xref: /openbmc/linux/drivers/pci/controller/vmd.c (revision 3a83e4e6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Volume Management Device driver
4  * Copyright (c) 2015, Intel Corporation.
5  */
6 
7 #include <linux/device.h>
8 #include <linux/interrupt.h>
9 #include <linux/irq.h>
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/msi.h>
13 #include <linux/pci.h>
14 #include <linux/srcu.h>
15 #include <linux/rculist.h>
16 #include <linux/rcupdate.h>
17 
18 #include <asm/irqdomain.h>
19 #include <asm/device.h>
20 #include <asm/msi.h>
21 #include <asm/msidef.h>
22 
23 #define VMD_CFGBAR	0
24 #define VMD_MEMBAR1	2
25 #define VMD_MEMBAR2	4
26 
27 #define PCI_REG_VMCAP		0x40
28 #define BUS_RESTRICT_CAP(vmcap)	(vmcap & 0x1)
29 #define PCI_REG_VMCONFIG	0x44
30 #define BUS_RESTRICT_CFG(vmcfg)	((vmcfg >> 8) & 0x3)
31 #define PCI_REG_VMLOCK		0x70
32 #define MB2_SHADOW_EN(vmlock)	(vmlock & 0x2)
33 
34 #define MB2_SHADOW_OFFSET	0x2000
35 #define MB2_SHADOW_SIZE		16
36 
37 enum vmd_features {
38 	/*
39 	 * Device may contain registers which hint the physical location of the
40 	 * membars, in order to allow proper address translation during
41 	 * resource assignment to enable guest virtualization
42 	 */
43 	VMD_FEAT_HAS_MEMBAR_SHADOW		= (1 << 0),
44 
45 	/*
46 	 * Device may provide root port configuration information which limits
47 	 * bus numbering
48 	 */
49 	VMD_FEAT_HAS_BUS_RESTRICTIONS		= (1 << 1),
50 
51 	/*
52 	 * Device contains physical location shadow registers in
53 	 * vendor-specific capability space
54 	 */
55 	VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP	= (1 << 2),
56 };
57 
58 /*
59  * Lock for manipulating VMD IRQ lists.
60  */
61 static DEFINE_RAW_SPINLOCK(list_lock);
62 
63 /**
64  * struct vmd_irq - private data to map driver IRQ to the VMD shared vector
65  * @node:	list item for parent traversal.
66  * @irq:	back pointer to parent.
67  * @enabled:	true if driver enabled IRQ
68  * @virq:	the virtual IRQ value provided to the requesting driver.
69  *
70  * Every MSI/MSI-X IRQ requested for a device in a VMD domain will be mapped to
71  * a VMD IRQ using this structure.
72  */
73 struct vmd_irq {
74 	struct list_head	node;
75 	struct vmd_irq_list	*irq;
76 	bool			enabled;
77 	unsigned int		virq;
78 };
79 
80 /**
81  * struct vmd_irq_list - list of driver requested IRQs mapping to a VMD vector
82  * @irq_list:	the list of irq's the VMD one demuxes to.
83  * @srcu:	SRCU struct for local synchronization.
84  * @count:	number of child IRQs assigned to this vector; used to track
85  *		sharing.
86  */
87 struct vmd_irq_list {
88 	struct list_head	irq_list;
89 	struct srcu_struct	srcu;
90 	unsigned int		count;
91 };
92 
93 struct vmd_dev {
94 	struct pci_dev		*dev;
95 
96 	spinlock_t		cfg_lock;
97 	char __iomem		*cfgbar;
98 
99 	int msix_count;
100 	struct vmd_irq_list	*irqs;
101 
102 	struct pci_sysdata	sysdata;
103 	struct resource		resources[3];
104 	struct irq_domain	*irq_domain;
105 	struct pci_bus		*bus;
106 	u8			busn_start;
107 };
108 
109 static inline struct vmd_dev *vmd_from_bus(struct pci_bus *bus)
110 {
111 	return container_of(bus->sysdata, struct vmd_dev, sysdata);
112 }
113 
114 static inline unsigned int index_from_irqs(struct vmd_dev *vmd,
115 					   struct vmd_irq_list *irqs)
116 {
117 	return irqs - vmd->irqs;
118 }
119 
120 /*
121  * Drivers managing a device in a VMD domain allocate their own IRQs as before,
122  * but the MSI entry for the hardware it's driving will be programmed with a
123  * destination ID for the VMD MSI-X table.  The VMD muxes interrupts in its
124  * domain into one of its own, and the VMD driver de-muxes these for the
125  * handlers sharing that VMD IRQ.  The vmd irq_domain provides the operations
126  * and irq_chip to set this up.
127  */
128 static void vmd_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
129 {
130 	struct vmd_irq *vmdirq = data->chip_data;
131 	struct vmd_irq_list *irq = vmdirq->irq;
132 	struct vmd_dev *vmd = irq_data_get_irq_handler_data(data);
133 
134 	msg->address_hi = MSI_ADDR_BASE_HI;
135 	msg->address_lo = MSI_ADDR_BASE_LO |
136 			  MSI_ADDR_DEST_ID(index_from_irqs(vmd, irq));
137 	msg->data = 0;
138 }
139 
140 /*
141  * We rely on MSI_FLAG_USE_DEF_CHIP_OPS to set the IRQ mask/unmask ops.
142  */
143 static void vmd_irq_enable(struct irq_data *data)
144 {
145 	struct vmd_irq *vmdirq = data->chip_data;
146 	unsigned long flags;
147 
148 	raw_spin_lock_irqsave(&list_lock, flags);
149 	WARN_ON(vmdirq->enabled);
150 	list_add_tail_rcu(&vmdirq->node, &vmdirq->irq->irq_list);
151 	vmdirq->enabled = true;
152 	raw_spin_unlock_irqrestore(&list_lock, flags);
153 
154 	data->chip->irq_unmask(data);
155 }
156 
157 static void vmd_irq_disable(struct irq_data *data)
158 {
159 	struct vmd_irq *vmdirq = data->chip_data;
160 	unsigned long flags;
161 
162 	data->chip->irq_mask(data);
163 
164 	raw_spin_lock_irqsave(&list_lock, flags);
165 	if (vmdirq->enabled) {
166 		list_del_rcu(&vmdirq->node);
167 		vmdirq->enabled = false;
168 	}
169 	raw_spin_unlock_irqrestore(&list_lock, flags);
170 }
171 
172 /*
173  * XXX: Stubbed until we develop acceptable way to not create conflicts with
174  * other devices sharing the same vector.
175  */
176 static int vmd_irq_set_affinity(struct irq_data *data,
177 				const struct cpumask *dest, bool force)
178 {
179 	return -EINVAL;
180 }
181 
182 static struct irq_chip vmd_msi_controller = {
183 	.name			= "VMD-MSI",
184 	.irq_enable		= vmd_irq_enable,
185 	.irq_disable		= vmd_irq_disable,
186 	.irq_compose_msi_msg	= vmd_compose_msi_msg,
187 	.irq_set_affinity	= vmd_irq_set_affinity,
188 };
189 
190 static irq_hw_number_t vmd_get_hwirq(struct msi_domain_info *info,
191 				     msi_alloc_info_t *arg)
192 {
193 	return 0;
194 }
195 
196 /*
197  * XXX: We can be even smarter selecting the best IRQ once we solve the
198  * affinity problem.
199  */
200 static struct vmd_irq_list *vmd_next_irq(struct vmd_dev *vmd, struct msi_desc *desc)
201 {
202 	int i, best = 1;
203 	unsigned long flags;
204 
205 	if (vmd->msix_count == 1)
206 		return &vmd->irqs[0];
207 
208 	/*
209 	 * White list for fast-interrupt handlers. All others will share the
210 	 * "slow" interrupt vector.
211 	 */
212 	switch (msi_desc_to_pci_dev(desc)->class) {
213 	case PCI_CLASS_STORAGE_EXPRESS:
214 		break;
215 	default:
216 		return &vmd->irqs[0];
217 	}
218 
219 	raw_spin_lock_irqsave(&list_lock, flags);
220 	for (i = 1; i < vmd->msix_count; i++)
221 		if (vmd->irqs[i].count < vmd->irqs[best].count)
222 			best = i;
223 	vmd->irqs[best].count++;
224 	raw_spin_unlock_irqrestore(&list_lock, flags);
225 
226 	return &vmd->irqs[best];
227 }
228 
229 static int vmd_msi_init(struct irq_domain *domain, struct msi_domain_info *info,
230 			unsigned int virq, irq_hw_number_t hwirq,
231 			msi_alloc_info_t *arg)
232 {
233 	struct msi_desc *desc = arg->desc;
234 	struct vmd_dev *vmd = vmd_from_bus(msi_desc_to_pci_dev(desc)->bus);
235 	struct vmd_irq *vmdirq = kzalloc(sizeof(*vmdirq), GFP_KERNEL);
236 	unsigned int index, vector;
237 
238 	if (!vmdirq)
239 		return -ENOMEM;
240 
241 	INIT_LIST_HEAD(&vmdirq->node);
242 	vmdirq->irq = vmd_next_irq(vmd, desc);
243 	vmdirq->virq = virq;
244 	index = index_from_irqs(vmd, vmdirq->irq);
245 	vector = pci_irq_vector(vmd->dev, index);
246 
247 	irq_domain_set_info(domain, virq, vector, info->chip, vmdirq,
248 			    handle_untracked_irq, vmd, NULL);
249 	return 0;
250 }
251 
252 static void vmd_msi_free(struct irq_domain *domain,
253 			struct msi_domain_info *info, unsigned int virq)
254 {
255 	struct vmd_irq *vmdirq = irq_get_chip_data(virq);
256 	unsigned long flags;
257 
258 	synchronize_srcu(&vmdirq->irq->srcu);
259 
260 	/* XXX: Potential optimization to rebalance */
261 	raw_spin_lock_irqsave(&list_lock, flags);
262 	vmdirq->irq->count--;
263 	raw_spin_unlock_irqrestore(&list_lock, flags);
264 
265 	kfree(vmdirq);
266 }
267 
268 static int vmd_msi_prepare(struct irq_domain *domain, struct device *dev,
269 			   int nvec, msi_alloc_info_t *arg)
270 {
271 	struct pci_dev *pdev = to_pci_dev(dev);
272 	struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
273 
274 	if (nvec > vmd->msix_count)
275 		return vmd->msix_count;
276 
277 	memset(arg, 0, sizeof(*arg));
278 	return 0;
279 }
280 
281 static void vmd_set_desc(msi_alloc_info_t *arg, struct msi_desc *desc)
282 {
283 	arg->desc = desc;
284 }
285 
286 static struct msi_domain_ops vmd_msi_domain_ops = {
287 	.get_hwirq	= vmd_get_hwirq,
288 	.msi_init	= vmd_msi_init,
289 	.msi_free	= vmd_msi_free,
290 	.msi_prepare	= vmd_msi_prepare,
291 	.set_desc	= vmd_set_desc,
292 };
293 
294 static struct msi_domain_info vmd_msi_domain_info = {
295 	.flags		= MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
296 			  MSI_FLAG_PCI_MSIX,
297 	.ops		= &vmd_msi_domain_ops,
298 	.chip		= &vmd_msi_controller,
299 };
300 
301 static char __iomem *vmd_cfg_addr(struct vmd_dev *vmd, struct pci_bus *bus,
302 				  unsigned int devfn, int reg, int len)
303 {
304 	char __iomem *addr = vmd->cfgbar +
305 			     ((bus->number - vmd->busn_start) << 20) +
306 			     (devfn << 12) + reg;
307 
308 	if ((addr - vmd->cfgbar) + len >=
309 	    resource_size(&vmd->dev->resource[VMD_CFGBAR]))
310 		return NULL;
311 
312 	return addr;
313 }
314 
315 /*
316  * CPU may deadlock if config space is not serialized on some versions of this
317  * hardware, so all config space access is done under a spinlock.
318  */
319 static int vmd_pci_read(struct pci_bus *bus, unsigned int devfn, int reg,
320 			int len, u32 *value)
321 {
322 	struct vmd_dev *vmd = vmd_from_bus(bus);
323 	char __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
324 	unsigned long flags;
325 	int ret = 0;
326 
327 	if (!addr)
328 		return -EFAULT;
329 
330 	spin_lock_irqsave(&vmd->cfg_lock, flags);
331 	switch (len) {
332 	case 1:
333 		*value = readb(addr);
334 		break;
335 	case 2:
336 		*value = readw(addr);
337 		break;
338 	case 4:
339 		*value = readl(addr);
340 		break;
341 	default:
342 		ret = -EINVAL;
343 		break;
344 	}
345 	spin_unlock_irqrestore(&vmd->cfg_lock, flags);
346 	return ret;
347 }
348 
349 /*
350  * VMD h/w converts non-posted config writes to posted memory writes. The
351  * read-back in this function forces the completion so it returns only after
352  * the config space was written, as expected.
353  */
354 static int vmd_pci_write(struct pci_bus *bus, unsigned int devfn, int reg,
355 			 int len, u32 value)
356 {
357 	struct vmd_dev *vmd = vmd_from_bus(bus);
358 	char __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
359 	unsigned long flags;
360 	int ret = 0;
361 
362 	if (!addr)
363 		return -EFAULT;
364 
365 	spin_lock_irqsave(&vmd->cfg_lock, flags);
366 	switch (len) {
367 	case 1:
368 		writeb(value, addr);
369 		readb(addr);
370 		break;
371 	case 2:
372 		writew(value, addr);
373 		readw(addr);
374 		break;
375 	case 4:
376 		writel(value, addr);
377 		readl(addr);
378 		break;
379 	default:
380 		ret = -EINVAL;
381 		break;
382 	}
383 	spin_unlock_irqrestore(&vmd->cfg_lock, flags);
384 	return ret;
385 }
386 
387 static struct pci_ops vmd_ops = {
388 	.read		= vmd_pci_read,
389 	.write		= vmd_pci_write,
390 };
391 
392 static void vmd_attach_resources(struct vmd_dev *vmd)
393 {
394 	vmd->dev->resource[VMD_MEMBAR1].child = &vmd->resources[1];
395 	vmd->dev->resource[VMD_MEMBAR2].child = &vmd->resources[2];
396 }
397 
398 static void vmd_detach_resources(struct vmd_dev *vmd)
399 {
400 	vmd->dev->resource[VMD_MEMBAR1].child = NULL;
401 	vmd->dev->resource[VMD_MEMBAR2].child = NULL;
402 }
403 
404 /*
405  * VMD domains start at 0x10000 to not clash with ACPI _SEG domains.
406  * Per ACPI r6.0, sec 6.5.6,  _SEG returns an integer, of which the lower
407  * 16 bits are the PCI Segment Group (domain) number.  Other bits are
408  * currently reserved.
409  */
410 static int vmd_find_free_domain(void)
411 {
412 	int domain = 0xffff;
413 	struct pci_bus *bus = NULL;
414 
415 	while ((bus = pci_find_next_bus(bus)) != NULL)
416 		domain = max_t(int, domain, pci_domain_nr(bus));
417 	return domain + 1;
418 }
419 
420 static int vmd_enable_domain(struct vmd_dev *vmd, unsigned long features)
421 {
422 	struct pci_sysdata *sd = &vmd->sysdata;
423 	struct fwnode_handle *fn;
424 	struct resource *res;
425 	u32 upper_bits;
426 	unsigned long flags;
427 	LIST_HEAD(resources);
428 	resource_size_t offset[2] = {0};
429 	resource_size_t membar2_offset = 0x2000;
430 	struct pci_bus *child;
431 
432 	/*
433 	 * Shadow registers may exist in certain VMD device ids which allow
434 	 * guests to correctly assign host physical addresses to the root ports
435 	 * and child devices. These registers will either return the host value
436 	 * or 0, depending on an enable bit in the VMD device.
437 	 */
438 	if (features & VMD_FEAT_HAS_MEMBAR_SHADOW) {
439 		u32 vmlock;
440 		int ret;
441 
442 		membar2_offset = MB2_SHADOW_OFFSET + MB2_SHADOW_SIZE;
443 		ret = pci_read_config_dword(vmd->dev, PCI_REG_VMLOCK, &vmlock);
444 		if (ret || vmlock == ~0)
445 			return -ENODEV;
446 
447 		if (MB2_SHADOW_EN(vmlock)) {
448 			void __iomem *membar2;
449 
450 			membar2 = pci_iomap(vmd->dev, VMD_MEMBAR2, 0);
451 			if (!membar2)
452 				return -ENOMEM;
453 			offset[0] = vmd->dev->resource[VMD_MEMBAR1].start -
454 					(readq(membar2 + MB2_SHADOW_OFFSET) &
455 					 PCI_BASE_ADDRESS_MEM_MASK);
456 			offset[1] = vmd->dev->resource[VMD_MEMBAR2].start -
457 					(readq(membar2 + MB2_SHADOW_OFFSET + 8) &
458 					 PCI_BASE_ADDRESS_MEM_MASK);
459 			pci_iounmap(vmd->dev, membar2);
460 		}
461 	}
462 
463 	if (features & VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP) {
464 		int pos = pci_find_capability(vmd->dev, PCI_CAP_ID_VNDR);
465 		u32 reg, regu;
466 
467 		pci_read_config_dword(vmd->dev, pos + 4, &reg);
468 
469 		/* "SHDW" */
470 		if (pos && reg == 0x53484457) {
471 			pci_read_config_dword(vmd->dev, pos + 8, &reg);
472 			pci_read_config_dword(vmd->dev, pos + 12, &regu);
473 			offset[0] = vmd->dev->resource[VMD_MEMBAR1].start -
474 					(((u64) regu << 32 | reg) &
475 					 PCI_BASE_ADDRESS_MEM_MASK);
476 
477 			pci_read_config_dword(vmd->dev, pos + 16, &reg);
478 			pci_read_config_dword(vmd->dev, pos + 20, &regu);
479 			offset[1] = vmd->dev->resource[VMD_MEMBAR2].start -
480 					(((u64) regu << 32 | reg) &
481 					 PCI_BASE_ADDRESS_MEM_MASK);
482 		}
483 	}
484 
485 	/*
486 	 * Certain VMD devices may have a root port configuration option which
487 	 * limits the bus range to between 0-127, 128-255, or 224-255
488 	 */
489 	if (features & VMD_FEAT_HAS_BUS_RESTRICTIONS) {
490 		u16 reg16;
491 
492 		pci_read_config_word(vmd->dev, PCI_REG_VMCAP, &reg16);
493 		if (BUS_RESTRICT_CAP(reg16)) {
494 			pci_read_config_word(vmd->dev, PCI_REG_VMCONFIG,
495 					     &reg16);
496 
497 			switch (BUS_RESTRICT_CFG(reg16)) {
498 			case 1:
499 				vmd->busn_start = 128;
500 				break;
501 			case 2:
502 				vmd->busn_start = 224;
503 				break;
504 			case 3:
505 				pci_err(vmd->dev, "Unknown Bus Offset Setting\n");
506 				return -ENODEV;
507 			default:
508 				break;
509 			}
510 		}
511 	}
512 
513 	res = &vmd->dev->resource[VMD_CFGBAR];
514 	vmd->resources[0] = (struct resource) {
515 		.name  = "VMD CFGBAR",
516 		.start = vmd->busn_start,
517 		.end   = vmd->busn_start + (resource_size(res) >> 20) - 1,
518 		.flags = IORESOURCE_BUS | IORESOURCE_PCI_FIXED,
519 	};
520 
521 	/*
522 	 * If the window is below 4GB, clear IORESOURCE_MEM_64 so we can
523 	 * put 32-bit resources in the window.
524 	 *
525 	 * There's no hardware reason why a 64-bit window *couldn't*
526 	 * contain a 32-bit resource, but pbus_size_mem() computes the
527 	 * bridge window size assuming a 64-bit window will contain no
528 	 * 32-bit resources.  __pci_assign_resource() enforces that
529 	 * artificial restriction to make sure everything will fit.
530 	 *
531 	 * The only way we could use a 64-bit non-prefetchable MEMBAR is
532 	 * if its address is <4GB so that we can convert it to a 32-bit
533 	 * resource.  To be visible to the host OS, all VMD endpoints must
534 	 * be initially configured by platform BIOS, which includes setting
535 	 * up these resources.  We can assume the device is configured
536 	 * according to the platform needs.
537 	 */
538 	res = &vmd->dev->resource[VMD_MEMBAR1];
539 	upper_bits = upper_32_bits(res->end);
540 	flags = res->flags & ~IORESOURCE_SIZEALIGN;
541 	if (!upper_bits)
542 		flags &= ~IORESOURCE_MEM_64;
543 	vmd->resources[1] = (struct resource) {
544 		.name  = "VMD MEMBAR1",
545 		.start = res->start,
546 		.end   = res->end,
547 		.flags = flags,
548 		.parent = res,
549 	};
550 
551 	res = &vmd->dev->resource[VMD_MEMBAR2];
552 	upper_bits = upper_32_bits(res->end);
553 	flags = res->flags & ~IORESOURCE_SIZEALIGN;
554 	if (!upper_bits)
555 		flags &= ~IORESOURCE_MEM_64;
556 	vmd->resources[2] = (struct resource) {
557 		.name  = "VMD MEMBAR2",
558 		.start = res->start + membar2_offset,
559 		.end   = res->end,
560 		.flags = flags,
561 		.parent = res,
562 	};
563 
564 	sd->vmd_dev = vmd->dev;
565 	sd->domain = vmd_find_free_domain();
566 	if (sd->domain < 0)
567 		return sd->domain;
568 
569 	sd->node = pcibus_to_node(vmd->dev->bus);
570 
571 	fn = irq_domain_alloc_named_id_fwnode("VMD-MSI", vmd->sysdata.domain);
572 	if (!fn)
573 		return -ENODEV;
574 
575 	vmd->irq_domain = pci_msi_create_irq_domain(fn, &vmd_msi_domain_info,
576 						    x86_vector_domain);
577 	if (!vmd->irq_domain) {
578 		irq_domain_free_fwnode(fn);
579 		return -ENODEV;
580 	}
581 
582 	pci_add_resource(&resources, &vmd->resources[0]);
583 	pci_add_resource_offset(&resources, &vmd->resources[1], offset[0]);
584 	pci_add_resource_offset(&resources, &vmd->resources[2], offset[1]);
585 
586 	vmd->bus = pci_create_root_bus(&vmd->dev->dev, vmd->busn_start,
587 				       &vmd_ops, sd, &resources);
588 	if (!vmd->bus) {
589 		pci_free_resource_list(&resources);
590 		irq_domain_remove(vmd->irq_domain);
591 		irq_domain_free_fwnode(fn);
592 		return -ENODEV;
593 	}
594 
595 	vmd_attach_resources(vmd);
596 	dev_set_msi_domain(&vmd->bus->dev, vmd->irq_domain);
597 
598 	pci_scan_child_bus(vmd->bus);
599 	pci_assign_unassigned_bus_resources(vmd->bus);
600 
601 	/*
602 	 * VMD root buses are virtual and don't return true on pci_is_pcie()
603 	 * and will fail pcie_bus_configure_settings() early. It can instead be
604 	 * run on each of the real root ports.
605 	 */
606 	list_for_each_entry(child, &vmd->bus->children, node)
607 		pcie_bus_configure_settings(child);
608 
609 	pci_bus_add_devices(vmd->bus);
610 
611 	WARN(sysfs_create_link(&vmd->dev->dev.kobj, &vmd->bus->dev.kobj,
612 			       "domain"), "Can't create symlink to domain\n");
613 	return 0;
614 }
615 
616 static irqreturn_t vmd_irq(int irq, void *data)
617 {
618 	struct vmd_irq_list *irqs = data;
619 	struct vmd_irq *vmdirq;
620 	int idx;
621 
622 	idx = srcu_read_lock(&irqs->srcu);
623 	list_for_each_entry_rcu(vmdirq, &irqs->irq_list, node)
624 		generic_handle_irq(vmdirq->virq);
625 	srcu_read_unlock(&irqs->srcu, idx);
626 
627 	return IRQ_HANDLED;
628 }
629 
630 static int vmd_probe(struct pci_dev *dev, const struct pci_device_id *id)
631 {
632 	struct vmd_dev *vmd;
633 	int i, err;
634 
635 	if (resource_size(&dev->resource[VMD_CFGBAR]) < (1 << 20))
636 		return -ENOMEM;
637 
638 	vmd = devm_kzalloc(&dev->dev, sizeof(*vmd), GFP_KERNEL);
639 	if (!vmd)
640 		return -ENOMEM;
641 
642 	vmd->dev = dev;
643 	err = pcim_enable_device(dev);
644 	if (err < 0)
645 		return err;
646 
647 	vmd->cfgbar = pcim_iomap(dev, VMD_CFGBAR, 0);
648 	if (!vmd->cfgbar)
649 		return -ENOMEM;
650 
651 	pci_set_master(dev);
652 	if (dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(64)) &&
653 	    dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(32)))
654 		return -ENODEV;
655 
656 	vmd->msix_count = pci_msix_vec_count(dev);
657 	if (vmd->msix_count < 0)
658 		return -ENODEV;
659 
660 	vmd->msix_count = pci_alloc_irq_vectors(dev, 1, vmd->msix_count,
661 					PCI_IRQ_MSIX);
662 	if (vmd->msix_count < 0)
663 		return vmd->msix_count;
664 
665 	vmd->irqs = devm_kcalloc(&dev->dev, vmd->msix_count, sizeof(*vmd->irqs),
666 				 GFP_KERNEL);
667 	if (!vmd->irqs)
668 		return -ENOMEM;
669 
670 	for (i = 0; i < vmd->msix_count; i++) {
671 		err = init_srcu_struct(&vmd->irqs[i].srcu);
672 		if (err)
673 			return err;
674 
675 		INIT_LIST_HEAD(&vmd->irqs[i].irq_list);
676 		err = devm_request_irq(&dev->dev, pci_irq_vector(dev, i),
677 				       vmd_irq, IRQF_NO_THREAD,
678 				       "vmd", &vmd->irqs[i]);
679 		if (err)
680 			return err;
681 	}
682 
683 	spin_lock_init(&vmd->cfg_lock);
684 	pci_set_drvdata(dev, vmd);
685 	err = vmd_enable_domain(vmd, (unsigned long) id->driver_data);
686 	if (err)
687 		return err;
688 
689 	dev_info(&vmd->dev->dev, "Bound to PCI domain %04x\n",
690 		 vmd->sysdata.domain);
691 	return 0;
692 }
693 
694 static void vmd_cleanup_srcu(struct vmd_dev *vmd)
695 {
696 	int i;
697 
698 	for (i = 0; i < vmd->msix_count; i++)
699 		cleanup_srcu_struct(&vmd->irqs[i].srcu);
700 }
701 
702 static void vmd_remove(struct pci_dev *dev)
703 {
704 	struct vmd_dev *vmd = pci_get_drvdata(dev);
705 	struct fwnode_handle *fn = vmd->irq_domain->fwnode;
706 
707 	sysfs_remove_link(&vmd->dev->dev.kobj, "domain");
708 	pci_stop_root_bus(vmd->bus);
709 	pci_remove_root_bus(vmd->bus);
710 	vmd_cleanup_srcu(vmd);
711 	vmd_detach_resources(vmd);
712 	irq_domain_remove(vmd->irq_domain);
713 	irq_domain_free_fwnode(fn);
714 }
715 
716 #ifdef CONFIG_PM_SLEEP
717 static int vmd_suspend(struct device *dev)
718 {
719 	struct pci_dev *pdev = to_pci_dev(dev);
720 	struct vmd_dev *vmd = pci_get_drvdata(pdev);
721 	int i;
722 
723 	for (i = 0; i < vmd->msix_count; i++)
724 		devm_free_irq(dev, pci_irq_vector(pdev, i), &vmd->irqs[i]);
725 
726 	pci_save_state(pdev);
727 	return 0;
728 }
729 
730 static int vmd_resume(struct device *dev)
731 {
732 	struct pci_dev *pdev = to_pci_dev(dev);
733 	struct vmd_dev *vmd = pci_get_drvdata(pdev);
734 	int err, i;
735 
736 	for (i = 0; i < vmd->msix_count; i++) {
737 		err = devm_request_irq(dev, pci_irq_vector(pdev, i),
738 				       vmd_irq, IRQF_NO_THREAD,
739 				       "vmd", &vmd->irqs[i]);
740 		if (err)
741 			return err;
742 	}
743 
744 	pci_restore_state(pdev);
745 	return 0;
746 }
747 #endif
748 static SIMPLE_DEV_PM_OPS(vmd_dev_pm_ops, vmd_suspend, vmd_resume);
749 
750 static const struct pci_device_id vmd_ids[] = {
751 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_201D),
752 		.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP,},
753 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_28C0),
754 		.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW |
755 				VMD_FEAT_HAS_BUS_RESTRICTIONS,},
756 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x467f),
757 		.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP |
758 				VMD_FEAT_HAS_BUS_RESTRICTIONS,},
759 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x4c3d),
760 		.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP |
761 				VMD_FEAT_HAS_BUS_RESTRICTIONS,},
762 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_9A0B),
763 		.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP |
764 				VMD_FEAT_HAS_BUS_RESTRICTIONS,},
765 	{0,}
766 };
767 MODULE_DEVICE_TABLE(pci, vmd_ids);
768 
769 static struct pci_driver vmd_drv = {
770 	.name		= "vmd",
771 	.id_table	= vmd_ids,
772 	.probe		= vmd_probe,
773 	.remove		= vmd_remove,
774 	.driver		= {
775 		.pm	= &vmd_dev_pm_ops,
776 	},
777 };
778 module_pci_driver(vmd_drv);
779 
780 MODULE_AUTHOR("Intel Corporation");
781 MODULE_LICENSE("GPL v2");
782 MODULE_VERSION("0.6");
783