1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2014 Hauke Mehrtens <hauke@hauke-m.de>
4  * Copyright (C) 2015 Broadcom Corporation
5  */
6 
7 #include <linux/kernel.h>
8 #include <linux/pci.h>
9 #include <linux/msi.h>
10 #include <linux/clk.h>
11 #include <linux/module.h>
12 #include <linux/mbus.h>
13 #include <linux/slab.h>
14 #include <linux/delay.h>
15 #include <linux/interrupt.h>
16 #include <linux/irqchip/arm-gic-v3.h>
17 #include <linux/platform_device.h>
18 #include <linux/of_address.h>
19 #include <linux/of_pci.h>
20 #include <linux/of_irq.h>
21 #include <linux/of_platform.h>
22 #include <linux/phy/phy.h>
23 
24 #include "pcie-iproc.h"
25 
26 #define EP_PERST_SOURCE_SELECT_SHIFT	2
27 #define EP_PERST_SOURCE_SELECT		BIT(EP_PERST_SOURCE_SELECT_SHIFT)
28 #define EP_MODE_SURVIVE_PERST_SHIFT	1
29 #define EP_MODE_SURVIVE_PERST		BIT(EP_MODE_SURVIVE_PERST_SHIFT)
30 #define RC_PCIE_RST_OUTPUT_SHIFT	0
31 #define RC_PCIE_RST_OUTPUT		BIT(RC_PCIE_RST_OUTPUT_SHIFT)
32 #define PAXC_RESET_MASK			0x7f
33 
34 #define GIC_V3_CFG_SHIFT		0
35 #define GIC_V3_CFG			BIT(GIC_V3_CFG_SHIFT)
36 
37 #define MSI_ENABLE_CFG_SHIFT		0
38 #define MSI_ENABLE_CFG			BIT(MSI_ENABLE_CFG_SHIFT)
39 
40 #define CFG_IND_ADDR_MASK		0x00001ffc
41 
42 #define CFG_ADDR_BUS_NUM_SHIFT		20
43 #define CFG_ADDR_BUS_NUM_MASK		0x0ff00000
44 #define CFG_ADDR_DEV_NUM_SHIFT		15
45 #define CFG_ADDR_DEV_NUM_MASK		0x000f8000
46 #define CFG_ADDR_FUNC_NUM_SHIFT		12
47 #define CFG_ADDR_FUNC_NUM_MASK		0x00007000
48 #define CFG_ADDR_REG_NUM_SHIFT		2
49 #define CFG_ADDR_REG_NUM_MASK		0x00000ffc
50 #define CFG_ADDR_CFG_TYPE_SHIFT		0
51 #define CFG_ADDR_CFG_TYPE_MASK		0x00000003
52 
53 #define SYS_RC_INTX_MASK		0xf
54 
55 #define PCIE_PHYLINKUP_SHIFT		3
56 #define PCIE_PHYLINKUP			BIT(PCIE_PHYLINKUP_SHIFT)
57 #define PCIE_DL_ACTIVE_SHIFT		2
58 #define PCIE_DL_ACTIVE			BIT(PCIE_DL_ACTIVE_SHIFT)
59 
60 #define APB_ERR_EN_SHIFT		0
61 #define APB_ERR_EN			BIT(APB_ERR_EN_SHIFT)
62 
63 #define CFG_RD_SUCCESS			0
64 #define CFG_RD_UR			1
65 #define CFG_RD_CRS			2
66 #define CFG_RD_CA			3
67 #define CFG_RETRY_STATUS		0xffff0001
68 #define CFG_RETRY_STATUS_TIMEOUT_US	500000 /* 500 milliseconds */
69 
70 /* derive the enum index of the outbound/inbound mapping registers */
71 #define MAP_REG(base_reg, index)	((base_reg) + (index) * 2)
72 
73 /*
74  * Maximum number of outbound mapping window sizes that can be supported by any
75  * OARR/OMAP mapping pair
76  */
77 #define MAX_NUM_OB_WINDOW_SIZES		4
78 
79 #define OARR_VALID_SHIFT		0
80 #define OARR_VALID			BIT(OARR_VALID_SHIFT)
81 #define OARR_SIZE_CFG_SHIFT		1
82 
83 /*
84  * Maximum number of inbound mapping region sizes that can be supported by an
85  * IARR
86  */
87 #define MAX_NUM_IB_REGION_SIZES		9
88 
89 #define IMAP_VALID_SHIFT		0
90 #define IMAP_VALID			BIT(IMAP_VALID_SHIFT)
91 
92 #define IPROC_PCI_PM_CAP		0x48
93 #define IPROC_PCI_PM_CAP_MASK		0xffff
94 #define IPROC_PCI_EXP_CAP		0xac
95 
96 #define IPROC_PCIE_REG_INVALID		0xffff
97 
98 /**
99  * iProc PCIe outbound mapping controller specific parameters
100  *
101  * @window_sizes: list of supported outbound mapping window sizes in MB
102  * @nr_sizes: number of supported outbound mapping window sizes
103  */
104 struct iproc_pcie_ob_map {
105 	resource_size_t window_sizes[MAX_NUM_OB_WINDOW_SIZES];
106 	unsigned int nr_sizes;
107 };
108 
109 static const struct iproc_pcie_ob_map paxb_ob_map[] = {
110 	{
111 		/* OARR0/OMAP0 */
112 		.window_sizes = { 128, 256 },
113 		.nr_sizes = 2,
114 	},
115 	{
116 		/* OARR1/OMAP1 */
117 		.window_sizes = { 128, 256 },
118 		.nr_sizes = 2,
119 	},
120 };
121 
122 static const struct iproc_pcie_ob_map paxb_v2_ob_map[] = {
123 	{
124 		/* OARR0/OMAP0 */
125 		.window_sizes = { 128, 256 },
126 		.nr_sizes = 2,
127 	},
128 	{
129 		/* OARR1/OMAP1 */
130 		.window_sizes = { 128, 256 },
131 		.nr_sizes = 2,
132 	},
133 	{
134 		/* OARR2/OMAP2 */
135 		.window_sizes = { 128, 256, 512, 1024 },
136 		.nr_sizes = 4,
137 	},
138 	{
139 		/* OARR3/OMAP3 */
140 		.window_sizes = { 128, 256, 512, 1024 },
141 		.nr_sizes = 4,
142 	},
143 };
144 
145 /**
146  * iProc PCIe inbound mapping type
147  */
148 enum iproc_pcie_ib_map_type {
149 	/* for DDR memory */
150 	IPROC_PCIE_IB_MAP_MEM = 0,
151 
152 	/* for device I/O memory */
153 	IPROC_PCIE_IB_MAP_IO,
154 
155 	/* invalid or unused */
156 	IPROC_PCIE_IB_MAP_INVALID
157 };
158 
159 /**
160  * iProc PCIe inbound mapping controller specific parameters
161  *
162  * @type: inbound mapping region type
163  * @size_unit: inbound mapping region size unit, could be SZ_1K, SZ_1M, or
164  * SZ_1G
165  * @region_sizes: list of supported inbound mapping region sizes in KB, MB, or
166  * GB, depending on the size unit
167  * @nr_sizes: number of supported inbound mapping region sizes
168  * @nr_windows: number of supported inbound mapping windows for the region
169  * @imap_addr_offset: register offset between the upper and lower 32-bit
170  * IMAP address registers
171  * @imap_window_offset: register offset between each IMAP window
172  */
173 struct iproc_pcie_ib_map {
174 	enum iproc_pcie_ib_map_type type;
175 	unsigned int size_unit;
176 	resource_size_t region_sizes[MAX_NUM_IB_REGION_SIZES];
177 	unsigned int nr_sizes;
178 	unsigned int nr_windows;
179 	u16 imap_addr_offset;
180 	u16 imap_window_offset;
181 };
182 
183 static const struct iproc_pcie_ib_map paxb_v2_ib_map[] = {
184 	{
185 		/* IARR0/IMAP0 */
186 		.type = IPROC_PCIE_IB_MAP_IO,
187 		.size_unit = SZ_1K,
188 		.region_sizes = { 32 },
189 		.nr_sizes = 1,
190 		.nr_windows = 8,
191 		.imap_addr_offset = 0x40,
192 		.imap_window_offset = 0x4,
193 	},
194 	{
195 		/* IARR1/IMAP1 (currently unused) */
196 		.type = IPROC_PCIE_IB_MAP_INVALID,
197 	},
198 	{
199 		/* IARR2/IMAP2 */
200 		.type = IPROC_PCIE_IB_MAP_MEM,
201 		.size_unit = SZ_1M,
202 		.region_sizes = { 64, 128, 256, 512, 1024, 2048, 4096, 8192,
203 				  16384 },
204 		.nr_sizes = 9,
205 		.nr_windows = 1,
206 		.imap_addr_offset = 0x4,
207 		.imap_window_offset = 0x8,
208 	},
209 	{
210 		/* IARR3/IMAP3 */
211 		.type = IPROC_PCIE_IB_MAP_MEM,
212 		.size_unit = SZ_1G,
213 		.region_sizes = { 1, 2, 4, 8, 16, 32 },
214 		.nr_sizes = 6,
215 		.nr_windows = 8,
216 		.imap_addr_offset = 0x4,
217 		.imap_window_offset = 0x8,
218 	},
219 	{
220 		/* IARR4/IMAP4 */
221 		.type = IPROC_PCIE_IB_MAP_MEM,
222 		.size_unit = SZ_1G,
223 		.region_sizes = { 32, 64, 128, 256, 512 },
224 		.nr_sizes = 5,
225 		.nr_windows = 8,
226 		.imap_addr_offset = 0x4,
227 		.imap_window_offset = 0x8,
228 	},
229 };
230 
231 /*
232  * iProc PCIe host registers
233  */
234 enum iproc_pcie_reg {
235 	/* clock/reset signal control */
236 	IPROC_PCIE_CLK_CTRL = 0,
237 
238 	/*
239 	 * To allow MSI to be steered to an external MSI controller (e.g., ARM
240 	 * GICv3 ITS)
241 	 */
242 	IPROC_PCIE_MSI_GIC_MODE,
243 
244 	/*
245 	 * IPROC_PCIE_MSI_BASE_ADDR and IPROC_PCIE_MSI_WINDOW_SIZE define the
246 	 * window where the MSI posted writes are written, for the writes to be
247 	 * interpreted as MSI writes.
248 	 */
249 	IPROC_PCIE_MSI_BASE_ADDR,
250 	IPROC_PCIE_MSI_WINDOW_SIZE,
251 
252 	/*
253 	 * To hold the address of the register where the MSI writes are
254 	 * programed.  When ARM GICv3 ITS is used, this should be programmed
255 	 * with the address of the GITS_TRANSLATER register.
256 	 */
257 	IPROC_PCIE_MSI_ADDR_LO,
258 	IPROC_PCIE_MSI_ADDR_HI,
259 
260 	/* enable MSI */
261 	IPROC_PCIE_MSI_EN_CFG,
262 
263 	/* allow access to root complex configuration space */
264 	IPROC_PCIE_CFG_IND_ADDR,
265 	IPROC_PCIE_CFG_IND_DATA,
266 
267 	/* allow access to device configuration space */
268 	IPROC_PCIE_CFG_ADDR,
269 	IPROC_PCIE_CFG_DATA,
270 
271 	/* enable INTx */
272 	IPROC_PCIE_INTX_EN,
273 
274 	/* outbound address mapping */
275 	IPROC_PCIE_OARR0,
276 	IPROC_PCIE_OMAP0,
277 	IPROC_PCIE_OARR1,
278 	IPROC_PCIE_OMAP1,
279 	IPROC_PCIE_OARR2,
280 	IPROC_PCIE_OMAP2,
281 	IPROC_PCIE_OARR3,
282 	IPROC_PCIE_OMAP3,
283 
284 	/* inbound address mapping */
285 	IPROC_PCIE_IARR0,
286 	IPROC_PCIE_IMAP0,
287 	IPROC_PCIE_IARR1,
288 	IPROC_PCIE_IMAP1,
289 	IPROC_PCIE_IARR2,
290 	IPROC_PCIE_IMAP2,
291 	IPROC_PCIE_IARR3,
292 	IPROC_PCIE_IMAP3,
293 	IPROC_PCIE_IARR4,
294 	IPROC_PCIE_IMAP4,
295 
296 	/* config read status */
297 	IPROC_PCIE_CFG_RD_STATUS,
298 
299 	/* link status */
300 	IPROC_PCIE_LINK_STATUS,
301 
302 	/* enable APB error for unsupported requests */
303 	IPROC_PCIE_APB_ERR_EN,
304 
305 	/* total number of core registers */
306 	IPROC_PCIE_MAX_NUM_REG,
307 };
308 
309 /* iProc PCIe PAXB BCMA registers */
310 static const u16 iproc_pcie_reg_paxb_bcma[] = {
311 	[IPROC_PCIE_CLK_CTRL]		= 0x000,
312 	[IPROC_PCIE_CFG_IND_ADDR]	= 0x120,
313 	[IPROC_PCIE_CFG_IND_DATA]	= 0x124,
314 	[IPROC_PCIE_CFG_ADDR]		= 0x1f8,
315 	[IPROC_PCIE_CFG_DATA]		= 0x1fc,
316 	[IPROC_PCIE_INTX_EN]		= 0x330,
317 	[IPROC_PCIE_LINK_STATUS]	= 0xf0c,
318 };
319 
320 /* iProc PCIe PAXB registers */
321 static const u16 iproc_pcie_reg_paxb[] = {
322 	[IPROC_PCIE_CLK_CTRL]		= 0x000,
323 	[IPROC_PCIE_CFG_IND_ADDR]	= 0x120,
324 	[IPROC_PCIE_CFG_IND_DATA]	= 0x124,
325 	[IPROC_PCIE_CFG_ADDR]		= 0x1f8,
326 	[IPROC_PCIE_CFG_DATA]		= 0x1fc,
327 	[IPROC_PCIE_INTX_EN]		= 0x330,
328 	[IPROC_PCIE_OARR0]		= 0xd20,
329 	[IPROC_PCIE_OMAP0]		= 0xd40,
330 	[IPROC_PCIE_OARR1]		= 0xd28,
331 	[IPROC_PCIE_OMAP1]		= 0xd48,
332 	[IPROC_PCIE_LINK_STATUS]	= 0xf0c,
333 	[IPROC_PCIE_APB_ERR_EN]		= 0xf40,
334 };
335 
336 /* iProc PCIe PAXB v2 registers */
337 static const u16 iproc_pcie_reg_paxb_v2[] = {
338 	[IPROC_PCIE_CLK_CTRL]		= 0x000,
339 	[IPROC_PCIE_CFG_IND_ADDR]	= 0x120,
340 	[IPROC_PCIE_CFG_IND_DATA]	= 0x124,
341 	[IPROC_PCIE_CFG_ADDR]		= 0x1f8,
342 	[IPROC_PCIE_CFG_DATA]		= 0x1fc,
343 	[IPROC_PCIE_INTX_EN]		= 0x330,
344 	[IPROC_PCIE_OARR0]		= 0xd20,
345 	[IPROC_PCIE_OMAP0]		= 0xd40,
346 	[IPROC_PCIE_OARR1]		= 0xd28,
347 	[IPROC_PCIE_OMAP1]		= 0xd48,
348 	[IPROC_PCIE_OARR2]		= 0xd60,
349 	[IPROC_PCIE_OMAP2]		= 0xd68,
350 	[IPROC_PCIE_OARR3]		= 0xdf0,
351 	[IPROC_PCIE_OMAP3]		= 0xdf8,
352 	[IPROC_PCIE_IARR0]		= 0xd00,
353 	[IPROC_PCIE_IMAP0]		= 0xc00,
354 	[IPROC_PCIE_IARR2]		= 0xd10,
355 	[IPROC_PCIE_IMAP2]		= 0xcc0,
356 	[IPROC_PCIE_IARR3]		= 0xe00,
357 	[IPROC_PCIE_IMAP3]		= 0xe08,
358 	[IPROC_PCIE_IARR4]		= 0xe68,
359 	[IPROC_PCIE_IMAP4]		= 0xe70,
360 	[IPROC_PCIE_CFG_RD_STATUS]	= 0xee0,
361 	[IPROC_PCIE_LINK_STATUS]	= 0xf0c,
362 	[IPROC_PCIE_APB_ERR_EN]		= 0xf40,
363 };
364 
365 /* iProc PCIe PAXC v1 registers */
366 static const u16 iproc_pcie_reg_paxc[] = {
367 	[IPROC_PCIE_CLK_CTRL]		= 0x000,
368 	[IPROC_PCIE_CFG_IND_ADDR]	= 0x1f0,
369 	[IPROC_PCIE_CFG_IND_DATA]	= 0x1f4,
370 	[IPROC_PCIE_CFG_ADDR]		= 0x1f8,
371 	[IPROC_PCIE_CFG_DATA]		= 0x1fc,
372 };
373 
374 /* iProc PCIe PAXC v2 registers */
375 static const u16 iproc_pcie_reg_paxc_v2[] = {
376 	[IPROC_PCIE_MSI_GIC_MODE]	= 0x050,
377 	[IPROC_PCIE_MSI_BASE_ADDR]	= 0x074,
378 	[IPROC_PCIE_MSI_WINDOW_SIZE]	= 0x078,
379 	[IPROC_PCIE_MSI_ADDR_LO]	= 0x07c,
380 	[IPROC_PCIE_MSI_ADDR_HI]	= 0x080,
381 	[IPROC_PCIE_MSI_EN_CFG]		= 0x09c,
382 	[IPROC_PCIE_CFG_IND_ADDR]	= 0x1f0,
383 	[IPROC_PCIE_CFG_IND_DATA]	= 0x1f4,
384 	[IPROC_PCIE_CFG_ADDR]		= 0x1f8,
385 	[IPROC_PCIE_CFG_DATA]		= 0x1fc,
386 };
387 
388 /*
389  * List of device IDs of controllers that have corrupted capability list that
390  * require SW fixup
391  */
392 static const u16 iproc_pcie_corrupt_cap_did[] = {
393 	0x16cd,
394 	0x16f0,
395 	0xd802,
396 	0xd804
397 };
398 
399 static inline struct iproc_pcie *iproc_data(struct pci_bus *bus)
400 {
401 	struct iproc_pcie *pcie = bus->sysdata;
402 	return pcie;
403 }
404 
405 static inline bool iproc_pcie_reg_is_invalid(u16 reg_offset)
406 {
407 	return !!(reg_offset == IPROC_PCIE_REG_INVALID);
408 }
409 
410 static inline u16 iproc_pcie_reg_offset(struct iproc_pcie *pcie,
411 					enum iproc_pcie_reg reg)
412 {
413 	return pcie->reg_offsets[reg];
414 }
415 
416 static inline u32 iproc_pcie_read_reg(struct iproc_pcie *pcie,
417 				      enum iproc_pcie_reg reg)
418 {
419 	u16 offset = iproc_pcie_reg_offset(pcie, reg);
420 
421 	if (iproc_pcie_reg_is_invalid(offset))
422 		return 0;
423 
424 	return readl(pcie->base + offset);
425 }
426 
427 static inline void iproc_pcie_write_reg(struct iproc_pcie *pcie,
428 					enum iproc_pcie_reg reg, u32 val)
429 {
430 	u16 offset = iproc_pcie_reg_offset(pcie, reg);
431 
432 	if (iproc_pcie_reg_is_invalid(offset))
433 		return;
434 
435 	writel(val, pcie->base + offset);
436 }
437 
438 /**
439  * APB error forwarding can be disabled during access of configuration
440  * registers of the endpoint device, to prevent unsupported requests
441  * (typically seen during enumeration with multi-function devices) from
442  * triggering a system exception.
443  */
444 static inline void iproc_pcie_apb_err_disable(struct pci_bus *bus,
445 					      bool disable)
446 {
447 	struct iproc_pcie *pcie = iproc_data(bus);
448 	u32 val;
449 
450 	if (bus->number && pcie->has_apb_err_disable) {
451 		val = iproc_pcie_read_reg(pcie, IPROC_PCIE_APB_ERR_EN);
452 		if (disable)
453 			val &= ~APB_ERR_EN;
454 		else
455 			val |= APB_ERR_EN;
456 		iproc_pcie_write_reg(pcie, IPROC_PCIE_APB_ERR_EN, val);
457 	}
458 }
459 
460 static void __iomem *iproc_pcie_map_ep_cfg_reg(struct iproc_pcie *pcie,
461 					       unsigned int busno,
462 					       unsigned int slot,
463 					       unsigned int fn,
464 					       int where)
465 {
466 	u16 offset;
467 	u32 val;
468 
469 	/* EP device access */
470 	val = (busno << CFG_ADDR_BUS_NUM_SHIFT) |
471 		(slot << CFG_ADDR_DEV_NUM_SHIFT) |
472 		(fn << CFG_ADDR_FUNC_NUM_SHIFT) |
473 		(where & CFG_ADDR_REG_NUM_MASK) |
474 		(1 & CFG_ADDR_CFG_TYPE_MASK);
475 
476 	iproc_pcie_write_reg(pcie, IPROC_PCIE_CFG_ADDR, val);
477 	offset = iproc_pcie_reg_offset(pcie, IPROC_PCIE_CFG_DATA);
478 
479 	if (iproc_pcie_reg_is_invalid(offset))
480 		return NULL;
481 
482 	return (pcie->base + offset);
483 }
484 
485 static unsigned int iproc_pcie_cfg_retry(struct iproc_pcie *pcie,
486 					 void __iomem *cfg_data_p)
487 {
488 	int timeout = CFG_RETRY_STATUS_TIMEOUT_US;
489 	unsigned int data;
490 	u32 status;
491 
492 	/*
493 	 * As per PCIe spec r3.1, sec 2.3.2, CRS Software Visibility only
494 	 * affects config reads of the Vendor ID.  For config writes or any
495 	 * other config reads, the Root may automatically reissue the
496 	 * configuration request again as a new request.
497 	 *
498 	 * For config reads, this hardware returns CFG_RETRY_STATUS data
499 	 * when it receives a CRS completion, regardless of the address of
500 	 * the read or the CRS Software Visibility Enable bit.  As a
501 	 * partial workaround for this, we retry in software any read that
502 	 * returns CFG_RETRY_STATUS.
503 	 *
504 	 * Note that a non-Vendor ID config register may have a value of
505 	 * CFG_RETRY_STATUS.  If we read that, we can't distinguish it from
506 	 * a CRS completion, so we will incorrectly retry the read and
507 	 * eventually return the wrong data (0xffffffff).
508 	 */
509 	data = readl(cfg_data_p);
510 	while (data == CFG_RETRY_STATUS && timeout--) {
511 		/*
512 		 * CRS state is set in CFG_RD status register
513 		 * This will handle the case where CFG_RETRY_STATUS is
514 		 * valid config data.
515 		 */
516 		status = iproc_pcie_read_reg(pcie, IPROC_PCIE_CFG_RD_STATUS);
517 		if (status != CFG_RD_CRS)
518 			return data;
519 
520 		udelay(1);
521 		data = readl(cfg_data_p);
522 	}
523 
524 	if (data == CFG_RETRY_STATUS)
525 		data = 0xffffffff;
526 
527 	return data;
528 }
529 
530 static void iproc_pcie_fix_cap(struct iproc_pcie *pcie, int where, u32 *val)
531 {
532 	u32 i, dev_id;
533 
534 	switch (where & ~0x3) {
535 	case PCI_VENDOR_ID:
536 		dev_id = *val >> 16;
537 
538 		/*
539 		 * Activate fixup for those controllers that have corrupted
540 		 * capability list registers
541 		 */
542 		for (i = 0; i < ARRAY_SIZE(iproc_pcie_corrupt_cap_did); i++)
543 			if (dev_id == iproc_pcie_corrupt_cap_did[i])
544 				pcie->fix_paxc_cap = true;
545 		break;
546 
547 	case IPROC_PCI_PM_CAP:
548 		if (pcie->fix_paxc_cap) {
549 			/* advertise PM, force next capability to PCIe */
550 			*val &= ~IPROC_PCI_PM_CAP_MASK;
551 			*val |= IPROC_PCI_EXP_CAP << 8 | PCI_CAP_ID_PM;
552 		}
553 		break;
554 
555 	case IPROC_PCI_EXP_CAP:
556 		if (pcie->fix_paxc_cap) {
557 			/* advertise root port, version 2, terminate here */
558 			*val = (PCI_EXP_TYPE_ROOT_PORT << 4 | 2) << 16 |
559 				PCI_CAP_ID_EXP;
560 		}
561 		break;
562 
563 	case IPROC_PCI_EXP_CAP + PCI_EXP_RTCTL:
564 		/* Don't advertise CRS SV support */
565 		*val &= ~(PCI_EXP_RTCAP_CRSVIS << 16);
566 		break;
567 
568 	default:
569 		break;
570 	}
571 }
572 
573 static int iproc_pcie_config_read(struct pci_bus *bus, unsigned int devfn,
574 				  int where, int size, u32 *val)
575 {
576 	struct iproc_pcie *pcie = iproc_data(bus);
577 	unsigned int slot = PCI_SLOT(devfn);
578 	unsigned int fn = PCI_FUNC(devfn);
579 	unsigned int busno = bus->number;
580 	void __iomem *cfg_data_p;
581 	unsigned int data;
582 	int ret;
583 
584 	/* root complex access */
585 	if (busno == 0) {
586 		ret = pci_generic_config_read32(bus, devfn, where, size, val);
587 		if (ret == PCIBIOS_SUCCESSFUL)
588 			iproc_pcie_fix_cap(pcie, where, val);
589 
590 		return ret;
591 	}
592 
593 	cfg_data_p = iproc_pcie_map_ep_cfg_reg(pcie, busno, slot, fn, where);
594 
595 	if (!cfg_data_p)
596 		return PCIBIOS_DEVICE_NOT_FOUND;
597 
598 	data = iproc_pcie_cfg_retry(pcie, cfg_data_p);
599 
600 	*val = data;
601 	if (size <= 2)
602 		*val = (data >> (8 * (where & 3))) & ((1 << (size * 8)) - 1);
603 
604 	/*
605 	 * For PAXC and PAXCv2, the total number of PFs that one can enumerate
606 	 * depends on the firmware configuration. Unfortunately, due to an ASIC
607 	 * bug, unconfigured PFs cannot be properly hidden from the root
608 	 * complex. As a result, write access to these PFs will cause bus lock
609 	 * up on the embedded processor
610 	 *
611 	 * Since all unconfigured PFs are left with an incorrect, staled device
612 	 * ID of 0x168e (PCI_DEVICE_ID_NX2_57810), we try to catch those access
613 	 * early here and reject them all
614 	 */
615 #define DEVICE_ID_MASK     0xffff0000
616 #define DEVICE_ID_SHIFT    16
617 	if (pcie->rej_unconfig_pf &&
618 	    (where & CFG_ADDR_REG_NUM_MASK) == PCI_VENDOR_ID)
619 		if ((*val & DEVICE_ID_MASK) ==
620 		    (PCI_DEVICE_ID_NX2_57810 << DEVICE_ID_SHIFT))
621 			return PCIBIOS_FUNC_NOT_SUPPORTED;
622 
623 	return PCIBIOS_SUCCESSFUL;
624 }
625 
626 /**
627  * Note access to the configuration registers are protected at the higher layer
628  * by 'pci_lock' in drivers/pci/access.c
629  */
630 static void __iomem *iproc_pcie_map_cfg_bus(struct iproc_pcie *pcie,
631 					    int busno, unsigned int devfn,
632 					    int where)
633 {
634 	unsigned slot = PCI_SLOT(devfn);
635 	unsigned fn = PCI_FUNC(devfn);
636 	u16 offset;
637 
638 	/* root complex access */
639 	if (busno == 0) {
640 		if (slot > 0 || fn > 0)
641 			return NULL;
642 
643 		iproc_pcie_write_reg(pcie, IPROC_PCIE_CFG_IND_ADDR,
644 				     where & CFG_IND_ADDR_MASK);
645 		offset = iproc_pcie_reg_offset(pcie, IPROC_PCIE_CFG_IND_DATA);
646 		if (iproc_pcie_reg_is_invalid(offset))
647 			return NULL;
648 		else
649 			return (pcie->base + offset);
650 	}
651 
652 	return iproc_pcie_map_ep_cfg_reg(pcie, busno, slot, fn, where);
653 }
654 
655 static void __iomem *iproc_pcie_bus_map_cfg_bus(struct pci_bus *bus,
656 						unsigned int devfn,
657 						int where)
658 {
659 	return iproc_pcie_map_cfg_bus(iproc_data(bus), bus->number, devfn,
660 				      where);
661 }
662 
663 static int iproc_pci_raw_config_read32(struct iproc_pcie *pcie,
664 				       unsigned int devfn, int where,
665 				       int size, u32 *val)
666 {
667 	void __iomem *addr;
668 
669 	addr = iproc_pcie_map_cfg_bus(pcie, 0, devfn, where & ~0x3);
670 	if (!addr) {
671 		*val = ~0;
672 		return PCIBIOS_DEVICE_NOT_FOUND;
673 	}
674 
675 	*val = readl(addr);
676 
677 	if (size <= 2)
678 		*val = (*val >> (8 * (where & 3))) & ((1 << (size * 8)) - 1);
679 
680 	return PCIBIOS_SUCCESSFUL;
681 }
682 
683 static int iproc_pci_raw_config_write32(struct iproc_pcie *pcie,
684 					unsigned int devfn, int where,
685 					int size, u32 val)
686 {
687 	void __iomem *addr;
688 	u32 mask, tmp;
689 
690 	addr = iproc_pcie_map_cfg_bus(pcie, 0, devfn, where & ~0x3);
691 	if (!addr)
692 		return PCIBIOS_DEVICE_NOT_FOUND;
693 
694 	if (size == 4) {
695 		writel(val, addr);
696 		return PCIBIOS_SUCCESSFUL;
697 	}
698 
699 	mask = ~(((1 << (size * 8)) - 1) << ((where & 0x3) * 8));
700 	tmp = readl(addr) & mask;
701 	tmp |= val << ((where & 0x3) * 8);
702 	writel(tmp, addr);
703 
704 	return PCIBIOS_SUCCESSFUL;
705 }
706 
707 static int iproc_pcie_config_read32(struct pci_bus *bus, unsigned int devfn,
708 				    int where, int size, u32 *val)
709 {
710 	int ret;
711 	struct iproc_pcie *pcie = iproc_data(bus);
712 
713 	iproc_pcie_apb_err_disable(bus, true);
714 	if (pcie->iproc_cfg_read)
715 		ret = iproc_pcie_config_read(bus, devfn, where, size, val);
716 	else
717 		ret = pci_generic_config_read32(bus, devfn, where, size, val);
718 	iproc_pcie_apb_err_disable(bus, false);
719 
720 	return ret;
721 }
722 
723 static int iproc_pcie_config_write32(struct pci_bus *bus, unsigned int devfn,
724 				     int where, int size, u32 val)
725 {
726 	int ret;
727 
728 	iproc_pcie_apb_err_disable(bus, true);
729 	ret = pci_generic_config_write32(bus, devfn, where, size, val);
730 	iproc_pcie_apb_err_disable(bus, false);
731 
732 	return ret;
733 }
734 
735 static struct pci_ops iproc_pcie_ops = {
736 	.map_bus = iproc_pcie_bus_map_cfg_bus,
737 	.read = iproc_pcie_config_read32,
738 	.write = iproc_pcie_config_write32,
739 };
740 
741 static void iproc_pcie_perst_ctrl(struct iproc_pcie *pcie, bool assert)
742 {
743 	u32 val;
744 
745 	/*
746 	 * PAXC and the internal emulated endpoint device downstream should not
747 	 * be reset.  If firmware has been loaded on the endpoint device at an
748 	 * earlier boot stage, reset here causes issues.
749 	 */
750 	if (pcie->ep_is_internal)
751 		return;
752 
753 	if (assert) {
754 		val = iproc_pcie_read_reg(pcie, IPROC_PCIE_CLK_CTRL);
755 		val &= ~EP_PERST_SOURCE_SELECT & ~EP_MODE_SURVIVE_PERST &
756 			~RC_PCIE_RST_OUTPUT;
757 		iproc_pcie_write_reg(pcie, IPROC_PCIE_CLK_CTRL, val);
758 		udelay(250);
759 	} else {
760 		val = iproc_pcie_read_reg(pcie, IPROC_PCIE_CLK_CTRL);
761 		val |= RC_PCIE_RST_OUTPUT;
762 		iproc_pcie_write_reg(pcie, IPROC_PCIE_CLK_CTRL, val);
763 		msleep(100);
764 	}
765 }
766 
767 int iproc_pcie_shutdown(struct iproc_pcie *pcie)
768 {
769 	iproc_pcie_perst_ctrl(pcie, true);
770 	msleep(500);
771 
772 	return 0;
773 }
774 EXPORT_SYMBOL_GPL(iproc_pcie_shutdown);
775 
776 static int iproc_pcie_check_link(struct iproc_pcie *pcie)
777 {
778 	struct device *dev = pcie->dev;
779 	u32 hdr_type, link_ctrl, link_status, class, val;
780 	bool link_is_active = false;
781 
782 	/*
783 	 * PAXC connects to emulated endpoint devices directly and does not
784 	 * have a Serdes.  Therefore skip the link detection logic here.
785 	 */
786 	if (pcie->ep_is_internal)
787 		return 0;
788 
789 	val = iproc_pcie_read_reg(pcie, IPROC_PCIE_LINK_STATUS);
790 	if (!(val & PCIE_PHYLINKUP) || !(val & PCIE_DL_ACTIVE)) {
791 		dev_err(dev, "PHY or data link is INACTIVE!\n");
792 		return -ENODEV;
793 	}
794 
795 	/* make sure we are not in EP mode */
796 	iproc_pci_raw_config_read32(pcie, 0, PCI_HEADER_TYPE, 1, &hdr_type);
797 	if ((hdr_type & 0x7f) != PCI_HEADER_TYPE_BRIDGE) {
798 		dev_err(dev, "in EP mode, hdr=%#02x\n", hdr_type);
799 		return -EFAULT;
800 	}
801 
802 	/* force class to PCI_CLASS_BRIDGE_PCI (0x0604) */
803 #define PCI_BRIDGE_CTRL_REG_OFFSET	0x43c
804 #define PCI_CLASS_BRIDGE_MASK		0xffff00
805 #define PCI_CLASS_BRIDGE_SHIFT		8
806 	iproc_pci_raw_config_read32(pcie, 0, PCI_BRIDGE_CTRL_REG_OFFSET,
807 				    4, &class);
808 	class &= ~PCI_CLASS_BRIDGE_MASK;
809 	class |= (PCI_CLASS_BRIDGE_PCI << PCI_CLASS_BRIDGE_SHIFT);
810 	iproc_pci_raw_config_write32(pcie, 0, PCI_BRIDGE_CTRL_REG_OFFSET,
811 				     4, class);
812 
813 	/* check link status to see if link is active */
814 	iproc_pci_raw_config_read32(pcie, 0, IPROC_PCI_EXP_CAP + PCI_EXP_LNKSTA,
815 				    2, &link_status);
816 	if (link_status & PCI_EXP_LNKSTA_NLW)
817 		link_is_active = true;
818 
819 	if (!link_is_active) {
820 		/* try GEN 1 link speed */
821 #define PCI_TARGET_LINK_SPEED_MASK	0xf
822 #define PCI_TARGET_LINK_SPEED_GEN2	0x2
823 #define PCI_TARGET_LINK_SPEED_GEN1	0x1
824 		iproc_pci_raw_config_read32(pcie, 0,
825 					    IPROC_PCI_EXP_CAP + PCI_EXP_LNKCTL2,
826 					    4, &link_ctrl);
827 		if ((link_ctrl & PCI_TARGET_LINK_SPEED_MASK) ==
828 		    PCI_TARGET_LINK_SPEED_GEN2) {
829 			link_ctrl &= ~PCI_TARGET_LINK_SPEED_MASK;
830 			link_ctrl |= PCI_TARGET_LINK_SPEED_GEN1;
831 			iproc_pci_raw_config_write32(pcie, 0,
832 					IPROC_PCI_EXP_CAP + PCI_EXP_LNKCTL2,
833 					4, link_ctrl);
834 			msleep(100);
835 
836 			iproc_pci_raw_config_read32(pcie, 0,
837 					IPROC_PCI_EXP_CAP + PCI_EXP_LNKSTA,
838 					2, &link_status);
839 			if (link_status & PCI_EXP_LNKSTA_NLW)
840 				link_is_active = true;
841 		}
842 	}
843 
844 	dev_info(dev, "link: %s\n", link_is_active ? "UP" : "DOWN");
845 
846 	return link_is_active ? 0 : -ENODEV;
847 }
848 
849 static void iproc_pcie_enable(struct iproc_pcie *pcie)
850 {
851 	iproc_pcie_write_reg(pcie, IPROC_PCIE_INTX_EN, SYS_RC_INTX_MASK);
852 }
853 
854 static inline bool iproc_pcie_ob_is_valid(struct iproc_pcie *pcie,
855 					  int window_idx)
856 {
857 	u32 val;
858 
859 	val = iproc_pcie_read_reg(pcie, MAP_REG(IPROC_PCIE_OARR0, window_idx));
860 
861 	return !!(val & OARR_VALID);
862 }
863 
864 static inline int iproc_pcie_ob_write(struct iproc_pcie *pcie, int window_idx,
865 				      int size_idx, u64 axi_addr, u64 pci_addr)
866 {
867 	struct device *dev = pcie->dev;
868 	u16 oarr_offset, omap_offset;
869 
870 	/*
871 	 * Derive the OARR/OMAP offset from the first pair (OARR0/OMAP0) based
872 	 * on window index.
873 	 */
874 	oarr_offset = iproc_pcie_reg_offset(pcie, MAP_REG(IPROC_PCIE_OARR0,
875 							  window_idx));
876 	omap_offset = iproc_pcie_reg_offset(pcie, MAP_REG(IPROC_PCIE_OMAP0,
877 							  window_idx));
878 	if (iproc_pcie_reg_is_invalid(oarr_offset) ||
879 	    iproc_pcie_reg_is_invalid(omap_offset))
880 		return -EINVAL;
881 
882 	/*
883 	 * Program the OARR registers.  The upper 32-bit OARR register is
884 	 * always right after the lower 32-bit OARR register.
885 	 */
886 	writel(lower_32_bits(axi_addr) | (size_idx << OARR_SIZE_CFG_SHIFT) |
887 	       OARR_VALID, pcie->base + oarr_offset);
888 	writel(upper_32_bits(axi_addr), pcie->base + oarr_offset + 4);
889 
890 	/* now program the OMAP registers */
891 	writel(lower_32_bits(pci_addr), pcie->base + omap_offset);
892 	writel(upper_32_bits(pci_addr), pcie->base + omap_offset + 4);
893 
894 	dev_dbg(dev, "ob window [%d]: offset 0x%x axi %pap pci %pap\n",
895 		window_idx, oarr_offset, &axi_addr, &pci_addr);
896 	dev_dbg(dev, "oarr lo 0x%x oarr hi 0x%x\n",
897 		readl(pcie->base + oarr_offset),
898 		readl(pcie->base + oarr_offset + 4));
899 	dev_dbg(dev, "omap lo 0x%x omap hi 0x%x\n",
900 		readl(pcie->base + omap_offset),
901 		readl(pcie->base + omap_offset + 4));
902 
903 	return 0;
904 }
905 
906 /**
907  * Some iProc SoCs require the SW to configure the outbound address mapping
908  *
909  * Outbound address translation:
910  *
911  * iproc_pcie_address = axi_address - axi_offset
912  * OARR = iproc_pcie_address
913  * OMAP = pci_addr
914  *
915  * axi_addr -> iproc_pcie_address -> OARR -> OMAP -> pci_address
916  */
917 static int iproc_pcie_setup_ob(struct iproc_pcie *pcie, u64 axi_addr,
918 			       u64 pci_addr, resource_size_t size)
919 {
920 	struct iproc_pcie_ob *ob = &pcie->ob;
921 	struct device *dev = pcie->dev;
922 	int ret = -EINVAL, window_idx, size_idx;
923 
924 	if (axi_addr < ob->axi_offset) {
925 		dev_err(dev, "axi address %pap less than offset %pap\n",
926 			&axi_addr, &ob->axi_offset);
927 		return -EINVAL;
928 	}
929 
930 	/*
931 	 * Translate the AXI address to the internal address used by the iProc
932 	 * PCIe core before programming the OARR
933 	 */
934 	axi_addr -= ob->axi_offset;
935 
936 	/* iterate through all OARR/OMAP mapping windows */
937 	for (window_idx = ob->nr_windows - 1; window_idx >= 0; window_idx--) {
938 		const struct iproc_pcie_ob_map *ob_map =
939 			&pcie->ob_map[window_idx];
940 
941 		/*
942 		 * If current outbound window is already in use, move on to the
943 		 * next one.
944 		 */
945 		if (iproc_pcie_ob_is_valid(pcie, window_idx))
946 			continue;
947 
948 		/*
949 		 * Iterate through all supported window sizes within the
950 		 * OARR/OMAP pair to find a match.  Go through the window sizes
951 		 * in a descending order.
952 		 */
953 		for (size_idx = ob_map->nr_sizes - 1; size_idx >= 0;
954 		     size_idx--) {
955 			resource_size_t window_size =
956 				ob_map->window_sizes[size_idx] * SZ_1M;
957 
958 			/*
959 			 * Keep iterating until we reach the last window and
960 			 * with the minimal window size at index zero. In this
961 			 * case, we take a compromise by mapping it using the
962 			 * minimum window size that can be supported
963 			 */
964 			if (size < window_size) {
965 				if (size_idx > 0 || window_idx > 0)
966 					continue;
967 
968 				/*
969 				 * For the corner case of reaching the minimal
970 				 * window size that can be supported on the
971 				 * last window
972 				 */
973 				axi_addr = ALIGN_DOWN(axi_addr, window_size);
974 				pci_addr = ALIGN_DOWN(pci_addr, window_size);
975 				size = window_size;
976 			}
977 
978 			if (!IS_ALIGNED(axi_addr, window_size) ||
979 			    !IS_ALIGNED(pci_addr, window_size)) {
980 				dev_err(dev,
981 					"axi %pap or pci %pap not aligned\n",
982 					&axi_addr, &pci_addr);
983 				return -EINVAL;
984 			}
985 
986 			/*
987 			 * Match found!  Program both OARR and OMAP and mark
988 			 * them as a valid entry.
989 			 */
990 			ret = iproc_pcie_ob_write(pcie, window_idx, size_idx,
991 						  axi_addr, pci_addr);
992 			if (ret)
993 				goto err_ob;
994 
995 			size -= window_size;
996 			if (size == 0)
997 				return 0;
998 
999 			/*
1000 			 * If we are here, we are done with the current window,
1001 			 * but not yet finished all mappings.  Need to move on
1002 			 * to the next window.
1003 			 */
1004 			axi_addr += window_size;
1005 			pci_addr += window_size;
1006 			break;
1007 		}
1008 	}
1009 
1010 err_ob:
1011 	dev_err(dev, "unable to configure outbound mapping\n");
1012 	dev_err(dev,
1013 		"axi %pap, axi offset %pap, pci %pap, res size %pap\n",
1014 		&axi_addr, &ob->axi_offset, &pci_addr, &size);
1015 
1016 	return ret;
1017 }
1018 
1019 static int iproc_pcie_map_ranges(struct iproc_pcie *pcie,
1020 				 struct list_head *resources)
1021 {
1022 	struct device *dev = pcie->dev;
1023 	struct resource_entry *window;
1024 	int ret;
1025 
1026 	resource_list_for_each_entry(window, resources) {
1027 		struct resource *res = window->res;
1028 		u64 res_type = resource_type(res);
1029 
1030 		switch (res_type) {
1031 		case IORESOURCE_IO:
1032 		case IORESOURCE_BUS:
1033 			break;
1034 		case IORESOURCE_MEM:
1035 			ret = iproc_pcie_setup_ob(pcie, res->start,
1036 						  res->start - window->offset,
1037 						  resource_size(res));
1038 			if (ret)
1039 				return ret;
1040 			break;
1041 		default:
1042 			dev_err(dev, "invalid resource %pR\n", res);
1043 			return -EINVAL;
1044 		}
1045 	}
1046 
1047 	return 0;
1048 }
1049 
1050 static inline bool iproc_pcie_ib_is_in_use(struct iproc_pcie *pcie,
1051 					   int region_idx)
1052 {
1053 	const struct iproc_pcie_ib_map *ib_map = &pcie->ib_map[region_idx];
1054 	u32 val;
1055 
1056 	val = iproc_pcie_read_reg(pcie, MAP_REG(IPROC_PCIE_IARR0, region_idx));
1057 
1058 	return !!(val & (BIT(ib_map->nr_sizes) - 1));
1059 }
1060 
1061 static inline bool iproc_pcie_ib_check_type(const struct iproc_pcie_ib_map *ib_map,
1062 					    enum iproc_pcie_ib_map_type type)
1063 {
1064 	return !!(ib_map->type == type);
1065 }
1066 
1067 static int iproc_pcie_ib_write(struct iproc_pcie *pcie, int region_idx,
1068 			       int size_idx, int nr_windows, u64 axi_addr,
1069 			       u64 pci_addr, resource_size_t size)
1070 {
1071 	struct device *dev = pcie->dev;
1072 	const struct iproc_pcie_ib_map *ib_map = &pcie->ib_map[region_idx];
1073 	u16 iarr_offset, imap_offset;
1074 	u32 val;
1075 	int window_idx;
1076 
1077 	iarr_offset = iproc_pcie_reg_offset(pcie,
1078 				MAP_REG(IPROC_PCIE_IARR0, region_idx));
1079 	imap_offset = iproc_pcie_reg_offset(pcie,
1080 				MAP_REG(IPROC_PCIE_IMAP0, region_idx));
1081 	if (iproc_pcie_reg_is_invalid(iarr_offset) ||
1082 	    iproc_pcie_reg_is_invalid(imap_offset))
1083 		return -EINVAL;
1084 
1085 	dev_dbg(dev, "ib region [%d]: offset 0x%x axi %pap pci %pap\n",
1086 		region_idx, iarr_offset, &axi_addr, &pci_addr);
1087 
1088 	/*
1089 	 * Program the IARR registers.  The upper 32-bit IARR register is
1090 	 * always right after the lower 32-bit IARR register.
1091 	 */
1092 	writel(lower_32_bits(pci_addr) | BIT(size_idx),
1093 	       pcie->base + iarr_offset);
1094 	writel(upper_32_bits(pci_addr), pcie->base + iarr_offset + 4);
1095 
1096 	dev_dbg(dev, "iarr lo 0x%x iarr hi 0x%x\n",
1097 		readl(pcie->base + iarr_offset),
1098 		readl(pcie->base + iarr_offset + 4));
1099 
1100 	/*
1101 	 * Now program the IMAP registers.  Each IARR region may have one or
1102 	 * more IMAP windows.
1103 	 */
1104 	size >>= ilog2(nr_windows);
1105 	for (window_idx = 0; window_idx < nr_windows; window_idx++) {
1106 		val = readl(pcie->base + imap_offset);
1107 		val |= lower_32_bits(axi_addr) | IMAP_VALID;
1108 		writel(val, pcie->base + imap_offset);
1109 		writel(upper_32_bits(axi_addr),
1110 		       pcie->base + imap_offset + ib_map->imap_addr_offset);
1111 
1112 		dev_dbg(dev, "imap window [%d] lo 0x%x hi 0x%x\n",
1113 			window_idx, readl(pcie->base + imap_offset),
1114 			readl(pcie->base + imap_offset +
1115 			      ib_map->imap_addr_offset));
1116 
1117 		imap_offset += ib_map->imap_window_offset;
1118 		axi_addr += size;
1119 	}
1120 
1121 	return 0;
1122 }
1123 
1124 static int iproc_pcie_setup_ib(struct iproc_pcie *pcie,
1125 			       struct of_pci_range *range,
1126 			       enum iproc_pcie_ib_map_type type)
1127 {
1128 	struct device *dev = pcie->dev;
1129 	struct iproc_pcie_ib *ib = &pcie->ib;
1130 	int ret;
1131 	unsigned int region_idx, size_idx;
1132 	u64 axi_addr = range->cpu_addr, pci_addr = range->pci_addr;
1133 	resource_size_t size = range->size;
1134 
1135 	/* iterate through all IARR mapping regions */
1136 	for (region_idx = 0; region_idx < ib->nr_regions; region_idx++) {
1137 		const struct iproc_pcie_ib_map *ib_map =
1138 			&pcie->ib_map[region_idx];
1139 
1140 		/*
1141 		 * If current inbound region is already in use or not a
1142 		 * compatible type, move on to the next.
1143 		 */
1144 		if (iproc_pcie_ib_is_in_use(pcie, region_idx) ||
1145 		    !iproc_pcie_ib_check_type(ib_map, type))
1146 			continue;
1147 
1148 		/* iterate through all supported region sizes to find a match */
1149 		for (size_idx = 0; size_idx < ib_map->nr_sizes; size_idx++) {
1150 			resource_size_t region_size =
1151 			ib_map->region_sizes[size_idx] * ib_map->size_unit;
1152 
1153 			if (size != region_size)
1154 				continue;
1155 
1156 			if (!IS_ALIGNED(axi_addr, region_size) ||
1157 			    !IS_ALIGNED(pci_addr, region_size)) {
1158 				dev_err(dev,
1159 					"axi %pap or pci %pap not aligned\n",
1160 					&axi_addr, &pci_addr);
1161 				return -EINVAL;
1162 			}
1163 
1164 			/* Match found!  Program IARR and all IMAP windows. */
1165 			ret = iproc_pcie_ib_write(pcie, region_idx, size_idx,
1166 						  ib_map->nr_windows, axi_addr,
1167 						  pci_addr, size);
1168 			if (ret)
1169 				goto err_ib;
1170 			else
1171 				return 0;
1172 
1173 		}
1174 	}
1175 	ret = -EINVAL;
1176 
1177 err_ib:
1178 	dev_err(dev, "unable to configure inbound mapping\n");
1179 	dev_err(dev, "axi %pap, pci %pap, res size %pap\n",
1180 		&axi_addr, &pci_addr, &size);
1181 
1182 	return ret;
1183 }
1184 
1185 static int iproc_pcie_add_dma_range(struct device *dev,
1186 				    struct list_head *resources,
1187 				    struct of_pci_range *range)
1188 {
1189 	struct resource *res;
1190 	struct resource_entry *entry, *tmp;
1191 	struct list_head *head = resources;
1192 
1193 	res = devm_kzalloc(dev, sizeof(struct resource), GFP_KERNEL);
1194 	if (!res)
1195 		return -ENOMEM;
1196 
1197 	resource_list_for_each_entry(tmp, resources) {
1198 		if (tmp->res->start < range->cpu_addr)
1199 			head = &tmp->node;
1200 	}
1201 
1202 	res->start = range->cpu_addr;
1203 	res->end = res->start + range->size - 1;
1204 
1205 	entry = resource_list_create_entry(res, 0);
1206 	if (!entry)
1207 		return -ENOMEM;
1208 
1209 	entry->offset = res->start - range->cpu_addr;
1210 	resource_list_add(entry, head);
1211 
1212 	return 0;
1213 }
1214 
1215 static int iproc_pcie_map_dma_ranges(struct iproc_pcie *pcie)
1216 {
1217 	struct pci_host_bridge *host = pci_host_bridge_from_priv(pcie);
1218 	struct of_pci_range range;
1219 	struct of_pci_range_parser parser;
1220 	int ret;
1221 	LIST_HEAD(resources);
1222 
1223 	/* Get the dma-ranges from DT */
1224 	ret = of_pci_dma_range_parser_init(&parser, pcie->dev->of_node);
1225 	if (ret)
1226 		return ret;
1227 
1228 	for_each_of_pci_range(&parser, &range) {
1229 		ret = iproc_pcie_add_dma_range(pcie->dev,
1230 					       &resources,
1231 					       &range);
1232 		if (ret)
1233 			goto out;
1234 		/* Each range entry corresponds to an inbound mapping region */
1235 		ret = iproc_pcie_setup_ib(pcie, &range, IPROC_PCIE_IB_MAP_MEM);
1236 		if (ret)
1237 			goto out;
1238 	}
1239 
1240 	list_splice_init(&resources, &host->dma_ranges);
1241 
1242 	return 0;
1243 out:
1244 	pci_free_resource_list(&resources);
1245 	return ret;
1246 }
1247 
1248 static int iproce_pcie_get_msi(struct iproc_pcie *pcie,
1249 			       struct device_node *msi_node,
1250 			       u64 *msi_addr)
1251 {
1252 	struct device *dev = pcie->dev;
1253 	int ret;
1254 	struct resource res;
1255 
1256 	/*
1257 	 * Check if 'msi-map' points to ARM GICv3 ITS, which is the only
1258 	 * supported external MSI controller that requires steering.
1259 	 */
1260 	if (!of_device_is_compatible(msi_node, "arm,gic-v3-its")) {
1261 		dev_err(dev, "unable to find compatible MSI controller\n");
1262 		return -ENODEV;
1263 	}
1264 
1265 	/* derive GITS_TRANSLATER address from GICv3 */
1266 	ret = of_address_to_resource(msi_node, 0, &res);
1267 	if (ret < 0) {
1268 		dev_err(dev, "unable to obtain MSI controller resources\n");
1269 		return ret;
1270 	}
1271 
1272 	*msi_addr = res.start + GITS_TRANSLATER;
1273 	return 0;
1274 }
1275 
1276 static int iproc_pcie_paxb_v2_msi_steer(struct iproc_pcie *pcie, u64 msi_addr)
1277 {
1278 	int ret;
1279 	struct of_pci_range range;
1280 
1281 	memset(&range, 0, sizeof(range));
1282 	range.size = SZ_32K;
1283 	range.pci_addr = range.cpu_addr = msi_addr & ~(range.size - 1);
1284 
1285 	ret = iproc_pcie_setup_ib(pcie, &range, IPROC_PCIE_IB_MAP_IO);
1286 	return ret;
1287 }
1288 
1289 static void iproc_pcie_paxc_v2_msi_steer(struct iproc_pcie *pcie, u64 msi_addr,
1290 					 bool enable)
1291 {
1292 	u32 val;
1293 
1294 	if (!enable) {
1295 		/*
1296 		 * Disable PAXC MSI steering. All write transfers will be
1297 		 * treated as non-MSI transfers
1298 		 */
1299 		val = iproc_pcie_read_reg(pcie, IPROC_PCIE_MSI_EN_CFG);
1300 		val &= ~MSI_ENABLE_CFG;
1301 		iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_EN_CFG, val);
1302 		return;
1303 	}
1304 
1305 	/*
1306 	 * Program bits [43:13] of address of GITS_TRANSLATER register into
1307 	 * bits [30:0] of the MSI base address register.  In fact, in all iProc
1308 	 * based SoCs, all I/O register bases are well below the 32-bit
1309 	 * boundary, so we can safely assume bits [43:32] are always zeros.
1310 	 */
1311 	iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_BASE_ADDR,
1312 			     (u32)(msi_addr >> 13));
1313 
1314 	/* use a default 8K window size */
1315 	iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_WINDOW_SIZE, 0);
1316 
1317 	/* steering MSI to GICv3 ITS */
1318 	val = iproc_pcie_read_reg(pcie, IPROC_PCIE_MSI_GIC_MODE);
1319 	val |= GIC_V3_CFG;
1320 	iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_GIC_MODE, val);
1321 
1322 	/*
1323 	 * Program bits [43:2] of address of GITS_TRANSLATER register into the
1324 	 * iProc MSI address registers.
1325 	 */
1326 	msi_addr >>= 2;
1327 	iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_ADDR_HI,
1328 			     upper_32_bits(msi_addr));
1329 	iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_ADDR_LO,
1330 			     lower_32_bits(msi_addr));
1331 
1332 	/* enable MSI */
1333 	val = iproc_pcie_read_reg(pcie, IPROC_PCIE_MSI_EN_CFG);
1334 	val |= MSI_ENABLE_CFG;
1335 	iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_EN_CFG, val);
1336 }
1337 
1338 static int iproc_pcie_msi_steer(struct iproc_pcie *pcie,
1339 				struct device_node *msi_node)
1340 {
1341 	struct device *dev = pcie->dev;
1342 	int ret;
1343 	u64 msi_addr;
1344 
1345 	ret = iproce_pcie_get_msi(pcie, msi_node, &msi_addr);
1346 	if (ret < 0) {
1347 		dev_err(dev, "msi steering failed\n");
1348 		return ret;
1349 	}
1350 
1351 	switch (pcie->type) {
1352 	case IPROC_PCIE_PAXB_V2:
1353 		ret = iproc_pcie_paxb_v2_msi_steer(pcie, msi_addr);
1354 		if (ret)
1355 			return ret;
1356 		break;
1357 	case IPROC_PCIE_PAXC_V2:
1358 		iproc_pcie_paxc_v2_msi_steer(pcie, msi_addr, true);
1359 		break;
1360 	default:
1361 		return -EINVAL;
1362 	}
1363 
1364 	return 0;
1365 }
1366 
1367 static int iproc_pcie_msi_enable(struct iproc_pcie *pcie)
1368 {
1369 	struct device_node *msi_node;
1370 	int ret;
1371 
1372 	/*
1373 	 * Either the "msi-parent" or the "msi-map" phandle needs to exist
1374 	 * for us to obtain the MSI node.
1375 	 */
1376 
1377 	msi_node = of_parse_phandle(pcie->dev->of_node, "msi-parent", 0);
1378 	if (!msi_node) {
1379 		const __be32 *msi_map = NULL;
1380 		int len;
1381 		u32 phandle;
1382 
1383 		msi_map = of_get_property(pcie->dev->of_node, "msi-map", &len);
1384 		if (!msi_map)
1385 			return -ENODEV;
1386 
1387 		phandle = be32_to_cpup(msi_map + 1);
1388 		msi_node = of_find_node_by_phandle(phandle);
1389 		if (!msi_node)
1390 			return -ENODEV;
1391 	}
1392 
1393 	/*
1394 	 * Certain revisions of the iProc PCIe controller require additional
1395 	 * configurations to steer the MSI writes towards an external MSI
1396 	 * controller.
1397 	 */
1398 	if (pcie->need_msi_steer) {
1399 		ret = iproc_pcie_msi_steer(pcie, msi_node);
1400 		if (ret)
1401 			goto out_put_node;
1402 	}
1403 
1404 	/*
1405 	 * If another MSI controller is being used, the call below should fail
1406 	 * but that is okay
1407 	 */
1408 	ret = iproc_msi_init(pcie, msi_node);
1409 
1410 out_put_node:
1411 	of_node_put(msi_node);
1412 	return ret;
1413 }
1414 
1415 static void iproc_pcie_msi_disable(struct iproc_pcie *pcie)
1416 {
1417 	iproc_msi_exit(pcie);
1418 }
1419 
1420 static int iproc_pcie_rev_init(struct iproc_pcie *pcie)
1421 {
1422 	struct device *dev = pcie->dev;
1423 	unsigned int reg_idx;
1424 	const u16 *regs;
1425 
1426 	switch (pcie->type) {
1427 	case IPROC_PCIE_PAXB_BCMA:
1428 		regs = iproc_pcie_reg_paxb_bcma;
1429 		break;
1430 	case IPROC_PCIE_PAXB:
1431 		regs = iproc_pcie_reg_paxb;
1432 		pcie->has_apb_err_disable = true;
1433 		if (pcie->need_ob_cfg) {
1434 			pcie->ob_map = paxb_ob_map;
1435 			pcie->ob.nr_windows = ARRAY_SIZE(paxb_ob_map);
1436 		}
1437 		break;
1438 	case IPROC_PCIE_PAXB_V2:
1439 		regs = iproc_pcie_reg_paxb_v2;
1440 		pcie->iproc_cfg_read = true;
1441 		pcie->has_apb_err_disable = true;
1442 		if (pcie->need_ob_cfg) {
1443 			pcie->ob_map = paxb_v2_ob_map;
1444 			pcie->ob.nr_windows = ARRAY_SIZE(paxb_v2_ob_map);
1445 		}
1446 		pcie->ib.nr_regions = ARRAY_SIZE(paxb_v2_ib_map);
1447 		pcie->ib_map = paxb_v2_ib_map;
1448 		pcie->need_msi_steer = true;
1449 		dev_warn(dev, "reads of config registers that contain %#x return incorrect data\n",
1450 			 CFG_RETRY_STATUS);
1451 		break;
1452 	case IPROC_PCIE_PAXC:
1453 		regs = iproc_pcie_reg_paxc;
1454 		pcie->ep_is_internal = true;
1455 		pcie->iproc_cfg_read = true;
1456 		pcie->rej_unconfig_pf = true;
1457 		break;
1458 	case IPROC_PCIE_PAXC_V2:
1459 		regs = iproc_pcie_reg_paxc_v2;
1460 		pcie->ep_is_internal = true;
1461 		pcie->iproc_cfg_read = true;
1462 		pcie->rej_unconfig_pf = true;
1463 		pcie->need_msi_steer = true;
1464 		break;
1465 	default:
1466 		dev_err(dev, "incompatible iProc PCIe interface\n");
1467 		return -EINVAL;
1468 	}
1469 
1470 	pcie->reg_offsets = devm_kcalloc(dev, IPROC_PCIE_MAX_NUM_REG,
1471 					 sizeof(*pcie->reg_offsets),
1472 					 GFP_KERNEL);
1473 	if (!pcie->reg_offsets)
1474 		return -ENOMEM;
1475 
1476 	/* go through the register table and populate all valid registers */
1477 	pcie->reg_offsets[0] = (pcie->type == IPROC_PCIE_PAXC_V2) ?
1478 		IPROC_PCIE_REG_INVALID : regs[0];
1479 	for (reg_idx = 1; reg_idx < IPROC_PCIE_MAX_NUM_REG; reg_idx++)
1480 		pcie->reg_offsets[reg_idx] = regs[reg_idx] ?
1481 			regs[reg_idx] : IPROC_PCIE_REG_INVALID;
1482 
1483 	return 0;
1484 }
1485 
1486 int iproc_pcie_setup(struct iproc_pcie *pcie, struct list_head *res)
1487 {
1488 	struct device *dev;
1489 	int ret;
1490 	struct pci_bus *child;
1491 	struct pci_host_bridge *host = pci_host_bridge_from_priv(pcie);
1492 
1493 	dev = pcie->dev;
1494 
1495 	ret = iproc_pcie_rev_init(pcie);
1496 	if (ret) {
1497 		dev_err(dev, "unable to initialize controller parameters\n");
1498 		return ret;
1499 	}
1500 
1501 	ret = devm_request_pci_bus_resources(dev, res);
1502 	if (ret)
1503 		return ret;
1504 
1505 	ret = phy_init(pcie->phy);
1506 	if (ret) {
1507 		dev_err(dev, "unable to initialize PCIe PHY\n");
1508 		return ret;
1509 	}
1510 
1511 	ret = phy_power_on(pcie->phy);
1512 	if (ret) {
1513 		dev_err(dev, "unable to power on PCIe PHY\n");
1514 		goto err_exit_phy;
1515 	}
1516 
1517 	iproc_pcie_perst_ctrl(pcie, true);
1518 	iproc_pcie_perst_ctrl(pcie, false);
1519 
1520 	if (pcie->need_ob_cfg) {
1521 		ret = iproc_pcie_map_ranges(pcie, res);
1522 		if (ret) {
1523 			dev_err(dev, "map failed\n");
1524 			goto err_power_off_phy;
1525 		}
1526 	}
1527 
1528 	if (pcie->need_ib_cfg) {
1529 		ret = iproc_pcie_map_dma_ranges(pcie);
1530 		if (ret && ret != -ENOENT)
1531 			goto err_power_off_phy;
1532 	}
1533 
1534 	ret = iproc_pcie_check_link(pcie);
1535 	if (ret) {
1536 		dev_err(dev, "no PCIe EP device detected\n");
1537 		goto err_power_off_phy;
1538 	}
1539 
1540 	iproc_pcie_enable(pcie);
1541 
1542 	if (IS_ENABLED(CONFIG_PCI_MSI))
1543 		if (iproc_pcie_msi_enable(pcie))
1544 			dev_info(dev, "not using iProc MSI\n");
1545 
1546 	list_splice_init(res, &host->windows);
1547 	host->busnr = 0;
1548 	host->dev.parent = dev;
1549 	host->ops = &iproc_pcie_ops;
1550 	host->sysdata = pcie;
1551 	host->map_irq = pcie->map_irq;
1552 	host->swizzle_irq = pci_common_swizzle;
1553 
1554 	ret = pci_scan_root_bus_bridge(host);
1555 	if (ret < 0) {
1556 		dev_err(dev, "failed to scan host: %d\n", ret);
1557 		goto err_power_off_phy;
1558 	}
1559 
1560 	pci_assign_unassigned_bus_resources(host->bus);
1561 
1562 	pcie->root_bus = host->bus;
1563 
1564 	list_for_each_entry(child, &host->bus->children, node)
1565 		pcie_bus_configure_settings(child);
1566 
1567 	pci_bus_add_devices(host->bus);
1568 
1569 	return 0;
1570 
1571 err_power_off_phy:
1572 	phy_power_off(pcie->phy);
1573 err_exit_phy:
1574 	phy_exit(pcie->phy);
1575 	return ret;
1576 }
1577 EXPORT_SYMBOL(iproc_pcie_setup);
1578 
1579 int iproc_pcie_remove(struct iproc_pcie *pcie)
1580 {
1581 	pci_stop_root_bus(pcie->root_bus);
1582 	pci_remove_root_bus(pcie->root_bus);
1583 
1584 	iproc_pcie_msi_disable(pcie);
1585 
1586 	phy_power_off(pcie->phy);
1587 	phy_exit(pcie->phy);
1588 
1589 	return 0;
1590 }
1591 EXPORT_SYMBOL(iproc_pcie_remove);
1592 
1593 /*
1594  * The MSI parsing logic in certain revisions of Broadcom PAXC based root
1595  * complex does not work and needs to be disabled
1596  */
1597 static void quirk_paxc_disable_msi_parsing(struct pci_dev *pdev)
1598 {
1599 	struct iproc_pcie *pcie = iproc_data(pdev->bus);
1600 
1601 	if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
1602 		iproc_pcie_paxc_v2_msi_steer(pcie, 0, false);
1603 }
1604 DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0x16f0,
1605 			quirk_paxc_disable_msi_parsing);
1606 DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0xd802,
1607 			quirk_paxc_disable_msi_parsing);
1608 DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0xd804,
1609 			quirk_paxc_disable_msi_parsing);
1610 
1611 MODULE_AUTHOR("Ray Jui <rjui@broadcom.com>");
1612 MODULE_DESCRIPTION("Broadcom iPROC PCIe common driver");
1613 MODULE_LICENSE("GPL v2");
1614