCI_FIXED,
655 	};
656 
657 	/*
658 	 * If the window is below 4GB, clear IORESOURCE_MEM_64 so we can
659 	 * put 32-bit resources in the window.
660 	 *
661 	 * There's no hardware reason why a 64-bit window *couldn't*
662 	 * contain a 32-bit resource, but pbus_size_mem() computes the
663 	 * bridge window size assuming a 64-bit window will contain no
664 	 * 32-bit resources.  __pci_assign_resource() enforces that
665 	 * artificial restriction to make sure everything will fit.
666 	 *
667 	 * The only way we could use a 64-bit non-prefetchable MEMBAR is
668 	 * if its address is <4GB so that we can convert it to a 32-bit
669 	 * resource.  To be visible to the host OS, all VMD endpoints must
670 	 * be initially configured by platform BIOS, which includes setting
671 	 * up these resources.  We can assume the device is configured
672 	 * according to the platform needs.
673 	 */
674 	res = &vmd->dev->resource[VMD_MEMBAR1];
675 	upper_bits = upper_32_bits(res->end);
676 	flags = res->flags & ~IORESOURCE_SIZEALIGN;
677 	if (!upper_bits)
678 		flags &= ~IORESOURCE_MEM_64;
679 	vmd->resources[1] = (struct resource) {
680 		.name  = "VMD MEMBAR1",
681 		.start = res->start,
682 		.end   = res->end,
683 		.flags = flags,
684 		.parent = res,
685 	};
686 
687 	res = &vmd->dev->resource[VMD_MEMBAR2];
688 	upper_bits = upper_32_bits(res->end);
689 	flags = res->flags & ~IORESOURCE_SIZEALIGN;
690 	if (!upper_bits)
691 		flags &= ~IORESOURCE_MEM_64;
692 	vmd->resources[2] = (struct resource) {
693 		.name  = "VMD MEMBAR2",
694 		.start = res->start + membar2_offset,
695 		.end   = res->end,
696 		.flags = flags,
697 		.parent = res,
698 	};
699 
700 	sd->vmd_dev = vmd->dev;
701 	sd->domain = vmd_find_free_domain();
702 	if (sd->domain < 0)
703 		return sd->domain;
704 
705 	sd->node = pcibus_to_node(vmd->dev->bus);
706 
707 	/*
708 	 * Currently MSI remapping must be enabled in guest passthrough mode
709 	 * due to some missing interrupt remapping plumbing. This is probably
710 	 * acceptable because the guest is usually CPU-limited and MSI
711 	 * remapping doesn't become a performance bottleneck.
712 	 */
713 	if (!(features & VMD_FEAT_CAN_BYPASS_MSI_REMAP) ||
714 	    offset[0] || offset[1]) {
715 		ret = vmd_alloc_irqs(vmd);
716 		if (ret)
717 			return ret;
718 
719 		vmd_set_msi_remapping(vmd, true);
720 
721 		ret = vmd_create_irq_domain(vmd);
722 		if (ret)
723 			return ret;
724 
725 		/*
726 		 * Override the IRQ domain bus token so the domain can be
727 		 * distinguished from a regular PCI/MSI domain.
728 		 */
729 		irq_domain_update_bus_token(vmd->irq_domain, DOMAIN_BUS_VMD_MSI);
730 	} else {
731 		vmd_set_msi_remapping(vmd, false);
732 	}
733 
734 	pci_add_resource(&resources, &vmd->resources[0]);
735 	pci_add_resource_offset(&resources, &vmd->resources[1], offset[0]);
736 	pci_add_resource_offset(&resources, &vmd->resources[2], offset[1]);
737 
738 	vmd->bus = pci_create_root_bus(&vmd->dev->dev, vmd->busn_start,
739 				       &vmd_ops, sd, &resources);
740 	if (!vmd->bus) {
741 		pci_free_resource_list(&resources);
742 		vmd_remove_irq_domain(vmd);
743 		return -ENODEV;
744 	}
745 
746 	vmd_attach_resources(vmd);
747 	if (vmd->irq_domain)
748 		dev_set_msi_domain(&vmd->bus->dev, vmd->irq_domain);
749 
750 	pci_scan_child_bus(vmd->bus);
751 	pci_assign_unassigned_bus_resources(vmd->bus);
752 
753 	/*
754 	 * VMD root buses are virtual and don't return true on pci_is_pcie()
755 	 * and will fail pcie_bus_configure_settings() early. It can instead be
756 	 * run on each of the real root ports.
757 	 */
758 	list_for_each_entry(child, &vmd->bus->children, node)
759 		pcie_bus_configure_settings(child);
760 
761 	pci_bus_add_devices(vmd->bus);
762 
763 	WARN(sysfs_create_link(&vmd->dev->dev.kobj, &vmd->bus->dev.kobj,
764 			       "domain"), "Can't create symlink to domain\n");
765 	return 0;
766 }
767 
768 static int vmd_probe(struct pci_dev *dev, const struct pci_device_id *id)
769 {
770 	unsigned long features = (unsigned long) id->driver_data;
771 	struct vmd_dev *vmd;
772 	int err;
773 
774 	if (resource_size(&dev->resource[VMD_CFGBAR]) < (1 << 20))
775 		return -ENOMEM;
776 
777 	vmd = devm_kzalloc(&dev->dev, sizeof(*vmd), GFP_KERNEL);
778 	if (!vmd)
779 		return -ENOMEM;
780 
781 	vmd->dev = dev;
782 	err = pcim_enable_device(dev);
783 	if (err < 0)
784 		return err;
785 
786 	vmd->cfgbar = pcim_iomap(dev, VMD_CFGBAR, 0);
787 	if (!vmd->cfgbar)
788 		return -ENOMEM;
789 
790 	pci_set_master(dev);
791 	if (dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(64)) &&
792 	    dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(32)))
793 		return -ENODEV;
794 
795 	if (features & VMD_FEAT_OFFSET_FIRST_VECTOR)
796 		vmd->first_vec = 1;
797 
798 	spin_lock_init(&vmd->cfg_lock);
799 	pci_set_drvdata(dev, vmd);
800 	err = vmd_enable_domain(vmd, features);
801 	if (err)
802 		return err;
803 
804 	dev_info(&vmd->dev->dev, "Bound to PCI domain %04x\n",
805 		 vmd->sysdata.domain);
806 	return 0;
807 }
808 
809 static void vmd_cleanup_srcu(struct vmd_dev *vmd)
810 {
811 	int i;
812 
813 	for (i = 0; i < vmd->msix_count; i++)
814 		cleanup_srcu_struct(&vmd->irqs[i].srcu);
815 }
816 
817 static void vmd_remove(struct pci_dev *dev)
818 {
819 	struct vmd_dev *vmd = pci_get_drvdata(dev);
820 
821 	sysfs_remove_link(&vmd->dev->dev.kobj, "domain");
822 	pci_stop_root_bus(vmd->bus);
823 	pci_remove_root_bus(vmd->bus);
824 	vmd_cleanup_srcu(vmd);
825 	vmd_detach_resources(vmd);
826 	vmd_remove_irq_domain(vmd);
827 }
828 
829 #ifdef CONFIG_PM_SLEEP
830 static int vmd_suspend(struct device *dev)
831 {
832 	struct pci_dev *pdev = to_pci_dev(dev);
833 	struct vmd_dev *vmd = pci_get_drvdata(pdev);
834 	int i;
835 
836 	for (i = 0; i < vmd->msix_count; i++)
837 		devm_free_irq(dev, pci_irq_vector(pdev, i), &vmd->irqs[i]);
838 
839 	return 0;
840 }
841 
842 static int vmd_resume(struct device *dev)
843 {
844 	struct pci_dev *pdev = to_pci_dev(dev);
845 	struct vmd_dev *vmd = pci_get_drvdata(pdev);
846 	int err, i;
847 
848 	for (i = 0; i < vmd->msix_count; i++) {
849 		err = devm_request_irq(dev, pci_irq_vector(pdev, i),
850 				       vmd_irq, IRQF_NO_THREAD,
851 				       "vmd", &vmd->irqs[i]);
852 		if (err)
853 			return err;
854 	}
855 
856 	return 0;
857 }
858 #endif
859 static SIMPLE_DEV_PM_OPS(vmd_dev_pm_ops, vmd_suspend, vmd_resume);
860 
861 static const struct pci_device_id vmd_ids[] = {
862 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_201D),
863 		.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP,},
864 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_28C0),
865 		.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW |
866 				VMD_FEAT_HAS_BUS_RESTRICTIONS |
867 				VMD_FEAT_CAN_BYPASS_MSI_REMAP,},
868 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x467f),
869 		.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP |
870 				VMD_FEAT_HAS_BUS_RESTRICTIONS |
871 				VMD_FEAT_OFFSET_FIRST_VECTOR,},
872 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x4c3d),
873 		.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP |
874 				VMD_FEAT_HAS_BUS_RESTRICTIONS |
875 				VMD_FEAT_OFFSET_FIRST_VECTOR,},
876 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_9A0B),
877 		.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP |
878 				VMD_FEAT_HAS_BUS_RESTRICTIONS |
879 				VMD_FEAT_OFFSET_FIRST_VECTOR,},
880 	{0,}
881 };
882 MODULE_DEVICE_TABLE(pci, vmd_ids);
883 
884 static struct pci_driver vmd_drv = {
885 	.name		= "vmd",
886 	.id_table	= vmd_ids,
887 	.probe		= vmd_probe,
888 	.remove		= vmd_remove,
889 	.driver		= {
890 		.pm	= &vmd_dev_pm_ops,
891 	},
892 };
893 module_pci_driver(vmd_drv);
894 
895 MODULE_AUTHOR("Intel Corporation");
896 MODULE_LICENSE("GPL v2");
897 MODULE_VERSION("0.6");
898