xref: /openbmc/linux/drivers/pci/controller/vmd.c (revision 53f9cd5c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Volume Management Device driver
4  * Copyright (c) 2015, Intel Corporation.
5  */
6 
7 #include <linux/device.h>
8 #include <linux/interrupt.h>
9 #include <linux/irq.h>
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/msi.h>
13 #include <linux/pci.h>
14 #include <linux/pci-acpi.h>
15 #include <linux/pci-ecam.h>
16 #include <linux/srcu.h>
17 #include <linux/rculist.h>
18 #include <linux/rcupdate.h>
19 
20 #include <asm/irqdomain.h>
21 
22 #define VMD_CFGBAR	0
23 #define VMD_MEMBAR1	2
24 #define VMD_MEMBAR2	4
25 
26 #define PCI_REG_VMCAP		0x40
27 #define BUS_RESTRICT_CAP(vmcap)	(vmcap & 0x1)
28 #define PCI_REG_VMCONFIG	0x44
29 #define BUS_RESTRICT_CFG(vmcfg)	((vmcfg >> 8) & 0x3)
30 #define VMCONFIG_MSI_REMAP	0x2
31 #define PCI_REG_VMLOCK		0x70
32 #define MB2_SHADOW_EN(vmlock)	(vmlock & 0x2)
33 
34 #define MB2_SHADOW_OFFSET	0x2000
35 #define MB2_SHADOW_SIZE		16
36 
37 enum vmd_features {
38 	/*
39 	 * Device may contain registers which hint the physical location of the
40 	 * membars, in order to allow proper address translation during
41 	 * resource assignment to enable guest virtualization
42 	 */
43 	VMD_FEAT_HAS_MEMBAR_SHADOW		= (1 << 0),
44 
45 	/*
46 	 * Device may provide root port configuration information which limits
47 	 * bus numbering
48 	 */
49 	VMD_FEAT_HAS_BUS_RESTRICTIONS		= (1 << 1),
50 
51 	/*
52 	 * Device contains physical location shadow registers in
53 	 * vendor-specific capability space
54 	 */
55 	VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP	= (1 << 2),
56 
57 	/*
58 	 * Device may use MSI-X vector 0 for software triggering and will not
59 	 * be used for MSI remapping
60 	 */
61 	VMD_FEAT_OFFSET_FIRST_VECTOR		= (1 << 3),
62 
63 	/*
64 	 * Device can bypass remapping MSI-X transactions into its MSI-X table,
65 	 * avoiding the requirement of a VMD MSI domain for child device
66 	 * interrupt handling.
67 	 */
68 	VMD_FEAT_CAN_BYPASS_MSI_REMAP		= (1 << 4),
69 };
70 
71 static DEFINE_IDA(vmd_instance_ida);
72 
73 /*
74  * Lock for manipulating VMD IRQ lists.
75  */
76 static DEFINE_RAW_SPINLOCK(list_lock);
77 
78 /**
79  * struct vmd_irq - private data to map driver IRQ to the VMD shared vector
80  * @node:	list item for parent traversal.
81  * @irq:	back pointer to parent.
82  * @enabled:	true if driver enabled IRQ
83  * @virq:	the virtual IRQ value provided to the requesting driver.
84  *
85  * Every MSI/MSI-X IRQ requested for a device in a VMD domain will be mapped to
86  * a VMD IRQ using this structure.
87  */
88 struct vmd_irq {
89 	struct list_head	node;
90 	struct vmd_irq_list	*irq;
91 	bool			enabled;
92 	unsigned int		virq;
93 };
94 
95 /**
96  * struct vmd_irq_list - list of driver requested IRQs mapping to a VMD vector
97  * @irq_list:	the list of irq's the VMD one demuxes to.
98  * @srcu:	SRCU struct for local synchronization.
99  * @count:	number of child IRQs assigned to this vector; used to track
100  *		sharing.
101  * @virq:	The underlying VMD Linux interrupt number
102  */
103 struct vmd_irq_list {
104 	struct list_head	irq_list;
105 	struct srcu_struct	srcu;
106 	unsigned int		count;
107 	unsigned int		virq;
108 };
109 
110 struct vmd_dev {
111 	struct pci_dev		*dev;
112 
113 	spinlock_t		cfg_lock;
114 	void __iomem		*cfgbar;
115 
116 	int msix_count;
117 	struct vmd_irq_list	*irqs;
118 
119 	struct pci_sysdata	sysdata;
120 	struct resource		resources[3];
121 	struct irq_domain	*irq_domain;
122 	struct pci_bus		*bus;
123 	u8			busn_start;
124 	u8			first_vec;
125 	char			*name;
126 	int			instance;
127 };
128 
129 static inline struct vmd_dev *vmd_from_bus(struct pci_bus *bus)
130 {
131 	return container_of(bus->sysdata, struct vmd_dev, sysdata);
132 }
133 
134 static inline unsigned int index_from_irqs(struct vmd_dev *vmd,
135 					   struct vmd_irq_list *irqs)
136 {
137 	return irqs - vmd->irqs;
138 }
139 
140 /*
141  * Drivers managing a device in a VMD domain allocate their own IRQs as before,
142  * but the MSI entry for the hardware it's driving will be programmed with a
143  * destination ID for the VMD MSI-X table.  The VMD muxes interrupts in its
144  * domain into one of its own, and the VMD driver de-muxes these for the
145  * handlers sharing that VMD IRQ.  The vmd irq_domain provides the operations
146  * and irq_chip to set this up.
147  */
148 static void vmd_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
149 {
150 	struct vmd_irq *vmdirq = data->chip_data;
151 	struct vmd_irq_list *irq = vmdirq->irq;
152 	struct vmd_dev *vmd = irq_data_get_irq_handler_data(data);
153 
154 	memset(msg, 0, sizeof(*msg));
155 	msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
156 	msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW;
157 	msg->arch_addr_lo.destid_0_7 = index_from_irqs(vmd, irq);
158 }
159 
160 /*
161  * We rely on MSI_FLAG_USE_DEF_CHIP_OPS to set the IRQ mask/unmask ops.
162  */
163 static void vmd_irq_enable(struct irq_data *data)
164 {
165 	struct vmd_irq *vmdirq = data->chip_data;
166 	unsigned long flags;
167 
168 	raw_spin_lock_irqsave(&list_lock, flags);
169 	WARN_ON(vmdirq->enabled);
170 	list_add_tail_rcu(&vmdirq->node, &vmdirq->irq->irq_list);
171 	vmdirq->enabled = true;
172 	raw_spin_unlock_irqrestore(&list_lock, flags);
173 
174 	data->chip->irq_unmask(data);
175 }
176 
177 static void vmd_irq_disable(struct irq_data *data)
178 {
179 	struct vmd_irq *vmdirq = data->chip_data;
180 	unsigned long flags;
181 
182 	data->chip->irq_mask(data);
183 
184 	raw_spin_lock_irqsave(&list_lock, flags);
185 	if (vmdirq->enabled) {
186 		list_del_rcu(&vmdirq->node);
187 		vmdirq->enabled = false;
188 	}
189 	raw_spin_unlock_irqrestore(&list_lock, flags);
190 }
191 
192 /*
193  * XXX: Stubbed until we develop acceptable way to not create conflicts with
194  * other devices sharing the same vector.
195  */
196 static int vmd_irq_set_affinity(struct irq_data *data,
197 				const struct cpumask *dest, bool force)
198 {
199 	return -EINVAL;
200 }
201 
202 static struct irq_chip vmd_msi_controller = {
203 	.name			= "VMD-MSI",
204 	.irq_enable		= vmd_irq_enable,
205 	.irq_disable		= vmd_irq_disable,
206 	.irq_compose_msi_msg	= vmd_compose_msi_msg,
207 	.irq_set_affinity	= vmd_irq_set_affinity,
208 };
209 
210 static irq_hw_number_t vmd_get_hwirq(struct msi_domain_info *info,
211 				     msi_alloc_info_t *arg)
212 {
213 	return 0;
214 }
215 
216 /*
217  * XXX: We can be even smarter selecting the best IRQ once we solve the
218  * affinity problem.
219  */
220 static struct vmd_irq_list *vmd_next_irq(struct vmd_dev *vmd, struct msi_desc *desc)
221 {
222 	unsigned long flags;
223 	int i, best;
224 
225 	if (vmd->msix_count == 1 + vmd->first_vec)
226 		return &vmd->irqs[vmd->first_vec];
227 
228 	/*
229 	 * White list for fast-interrupt handlers. All others will share the
230 	 * "slow" interrupt vector.
231 	 */
232 	switch (msi_desc_to_pci_dev(desc)->class) {
233 	case PCI_CLASS_STORAGE_EXPRESS:
234 		break;
235 	default:
236 		return &vmd->irqs[vmd->first_vec];
237 	}
238 
239 	raw_spin_lock_irqsave(&list_lock, flags);
240 	best = vmd->first_vec + 1;
241 	for (i = best; i < vmd->msix_count; i++)
242 		if (vmd->irqs[i].count < vmd->irqs[best].count)
243 			best = i;
244 	vmd->irqs[best].count++;
245 	raw_spin_unlock_irqrestore(&list_lock, flags);
246 
247 	return &vmd->irqs[best];
248 }
249 
250 static int vmd_msi_init(struct irq_domain *domain, struct msi_domain_info *info,
251 			unsigned int virq, irq_hw_number_t hwirq,
252 			msi_alloc_info_t *arg)
253 {
254 	struct msi_desc *desc = arg->desc;
255 	struct vmd_dev *vmd = vmd_from_bus(msi_desc_to_pci_dev(desc)->bus);
256 	struct vmd_irq *vmdirq = kzalloc(sizeof(*vmdirq), GFP_KERNEL);
257 
258 	if (!vmdirq)
259 		return -ENOMEM;
260 
261 	INIT_LIST_HEAD(&vmdirq->node);
262 	vmdirq->irq = vmd_next_irq(vmd, desc);
263 	vmdirq->virq = virq;
264 
265 	irq_domain_set_info(domain, virq, vmdirq->irq->virq, info->chip, vmdirq,
266 			    handle_untracked_irq, vmd, NULL);
267 	return 0;
268 }
269 
270 static void vmd_msi_free(struct irq_domain *domain,
271 			struct msi_domain_info *info, unsigned int virq)
272 {
273 	struct vmd_irq *vmdirq = irq_get_chip_data(virq);
274 	unsigned long flags;
275 
276 	synchronize_srcu(&vmdirq->irq->srcu);
277 
278 	/* XXX: Potential optimization to rebalance */
279 	raw_spin_lock_irqsave(&list_lock, flags);
280 	vmdirq->irq->count--;
281 	raw_spin_unlock_irqrestore(&list_lock, flags);
282 
283 	kfree(vmdirq);
284 }
285 
286 static int vmd_msi_prepare(struct irq_domain *domain, struct device *dev,
287 			   int nvec, msi_alloc_info_t *arg)
288 {
289 	struct pci_dev *pdev = to_pci_dev(dev);
290 	struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
291 
292 	if (nvec > vmd->msix_count)
293 		return vmd->msix_count;
294 
295 	memset(arg, 0, sizeof(*arg));
296 	return 0;
297 }
298 
299 static void vmd_set_desc(msi_alloc_info_t *arg, struct msi_desc *desc)
300 {
301 	arg->desc = desc;
302 }
303 
304 static struct msi_domain_ops vmd_msi_domain_ops = {
305 	.get_hwirq	= vmd_get_hwirq,
306 	.msi_init	= vmd_msi_init,
307 	.msi_free	= vmd_msi_free,
308 	.msi_prepare	= vmd_msi_prepare,
309 	.set_desc	= vmd_set_desc,
310 };
311 
312 static struct msi_domain_info vmd_msi_domain_info = {
313 	.flags		= MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
314 			  MSI_FLAG_PCI_MSIX,
315 	.ops		= &vmd_msi_domain_ops,
316 	.chip		= &vmd_msi_controller,
317 };
318 
319 static void vmd_set_msi_remapping(struct vmd_dev *vmd, bool enable)
320 {
321 	u16 reg;
322 
323 	pci_read_config_word(vmd->dev, PCI_REG_VMCONFIG, &reg);
324 	reg = enable ? (reg & ~VMCONFIG_MSI_REMAP) :
325 		       (reg | VMCONFIG_MSI_REMAP);
326 	pci_write_config_word(vmd->dev, PCI_REG_VMCONFIG, reg);
327 }
328 
329 static int vmd_create_irq_domain(struct vmd_dev *vmd)
330 {
331 	struct fwnode_handle *fn;
332 
333 	fn = irq_domain_alloc_named_id_fwnode("VMD-MSI", vmd->sysdata.domain);
334 	if (!fn)
335 		return -ENODEV;
336 
337 	vmd->irq_domain = pci_msi_create_irq_domain(fn, &vmd_msi_domain_info, NULL);
338 	if (!vmd->irq_domain) {
339 		irq_domain_free_fwnode(fn);
340 		return -ENODEV;
341 	}
342 
343 	return 0;
344 }
345 
346 static void vmd_remove_irq_domain(struct vmd_dev *vmd)
347 {
348 	/*
349 	 * Some production BIOS won't enable remapping between soft reboots.
350 	 * Ensure remapping is restored before unloading the driver.
351 	 */
352 	if (!vmd->msix_count)
353 		vmd_set_msi_remapping(vmd, true);
354 
355 	if (vmd->irq_domain) {
356 		struct fwnode_handle *fn = vmd->irq_domain->fwnode;
357 
358 		irq_domain_remove(vmd->irq_domain);
359 		irq_domain_free_fwnode(fn);
360 	}
361 }
362 
363 static void __iomem *vmd_cfg_addr(struct vmd_dev *vmd, struct pci_bus *bus,
364 				  unsigned int devfn, int reg, int len)
365 {
366 	unsigned int busnr_ecam = bus->number - vmd->busn_start;
367 	u32 offset = PCIE_ECAM_OFFSET(busnr_ecam, devfn, reg);
368 
369 	if (offset + len >= resource_size(&vmd->dev->resource[VMD_CFGBAR]))
370 		return NULL;
371 
372 	return vmd->cfgbar + offset;
373 }
374 
375 /*
376  * CPU may deadlock if config space is not serialized on some versions of this
377  * hardware, so all config space access is done under a spinlock.
378  */
379 static int vmd_pci_read(struct pci_bus *bus, unsigned int devfn, int reg,
380 			int len, u32 *value)
381 {
382 	struct vmd_dev *vmd = vmd_from_bus(bus);
383 	void __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
384 	unsigned long flags;
385 	int ret = 0;
386 
387 	if (!addr)
388 		return -EFAULT;
389 
390 	spin_lock_irqsave(&vmd->cfg_lock, flags);
391 	switch (len) {
392 	case 1:
393 		*value = readb(addr);
394 		break;
395 	case 2:
396 		*value = readw(addr);
397 		break;
398 	case 4:
399 		*value = readl(addr);
400 		break;
401 	default:
402 		ret = -EINVAL;
403 		break;
404 	}
405 	spin_unlock_irqrestore(&vmd->cfg_lock, flags);
406 	return ret;
407 }
408 
409 /*
410  * VMD h/w converts non-posted config writes to posted memory writes. The
411  * read-back in this function forces the completion so it returns only after
412  * the config space was written, as expected.
413  */
414 static int vmd_pci_write(struct pci_bus *bus, unsigned int devfn, int reg,
415 			 int len, u32 value)
416 {
417 	struct vmd_dev *vmd = vmd_from_bus(bus);
418 	void __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
419 	unsigned long flags;
420 	int ret = 0;
421 
422 	if (!addr)
423 		return -EFAULT;
424 
425 	spin_lock_irqsave(&vmd->cfg_lock, flags);
426 	switch (len) {
427 	case 1:
428 		writeb(value, addr);
429 		readb(addr);
430 		break;
431 	case 2:
432 		writew(value, addr);
433 		readw(addr);
434 		break;
435 	case 4:
436 		writel(value, addr);
437 		readl(addr);
438 		break;
439 	default:
440 		ret = -EINVAL;
441 		break;
442 	}
443 	spin_unlock_irqrestore(&vmd->cfg_lock, flags);
444 	return ret;
445 }
446 
447 static struct pci_ops vmd_ops = {
448 	.read		= vmd_pci_read,
449 	.write		= vmd_pci_write,
450 };
451 
452 #ifdef CONFIG_ACPI
453 static struct acpi_device *vmd_acpi_find_companion(struct pci_dev *pci_dev)
454 {
455 	struct pci_host_bridge *bridge;
456 	u32 busnr, addr;
457 
458 	if (pci_dev->bus->ops != &vmd_ops)
459 		return NULL;
460 
461 	bridge = pci_find_host_bridge(pci_dev->bus);
462 	busnr = pci_dev->bus->number - bridge->bus->number;
463 	/*
464 	 * The address computation below is only applicable to relative bus
465 	 * numbers below 32.
466 	 */
467 	if (busnr > 31)
468 		return NULL;
469 
470 	addr = (busnr << 24) | ((u32)pci_dev->devfn << 16) | 0x8000FFFFU;
471 
472 	dev_dbg(&pci_dev->dev, "Looking for ACPI companion (address 0x%x)\n",
473 		addr);
474 
475 	return acpi_find_child_device(ACPI_COMPANION(bridge->dev.parent), addr,
476 				      false);
477 }
478 
479 static bool hook_installed;
480 
481 static void vmd_acpi_begin(void)
482 {
483 	if (pci_acpi_set_companion_lookup_hook(vmd_acpi_find_companion))
484 		return;
485 
486 	hook_installed = true;
487 }
488 
489 static void vmd_acpi_end(void)
490 {
491 	if (!hook_installed)
492 		return;
493 
494 	pci_acpi_clear_companion_lookup_hook();
495 	hook_installed = false;
496 }
497 #else
498 static inline void vmd_acpi_begin(void) { }
499 static inline void vmd_acpi_end(void) { }
500 #endif /* CONFIG_ACPI */
501 
502 static void vmd_domain_reset(struct vmd_dev *vmd)
503 {
504 	u16 bus, max_buses = resource_size(&vmd->resources[0]);
505 	u8 dev, functions, fn, hdr_type;
506 	char __iomem *base;
507 
508 	for (bus = 0; bus < max_buses; bus++) {
509 		for (dev = 0; dev < 32; dev++) {
510 			base = vmd->cfgbar + PCIE_ECAM_OFFSET(bus,
511 						PCI_DEVFN(dev, 0), 0);
512 
513 			hdr_type = readb(base + PCI_HEADER_TYPE) &
514 					 PCI_HEADER_TYPE_MASK;
515 
516 			functions = (hdr_type & 0x80) ? 8 : 1;
517 			for (fn = 0; fn < functions; fn++) {
518 				base = vmd->cfgbar + PCIE_ECAM_OFFSET(bus,
519 						PCI_DEVFN(dev, fn), 0);
520 
521 				hdr_type = readb(base + PCI_HEADER_TYPE) &
522 						PCI_HEADER_TYPE_MASK;
523 
524 				if (hdr_type != PCI_HEADER_TYPE_BRIDGE ||
525 				    (readw(base + PCI_CLASS_DEVICE) !=
526 				     PCI_CLASS_BRIDGE_PCI))
527 					continue;
528 
529 				memset_io(base + PCI_IO_BASE, 0,
530 					  PCI_ROM_ADDRESS1 - PCI_IO_BASE);
531 			}
532 		}
533 	}
534 }
535 
536 static void vmd_attach_resources(struct vmd_dev *vmd)
537 {
538 	vmd->dev->resource[VMD_MEMBAR1].child = &vmd->resources[1];
539 	vmd->dev->resource[VMD_MEMBAR2].child = &vmd->resources[2];
540 }
541 
542 static void vmd_detach_resources(struct vmd_dev *vmd)
543 {
544 	vmd->dev->resource[VMD_MEMBAR1].child = NULL;
545 	vmd->dev->resource[VMD_MEMBAR2].child = NULL;
546 }
547 
548 /*
549  * VMD domains start at 0x10000 to not clash with ACPI _SEG domains.
550  * Per ACPI r6.0, sec 6.5.6,  _SEG returns an integer, of which the lower
551  * 16 bits are the PCI Segment Group (domain) number.  Other bits are
552  * currently reserved.
553  */
554 static int vmd_find_free_domain(void)
555 {
556 	int domain = 0xffff;
557 	struct pci_bus *bus = NULL;
558 
559 	while ((bus = pci_find_next_bus(bus)) != NULL)
560 		domain = max_t(int, domain, pci_domain_nr(bus));
561 	return domain + 1;
562 }
563 
564 static int vmd_get_phys_offsets(struct vmd_dev *vmd, bool native_hint,
565 				resource_size_t *offset1,
566 				resource_size_t *offset2)
567 {
568 	struct pci_dev *dev = vmd->dev;
569 	u64 phys1, phys2;
570 
571 	if (native_hint) {
572 		u32 vmlock;
573 		int ret;
574 
575 		ret = pci_read_config_dword(dev, PCI_REG_VMLOCK, &vmlock);
576 		if (ret || PCI_POSSIBLE_ERROR(vmlock))
577 			return -ENODEV;
578 
579 		if (MB2_SHADOW_EN(vmlock)) {
580 			void __iomem *membar2;
581 
582 			membar2 = pci_iomap(dev, VMD_MEMBAR2, 0);
583 			if (!membar2)
584 				return -ENOMEM;
585 			phys1 = readq(membar2 + MB2_SHADOW_OFFSET);
586 			phys2 = readq(membar2 + MB2_SHADOW_OFFSET + 8);
587 			pci_iounmap(dev, membar2);
588 		} else
589 			return 0;
590 	} else {
591 		/* Hypervisor-Emulated Vendor-Specific Capability */
592 		int pos = pci_find_capability(dev, PCI_CAP_ID_VNDR);
593 		u32 reg, regu;
594 
595 		pci_read_config_dword(dev, pos + 4, &reg);
596 
597 		/* "SHDW" */
598 		if (pos && reg == 0x53484457) {
599 			pci_read_config_dword(dev, pos + 8, &reg);
600 			pci_read_config_dword(dev, pos + 12, &regu);
601 			phys1 = (u64) regu << 32 | reg;
602 
603 			pci_read_config_dword(dev, pos + 16, &reg);
604 			pci_read_config_dword(dev, pos + 20, &regu);
605 			phys2 = (u64) regu << 32 | reg;
606 		} else
607 			return 0;
608 	}
609 
610 	*offset1 = dev->resource[VMD_MEMBAR1].start -
611 			(phys1 & PCI_BASE_ADDRESS_MEM_MASK);
612 	*offset2 = dev->resource[VMD_MEMBAR2].start -
613 			(phys2 & PCI_BASE_ADDRESS_MEM_MASK);
614 
615 	return 0;
616 }
617 
618 static int vmd_get_bus_number_start(struct vmd_dev *vmd)
619 {
620 	struct pci_dev *dev = vmd->dev;
621 	u16 reg;
622 
623 	pci_read_config_word(dev, PCI_REG_VMCAP, &reg);
624 	if (BUS_RESTRICT_CAP(reg)) {
625 		pci_read_config_word(dev, PCI_REG_VMCONFIG, &reg);
626 
627 		switch (BUS_RESTRICT_CFG(reg)) {
628 		case 0:
629 			vmd->busn_start = 0;
630 			break;
631 		case 1:
632 			vmd->busn_start = 128;
633 			break;
634 		case 2:
635 			vmd->busn_start = 224;
636 			break;
637 		default:
638 			pci_err(dev, "Unknown Bus Offset Setting (%d)\n",
639 				BUS_RESTRICT_CFG(reg));
640 			return -ENODEV;
641 		}
642 	}
643 
644 	return 0;
645 }
646 
647 static irqreturn_t vmd_irq(int irq, void *data)
648 {
649 	struct vmd_irq_list *irqs = data;
650 	struct vmd_irq *vmdirq;
651 	int idx;
652 
653 	idx = srcu_read_lock(&irqs->srcu);
654 	list_for_each_entry_rcu(vmdirq, &irqs->irq_list, node)
655 		generic_handle_irq(vmdirq->virq);
656 	srcu_read_unlock(&irqs->srcu, idx);
657 
658 	return IRQ_HANDLED;
659 }
660 
661 static int vmd_alloc_irqs(struct vmd_dev *vmd)
662 {
663 	struct pci_dev *dev = vmd->dev;
664 	int i, err;
665 
666 	vmd->msix_count = pci_msix_vec_count(dev);
667 	if (vmd->msix_count < 0)
668 		return -ENODEV;
669 
670 	vmd->msix_count = pci_alloc_irq_vectors(dev, vmd->first_vec + 1,
671 						vmd->msix_count, PCI_IRQ_MSIX);
672 	if (vmd->msix_count < 0)
673 		return vmd->msix_count;
674 
675 	vmd->irqs = devm_kcalloc(&dev->dev, vmd->msix_count, sizeof(*vmd->irqs),
676 				 GFP_KERNEL);
677 	if (!vmd->irqs)
678 		return -ENOMEM;
679 
680 	for (i = 0; i < vmd->msix_count; i++) {
681 		err = init_srcu_struct(&vmd->irqs[i].srcu);
682 		if (err)
683 			return err;
684 
685 		INIT_LIST_HEAD(&vmd->irqs[i].irq_list);
686 		vmd->irqs[i].virq = pci_irq_vector(dev, i);
687 		err = devm_request_irq(&dev->dev, vmd->irqs[i].virq,
688 				       vmd_irq, IRQF_NO_THREAD,
689 				       vmd->name, &vmd->irqs[i]);
690 		if (err)
691 			return err;
692 	}
693 
694 	return 0;
695 }
696 
697 /*
698  * Since VMD is an aperture to regular PCIe root ports, only allow it to
699  * control features that the OS is allowed to control on the physical PCI bus.
700  */
701 static void vmd_copy_host_bridge_flags(struct pci_host_bridge *root_bridge,
702 				       struct pci_host_bridge *vmd_bridge)
703 {
704 	vmd_bridge->native_pcie_hotplug = root_bridge->native_pcie_hotplug;
705 	vmd_bridge->native_shpc_hotplug = root_bridge->native_shpc_hotplug;
706 	vmd_bridge->native_aer = root_bridge->native_aer;
707 	vmd_bridge->native_pme = root_bridge->native_pme;
708 	vmd_bridge->native_ltr = root_bridge->native_ltr;
709 	vmd_bridge->native_dpc = root_bridge->native_dpc;
710 }
711 
712 static int vmd_enable_domain(struct vmd_dev *vmd, unsigned long features)
713 {
714 	struct pci_sysdata *sd = &vmd->sysdata;
715 	struct resource *res;
716 	u32 upper_bits;
717 	unsigned long flags;
718 	LIST_HEAD(resources);
719 	resource_size_t offset[2] = {0};
720 	resource_size_t membar2_offset = 0x2000;
721 	struct pci_bus *child;
722 	int ret;
723 
724 	/*
725 	 * Shadow registers may exist in certain VMD device ids which allow
726 	 * guests to correctly assign host physical addresses to the root ports
727 	 * and child devices. These registers will either return the host value
728 	 * or 0, depending on an enable bit in the VMD device.
729 	 */
730 	if (features & VMD_FEAT_HAS_MEMBAR_SHADOW) {
731 		membar2_offset = MB2_SHADOW_OFFSET + MB2_SHADOW_SIZE;
732 		ret = vmd_get_phys_offsets(vmd, true, &offset[0], &offset[1]);
733 		if (ret)
734 			return ret;
735 	} else if (features & VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP) {
736 		ret = vmd_get_phys_offsets(vmd, false, &offset[0], &offset[1]);
737 		if (ret)
738 			return ret;
739 	}
740 
741 	/*
742 	 * Certain VMD devices may have a root port configuration option which
743 	 * limits the bus range to between 0-127, 128-255, or 224-255
744 	 */
745 	if (features & VMD_FEAT_HAS_BUS_RESTRICTIONS) {
746 		ret = vmd_get_bus_number_start(vmd);
747 		if (ret)
748 			return ret;
749 	}
750 
751 	res = &vmd->dev->resource[VMD_CFGBAR];
752 	vmd->resources[0] = (struct resource) {
753 		.name  = "VMD CFGBAR",
754 		.start = vmd->busn_start,
755 		.end   = vmd->busn_start + (resource_size(res) >> 20) - 1,
756 		.flags = IORESOURCE_BUS | IORESOURCE_PCI_FIXED,
757 	};
758 
759 	/*
760 	 * If the window is below 4GB, clear IORESOURCE_MEM_64 so we can
761 	 * put 32-bit resources in the window.
762 	 *
763 	 * There's no hardware reason why a 64-bit window *couldn't*
764 	 * contain a 32-bit resource, but pbus_size_mem() computes the
765 	 * bridge window size assuming a 64-bit window will contain no
766 	 * 32-bit resources.  __pci_assign_resource() enforces that
767 	 * artificial restriction to make sure everything will fit.
768 	 *
769 	 * The only way we could use a 64-bit non-prefetchable MEMBAR is
770 	 * if its address is <4GB so that we can convert it to a 32-bit
771 	 * resource.  To be visible to the host OS, all VMD endpoints must
772 	 * be initially configured by platform BIOS, which includes setting
773 	 * up these resources.  We can assume the device is configured
774 	 * according to the platform needs.
775 	 */
776 	res = &vmd->dev->resource[VMD_MEMBAR1];
777 	upper_bits = upper_32_bits(res->end);
778 	flags = res->flags & ~IORESOURCE_SIZEALIGN;
779 	if (!upper_bits)
780 		flags &= ~IORESOURCE_MEM_64;
781 	vmd->resources[1] = (struct resource) {
782 		.name  = "VMD MEMBAR1",
783 		.start = res->start,
784 		.end   = res->end,
785 		.flags = flags,
786 		.parent = res,
787 	};
788 
789 	res = &vmd->dev->resource[VMD_MEMBAR2];
790 	upper_bits = upper_32_bits(res->end);
791 	flags = res->flags & ~IORESOURCE_SIZEALIGN;
792 	if (!upper_bits)
793 		flags &= ~IORESOURCE_MEM_64;
794 	vmd->resources[2] = (struct resource) {
795 		.name  = "VMD MEMBAR2",
796 		.start = res->start + membar2_offset,
797 		.end   = res->end,
798 		.flags = flags,
799 		.parent = res,
800 	};
801 
802 	sd->vmd_dev = vmd->dev;
803 	sd->domain = vmd_find_free_domain();
804 	if (sd->domain < 0)
805 		return sd->domain;
806 
807 	sd->node = pcibus_to_node(vmd->dev->bus);
808 
809 	/*
810 	 * Currently MSI remapping must be enabled in guest passthrough mode
811 	 * due to some missing interrupt remapping plumbing. This is probably
812 	 * acceptable because the guest is usually CPU-limited and MSI
813 	 * remapping doesn't become a performance bottleneck.
814 	 */
815 	if (!(features & VMD_FEAT_CAN_BYPASS_MSI_REMAP) ||
816 	    offset[0] || offset[1]) {
817 		ret = vmd_alloc_irqs(vmd);
818 		if (ret)
819 			return ret;
820 
821 		vmd_set_msi_remapping(vmd, true);
822 
823 		ret = vmd_create_irq_domain(vmd);
824 		if (ret)
825 			return ret;
826 
827 		/*
828 		 * Override the IRQ domain bus token so the domain can be
829 		 * distinguished from a regular PCI/MSI domain.
830 		 */
831 		irq_domain_update_bus_token(vmd->irq_domain, DOMAIN_BUS_VMD_MSI);
832 	} else {
833 		vmd_set_msi_remapping(vmd, false);
834 	}
835 
836 	pci_add_resource(&resources, &vmd->resources[0]);
837 	pci_add_resource_offset(&resources, &vmd->resources[1], offset[0]);
838 	pci_add_resource_offset(&resources, &vmd->resources[2], offset[1]);
839 
840 	vmd->bus = pci_create_root_bus(&vmd->dev->dev, vmd->busn_start,
841 				       &vmd_ops, sd, &resources);
842 	if (!vmd->bus) {
843 		pci_free_resource_list(&resources);
844 		vmd_remove_irq_domain(vmd);
845 		return -ENODEV;
846 	}
847 
848 	vmd_copy_host_bridge_flags(pci_find_host_bridge(vmd->dev->bus),
849 				   to_pci_host_bridge(vmd->bus->bridge));
850 
851 	vmd_attach_resources(vmd);
852 	if (vmd->irq_domain)
853 		dev_set_msi_domain(&vmd->bus->dev, vmd->irq_domain);
854 	else
855 		dev_set_msi_domain(&vmd->bus->dev,
856 				   dev_get_msi_domain(&vmd->dev->dev));
857 
858 	vmd_acpi_begin();
859 
860 	pci_scan_child_bus(vmd->bus);
861 	vmd_domain_reset(vmd);
862 	list_for_each_entry(child, &vmd->bus->children, node)
863 		pci_reset_bus(child->self);
864 	pci_assign_unassigned_bus_resources(vmd->bus);
865 
866 	/*
867 	 * VMD root buses are virtual and don't return true on pci_is_pcie()
868 	 * and will fail pcie_bus_configure_settings() early. It can instead be
869 	 * run on each of the real root ports.
870 	 */
871 	list_for_each_entry(child, &vmd->bus->children, node)
872 		pcie_bus_configure_settings(child);
873 
874 	pci_bus_add_devices(vmd->bus);
875 
876 	vmd_acpi_end();
877 
878 	WARN(sysfs_create_link(&vmd->dev->dev.kobj, &vmd->bus->dev.kobj,
879 			       "domain"), "Can't create symlink to domain\n");
880 	return 0;
881 }
882 
883 static int vmd_probe(struct pci_dev *dev, const struct pci_device_id *id)
884 {
885 	unsigned long features = (unsigned long) id->driver_data;
886 	struct vmd_dev *vmd;
887 	int err;
888 
889 	if (resource_size(&dev->resource[VMD_CFGBAR]) < (1 << 20))
890 		return -ENOMEM;
891 
892 	vmd = devm_kzalloc(&dev->dev, sizeof(*vmd), GFP_KERNEL);
893 	if (!vmd)
894 		return -ENOMEM;
895 
896 	vmd->dev = dev;
897 	vmd->instance = ida_simple_get(&vmd_instance_ida, 0, 0, GFP_KERNEL);
898 	if (vmd->instance < 0)
899 		return vmd->instance;
900 
901 	vmd->name = devm_kasprintf(&dev->dev, GFP_KERNEL, "vmd%d",
902 				   vmd->instance);
903 	if (!vmd->name) {
904 		err = -ENOMEM;
905 		goto out_release_instance;
906 	}
907 
908 	err = pcim_enable_device(dev);
909 	if (err < 0)
910 		goto out_release_instance;
911 
912 	vmd->cfgbar = pcim_iomap(dev, VMD_CFGBAR, 0);
913 	if (!vmd->cfgbar) {
914 		err = -ENOMEM;
915 		goto out_release_instance;
916 	}
917 
918 	pci_set_master(dev);
919 	if (dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(64)) &&
920 	    dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(32))) {
921 		err = -ENODEV;
922 		goto out_release_instance;
923 	}
924 
925 	if (features & VMD_FEAT_OFFSET_FIRST_VECTOR)
926 		vmd->first_vec = 1;
927 
928 	spin_lock_init(&vmd->cfg_lock);
929 	pci_set_drvdata(dev, vmd);
930 	err = vmd_enable_domain(vmd, features);
931 	if (err)
932 		goto out_release_instance;
933 
934 	dev_info(&vmd->dev->dev, "Bound to PCI domain %04x\n",
935 		 vmd->sysdata.domain);
936 	return 0;
937 
938  out_release_instance:
939 	ida_simple_remove(&vmd_instance_ida, vmd->instance);
940 	return err;
941 }
942 
943 static void vmd_cleanup_srcu(struct vmd_dev *vmd)
944 {
945 	int i;
946 
947 	for (i = 0; i < vmd->msix_count; i++)
948 		cleanup_srcu_struct(&vmd->irqs[i].srcu);
949 }
950 
951 static void vmd_remove(struct pci_dev *dev)
952 {
953 	struct vmd_dev *vmd = pci_get_drvdata(dev);
954 
955 	sysfs_remove_link(&vmd->dev->dev.kobj, "domain");
956 	pci_stop_root_bus(vmd->bus);
957 	pci_remove_root_bus(vmd->bus);
958 	vmd_cleanup_srcu(vmd);
959 	vmd_detach_resources(vmd);
960 	vmd_remove_irq_domain(vmd);
961 	ida_simple_remove(&vmd_instance_ida, vmd->instance);
962 }
963 
964 #ifdef CONFIG_PM_SLEEP
965 static int vmd_suspend(struct device *dev)
966 {
967 	struct pci_dev *pdev = to_pci_dev(dev);
968 	struct vmd_dev *vmd = pci_get_drvdata(pdev);
969 	int i;
970 
971 	for (i = 0; i < vmd->msix_count; i++)
972 		devm_free_irq(dev, vmd->irqs[i].virq, &vmd->irqs[i]);
973 
974 	return 0;
975 }
976 
977 static int vmd_resume(struct device *dev)
978 {
979 	struct pci_dev *pdev = to_pci_dev(dev);
980 	struct vmd_dev *vmd = pci_get_drvdata(pdev);
981 	int err, i;
982 
983 	for (i = 0; i < vmd->msix_count; i++) {
984 		err = devm_request_irq(dev, vmd->irqs[i].virq,
985 				       vmd_irq, IRQF_NO_THREAD,
986 				       vmd->name, &vmd->irqs[i]);
987 		if (err)
988 			return err;
989 	}
990 
991 	return 0;
992 }
993 #endif
994 static SIMPLE_DEV_PM_OPS(vmd_dev_pm_ops, vmd_suspend, vmd_resume);
995 
996 static const struct pci_device_id vmd_ids[] = {
997 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_201D),
998 		.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP,},
999 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_28C0),
1000 		.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW |
1001 				VMD_FEAT_HAS_BUS_RESTRICTIONS |
1002 				VMD_FEAT_CAN_BYPASS_MSI_REMAP,},
1003 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x467f),
1004 		.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP |
1005 				VMD_FEAT_HAS_BUS_RESTRICTIONS |
1006 				VMD_FEAT_OFFSET_FIRST_VECTOR,},
1007 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x4c3d),
1008 		.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP |
1009 				VMD_FEAT_HAS_BUS_RESTRICTIONS |
1010 				VMD_FEAT_OFFSET_FIRST_VECTOR,},
1011 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0xa77f),
1012 		.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP |
1013 				VMD_FEAT_HAS_BUS_RESTRICTIONS |
1014 				VMD_FEAT_OFFSET_FIRST_VECTOR,},
1015 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x7d0b),
1016 		.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP |
1017 				VMD_FEAT_HAS_BUS_RESTRICTIONS |
1018 				VMD_FEAT_OFFSET_FIRST_VECTOR,},
1019 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0xad0b),
1020 		.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP |
1021 				VMD_FEAT_HAS_BUS_RESTRICTIONS |
1022 				VMD_FEAT_OFFSET_FIRST_VECTOR,},
1023 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_9A0B),
1024 		.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP |
1025 				VMD_FEAT_HAS_BUS_RESTRICTIONS |
1026 				VMD_FEAT_OFFSET_FIRST_VECTOR,},
1027 	{0,}
1028 };
1029 MODULE_DEVICE_TABLE(pci, vmd_ids);
1030 
1031 static struct pci_driver vmd_drv = {
1032 	.name		= "vmd",
1033 	.id_table	= vmd_ids,
1034 	.probe		= vmd_probe,
1035 	.remove		= vmd_remove,
1036 	.driver		= {
1037 		.pm	= &vmd_dev_pm_ops,
1038 	},
1039 };
1040 module_pci_driver(vmd_drv);
1041 
1042 MODULE_AUTHOR("Intel Corporation");
1043 MODULE_LICENSE("GPL v2");
1044 MODULE_VERSION("0.6");
1045