1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Volume Management Device driver 4 * Copyright (c) 2015, Intel Corporation. 5 */ 6 7 #include <linux/device.h> 8 #include <linux/interrupt.h> 9 #include <linux/irq.h> 10 #include <linux/kernel.h> 11 #include <linux/module.h> 12 #include <linux/msi.h> 13 #include <linux/pci.h> 14 #include <linux/srcu.h> 15 #include <linux/rculist.h> 16 #include <linux/rcupdate.h> 17 18 #include <asm/irqdomain.h> 19 #include <asm/device.h> 20 #include <asm/msi.h> 21 #include <asm/msidef.h> 22 23 #define VMD_CFGBAR 0 24 #define VMD_MEMBAR1 2 25 #define VMD_MEMBAR2 4 26 27 #define PCI_REG_VMCAP 0x40 28 #define BUS_RESTRICT_CAP(vmcap) (vmcap & 0x1) 29 #define PCI_REG_VMCONFIG 0x44 30 #define BUS_RESTRICT_CFG(vmcfg) ((vmcfg >> 8) & 0x3) 31 #define PCI_REG_VMLOCK 0x70 32 #define MB2_SHADOW_EN(vmlock) (vmlock & 0x2) 33 34 #define MB2_SHADOW_OFFSET 0x2000 35 #define MB2_SHADOW_SIZE 16 36 37 enum vmd_features { 38 /* 39 * Device may contain registers which hint the physical location of the 40 * membars, in order to allow proper address translation during 41 * resource assignment to enable guest virtualization 42 */ 43 VMD_FEAT_HAS_MEMBAR_SHADOW = (1 << 0), 44 45 /* 46 * Device may provide root port configuration information which limits 47 * bus numbering 48 */ 49 VMD_FEAT_HAS_BUS_RESTRICTIONS = (1 << 1), 50 }; 51 52 /* 53 * Lock for manipulating VMD IRQ lists. 54 */ 55 static DEFINE_RAW_SPINLOCK(list_lock); 56 57 /** 58 * struct vmd_irq - private data to map driver IRQ to the VMD shared vector 59 * @node: list item for parent traversal. 60 * @irq: back pointer to parent. 61 * @enabled: true if driver enabled IRQ 62 * @virq: the virtual IRQ value provided to the requesting driver. 63 * 64 * Every MSI/MSI-X IRQ requested for a device in a VMD domain will be mapped to 65 * a VMD IRQ using this structure. 66 */ 67 struct vmd_irq { 68 struct list_head node; 69 struct vmd_irq_list *irq; 70 bool enabled; 71 unsigned int virq; 72 }; 73 74 /** 75 * struct vmd_irq_list - list of driver requested IRQs mapping to a VMD vector 76 * @irq_list: the list of irq's the VMD one demuxes to. 77 * @srcu: SRCU struct for local synchronization. 78 * @count: number of child IRQs assigned to this vector; used to track 79 * sharing. 80 */ 81 struct vmd_irq_list { 82 struct list_head irq_list; 83 struct srcu_struct srcu; 84 unsigned int count; 85 }; 86 87 struct vmd_dev { 88 struct pci_dev *dev; 89 90 spinlock_t cfg_lock; 91 char __iomem *cfgbar; 92 93 int msix_count; 94 struct vmd_irq_list *irqs; 95 96 struct pci_sysdata sysdata; 97 struct resource resources[3]; 98 struct irq_domain *irq_domain; 99 struct pci_bus *bus; 100 u8 busn_start; 101 102 struct dma_map_ops dma_ops; 103 struct dma_domain dma_domain; 104 }; 105 106 static inline struct vmd_dev *vmd_from_bus(struct pci_bus *bus) 107 { 108 return container_of(bus->sysdata, struct vmd_dev, sysdata); 109 } 110 111 static inline unsigned int index_from_irqs(struct vmd_dev *vmd, 112 struct vmd_irq_list *irqs) 113 { 114 return irqs - vmd->irqs; 115 } 116 117 /* 118 * Drivers managing a device in a VMD domain allocate their own IRQs as before, 119 * but the MSI entry for the hardware it's driving will be programmed with a 120 * destination ID for the VMD MSI-X table. The VMD muxes interrupts in its 121 * domain into one of its own, and the VMD driver de-muxes these for the 122 * handlers sharing that VMD IRQ. The vmd irq_domain provides the operations 123 * and irq_chip to set this up. 124 */ 125 static void vmd_compose_msi_msg(struct irq_data *data, struct msi_msg *msg) 126 { 127 struct vmd_irq *vmdirq = data->chip_data; 128 struct vmd_irq_list *irq = vmdirq->irq; 129 struct vmd_dev *vmd = irq_data_get_irq_handler_data(data); 130 131 msg->address_hi = MSI_ADDR_BASE_HI; 132 msg->address_lo = MSI_ADDR_BASE_LO | 133 MSI_ADDR_DEST_ID(index_from_irqs(vmd, irq)); 134 msg->data = 0; 135 } 136 137 /* 138 * We rely on MSI_FLAG_USE_DEF_CHIP_OPS to set the IRQ mask/unmask ops. 139 */ 140 static void vmd_irq_enable(struct irq_data *data) 141 { 142 struct vmd_irq *vmdirq = data->chip_data; 143 unsigned long flags; 144 145 raw_spin_lock_irqsave(&list_lock, flags); 146 WARN_ON(vmdirq->enabled); 147 list_add_tail_rcu(&vmdirq->node, &vmdirq->irq->irq_list); 148 vmdirq->enabled = true; 149 raw_spin_unlock_irqrestore(&list_lock, flags); 150 151 data->chip->irq_unmask(data); 152 } 153 154 static void vmd_irq_disable(struct irq_data *data) 155 { 156 struct vmd_irq *vmdirq = data->chip_data; 157 unsigned long flags; 158 159 data->chip->irq_mask(data); 160 161 raw_spin_lock_irqsave(&list_lock, flags); 162 if (vmdirq->enabled) { 163 list_del_rcu(&vmdirq->node); 164 vmdirq->enabled = false; 165 } 166 raw_spin_unlock_irqrestore(&list_lock, flags); 167 } 168 169 /* 170 * XXX: Stubbed until we develop acceptable way to not create conflicts with 171 * other devices sharing the same vector. 172 */ 173 static int vmd_irq_set_affinity(struct irq_data *data, 174 const struct cpumask *dest, bool force) 175 { 176 return -EINVAL; 177 } 178 179 static struct irq_chip vmd_msi_controller = { 180 .name = "VMD-MSI", 181 .irq_enable = vmd_irq_enable, 182 .irq_disable = vmd_irq_disable, 183 .irq_compose_msi_msg = vmd_compose_msi_msg, 184 .irq_set_affinity = vmd_irq_set_affinity, 185 }; 186 187 static irq_hw_number_t vmd_get_hwirq(struct msi_domain_info *info, 188 msi_alloc_info_t *arg) 189 { 190 return 0; 191 } 192 193 /* 194 * XXX: We can be even smarter selecting the best IRQ once we solve the 195 * affinity problem. 196 */ 197 static struct vmd_irq_list *vmd_next_irq(struct vmd_dev *vmd, struct msi_desc *desc) 198 { 199 int i, best = 1; 200 unsigned long flags; 201 202 if (vmd->msix_count == 1) 203 return &vmd->irqs[0]; 204 205 /* 206 * White list for fast-interrupt handlers. All others will share the 207 * "slow" interrupt vector. 208 */ 209 switch (msi_desc_to_pci_dev(desc)->class) { 210 case PCI_CLASS_STORAGE_EXPRESS: 211 break; 212 default: 213 return &vmd->irqs[0]; 214 } 215 216 raw_spin_lock_irqsave(&list_lock, flags); 217 for (i = 1; i < vmd->msix_count; i++) 218 if (vmd->irqs[i].count < vmd->irqs[best].count) 219 best = i; 220 vmd->irqs[best].count++; 221 raw_spin_unlock_irqrestore(&list_lock, flags); 222 223 return &vmd->irqs[best]; 224 } 225 226 static int vmd_msi_init(struct irq_domain *domain, struct msi_domain_info *info, 227 unsigned int virq, irq_hw_number_t hwirq, 228 msi_alloc_info_t *arg) 229 { 230 struct msi_desc *desc = arg->desc; 231 struct vmd_dev *vmd = vmd_from_bus(msi_desc_to_pci_dev(desc)->bus); 232 struct vmd_irq *vmdirq = kzalloc(sizeof(*vmdirq), GFP_KERNEL); 233 unsigned int index, vector; 234 235 if (!vmdirq) 236 return -ENOMEM; 237 238 INIT_LIST_HEAD(&vmdirq->node); 239 vmdirq->irq = vmd_next_irq(vmd, desc); 240 vmdirq->virq = virq; 241 index = index_from_irqs(vmd, vmdirq->irq); 242 vector = pci_irq_vector(vmd->dev, index); 243 244 irq_domain_set_info(domain, virq, vector, info->chip, vmdirq, 245 handle_untracked_irq, vmd, NULL); 246 return 0; 247 } 248 249 static void vmd_msi_free(struct irq_domain *domain, 250 struct msi_domain_info *info, unsigned int virq) 251 { 252 struct vmd_irq *vmdirq = irq_get_chip_data(virq); 253 unsigned long flags; 254 255 synchronize_srcu(&vmdirq->irq->srcu); 256 257 /* XXX: Potential optimization to rebalance */ 258 raw_spin_lock_irqsave(&list_lock, flags); 259 vmdirq->irq->count--; 260 raw_spin_unlock_irqrestore(&list_lock, flags); 261 262 kfree(vmdirq); 263 } 264 265 static int vmd_msi_prepare(struct irq_domain *domain, struct device *dev, 266 int nvec, msi_alloc_info_t *arg) 267 { 268 struct pci_dev *pdev = to_pci_dev(dev); 269 struct vmd_dev *vmd = vmd_from_bus(pdev->bus); 270 271 if (nvec > vmd->msix_count) 272 return vmd->msix_count; 273 274 memset(arg, 0, sizeof(*arg)); 275 return 0; 276 } 277 278 static void vmd_set_desc(msi_alloc_info_t *arg, struct msi_desc *desc) 279 { 280 arg->desc = desc; 281 } 282 283 static struct msi_domain_ops vmd_msi_domain_ops = { 284 .get_hwirq = vmd_get_hwirq, 285 .msi_init = vmd_msi_init, 286 .msi_free = vmd_msi_free, 287 .msi_prepare = vmd_msi_prepare, 288 .set_desc = vmd_set_desc, 289 }; 290 291 static struct msi_domain_info vmd_msi_domain_info = { 292 .flags = MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS | 293 MSI_FLAG_PCI_MSIX, 294 .ops = &vmd_msi_domain_ops, 295 .chip = &vmd_msi_controller, 296 }; 297 298 /* 299 * VMD replaces the requester ID with its own. DMA mappings for devices in a 300 * VMD domain need to be mapped for the VMD, not the device requiring 301 * the mapping. 302 */ 303 static struct device *to_vmd_dev(struct device *dev) 304 { 305 struct pci_dev *pdev = to_pci_dev(dev); 306 struct vmd_dev *vmd = vmd_from_bus(pdev->bus); 307 308 return &vmd->dev->dev; 309 } 310 311 static void *vmd_alloc(struct device *dev, size_t size, dma_addr_t *addr, 312 gfp_t flag, unsigned long attrs) 313 { 314 return dma_alloc_attrs(to_vmd_dev(dev), size, addr, flag, attrs); 315 } 316 317 static void vmd_free(struct device *dev, size_t size, void *vaddr, 318 dma_addr_t addr, unsigned long attrs) 319 { 320 return dma_free_attrs(to_vmd_dev(dev), size, vaddr, addr, attrs); 321 } 322 323 static int vmd_mmap(struct device *dev, struct vm_area_struct *vma, 324 void *cpu_addr, dma_addr_t addr, size_t size, 325 unsigned long attrs) 326 { 327 return dma_mmap_attrs(to_vmd_dev(dev), vma, cpu_addr, addr, size, 328 attrs); 329 } 330 331 static int vmd_get_sgtable(struct device *dev, struct sg_table *sgt, 332 void *cpu_addr, dma_addr_t addr, size_t size, 333 unsigned long attrs) 334 { 335 return dma_get_sgtable_attrs(to_vmd_dev(dev), sgt, cpu_addr, addr, size, 336 attrs); 337 } 338 339 static dma_addr_t vmd_map_page(struct device *dev, struct page *page, 340 unsigned long offset, size_t size, 341 enum dma_data_direction dir, 342 unsigned long attrs) 343 { 344 return dma_map_page_attrs(to_vmd_dev(dev), page, offset, size, dir, 345 attrs); 346 } 347 348 static void vmd_unmap_page(struct device *dev, dma_addr_t addr, size_t size, 349 enum dma_data_direction dir, unsigned long attrs) 350 { 351 dma_unmap_page_attrs(to_vmd_dev(dev), addr, size, dir, attrs); 352 } 353 354 static int vmd_map_sg(struct device *dev, struct scatterlist *sg, int nents, 355 enum dma_data_direction dir, unsigned long attrs) 356 { 357 return dma_map_sg_attrs(to_vmd_dev(dev), sg, nents, dir, attrs); 358 } 359 360 static void vmd_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 361 enum dma_data_direction dir, unsigned long attrs) 362 { 363 dma_unmap_sg_attrs(to_vmd_dev(dev), sg, nents, dir, attrs); 364 } 365 366 static void vmd_sync_single_for_cpu(struct device *dev, dma_addr_t addr, 367 size_t size, enum dma_data_direction dir) 368 { 369 dma_sync_single_for_cpu(to_vmd_dev(dev), addr, size, dir); 370 } 371 372 static void vmd_sync_single_for_device(struct device *dev, dma_addr_t addr, 373 size_t size, enum dma_data_direction dir) 374 { 375 dma_sync_single_for_device(to_vmd_dev(dev), addr, size, dir); 376 } 377 378 static void vmd_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, 379 int nents, enum dma_data_direction dir) 380 { 381 dma_sync_sg_for_cpu(to_vmd_dev(dev), sg, nents, dir); 382 } 383 384 static void vmd_sync_sg_for_device(struct device *dev, struct scatterlist *sg, 385 int nents, enum dma_data_direction dir) 386 { 387 dma_sync_sg_for_device(to_vmd_dev(dev), sg, nents, dir); 388 } 389 390 static int vmd_dma_supported(struct device *dev, u64 mask) 391 { 392 return dma_supported(to_vmd_dev(dev), mask); 393 } 394 395 static u64 vmd_get_required_mask(struct device *dev) 396 { 397 return dma_get_required_mask(to_vmd_dev(dev)); 398 } 399 400 static void vmd_teardown_dma_ops(struct vmd_dev *vmd) 401 { 402 struct dma_domain *domain = &vmd->dma_domain; 403 404 if (get_dma_ops(&vmd->dev->dev)) 405 del_dma_domain(domain); 406 } 407 408 #define ASSIGN_VMD_DMA_OPS(source, dest, fn) \ 409 do { \ 410 if (source->fn) \ 411 dest->fn = vmd_##fn; \ 412 } while (0) 413 414 static void vmd_setup_dma_ops(struct vmd_dev *vmd) 415 { 416 const struct dma_map_ops *source = get_dma_ops(&vmd->dev->dev); 417 struct dma_map_ops *dest = &vmd->dma_ops; 418 struct dma_domain *domain = &vmd->dma_domain; 419 420 domain->domain_nr = vmd->sysdata.domain; 421 domain->dma_ops = dest; 422 423 if (!source) 424 return; 425 ASSIGN_VMD_DMA_OPS(source, dest, alloc); 426 ASSIGN_VMD_DMA_OPS(source, dest, free); 427 ASSIGN_VMD_DMA_OPS(source, dest, mmap); 428 ASSIGN_VMD_DMA_OPS(source, dest, get_sgtable); 429 ASSIGN_VMD_DMA_OPS(source, dest, map_page); 430 ASSIGN_VMD_DMA_OPS(source, dest, unmap_page); 431 ASSIGN_VMD_DMA_OPS(source, dest, map_sg); 432 ASSIGN_VMD_DMA_OPS(source, dest, unmap_sg); 433 ASSIGN_VMD_DMA_OPS(source, dest, sync_single_for_cpu); 434 ASSIGN_VMD_DMA_OPS(source, dest, sync_single_for_device); 435 ASSIGN_VMD_DMA_OPS(source, dest, sync_sg_for_cpu); 436 ASSIGN_VMD_DMA_OPS(source, dest, sync_sg_for_device); 437 ASSIGN_VMD_DMA_OPS(source, dest, dma_supported); 438 ASSIGN_VMD_DMA_OPS(source, dest, get_required_mask); 439 add_dma_domain(domain); 440 } 441 #undef ASSIGN_VMD_DMA_OPS 442 443 static char __iomem *vmd_cfg_addr(struct vmd_dev *vmd, struct pci_bus *bus, 444 unsigned int devfn, int reg, int len) 445 { 446 char __iomem *addr = vmd->cfgbar + 447 ((bus->number - vmd->busn_start) << 20) + 448 (devfn << 12) + reg; 449 450 if ((addr - vmd->cfgbar) + len >= 451 resource_size(&vmd->dev->resource[VMD_CFGBAR])) 452 return NULL; 453 454 return addr; 455 } 456 457 /* 458 * CPU may deadlock if config space is not serialized on some versions of this 459 * hardware, so all config space access is done under a spinlock. 460 */ 461 static int vmd_pci_read(struct pci_bus *bus, unsigned int devfn, int reg, 462 int len, u32 *value) 463 { 464 struct vmd_dev *vmd = vmd_from_bus(bus); 465 char __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len); 466 unsigned long flags; 467 int ret = 0; 468 469 if (!addr) 470 return -EFAULT; 471 472 spin_lock_irqsave(&vmd->cfg_lock, flags); 473 switch (len) { 474 case 1: 475 *value = readb(addr); 476 break; 477 case 2: 478 *value = readw(addr); 479 break; 480 case 4: 481 *value = readl(addr); 482 break; 483 default: 484 ret = -EINVAL; 485 break; 486 } 487 spin_unlock_irqrestore(&vmd->cfg_lock, flags); 488 return ret; 489 } 490 491 /* 492 * VMD h/w converts non-posted config writes to posted memory writes. The 493 * read-back in this function forces the completion so it returns only after 494 * the config space was written, as expected. 495 */ 496 static int vmd_pci_write(struct pci_bus *bus, unsigned int devfn, int reg, 497 int len, u32 value) 498 { 499 struct vmd_dev *vmd = vmd_from_bus(bus); 500 char __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len); 501 unsigned long flags; 502 int ret = 0; 503 504 if (!addr) 505 return -EFAULT; 506 507 spin_lock_irqsave(&vmd->cfg_lock, flags); 508 switch (len) { 509 case 1: 510 writeb(value, addr); 511 readb(addr); 512 break; 513 case 2: 514 writew(value, addr); 515 readw(addr); 516 break; 517 case 4: 518 writel(value, addr); 519 readl(addr); 520 break; 521 default: 522 ret = -EINVAL; 523 break; 524 } 525 spin_unlock_irqrestore(&vmd->cfg_lock, flags); 526 return ret; 527 } 528 529 static struct pci_ops vmd_ops = { 530 .read = vmd_pci_read, 531 .write = vmd_pci_write, 532 }; 533 534 static void vmd_attach_resources(struct vmd_dev *vmd) 535 { 536 vmd->dev->resource[VMD_MEMBAR1].child = &vmd->resources[1]; 537 vmd->dev->resource[VMD_MEMBAR2].child = &vmd->resources[2]; 538 } 539 540 static void vmd_detach_resources(struct vmd_dev *vmd) 541 { 542 vmd->dev->resource[VMD_MEMBAR1].child = NULL; 543 vmd->dev->resource[VMD_MEMBAR2].child = NULL; 544 } 545 546 /* 547 * VMD domains start at 0x10000 to not clash with ACPI _SEG domains. 548 * Per ACPI r6.0, sec 6.5.6, _SEG returns an integer, of which the lower 549 * 16 bits are the PCI Segment Group (domain) number. Other bits are 550 * currently reserved. 551 */ 552 static int vmd_find_free_domain(void) 553 { 554 int domain = 0xffff; 555 struct pci_bus *bus = NULL; 556 557 while ((bus = pci_find_next_bus(bus)) != NULL) 558 domain = max_t(int, domain, pci_domain_nr(bus)); 559 return domain + 1; 560 } 561 562 static int vmd_enable_domain(struct vmd_dev *vmd, unsigned long features) 563 { 564 struct pci_sysdata *sd = &vmd->sysdata; 565 struct fwnode_handle *fn; 566 struct resource *res; 567 u32 upper_bits; 568 unsigned long flags; 569 LIST_HEAD(resources); 570 resource_size_t offset[2] = {0}; 571 resource_size_t membar2_offset = 0x2000; 572 struct pci_bus *child; 573 574 /* 575 * Shadow registers may exist in certain VMD device ids which allow 576 * guests to correctly assign host physical addresses to the root ports 577 * and child devices. These registers will either return the host value 578 * or 0, depending on an enable bit in the VMD device. 579 */ 580 if (features & VMD_FEAT_HAS_MEMBAR_SHADOW) { 581 u32 vmlock; 582 int ret; 583 584 membar2_offset = MB2_SHADOW_OFFSET + MB2_SHADOW_SIZE; 585 ret = pci_read_config_dword(vmd->dev, PCI_REG_VMLOCK, &vmlock); 586 if (ret || vmlock == ~0) 587 return -ENODEV; 588 589 if (MB2_SHADOW_EN(vmlock)) { 590 void __iomem *membar2; 591 592 membar2 = pci_iomap(vmd->dev, VMD_MEMBAR2, 0); 593 if (!membar2) 594 return -ENOMEM; 595 offset[0] = vmd->dev->resource[VMD_MEMBAR1].start - 596 readq(membar2 + MB2_SHADOW_OFFSET); 597 offset[1] = vmd->dev->resource[VMD_MEMBAR2].start - 598 readq(membar2 + MB2_SHADOW_OFFSET + 8); 599 pci_iounmap(vmd->dev, membar2); 600 } 601 } 602 603 /* 604 * Certain VMD devices may have a root port configuration option which 605 * limits the bus range to between 0-127 or 128-255 606 */ 607 if (features & VMD_FEAT_HAS_BUS_RESTRICTIONS) { 608 u32 vmcap, vmconfig; 609 610 pci_read_config_dword(vmd->dev, PCI_REG_VMCAP, &vmcap); 611 pci_read_config_dword(vmd->dev, PCI_REG_VMCONFIG, &vmconfig); 612 if (BUS_RESTRICT_CAP(vmcap) && 613 (BUS_RESTRICT_CFG(vmconfig) == 0x1)) 614 vmd->busn_start = 128; 615 } 616 617 res = &vmd->dev->resource[VMD_CFGBAR]; 618 vmd->resources[0] = (struct resource) { 619 .name = "VMD CFGBAR", 620 .start = vmd->busn_start, 621 .end = vmd->busn_start + (resource_size(res) >> 20) - 1, 622 .flags = IORESOURCE_BUS | IORESOURCE_PCI_FIXED, 623 }; 624 625 /* 626 * If the window is below 4GB, clear IORESOURCE_MEM_64 so we can 627 * put 32-bit resources in the window. 628 * 629 * There's no hardware reason why a 64-bit window *couldn't* 630 * contain a 32-bit resource, but pbus_size_mem() computes the 631 * bridge window size assuming a 64-bit window will contain no 632 * 32-bit resources. __pci_assign_resource() enforces that 633 * artificial restriction to make sure everything will fit. 634 * 635 * The only way we could use a 64-bit non-prefetchable MEMBAR is 636 * if its address is <4GB so that we can convert it to a 32-bit 637 * resource. To be visible to the host OS, all VMD endpoints must 638 * be initially configured by platform BIOS, which includes setting 639 * up these resources. We can assume the device is configured 640 * according to the platform needs. 641 */ 642 res = &vmd->dev->resource[VMD_MEMBAR1]; 643 upper_bits = upper_32_bits(res->end); 644 flags = res->flags & ~IORESOURCE_SIZEALIGN; 645 if (!upper_bits) 646 flags &= ~IORESOURCE_MEM_64; 647 vmd->resources[1] = (struct resource) { 648 .name = "VMD MEMBAR1", 649 .start = res->start, 650 .end = res->end, 651 .flags = flags, 652 .parent = res, 653 }; 654 655 res = &vmd->dev->resource[VMD_MEMBAR2]; 656 upper_bits = upper_32_bits(res->end); 657 flags = res->flags & ~IORESOURCE_SIZEALIGN; 658 if (!upper_bits) 659 flags &= ~IORESOURCE_MEM_64; 660 vmd->resources[2] = (struct resource) { 661 .name = "VMD MEMBAR2", 662 .start = res->start + membar2_offset, 663 .end = res->end, 664 .flags = flags, 665 .parent = res, 666 }; 667 668 sd->vmd_domain = true; 669 sd->domain = vmd_find_free_domain(); 670 if (sd->domain < 0) 671 return sd->domain; 672 673 sd->node = pcibus_to_node(vmd->dev->bus); 674 675 fn = irq_domain_alloc_named_id_fwnode("VMD-MSI", vmd->sysdata.domain); 676 if (!fn) 677 return -ENODEV; 678 679 vmd->irq_domain = pci_msi_create_irq_domain(fn, &vmd_msi_domain_info, 680 x86_vector_domain); 681 irq_domain_free_fwnode(fn); 682 if (!vmd->irq_domain) 683 return -ENODEV; 684 685 pci_add_resource(&resources, &vmd->resources[0]); 686 pci_add_resource_offset(&resources, &vmd->resources[1], offset[0]); 687 pci_add_resource_offset(&resources, &vmd->resources[2], offset[1]); 688 689 vmd->bus = pci_create_root_bus(&vmd->dev->dev, vmd->busn_start, 690 &vmd_ops, sd, &resources); 691 if (!vmd->bus) { 692 pci_free_resource_list(&resources); 693 irq_domain_remove(vmd->irq_domain); 694 return -ENODEV; 695 } 696 697 vmd_attach_resources(vmd); 698 vmd_setup_dma_ops(vmd); 699 dev_set_msi_domain(&vmd->bus->dev, vmd->irq_domain); 700 701 pci_scan_child_bus(vmd->bus); 702 pci_assign_unassigned_bus_resources(vmd->bus); 703 704 /* 705 * VMD root buses are virtual and don't return true on pci_is_pcie() 706 * and will fail pcie_bus_configure_settings() early. It can instead be 707 * run on each of the real root ports. 708 */ 709 list_for_each_entry(child, &vmd->bus->children, node) 710 pcie_bus_configure_settings(child); 711 712 pci_bus_add_devices(vmd->bus); 713 714 WARN(sysfs_create_link(&vmd->dev->dev.kobj, &vmd->bus->dev.kobj, 715 "domain"), "Can't create symlink to domain\n"); 716 return 0; 717 } 718 719 static irqreturn_t vmd_irq(int irq, void *data) 720 { 721 struct vmd_irq_list *irqs = data; 722 struct vmd_irq *vmdirq; 723 int idx; 724 725 idx = srcu_read_lock(&irqs->srcu); 726 list_for_each_entry_rcu(vmdirq, &irqs->irq_list, node) 727 generic_handle_irq(vmdirq->virq); 728 srcu_read_unlock(&irqs->srcu, idx); 729 730 return IRQ_HANDLED; 731 } 732 733 static int vmd_probe(struct pci_dev *dev, const struct pci_device_id *id) 734 { 735 struct vmd_dev *vmd; 736 int i, err; 737 738 if (resource_size(&dev->resource[VMD_CFGBAR]) < (1 << 20)) 739 return -ENOMEM; 740 741 vmd = devm_kzalloc(&dev->dev, sizeof(*vmd), GFP_KERNEL); 742 if (!vmd) 743 return -ENOMEM; 744 745 vmd->dev = dev; 746 err = pcim_enable_device(dev); 747 if (err < 0) 748 return err; 749 750 vmd->cfgbar = pcim_iomap(dev, VMD_CFGBAR, 0); 751 if (!vmd->cfgbar) 752 return -ENOMEM; 753 754 pci_set_master(dev); 755 if (dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(64)) && 756 dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(32))) 757 return -ENODEV; 758 759 vmd->msix_count = pci_msix_vec_count(dev); 760 if (vmd->msix_count < 0) 761 return -ENODEV; 762 763 vmd->msix_count = pci_alloc_irq_vectors(dev, 1, vmd->msix_count, 764 PCI_IRQ_MSIX); 765 if (vmd->msix_count < 0) 766 return vmd->msix_count; 767 768 vmd->irqs = devm_kcalloc(&dev->dev, vmd->msix_count, sizeof(*vmd->irqs), 769 GFP_KERNEL); 770 if (!vmd->irqs) 771 return -ENOMEM; 772 773 for (i = 0; i < vmd->msix_count; i++) { 774 err = init_srcu_struct(&vmd->irqs[i].srcu); 775 if (err) 776 return err; 777 778 INIT_LIST_HEAD(&vmd->irqs[i].irq_list); 779 err = devm_request_irq(&dev->dev, pci_irq_vector(dev, i), 780 vmd_irq, IRQF_NO_THREAD, 781 "vmd", &vmd->irqs[i]); 782 if (err) 783 return err; 784 } 785 786 spin_lock_init(&vmd->cfg_lock); 787 pci_set_drvdata(dev, vmd); 788 err = vmd_enable_domain(vmd, (unsigned long) id->driver_data); 789 if (err) 790 return err; 791 792 dev_info(&vmd->dev->dev, "Bound to PCI domain %04x\n", 793 vmd->sysdata.domain); 794 return 0; 795 } 796 797 static void vmd_cleanup_srcu(struct vmd_dev *vmd) 798 { 799 int i; 800 801 for (i = 0; i < vmd->msix_count; i++) 802 cleanup_srcu_struct(&vmd->irqs[i].srcu); 803 } 804 805 static void vmd_remove(struct pci_dev *dev) 806 { 807 struct vmd_dev *vmd = pci_get_drvdata(dev); 808 809 sysfs_remove_link(&vmd->dev->dev.kobj, "domain"); 810 pci_stop_root_bus(vmd->bus); 811 pci_remove_root_bus(vmd->bus); 812 vmd_cleanup_srcu(vmd); 813 vmd_teardown_dma_ops(vmd); 814 vmd_detach_resources(vmd); 815 irq_domain_remove(vmd->irq_domain); 816 } 817 818 #ifdef CONFIG_PM_SLEEP 819 static int vmd_suspend(struct device *dev) 820 { 821 struct pci_dev *pdev = to_pci_dev(dev); 822 struct vmd_dev *vmd = pci_get_drvdata(pdev); 823 int i; 824 825 for (i = 0; i < vmd->msix_count; i++) 826 devm_free_irq(dev, pci_irq_vector(pdev, i), &vmd->irqs[i]); 827 828 pci_save_state(pdev); 829 return 0; 830 } 831 832 static int vmd_resume(struct device *dev) 833 { 834 struct pci_dev *pdev = to_pci_dev(dev); 835 struct vmd_dev *vmd = pci_get_drvdata(pdev); 836 int err, i; 837 838 for (i = 0; i < vmd->msix_count; i++) { 839 err = devm_request_irq(dev, pci_irq_vector(pdev, i), 840 vmd_irq, IRQF_NO_THREAD, 841 "vmd", &vmd->irqs[i]); 842 if (err) 843 return err; 844 } 845 846 pci_restore_state(pdev); 847 return 0; 848 } 849 #endif 850 static SIMPLE_DEV_PM_OPS(vmd_dev_pm_ops, vmd_suspend, vmd_resume); 851 852 static const struct pci_device_id vmd_ids[] = { 853 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_201D),}, 854 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_28C0), 855 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW | 856 VMD_FEAT_HAS_BUS_RESTRICTIONS,}, 857 {0,} 858 }; 859 MODULE_DEVICE_TABLE(pci, vmd_ids); 860 861 static struct pci_driver vmd_drv = { 862 .name = "vmd", 863 .id_table = vmd_ids, 864 .probe = vmd_probe, 865 .remove = vmd_remove, 866 .driver = { 867 .pm = &vmd_dev_pm_ops, 868 }, 869 }; 870 module_pci_driver(vmd_drv); 871 872 MODULE_AUTHOR("Intel Corporation"); 873 MODULE_LICENSE("GPL v2"); 874 MODULE_VERSION("0.6"); 875