1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Volume Management Device driver 4 * Copyright (c) 2015, Intel Corporation. 5 */ 6 7 #include <linux/device.h> 8 #include <linux/interrupt.h> 9 #include <linux/irq.h> 10 #include <linux/kernel.h> 11 #include <linux/module.h> 12 #include <linux/msi.h> 13 #include <linux/pci.h> 14 #include <linux/srcu.h> 15 #include <linux/rculist.h> 16 #include <linux/rcupdate.h> 17 18 #include <asm/irqdomain.h> 19 #include <asm/device.h> 20 #include <asm/msi.h> 21 #include <asm/msidef.h> 22 23 #define VMD_CFGBAR 0 24 #define VMD_MEMBAR1 2 25 #define VMD_MEMBAR2 4 26 27 #define PCI_REG_VMCAP 0x40 28 #define BUS_RESTRICT_CAP(vmcap) (vmcap & 0x1) 29 #define PCI_REG_VMCONFIG 0x44 30 #define BUS_RESTRICT_CFG(vmcfg) ((vmcfg >> 8) & 0x3) 31 #define PCI_REG_VMLOCK 0x70 32 #define MB2_SHADOW_EN(vmlock) (vmlock & 0x2) 33 34 #define MB2_SHADOW_OFFSET 0x2000 35 #define MB2_SHADOW_SIZE 16 36 37 enum vmd_features { 38 /* 39 * Device may contain registers which hint the physical location of the 40 * membars, in order to allow proper address translation during 41 * resource assignment to enable guest virtualization 42 */ 43 VMD_FEAT_HAS_MEMBAR_SHADOW = (1 << 0), 44 45 /* 46 * Device may provide root port configuration information which limits 47 * bus numbering 48 */ 49 VMD_FEAT_HAS_BUS_RESTRICTIONS = (1 << 1), 50 51 /* 52 * Device contains physical location shadow registers in 53 * vendor-specific capability space 54 */ 55 VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP = (1 << 2), 56 }; 57 58 /* 59 * Lock for manipulating VMD IRQ lists. 60 */ 61 static DEFINE_RAW_SPINLOCK(list_lock); 62 63 /** 64 * struct vmd_irq - private data to map driver IRQ to the VMD shared vector 65 * @node: list item for parent traversal. 66 * @irq: back pointer to parent. 67 * @enabled: true if driver enabled IRQ 68 * @virq: the virtual IRQ value provided to the requesting driver. 69 * 70 * Every MSI/MSI-X IRQ requested for a device in a VMD domain will be mapped to 71 * a VMD IRQ using this structure. 72 */ 73 struct vmd_irq { 74 struct list_head node; 75 struct vmd_irq_list *irq; 76 bool enabled; 77 unsigned int virq; 78 }; 79 80 /** 81 * struct vmd_irq_list - list of driver requested IRQs mapping to a VMD vector 82 * @irq_list: the list of irq's the VMD one demuxes to. 83 * @srcu: SRCU struct for local synchronization. 84 * @count: number of child IRQs assigned to this vector; used to track 85 * sharing. 86 */ 87 struct vmd_irq_list { 88 struct list_head irq_list; 89 struct srcu_struct srcu; 90 unsigned int count; 91 }; 92 93 struct vmd_dev { 94 struct pci_dev *dev; 95 96 spinlock_t cfg_lock; 97 char __iomem *cfgbar; 98 99 int msix_count; 100 struct vmd_irq_list *irqs; 101 102 struct pci_sysdata sysdata; 103 struct resource resources[3]; 104 struct irq_domain *irq_domain; 105 struct pci_bus *bus; 106 u8 busn_start; 107 }; 108 109 static inline struct vmd_dev *vmd_from_bus(struct pci_bus *bus) 110 { 111 return container_of(bus->sysdata, struct vmd_dev, sysdata); 112 } 113 114 static inline unsigned int index_from_irqs(struct vmd_dev *vmd, 115 struct vmd_irq_list *irqs) 116 { 117 return irqs - vmd->irqs; 118 } 119 120 /* 121 * Drivers managing a device in a VMD domain allocate their own IRQs as before, 122 * but the MSI entry for the hardware it's driving will be programmed with a 123 * destination ID for the VMD MSI-X table. The VMD muxes interrupts in its 124 * domain into one of its own, and the VMD driver de-muxes these for the 125 * handlers sharing that VMD IRQ. The vmd irq_domain provides the operations 126 * and irq_chip to set this up. 127 */ 128 static void vmd_compose_msi_msg(struct irq_data *data, struct msi_msg *msg) 129 { 130 struct vmd_irq *vmdirq = data->chip_data; 131 struct vmd_irq_list *irq = vmdirq->irq; 132 struct vmd_dev *vmd = irq_data_get_irq_handler_data(data); 133 134 msg->address_hi = MSI_ADDR_BASE_HI; 135 msg->address_lo = MSI_ADDR_BASE_LO | 136 MSI_ADDR_DEST_ID(index_from_irqs(vmd, irq)); 137 msg->data = 0; 138 } 139 140 /* 141 * We rely on MSI_FLAG_USE_DEF_CHIP_OPS to set the IRQ mask/unmask ops. 142 */ 143 static void vmd_irq_enable(struct irq_data *data) 144 { 145 struct vmd_irq *vmdirq = data->chip_data; 146 unsigned long flags; 147 148 raw_spin_lock_irqsave(&list_lock, flags); 149 WARN_ON(vmdirq->enabled); 150 list_add_tail_rcu(&vmdirq->node, &vmdirq->irq->irq_list); 151 vmdirq->enabled = true; 152 raw_spin_unlock_irqrestore(&list_lock, flags); 153 154 data->chip->irq_unmask(data); 155 } 156 157 static void vmd_irq_disable(struct irq_data *data) 158 { 159 struct vmd_irq *vmdirq = data->chip_data; 160 unsigned long flags; 161 162 data->chip->irq_mask(data); 163 164 raw_spin_lock_irqsave(&list_lock, flags); 165 if (vmdirq->enabled) { 166 list_del_rcu(&vmdirq->node); 167 vmdirq->enabled = false; 168 } 169 raw_spin_unlock_irqrestore(&list_lock, flags); 170 } 171 172 /* 173 * XXX: Stubbed until we develop acceptable way to not create conflicts with 174 * other devices sharing the same vector. 175 */ 176 static int vmd_irq_set_affinity(struct irq_data *data, 177 const struct cpumask *dest, bool force) 178 { 179 return -EINVAL; 180 } 181 182 static struct irq_chip vmd_msi_controller = { 183 .name = "VMD-MSI", 184 .irq_enable = vmd_irq_enable, 185 .irq_disable = vmd_irq_disable, 186 .irq_compose_msi_msg = vmd_compose_msi_msg, 187 .irq_set_affinity = vmd_irq_set_affinity, 188 }; 189 190 static irq_hw_number_t vmd_get_hwirq(struct msi_domain_info *info, 191 msi_alloc_info_t *arg) 192 { 193 return 0; 194 } 195 196 /* 197 * XXX: We can be even smarter selecting the best IRQ once we solve the 198 * affinity problem. 199 */ 200 static struct vmd_irq_list *vmd_next_irq(struct vmd_dev *vmd, struct msi_desc *desc) 201 { 202 int i, best = 1; 203 unsigned long flags; 204 205 if (vmd->msix_count == 1) 206 return &vmd->irqs[0]; 207 208 /* 209 * White list for fast-interrupt handlers. All others will share the 210 * "slow" interrupt vector. 211 */ 212 switch (msi_desc_to_pci_dev(desc)->class) { 213 case PCI_CLASS_STORAGE_EXPRESS: 214 break; 215 default: 216 return &vmd->irqs[0]; 217 } 218 219 raw_spin_lock_irqsave(&list_lock, flags); 220 for (i = 1; i < vmd->msix_count; i++) 221 if (vmd->irqs[i].count < vmd->irqs[best].count) 222 best = i; 223 vmd->irqs[best].count++; 224 raw_spin_unlock_irqrestore(&list_lock, flags); 225 226 return &vmd->irqs[best]; 227 } 228 229 static int vmd_msi_init(struct irq_domain *domain, struct msi_domain_info *info, 230 unsigned int virq, irq_hw_number_t hwirq, 231 msi_alloc_info_t *arg) 232 { 233 struct msi_desc *desc = arg->desc; 234 struct vmd_dev *vmd = vmd_from_bus(msi_desc_to_pci_dev(desc)->bus); 235 struct vmd_irq *vmdirq = kzalloc(sizeof(*vmdirq), GFP_KERNEL); 236 unsigned int index, vector; 237 238 if (!vmdirq) 239 return -ENOMEM; 240 241 INIT_LIST_HEAD(&vmdirq->node); 242 vmdirq->irq = vmd_next_irq(vmd, desc); 243 vmdirq->virq = virq; 244 index = index_from_irqs(vmd, vmdirq->irq); 245 vector = pci_irq_vector(vmd->dev, index); 246 247 irq_domain_set_info(domain, virq, vector, info->chip, vmdirq, 248 handle_untracked_irq, vmd, NULL); 249 return 0; 250 } 251 252 static void vmd_msi_free(struct irq_domain *domain, 253 struct msi_domain_info *info, unsigned int virq) 254 { 255 struct vmd_irq *vmdirq = irq_get_chip_data(virq); 256 unsigned long flags; 257 258 synchronize_srcu(&vmdirq->irq->srcu); 259 260 /* XXX: Potential optimization to rebalance */ 261 raw_spin_lock_irqsave(&list_lock, flags); 262 vmdirq->irq->count--; 263 raw_spin_unlock_irqrestore(&list_lock, flags); 264 265 kfree(vmdirq); 266 } 267 268 static int vmd_msi_prepare(struct irq_domain *domain, struct device *dev, 269 int nvec, msi_alloc_info_t *arg) 270 { 271 struct pci_dev *pdev = to_pci_dev(dev); 272 struct vmd_dev *vmd = vmd_from_bus(pdev->bus); 273 274 if (nvec > vmd->msix_count) 275 return vmd->msix_count; 276 277 memset(arg, 0, sizeof(*arg)); 278 return 0; 279 } 280 281 static void vmd_set_desc(msi_alloc_info_t *arg, struct msi_desc *desc) 282 { 283 arg->desc = desc; 284 } 285 286 static struct msi_domain_ops vmd_msi_domain_ops = { 287 .get_hwirq = vmd_get_hwirq, 288 .msi_init = vmd_msi_init, 289 .msi_free = vmd_msi_free, 290 .msi_prepare = vmd_msi_prepare, 291 .set_desc = vmd_set_desc, 292 }; 293 294 static struct msi_domain_info vmd_msi_domain_info = { 295 .flags = MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS | 296 MSI_FLAG_PCI_MSIX, 297 .ops = &vmd_msi_domain_ops, 298 .chip = &vmd_msi_controller, 299 }; 300 301 static char __iomem *vmd_cfg_addr(struct vmd_dev *vmd, struct pci_bus *bus, 302 unsigned int devfn, int reg, int len) 303 { 304 char __iomem *addr = vmd->cfgbar + 305 ((bus->number - vmd->busn_start) << 20) + 306 (devfn << 12) + reg; 307 308 if ((addr - vmd->cfgbar) + len >= 309 resource_size(&vmd->dev->resource[VMD_CFGBAR])) 310 return NULL; 311 312 return addr; 313 } 314 315 /* 316 * CPU may deadlock if config space is not serialized on some versions of this 317 * hardware, so all config space access is done under a spinlock. 318 */ 319 static int vmd_pci_read(struct pci_bus *bus, unsigned int devfn, int reg, 320 int len, u32 *value) 321 { 322 struct vmd_dev *vmd = vmd_from_bus(bus); 323 char __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len); 324 unsigned long flags; 325 int ret = 0; 326 327 if (!addr) 328 return -EFAULT; 329 330 spin_lock_irqsave(&vmd->cfg_lock, flags); 331 switch (len) { 332 case 1: 333 *value = readb(addr); 334 break; 335 case 2: 336 *value = readw(addr); 337 break; 338 case 4: 339 *value = readl(addr); 340 break; 341 default: 342 ret = -EINVAL; 343 break; 344 } 345 spin_unlock_irqrestore(&vmd->cfg_lock, flags); 346 return ret; 347 } 348 349 /* 350 * VMD h/w converts non-posted config writes to posted memory writes. The 351 * read-back in this function forces the completion so it returns only after 352 * the config space was written, as expected. 353 */ 354 static int vmd_pci_write(struct pci_bus *bus, unsigned int devfn, int reg, 355 int len, u32 value) 356 { 357 struct vmd_dev *vmd = vmd_from_bus(bus); 358 char __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len); 359 unsigned long flags; 360 int ret = 0; 361 362 if (!addr) 363 return -EFAULT; 364 365 spin_lock_irqsave(&vmd->cfg_lock, flags); 366 switch (len) { 367 case 1: 368 writeb(value, addr); 369 readb(addr); 370 break; 371 case 2: 372 writew(value, addr); 373 readw(addr); 374 break; 375 case 4: 376 writel(value, addr); 377 readl(addr); 378 break; 379 default: 380 ret = -EINVAL; 381 break; 382 } 383 spin_unlock_irqrestore(&vmd->cfg_lock, flags); 384 return ret; 385 } 386 387 static struct pci_ops vmd_ops = { 388 .read = vmd_pci_read, 389 .write = vmd_pci_write, 390 }; 391 392 static void vmd_attach_resources(struct vmd_dev *vmd) 393 { 394 vmd->dev->resource[VMD_MEMBAR1].child = &vmd->resources[1]; 395 vmd->dev->resource[VMD_MEMBAR2].child = &vmd->resources[2]; 396 } 397 398 static void vmd_detach_resources(struct vmd_dev *vmd) 399 { 400 vmd->dev->resource[VMD_MEMBAR1].child = NULL; 401 vmd->dev->resource[VMD_MEMBAR2].child = NULL; 402 } 403 404 /* 405 * VMD domains start at 0x10000 to not clash with ACPI _SEG domains. 406 * Per ACPI r6.0, sec 6.5.6, _SEG returns an integer, of which the lower 407 * 16 bits are the PCI Segment Group (domain) number. Other bits are 408 * currently reserved. 409 */ 410 static int vmd_find_free_domain(void) 411 { 412 int domain = 0xffff; 413 struct pci_bus *bus = NULL; 414 415 while ((bus = pci_find_next_bus(bus)) != NULL) 416 domain = max_t(int, domain, pci_domain_nr(bus)); 417 return domain + 1; 418 } 419 420 static int vmd_enable_domain(struct vmd_dev *vmd, unsigned long features) 421 { 422 struct pci_sysdata *sd = &vmd->sysdata; 423 struct fwnode_handle *fn; 424 struct resource *res; 425 u32 upper_bits; 426 unsigned long flags; 427 LIST_HEAD(resources); 428 resource_size_t offset[2] = {0}; 429 resource_size_t membar2_offset = 0x2000; 430 struct pci_bus *child; 431 432 /* 433 * Shadow registers may exist in certain VMD device ids which allow 434 * guests to correctly assign host physical addresses to the root ports 435 * and child devices. These registers will either return the host value 436 * or 0, depending on an enable bit in the VMD device. 437 */ 438 if (features & VMD_FEAT_HAS_MEMBAR_SHADOW) { 439 u32 vmlock; 440 int ret; 441 442 membar2_offset = MB2_SHADOW_OFFSET + MB2_SHADOW_SIZE; 443 ret = pci_read_config_dword(vmd->dev, PCI_REG_VMLOCK, &vmlock); 444 if (ret || vmlock == ~0) 445 return -ENODEV; 446 447 if (MB2_SHADOW_EN(vmlock)) { 448 void __iomem *membar2; 449 450 membar2 = pci_iomap(vmd->dev, VMD_MEMBAR2, 0); 451 if (!membar2) 452 return -ENOMEM; 453 offset[0] = vmd->dev->resource[VMD_MEMBAR1].start - 454 (readq(membar2 + MB2_SHADOW_OFFSET) & 455 PCI_BASE_ADDRESS_MEM_MASK); 456 offset[1] = vmd->dev->resource[VMD_MEMBAR2].start - 457 (readq(membar2 + MB2_SHADOW_OFFSET + 8) & 458 PCI_BASE_ADDRESS_MEM_MASK); 459 pci_iounmap(vmd->dev, membar2); 460 } 461 } 462 463 if (features & VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP) { 464 int pos = pci_find_capability(vmd->dev, PCI_CAP_ID_VNDR); 465 u32 reg, regu; 466 467 pci_read_config_dword(vmd->dev, pos + 4, ®); 468 469 /* "SHDW" */ 470 if (pos && reg == 0x53484457) { 471 pci_read_config_dword(vmd->dev, pos + 8, ®); 472 pci_read_config_dword(vmd->dev, pos + 12, ®u); 473 offset[0] = vmd->dev->resource[VMD_MEMBAR1].start - 474 (((u64) regu << 32 | reg) & 475 PCI_BASE_ADDRESS_MEM_MASK); 476 477 pci_read_config_dword(vmd->dev, pos + 16, ®); 478 pci_read_config_dword(vmd->dev, pos + 20, ®u); 479 offset[1] = vmd->dev->resource[VMD_MEMBAR2].start - 480 (((u64) regu << 32 | reg) & 481 PCI_BASE_ADDRESS_MEM_MASK); 482 } 483 } 484 485 /* 486 * Certain VMD devices may have a root port configuration option which 487 * limits the bus range to between 0-127, 128-255, or 224-255 488 */ 489 if (features & VMD_FEAT_HAS_BUS_RESTRICTIONS) { 490 u16 reg16; 491 492 pci_read_config_word(vmd->dev, PCI_REG_VMCAP, ®16); 493 if (BUS_RESTRICT_CAP(reg16)) { 494 pci_read_config_word(vmd->dev, PCI_REG_VMCONFIG, 495 ®16); 496 497 switch (BUS_RESTRICT_CFG(reg16)) { 498 case 1: 499 vmd->busn_start = 128; 500 break; 501 case 2: 502 vmd->busn_start = 224; 503 break; 504 case 3: 505 pci_err(vmd->dev, "Unknown Bus Offset Setting\n"); 506 return -ENODEV; 507 default: 508 break; 509 } 510 } 511 } 512 513 res = &vmd->dev->resource[VMD_CFGBAR]; 514 vmd->resources[0] = (struct resource) { 515 .name = "VMD CFGBAR", 516 .start = vmd->busn_start, 517 .end = vmd->busn_start + (resource_size(res) >> 20) - 1, 518 .flags = IORESOURCE_BUS | IORESOURCE_PCI_FIXED, 519 }; 520 521 /* 522 * If the window is below 4GB, clear IORESOURCE_MEM_64 so we can 523 * put 32-bit resources in the window. 524 * 525 * There's no hardware reason why a 64-bit window *couldn't* 526 * contain a 32-bit resource, but pbus_size_mem() computes the 527 * bridge window size assuming a 64-bit window will contain no 528 * 32-bit resources. __pci_assign_resource() enforces that 529 * artificial restriction to make sure everything will fit. 530 * 531 * The only way we could use a 64-bit non-prefetchable MEMBAR is 532 * if its address is <4GB so that we can convert it to a 32-bit 533 * resource. To be visible to the host OS, all VMD endpoints must 534 * be initially configured by platform BIOS, which includes setting 535 * up these resources. We can assume the device is configured 536 * according to the platform needs. 537 */ 538 res = &vmd->dev->resource[VMD_MEMBAR1]; 539 upper_bits = upper_32_bits(res->end); 540 flags = res->flags & ~IORESOURCE_SIZEALIGN; 541 if (!upper_bits) 542 flags &= ~IORESOURCE_MEM_64; 543 vmd->resources[1] = (struct resource) { 544 .name = "VMD MEMBAR1", 545 .start = res->start, 546 .end = res->end, 547 .flags = flags, 548 .parent = res, 549 }; 550 551 res = &vmd->dev->resource[VMD_MEMBAR2]; 552 upper_bits = upper_32_bits(res->end); 553 flags = res->flags & ~IORESOURCE_SIZEALIGN; 554 if (!upper_bits) 555 flags &= ~IORESOURCE_MEM_64; 556 vmd->resources[2] = (struct resource) { 557 .name = "VMD MEMBAR2", 558 .start = res->start + membar2_offset, 559 .end = res->end, 560 .flags = flags, 561 .parent = res, 562 }; 563 564 sd->vmd_dev = vmd->dev; 565 sd->domain = vmd_find_free_domain(); 566 if (sd->domain < 0) 567 return sd->domain; 568 569 sd->node = pcibus_to_node(vmd->dev->bus); 570 571 fn = irq_domain_alloc_named_id_fwnode("VMD-MSI", vmd->sysdata.domain); 572 if (!fn) 573 return -ENODEV; 574 575 vmd->irq_domain = pci_msi_create_irq_domain(fn, &vmd_msi_domain_info, 576 x86_vector_domain); 577 if (!vmd->irq_domain) { 578 irq_domain_free_fwnode(fn); 579 return -ENODEV; 580 } 581 582 pci_add_resource(&resources, &vmd->resources[0]); 583 pci_add_resource_offset(&resources, &vmd->resources[1], offset[0]); 584 pci_add_resource_offset(&resources, &vmd->resources[2], offset[1]); 585 586 vmd->bus = pci_create_root_bus(&vmd->dev->dev, vmd->busn_start, 587 &vmd_ops, sd, &resources); 588 if (!vmd->bus) { 589 pci_free_resource_list(&resources); 590 irq_domain_remove(vmd->irq_domain); 591 irq_domain_free_fwnode(fn); 592 return -ENODEV; 593 } 594 595 vmd_attach_resources(vmd); 596 dev_set_msi_domain(&vmd->bus->dev, vmd->irq_domain); 597 598 pci_scan_child_bus(vmd->bus); 599 pci_assign_unassigned_bus_resources(vmd->bus); 600 601 /* 602 * VMD root buses are virtual and don't return true on pci_is_pcie() 603 * and will fail pcie_bus_configure_settings() early. It can instead be 604 * run on each of the real root ports. 605 */ 606 list_for_each_entry(child, &vmd->bus->children, node) 607 pcie_bus_configure_settings(child); 608 609 pci_bus_add_devices(vmd->bus); 610 611 WARN(sysfs_create_link(&vmd->dev->dev.kobj, &vmd->bus->dev.kobj, 612 "domain"), "Can't create symlink to domain\n"); 613 return 0; 614 } 615 616 static irqreturn_t vmd_irq(int irq, void *data) 617 { 618 struct vmd_irq_list *irqs = data; 619 struct vmd_irq *vmdirq; 620 int idx; 621 622 idx = srcu_read_lock(&irqs->srcu); 623 list_for_each_entry_rcu(vmdirq, &irqs->irq_list, node) 624 generic_handle_irq(vmdirq->virq); 625 srcu_read_unlock(&irqs->srcu, idx); 626 627 return IRQ_HANDLED; 628 } 629 630 static int vmd_probe(struct pci_dev *dev, const struct pci_device_id *id) 631 { 632 struct vmd_dev *vmd; 633 int i, err; 634 635 if (resource_size(&dev->resource[VMD_CFGBAR]) < (1 << 20)) 636 return -ENOMEM; 637 638 vmd = devm_kzalloc(&dev->dev, sizeof(*vmd), GFP_KERNEL); 639 if (!vmd) 640 return -ENOMEM; 641 642 vmd->dev = dev; 643 err = pcim_enable_device(dev); 644 if (err < 0) 645 return err; 646 647 vmd->cfgbar = pcim_iomap(dev, VMD_CFGBAR, 0); 648 if (!vmd->cfgbar) 649 return -ENOMEM; 650 651 pci_set_master(dev); 652 if (dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(64)) && 653 dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(32))) 654 return -ENODEV; 655 656 vmd->msix_count = pci_msix_vec_count(dev); 657 if (vmd->msix_count < 0) 658 return -ENODEV; 659 660 vmd->msix_count = pci_alloc_irq_vectors(dev, 1, vmd->msix_count, 661 PCI_IRQ_MSIX); 662 if (vmd->msix_count < 0) 663 return vmd->msix_count; 664 665 vmd->irqs = devm_kcalloc(&dev->dev, vmd->msix_count, sizeof(*vmd->irqs), 666 GFP_KERNEL); 667 if (!vmd->irqs) 668 return -ENOMEM; 669 670 for (i = 0; i < vmd->msix_count; i++) { 671 err = init_srcu_struct(&vmd->irqs[i].srcu); 672 if (err) 673 return err; 674 675 INIT_LIST_HEAD(&vmd->irqs[i].irq_list); 676 err = devm_request_irq(&dev->dev, pci_irq_vector(dev, i), 677 vmd_irq, IRQF_NO_THREAD, 678 "vmd", &vmd->irqs[i]); 679 if (err) 680 return err; 681 } 682 683 spin_lock_init(&vmd->cfg_lock); 684 pci_set_drvdata(dev, vmd); 685 err = vmd_enable_domain(vmd, (unsigned long) id->driver_data); 686 if (err) 687 return err; 688 689 dev_info(&vmd->dev->dev, "Bound to PCI domain %04x\n", 690 vmd->sysdata.domain); 691 return 0; 692 } 693 694 static void vmd_cleanup_srcu(struct vmd_dev *vmd) 695 { 696 int i; 697 698 for (i = 0; i < vmd->msix_count; i++) 699 cleanup_srcu_struct(&vmd->irqs[i].srcu); 700 } 701 702 static void vmd_remove(struct pci_dev *dev) 703 { 704 struct vmd_dev *vmd = pci_get_drvdata(dev); 705 struct fwnode_handle *fn = vmd->irq_domain->fwnode; 706 707 sysfs_remove_link(&vmd->dev->dev.kobj, "domain"); 708 pci_stop_root_bus(vmd->bus); 709 pci_remove_root_bus(vmd->bus); 710 vmd_cleanup_srcu(vmd); 711 vmd_detach_resources(vmd); 712 irq_domain_remove(vmd->irq_domain); 713 irq_domain_free_fwnode(fn); 714 } 715 716 #ifdef CONFIG_PM_SLEEP 717 static int vmd_suspend(struct device *dev) 718 { 719 struct pci_dev *pdev = to_pci_dev(dev); 720 struct vmd_dev *vmd = pci_get_drvdata(pdev); 721 int i; 722 723 for (i = 0; i < vmd->msix_count; i++) 724 devm_free_irq(dev, pci_irq_vector(pdev, i), &vmd->irqs[i]); 725 726 pci_save_state(pdev); 727 return 0; 728 } 729 730 static int vmd_resume(struct device *dev) 731 { 732 struct pci_dev *pdev = to_pci_dev(dev); 733 struct vmd_dev *vmd = pci_get_drvdata(pdev); 734 int err, i; 735 736 for (i = 0; i < vmd->msix_count; i++) { 737 err = devm_request_irq(dev, pci_irq_vector(pdev, i), 738 vmd_irq, IRQF_NO_THREAD, 739 "vmd", &vmd->irqs[i]); 740 if (err) 741 return err; 742 } 743 744 pci_restore_state(pdev); 745 return 0; 746 } 747 #endif 748 static SIMPLE_DEV_PM_OPS(vmd_dev_pm_ops, vmd_suspend, vmd_resume); 749 750 static const struct pci_device_id vmd_ids[] = { 751 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_201D), 752 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP,}, 753 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_28C0), 754 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW | 755 VMD_FEAT_HAS_BUS_RESTRICTIONS,}, 756 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x467f), 757 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP | 758 VMD_FEAT_HAS_BUS_RESTRICTIONS,}, 759 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x4c3d), 760 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP | 761 VMD_FEAT_HAS_BUS_RESTRICTIONS,}, 762 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_9A0B), 763 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP | 764 VMD_FEAT_HAS_BUS_RESTRICTIONS,}, 765 {0,} 766 }; 767 MODULE_DEVICE_TABLE(pci, vmd_ids); 768 769 static struct pci_driver vmd_drv = { 770 .name = "vmd", 771 .id_table = vmd_ids, 772 .probe = vmd_probe, 773 .remove = vmd_remove, 774 .driver = { 775 .pm = &vmd_dev_pm_ops, 776 }, 777 }; 778 module_pci_driver(vmd_drv); 779 780 MODULE_AUTHOR("Intel Corporation"); 781 MODULE_LICENSE("GPL v2"); 782 MODULE_VERSION("0.6"); 783