1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2014 Hauke Mehrtens <hauke@hauke-m.de>
4  * Copyright (C) 2015 Broadcom Corporation
5  */
6 
7 #include <linux/kernel.h>
8 #include <linux/pci.h>
9 #include <linux/pci-ecam.h>
10 #include <linux/msi.h>
11 #include <linux/clk.h>
12 #include <linux/module.h>
13 #include <linux/mbus.h>
14 #include <linux/slab.h>
15 #include <linux/delay.h>
16 #include <linux/interrupt.h>
17 #include <linux/irqchip/arm-gic-v3.h>
18 #include <linux/platform_device.h>
19 #include <linux/of_address.h>
20 #include <linux/of_pci.h>
21 #include <linux/of_irq.h>
22 #include <linux/of_platform.h>
23 #include <linux/phy/phy.h>
24 
25 #include "pcie-iproc.h"
26 
27 #define EP_PERST_SOURCE_SELECT_SHIFT	2
28 #define EP_PERST_SOURCE_SELECT		BIT(EP_PERST_SOURCE_SELECT_SHIFT)
29 #define EP_MODE_SURVIVE_PERST_SHIFT	1
30 #define EP_MODE_SURVIVE_PERST		BIT(EP_MODE_SURVIVE_PERST_SHIFT)
31 #define RC_PCIE_RST_OUTPUT_SHIFT	0
32 #define RC_PCIE_RST_OUTPUT		BIT(RC_PCIE_RST_OUTPUT_SHIFT)
33 #define PAXC_RESET_MASK			0x7f
34 
35 #define GIC_V3_CFG_SHIFT		0
36 #define GIC_V3_CFG			BIT(GIC_V3_CFG_SHIFT)
37 
38 #define MSI_ENABLE_CFG_SHIFT		0
39 #define MSI_ENABLE_CFG			BIT(MSI_ENABLE_CFG_SHIFT)
40 
41 #define CFG_IND_ADDR_MASK		0x00001ffc
42 
43 #define CFG_ADDR_REG_NUM_MASK		0x00000ffc
44 #define CFG_ADDR_CFG_TYPE_1		1
45 
46 #define SYS_RC_INTX_MASK		0xf
47 
48 #define PCIE_PHYLINKUP_SHIFT		3
49 #define PCIE_PHYLINKUP			BIT(PCIE_PHYLINKUP_SHIFT)
50 #define PCIE_DL_ACTIVE_SHIFT		2
51 #define PCIE_DL_ACTIVE			BIT(PCIE_DL_ACTIVE_SHIFT)
52 
53 #define APB_ERR_EN_SHIFT		0
54 #define APB_ERR_EN			BIT(APB_ERR_EN_SHIFT)
55 
56 #define CFG_RD_SUCCESS			0
57 #define CFG_RD_UR			1
58 #define CFG_RD_CRS			2
59 #define CFG_RD_CA			3
60 #define CFG_RETRY_STATUS		0xffff0001
61 #define CFG_RETRY_STATUS_TIMEOUT_US	500000 /* 500 milliseconds */
62 
63 /* derive the enum index of the outbound/inbound mapping registers */
64 #define MAP_REG(base_reg, index)	((base_reg) + (index) * 2)
65 
66 /*
67  * Maximum number of outbound mapping window sizes that can be supported by any
68  * OARR/OMAP mapping pair
69  */
70 #define MAX_NUM_OB_WINDOW_SIZES		4
71 
72 #define OARR_VALID_SHIFT		0
73 #define OARR_VALID			BIT(OARR_VALID_SHIFT)
74 #define OARR_SIZE_CFG_SHIFT		1
75 
76 /*
77  * Maximum number of inbound mapping region sizes that can be supported by an
78  * IARR
79  */
80 #define MAX_NUM_IB_REGION_SIZES		9
81 
82 #define IMAP_VALID_SHIFT		0
83 #define IMAP_VALID			BIT(IMAP_VALID_SHIFT)
84 
85 #define IPROC_PCI_PM_CAP		0x48
86 #define IPROC_PCI_PM_CAP_MASK		0xffff
87 #define IPROC_PCI_EXP_CAP		0xac
88 
89 #define IPROC_PCIE_REG_INVALID		0xffff
90 
91 /**
92  * struct iproc_pcie_ob_map - iProc PCIe outbound mapping controller-specific
93  * parameters
94  * @window_sizes: list of supported outbound mapping window sizes in MB
95  * @nr_sizes: number of supported outbound mapping window sizes
96  */
97 struct iproc_pcie_ob_map {
98 	resource_size_t window_sizes[MAX_NUM_OB_WINDOW_SIZES];
99 	unsigned int nr_sizes;
100 };
101 
102 static const struct iproc_pcie_ob_map paxb_ob_map[] = {
103 	{
104 		/* OARR0/OMAP0 */
105 		.window_sizes = { 128, 256 },
106 		.nr_sizes = 2,
107 	},
108 	{
109 		/* OARR1/OMAP1 */
110 		.window_sizes = { 128, 256 },
111 		.nr_sizes = 2,
112 	},
113 };
114 
115 static const struct iproc_pcie_ob_map paxb_v2_ob_map[] = {
116 	{
117 		/* OARR0/OMAP0 */
118 		.window_sizes = { 128, 256 },
119 		.nr_sizes = 2,
120 	},
121 	{
122 		/* OARR1/OMAP1 */
123 		.window_sizes = { 128, 256 },
124 		.nr_sizes = 2,
125 	},
126 	{
127 		/* OARR2/OMAP2 */
128 		.window_sizes = { 128, 256, 512, 1024 },
129 		.nr_sizes = 4,
130 	},
131 	{
132 		/* OARR3/OMAP3 */
133 		.window_sizes = { 128, 256, 512, 1024 },
134 		.nr_sizes = 4,
135 	},
136 };
137 
138 /**
139  * enum iproc_pcie_ib_map_type - iProc PCIe inbound mapping type
140  * @IPROC_PCIE_IB_MAP_MEM: DDR memory
141  * @IPROC_PCIE_IB_MAP_IO: device I/O memory
142  * @IPROC_PCIE_IB_MAP_INVALID: invalid or unused
143  */
144 enum iproc_pcie_ib_map_type {
145 	IPROC_PCIE_IB_MAP_MEM = 0,
146 	IPROC_PCIE_IB_MAP_IO,
147 	IPROC_PCIE_IB_MAP_INVALID
148 };
149 
150 /**
151  * struct iproc_pcie_ib_map - iProc PCIe inbound mapping controller-specific
152  * parameters
153  * @type: inbound mapping region type
154  * @size_unit: inbound mapping region size unit, could be SZ_1K, SZ_1M, or
155  * SZ_1G
156  * @region_sizes: list of supported inbound mapping region sizes in KB, MB, or
157  * GB, depending on the size unit
158  * @nr_sizes: number of supported inbound mapping region sizes
159  * @nr_windows: number of supported inbound mapping windows for the region
160  * @imap_addr_offset: register offset between the upper and lower 32-bit
161  * IMAP address registers
162  * @imap_window_offset: register offset between each IMAP window
163  */
164 struct iproc_pcie_ib_map {
165 	enum iproc_pcie_ib_map_type type;
166 	unsigned int size_unit;
167 	resource_size_t region_sizes[MAX_NUM_IB_REGION_SIZES];
168 	unsigned int nr_sizes;
169 	unsigned int nr_windows;
170 	u16 imap_addr_offset;
171 	u16 imap_window_offset;
172 };
173 
174 static const struct iproc_pcie_ib_map paxb_v2_ib_map[] = {
175 	{
176 		/* IARR0/IMAP0 */
177 		.type = IPROC_PCIE_IB_MAP_IO,
178 		.size_unit = SZ_1K,
179 		.region_sizes = { 32 },
180 		.nr_sizes = 1,
181 		.nr_windows = 8,
182 		.imap_addr_offset = 0x40,
183 		.imap_window_offset = 0x4,
184 	},
185 	{
186 		/* IARR1/IMAP1 */
187 		.type = IPROC_PCIE_IB_MAP_MEM,
188 		.size_unit = SZ_1M,
189 		.region_sizes = { 8 },
190 		.nr_sizes = 1,
191 		.nr_windows = 8,
192 		.imap_addr_offset = 0x4,
193 		.imap_window_offset = 0x8,
194 
195 	},
196 	{
197 		/* IARR2/IMAP2 */
198 		.type = IPROC_PCIE_IB_MAP_MEM,
199 		.size_unit = SZ_1M,
200 		.region_sizes = { 64, 128, 256, 512, 1024, 2048, 4096, 8192,
201 				  16384 },
202 		.nr_sizes = 9,
203 		.nr_windows = 1,
204 		.imap_addr_offset = 0x4,
205 		.imap_window_offset = 0x8,
206 	},
207 	{
208 		/* IARR3/IMAP3 */
209 		.type = IPROC_PCIE_IB_MAP_MEM,
210 		.size_unit = SZ_1G,
211 		.region_sizes = { 1, 2, 4, 8, 16, 32 },
212 		.nr_sizes = 6,
213 		.nr_windows = 8,
214 		.imap_addr_offset = 0x4,
215 		.imap_window_offset = 0x8,
216 	},
217 	{
218 		/* IARR4/IMAP4 */
219 		.type = IPROC_PCIE_IB_MAP_MEM,
220 		.size_unit = SZ_1G,
221 		.region_sizes = { 32, 64, 128, 256, 512 },
222 		.nr_sizes = 5,
223 		.nr_windows = 8,
224 		.imap_addr_offset = 0x4,
225 		.imap_window_offset = 0x8,
226 	},
227 };
228 
229 /*
230  * iProc PCIe host registers
231  */
232 enum iproc_pcie_reg {
233 	/* clock/reset signal control */
234 	IPROC_PCIE_CLK_CTRL = 0,
235 
236 	/*
237 	 * To allow MSI to be steered to an external MSI controller (e.g., ARM
238 	 * GICv3 ITS)
239 	 */
240 	IPROC_PCIE_MSI_GIC_MODE,
241 
242 	/*
243 	 * IPROC_PCIE_MSI_BASE_ADDR and IPROC_PCIE_MSI_WINDOW_SIZE define the
244 	 * window where the MSI posted writes are written, for the writes to be
245 	 * interpreted as MSI writes.
246 	 */
247 	IPROC_PCIE_MSI_BASE_ADDR,
248 	IPROC_PCIE_MSI_WINDOW_SIZE,
249 
250 	/*
251 	 * To hold the address of the register where the MSI writes are
252 	 * programed.  When ARM GICv3 ITS is used, this should be programmed
253 	 * with the address of the GITS_TRANSLATER register.
254 	 */
255 	IPROC_PCIE_MSI_ADDR_LO,
256 	IPROC_PCIE_MSI_ADDR_HI,
257 
258 	/* enable MSI */
259 	IPROC_PCIE_MSI_EN_CFG,
260 
261 	/* allow access to root complex configuration space */
262 	IPROC_PCIE_CFG_IND_ADDR,
263 	IPROC_PCIE_CFG_IND_DATA,
264 
265 	/* allow access to device configuration space */
266 	IPROC_PCIE_CFG_ADDR,
267 	IPROC_PCIE_CFG_DATA,
268 
269 	/* enable INTx */
270 	IPROC_PCIE_INTX_EN,
271 
272 	/* outbound address mapping */
273 	IPROC_PCIE_OARR0,
274 	IPROC_PCIE_OMAP0,
275 	IPROC_PCIE_OARR1,
276 	IPROC_PCIE_OMAP1,
277 	IPROC_PCIE_OARR2,
278 	IPROC_PCIE_OMAP2,
279 	IPROC_PCIE_OARR3,
280 	IPROC_PCIE_OMAP3,
281 
282 	/* inbound address mapping */
283 	IPROC_PCIE_IARR0,
284 	IPROC_PCIE_IMAP0,
285 	IPROC_PCIE_IARR1,
286 	IPROC_PCIE_IMAP1,
287 	IPROC_PCIE_IARR2,
288 	IPROC_PCIE_IMAP2,
289 	IPROC_PCIE_IARR3,
290 	IPROC_PCIE_IMAP3,
291 	IPROC_PCIE_IARR4,
292 	IPROC_PCIE_IMAP4,
293 
294 	/* config read status */
295 	IPROC_PCIE_CFG_RD_STATUS,
296 
297 	/* link status */
298 	IPROC_PCIE_LINK_STATUS,
299 
300 	/* enable APB error for unsupported requests */
301 	IPROC_PCIE_APB_ERR_EN,
302 
303 	/* total number of core registers */
304 	IPROC_PCIE_MAX_NUM_REG,
305 };
306 
307 /* iProc PCIe PAXB BCMA registers */
308 static const u16 iproc_pcie_reg_paxb_bcma[IPROC_PCIE_MAX_NUM_REG] = {
309 	[IPROC_PCIE_CLK_CTRL]		= 0x000,
310 	[IPROC_PCIE_CFG_IND_ADDR]	= 0x120,
311 	[IPROC_PCIE_CFG_IND_DATA]	= 0x124,
312 	[IPROC_PCIE_CFG_ADDR]		= 0x1f8,
313 	[IPROC_PCIE_CFG_DATA]		= 0x1fc,
314 	[IPROC_PCIE_INTX_EN]		= 0x330,
315 	[IPROC_PCIE_LINK_STATUS]	= 0xf0c,
316 };
317 
318 /* iProc PCIe PAXB registers */
319 static const u16 iproc_pcie_reg_paxb[IPROC_PCIE_MAX_NUM_REG] = {
320 	[IPROC_PCIE_CLK_CTRL]		= 0x000,
321 	[IPROC_PCIE_CFG_IND_ADDR]	= 0x120,
322 	[IPROC_PCIE_CFG_IND_DATA]	= 0x124,
323 	[IPROC_PCIE_CFG_ADDR]		= 0x1f8,
324 	[IPROC_PCIE_CFG_DATA]		= 0x1fc,
325 	[IPROC_PCIE_INTX_EN]		= 0x330,
326 	[IPROC_PCIE_OARR0]		= 0xd20,
327 	[IPROC_PCIE_OMAP0]		= 0xd40,
328 	[IPROC_PCIE_OARR1]		= 0xd28,
329 	[IPROC_PCIE_OMAP1]		= 0xd48,
330 	[IPROC_PCIE_LINK_STATUS]	= 0xf0c,
331 	[IPROC_PCIE_APB_ERR_EN]		= 0xf40,
332 };
333 
334 /* iProc PCIe PAXB v2 registers */
335 static const u16 iproc_pcie_reg_paxb_v2[IPROC_PCIE_MAX_NUM_REG] = {
336 	[IPROC_PCIE_CLK_CTRL]		= 0x000,
337 	[IPROC_PCIE_CFG_IND_ADDR]	= 0x120,
338 	[IPROC_PCIE_CFG_IND_DATA]	= 0x124,
339 	[IPROC_PCIE_CFG_ADDR]		= 0x1f8,
340 	[IPROC_PCIE_CFG_DATA]		= 0x1fc,
341 	[IPROC_PCIE_INTX_EN]		= 0x330,
342 	[IPROC_PCIE_OARR0]		= 0xd20,
343 	[IPROC_PCIE_OMAP0]		= 0xd40,
344 	[IPROC_PCIE_OARR1]		= 0xd28,
345 	[IPROC_PCIE_OMAP1]		= 0xd48,
346 	[IPROC_PCIE_OARR2]		= 0xd60,
347 	[IPROC_PCIE_OMAP2]		= 0xd68,
348 	[IPROC_PCIE_OARR3]		= 0xdf0,
349 	[IPROC_PCIE_OMAP3]		= 0xdf8,
350 	[IPROC_PCIE_IARR0]		= 0xd00,
351 	[IPROC_PCIE_IMAP0]		= 0xc00,
352 	[IPROC_PCIE_IARR1]		= 0xd08,
353 	[IPROC_PCIE_IMAP1]		= 0xd70,
354 	[IPROC_PCIE_IARR2]		= 0xd10,
355 	[IPROC_PCIE_IMAP2]		= 0xcc0,
356 	[IPROC_PCIE_IARR3]		= 0xe00,
357 	[IPROC_PCIE_IMAP3]		= 0xe08,
358 	[IPROC_PCIE_IARR4]		= 0xe68,
359 	[IPROC_PCIE_IMAP4]		= 0xe70,
360 	[IPROC_PCIE_CFG_RD_STATUS]	= 0xee0,
361 	[IPROC_PCIE_LINK_STATUS]	= 0xf0c,
362 	[IPROC_PCIE_APB_ERR_EN]		= 0xf40,
363 };
364 
365 /* iProc PCIe PAXC v1 registers */
366 static const u16 iproc_pcie_reg_paxc[IPROC_PCIE_MAX_NUM_REG] = {
367 	[IPROC_PCIE_CLK_CTRL]		= 0x000,
368 	[IPROC_PCIE_CFG_IND_ADDR]	= 0x1f0,
369 	[IPROC_PCIE_CFG_IND_DATA]	= 0x1f4,
370 	[IPROC_PCIE_CFG_ADDR]		= 0x1f8,
371 	[IPROC_PCIE_CFG_DATA]		= 0x1fc,
372 };
373 
374 /* iProc PCIe PAXC v2 registers */
375 static const u16 iproc_pcie_reg_paxc_v2[IPROC_PCIE_MAX_NUM_REG] = {
376 	[IPROC_PCIE_MSI_GIC_MODE]	= 0x050,
377 	[IPROC_PCIE_MSI_BASE_ADDR]	= 0x074,
378 	[IPROC_PCIE_MSI_WINDOW_SIZE]	= 0x078,
379 	[IPROC_PCIE_MSI_ADDR_LO]	= 0x07c,
380 	[IPROC_PCIE_MSI_ADDR_HI]	= 0x080,
381 	[IPROC_PCIE_MSI_EN_CFG]		= 0x09c,
382 	[IPROC_PCIE_CFG_IND_ADDR]	= 0x1f0,
383 	[IPROC_PCIE_CFG_IND_DATA]	= 0x1f4,
384 	[IPROC_PCIE_CFG_ADDR]		= 0x1f8,
385 	[IPROC_PCIE_CFG_DATA]		= 0x1fc,
386 };
387 
388 /*
389  * List of device IDs of controllers that have corrupted capability list that
390  * require SW fixup
391  */
392 static const u16 iproc_pcie_corrupt_cap_did[] = {
393 	0x16cd,
394 	0x16f0,
395 	0xd802,
396 	0xd804
397 };
398 
399 static inline struct iproc_pcie *iproc_data(struct pci_bus *bus)
400 {
401 	struct iproc_pcie *pcie = bus->sysdata;
402 	return pcie;
403 }
404 
405 static inline bool iproc_pcie_reg_is_invalid(u16 reg_offset)
406 {
407 	return !!(reg_offset == IPROC_PCIE_REG_INVALID);
408 }
409 
410 static inline u16 iproc_pcie_reg_offset(struct iproc_pcie *pcie,
411 					enum iproc_pcie_reg reg)
412 {
413 	return pcie->reg_offsets[reg];
414 }
415 
416 static inline u32 iproc_pcie_read_reg(struct iproc_pcie *pcie,
417 				      enum iproc_pcie_reg reg)
418 {
419 	u16 offset = iproc_pcie_reg_offset(pcie, reg);
420 
421 	if (iproc_pcie_reg_is_invalid(offset))
422 		return 0;
423 
424 	return readl(pcie->base + offset);
425 }
426 
427 static inline void iproc_pcie_write_reg(struct iproc_pcie *pcie,
428 					enum iproc_pcie_reg reg, u32 val)
429 {
430 	u16 offset = iproc_pcie_reg_offset(pcie, reg);
431 
432 	if (iproc_pcie_reg_is_invalid(offset))
433 		return;
434 
435 	writel(val, pcie->base + offset);
436 }
437 
438 /*
439  * APB error forwarding can be disabled during access of configuration
440  * registers of the endpoint device, to prevent unsupported requests
441  * (typically seen during enumeration with multi-function devices) from
442  * triggering a system exception.
443  */
444 static inline void iproc_pcie_apb_err_disable(struct pci_bus *bus,
445 					      bool disable)
446 {
447 	struct iproc_pcie *pcie = iproc_data(bus);
448 	u32 val;
449 
450 	if (bus->number && pcie->has_apb_err_disable) {
451 		val = iproc_pcie_read_reg(pcie, IPROC_PCIE_APB_ERR_EN);
452 		if (disable)
453 			val &= ~APB_ERR_EN;
454 		else
455 			val |= APB_ERR_EN;
456 		iproc_pcie_write_reg(pcie, IPROC_PCIE_APB_ERR_EN, val);
457 	}
458 }
459 
460 static void __iomem *iproc_pcie_map_ep_cfg_reg(struct iproc_pcie *pcie,
461 					       unsigned int busno,
462 					       unsigned int devfn,
463 					       int where)
464 {
465 	u16 offset;
466 	u32 val;
467 
468 	/* EP device access */
469 	val = ALIGN_DOWN(PCIE_ECAM_OFFSET(busno, devfn, where), 4) |
470 		CFG_ADDR_CFG_TYPE_1;
471 
472 	iproc_pcie_write_reg(pcie, IPROC_PCIE_CFG_ADDR, val);
473 	offset = iproc_pcie_reg_offset(pcie, IPROC_PCIE_CFG_DATA);
474 
475 	if (iproc_pcie_reg_is_invalid(offset))
476 		return NULL;
477 
478 	return (pcie->base + offset);
479 }
480 
481 static unsigned int iproc_pcie_cfg_retry(struct iproc_pcie *pcie,
482 					 void __iomem *cfg_data_p)
483 {
484 	int timeout = CFG_RETRY_STATUS_TIMEOUT_US;
485 	unsigned int data;
486 	u32 status;
487 
488 	/*
489 	 * As per PCIe spec r3.1, sec 2.3.2, CRS Software Visibility only
490 	 * affects config reads of the Vendor ID.  For config writes or any
491 	 * other config reads, the Root may automatically reissue the
492 	 * configuration request again as a new request.
493 	 *
494 	 * For config reads, this hardware returns CFG_RETRY_STATUS data
495 	 * when it receives a CRS completion, regardless of the address of
496 	 * the read or the CRS Software Visibility Enable bit.  As a
497 	 * partial workaround for this, we retry in software any read that
498 	 * returns CFG_RETRY_STATUS.
499 	 *
500 	 * Note that a non-Vendor ID config register may have a value of
501 	 * CFG_RETRY_STATUS.  If we read that, we can't distinguish it from
502 	 * a CRS completion, so we will incorrectly retry the read and
503 	 * eventually return the wrong data (0xffffffff).
504 	 */
505 	data = readl(cfg_data_p);
506 	while (data == CFG_RETRY_STATUS && timeout--) {
507 		/*
508 		 * CRS state is set in CFG_RD status register
509 		 * This will handle the case where CFG_RETRY_STATUS is
510 		 * valid config data.
511 		 */
512 		status = iproc_pcie_read_reg(pcie, IPROC_PCIE_CFG_RD_STATUS);
513 		if (status != CFG_RD_CRS)
514 			return data;
515 
516 		udelay(1);
517 		data = readl(cfg_data_p);
518 	}
519 
520 	if (data == CFG_RETRY_STATUS)
521 		data = 0xffffffff;
522 
523 	return data;
524 }
525 
526 static void iproc_pcie_fix_cap(struct iproc_pcie *pcie, int where, u32 *val)
527 {
528 	u32 i, dev_id;
529 
530 	switch (where & ~0x3) {
531 	case PCI_VENDOR_ID:
532 		dev_id = *val >> 16;
533 
534 		/*
535 		 * Activate fixup for those controllers that have corrupted
536 		 * capability list registers
537 		 */
538 		for (i = 0; i < ARRAY_SIZE(iproc_pcie_corrupt_cap_did); i++)
539 			if (dev_id == iproc_pcie_corrupt_cap_did[i])
540 				pcie->fix_paxc_cap = true;
541 		break;
542 
543 	case IPROC_PCI_PM_CAP:
544 		if (pcie->fix_paxc_cap) {
545 			/* advertise PM, force next capability to PCIe */
546 			*val &= ~IPROC_PCI_PM_CAP_MASK;
547 			*val |= IPROC_PCI_EXP_CAP << 8 | PCI_CAP_ID_PM;
548 		}
549 		break;
550 
551 	case IPROC_PCI_EXP_CAP:
552 		if (pcie->fix_paxc_cap) {
553 			/* advertise root port, version 2, terminate here */
554 			*val = (PCI_EXP_TYPE_ROOT_PORT << 4 | 2) << 16 |
555 				PCI_CAP_ID_EXP;
556 		}
557 		break;
558 
559 	case IPROC_PCI_EXP_CAP + PCI_EXP_RTCTL:
560 		/* Don't advertise CRS SV support */
561 		*val &= ~(PCI_EXP_RTCAP_CRSVIS << 16);
562 		break;
563 
564 	default:
565 		break;
566 	}
567 }
568 
569 static int iproc_pcie_config_read(struct pci_bus *bus, unsigned int devfn,
570 				  int where, int size, u32 *val)
571 {
572 	struct iproc_pcie *pcie = iproc_data(bus);
573 	unsigned int busno = bus->number;
574 	void __iomem *cfg_data_p;
575 	unsigned int data;
576 	int ret;
577 
578 	/* root complex access */
579 	if (busno == 0) {
580 		ret = pci_generic_config_read32(bus, devfn, where, size, val);
581 		if (ret == PCIBIOS_SUCCESSFUL)
582 			iproc_pcie_fix_cap(pcie, where, val);
583 
584 		return ret;
585 	}
586 
587 	cfg_data_p = iproc_pcie_map_ep_cfg_reg(pcie, busno, devfn, where);
588 
589 	if (!cfg_data_p)
590 		return PCIBIOS_DEVICE_NOT_FOUND;
591 
592 	data = iproc_pcie_cfg_retry(pcie, cfg_data_p);
593 
594 	*val = data;
595 	if (size <= 2)
596 		*val = (data >> (8 * (where & 3))) & ((1 << (size * 8)) - 1);
597 
598 	/*
599 	 * For PAXC and PAXCv2, the total number of PFs that one can enumerate
600 	 * depends on the firmware configuration. Unfortunately, due to an ASIC
601 	 * bug, unconfigured PFs cannot be properly hidden from the root
602 	 * complex. As a result, write access to these PFs will cause bus lock
603 	 * up on the embedded processor
604 	 *
605 	 * Since all unconfigured PFs are left with an incorrect, staled device
606 	 * ID of 0x168e (PCI_DEVICE_ID_NX2_57810), we try to catch those access
607 	 * early here and reject them all
608 	 */
609 #define DEVICE_ID_MASK     0xffff0000
610 #define DEVICE_ID_SHIFT    16
611 	if (pcie->rej_unconfig_pf &&
612 	    (where & CFG_ADDR_REG_NUM_MASK) == PCI_VENDOR_ID)
613 		if ((*val & DEVICE_ID_MASK) ==
614 		    (PCI_DEVICE_ID_NX2_57810 << DEVICE_ID_SHIFT))
615 			return PCIBIOS_FUNC_NOT_SUPPORTED;
616 
617 	return PCIBIOS_SUCCESSFUL;
618 }
619 
620 /*
621  * Note access to the configuration registers are protected at the higher layer
622  * by 'pci_lock' in drivers/pci/access.c
623  */
624 static void __iomem *iproc_pcie_map_cfg_bus(struct iproc_pcie *pcie,
625 					    int busno, unsigned int devfn,
626 					    int where)
627 {
628 	u16 offset;
629 
630 	/* root complex access */
631 	if (busno == 0) {
632 		if (PCIE_ECAM_DEVFN(devfn) > 0)
633 			return NULL;
634 
635 		iproc_pcie_write_reg(pcie, IPROC_PCIE_CFG_IND_ADDR,
636 				     where & CFG_IND_ADDR_MASK);
637 		offset = iproc_pcie_reg_offset(pcie, IPROC_PCIE_CFG_IND_DATA);
638 		if (iproc_pcie_reg_is_invalid(offset))
639 			return NULL;
640 		else
641 			return (pcie->base + offset);
642 	}
643 
644 	return iproc_pcie_map_ep_cfg_reg(pcie, busno, devfn, where);
645 }
646 
647 static void __iomem *iproc_pcie_bus_map_cfg_bus(struct pci_bus *bus,
648 						unsigned int devfn,
649 						int where)
650 {
651 	return iproc_pcie_map_cfg_bus(iproc_data(bus), bus->number, devfn,
652 				      where);
653 }
654 
655 static int iproc_pci_raw_config_read32(struct iproc_pcie *pcie,
656 				       unsigned int devfn, int where,
657 				       int size, u32 *val)
658 {
659 	void __iomem *addr;
660 
661 	addr = iproc_pcie_map_cfg_bus(pcie, 0, devfn, where & ~0x3);
662 	if (!addr) {
663 		*val = ~0;
664 		return PCIBIOS_DEVICE_NOT_FOUND;
665 	}
666 
667 	*val = readl(addr);
668 
669 	if (size <= 2)
670 		*val = (*val >> (8 * (where & 3))) & ((1 << (size * 8)) - 1);
671 
672 	return PCIBIOS_SUCCESSFUL;
673 }
674 
675 static int iproc_pci_raw_config_write32(struct iproc_pcie *pcie,
676 					unsigned int devfn, int where,
677 					int size, u32 val)
678 {
679 	void __iomem *addr;
680 	u32 mask, tmp;
681 
682 	addr = iproc_pcie_map_cfg_bus(pcie, 0, devfn, where & ~0x3);
683 	if (!addr)
684 		return PCIBIOS_DEVICE_NOT_FOUND;
685 
686 	if (size == 4) {
687 		writel(val, addr);
688 		return PCIBIOS_SUCCESSFUL;
689 	}
690 
691 	mask = ~(((1 << (size * 8)) - 1) << ((where & 0x3) * 8));
692 	tmp = readl(addr) & mask;
693 	tmp |= val << ((where & 0x3) * 8);
694 	writel(tmp, addr);
695 
696 	return PCIBIOS_SUCCESSFUL;
697 }
698 
699 static int iproc_pcie_config_read32(struct pci_bus *bus, unsigned int devfn,
700 				    int where, int size, u32 *val)
701 {
702 	int ret;
703 	struct iproc_pcie *pcie = iproc_data(bus);
704 
705 	iproc_pcie_apb_err_disable(bus, true);
706 	if (pcie->iproc_cfg_read)
707 		ret = iproc_pcie_config_read(bus, devfn, where, size, val);
708 	else
709 		ret = pci_generic_config_read32(bus, devfn, where, size, val);
710 	iproc_pcie_apb_err_disable(bus, false);
711 
712 	return ret;
713 }
714 
715 static int iproc_pcie_config_write32(struct pci_bus *bus, unsigned int devfn,
716 				     int where, int size, u32 val)
717 {
718 	int ret;
719 
720 	iproc_pcie_apb_err_disable(bus, true);
721 	ret = pci_generic_config_write32(bus, devfn, where, size, val);
722 	iproc_pcie_apb_err_disable(bus, false);
723 
724 	return ret;
725 }
726 
727 static struct pci_ops iproc_pcie_ops = {
728 	.map_bus = iproc_pcie_bus_map_cfg_bus,
729 	.read = iproc_pcie_config_read32,
730 	.write = iproc_pcie_config_write32,
731 };
732 
733 static void iproc_pcie_perst_ctrl(struct iproc_pcie *pcie, bool assert)
734 {
735 	u32 val;
736 
737 	/*
738 	 * PAXC and the internal emulated endpoint device downstream should not
739 	 * be reset.  If firmware has been loaded on the endpoint device at an
740 	 * earlier boot stage, reset here causes issues.
741 	 */
742 	if (pcie->ep_is_internal)
743 		return;
744 
745 	if (assert) {
746 		val = iproc_pcie_read_reg(pcie, IPROC_PCIE_CLK_CTRL);
747 		val &= ~EP_PERST_SOURCE_SELECT & ~EP_MODE_SURVIVE_PERST &
748 			~RC_PCIE_RST_OUTPUT;
749 		iproc_pcie_write_reg(pcie, IPROC_PCIE_CLK_CTRL, val);
750 		udelay(250);
751 	} else {
752 		val = iproc_pcie_read_reg(pcie, IPROC_PCIE_CLK_CTRL);
753 		val |= RC_PCIE_RST_OUTPUT;
754 		iproc_pcie_write_reg(pcie, IPROC_PCIE_CLK_CTRL, val);
755 		msleep(100);
756 	}
757 }
758 
759 int iproc_pcie_shutdown(struct iproc_pcie *pcie)
760 {
761 	iproc_pcie_perst_ctrl(pcie, true);
762 	msleep(500);
763 
764 	return 0;
765 }
766 EXPORT_SYMBOL_GPL(iproc_pcie_shutdown);
767 
768 static int iproc_pcie_check_link(struct iproc_pcie *pcie)
769 {
770 	struct device *dev = pcie->dev;
771 	u32 hdr_type, link_ctrl, link_status, class, val;
772 	bool link_is_active = false;
773 
774 	/*
775 	 * PAXC connects to emulated endpoint devices directly and does not
776 	 * have a Serdes.  Therefore skip the link detection logic here.
777 	 */
778 	if (pcie->ep_is_internal)
779 		return 0;
780 
781 	val = iproc_pcie_read_reg(pcie, IPROC_PCIE_LINK_STATUS);
782 	if (!(val & PCIE_PHYLINKUP) || !(val & PCIE_DL_ACTIVE)) {
783 		dev_err(dev, "PHY or data link is INACTIVE!\n");
784 		return -ENODEV;
785 	}
786 
787 	/* make sure we are not in EP mode */
788 	iproc_pci_raw_config_read32(pcie, 0, PCI_HEADER_TYPE, 1, &hdr_type);
789 	if ((hdr_type & 0x7f) != PCI_HEADER_TYPE_BRIDGE) {
790 		dev_err(dev, "in EP mode, hdr=%#02x\n", hdr_type);
791 		return -EFAULT;
792 	}
793 
794 	/* force class to PCI_CLASS_BRIDGE_PCI (0x0604) */
795 #define PCI_BRIDGE_CTRL_REG_OFFSET	0x43c
796 #define PCI_CLASS_BRIDGE_MASK		0xffff00
797 #define PCI_CLASS_BRIDGE_SHIFT		8
798 	iproc_pci_raw_config_read32(pcie, 0, PCI_BRIDGE_CTRL_REG_OFFSET,
799 				    4, &class);
800 	class &= ~PCI_CLASS_BRIDGE_MASK;
801 	class |= (PCI_CLASS_BRIDGE_PCI << PCI_CLASS_BRIDGE_SHIFT);
802 	iproc_pci_raw_config_write32(pcie, 0, PCI_BRIDGE_CTRL_REG_OFFSET,
803 				     4, class);
804 
805 	/* check link status to see if link is active */
806 	iproc_pci_raw_config_read32(pcie, 0, IPROC_PCI_EXP_CAP + PCI_EXP_LNKSTA,
807 				    2, &link_status);
808 	if (link_status & PCI_EXP_LNKSTA_NLW)
809 		link_is_active = true;
810 
811 	if (!link_is_active) {
812 		/* try GEN 1 link speed */
813 #define PCI_TARGET_LINK_SPEED_MASK	0xf
814 #define PCI_TARGET_LINK_SPEED_GEN2	0x2
815 #define PCI_TARGET_LINK_SPEED_GEN1	0x1
816 		iproc_pci_raw_config_read32(pcie, 0,
817 					    IPROC_PCI_EXP_CAP + PCI_EXP_LNKCTL2,
818 					    4, &link_ctrl);
819 		if ((link_ctrl & PCI_TARGET_LINK_SPEED_MASK) ==
820 		    PCI_TARGET_LINK_SPEED_GEN2) {
821 			link_ctrl &= ~PCI_TARGET_LINK_SPEED_MASK;
822 			link_ctrl |= PCI_TARGET_LINK_SPEED_GEN1;
823 			iproc_pci_raw_config_write32(pcie, 0,
824 					IPROC_PCI_EXP_CAP + PCI_EXP_LNKCTL2,
825 					4, link_ctrl);
826 			msleep(100);
827 
828 			iproc_pci_raw_config_read32(pcie, 0,
829 					IPROC_PCI_EXP_CAP + PCI_EXP_LNKSTA,
830 					2, &link_status);
831 			if (link_status & PCI_EXP_LNKSTA_NLW)
832 				link_is_active = true;
833 		}
834 	}
835 
836 	dev_info(dev, "link: %s\n", link_is_active ? "UP" : "DOWN");
837 
838 	return link_is_active ? 0 : -ENODEV;
839 }
840 
841 static void iproc_pcie_enable(struct iproc_pcie *pcie)
842 {
843 	iproc_pcie_write_reg(pcie, IPROC_PCIE_INTX_EN, SYS_RC_INTX_MASK);
844 }
845 
846 static inline bool iproc_pcie_ob_is_valid(struct iproc_pcie *pcie,
847 					  int window_idx)
848 {
849 	u32 val;
850 
851 	val = iproc_pcie_read_reg(pcie, MAP_REG(IPROC_PCIE_OARR0, window_idx));
852 
853 	return !!(val & OARR_VALID);
854 }
855 
856 static inline int iproc_pcie_ob_write(struct iproc_pcie *pcie, int window_idx,
857 				      int size_idx, u64 axi_addr, u64 pci_addr)
858 {
859 	struct device *dev = pcie->dev;
860 	u16 oarr_offset, omap_offset;
861 
862 	/*
863 	 * Derive the OARR/OMAP offset from the first pair (OARR0/OMAP0) based
864 	 * on window index.
865 	 */
866 	oarr_offset = iproc_pcie_reg_offset(pcie, MAP_REG(IPROC_PCIE_OARR0,
867 							  window_idx));
868 	omap_offset = iproc_pcie_reg_offset(pcie, MAP_REG(IPROC_PCIE_OMAP0,
869 							  window_idx));
870 	if (iproc_pcie_reg_is_invalid(oarr_offset) ||
871 	    iproc_pcie_reg_is_invalid(omap_offset))
872 		return -EINVAL;
873 
874 	/*
875 	 * Program the OARR registers.  The upper 32-bit OARR register is
876 	 * always right after the lower 32-bit OARR register.
877 	 */
878 	writel(lower_32_bits(axi_addr) | (size_idx << OARR_SIZE_CFG_SHIFT) |
879 	       OARR_VALID, pcie->base + oarr_offset);
880 	writel(upper_32_bits(axi_addr), pcie->base + oarr_offset + 4);
881 
882 	/* now program the OMAP registers */
883 	writel(lower_32_bits(pci_addr), pcie->base + omap_offset);
884 	writel(upper_32_bits(pci_addr), pcie->base + omap_offset + 4);
885 
886 	dev_dbg(dev, "ob window [%d]: offset 0x%x axi %pap pci %pap\n",
887 		window_idx, oarr_offset, &axi_addr, &pci_addr);
888 	dev_dbg(dev, "oarr lo 0x%x oarr hi 0x%x\n",
889 		readl(pcie->base + oarr_offset),
890 		readl(pcie->base + oarr_offset + 4));
891 	dev_dbg(dev, "omap lo 0x%x omap hi 0x%x\n",
892 		readl(pcie->base + omap_offset),
893 		readl(pcie->base + omap_offset + 4));
894 
895 	return 0;
896 }
897 
898 /*
899  * Some iProc SoCs require the SW to configure the outbound address mapping
900  *
901  * Outbound address translation:
902  *
903  * iproc_pcie_address = axi_address - axi_offset
904  * OARR = iproc_pcie_address
905  * OMAP = pci_addr
906  *
907  * axi_addr -> iproc_pcie_address -> OARR -> OMAP -> pci_address
908  */
909 static int iproc_pcie_setup_ob(struct iproc_pcie *pcie, u64 axi_addr,
910 			       u64 pci_addr, resource_size_t size)
911 {
912 	struct iproc_pcie_ob *ob = &pcie->ob;
913 	struct device *dev = pcie->dev;
914 	int ret = -EINVAL, window_idx, size_idx;
915 
916 	if (axi_addr < ob->axi_offset) {
917 		dev_err(dev, "axi address %pap less than offset %pap\n",
918 			&axi_addr, &ob->axi_offset);
919 		return -EINVAL;
920 	}
921 
922 	/*
923 	 * Translate the AXI address to the internal address used by the iProc
924 	 * PCIe core before programming the OARR
925 	 */
926 	axi_addr -= ob->axi_offset;
927 
928 	/* iterate through all OARR/OMAP mapping windows */
929 	for (window_idx = ob->nr_windows - 1; window_idx >= 0; window_idx--) {
930 		const struct iproc_pcie_ob_map *ob_map =
931 			&pcie->ob_map[window_idx];
932 
933 		/*
934 		 * If current outbound window is already in use, move on to the
935 		 * next one.
936 		 */
937 		if (iproc_pcie_ob_is_valid(pcie, window_idx))
938 			continue;
939 
940 		/*
941 		 * Iterate through all supported window sizes within the
942 		 * OARR/OMAP pair to find a match.  Go through the window sizes
943 		 * in a descending order.
944 		 */
945 		for (size_idx = ob_map->nr_sizes - 1; size_idx >= 0;
946 		     size_idx--) {
947 			resource_size_t window_size =
948 				ob_map->window_sizes[size_idx] * SZ_1M;
949 
950 			/*
951 			 * Keep iterating until we reach the last window and
952 			 * with the minimal window size at index zero. In this
953 			 * case, we take a compromise by mapping it using the
954 			 * minimum window size that can be supported
955 			 */
956 			if (size < window_size) {
957 				if (size_idx > 0 || window_idx > 0)
958 					continue;
959 
960 				/*
961 				 * For the corner case of reaching the minimal
962 				 * window size that can be supported on the
963 				 * last window
964 				 */
965 				axi_addr = ALIGN_DOWN(axi_addr, window_size);
966 				pci_addr = ALIGN_DOWN(pci_addr, window_size);
967 				size = window_size;
968 			}
969 
970 			if (!IS_ALIGNED(axi_addr, window_size) ||
971 			    !IS_ALIGNED(pci_addr, window_size)) {
972 				dev_err(dev,
973 					"axi %pap or pci %pap not aligned\n",
974 					&axi_addr, &pci_addr);
975 				return -EINVAL;
976 			}
977 
978 			/*
979 			 * Match found!  Program both OARR and OMAP and mark
980 			 * them as a valid entry.
981 			 */
982 			ret = iproc_pcie_ob_write(pcie, window_idx, size_idx,
983 						  axi_addr, pci_addr);
984 			if (ret)
985 				goto err_ob;
986 
987 			size -= window_size;
988 			if (size == 0)
989 				return 0;
990 
991 			/*
992 			 * If we are here, we are done with the current window,
993 			 * but not yet finished all mappings.  Need to move on
994 			 * to the next window.
995 			 */
996 			axi_addr += window_size;
997 			pci_addr += window_size;
998 			break;
999 		}
1000 	}
1001 
1002 err_ob:
1003 	dev_err(dev, "unable to configure outbound mapping\n");
1004 	dev_err(dev,
1005 		"axi %pap, axi offset %pap, pci %pap, res size %pap\n",
1006 		&axi_addr, &ob->axi_offset, &pci_addr, &size);
1007 
1008 	return ret;
1009 }
1010 
1011 static int iproc_pcie_map_ranges(struct iproc_pcie *pcie,
1012 				 struct list_head *resources)
1013 {
1014 	struct device *dev = pcie->dev;
1015 	struct resource_entry *window;
1016 	int ret;
1017 
1018 	resource_list_for_each_entry(window, resources) {
1019 		struct resource *res = window->res;
1020 		u64 res_type = resource_type(res);
1021 
1022 		switch (res_type) {
1023 		case IORESOURCE_IO:
1024 		case IORESOURCE_BUS:
1025 			break;
1026 		case IORESOURCE_MEM:
1027 			ret = iproc_pcie_setup_ob(pcie, res->start,
1028 						  res->start - window->offset,
1029 						  resource_size(res));
1030 			if (ret)
1031 				return ret;
1032 			break;
1033 		default:
1034 			dev_err(dev, "invalid resource %pR\n", res);
1035 			return -EINVAL;
1036 		}
1037 	}
1038 
1039 	return 0;
1040 }
1041 
1042 static inline bool iproc_pcie_ib_is_in_use(struct iproc_pcie *pcie,
1043 					   int region_idx)
1044 {
1045 	const struct iproc_pcie_ib_map *ib_map = &pcie->ib_map[region_idx];
1046 	u32 val;
1047 
1048 	val = iproc_pcie_read_reg(pcie, MAP_REG(IPROC_PCIE_IARR0, region_idx));
1049 
1050 	return !!(val & (BIT(ib_map->nr_sizes) - 1));
1051 }
1052 
1053 static inline bool iproc_pcie_ib_check_type(const struct iproc_pcie_ib_map *ib_map,
1054 					    enum iproc_pcie_ib_map_type type)
1055 {
1056 	return !!(ib_map->type == type);
1057 }
1058 
1059 static int iproc_pcie_ib_write(struct iproc_pcie *pcie, int region_idx,
1060 			       int size_idx, int nr_windows, u64 axi_addr,
1061 			       u64 pci_addr, resource_size_t size)
1062 {
1063 	struct device *dev = pcie->dev;
1064 	const struct iproc_pcie_ib_map *ib_map = &pcie->ib_map[region_idx];
1065 	u16 iarr_offset, imap_offset;
1066 	u32 val;
1067 	int window_idx;
1068 
1069 	iarr_offset = iproc_pcie_reg_offset(pcie,
1070 				MAP_REG(IPROC_PCIE_IARR0, region_idx));
1071 	imap_offset = iproc_pcie_reg_offset(pcie,
1072 				MAP_REG(IPROC_PCIE_IMAP0, region_idx));
1073 	if (iproc_pcie_reg_is_invalid(iarr_offset) ||
1074 	    iproc_pcie_reg_is_invalid(imap_offset))
1075 		return -EINVAL;
1076 
1077 	dev_dbg(dev, "ib region [%d]: offset 0x%x axi %pap pci %pap\n",
1078 		region_idx, iarr_offset, &axi_addr, &pci_addr);
1079 
1080 	/*
1081 	 * Program the IARR registers.  The upper 32-bit IARR register is
1082 	 * always right after the lower 32-bit IARR register.
1083 	 */
1084 	writel(lower_32_bits(pci_addr) | BIT(size_idx),
1085 	       pcie->base + iarr_offset);
1086 	writel(upper_32_bits(pci_addr), pcie->base + iarr_offset + 4);
1087 
1088 	dev_dbg(dev, "iarr lo 0x%x iarr hi 0x%x\n",
1089 		readl(pcie->base + iarr_offset),
1090 		readl(pcie->base + iarr_offset + 4));
1091 
1092 	/*
1093 	 * Now program the IMAP registers.  Each IARR region may have one or
1094 	 * more IMAP windows.
1095 	 */
1096 	size >>= ilog2(nr_windows);
1097 	for (window_idx = 0; window_idx < nr_windows; window_idx++) {
1098 		val = readl(pcie->base + imap_offset);
1099 		val |= lower_32_bits(axi_addr) | IMAP_VALID;
1100 		writel(val, pcie->base + imap_offset);
1101 		writel(upper_32_bits(axi_addr),
1102 		       pcie->base + imap_offset + ib_map->imap_addr_offset);
1103 
1104 		dev_dbg(dev, "imap window [%d] lo 0x%x hi 0x%x\n",
1105 			window_idx, readl(pcie->base + imap_offset),
1106 			readl(pcie->base + imap_offset +
1107 			      ib_map->imap_addr_offset));
1108 
1109 		imap_offset += ib_map->imap_window_offset;
1110 		axi_addr += size;
1111 	}
1112 
1113 	return 0;
1114 }
1115 
1116 static int iproc_pcie_setup_ib(struct iproc_pcie *pcie,
1117 			       struct resource_entry *entry,
1118 			       enum iproc_pcie_ib_map_type type)
1119 {
1120 	struct device *dev = pcie->dev;
1121 	struct iproc_pcie_ib *ib = &pcie->ib;
1122 	int ret;
1123 	unsigned int region_idx, size_idx;
1124 	u64 axi_addr = entry->res->start;
1125 	u64 pci_addr = entry->res->start - entry->offset;
1126 	resource_size_t size = resource_size(entry->res);
1127 
1128 	/* iterate through all IARR mapping regions */
1129 	for (region_idx = 0; region_idx < ib->nr_regions; region_idx++) {
1130 		const struct iproc_pcie_ib_map *ib_map =
1131 			&pcie->ib_map[region_idx];
1132 
1133 		/*
1134 		 * If current inbound region is already in use or not a
1135 		 * compatible type, move on to the next.
1136 		 */
1137 		if (iproc_pcie_ib_is_in_use(pcie, region_idx) ||
1138 		    !iproc_pcie_ib_check_type(ib_map, type))
1139 			continue;
1140 
1141 		/* iterate through all supported region sizes to find a match */
1142 		for (size_idx = 0; size_idx < ib_map->nr_sizes; size_idx++) {
1143 			resource_size_t region_size =
1144 			ib_map->region_sizes[size_idx] * ib_map->size_unit;
1145 
1146 			if (size != region_size)
1147 				continue;
1148 
1149 			if (!IS_ALIGNED(axi_addr, region_size) ||
1150 			    !IS_ALIGNED(pci_addr, region_size)) {
1151 				dev_err(dev,
1152 					"axi %pap or pci %pap not aligned\n",
1153 					&axi_addr, &pci_addr);
1154 				return -EINVAL;
1155 			}
1156 
1157 			/* Match found!  Program IARR and all IMAP windows. */
1158 			ret = iproc_pcie_ib_write(pcie, region_idx, size_idx,
1159 						  ib_map->nr_windows, axi_addr,
1160 						  pci_addr, size);
1161 			if (ret)
1162 				goto err_ib;
1163 			else
1164 				return 0;
1165 
1166 		}
1167 	}
1168 	ret = -EINVAL;
1169 
1170 err_ib:
1171 	dev_err(dev, "unable to configure inbound mapping\n");
1172 	dev_err(dev, "axi %pap, pci %pap, res size %pap\n",
1173 		&axi_addr, &pci_addr, &size);
1174 
1175 	return ret;
1176 }
1177 
1178 static int iproc_pcie_map_dma_ranges(struct iproc_pcie *pcie)
1179 {
1180 	struct pci_host_bridge *host = pci_host_bridge_from_priv(pcie);
1181 	struct resource_entry *entry;
1182 	int ret = 0;
1183 
1184 	resource_list_for_each_entry(entry, &host->dma_ranges) {
1185 		/* Each range entry corresponds to an inbound mapping region */
1186 		ret = iproc_pcie_setup_ib(pcie, entry, IPROC_PCIE_IB_MAP_MEM);
1187 		if (ret)
1188 			break;
1189 	}
1190 
1191 	return ret;
1192 }
1193 
1194 static void iproc_pcie_invalidate_mapping(struct iproc_pcie *pcie)
1195 {
1196 	struct iproc_pcie_ib *ib = &pcie->ib;
1197 	struct iproc_pcie_ob *ob = &pcie->ob;
1198 	int idx;
1199 
1200 	if (pcie->ep_is_internal)
1201 		return;
1202 
1203 	if (pcie->need_ob_cfg) {
1204 		/* iterate through all OARR mapping regions */
1205 		for (idx = ob->nr_windows - 1; idx >= 0; idx--) {
1206 			iproc_pcie_write_reg(pcie,
1207 					     MAP_REG(IPROC_PCIE_OARR0, idx), 0);
1208 		}
1209 	}
1210 
1211 	if (pcie->need_ib_cfg) {
1212 		/* iterate through all IARR mapping regions */
1213 		for (idx = 0; idx < ib->nr_regions; idx++) {
1214 			iproc_pcie_write_reg(pcie,
1215 					     MAP_REG(IPROC_PCIE_IARR0, idx), 0);
1216 		}
1217 	}
1218 }
1219 
1220 static int iproce_pcie_get_msi(struct iproc_pcie *pcie,
1221 			       struct device_node *msi_node,
1222 			       u64 *msi_addr)
1223 {
1224 	struct device *dev = pcie->dev;
1225 	int ret;
1226 	struct resource res;
1227 
1228 	/*
1229 	 * Check if 'msi-map' points to ARM GICv3 ITS, which is the only
1230 	 * supported external MSI controller that requires steering.
1231 	 */
1232 	if (!of_device_is_compatible(msi_node, "arm,gic-v3-its")) {
1233 		dev_err(dev, "unable to find compatible MSI controller\n");
1234 		return -ENODEV;
1235 	}
1236 
1237 	/* derive GITS_TRANSLATER address from GICv3 */
1238 	ret = of_address_to_resource(msi_node, 0, &res);
1239 	if (ret < 0) {
1240 		dev_err(dev, "unable to obtain MSI controller resources\n");
1241 		return ret;
1242 	}
1243 
1244 	*msi_addr = res.start + GITS_TRANSLATER;
1245 	return 0;
1246 }
1247 
1248 static int iproc_pcie_paxb_v2_msi_steer(struct iproc_pcie *pcie, u64 msi_addr)
1249 {
1250 	int ret;
1251 	struct resource_entry entry;
1252 
1253 	memset(&entry, 0, sizeof(entry));
1254 	entry.res = &entry.__res;
1255 
1256 	msi_addr &= ~(SZ_32K - 1);
1257 	entry.res->start = msi_addr;
1258 	entry.res->end = msi_addr + SZ_32K - 1;
1259 
1260 	ret = iproc_pcie_setup_ib(pcie, &entry, IPROC_PCIE_IB_MAP_IO);
1261 	return ret;
1262 }
1263 
1264 static void iproc_pcie_paxc_v2_msi_steer(struct iproc_pcie *pcie, u64 msi_addr,
1265 					 bool enable)
1266 {
1267 	u32 val;
1268 
1269 	if (!enable) {
1270 		/*
1271 		 * Disable PAXC MSI steering. All write transfers will be
1272 		 * treated as non-MSI transfers
1273 		 */
1274 		val = iproc_pcie_read_reg(pcie, IPROC_PCIE_MSI_EN_CFG);
1275 		val &= ~MSI_ENABLE_CFG;
1276 		iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_EN_CFG, val);
1277 		return;
1278 	}
1279 
1280 	/*
1281 	 * Program bits [43:13] of address of GITS_TRANSLATER register into
1282 	 * bits [30:0] of the MSI base address register.  In fact, in all iProc
1283 	 * based SoCs, all I/O register bases are well below the 32-bit
1284 	 * boundary, so we can safely assume bits [43:32] are always zeros.
1285 	 */
1286 	iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_BASE_ADDR,
1287 			     (u32)(msi_addr >> 13));
1288 
1289 	/* use a default 8K window size */
1290 	iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_WINDOW_SIZE, 0);
1291 
1292 	/* steering MSI to GICv3 ITS */
1293 	val = iproc_pcie_read_reg(pcie, IPROC_PCIE_MSI_GIC_MODE);
1294 	val |= GIC_V3_CFG;
1295 	iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_GIC_MODE, val);
1296 
1297 	/*
1298 	 * Program bits [43:2] of address of GITS_TRANSLATER register into the
1299 	 * iProc MSI address registers.
1300 	 */
1301 	msi_addr >>= 2;
1302 	iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_ADDR_HI,
1303 			     upper_32_bits(msi_addr));
1304 	iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_ADDR_LO,
1305 			     lower_32_bits(msi_addr));
1306 
1307 	/* enable MSI */
1308 	val = iproc_pcie_read_reg(pcie, IPROC_PCIE_MSI_EN_CFG);
1309 	val |= MSI_ENABLE_CFG;
1310 	iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_EN_CFG, val);
1311 }
1312 
1313 static int iproc_pcie_msi_steer(struct iproc_pcie *pcie,
1314 				struct device_node *msi_node)
1315 {
1316 	struct device *dev = pcie->dev;
1317 	int ret;
1318 	u64 msi_addr;
1319 
1320 	ret = iproce_pcie_get_msi(pcie, msi_node, &msi_addr);
1321 	if (ret < 0) {
1322 		dev_err(dev, "msi steering failed\n");
1323 		return ret;
1324 	}
1325 
1326 	switch (pcie->type) {
1327 	case IPROC_PCIE_PAXB_V2:
1328 		ret = iproc_pcie_paxb_v2_msi_steer(pcie, msi_addr);
1329 		if (ret)
1330 			return ret;
1331 		break;
1332 	case IPROC_PCIE_PAXC_V2:
1333 		iproc_pcie_paxc_v2_msi_steer(pcie, msi_addr, true);
1334 		break;
1335 	default:
1336 		return -EINVAL;
1337 	}
1338 
1339 	return 0;
1340 }
1341 
1342 static int iproc_pcie_msi_enable(struct iproc_pcie *pcie)
1343 {
1344 	struct device_node *msi_node;
1345 	int ret;
1346 
1347 	/*
1348 	 * Either the "msi-parent" or the "msi-map" phandle needs to exist
1349 	 * for us to obtain the MSI node.
1350 	 */
1351 
1352 	msi_node = of_parse_phandle(pcie->dev->of_node, "msi-parent", 0);
1353 	if (!msi_node) {
1354 		const __be32 *msi_map = NULL;
1355 		int len;
1356 		u32 phandle;
1357 
1358 		msi_map = of_get_property(pcie->dev->of_node, "msi-map", &len);
1359 		if (!msi_map)
1360 			return -ENODEV;
1361 
1362 		phandle = be32_to_cpup(msi_map + 1);
1363 		msi_node = of_find_node_by_phandle(phandle);
1364 		if (!msi_node)
1365 			return -ENODEV;
1366 	}
1367 
1368 	/*
1369 	 * Certain revisions of the iProc PCIe controller require additional
1370 	 * configurations to steer the MSI writes towards an external MSI
1371 	 * controller.
1372 	 */
1373 	if (pcie->need_msi_steer) {
1374 		ret = iproc_pcie_msi_steer(pcie, msi_node);
1375 		if (ret)
1376 			goto out_put_node;
1377 	}
1378 
1379 	/*
1380 	 * If another MSI controller is being used, the call below should fail
1381 	 * but that is okay
1382 	 */
1383 	ret = iproc_msi_init(pcie, msi_node);
1384 
1385 out_put_node:
1386 	of_node_put(msi_node);
1387 	return ret;
1388 }
1389 
1390 static void iproc_pcie_msi_disable(struct iproc_pcie *pcie)
1391 {
1392 	iproc_msi_exit(pcie);
1393 }
1394 
1395 static int iproc_pcie_rev_init(struct iproc_pcie *pcie)
1396 {
1397 	struct device *dev = pcie->dev;
1398 	unsigned int reg_idx;
1399 	const u16 *regs;
1400 
1401 	switch (pcie->type) {
1402 	case IPROC_PCIE_PAXB_BCMA:
1403 		regs = iproc_pcie_reg_paxb_bcma;
1404 		break;
1405 	case IPROC_PCIE_PAXB:
1406 		regs = iproc_pcie_reg_paxb;
1407 		pcie->has_apb_err_disable = true;
1408 		if (pcie->need_ob_cfg) {
1409 			pcie->ob_map = paxb_ob_map;
1410 			pcie->ob.nr_windows = ARRAY_SIZE(paxb_ob_map);
1411 		}
1412 		break;
1413 	case IPROC_PCIE_PAXB_V2:
1414 		regs = iproc_pcie_reg_paxb_v2;
1415 		pcie->iproc_cfg_read = true;
1416 		pcie->has_apb_err_disable = true;
1417 		if (pcie->need_ob_cfg) {
1418 			pcie->ob_map = paxb_v2_ob_map;
1419 			pcie->ob.nr_windows = ARRAY_SIZE(paxb_v2_ob_map);
1420 		}
1421 		pcie->ib.nr_regions = ARRAY_SIZE(paxb_v2_ib_map);
1422 		pcie->ib_map = paxb_v2_ib_map;
1423 		pcie->need_msi_steer = true;
1424 		dev_warn(dev, "reads of config registers that contain %#x return incorrect data\n",
1425 			 CFG_RETRY_STATUS);
1426 		break;
1427 	case IPROC_PCIE_PAXC:
1428 		regs = iproc_pcie_reg_paxc;
1429 		pcie->ep_is_internal = true;
1430 		pcie->iproc_cfg_read = true;
1431 		pcie->rej_unconfig_pf = true;
1432 		break;
1433 	case IPROC_PCIE_PAXC_V2:
1434 		regs = iproc_pcie_reg_paxc_v2;
1435 		pcie->ep_is_internal = true;
1436 		pcie->iproc_cfg_read = true;
1437 		pcie->rej_unconfig_pf = true;
1438 		pcie->need_msi_steer = true;
1439 		break;
1440 	default:
1441 		dev_err(dev, "incompatible iProc PCIe interface\n");
1442 		return -EINVAL;
1443 	}
1444 
1445 	pcie->reg_offsets = devm_kcalloc(dev, IPROC_PCIE_MAX_NUM_REG,
1446 					 sizeof(*pcie->reg_offsets),
1447 					 GFP_KERNEL);
1448 	if (!pcie->reg_offsets)
1449 		return -ENOMEM;
1450 
1451 	/* go through the register table and populate all valid registers */
1452 	pcie->reg_offsets[0] = (pcie->type == IPROC_PCIE_PAXC_V2) ?
1453 		IPROC_PCIE_REG_INVALID : regs[0];
1454 	for (reg_idx = 1; reg_idx < IPROC_PCIE_MAX_NUM_REG; reg_idx++)
1455 		pcie->reg_offsets[reg_idx] = regs[reg_idx] ?
1456 			regs[reg_idx] : IPROC_PCIE_REG_INVALID;
1457 
1458 	return 0;
1459 }
1460 
1461 int iproc_pcie_setup(struct iproc_pcie *pcie, struct list_head *res)
1462 {
1463 	struct device *dev;
1464 	int ret;
1465 	struct pci_dev *pdev;
1466 	struct pci_host_bridge *host = pci_host_bridge_from_priv(pcie);
1467 
1468 	dev = pcie->dev;
1469 
1470 	ret = iproc_pcie_rev_init(pcie);
1471 	if (ret) {
1472 		dev_err(dev, "unable to initialize controller parameters\n");
1473 		return ret;
1474 	}
1475 
1476 	ret = phy_init(pcie->phy);
1477 	if (ret) {
1478 		dev_err(dev, "unable to initialize PCIe PHY\n");
1479 		return ret;
1480 	}
1481 
1482 	ret = phy_power_on(pcie->phy);
1483 	if (ret) {
1484 		dev_err(dev, "unable to power on PCIe PHY\n");
1485 		goto err_exit_phy;
1486 	}
1487 
1488 	iproc_pcie_perst_ctrl(pcie, true);
1489 	iproc_pcie_perst_ctrl(pcie, false);
1490 
1491 	iproc_pcie_invalidate_mapping(pcie);
1492 
1493 	if (pcie->need_ob_cfg) {
1494 		ret = iproc_pcie_map_ranges(pcie, res);
1495 		if (ret) {
1496 			dev_err(dev, "map failed\n");
1497 			goto err_power_off_phy;
1498 		}
1499 	}
1500 
1501 	if (pcie->need_ib_cfg) {
1502 		ret = iproc_pcie_map_dma_ranges(pcie);
1503 		if (ret && ret != -ENOENT)
1504 			goto err_power_off_phy;
1505 	}
1506 
1507 	ret = iproc_pcie_check_link(pcie);
1508 	if (ret) {
1509 		dev_err(dev, "no PCIe EP device detected\n");
1510 		goto err_power_off_phy;
1511 	}
1512 
1513 	iproc_pcie_enable(pcie);
1514 
1515 	if (IS_ENABLED(CONFIG_PCI_MSI))
1516 		if (iproc_pcie_msi_enable(pcie))
1517 			dev_info(dev, "not using iProc MSI\n");
1518 
1519 	host->ops = &iproc_pcie_ops;
1520 	host->sysdata = pcie;
1521 	host->map_irq = pcie->map_irq;
1522 
1523 	ret = pci_host_probe(host);
1524 	if (ret < 0) {
1525 		dev_err(dev, "failed to scan host: %d\n", ret);
1526 		goto err_power_off_phy;
1527 	}
1528 
1529 	for_each_pci_bridge(pdev, host->bus) {
1530 		if (pci_pcie_type(pdev) == PCI_EXP_TYPE_ROOT_PORT)
1531 			pcie_print_link_status(pdev);
1532 	}
1533 
1534 	return 0;
1535 
1536 err_power_off_phy:
1537 	phy_power_off(pcie->phy);
1538 err_exit_phy:
1539 	phy_exit(pcie->phy);
1540 	return ret;
1541 }
1542 EXPORT_SYMBOL(iproc_pcie_setup);
1543 
1544 int iproc_pcie_remove(struct iproc_pcie *pcie)
1545 {
1546 	struct pci_host_bridge *host = pci_host_bridge_from_priv(pcie);
1547 
1548 	pci_stop_root_bus(host->bus);
1549 	pci_remove_root_bus(host->bus);
1550 
1551 	iproc_pcie_msi_disable(pcie);
1552 
1553 	phy_power_off(pcie->phy);
1554 	phy_exit(pcie->phy);
1555 
1556 	return 0;
1557 }
1558 EXPORT_SYMBOL(iproc_pcie_remove);
1559 
1560 /*
1561  * The MSI parsing logic in certain revisions of Broadcom PAXC based root
1562  * complex does not work and needs to be disabled
1563  */
1564 static void quirk_paxc_disable_msi_parsing(struct pci_dev *pdev)
1565 {
1566 	struct iproc_pcie *pcie = iproc_data(pdev->bus);
1567 
1568 	if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
1569 		iproc_pcie_paxc_v2_msi_steer(pcie, 0, false);
1570 }
1571 DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0x16f0,
1572 			quirk_paxc_disable_msi_parsing);
1573 DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0xd802,
1574 			quirk_paxc_disable_msi_parsing);
1575 DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0xd804,
1576 			quirk_paxc_disable_msi_parsing);
1577 
1578 static void quirk_paxc_bridge(struct pci_dev *pdev)
1579 {
1580 	/*
1581 	 * The PCI config space is shared with the PAXC root port and the first
1582 	 * Ethernet device.  So, we need to workaround this by telling the PCI
1583 	 * code that the bridge is not an Ethernet device.
1584 	 */
1585 	if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
1586 		pdev->class = PCI_CLASS_BRIDGE_PCI << 8;
1587 
1588 	/*
1589 	 * MPSS is not being set properly (as it is currently 0).  This is
1590 	 * because that area of the PCI config space is hard coded to zero, and
1591 	 * is not modifiable by firmware.  Set this to 2 (e.g., 512 byte MPS)
1592 	 * so that the MPS can be set to the real max value.
1593 	 */
1594 	pdev->pcie_mpss = 2;
1595 }
1596 DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0x16cd, quirk_paxc_bridge);
1597 DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0x16f0, quirk_paxc_bridge);
1598 DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0xd750, quirk_paxc_bridge);
1599 DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0xd802, quirk_paxc_bridge);
1600 DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0xd804, quirk_paxc_bridge);
1601 
1602 MODULE_AUTHOR("Ray Jui <rjui@broadcom.com>");
1603 MODULE_DESCRIPTION("Broadcom iPROC PCIe common driver");
1604 MODULE_LICENSE("GPL v2");
1605