1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Volume Management Device driver 4 * Copyright (c) 2015, Intel Corporation. 5 */ 6 7 #include <linux/device.h> 8 #include <linux/interrupt.h> 9 #include <linux/iommu.h> 10 #include <linux/irq.h> 11 #include <linux/kernel.h> 12 #include <linux/module.h> 13 #include <linux/msi.h> 14 #include <linux/pci.h> 15 #include <linux/pci-acpi.h> 16 #include <linux/pci-ecam.h> 17 #include <linux/srcu.h> 18 #include <linux/rculist.h> 19 #include <linux/rcupdate.h> 20 21 #include <asm/irqdomain.h> 22 23 #define VMD_CFGBAR 0 24 #define VMD_MEMBAR1 2 25 #define VMD_MEMBAR2 4 26 27 #define PCI_REG_VMCAP 0x40 28 #define BUS_RESTRICT_CAP(vmcap) (vmcap & 0x1) 29 #define PCI_REG_VMCONFIG 0x44 30 #define BUS_RESTRICT_CFG(vmcfg) ((vmcfg >> 8) & 0x3) 31 #define VMCONFIG_MSI_REMAP 0x2 32 #define PCI_REG_VMLOCK 0x70 33 #define MB2_SHADOW_EN(vmlock) (vmlock & 0x2) 34 35 #define MB2_SHADOW_OFFSET 0x2000 36 #define MB2_SHADOW_SIZE 16 37 38 enum vmd_features { 39 /* 40 * Device may contain registers which hint the physical location of the 41 * membars, in order to allow proper address translation during 42 * resource assignment to enable guest virtualization 43 */ 44 VMD_FEAT_HAS_MEMBAR_SHADOW = (1 << 0), 45 46 /* 47 * Device may provide root port configuration information which limits 48 * bus numbering 49 */ 50 VMD_FEAT_HAS_BUS_RESTRICTIONS = (1 << 1), 51 52 /* 53 * Device contains physical location shadow registers in 54 * vendor-specific capability space 55 */ 56 VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP = (1 << 2), 57 58 /* 59 * Device may use MSI-X vector 0 for software triggering and will not 60 * be used for MSI remapping 61 */ 62 VMD_FEAT_OFFSET_FIRST_VECTOR = (1 << 3), 63 64 /* 65 * Device can bypass remapping MSI-X transactions into its MSI-X table, 66 * avoiding the requirement of a VMD MSI domain for child device 67 * interrupt handling. 68 */ 69 VMD_FEAT_CAN_BYPASS_MSI_REMAP = (1 << 4), 70 }; 71 72 static DEFINE_IDA(vmd_instance_ida); 73 74 /* 75 * Lock for manipulating VMD IRQ lists. 76 */ 77 static DEFINE_RAW_SPINLOCK(list_lock); 78 79 /** 80 * struct vmd_irq - private data to map driver IRQ to the VMD shared vector 81 * @node: list item for parent traversal. 82 * @irq: back pointer to parent. 83 * @enabled: true if driver enabled IRQ 84 * @virq: the virtual IRQ value provided to the requesting driver. 85 * 86 * Every MSI/MSI-X IRQ requested for a device in a VMD domain will be mapped to 87 * a VMD IRQ using this structure. 88 */ 89 struct vmd_irq { 90 struct list_head node; 91 struct vmd_irq_list *irq; 92 bool enabled; 93 unsigned int virq; 94 }; 95 96 /** 97 * struct vmd_irq_list - list of driver requested IRQs mapping to a VMD vector 98 * @irq_list: the list of irq's the VMD one demuxes to. 99 * @srcu: SRCU struct for local synchronization. 100 * @count: number of child IRQs assigned to this vector; used to track 101 * sharing. 102 */ 103 struct vmd_irq_list { 104 struct list_head irq_list; 105 struct srcu_struct srcu; 106 unsigned int count; 107 }; 108 109 struct vmd_dev { 110 struct pci_dev *dev; 111 112 spinlock_t cfg_lock; 113 void __iomem *cfgbar; 114 115 int msix_count; 116 struct vmd_irq_list *irqs; 117 118 struct pci_sysdata sysdata; 119 struct resource resources[3]; 120 struct irq_domain *irq_domain; 121 struct pci_bus *bus; 122 u8 busn_start; 123 u8 first_vec; 124 char *name; 125 int instance; 126 }; 127 128 static inline struct vmd_dev *vmd_from_bus(struct pci_bus *bus) 129 { 130 return container_of(bus->sysdata, struct vmd_dev, sysdata); 131 } 132 133 static inline unsigned int index_from_irqs(struct vmd_dev *vmd, 134 struct vmd_irq_list *irqs) 135 { 136 return irqs - vmd->irqs; 137 } 138 139 /* 140 * Drivers managing a device in a VMD domain allocate their own IRQs as before, 141 * but the MSI entry for the hardware it's driving will be programmed with a 142 * destination ID for the VMD MSI-X table. The VMD muxes interrupts in its 143 * domain into one of its own, and the VMD driver de-muxes these for the 144 * handlers sharing that VMD IRQ. The vmd irq_domain provides the operations 145 * and irq_chip to set this up. 146 */ 147 static void vmd_compose_msi_msg(struct irq_data *data, struct msi_msg *msg) 148 { 149 struct vmd_irq *vmdirq = data->chip_data; 150 struct vmd_irq_list *irq = vmdirq->irq; 151 struct vmd_dev *vmd = irq_data_get_irq_handler_data(data); 152 153 memset(msg, 0, sizeof(*msg)); 154 msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH; 155 msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW; 156 msg->arch_addr_lo.destid_0_7 = index_from_irqs(vmd, irq); 157 } 158 159 /* 160 * We rely on MSI_FLAG_USE_DEF_CHIP_OPS to set the IRQ mask/unmask ops. 161 */ 162 static void vmd_irq_enable(struct irq_data *data) 163 { 164 struct vmd_irq *vmdirq = data->chip_data; 165 unsigned long flags; 166 167 raw_spin_lock_irqsave(&list_lock, flags); 168 WARN_ON(vmdirq->enabled); 169 list_add_tail_rcu(&vmdirq->node, &vmdirq->irq->irq_list); 170 vmdirq->enabled = true; 171 raw_spin_unlock_irqrestore(&list_lock, flags); 172 173 data->chip->irq_unmask(data); 174 } 175 176 static void vmd_irq_disable(struct irq_data *data) 177 { 178 struct vmd_irq *vmdirq = data->chip_data; 179 unsigned long flags; 180 181 data->chip->irq_mask(data); 182 183 raw_spin_lock_irqsave(&list_lock, flags); 184 if (vmdirq->enabled) { 185 list_del_rcu(&vmdirq->node); 186 vmdirq->enabled = false; 187 } 188 raw_spin_unlock_irqrestore(&list_lock, flags); 189 } 190 191 /* 192 * XXX: Stubbed until we develop acceptable way to not create conflicts with 193 * other devices sharing the same vector. 194 */ 195 static int vmd_irq_set_affinity(struct irq_data *data, 196 const struct cpumask *dest, bool force) 197 { 198 return -EINVAL; 199 } 200 201 static struct irq_chip vmd_msi_controller = { 202 .name = "VMD-MSI", 203 .irq_enable = vmd_irq_enable, 204 .irq_disable = vmd_irq_disable, 205 .irq_compose_msi_msg = vmd_compose_msi_msg, 206 .irq_set_affinity = vmd_irq_set_affinity, 207 }; 208 209 static irq_hw_number_t vmd_get_hwirq(struct msi_domain_info *info, 210 msi_alloc_info_t *arg) 211 { 212 return 0; 213 } 214 215 /* 216 * XXX: We can be even smarter selecting the best IRQ once we solve the 217 * affinity problem. 218 */ 219 static struct vmd_irq_list *vmd_next_irq(struct vmd_dev *vmd, struct msi_desc *desc) 220 { 221 unsigned long flags; 222 int i, best; 223 224 if (vmd->msix_count == 1 + vmd->first_vec) 225 return &vmd->irqs[vmd->first_vec]; 226 227 /* 228 * White list for fast-interrupt handlers. All others will share the 229 * "slow" interrupt vector. 230 */ 231 switch (msi_desc_to_pci_dev(desc)->class) { 232 case PCI_CLASS_STORAGE_EXPRESS: 233 break; 234 default: 235 return &vmd->irqs[vmd->first_vec]; 236 } 237 238 raw_spin_lock_irqsave(&list_lock, flags); 239 best = vmd->first_vec + 1; 240 for (i = best; i < vmd->msix_count; i++) 241 if (vmd->irqs[i].count < vmd->irqs[best].count) 242 best = i; 243 vmd->irqs[best].count++; 244 raw_spin_unlock_irqrestore(&list_lock, flags); 245 246 return &vmd->irqs[best]; 247 } 248 249 static int vmd_msi_init(struct irq_domain *domain, struct msi_domain_info *info, 250 unsigned int virq, irq_hw_number_t hwirq, 251 msi_alloc_info_t *arg) 252 { 253 struct msi_desc *desc = arg->desc; 254 struct vmd_dev *vmd = vmd_from_bus(msi_desc_to_pci_dev(desc)->bus); 255 struct vmd_irq *vmdirq = kzalloc(sizeof(*vmdirq), GFP_KERNEL); 256 unsigned int index, vector; 257 258 if (!vmdirq) 259 return -ENOMEM; 260 261 INIT_LIST_HEAD(&vmdirq->node); 262 vmdirq->irq = vmd_next_irq(vmd, desc); 263 vmdirq->virq = virq; 264 index = index_from_irqs(vmd, vmdirq->irq); 265 vector = pci_irq_vector(vmd->dev, index); 266 267 irq_domain_set_info(domain, virq, vector, info->chip, vmdirq, 268 handle_untracked_irq, vmd, NULL); 269 return 0; 270 } 271 272 static void vmd_msi_free(struct irq_domain *domain, 273 struct msi_domain_info *info, unsigned int virq) 274 { 275 struct vmd_irq *vmdirq = irq_get_chip_data(virq); 276 unsigned long flags; 277 278 synchronize_srcu(&vmdirq->irq->srcu); 279 280 /* XXX: Potential optimization to rebalance */ 281 raw_spin_lock_irqsave(&list_lock, flags); 282 vmdirq->irq->count--; 283 raw_spin_unlock_irqrestore(&list_lock, flags); 284 285 kfree(vmdirq); 286 } 287 288 static int vmd_msi_prepare(struct irq_domain *domain, struct device *dev, 289 int nvec, msi_alloc_info_t *arg) 290 { 291 struct pci_dev *pdev = to_pci_dev(dev); 292 struct vmd_dev *vmd = vmd_from_bus(pdev->bus); 293 294 if (nvec > vmd->msix_count) 295 return vmd->msix_count; 296 297 memset(arg, 0, sizeof(*arg)); 298 return 0; 299 } 300 301 static void vmd_set_desc(msi_alloc_info_t *arg, struct msi_desc *desc) 302 { 303 arg->desc = desc; 304 } 305 306 static struct msi_domain_ops vmd_msi_domain_ops = { 307 .get_hwirq = vmd_get_hwirq, 308 .msi_init = vmd_msi_init, 309 .msi_free = vmd_msi_free, 310 .msi_prepare = vmd_msi_prepare, 311 .set_desc = vmd_set_desc, 312 }; 313 314 static struct msi_domain_info vmd_msi_domain_info = { 315 .flags = MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS | 316 MSI_FLAG_PCI_MSIX, 317 .ops = &vmd_msi_domain_ops, 318 .chip = &vmd_msi_controller, 319 }; 320 321 static void vmd_set_msi_remapping(struct vmd_dev *vmd, bool enable) 322 { 323 u16 reg; 324 325 pci_read_config_word(vmd->dev, PCI_REG_VMCONFIG, ®); 326 reg = enable ? (reg & ~VMCONFIG_MSI_REMAP) : 327 (reg | VMCONFIG_MSI_REMAP); 328 pci_write_config_word(vmd->dev, PCI_REG_VMCONFIG, reg); 329 } 330 331 static int vmd_create_irq_domain(struct vmd_dev *vmd) 332 { 333 struct fwnode_handle *fn; 334 335 fn = irq_domain_alloc_named_id_fwnode("VMD-MSI", vmd->sysdata.domain); 336 if (!fn) 337 return -ENODEV; 338 339 vmd->irq_domain = pci_msi_create_irq_domain(fn, &vmd_msi_domain_info, NULL); 340 if (!vmd->irq_domain) { 341 irq_domain_free_fwnode(fn); 342 return -ENODEV; 343 } 344 345 return 0; 346 } 347 348 static void vmd_remove_irq_domain(struct vmd_dev *vmd) 349 { 350 /* 351 * Some production BIOS won't enable remapping between soft reboots. 352 * Ensure remapping is restored before unloading the driver. 353 */ 354 if (!vmd->msix_count) 355 vmd_set_msi_remapping(vmd, true); 356 357 if (vmd->irq_domain) { 358 struct fwnode_handle *fn = vmd->irq_domain->fwnode; 359 360 irq_domain_remove(vmd->irq_domain); 361 irq_domain_free_fwnode(fn); 362 } 363 } 364 365 static void __iomem *vmd_cfg_addr(struct vmd_dev *vmd, struct pci_bus *bus, 366 unsigned int devfn, int reg, int len) 367 { 368 unsigned int busnr_ecam = bus->number - vmd->busn_start; 369 u32 offset = PCIE_ECAM_OFFSET(busnr_ecam, devfn, reg); 370 371 if (offset + len >= resource_size(&vmd->dev->resource[VMD_CFGBAR])) 372 return NULL; 373 374 return vmd->cfgbar + offset; 375 } 376 377 /* 378 * CPU may deadlock if config space is not serialized on some versions of this 379 * hardware, so all config space access is done under a spinlock. 380 */ 381 static int vmd_pci_read(struct pci_bus *bus, unsigned int devfn, int reg, 382 int len, u32 *value) 383 { 384 struct vmd_dev *vmd = vmd_from_bus(bus); 385 void __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len); 386 unsigned long flags; 387 int ret = 0; 388 389 if (!addr) 390 return -EFAULT; 391 392 spin_lock_irqsave(&vmd->cfg_lock, flags); 393 switch (len) { 394 case 1: 395 *value = readb(addr); 396 break; 397 case 2: 398 *value = readw(addr); 399 break; 400 case 4: 401 *value = readl(addr); 402 break; 403 default: 404 ret = -EINVAL; 405 break; 406 } 407 spin_unlock_irqrestore(&vmd->cfg_lock, flags); 408 return ret; 409 } 410 411 /* 412 * VMD h/w converts non-posted config writes to posted memory writes. The 413 * read-back in this function forces the completion so it returns only after 414 * the config space was written, as expected. 415 */ 416 static int vmd_pci_write(struct pci_bus *bus, unsigned int devfn, int reg, 417 int len, u32 value) 418 { 419 struct vmd_dev *vmd = vmd_from_bus(bus); 420 void __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len); 421 unsigned long flags; 422 int ret = 0; 423 424 if (!addr) 425 return -EFAULT; 426 427 spin_lock_irqsave(&vmd->cfg_lock, flags); 428 switch (len) { 429 case 1: 430 writeb(value, addr); 431 readb(addr); 432 break; 433 case 2: 434 writew(value, addr); 435 readw(addr); 436 break; 437 case 4: 438 writel(value, addr); 439 readl(addr); 440 break; 441 default: 442 ret = -EINVAL; 443 break; 444 } 445 spin_unlock_irqrestore(&vmd->cfg_lock, flags); 446 return ret; 447 } 448 449 static struct pci_ops vmd_ops = { 450 .read = vmd_pci_read, 451 .write = vmd_pci_write, 452 }; 453 454 #ifdef CONFIG_ACPI 455 static struct acpi_device *vmd_acpi_find_companion(struct pci_dev *pci_dev) 456 { 457 struct pci_host_bridge *bridge; 458 u32 busnr, addr; 459 460 if (pci_dev->bus->ops != &vmd_ops) 461 return NULL; 462 463 bridge = pci_find_host_bridge(pci_dev->bus); 464 busnr = pci_dev->bus->number - bridge->bus->number; 465 /* 466 * The address computation below is only applicable to relative bus 467 * numbers below 32. 468 */ 469 if (busnr > 31) 470 return NULL; 471 472 addr = (busnr << 24) | ((u32)pci_dev->devfn << 16) | 0x8000FFFFU; 473 474 dev_dbg(&pci_dev->dev, "Looking for ACPI companion (address 0x%x)\n", 475 addr); 476 477 return acpi_find_child_device(ACPI_COMPANION(bridge->dev.parent), addr, 478 false); 479 } 480 481 static bool hook_installed; 482 483 static void vmd_acpi_begin(void) 484 { 485 if (pci_acpi_set_companion_lookup_hook(vmd_acpi_find_companion)) 486 return; 487 488 hook_installed = true; 489 } 490 491 static void vmd_acpi_end(void) 492 { 493 if (!hook_installed) 494 return; 495 496 pci_acpi_clear_companion_lookup_hook(); 497 hook_installed = false; 498 } 499 #else 500 static inline void vmd_acpi_begin(void) { } 501 static inline void vmd_acpi_end(void) { } 502 #endif /* CONFIG_ACPI */ 503 504 static void vmd_domain_reset(struct vmd_dev *vmd) 505 { 506 u16 bus, max_buses = resource_size(&vmd->resources[0]); 507 u8 dev, functions, fn, hdr_type; 508 char __iomem *base; 509 510 for (bus = 0; bus < max_buses; bus++) { 511 for (dev = 0; dev < 32; dev++) { 512 base = vmd->cfgbar + PCIE_ECAM_OFFSET(bus, 513 PCI_DEVFN(dev, 0), 0); 514 515 hdr_type = readb(base + PCI_HEADER_TYPE) & 516 PCI_HEADER_TYPE_MASK; 517 518 functions = (hdr_type & 0x80) ? 8 : 1; 519 for (fn = 0; fn < functions; fn++) { 520 base = vmd->cfgbar + PCIE_ECAM_OFFSET(bus, 521 PCI_DEVFN(dev, fn), 0); 522 523 hdr_type = readb(base + PCI_HEADER_TYPE) & 524 PCI_HEADER_TYPE_MASK; 525 526 if (hdr_type != PCI_HEADER_TYPE_BRIDGE || 527 (readw(base + PCI_CLASS_DEVICE) != 528 PCI_CLASS_BRIDGE_PCI)) 529 continue; 530 531 memset_io(base + PCI_IO_BASE, 0, 532 PCI_ROM_ADDRESS1 - PCI_IO_BASE); 533 } 534 } 535 } 536 } 537 538 static void vmd_attach_resources(struct vmd_dev *vmd) 539 { 540 vmd->dev->resource[VMD_MEMBAR1].child = &vmd->resources[1]; 541 vmd->dev->resource[VMD_MEMBAR2].child = &vmd->resources[2]; 542 } 543 544 static void vmd_detach_resources(struct vmd_dev *vmd) 545 { 546 vmd->dev->resource[VMD_MEMBAR1].child = NULL; 547 vmd->dev->resource[VMD_MEMBAR2].child = NULL; 548 } 549 550 /* 551 * VMD domains start at 0x10000 to not clash with ACPI _SEG domains. 552 * Per ACPI r6.0, sec 6.5.6, _SEG returns an integer, of which the lower 553 * 16 bits are the PCI Segment Group (domain) number. Other bits are 554 * currently reserved. 555 */ 556 static int vmd_find_free_domain(void) 557 { 558 int domain = 0xffff; 559 struct pci_bus *bus = NULL; 560 561 while ((bus = pci_find_next_bus(bus)) != NULL) 562 domain = max_t(int, domain, pci_domain_nr(bus)); 563 return domain + 1; 564 } 565 566 static int vmd_get_phys_offsets(struct vmd_dev *vmd, bool native_hint, 567 resource_size_t *offset1, 568 resource_size_t *offset2) 569 { 570 struct pci_dev *dev = vmd->dev; 571 u64 phys1, phys2; 572 573 if (native_hint) { 574 u32 vmlock; 575 int ret; 576 577 ret = pci_read_config_dword(dev, PCI_REG_VMLOCK, &vmlock); 578 if (ret || PCI_POSSIBLE_ERROR(vmlock)) 579 return -ENODEV; 580 581 if (MB2_SHADOW_EN(vmlock)) { 582 void __iomem *membar2; 583 584 membar2 = pci_iomap(dev, VMD_MEMBAR2, 0); 585 if (!membar2) 586 return -ENOMEM; 587 phys1 = readq(membar2 + MB2_SHADOW_OFFSET); 588 phys2 = readq(membar2 + MB2_SHADOW_OFFSET + 8); 589 pci_iounmap(dev, membar2); 590 } else 591 return 0; 592 } else { 593 /* Hypervisor-Emulated Vendor-Specific Capability */ 594 int pos = pci_find_capability(dev, PCI_CAP_ID_VNDR); 595 u32 reg, regu; 596 597 pci_read_config_dword(dev, pos + 4, ®); 598 599 /* "SHDW" */ 600 if (pos && reg == 0x53484457) { 601 pci_read_config_dword(dev, pos + 8, ®); 602 pci_read_config_dword(dev, pos + 12, ®u); 603 phys1 = (u64) regu << 32 | reg; 604 605 pci_read_config_dword(dev, pos + 16, ®); 606 pci_read_config_dword(dev, pos + 20, ®u); 607 phys2 = (u64) regu << 32 | reg; 608 } else 609 return 0; 610 } 611 612 *offset1 = dev->resource[VMD_MEMBAR1].start - 613 (phys1 & PCI_BASE_ADDRESS_MEM_MASK); 614 *offset2 = dev->resource[VMD_MEMBAR2].start - 615 (phys2 & PCI_BASE_ADDRESS_MEM_MASK); 616 617 return 0; 618 } 619 620 static int vmd_get_bus_number_start(struct vmd_dev *vmd) 621 { 622 struct pci_dev *dev = vmd->dev; 623 u16 reg; 624 625 pci_read_config_word(dev, PCI_REG_VMCAP, ®); 626 if (BUS_RESTRICT_CAP(reg)) { 627 pci_read_config_word(dev, PCI_REG_VMCONFIG, ®); 628 629 switch (BUS_RESTRICT_CFG(reg)) { 630 case 0: 631 vmd->busn_start = 0; 632 break; 633 case 1: 634 vmd->busn_start = 128; 635 break; 636 case 2: 637 vmd->busn_start = 224; 638 break; 639 default: 640 pci_err(dev, "Unknown Bus Offset Setting (%d)\n", 641 BUS_RESTRICT_CFG(reg)); 642 return -ENODEV; 643 } 644 } 645 646 return 0; 647 } 648 649 static irqreturn_t vmd_irq(int irq, void *data) 650 { 651 struct vmd_irq_list *irqs = data; 652 struct vmd_irq *vmdirq; 653 int idx; 654 655 idx = srcu_read_lock(&irqs->srcu); 656 list_for_each_entry_rcu(vmdirq, &irqs->irq_list, node) 657 generic_handle_irq(vmdirq->virq); 658 srcu_read_unlock(&irqs->srcu, idx); 659 660 return IRQ_HANDLED; 661 } 662 663 static int vmd_alloc_irqs(struct vmd_dev *vmd) 664 { 665 struct pci_dev *dev = vmd->dev; 666 int i, err; 667 668 vmd->msix_count = pci_msix_vec_count(dev); 669 if (vmd->msix_count < 0) 670 return -ENODEV; 671 672 vmd->msix_count = pci_alloc_irq_vectors(dev, vmd->first_vec + 1, 673 vmd->msix_count, PCI_IRQ_MSIX); 674 if (vmd->msix_count < 0) 675 return vmd->msix_count; 676 677 vmd->irqs = devm_kcalloc(&dev->dev, vmd->msix_count, sizeof(*vmd->irqs), 678 GFP_KERNEL); 679 if (!vmd->irqs) 680 return -ENOMEM; 681 682 for (i = 0; i < vmd->msix_count; i++) { 683 err = init_srcu_struct(&vmd->irqs[i].srcu); 684 if (err) 685 return err; 686 687 INIT_LIST_HEAD(&vmd->irqs[i].irq_list); 688 err = devm_request_irq(&dev->dev, pci_irq_vector(dev, i), 689 vmd_irq, IRQF_NO_THREAD, 690 vmd->name, &vmd->irqs[i]); 691 if (err) 692 return err; 693 } 694 695 return 0; 696 } 697 698 /* 699 * Since VMD is an aperture to regular PCIe root ports, only allow it to 700 * control features that the OS is allowed to control on the physical PCI bus. 701 */ 702 static void vmd_copy_host_bridge_flags(struct pci_host_bridge *root_bridge, 703 struct pci_host_bridge *vmd_bridge) 704 { 705 vmd_bridge->native_pcie_hotplug = root_bridge->native_pcie_hotplug; 706 vmd_bridge->native_shpc_hotplug = root_bridge->native_shpc_hotplug; 707 vmd_bridge->native_aer = root_bridge->native_aer; 708 vmd_bridge->native_pme = root_bridge->native_pme; 709 vmd_bridge->native_ltr = root_bridge->native_ltr; 710 vmd_bridge->native_dpc = root_bridge->native_dpc; 711 } 712 713 static int vmd_enable_domain(struct vmd_dev *vmd, unsigned long features) 714 { 715 struct pci_sysdata *sd = &vmd->sysdata; 716 struct resource *res; 717 u32 upper_bits; 718 unsigned long flags; 719 LIST_HEAD(resources); 720 resource_size_t offset[2] = {0}; 721 resource_size_t membar2_offset = 0x2000; 722 struct pci_bus *child; 723 int ret; 724 725 /* 726 * Shadow registers may exist in certain VMD device ids which allow 727 * guests to correctly assign host physical addresses to the root ports 728 * and child devices. These registers will either return the host value 729 * or 0, depending on an enable bit in the VMD device. 730 */ 731 if (features & VMD_FEAT_HAS_MEMBAR_SHADOW) { 732 membar2_offset = MB2_SHADOW_OFFSET + MB2_SHADOW_SIZE; 733 ret = vmd_get_phys_offsets(vmd, true, &offset[0], &offset[1]); 734 if (ret) 735 return ret; 736 } else if (features & VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP) { 737 ret = vmd_get_phys_offsets(vmd, false, &offset[0], &offset[1]); 738 if (ret) 739 return ret; 740 } 741 742 /* 743 * Certain VMD devices may have a root port configuration option which 744 * limits the bus range to between 0-127, 128-255, or 224-255 745 */ 746 if (features & VMD_FEAT_HAS_BUS_RESTRICTIONS) { 747 ret = vmd_get_bus_number_start(vmd); 748 if (ret) 749 return ret; 750 } 751 752 res = &vmd->dev->resource[VMD_CFGBAR]; 753 vmd->resources[0] = (struct resource) { 754 .name = "VMD CFGBAR", 755 .start = vmd->busn_start, 756 .end = vmd->busn_start + (resource_size(res) >> 20) - 1, 757 .flags = IORESOURCE_BUS | IORESOURCE_PCI_FIXED, 758 }; 759 760 /* 761 * If the window is below 4GB, clear IORESOURCE_MEM_64 so we can 762 * put 32-bit resources in the window. 763 * 764 * There's no hardware reason why a 64-bit window *couldn't* 765 * contain a 32-bit resource, but pbus_size_mem() computes the 766 * bridge window size assuming a 64-bit window will contain no 767 * 32-bit resources. __pci_assign_resource() enforces that 768 * artificial restriction to make sure everything will fit. 769 * 770 * The only way we could use a 64-bit non-prefetchable MEMBAR is 771 * if its address is <4GB so that we can convert it to a 32-bit 772 * resource. To be visible to the host OS, all VMD endpoints must 773 * be initially configured by platform BIOS, which includes setting 774 * up these resources. We can assume the device is configured 775 * according to the platform needs. 776 */ 777 res = &vmd->dev->resource[VMD_MEMBAR1]; 778 upper_bits = upper_32_bits(res->end); 779 flags = res->flags & ~IORESOURCE_SIZEALIGN; 780 if (!upper_bits) 781 flags &= ~IORESOURCE_MEM_64; 782 vmd->resources[1] = (struct resource) { 783 .name = "VMD MEMBAR1", 784 .start = res->start, 785 .end = res->end, 786 .flags = flags, 787 .parent = res, 788 }; 789 790 res = &vmd->dev->resource[VMD_MEMBAR2]; 791 upper_bits = upper_32_bits(res->end); 792 flags = res->flags & ~IORESOURCE_SIZEALIGN; 793 if (!upper_bits) 794 flags &= ~IORESOURCE_MEM_64; 795 vmd->resources[2] = (struct resource) { 796 .name = "VMD MEMBAR2", 797 .start = res->start + membar2_offset, 798 .end = res->end, 799 .flags = flags, 800 .parent = res, 801 }; 802 803 sd->vmd_dev = vmd->dev; 804 sd->domain = vmd_find_free_domain(); 805 if (sd->domain < 0) 806 return sd->domain; 807 808 sd->node = pcibus_to_node(vmd->dev->bus); 809 810 /* 811 * Currently MSI remapping must be enabled in guest passthrough mode 812 * due to some missing interrupt remapping plumbing. This is probably 813 * acceptable because the guest is usually CPU-limited and MSI 814 * remapping doesn't become a performance bottleneck. 815 */ 816 if (iommu_capable(vmd->dev->dev.bus, IOMMU_CAP_INTR_REMAP) || 817 !(features & VMD_FEAT_CAN_BYPASS_MSI_REMAP) || 818 offset[0] || offset[1]) { 819 ret = vmd_alloc_irqs(vmd); 820 if (ret) 821 return ret; 822 823 vmd_set_msi_remapping(vmd, true); 824 825 ret = vmd_create_irq_domain(vmd); 826 if (ret) 827 return ret; 828 829 /* 830 * Override the IRQ domain bus token so the domain can be 831 * distinguished from a regular PCI/MSI domain. 832 */ 833 irq_domain_update_bus_token(vmd->irq_domain, DOMAIN_BUS_VMD_MSI); 834 } else { 835 vmd_set_msi_remapping(vmd, false); 836 } 837 838 pci_add_resource(&resources, &vmd->resources[0]); 839 pci_add_resource_offset(&resources, &vmd->resources[1], offset[0]); 840 pci_add_resource_offset(&resources, &vmd->resources[2], offset[1]); 841 842 vmd->bus = pci_create_root_bus(&vmd->dev->dev, vmd->busn_start, 843 &vmd_ops, sd, &resources); 844 if (!vmd->bus) { 845 pci_free_resource_list(&resources); 846 vmd_remove_irq_domain(vmd); 847 return -ENODEV; 848 } 849 850 vmd_copy_host_bridge_flags(pci_find_host_bridge(vmd->dev->bus), 851 to_pci_host_bridge(vmd->bus->bridge)); 852 853 vmd_attach_resources(vmd); 854 if (vmd->irq_domain) 855 dev_set_msi_domain(&vmd->bus->dev, vmd->irq_domain); 856 857 vmd_acpi_begin(); 858 859 pci_scan_child_bus(vmd->bus); 860 vmd_domain_reset(vmd); 861 list_for_each_entry(child, &vmd->bus->children, node) 862 pci_reset_bus(child->self); 863 pci_assign_unassigned_bus_resources(vmd->bus); 864 865 /* 866 * VMD root buses are virtual and don't return true on pci_is_pcie() 867 * and will fail pcie_bus_configure_settings() early. It can instead be 868 * run on each of the real root ports. 869 */ 870 list_for_each_entry(child, &vmd->bus->children, node) 871 pcie_bus_configure_settings(child); 872 873 pci_bus_add_devices(vmd->bus); 874 875 vmd_acpi_end(); 876 877 WARN(sysfs_create_link(&vmd->dev->dev.kobj, &vmd->bus->dev.kobj, 878 "domain"), "Can't create symlink to domain\n"); 879 return 0; 880 } 881 882 static int vmd_probe(struct pci_dev *dev, const struct pci_device_id *id) 883 { 884 unsigned long features = (unsigned long) id->driver_data; 885 struct vmd_dev *vmd; 886 int err; 887 888 if (resource_size(&dev->resource[VMD_CFGBAR]) < (1 << 20)) 889 return -ENOMEM; 890 891 vmd = devm_kzalloc(&dev->dev, sizeof(*vmd), GFP_KERNEL); 892 if (!vmd) 893 return -ENOMEM; 894 895 vmd->dev = dev; 896 vmd->instance = ida_simple_get(&vmd_instance_ida, 0, 0, GFP_KERNEL); 897 if (vmd->instance < 0) 898 return vmd->instance; 899 900 vmd->name = kasprintf(GFP_KERNEL, "vmd%d", vmd->instance); 901 if (!vmd->name) { 902 err = -ENOMEM; 903 goto out_release_instance; 904 } 905 906 err = pcim_enable_device(dev); 907 if (err < 0) 908 goto out_release_instance; 909 910 vmd->cfgbar = pcim_iomap(dev, VMD_CFGBAR, 0); 911 if (!vmd->cfgbar) { 912 err = -ENOMEM; 913 goto out_release_instance; 914 } 915 916 pci_set_master(dev); 917 if (dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(64)) && 918 dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(32))) { 919 err = -ENODEV; 920 goto out_release_instance; 921 } 922 923 if (features & VMD_FEAT_OFFSET_FIRST_VECTOR) 924 vmd->first_vec = 1; 925 926 spin_lock_init(&vmd->cfg_lock); 927 pci_set_drvdata(dev, vmd); 928 err = vmd_enable_domain(vmd, features); 929 if (err) 930 goto out_release_instance; 931 932 dev_info(&vmd->dev->dev, "Bound to PCI domain %04x\n", 933 vmd->sysdata.domain); 934 return 0; 935 936 out_release_instance: 937 ida_simple_remove(&vmd_instance_ida, vmd->instance); 938 kfree(vmd->name); 939 return err; 940 } 941 942 static void vmd_cleanup_srcu(struct vmd_dev *vmd) 943 { 944 int i; 945 946 for (i = 0; i < vmd->msix_count; i++) 947 cleanup_srcu_struct(&vmd->irqs[i].srcu); 948 } 949 950 static void vmd_remove(struct pci_dev *dev) 951 { 952 struct vmd_dev *vmd = pci_get_drvdata(dev); 953 954 sysfs_remove_link(&vmd->dev->dev.kobj, "domain"); 955 pci_stop_root_bus(vmd->bus); 956 pci_remove_root_bus(vmd->bus); 957 vmd_cleanup_srcu(vmd); 958 vmd_detach_resources(vmd); 959 vmd_remove_irq_domain(vmd); 960 ida_simple_remove(&vmd_instance_ida, vmd->instance); 961 kfree(vmd->name); 962 } 963 964 #ifdef CONFIG_PM_SLEEP 965 static int vmd_suspend(struct device *dev) 966 { 967 struct pci_dev *pdev = to_pci_dev(dev); 968 struct vmd_dev *vmd = pci_get_drvdata(pdev); 969 int i; 970 971 for (i = 0; i < vmd->msix_count; i++) 972 devm_free_irq(dev, pci_irq_vector(pdev, i), &vmd->irqs[i]); 973 974 return 0; 975 } 976 977 static int vmd_resume(struct device *dev) 978 { 979 struct pci_dev *pdev = to_pci_dev(dev); 980 struct vmd_dev *vmd = pci_get_drvdata(pdev); 981 int err, i; 982 983 for (i = 0; i < vmd->msix_count; i++) { 984 err = devm_request_irq(dev, pci_irq_vector(pdev, i), 985 vmd_irq, IRQF_NO_THREAD, 986 vmd->name, &vmd->irqs[i]); 987 if (err) 988 return err; 989 } 990 991 return 0; 992 } 993 #endif 994 static SIMPLE_DEV_PM_OPS(vmd_dev_pm_ops, vmd_suspend, vmd_resume); 995 996 static const struct pci_device_id vmd_ids[] = { 997 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_201D), 998 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP,}, 999 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_28C0), 1000 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW | 1001 VMD_FEAT_HAS_BUS_RESTRICTIONS | 1002 VMD_FEAT_CAN_BYPASS_MSI_REMAP,}, 1003 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x467f), 1004 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP | 1005 VMD_FEAT_HAS_BUS_RESTRICTIONS | 1006 VMD_FEAT_OFFSET_FIRST_VECTOR,}, 1007 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x4c3d), 1008 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP | 1009 VMD_FEAT_HAS_BUS_RESTRICTIONS | 1010 VMD_FEAT_OFFSET_FIRST_VECTOR,}, 1011 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0xa77f), 1012 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP | 1013 VMD_FEAT_HAS_BUS_RESTRICTIONS | 1014 VMD_FEAT_OFFSET_FIRST_VECTOR,}, 1015 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_9A0B), 1016 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP | 1017 VMD_FEAT_HAS_BUS_RESTRICTIONS | 1018 VMD_FEAT_OFFSET_FIRST_VECTOR,}, 1019 {0,} 1020 }; 1021 MODULE_DEVICE_TABLE(pci, vmd_ids); 1022 1023 static struct pci_driver vmd_drv = { 1024 .name = "vmd", 1025 .id_table = vmd_ids, 1026 .probe = vmd_probe, 1027 .remove = vmd_remove, 1028 .driver = { 1029 .pm = &vmd_dev_pm_ops, 1030 }, 1031 }; 1032 module_pci_driver(vmd_drv); 1033 1034 MODULE_AUTHOR("Intel Corporation"); 1035 MODULE_LICENSE("GPL v2"); 1036 MODULE_VERSION("0.6"); 1037