xref: /openbmc/linux/drivers/pci/controller/vmd.c (revision 3184e07e12405a4d00ad7990f2a0c97278fdc636)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Volume Management Device driver
4  * Copyright (c) 2015, Intel Corporation.
5  */
6 
7 #include <linux/device.h>
8 #include <linux/interrupt.h>
9 #include <linux/irq.h>
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/msi.h>
13 #include <linux/pci.h>
14 #include <linux/pci-acpi.h>
15 #include <linux/pci-ecam.h>
16 #include <linux/srcu.h>
17 #include <linux/rculist.h>
18 #include <linux/rcupdate.h>
19 
20 #include <asm/irqdomain.h>
21 
22 #define VMD_CFGBAR	0
23 #define VMD_MEMBAR1	2
24 #define VMD_MEMBAR2	4
25 
26 #define PCI_REG_VMCAP		0x40
27 #define BUS_RESTRICT_CAP(vmcap)	(vmcap & 0x1)
28 #define PCI_REG_VMCONFIG	0x44
29 #define BUS_RESTRICT_CFG(vmcfg)	((vmcfg >> 8) & 0x3)
30 #define VMCONFIG_MSI_REMAP	0x2
31 #define PCI_REG_VMLOCK		0x70
32 #define MB2_SHADOW_EN(vmlock)	(vmlock & 0x2)
33 
34 #define MB2_SHADOW_OFFSET	0x2000
35 #define MB2_SHADOW_SIZE		16
36 
37 enum vmd_features {
38 	/*
39 	 * Device may contain registers which hint the physical location of the
40 	 * membars, in order to allow proper address translation during
41 	 * resource assignment to enable guest virtualization
42 	 */
43 	VMD_FEAT_HAS_MEMBAR_SHADOW		= (1 << 0),
44 
45 	/*
46 	 * Device may provide root port configuration information which limits
47 	 * bus numbering
48 	 */
49 	VMD_FEAT_HAS_BUS_RESTRICTIONS		= (1 << 1),
50 
51 	/*
52 	 * Device contains physical location shadow registers in
53 	 * vendor-specific capability space
54 	 */
55 	VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP	= (1 << 2),
56 
57 	/*
58 	 * Device may use MSI-X vector 0 for software triggering and will not
59 	 * be used for MSI remapping
60 	 */
61 	VMD_FEAT_OFFSET_FIRST_VECTOR		= (1 << 3),
62 
63 	/*
64 	 * Device can bypass remapping MSI-X transactions into its MSI-X table,
65 	 * avoiding the requirement of a VMD MSI domain for child device
66 	 * interrupt handling.
67 	 */
68 	VMD_FEAT_CAN_BYPASS_MSI_REMAP		= (1 << 4),
69 
70 	/*
71 	 * Enable ASPM on the PCIE root ports and set the default LTR of the
72 	 * storage devices on platforms where these values are not configured by
73 	 * BIOS. This is needed for laptops, which require these settings for
74 	 * proper power management of the SoC.
75 	 */
76 	VMD_FEAT_BIOS_PM_QUIRK		= (1 << 5),
77 };
78 
79 #define VMD_BIOS_PM_QUIRK_LTR	0x1003	/* 3145728 ns */
80 
81 #define VMD_FEATS_CLIENT	(VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP |	\
82 				 VMD_FEAT_HAS_BUS_RESTRICTIONS |	\
83 				 VMD_FEAT_OFFSET_FIRST_VECTOR |		\
84 				 VMD_FEAT_BIOS_PM_QUIRK)
85 
86 static DEFINE_IDA(vmd_instance_ida);
87 
88 /*
89  * Lock for manipulating VMD IRQ lists.
90  */
91 static DEFINE_RAW_SPINLOCK(list_lock);
92 
93 /**
94  * struct vmd_irq - private data to map driver IRQ to the VMD shared vector
95  * @node:	list item for parent traversal.
96  * @irq:	back pointer to parent.
97  * @enabled:	true if driver enabled IRQ
98  * @virq:	the virtual IRQ value provided to the requesting driver.
99  *
100  * Every MSI/MSI-X IRQ requested for a device in a VMD domain will be mapped to
101  * a VMD IRQ using this structure.
102  */
103 struct vmd_irq {
104 	struct list_head	node;
105 	struct vmd_irq_list	*irq;
106 	bool			enabled;
107 	unsigned int		virq;
108 };
109 
110 /**
111  * struct vmd_irq_list - list of driver requested IRQs mapping to a VMD vector
112  * @irq_list:	the list of irq's the VMD one demuxes to.
113  * @srcu:	SRCU struct for local synchronization.
114  * @count:	number of child IRQs assigned to this vector; used to track
115  *		sharing.
116  * @virq:	The underlying VMD Linux interrupt number
117  */
118 struct vmd_irq_list {
119 	struct list_head	irq_list;
120 	struct srcu_struct	srcu;
121 	unsigned int		count;
122 	unsigned int		virq;
123 };
124 
125 struct vmd_dev {
126 	struct pci_dev		*dev;
127 
128 	spinlock_t		cfg_lock;
129 	void __iomem		*cfgbar;
130 
131 	int msix_count;
132 	struct vmd_irq_list	*irqs;
133 
134 	struct pci_sysdata	sysdata;
135 	struct resource		resources[3];
136 	struct irq_domain	*irq_domain;
137 	struct pci_bus		*bus;
138 	u8			busn_start;
139 	u8			first_vec;
140 	char			*name;
141 	int			instance;
142 };
143 
144 static inline struct vmd_dev *vmd_from_bus(struct pci_bus *bus)
145 {
146 	return container_of(bus->sysdata, struct vmd_dev, sysdata);
147 }
148 
149 static inline unsigned int index_from_irqs(struct vmd_dev *vmd,
150 					   struct vmd_irq_list *irqs)
151 {
152 	return irqs - vmd->irqs;
153 }
154 
155 /*
156  * Drivers managing a device in a VMD domain allocate their own IRQs as before,
157  * but the MSI entry for the hardware it's driving will be programmed with a
158  * destination ID for the VMD MSI-X table.  The VMD muxes interrupts in its
159  * domain into one of its own, and the VMD driver de-muxes these for the
160  * handlers sharing that VMD IRQ.  The vmd irq_domain provides the operations
161  * and irq_chip to set this up.
162  */
163 static void vmd_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
164 {
165 	struct vmd_irq *vmdirq = data->chip_data;
166 	struct vmd_irq_list *irq = vmdirq->irq;
167 	struct vmd_dev *vmd = irq_data_get_irq_handler_data(data);
168 
169 	memset(msg, 0, sizeof(*msg));
170 	msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
171 	msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW;
172 	msg->arch_addr_lo.destid_0_7 = index_from_irqs(vmd, irq);
173 }
174 
175 /*
176  * We rely on MSI_FLAG_USE_DEF_CHIP_OPS to set the IRQ mask/unmask ops.
177  */
178 static void vmd_irq_enable(struct irq_data *data)
179 {
180 	struct vmd_irq *vmdirq = data->chip_data;
181 	unsigned long flags;
182 
183 	raw_spin_lock_irqsave(&list_lock, flags);
184 	WARN_ON(vmdirq->enabled);
185 	list_add_tail_rcu(&vmdirq->node, &vmdirq->irq->irq_list);
186 	vmdirq->enabled = true;
187 	raw_spin_unlock_irqrestore(&list_lock, flags);
188 
189 	data->chip->irq_unmask(data);
190 }
191 
192 static void vmd_irq_disable(struct irq_data *data)
193 {
194 	struct vmd_irq *vmdirq = data->chip_data;
195 	unsigned long flags;
196 
197 	data->chip->irq_mask(data);
198 
199 	raw_spin_lock_irqsave(&list_lock, flags);
200 	if (vmdirq->enabled) {
201 		list_del_rcu(&vmdirq->node);
202 		vmdirq->enabled = false;
203 	}
204 	raw_spin_unlock_irqrestore(&list_lock, flags);
205 }
206 
207 /*
208  * XXX: Stubbed until we develop acceptable way to not create conflicts with
209  * other devices sharing the same vector.
210  */
211 static int vmd_irq_set_affinity(struct irq_data *data,
212 				const struct cpumask *dest, bool force)
213 {
214 	return -EINVAL;
215 }
216 
217 static struct irq_chip vmd_msi_controller = {
218 	.name			= "VMD-MSI",
219 	.irq_enable		= vmd_irq_enable,
220 	.irq_disable		= vmd_irq_disable,
221 	.irq_compose_msi_msg	= vmd_compose_msi_msg,
222 	.irq_set_affinity	= vmd_irq_set_affinity,
223 };
224 
225 static irq_hw_number_t vmd_get_hwirq(struct msi_domain_info *info,
226 				     msi_alloc_info_t *arg)
227 {
228 	return 0;
229 }
230 
231 /*
232  * XXX: We can be even smarter selecting the best IRQ once we solve the
233  * affinity problem.
234  */
235 static struct vmd_irq_list *vmd_next_irq(struct vmd_dev *vmd, struct msi_desc *desc)
236 {
237 	unsigned long flags;
238 	int i, best;
239 
240 	if (vmd->msix_count == 1 + vmd->first_vec)
241 		return &vmd->irqs[vmd->first_vec];
242 
243 	/*
244 	 * White list for fast-interrupt handlers. All others will share the
245 	 * "slow" interrupt vector.
246 	 */
247 	switch (msi_desc_to_pci_dev(desc)->class) {
248 	case PCI_CLASS_STORAGE_EXPRESS:
249 		break;
250 	default:
251 		return &vmd->irqs[vmd->first_vec];
252 	}
253 
254 	raw_spin_lock_irqsave(&list_lock, flags);
255 	best = vmd->first_vec + 1;
256 	for (i = best; i < vmd->msix_count; i++)
257 		if (vmd->irqs[i].count < vmd->irqs[best].count)
258 			best = i;
259 	vmd->irqs[best].count++;
260 	raw_spin_unlock_irqrestore(&list_lock, flags);
261 
262 	return &vmd->irqs[best];
263 }
264 
265 static int vmd_msi_init(struct irq_domain *domain, struct msi_domain_info *info,
266 			unsigned int virq, irq_hw_number_t hwirq,
267 			msi_alloc_info_t *arg)
268 {
269 	struct msi_desc *desc = arg->desc;
270 	struct vmd_dev *vmd = vmd_from_bus(msi_desc_to_pci_dev(desc)->bus);
271 	struct vmd_irq *vmdirq = kzalloc(sizeof(*vmdirq), GFP_KERNEL);
272 
273 	if (!vmdirq)
274 		return -ENOMEM;
275 
276 	INIT_LIST_HEAD(&vmdirq->node);
277 	vmdirq->irq = vmd_next_irq(vmd, desc);
278 	vmdirq->virq = virq;
279 
280 	irq_domain_set_info(domain, virq, vmdirq->irq->virq, info->chip, vmdirq,
281 			    handle_untracked_irq, vmd, NULL);
282 	return 0;
283 }
284 
285 static void vmd_msi_free(struct irq_domain *domain,
286 			struct msi_domain_info *info, unsigned int virq)
287 {
288 	struct vmd_irq *vmdirq = irq_get_chip_data(virq);
289 	unsigned long flags;
290 
291 	synchronize_srcu(&vmdirq->irq->srcu);
292 
293 	/* XXX: Potential optimization to rebalance */
294 	raw_spin_lock_irqsave(&list_lock, flags);
295 	vmdirq->irq->count--;
296 	raw_spin_unlock_irqrestore(&list_lock, flags);
297 
298 	kfree(vmdirq);
299 }
300 
301 static int vmd_msi_prepare(struct irq_domain *domain, struct device *dev,
302 			   int nvec, msi_alloc_info_t *arg)
303 {
304 	struct pci_dev *pdev = to_pci_dev(dev);
305 	struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
306 
307 	if (nvec > vmd->msix_count)
308 		return vmd->msix_count;
309 
310 	memset(arg, 0, sizeof(*arg));
311 	return 0;
312 }
313 
314 static void vmd_set_desc(msi_alloc_info_t *arg, struct msi_desc *desc)
315 {
316 	arg->desc = desc;
317 }
318 
319 static struct msi_domain_ops vmd_msi_domain_ops = {
320 	.get_hwirq	= vmd_get_hwirq,
321 	.msi_init	= vmd_msi_init,
322 	.msi_free	= vmd_msi_free,
323 	.msi_prepare	= vmd_msi_prepare,
324 	.set_desc	= vmd_set_desc,
325 };
326 
327 static struct msi_domain_info vmd_msi_domain_info = {
328 	.flags		= MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
329 			  MSI_FLAG_PCI_MSIX,
330 	.ops		= &vmd_msi_domain_ops,
331 	.chip		= &vmd_msi_controller,
332 };
333 
334 static void vmd_set_msi_remapping(struct vmd_dev *vmd, bool enable)
335 {
336 	u16 reg;
337 
338 	pci_read_config_word(vmd->dev, PCI_REG_VMCONFIG, &reg);
339 	reg = enable ? (reg & ~VMCONFIG_MSI_REMAP) :
340 		       (reg | VMCONFIG_MSI_REMAP);
341 	pci_write_config_word(vmd->dev, PCI_REG_VMCONFIG, reg);
342 }
343 
344 static int vmd_create_irq_domain(struct vmd_dev *vmd)
345 {
346 	struct fwnode_handle *fn;
347 
348 	fn = irq_domain_alloc_named_id_fwnode("VMD-MSI", vmd->sysdata.domain);
349 	if (!fn)
350 		return -ENODEV;
351 
352 	vmd->irq_domain = pci_msi_create_irq_domain(fn, &vmd_msi_domain_info, NULL);
353 	if (!vmd->irq_domain) {
354 		irq_domain_free_fwnode(fn);
355 		return -ENODEV;
356 	}
357 
358 	return 0;
359 }
360 
361 static void vmd_remove_irq_domain(struct vmd_dev *vmd)
362 {
363 	/*
364 	 * Some production BIOS won't enable remapping between soft reboots.
365 	 * Ensure remapping is restored before unloading the driver.
366 	 */
367 	if (!vmd->msix_count)
368 		vmd_set_msi_remapping(vmd, true);
369 
370 	if (vmd->irq_domain) {
371 		struct fwnode_handle *fn = vmd->irq_domain->fwnode;
372 
373 		irq_domain_remove(vmd->irq_domain);
374 		irq_domain_free_fwnode(fn);
375 	}
376 }
377 
378 static void __iomem *vmd_cfg_addr(struct vmd_dev *vmd, struct pci_bus *bus,
379 				  unsigned int devfn, int reg, int len)
380 {
381 	unsigned int busnr_ecam = bus->number - vmd->busn_start;
382 	u32 offset = PCIE_ECAM_OFFSET(busnr_ecam, devfn, reg);
383 
384 	if (offset + len >= resource_size(&vmd->dev->resource[VMD_CFGBAR]))
385 		return NULL;
386 
387 	return vmd->cfgbar + offset;
388 }
389 
390 /*
391  * CPU may deadlock if config space is not serialized on some versions of this
392  * hardware, so all config space access is done under a spinlock.
393  */
394 static int vmd_pci_read(struct pci_bus *bus, unsigned int devfn, int reg,
395 			int len, u32 *value)
396 {
397 	struct vmd_dev *vmd = vmd_from_bus(bus);
398 	void __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
399 	unsigned long flags;
400 	int ret = 0;
401 
402 	if (!addr)
403 		return -EFAULT;
404 
405 	spin_lock_irqsave(&vmd->cfg_lock, flags);
406 	switch (len) {
407 	case 1:
408 		*value = readb(addr);
409 		break;
410 	case 2:
411 		*value = readw(addr);
412 		break;
413 	case 4:
414 		*value = readl(addr);
415 		break;
416 	default:
417 		ret = -EINVAL;
418 		break;
419 	}
420 	spin_unlock_irqrestore(&vmd->cfg_lock, flags);
421 	return ret;
422 }
423 
424 /*
425  * VMD h/w converts non-posted config writes to posted memory writes. The
426  * read-back in this function forces the completion so it returns only after
427  * the config space was written, as expected.
428  */
429 static int vmd_pci_write(struct pci_bus *bus, unsigned int devfn, int reg,
430 			 int len, u32 value)
431 {
432 	struct vmd_dev *vmd = vmd_from_bus(bus);
433 	void __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
434 	unsigned long flags;
435 	int ret = 0;
436 
437 	if (!addr)
438 		return -EFAULT;
439 
440 	spin_lock_irqsave(&vmd->cfg_lock, flags);
441 	switch (len) {
442 	case 1:
443 		writeb(value, addr);
444 		readb(addr);
445 		break;
446 	case 2:
447 		writew(value, addr);
448 		readw(addr);
449 		break;
450 	case 4:
451 		writel(value, addr);
452 		readl(addr);
453 		break;
454 	default:
455 		ret = -EINVAL;
456 		break;
457 	}
458 	spin_unlock_irqrestore(&vmd->cfg_lock, flags);
459 	return ret;
460 }
461 
462 static struct pci_ops vmd_ops = {
463 	.read		= vmd_pci_read,
464 	.write		= vmd_pci_write,
465 };
466 
467 #ifdef CONFIG_ACPI
468 static struct acpi_device *vmd_acpi_find_companion(struct pci_dev *pci_dev)
469 {
470 	struct pci_host_bridge *bridge;
471 	u32 busnr, addr;
472 
473 	if (pci_dev->bus->ops != &vmd_ops)
474 		return NULL;
475 
476 	bridge = pci_find_host_bridge(pci_dev->bus);
477 	busnr = pci_dev->bus->number - bridge->bus->number;
478 	/*
479 	 * The address computation below is only applicable to relative bus
480 	 * numbers below 32.
481 	 */
482 	if (busnr > 31)
483 		return NULL;
484 
485 	addr = (busnr << 24) | ((u32)pci_dev->devfn << 16) | 0x8000FFFFU;
486 
487 	dev_dbg(&pci_dev->dev, "Looking for ACPI companion (address 0x%x)\n",
488 		addr);
489 
490 	return acpi_find_child_device(ACPI_COMPANION(bridge->dev.parent), addr,
491 				      false);
492 }
493 
494 static bool hook_installed;
495 
496 static void vmd_acpi_begin(void)
497 {
498 	if (pci_acpi_set_companion_lookup_hook(vmd_acpi_find_companion))
499 		return;
500 
501 	hook_installed = true;
502 }
503 
504 static void vmd_acpi_end(void)
505 {
506 	if (!hook_installed)
507 		return;
508 
509 	pci_acpi_clear_companion_lookup_hook();
510 	hook_installed = false;
511 }
512 #else
513 static inline void vmd_acpi_begin(void) { }
514 static inline void vmd_acpi_end(void) { }
515 #endif /* CONFIG_ACPI */
516 
517 static void vmd_domain_reset(struct vmd_dev *vmd)
518 {
519 	u16 bus, max_buses = resource_size(&vmd->resources[0]);
520 	u8 dev, functions, fn, hdr_type;
521 	char __iomem *base;
522 
523 	for (bus = 0; bus < max_buses; bus++) {
524 		for (dev = 0; dev < 32; dev++) {
525 			base = vmd->cfgbar + PCIE_ECAM_OFFSET(bus,
526 						PCI_DEVFN(dev, 0), 0);
527 
528 			hdr_type = readb(base + PCI_HEADER_TYPE);
529 
530 			functions = (hdr_type & 0x80) ? 8 : 1;
531 			for (fn = 0; fn < functions; fn++) {
532 				base = vmd->cfgbar + PCIE_ECAM_OFFSET(bus,
533 						PCI_DEVFN(dev, fn), 0);
534 
535 				hdr_type = readb(base + PCI_HEADER_TYPE) &
536 						PCI_HEADER_TYPE_MASK;
537 
538 				if (hdr_type != PCI_HEADER_TYPE_BRIDGE ||
539 				    (readw(base + PCI_CLASS_DEVICE) !=
540 				     PCI_CLASS_BRIDGE_PCI))
541 					continue;
542 
543 				/*
544 				 * Temporarily disable the I/O range before updating
545 				 * PCI_IO_BASE.
546 				 */
547 				writel(0x0000ffff, base + PCI_IO_BASE_UPPER16);
548 				/* Update lower 16 bits of I/O base/limit */
549 				writew(0x00f0, base + PCI_IO_BASE);
550 				/* Update upper 16 bits of I/O base/limit */
551 				writel(0, base + PCI_IO_BASE_UPPER16);
552 
553 				/* MMIO Base/Limit */
554 				writel(0x0000fff0, base + PCI_MEMORY_BASE);
555 
556 				/* Prefetchable MMIO Base/Limit */
557 				writel(0, base + PCI_PREF_LIMIT_UPPER32);
558 				writel(0x0000fff0, base + PCI_PREF_MEMORY_BASE);
559 				writel(0xffffffff, base + PCI_PREF_BASE_UPPER32);
560 			}
561 		}
562 	}
563 }
564 
565 static void vmd_attach_resources(struct vmd_dev *vmd)
566 {
567 	vmd->dev->resource[VMD_MEMBAR1].child = &vmd->resources[1];
568 	vmd->dev->resource[VMD_MEMBAR2].child = &vmd->resources[2];
569 }
570 
571 static void vmd_detach_resources(struct vmd_dev *vmd)
572 {
573 	vmd->dev->resource[VMD_MEMBAR1].child = NULL;
574 	vmd->dev->resource[VMD_MEMBAR2].child = NULL;
575 }
576 
577 /*
578  * VMD domains start at 0x10000 to not clash with ACPI _SEG domains.
579  * Per ACPI r6.0, sec 6.5.6,  _SEG returns an integer, of which the lower
580  * 16 bits are the PCI Segment Group (domain) number.  Other bits are
581  * currently reserved.
582  */
583 static int vmd_find_free_domain(void)
584 {
585 	int domain = 0xffff;
586 	struct pci_bus *bus = NULL;
587 
588 	while ((bus = pci_find_next_bus(bus)) != NULL)
589 		domain = max_t(int, domain, pci_domain_nr(bus));
590 	return domain + 1;
591 }
592 
593 static int vmd_get_phys_offsets(struct vmd_dev *vmd, bool native_hint,
594 				resource_size_t *offset1,
595 				resource_size_t *offset2)
596 {
597 	struct pci_dev *dev = vmd->dev;
598 	u64 phys1, phys2;
599 
600 	if (native_hint) {
601 		u32 vmlock;
602 		int ret;
603 
604 		ret = pci_read_config_dword(dev, PCI_REG_VMLOCK, &vmlock);
605 		if (ret || PCI_POSSIBLE_ERROR(vmlock))
606 			return -ENODEV;
607 
608 		if (MB2_SHADOW_EN(vmlock)) {
609 			void __iomem *membar2;
610 
611 			membar2 = pci_iomap(dev, VMD_MEMBAR2, 0);
612 			if (!membar2)
613 				return -ENOMEM;
614 			phys1 = readq(membar2 + MB2_SHADOW_OFFSET);
615 			phys2 = readq(membar2 + MB2_SHADOW_OFFSET + 8);
616 			pci_iounmap(dev, membar2);
617 		} else
618 			return 0;
619 	} else {
620 		/* Hypervisor-Emulated Vendor-Specific Capability */
621 		int pos = pci_find_capability(dev, PCI_CAP_ID_VNDR);
622 		u32 reg, regu;
623 
624 		pci_read_config_dword(dev, pos + 4, &reg);
625 
626 		/* "SHDW" */
627 		if (pos && reg == 0x53484457) {
628 			pci_read_config_dword(dev, pos + 8, &reg);
629 			pci_read_config_dword(dev, pos + 12, &regu);
630 			phys1 = (u64) regu << 32 | reg;
631 
632 			pci_read_config_dword(dev, pos + 16, &reg);
633 			pci_read_config_dword(dev, pos + 20, &regu);
634 			phys2 = (u64) regu << 32 | reg;
635 		} else
636 			return 0;
637 	}
638 
639 	*offset1 = dev->resource[VMD_MEMBAR1].start -
640 			(phys1 & PCI_BASE_ADDRESS_MEM_MASK);
641 	*offset2 = dev->resource[VMD_MEMBAR2].start -
642 			(phys2 & PCI_BASE_ADDRESS_MEM_MASK);
643 
644 	return 0;
645 }
646 
647 static int vmd_get_bus_number_start(struct vmd_dev *vmd)
648 {
649 	struct pci_dev *dev = vmd->dev;
650 	u16 reg;
651 
652 	pci_read_config_word(dev, PCI_REG_VMCAP, &reg);
653 	if (BUS_RESTRICT_CAP(reg)) {
654 		pci_read_config_word(dev, PCI_REG_VMCONFIG, &reg);
655 
656 		switch (BUS_RESTRICT_CFG(reg)) {
657 		case 0:
658 			vmd->busn_start = 0;
659 			break;
660 		case 1:
661 			vmd->busn_start = 128;
662 			break;
663 		case 2:
664 			vmd->busn_start = 224;
665 			break;
666 		default:
667 			pci_err(dev, "Unknown Bus Offset Setting (%d)\n",
668 				BUS_RESTRICT_CFG(reg));
669 			return -ENODEV;
670 		}
671 	}
672 
673 	return 0;
674 }
675 
676 static irqreturn_t vmd_irq(int irq, void *data)
677 {
678 	struct vmd_irq_list *irqs = data;
679 	struct vmd_irq *vmdirq;
680 	int idx;
681 
682 	idx = srcu_read_lock(&irqs->srcu);
683 	list_for_each_entry_rcu(vmdirq, &irqs->irq_list, node)
684 		generic_handle_irq(vmdirq->virq);
685 	srcu_read_unlock(&irqs->srcu, idx);
686 
687 	return IRQ_HANDLED;
688 }
689 
690 static int vmd_alloc_irqs(struct vmd_dev *vmd)
691 {
692 	struct pci_dev *dev = vmd->dev;
693 	int i, err;
694 
695 	vmd->msix_count = pci_msix_vec_count(dev);
696 	if (vmd->msix_count < 0)
697 		return -ENODEV;
698 
699 	vmd->msix_count = pci_alloc_irq_vectors(dev, vmd->first_vec + 1,
700 						vmd->msix_count, PCI_IRQ_MSIX);
701 	if (vmd->msix_count < 0)
702 		return vmd->msix_count;
703 
704 	vmd->irqs = devm_kcalloc(&dev->dev, vmd->msix_count, sizeof(*vmd->irqs),
705 				 GFP_KERNEL);
706 	if (!vmd->irqs)
707 		return -ENOMEM;
708 
709 	for (i = 0; i < vmd->msix_count; i++) {
710 		err = init_srcu_struct(&vmd->irqs[i].srcu);
711 		if (err)
712 			return err;
713 
714 		INIT_LIST_HEAD(&vmd->irqs[i].irq_list);
715 		vmd->irqs[i].virq = pci_irq_vector(dev, i);
716 		err = devm_request_irq(&dev->dev, vmd->irqs[i].virq,
717 				       vmd_irq, IRQF_NO_THREAD,
718 				       vmd->name, &vmd->irqs[i]);
719 		if (err)
720 			return err;
721 	}
722 
723 	return 0;
724 }
725 
726 /*
727  * Since VMD is an aperture to regular PCIe root ports, only allow it to
728  * control features that the OS is allowed to control on the physical PCI bus.
729  */
730 static void vmd_copy_host_bridge_flags(struct pci_host_bridge *root_bridge,
731 				       struct pci_host_bridge *vmd_bridge)
732 {
733 	vmd_bridge->native_pcie_hotplug = root_bridge->native_pcie_hotplug;
734 	vmd_bridge->native_shpc_hotplug = root_bridge->native_shpc_hotplug;
735 	vmd_bridge->native_aer = root_bridge->native_aer;
736 	vmd_bridge->native_pme = root_bridge->native_pme;
737 	vmd_bridge->native_ltr = root_bridge->native_ltr;
738 	vmd_bridge->native_dpc = root_bridge->native_dpc;
739 }
740 
741 /*
742  * Enable ASPM and LTR settings on devices that aren't configured by BIOS.
743  */
744 static int vmd_pm_enable_quirk(struct pci_dev *pdev, void *userdata)
745 {
746 	unsigned long features = *(unsigned long *)userdata;
747 	u16 ltr = VMD_BIOS_PM_QUIRK_LTR;
748 	u32 ltr_reg;
749 	int pos;
750 
751 	if (!(features & VMD_FEAT_BIOS_PM_QUIRK))
752 		return 0;
753 
754 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_LTR);
755 	if (!pos)
756 		goto out_state_change;
757 
758 	/*
759 	 * Skip if the max snoop LTR is non-zero, indicating BIOS has set it
760 	 * so the LTR quirk is not needed.
761 	 */
762 	pci_read_config_dword(pdev, pos + PCI_LTR_MAX_SNOOP_LAT, &ltr_reg);
763 	if (!!(ltr_reg & (PCI_LTR_VALUE_MASK | PCI_LTR_SCALE_MASK)))
764 		goto out_state_change;
765 
766 	/*
767 	 * Set the default values to the maximum required by the platform to
768 	 * allow the deepest power management savings. Write as a DWORD where
769 	 * the lower word is the max snoop latency and the upper word is the
770 	 * max non-snoop latency.
771 	 */
772 	ltr_reg = (ltr << 16) | ltr;
773 	pci_write_config_dword(pdev, pos + PCI_LTR_MAX_SNOOP_LAT, ltr_reg);
774 	pci_info(pdev, "VMD: Default LTR value set by driver\n");
775 
776 out_state_change:
777 	/*
778 	 * Ensure devices are in D0 before enabling PCI-PM L1 PM Substates, per
779 	 * PCIe r6.0, sec 5.5.4.
780 	 */
781 	pci_set_power_state_locked(pdev, PCI_D0);
782 	pci_enable_link_state_locked(pdev, PCIE_LINK_STATE_ALL);
783 	return 0;
784 }
785 
786 static int vmd_enable_domain(struct vmd_dev *vmd, unsigned long features)
787 {
788 	struct pci_sysdata *sd = &vmd->sysdata;
789 	struct resource *res;
790 	u32 upper_bits;
791 	unsigned long flags;
792 	LIST_HEAD(resources);
793 	resource_size_t offset[2] = {0};
794 	resource_size_t membar2_offset = 0x2000;
795 	struct pci_bus *child;
796 	struct pci_dev *dev;
797 	int ret;
798 
799 	/*
800 	 * Shadow registers may exist in certain VMD device ids which allow
801 	 * guests to correctly assign host physical addresses to the root ports
802 	 * and child devices. These registers will either return the host value
803 	 * or 0, depending on an enable bit in the VMD device.
804 	 */
805 	if (features & VMD_FEAT_HAS_MEMBAR_SHADOW) {
806 		membar2_offset = MB2_SHADOW_OFFSET + MB2_SHADOW_SIZE;
807 		ret = vmd_get_phys_offsets(vmd, true, &offset[0], &offset[1]);
808 		if (ret)
809 			return ret;
810 	} else if (features & VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP) {
811 		ret = vmd_get_phys_offsets(vmd, false, &offset[0], &offset[1]);
812 		if (ret)
813 			return ret;
814 	}
815 
816 	/*
817 	 * Certain VMD devices may have a root port configuration option which
818 	 * limits the bus range to between 0-127, 128-255, or 224-255
819 	 */
820 	if (features & VMD_FEAT_HAS_BUS_RESTRICTIONS) {
821 		ret = vmd_get_bus_number_start(vmd);
822 		if (ret)
823 			return ret;
824 	}
825 
826 	res = &vmd->dev->resource[VMD_CFGBAR];
827 	vmd->resources[0] = (struct resource) {
828 		.name  = "VMD CFGBAR",
829 		.start = vmd->busn_start,
830 		.end   = vmd->busn_start + (resource_size(res) >> 20) - 1,
831 		.flags = IORESOURCE_BUS | IORESOURCE_PCI_FIXED,
832 	};
833 
834 	/*
835 	 * If the window is below 4GB, clear IORESOURCE_MEM_64 so we can
836 	 * put 32-bit resources in the window.
837 	 *
838 	 * There's no hardware reason why a 64-bit window *couldn't*
839 	 * contain a 32-bit resource, but pbus_size_mem() computes the
840 	 * bridge window size assuming a 64-bit window will contain no
841 	 * 32-bit resources.  __pci_assign_resource() enforces that
842 	 * artificial restriction to make sure everything will fit.
843 	 *
844 	 * The only way we could use a 64-bit non-prefetchable MEMBAR is
845 	 * if its address is <4GB so that we can convert it to a 32-bit
846 	 * resource.  To be visible to the host OS, all VMD endpoints must
847 	 * be initially configured by platform BIOS, which includes setting
848 	 * up these resources.  We can assume the device is configured
849 	 * according to the platform needs.
850 	 */
851 	res = &vmd->dev->resource[VMD_MEMBAR1];
852 	upper_bits = upper_32_bits(res->end);
853 	flags = res->flags & ~IORESOURCE_SIZEALIGN;
854 	if (!upper_bits)
855 		flags &= ~IORESOURCE_MEM_64;
856 	vmd->resources[1] = (struct resource) {
857 		.name  = "VMD MEMBAR1",
858 		.start = res->start,
859 		.end   = res->end,
860 		.flags = flags,
861 		.parent = res,
862 	};
863 
864 	res = &vmd->dev->resource[VMD_MEMBAR2];
865 	upper_bits = upper_32_bits(res->end);
866 	flags = res->flags & ~IORESOURCE_SIZEALIGN;
867 	if (!upper_bits)
868 		flags &= ~IORESOURCE_MEM_64;
869 	vmd->resources[2] = (struct resource) {
870 		.name  = "VMD MEMBAR2",
871 		.start = res->start + membar2_offset,
872 		.end   = res->end,
873 		.flags = flags,
874 		.parent = res,
875 	};
876 
877 	sd->vmd_dev = vmd->dev;
878 	sd->domain = vmd_find_free_domain();
879 	if (sd->domain < 0)
880 		return sd->domain;
881 
882 	sd->node = pcibus_to_node(vmd->dev->bus);
883 
884 	/*
885 	 * Currently MSI remapping must be enabled in guest passthrough mode
886 	 * due to some missing interrupt remapping plumbing. This is probably
887 	 * acceptable because the guest is usually CPU-limited and MSI
888 	 * remapping doesn't become a performance bottleneck.
889 	 */
890 	if (!(features & VMD_FEAT_CAN_BYPASS_MSI_REMAP) ||
891 	    offset[0] || offset[1]) {
892 		ret = vmd_alloc_irqs(vmd);
893 		if (ret)
894 			return ret;
895 
896 		vmd_set_msi_remapping(vmd, true);
897 
898 		ret = vmd_create_irq_domain(vmd);
899 		if (ret)
900 			return ret;
901 
902 		/*
903 		 * Override the IRQ domain bus token so the domain can be
904 		 * distinguished from a regular PCI/MSI domain.
905 		 */
906 		irq_domain_update_bus_token(vmd->irq_domain, DOMAIN_BUS_VMD_MSI);
907 	} else {
908 		vmd_set_msi_remapping(vmd, false);
909 	}
910 
911 	pci_add_resource(&resources, &vmd->resources[0]);
912 	pci_add_resource_offset(&resources, &vmd->resources[1], offset[0]);
913 	pci_add_resource_offset(&resources, &vmd->resources[2], offset[1]);
914 
915 	vmd->bus = pci_create_root_bus(&vmd->dev->dev, vmd->busn_start,
916 				       &vmd_ops, sd, &resources);
917 	if (!vmd->bus) {
918 		pci_free_resource_list(&resources);
919 		vmd_remove_irq_domain(vmd);
920 		return -ENODEV;
921 	}
922 
923 	vmd_copy_host_bridge_flags(pci_find_host_bridge(vmd->dev->bus),
924 				   to_pci_host_bridge(vmd->bus->bridge));
925 
926 	vmd_attach_resources(vmd);
927 	if (vmd->irq_domain)
928 		dev_set_msi_domain(&vmd->bus->dev, vmd->irq_domain);
929 	else
930 		dev_set_msi_domain(&vmd->bus->dev,
931 				   dev_get_msi_domain(&vmd->dev->dev));
932 
933 	vmd_acpi_begin();
934 
935 	pci_scan_child_bus(vmd->bus);
936 	vmd_domain_reset(vmd);
937 
938 	/* When Intel VMD is enabled, the OS does not discover the Root Ports
939 	 * owned by Intel VMD within the MMCFG space. pci_reset_bus() applies
940 	 * a reset to the parent of the PCI device supplied as argument. This
941 	 * is why we pass a child device, so the reset can be triggered at
942 	 * the Intel bridge level and propagated to all the children in the
943 	 * hierarchy.
944 	 */
945 	list_for_each_entry(child, &vmd->bus->children, node) {
946 		if (!list_empty(&child->devices)) {
947 			dev = list_first_entry(&child->devices,
948 					       struct pci_dev, bus_list);
949 			ret = pci_reset_bus(dev);
950 			if (ret)
951 				pci_warn(dev, "can't reset device: %d\n", ret);
952 
953 			break;
954 		}
955 	}
956 
957 	pci_assign_unassigned_bus_resources(vmd->bus);
958 
959 	pci_walk_bus(vmd->bus, vmd_pm_enable_quirk, &features);
960 
961 	/*
962 	 * VMD root buses are virtual and don't return true on pci_is_pcie()
963 	 * and will fail pcie_bus_configure_settings() early. It can instead be
964 	 * run on each of the real root ports.
965 	 */
966 	list_for_each_entry(child, &vmd->bus->children, node)
967 		pcie_bus_configure_settings(child);
968 
969 	pci_bus_add_devices(vmd->bus);
970 
971 	vmd_acpi_end();
972 
973 	WARN(sysfs_create_link(&vmd->dev->dev.kobj, &vmd->bus->dev.kobj,
974 			       "domain"), "Can't create symlink to domain\n");
975 	return 0;
976 }
977 
978 static int vmd_probe(struct pci_dev *dev, const struct pci_device_id *id)
979 {
980 	unsigned long features = (unsigned long) id->driver_data;
981 	struct vmd_dev *vmd;
982 	int err;
983 
984 	if (resource_size(&dev->resource[VMD_CFGBAR]) < (1 << 20))
985 		return -ENOMEM;
986 
987 	vmd = devm_kzalloc(&dev->dev, sizeof(*vmd), GFP_KERNEL);
988 	if (!vmd)
989 		return -ENOMEM;
990 
991 	vmd->dev = dev;
992 	vmd->instance = ida_simple_get(&vmd_instance_ida, 0, 0, GFP_KERNEL);
993 	if (vmd->instance < 0)
994 		return vmd->instance;
995 
996 	vmd->name = devm_kasprintf(&dev->dev, GFP_KERNEL, "vmd%d",
997 				   vmd->instance);
998 	if (!vmd->name) {
999 		err = -ENOMEM;
1000 		goto out_release_instance;
1001 	}
1002 
1003 	err = pcim_enable_device(dev);
1004 	if (err < 0)
1005 		goto out_release_instance;
1006 
1007 	vmd->cfgbar = pcim_iomap(dev, VMD_CFGBAR, 0);
1008 	if (!vmd->cfgbar) {
1009 		err = -ENOMEM;
1010 		goto out_release_instance;
1011 	}
1012 
1013 	pci_set_master(dev);
1014 	if (dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(64)) &&
1015 	    dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(32))) {
1016 		err = -ENODEV;
1017 		goto out_release_instance;
1018 	}
1019 
1020 	if (features & VMD_FEAT_OFFSET_FIRST_VECTOR)
1021 		vmd->first_vec = 1;
1022 
1023 	spin_lock_init(&vmd->cfg_lock);
1024 	pci_set_drvdata(dev, vmd);
1025 	err = vmd_enable_domain(vmd, features);
1026 	if (err)
1027 		goto out_release_instance;
1028 
1029 	dev_info(&vmd->dev->dev, "Bound to PCI domain %04x\n",
1030 		 vmd->sysdata.domain);
1031 	return 0;
1032 
1033  out_release_instance:
1034 	ida_simple_remove(&vmd_instance_ida, vmd->instance);
1035 	return err;
1036 }
1037 
1038 static void vmd_cleanup_srcu(struct vmd_dev *vmd)
1039 {
1040 	int i;
1041 
1042 	for (i = 0; i < vmd->msix_count; i++)
1043 		cleanup_srcu_struct(&vmd->irqs[i].srcu);
1044 }
1045 
1046 static void vmd_remove(struct pci_dev *dev)
1047 {
1048 	struct vmd_dev *vmd = pci_get_drvdata(dev);
1049 
1050 	sysfs_remove_link(&vmd->dev->dev.kobj, "domain");
1051 	pci_stop_root_bus(vmd->bus);
1052 	pci_remove_root_bus(vmd->bus);
1053 	vmd_cleanup_srcu(vmd);
1054 	vmd_detach_resources(vmd);
1055 	vmd_remove_irq_domain(vmd);
1056 	ida_simple_remove(&vmd_instance_ida, vmd->instance);
1057 }
1058 
1059 static void vmd_shutdown(struct pci_dev *dev)
1060 {
1061         struct vmd_dev *vmd = pci_get_drvdata(dev);
1062 
1063         vmd_remove_irq_domain(vmd);
1064 }
1065 
1066 #ifdef CONFIG_PM_SLEEP
1067 static int vmd_suspend(struct device *dev)
1068 {
1069 	struct pci_dev *pdev = to_pci_dev(dev);
1070 	struct vmd_dev *vmd = pci_get_drvdata(pdev);
1071 	int i;
1072 
1073 	for (i = 0; i < vmd->msix_count; i++)
1074 		devm_free_irq(dev, vmd->irqs[i].virq, &vmd->irqs[i]);
1075 
1076 	return 0;
1077 }
1078 
1079 static int vmd_resume(struct device *dev)
1080 {
1081 	struct pci_dev *pdev = to_pci_dev(dev);
1082 	struct vmd_dev *vmd = pci_get_drvdata(pdev);
1083 	int err, i;
1084 
1085        if (vmd->irq_domain)
1086                vmd_set_msi_remapping(vmd, true);
1087        else
1088                vmd_set_msi_remapping(vmd, false);
1089 
1090 	for (i = 0; i < vmd->msix_count; i++) {
1091 		err = devm_request_irq(dev, vmd->irqs[i].virq,
1092 				       vmd_irq, IRQF_NO_THREAD,
1093 				       vmd->name, &vmd->irqs[i]);
1094 		if (err)
1095 			return err;
1096 	}
1097 
1098 	return 0;
1099 }
1100 #endif
1101 static SIMPLE_DEV_PM_OPS(vmd_dev_pm_ops, vmd_suspend, vmd_resume);
1102 
1103 static const struct pci_device_id vmd_ids[] = {
1104 	{PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_VMD_201D),
1105 		.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP,},
1106 	{PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_VMD_28C0),
1107 		.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW |
1108 				VMD_FEAT_HAS_BUS_RESTRICTIONS |
1109 				VMD_FEAT_CAN_BYPASS_MSI_REMAP,},
1110 	{PCI_VDEVICE(INTEL, 0x467f),
1111 		.driver_data = VMD_FEATS_CLIENT,},
1112 	{PCI_VDEVICE(INTEL, 0x4c3d),
1113 		.driver_data = VMD_FEATS_CLIENT,},
1114 	{PCI_VDEVICE(INTEL, 0xa77f),
1115 		.driver_data = VMD_FEATS_CLIENT,},
1116 	{PCI_VDEVICE(INTEL, 0x7d0b),
1117 		.driver_data = VMD_FEATS_CLIENT,},
1118 	{PCI_VDEVICE(INTEL, 0xad0b),
1119 		.driver_data = VMD_FEATS_CLIENT,},
1120 	{PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_VMD_9A0B),
1121 		.driver_data = VMD_FEATS_CLIENT,},
1122 	{PCI_VDEVICE(INTEL, 0xb60b),
1123                 .driver_data = VMD_FEATS_CLIENT,},
1124 	{PCI_VDEVICE(INTEL, 0xb06f),
1125                 .driver_data = VMD_FEATS_CLIENT,},
1126 	{0,}
1127 };
1128 MODULE_DEVICE_TABLE(pci, vmd_ids);
1129 
1130 static struct pci_driver vmd_drv = {
1131 	.name		= "vmd",
1132 	.id_table	= vmd_ids,
1133 	.probe		= vmd_probe,
1134 	.remove		= vmd_remove,
1135 	.shutdown	= vmd_shutdown,
1136 	.driver		= {
1137 		.pm	= &vmd_dev_pm_ops,
1138 	},
1139 };
1140 module_pci_driver(vmd_drv);
1141 
1142 MODULE_AUTHOR("Intel Corporation");
1143 MODULE_LICENSE("GPL v2");
1144 MODULE_VERSION("0.6");
1145