1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2014 Hauke Mehrtens <hauke@hauke-m.de> 4 * Copyright (C) 2015 Broadcom Corporation 5 */ 6 7 #include <linux/kernel.h> 8 #include <linux/pci.h> 9 #include <linux/msi.h> 10 #include <linux/clk.h> 11 #include <linux/module.h> 12 #include <linux/mbus.h> 13 #include <linux/slab.h> 14 #include <linux/delay.h> 15 #include <linux/interrupt.h> 16 #include <linux/irqchip/arm-gic-v3.h> 17 #include <linux/platform_device.h> 18 #include <linux/of_address.h> 19 #include <linux/of_pci.h> 20 #include <linux/of_irq.h> 21 #include <linux/of_platform.h> 22 #include <linux/phy/phy.h> 23 24 #include "pcie-iproc.h" 25 26 #define EP_PERST_SOURCE_SELECT_SHIFT 2 27 #define EP_PERST_SOURCE_SELECT BIT(EP_PERST_SOURCE_SELECT_SHIFT) 28 #define EP_MODE_SURVIVE_PERST_SHIFT 1 29 #define EP_MODE_SURVIVE_PERST BIT(EP_MODE_SURVIVE_PERST_SHIFT) 30 #define RC_PCIE_RST_OUTPUT_SHIFT 0 31 #define RC_PCIE_RST_OUTPUT BIT(RC_PCIE_RST_OUTPUT_SHIFT) 32 #define PAXC_RESET_MASK 0x7f 33 34 #define GIC_V3_CFG_SHIFT 0 35 #define GIC_V3_CFG BIT(GIC_V3_CFG_SHIFT) 36 37 #define MSI_ENABLE_CFG_SHIFT 0 38 #define MSI_ENABLE_CFG BIT(MSI_ENABLE_CFG_SHIFT) 39 40 #define CFG_IND_ADDR_MASK 0x00001ffc 41 42 #define CFG_ADDR_BUS_NUM_SHIFT 20 43 #define CFG_ADDR_BUS_NUM_MASK 0x0ff00000 44 #define CFG_ADDR_DEV_NUM_SHIFT 15 45 #define CFG_ADDR_DEV_NUM_MASK 0x000f8000 46 #define CFG_ADDR_FUNC_NUM_SHIFT 12 47 #define CFG_ADDR_FUNC_NUM_MASK 0x00007000 48 #define CFG_ADDR_REG_NUM_SHIFT 2 49 #define CFG_ADDR_REG_NUM_MASK 0x00000ffc 50 #define CFG_ADDR_CFG_TYPE_SHIFT 0 51 #define CFG_ADDR_CFG_TYPE_MASK 0x00000003 52 53 #define SYS_RC_INTX_MASK 0xf 54 55 #define PCIE_PHYLINKUP_SHIFT 3 56 #define PCIE_PHYLINKUP BIT(PCIE_PHYLINKUP_SHIFT) 57 #define PCIE_DL_ACTIVE_SHIFT 2 58 #define PCIE_DL_ACTIVE BIT(PCIE_DL_ACTIVE_SHIFT) 59 60 #define APB_ERR_EN_SHIFT 0 61 #define APB_ERR_EN BIT(APB_ERR_EN_SHIFT) 62 63 #define CFG_RD_SUCCESS 0 64 #define CFG_RD_UR 1 65 #define CFG_RD_CRS 2 66 #define CFG_RD_CA 3 67 #define CFG_RETRY_STATUS 0xffff0001 68 #define CFG_RETRY_STATUS_TIMEOUT_US 500000 /* 500 milliseconds */ 69 70 /* derive the enum index of the outbound/inbound mapping registers */ 71 #define MAP_REG(base_reg, index) ((base_reg) + (index) * 2) 72 73 /* 74 * Maximum number of outbound mapping window sizes that can be supported by any 75 * OARR/OMAP mapping pair 76 */ 77 #define MAX_NUM_OB_WINDOW_SIZES 4 78 79 #define OARR_VALID_SHIFT 0 80 #define OARR_VALID BIT(OARR_VALID_SHIFT) 81 #define OARR_SIZE_CFG_SHIFT 1 82 83 /* 84 * Maximum number of inbound mapping region sizes that can be supported by an 85 * IARR 86 */ 87 #define MAX_NUM_IB_REGION_SIZES 9 88 89 #define IMAP_VALID_SHIFT 0 90 #define IMAP_VALID BIT(IMAP_VALID_SHIFT) 91 92 #define IPROC_PCI_PM_CAP 0x48 93 #define IPROC_PCI_PM_CAP_MASK 0xffff 94 #define IPROC_PCI_EXP_CAP 0xac 95 96 #define IPROC_PCIE_REG_INVALID 0xffff 97 98 /** 99 * iProc PCIe outbound mapping controller specific parameters 100 * 101 * @window_sizes: list of supported outbound mapping window sizes in MB 102 * @nr_sizes: number of supported outbound mapping window sizes 103 */ 104 struct iproc_pcie_ob_map { 105 resource_size_t window_sizes[MAX_NUM_OB_WINDOW_SIZES]; 106 unsigned int nr_sizes; 107 }; 108 109 static const struct iproc_pcie_ob_map paxb_ob_map[] = { 110 { 111 /* OARR0/OMAP0 */ 112 .window_sizes = { 128, 256 }, 113 .nr_sizes = 2, 114 }, 115 { 116 /* OARR1/OMAP1 */ 117 .window_sizes = { 128, 256 }, 118 .nr_sizes = 2, 119 }, 120 }; 121 122 static const struct iproc_pcie_ob_map paxb_v2_ob_map[] = { 123 { 124 /* OARR0/OMAP0 */ 125 .window_sizes = { 128, 256 }, 126 .nr_sizes = 2, 127 }, 128 { 129 /* OARR1/OMAP1 */ 130 .window_sizes = { 128, 256 }, 131 .nr_sizes = 2, 132 }, 133 { 134 /* OARR2/OMAP2 */ 135 .window_sizes = { 128, 256, 512, 1024 }, 136 .nr_sizes = 4, 137 }, 138 { 139 /* OARR3/OMAP3 */ 140 .window_sizes = { 128, 256, 512, 1024 }, 141 .nr_sizes = 4, 142 }, 143 }; 144 145 /** 146 * iProc PCIe inbound mapping type 147 */ 148 enum iproc_pcie_ib_map_type { 149 /* for DDR memory */ 150 IPROC_PCIE_IB_MAP_MEM = 0, 151 152 /* for device I/O memory */ 153 IPROC_PCIE_IB_MAP_IO, 154 155 /* invalid or unused */ 156 IPROC_PCIE_IB_MAP_INVALID 157 }; 158 159 /** 160 * iProc PCIe inbound mapping controller specific parameters 161 * 162 * @type: inbound mapping region type 163 * @size_unit: inbound mapping region size unit, could be SZ_1K, SZ_1M, or 164 * SZ_1G 165 * @region_sizes: list of supported inbound mapping region sizes in KB, MB, or 166 * GB, depending on the size unit 167 * @nr_sizes: number of supported inbound mapping region sizes 168 * @nr_windows: number of supported inbound mapping windows for the region 169 * @imap_addr_offset: register offset between the upper and lower 32-bit 170 * IMAP address registers 171 * @imap_window_offset: register offset between each IMAP window 172 */ 173 struct iproc_pcie_ib_map { 174 enum iproc_pcie_ib_map_type type; 175 unsigned int size_unit; 176 resource_size_t region_sizes[MAX_NUM_IB_REGION_SIZES]; 177 unsigned int nr_sizes; 178 unsigned int nr_windows; 179 u16 imap_addr_offset; 180 u16 imap_window_offset; 181 }; 182 183 static const struct iproc_pcie_ib_map paxb_v2_ib_map[] = { 184 { 185 /* IARR0/IMAP0 */ 186 .type = IPROC_PCIE_IB_MAP_IO, 187 .size_unit = SZ_1K, 188 .region_sizes = { 32 }, 189 .nr_sizes = 1, 190 .nr_windows = 8, 191 .imap_addr_offset = 0x40, 192 .imap_window_offset = 0x4, 193 }, 194 { 195 /* IARR1/IMAP1 (currently unused) */ 196 .type = IPROC_PCIE_IB_MAP_INVALID, 197 }, 198 { 199 /* IARR2/IMAP2 */ 200 .type = IPROC_PCIE_IB_MAP_MEM, 201 .size_unit = SZ_1M, 202 .region_sizes = { 64, 128, 256, 512, 1024, 2048, 4096, 8192, 203 16384 }, 204 .nr_sizes = 9, 205 .nr_windows = 1, 206 .imap_addr_offset = 0x4, 207 .imap_window_offset = 0x8, 208 }, 209 { 210 /* IARR3/IMAP3 */ 211 .type = IPROC_PCIE_IB_MAP_MEM, 212 .size_unit = SZ_1G, 213 .region_sizes = { 1, 2, 4, 8, 16, 32 }, 214 .nr_sizes = 6, 215 .nr_windows = 8, 216 .imap_addr_offset = 0x4, 217 .imap_window_offset = 0x8, 218 }, 219 { 220 /* IARR4/IMAP4 */ 221 .type = IPROC_PCIE_IB_MAP_MEM, 222 .size_unit = SZ_1G, 223 .region_sizes = { 32, 64, 128, 256, 512 }, 224 .nr_sizes = 5, 225 .nr_windows = 8, 226 .imap_addr_offset = 0x4, 227 .imap_window_offset = 0x8, 228 }, 229 }; 230 231 /* 232 * iProc PCIe host registers 233 */ 234 enum iproc_pcie_reg { 235 /* clock/reset signal control */ 236 IPROC_PCIE_CLK_CTRL = 0, 237 238 /* 239 * To allow MSI to be steered to an external MSI controller (e.g., ARM 240 * GICv3 ITS) 241 */ 242 IPROC_PCIE_MSI_GIC_MODE, 243 244 /* 245 * IPROC_PCIE_MSI_BASE_ADDR and IPROC_PCIE_MSI_WINDOW_SIZE define the 246 * window where the MSI posted writes are written, for the writes to be 247 * interpreted as MSI writes. 248 */ 249 IPROC_PCIE_MSI_BASE_ADDR, 250 IPROC_PCIE_MSI_WINDOW_SIZE, 251 252 /* 253 * To hold the address of the register where the MSI writes are 254 * programed. When ARM GICv3 ITS is used, this should be programmed 255 * with the address of the GITS_TRANSLATER register. 256 */ 257 IPROC_PCIE_MSI_ADDR_LO, 258 IPROC_PCIE_MSI_ADDR_HI, 259 260 /* enable MSI */ 261 IPROC_PCIE_MSI_EN_CFG, 262 263 /* allow access to root complex configuration space */ 264 IPROC_PCIE_CFG_IND_ADDR, 265 IPROC_PCIE_CFG_IND_DATA, 266 267 /* allow access to device configuration space */ 268 IPROC_PCIE_CFG_ADDR, 269 IPROC_PCIE_CFG_DATA, 270 271 /* enable INTx */ 272 IPROC_PCIE_INTX_EN, 273 274 /* outbound address mapping */ 275 IPROC_PCIE_OARR0, 276 IPROC_PCIE_OMAP0, 277 IPROC_PCIE_OARR1, 278 IPROC_PCIE_OMAP1, 279 IPROC_PCIE_OARR2, 280 IPROC_PCIE_OMAP2, 281 IPROC_PCIE_OARR3, 282 IPROC_PCIE_OMAP3, 283 284 /* inbound address mapping */ 285 IPROC_PCIE_IARR0, 286 IPROC_PCIE_IMAP0, 287 IPROC_PCIE_IARR1, 288 IPROC_PCIE_IMAP1, 289 IPROC_PCIE_IARR2, 290 IPROC_PCIE_IMAP2, 291 IPROC_PCIE_IARR3, 292 IPROC_PCIE_IMAP3, 293 IPROC_PCIE_IARR4, 294 IPROC_PCIE_IMAP4, 295 296 /* config read status */ 297 IPROC_PCIE_CFG_RD_STATUS, 298 299 /* link status */ 300 IPROC_PCIE_LINK_STATUS, 301 302 /* enable APB error for unsupported requests */ 303 IPROC_PCIE_APB_ERR_EN, 304 305 /* total number of core registers */ 306 IPROC_PCIE_MAX_NUM_REG, 307 }; 308 309 /* iProc PCIe PAXB BCMA registers */ 310 static const u16 iproc_pcie_reg_paxb_bcma[] = { 311 [IPROC_PCIE_CLK_CTRL] = 0x000, 312 [IPROC_PCIE_CFG_IND_ADDR] = 0x120, 313 [IPROC_PCIE_CFG_IND_DATA] = 0x124, 314 [IPROC_PCIE_CFG_ADDR] = 0x1f8, 315 [IPROC_PCIE_CFG_DATA] = 0x1fc, 316 [IPROC_PCIE_INTX_EN] = 0x330, 317 [IPROC_PCIE_LINK_STATUS] = 0xf0c, 318 }; 319 320 /* iProc PCIe PAXB registers */ 321 static const u16 iproc_pcie_reg_paxb[] = { 322 [IPROC_PCIE_CLK_CTRL] = 0x000, 323 [IPROC_PCIE_CFG_IND_ADDR] = 0x120, 324 [IPROC_PCIE_CFG_IND_DATA] = 0x124, 325 [IPROC_PCIE_CFG_ADDR] = 0x1f8, 326 [IPROC_PCIE_CFG_DATA] = 0x1fc, 327 [IPROC_PCIE_INTX_EN] = 0x330, 328 [IPROC_PCIE_OARR0] = 0xd20, 329 [IPROC_PCIE_OMAP0] = 0xd40, 330 [IPROC_PCIE_OARR1] = 0xd28, 331 [IPROC_PCIE_OMAP1] = 0xd48, 332 [IPROC_PCIE_LINK_STATUS] = 0xf0c, 333 [IPROC_PCIE_APB_ERR_EN] = 0xf40, 334 }; 335 336 /* iProc PCIe PAXB v2 registers */ 337 static const u16 iproc_pcie_reg_paxb_v2[] = { 338 [IPROC_PCIE_CLK_CTRL] = 0x000, 339 [IPROC_PCIE_CFG_IND_ADDR] = 0x120, 340 [IPROC_PCIE_CFG_IND_DATA] = 0x124, 341 [IPROC_PCIE_CFG_ADDR] = 0x1f8, 342 [IPROC_PCIE_CFG_DATA] = 0x1fc, 343 [IPROC_PCIE_INTX_EN] = 0x330, 344 [IPROC_PCIE_OARR0] = 0xd20, 345 [IPROC_PCIE_OMAP0] = 0xd40, 346 [IPROC_PCIE_OARR1] = 0xd28, 347 [IPROC_PCIE_OMAP1] = 0xd48, 348 [IPROC_PCIE_OARR2] = 0xd60, 349 [IPROC_PCIE_OMAP2] = 0xd68, 350 [IPROC_PCIE_OARR3] = 0xdf0, 351 [IPROC_PCIE_OMAP3] = 0xdf8, 352 [IPROC_PCIE_IARR0] = 0xd00, 353 [IPROC_PCIE_IMAP0] = 0xc00, 354 [IPROC_PCIE_IARR2] = 0xd10, 355 [IPROC_PCIE_IMAP2] = 0xcc0, 356 [IPROC_PCIE_IARR3] = 0xe00, 357 [IPROC_PCIE_IMAP3] = 0xe08, 358 [IPROC_PCIE_IARR4] = 0xe68, 359 [IPROC_PCIE_IMAP4] = 0xe70, 360 [IPROC_PCIE_CFG_RD_STATUS] = 0xee0, 361 [IPROC_PCIE_LINK_STATUS] = 0xf0c, 362 [IPROC_PCIE_APB_ERR_EN] = 0xf40, 363 }; 364 365 /* iProc PCIe PAXC v1 registers */ 366 static const u16 iproc_pcie_reg_paxc[] = { 367 [IPROC_PCIE_CLK_CTRL] = 0x000, 368 [IPROC_PCIE_CFG_IND_ADDR] = 0x1f0, 369 [IPROC_PCIE_CFG_IND_DATA] = 0x1f4, 370 [IPROC_PCIE_CFG_ADDR] = 0x1f8, 371 [IPROC_PCIE_CFG_DATA] = 0x1fc, 372 }; 373 374 /* iProc PCIe PAXC v2 registers */ 375 static const u16 iproc_pcie_reg_paxc_v2[] = { 376 [IPROC_PCIE_MSI_GIC_MODE] = 0x050, 377 [IPROC_PCIE_MSI_BASE_ADDR] = 0x074, 378 [IPROC_PCIE_MSI_WINDOW_SIZE] = 0x078, 379 [IPROC_PCIE_MSI_ADDR_LO] = 0x07c, 380 [IPROC_PCIE_MSI_ADDR_HI] = 0x080, 381 [IPROC_PCIE_MSI_EN_CFG] = 0x09c, 382 [IPROC_PCIE_CFG_IND_ADDR] = 0x1f0, 383 [IPROC_PCIE_CFG_IND_DATA] = 0x1f4, 384 [IPROC_PCIE_CFG_ADDR] = 0x1f8, 385 [IPROC_PCIE_CFG_DATA] = 0x1fc, 386 }; 387 388 /* 389 * List of device IDs of controllers that have corrupted capability list that 390 * require SW fixup 391 */ 392 static const u16 iproc_pcie_corrupt_cap_did[] = { 393 0x16cd, 394 0x16f0, 395 0xd802, 396 0xd804 397 }; 398 399 static inline struct iproc_pcie *iproc_data(struct pci_bus *bus) 400 { 401 struct iproc_pcie *pcie = bus->sysdata; 402 return pcie; 403 } 404 405 static inline bool iproc_pcie_reg_is_invalid(u16 reg_offset) 406 { 407 return !!(reg_offset == IPROC_PCIE_REG_INVALID); 408 } 409 410 static inline u16 iproc_pcie_reg_offset(struct iproc_pcie *pcie, 411 enum iproc_pcie_reg reg) 412 { 413 return pcie->reg_offsets[reg]; 414 } 415 416 static inline u32 iproc_pcie_read_reg(struct iproc_pcie *pcie, 417 enum iproc_pcie_reg reg) 418 { 419 u16 offset = iproc_pcie_reg_offset(pcie, reg); 420 421 if (iproc_pcie_reg_is_invalid(offset)) 422 return 0; 423 424 return readl(pcie->base + offset); 425 } 426 427 static inline void iproc_pcie_write_reg(struct iproc_pcie *pcie, 428 enum iproc_pcie_reg reg, u32 val) 429 { 430 u16 offset = iproc_pcie_reg_offset(pcie, reg); 431 432 if (iproc_pcie_reg_is_invalid(offset)) 433 return; 434 435 writel(val, pcie->base + offset); 436 } 437 438 /** 439 * APB error forwarding can be disabled during access of configuration 440 * registers of the endpoint device, to prevent unsupported requests 441 * (typically seen during enumeration with multi-function devices) from 442 * triggering a system exception. 443 */ 444 static inline void iproc_pcie_apb_err_disable(struct pci_bus *bus, 445 bool disable) 446 { 447 struct iproc_pcie *pcie = iproc_data(bus); 448 u32 val; 449 450 if (bus->number && pcie->has_apb_err_disable) { 451 val = iproc_pcie_read_reg(pcie, IPROC_PCIE_APB_ERR_EN); 452 if (disable) 453 val &= ~APB_ERR_EN; 454 else 455 val |= APB_ERR_EN; 456 iproc_pcie_write_reg(pcie, IPROC_PCIE_APB_ERR_EN, val); 457 } 458 } 459 460 static void __iomem *iproc_pcie_map_ep_cfg_reg(struct iproc_pcie *pcie, 461 unsigned int busno, 462 unsigned int slot, 463 unsigned int fn, 464 int where) 465 { 466 u16 offset; 467 u32 val; 468 469 /* EP device access */ 470 val = (busno << CFG_ADDR_BUS_NUM_SHIFT) | 471 (slot << CFG_ADDR_DEV_NUM_SHIFT) | 472 (fn << CFG_ADDR_FUNC_NUM_SHIFT) | 473 (where & CFG_ADDR_REG_NUM_MASK) | 474 (1 & CFG_ADDR_CFG_TYPE_MASK); 475 476 iproc_pcie_write_reg(pcie, IPROC_PCIE_CFG_ADDR, val); 477 offset = iproc_pcie_reg_offset(pcie, IPROC_PCIE_CFG_DATA); 478 479 if (iproc_pcie_reg_is_invalid(offset)) 480 return NULL; 481 482 return (pcie->base + offset); 483 } 484 485 static unsigned int iproc_pcie_cfg_retry(struct iproc_pcie *pcie, 486 void __iomem *cfg_data_p) 487 { 488 int timeout = CFG_RETRY_STATUS_TIMEOUT_US; 489 unsigned int data; 490 u32 status; 491 492 /* 493 * As per PCIe spec r3.1, sec 2.3.2, CRS Software Visibility only 494 * affects config reads of the Vendor ID. For config writes or any 495 * other config reads, the Root may automatically reissue the 496 * configuration request again as a new request. 497 * 498 * For config reads, this hardware returns CFG_RETRY_STATUS data 499 * when it receives a CRS completion, regardless of the address of 500 * the read or the CRS Software Visibility Enable bit. As a 501 * partial workaround for this, we retry in software any read that 502 * returns CFG_RETRY_STATUS. 503 * 504 * Note that a non-Vendor ID config register may have a value of 505 * CFG_RETRY_STATUS. If we read that, we can't distinguish it from 506 * a CRS completion, so we will incorrectly retry the read and 507 * eventually return the wrong data (0xffffffff). 508 */ 509 data = readl(cfg_data_p); 510 while (data == CFG_RETRY_STATUS && timeout--) { 511 /* 512 * CRS state is set in CFG_RD status register 513 * This will handle the case where CFG_RETRY_STATUS is 514 * valid config data. 515 */ 516 status = iproc_pcie_read_reg(pcie, IPROC_PCIE_CFG_RD_STATUS); 517 if (status != CFG_RD_CRS) 518 return data; 519 520 udelay(1); 521 data = readl(cfg_data_p); 522 } 523 524 if (data == CFG_RETRY_STATUS) 525 data = 0xffffffff; 526 527 return data; 528 } 529 530 static void iproc_pcie_fix_cap(struct iproc_pcie *pcie, int where, u32 *val) 531 { 532 u32 i, dev_id; 533 534 switch (where & ~0x3) { 535 case PCI_VENDOR_ID: 536 dev_id = *val >> 16; 537 538 /* 539 * Activate fixup for those controllers that have corrupted 540 * capability list registers 541 */ 542 for (i = 0; i < ARRAY_SIZE(iproc_pcie_corrupt_cap_did); i++) 543 if (dev_id == iproc_pcie_corrupt_cap_did[i]) 544 pcie->fix_paxc_cap = true; 545 break; 546 547 case IPROC_PCI_PM_CAP: 548 if (pcie->fix_paxc_cap) { 549 /* advertise PM, force next capability to PCIe */ 550 *val &= ~IPROC_PCI_PM_CAP_MASK; 551 *val |= IPROC_PCI_EXP_CAP << 8 | PCI_CAP_ID_PM; 552 } 553 break; 554 555 case IPROC_PCI_EXP_CAP: 556 if (pcie->fix_paxc_cap) { 557 /* advertise root port, version 2, terminate here */ 558 *val = (PCI_EXP_TYPE_ROOT_PORT << 4 | 2) << 16 | 559 PCI_CAP_ID_EXP; 560 } 561 break; 562 563 case IPROC_PCI_EXP_CAP + PCI_EXP_RTCTL: 564 /* Don't advertise CRS SV support */ 565 *val &= ~(PCI_EXP_RTCAP_CRSVIS << 16); 566 break; 567 568 default: 569 break; 570 } 571 } 572 573 static int iproc_pcie_config_read(struct pci_bus *bus, unsigned int devfn, 574 int where, int size, u32 *val) 575 { 576 struct iproc_pcie *pcie = iproc_data(bus); 577 unsigned int slot = PCI_SLOT(devfn); 578 unsigned int fn = PCI_FUNC(devfn); 579 unsigned int busno = bus->number; 580 void __iomem *cfg_data_p; 581 unsigned int data; 582 int ret; 583 584 /* root complex access */ 585 if (busno == 0) { 586 ret = pci_generic_config_read32(bus, devfn, where, size, val); 587 if (ret == PCIBIOS_SUCCESSFUL) 588 iproc_pcie_fix_cap(pcie, where, val); 589 590 return ret; 591 } 592 593 cfg_data_p = iproc_pcie_map_ep_cfg_reg(pcie, busno, slot, fn, where); 594 595 if (!cfg_data_p) 596 return PCIBIOS_DEVICE_NOT_FOUND; 597 598 data = iproc_pcie_cfg_retry(pcie, cfg_data_p); 599 600 *val = data; 601 if (size <= 2) 602 *val = (data >> (8 * (where & 3))) & ((1 << (size * 8)) - 1); 603 604 /* 605 * For PAXC and PAXCv2, the total number of PFs that one can enumerate 606 * depends on the firmware configuration. Unfortunately, due to an ASIC 607 * bug, unconfigured PFs cannot be properly hidden from the root 608 * complex. As a result, write access to these PFs will cause bus lock 609 * up on the embedded processor 610 * 611 * Since all unconfigured PFs are left with an incorrect, staled device 612 * ID of 0x168e (PCI_DEVICE_ID_NX2_57810), we try to catch those access 613 * early here and reject them all 614 */ 615 #define DEVICE_ID_MASK 0xffff0000 616 #define DEVICE_ID_SHIFT 16 617 if (pcie->rej_unconfig_pf && 618 (where & CFG_ADDR_REG_NUM_MASK) == PCI_VENDOR_ID) 619 if ((*val & DEVICE_ID_MASK) == 620 (PCI_DEVICE_ID_NX2_57810 << DEVICE_ID_SHIFT)) 621 return PCIBIOS_FUNC_NOT_SUPPORTED; 622 623 return PCIBIOS_SUCCESSFUL; 624 } 625 626 /** 627 * Note access to the configuration registers are protected at the higher layer 628 * by 'pci_lock' in drivers/pci/access.c 629 */ 630 static void __iomem *iproc_pcie_map_cfg_bus(struct iproc_pcie *pcie, 631 int busno, unsigned int devfn, 632 int where) 633 { 634 unsigned slot = PCI_SLOT(devfn); 635 unsigned fn = PCI_FUNC(devfn); 636 u16 offset; 637 638 /* root complex access */ 639 if (busno == 0) { 640 if (slot > 0 || fn > 0) 641 return NULL; 642 643 iproc_pcie_write_reg(pcie, IPROC_PCIE_CFG_IND_ADDR, 644 where & CFG_IND_ADDR_MASK); 645 offset = iproc_pcie_reg_offset(pcie, IPROC_PCIE_CFG_IND_DATA); 646 if (iproc_pcie_reg_is_invalid(offset)) 647 return NULL; 648 else 649 return (pcie->base + offset); 650 } 651 652 return iproc_pcie_map_ep_cfg_reg(pcie, busno, slot, fn, where); 653 } 654 655 static void __iomem *iproc_pcie_bus_map_cfg_bus(struct pci_bus *bus, 656 unsigned int devfn, 657 int where) 658 { 659 return iproc_pcie_map_cfg_bus(iproc_data(bus), bus->number, devfn, 660 where); 661 } 662 663 static int iproc_pci_raw_config_read32(struct iproc_pcie *pcie, 664 unsigned int devfn, int where, 665 int size, u32 *val) 666 { 667 void __iomem *addr; 668 669 addr = iproc_pcie_map_cfg_bus(pcie, 0, devfn, where & ~0x3); 670 if (!addr) { 671 *val = ~0; 672 return PCIBIOS_DEVICE_NOT_FOUND; 673 } 674 675 *val = readl(addr); 676 677 if (size <= 2) 678 *val = (*val >> (8 * (where & 3))) & ((1 << (size * 8)) - 1); 679 680 return PCIBIOS_SUCCESSFUL; 681 } 682 683 static int iproc_pci_raw_config_write32(struct iproc_pcie *pcie, 684 unsigned int devfn, int where, 685 int size, u32 val) 686 { 687 void __iomem *addr; 688 u32 mask, tmp; 689 690 addr = iproc_pcie_map_cfg_bus(pcie, 0, devfn, where & ~0x3); 691 if (!addr) 692 return PCIBIOS_DEVICE_NOT_FOUND; 693 694 if (size == 4) { 695 writel(val, addr); 696 return PCIBIOS_SUCCESSFUL; 697 } 698 699 mask = ~(((1 << (size * 8)) - 1) << ((where & 0x3) * 8)); 700 tmp = readl(addr) & mask; 701 tmp |= val << ((where & 0x3) * 8); 702 writel(tmp, addr); 703 704 return PCIBIOS_SUCCESSFUL; 705 } 706 707 static int iproc_pcie_config_read32(struct pci_bus *bus, unsigned int devfn, 708 int where, int size, u32 *val) 709 { 710 int ret; 711 struct iproc_pcie *pcie = iproc_data(bus); 712 713 iproc_pcie_apb_err_disable(bus, true); 714 if (pcie->iproc_cfg_read) 715 ret = iproc_pcie_config_read(bus, devfn, where, size, val); 716 else 717 ret = pci_generic_config_read32(bus, devfn, where, size, val); 718 iproc_pcie_apb_err_disable(bus, false); 719 720 return ret; 721 } 722 723 static int iproc_pcie_config_write32(struct pci_bus *bus, unsigned int devfn, 724 int where, int size, u32 val) 725 { 726 int ret; 727 728 iproc_pcie_apb_err_disable(bus, true); 729 ret = pci_generic_config_write32(bus, devfn, where, size, val); 730 iproc_pcie_apb_err_disable(bus, false); 731 732 return ret; 733 } 734 735 static struct pci_ops iproc_pcie_ops = { 736 .map_bus = iproc_pcie_bus_map_cfg_bus, 737 .read = iproc_pcie_config_read32, 738 .write = iproc_pcie_config_write32, 739 }; 740 741 static void iproc_pcie_perst_ctrl(struct iproc_pcie *pcie, bool assert) 742 { 743 u32 val; 744 745 /* 746 * PAXC and the internal emulated endpoint device downstream should not 747 * be reset. If firmware has been loaded on the endpoint device at an 748 * earlier boot stage, reset here causes issues. 749 */ 750 if (pcie->ep_is_internal) 751 return; 752 753 if (assert) { 754 val = iproc_pcie_read_reg(pcie, IPROC_PCIE_CLK_CTRL); 755 val &= ~EP_PERST_SOURCE_SELECT & ~EP_MODE_SURVIVE_PERST & 756 ~RC_PCIE_RST_OUTPUT; 757 iproc_pcie_write_reg(pcie, IPROC_PCIE_CLK_CTRL, val); 758 udelay(250); 759 } else { 760 val = iproc_pcie_read_reg(pcie, IPROC_PCIE_CLK_CTRL); 761 val |= RC_PCIE_RST_OUTPUT; 762 iproc_pcie_write_reg(pcie, IPROC_PCIE_CLK_CTRL, val); 763 msleep(100); 764 } 765 } 766 767 int iproc_pcie_shutdown(struct iproc_pcie *pcie) 768 { 769 iproc_pcie_perst_ctrl(pcie, true); 770 msleep(500); 771 772 return 0; 773 } 774 EXPORT_SYMBOL_GPL(iproc_pcie_shutdown); 775 776 static int iproc_pcie_check_link(struct iproc_pcie *pcie) 777 { 778 struct device *dev = pcie->dev; 779 u32 hdr_type, link_ctrl, link_status, class, val; 780 bool link_is_active = false; 781 782 /* 783 * PAXC connects to emulated endpoint devices directly and does not 784 * have a Serdes. Therefore skip the link detection logic here. 785 */ 786 if (pcie->ep_is_internal) 787 return 0; 788 789 val = iproc_pcie_read_reg(pcie, IPROC_PCIE_LINK_STATUS); 790 if (!(val & PCIE_PHYLINKUP) || !(val & PCIE_DL_ACTIVE)) { 791 dev_err(dev, "PHY or data link is INACTIVE!\n"); 792 return -ENODEV; 793 } 794 795 /* make sure we are not in EP mode */ 796 iproc_pci_raw_config_read32(pcie, 0, PCI_HEADER_TYPE, 1, &hdr_type); 797 if ((hdr_type & 0x7f) != PCI_HEADER_TYPE_BRIDGE) { 798 dev_err(dev, "in EP mode, hdr=%#02x\n", hdr_type); 799 return -EFAULT; 800 } 801 802 /* force class to PCI_CLASS_BRIDGE_PCI (0x0604) */ 803 #define PCI_BRIDGE_CTRL_REG_OFFSET 0x43c 804 #define PCI_CLASS_BRIDGE_MASK 0xffff00 805 #define PCI_CLASS_BRIDGE_SHIFT 8 806 iproc_pci_raw_config_read32(pcie, 0, PCI_BRIDGE_CTRL_REG_OFFSET, 807 4, &class); 808 class &= ~PCI_CLASS_BRIDGE_MASK; 809 class |= (PCI_CLASS_BRIDGE_PCI << PCI_CLASS_BRIDGE_SHIFT); 810 iproc_pci_raw_config_write32(pcie, 0, PCI_BRIDGE_CTRL_REG_OFFSET, 811 4, class); 812 813 /* check link status to see if link is active */ 814 iproc_pci_raw_config_read32(pcie, 0, IPROC_PCI_EXP_CAP + PCI_EXP_LNKSTA, 815 2, &link_status); 816 if (link_status & PCI_EXP_LNKSTA_NLW) 817 link_is_active = true; 818 819 if (!link_is_active) { 820 /* try GEN 1 link speed */ 821 #define PCI_TARGET_LINK_SPEED_MASK 0xf 822 #define PCI_TARGET_LINK_SPEED_GEN2 0x2 823 #define PCI_TARGET_LINK_SPEED_GEN1 0x1 824 iproc_pci_raw_config_read32(pcie, 0, 825 IPROC_PCI_EXP_CAP + PCI_EXP_LNKCTL2, 826 4, &link_ctrl); 827 if ((link_ctrl & PCI_TARGET_LINK_SPEED_MASK) == 828 PCI_TARGET_LINK_SPEED_GEN2) { 829 link_ctrl &= ~PCI_TARGET_LINK_SPEED_MASK; 830 link_ctrl |= PCI_TARGET_LINK_SPEED_GEN1; 831 iproc_pci_raw_config_write32(pcie, 0, 832 IPROC_PCI_EXP_CAP + PCI_EXP_LNKCTL2, 833 4, link_ctrl); 834 msleep(100); 835 836 iproc_pci_raw_config_read32(pcie, 0, 837 IPROC_PCI_EXP_CAP + PCI_EXP_LNKSTA, 838 2, &link_status); 839 if (link_status & PCI_EXP_LNKSTA_NLW) 840 link_is_active = true; 841 } 842 } 843 844 dev_info(dev, "link: %s\n", link_is_active ? "UP" : "DOWN"); 845 846 return link_is_active ? 0 : -ENODEV; 847 } 848 849 static void iproc_pcie_enable(struct iproc_pcie *pcie) 850 { 851 iproc_pcie_write_reg(pcie, IPROC_PCIE_INTX_EN, SYS_RC_INTX_MASK); 852 } 853 854 static inline bool iproc_pcie_ob_is_valid(struct iproc_pcie *pcie, 855 int window_idx) 856 { 857 u32 val; 858 859 val = iproc_pcie_read_reg(pcie, MAP_REG(IPROC_PCIE_OARR0, window_idx)); 860 861 return !!(val & OARR_VALID); 862 } 863 864 static inline int iproc_pcie_ob_write(struct iproc_pcie *pcie, int window_idx, 865 int size_idx, u64 axi_addr, u64 pci_addr) 866 { 867 struct device *dev = pcie->dev; 868 u16 oarr_offset, omap_offset; 869 870 /* 871 * Derive the OARR/OMAP offset from the first pair (OARR0/OMAP0) based 872 * on window index. 873 */ 874 oarr_offset = iproc_pcie_reg_offset(pcie, MAP_REG(IPROC_PCIE_OARR0, 875 window_idx)); 876 omap_offset = iproc_pcie_reg_offset(pcie, MAP_REG(IPROC_PCIE_OMAP0, 877 window_idx)); 878 if (iproc_pcie_reg_is_invalid(oarr_offset) || 879 iproc_pcie_reg_is_invalid(omap_offset)) 880 return -EINVAL; 881 882 /* 883 * Program the OARR registers. The upper 32-bit OARR register is 884 * always right after the lower 32-bit OARR register. 885 */ 886 writel(lower_32_bits(axi_addr) | (size_idx << OARR_SIZE_CFG_SHIFT) | 887 OARR_VALID, pcie->base + oarr_offset); 888 writel(upper_32_bits(axi_addr), pcie->base + oarr_offset + 4); 889 890 /* now program the OMAP registers */ 891 writel(lower_32_bits(pci_addr), pcie->base + omap_offset); 892 writel(upper_32_bits(pci_addr), pcie->base + omap_offset + 4); 893 894 dev_dbg(dev, "ob window [%d]: offset 0x%x axi %pap pci %pap\n", 895 window_idx, oarr_offset, &axi_addr, &pci_addr); 896 dev_dbg(dev, "oarr lo 0x%x oarr hi 0x%x\n", 897 readl(pcie->base + oarr_offset), 898 readl(pcie->base + oarr_offset + 4)); 899 dev_dbg(dev, "omap lo 0x%x omap hi 0x%x\n", 900 readl(pcie->base + omap_offset), 901 readl(pcie->base + omap_offset + 4)); 902 903 return 0; 904 } 905 906 /** 907 * Some iProc SoCs require the SW to configure the outbound address mapping 908 * 909 * Outbound address translation: 910 * 911 * iproc_pcie_address = axi_address - axi_offset 912 * OARR = iproc_pcie_address 913 * OMAP = pci_addr 914 * 915 * axi_addr -> iproc_pcie_address -> OARR -> OMAP -> pci_address 916 */ 917 static int iproc_pcie_setup_ob(struct iproc_pcie *pcie, u64 axi_addr, 918 u64 pci_addr, resource_size_t size) 919 { 920 struct iproc_pcie_ob *ob = &pcie->ob; 921 struct device *dev = pcie->dev; 922 int ret = -EINVAL, window_idx, size_idx; 923 924 if (axi_addr < ob->axi_offset) { 925 dev_err(dev, "axi address %pap less than offset %pap\n", 926 &axi_addr, &ob->axi_offset); 927 return -EINVAL; 928 } 929 930 /* 931 * Translate the AXI address to the internal address used by the iProc 932 * PCIe core before programming the OARR 933 */ 934 axi_addr -= ob->axi_offset; 935 936 /* iterate through all OARR/OMAP mapping windows */ 937 for (window_idx = ob->nr_windows - 1; window_idx >= 0; window_idx--) { 938 const struct iproc_pcie_ob_map *ob_map = 939 &pcie->ob_map[window_idx]; 940 941 /* 942 * If current outbound window is already in use, move on to the 943 * next one. 944 */ 945 if (iproc_pcie_ob_is_valid(pcie, window_idx)) 946 continue; 947 948 /* 949 * Iterate through all supported window sizes within the 950 * OARR/OMAP pair to find a match. Go through the window sizes 951 * in a descending order. 952 */ 953 for (size_idx = ob_map->nr_sizes - 1; size_idx >= 0; 954 size_idx--) { 955 resource_size_t window_size = 956 ob_map->window_sizes[size_idx] * SZ_1M; 957 958 /* 959 * Keep iterating until we reach the last window and 960 * with the minimal window size at index zero. In this 961 * case, we take a compromise by mapping it using the 962 * minimum window size that can be supported 963 */ 964 if (size < window_size) { 965 if (size_idx > 0 || window_idx > 0) 966 continue; 967 968 /* 969 * For the corner case of reaching the minimal 970 * window size that can be supported on the 971 * last window 972 */ 973 axi_addr = ALIGN_DOWN(axi_addr, window_size); 974 pci_addr = ALIGN_DOWN(pci_addr, window_size); 975 size = window_size; 976 } 977 978 if (!IS_ALIGNED(axi_addr, window_size) || 979 !IS_ALIGNED(pci_addr, window_size)) { 980 dev_err(dev, 981 "axi %pap or pci %pap not aligned\n", 982 &axi_addr, &pci_addr); 983 return -EINVAL; 984 } 985 986 /* 987 * Match found! Program both OARR and OMAP and mark 988 * them as a valid entry. 989 */ 990 ret = iproc_pcie_ob_write(pcie, window_idx, size_idx, 991 axi_addr, pci_addr); 992 if (ret) 993 goto err_ob; 994 995 size -= window_size; 996 if (size == 0) 997 return 0; 998 999 /* 1000 * If we are here, we are done with the current window, 1001 * but not yet finished all mappings. Need to move on 1002 * to the next window. 1003 */ 1004 axi_addr += window_size; 1005 pci_addr += window_size; 1006 break; 1007 } 1008 } 1009 1010 err_ob: 1011 dev_err(dev, "unable to configure outbound mapping\n"); 1012 dev_err(dev, 1013 "axi %pap, axi offset %pap, pci %pap, res size %pap\n", 1014 &axi_addr, &ob->axi_offset, &pci_addr, &size); 1015 1016 return ret; 1017 } 1018 1019 static int iproc_pcie_map_ranges(struct iproc_pcie *pcie, 1020 struct list_head *resources) 1021 { 1022 struct device *dev = pcie->dev; 1023 struct resource_entry *window; 1024 int ret; 1025 1026 resource_list_for_each_entry(window, resources) { 1027 struct resource *res = window->res; 1028 u64 res_type = resource_type(res); 1029 1030 switch (res_type) { 1031 case IORESOURCE_IO: 1032 case IORESOURCE_BUS: 1033 break; 1034 case IORESOURCE_MEM: 1035 ret = iproc_pcie_setup_ob(pcie, res->start, 1036 res->start - window->offset, 1037 resource_size(res)); 1038 if (ret) 1039 return ret; 1040 break; 1041 default: 1042 dev_err(dev, "invalid resource %pR\n", res); 1043 return -EINVAL; 1044 } 1045 } 1046 1047 return 0; 1048 } 1049 1050 static inline bool iproc_pcie_ib_is_in_use(struct iproc_pcie *pcie, 1051 int region_idx) 1052 { 1053 const struct iproc_pcie_ib_map *ib_map = &pcie->ib_map[region_idx]; 1054 u32 val; 1055 1056 val = iproc_pcie_read_reg(pcie, MAP_REG(IPROC_PCIE_IARR0, region_idx)); 1057 1058 return !!(val & (BIT(ib_map->nr_sizes) - 1)); 1059 } 1060 1061 static inline bool iproc_pcie_ib_check_type(const struct iproc_pcie_ib_map *ib_map, 1062 enum iproc_pcie_ib_map_type type) 1063 { 1064 return !!(ib_map->type == type); 1065 } 1066 1067 static int iproc_pcie_ib_write(struct iproc_pcie *pcie, int region_idx, 1068 int size_idx, int nr_windows, u64 axi_addr, 1069 u64 pci_addr, resource_size_t size) 1070 { 1071 struct device *dev = pcie->dev; 1072 const struct iproc_pcie_ib_map *ib_map = &pcie->ib_map[region_idx]; 1073 u16 iarr_offset, imap_offset; 1074 u32 val; 1075 int window_idx; 1076 1077 iarr_offset = iproc_pcie_reg_offset(pcie, 1078 MAP_REG(IPROC_PCIE_IARR0, region_idx)); 1079 imap_offset = iproc_pcie_reg_offset(pcie, 1080 MAP_REG(IPROC_PCIE_IMAP0, region_idx)); 1081 if (iproc_pcie_reg_is_invalid(iarr_offset) || 1082 iproc_pcie_reg_is_invalid(imap_offset)) 1083 return -EINVAL; 1084 1085 dev_dbg(dev, "ib region [%d]: offset 0x%x axi %pap pci %pap\n", 1086 region_idx, iarr_offset, &axi_addr, &pci_addr); 1087 1088 /* 1089 * Program the IARR registers. The upper 32-bit IARR register is 1090 * always right after the lower 32-bit IARR register. 1091 */ 1092 writel(lower_32_bits(pci_addr) | BIT(size_idx), 1093 pcie->base + iarr_offset); 1094 writel(upper_32_bits(pci_addr), pcie->base + iarr_offset + 4); 1095 1096 dev_dbg(dev, "iarr lo 0x%x iarr hi 0x%x\n", 1097 readl(pcie->base + iarr_offset), 1098 readl(pcie->base + iarr_offset + 4)); 1099 1100 /* 1101 * Now program the IMAP registers. Each IARR region may have one or 1102 * more IMAP windows. 1103 */ 1104 size >>= ilog2(nr_windows); 1105 for (window_idx = 0; window_idx < nr_windows; window_idx++) { 1106 val = readl(pcie->base + imap_offset); 1107 val |= lower_32_bits(axi_addr) | IMAP_VALID; 1108 writel(val, pcie->base + imap_offset); 1109 writel(upper_32_bits(axi_addr), 1110 pcie->base + imap_offset + ib_map->imap_addr_offset); 1111 1112 dev_dbg(dev, "imap window [%d] lo 0x%x hi 0x%x\n", 1113 window_idx, readl(pcie->base + imap_offset), 1114 readl(pcie->base + imap_offset + 1115 ib_map->imap_addr_offset)); 1116 1117 imap_offset += ib_map->imap_window_offset; 1118 axi_addr += size; 1119 } 1120 1121 return 0; 1122 } 1123 1124 static int iproc_pcie_setup_ib(struct iproc_pcie *pcie, 1125 struct resource_entry *entry, 1126 enum iproc_pcie_ib_map_type type) 1127 { 1128 struct device *dev = pcie->dev; 1129 struct iproc_pcie_ib *ib = &pcie->ib; 1130 int ret; 1131 unsigned int region_idx, size_idx; 1132 u64 axi_addr = entry->res->start; 1133 u64 pci_addr = entry->res->start - entry->offset; 1134 resource_size_t size = resource_size(entry->res); 1135 1136 /* iterate through all IARR mapping regions */ 1137 for (region_idx = 0; region_idx < ib->nr_regions; region_idx++) { 1138 const struct iproc_pcie_ib_map *ib_map = 1139 &pcie->ib_map[region_idx]; 1140 1141 /* 1142 * If current inbound region is already in use or not a 1143 * compatible type, move on to the next. 1144 */ 1145 if (iproc_pcie_ib_is_in_use(pcie, region_idx) || 1146 !iproc_pcie_ib_check_type(ib_map, type)) 1147 continue; 1148 1149 /* iterate through all supported region sizes to find a match */ 1150 for (size_idx = 0; size_idx < ib_map->nr_sizes; size_idx++) { 1151 resource_size_t region_size = 1152 ib_map->region_sizes[size_idx] * ib_map->size_unit; 1153 1154 if (size != region_size) 1155 continue; 1156 1157 if (!IS_ALIGNED(axi_addr, region_size) || 1158 !IS_ALIGNED(pci_addr, region_size)) { 1159 dev_err(dev, 1160 "axi %pap or pci %pap not aligned\n", 1161 &axi_addr, &pci_addr); 1162 return -EINVAL; 1163 } 1164 1165 /* Match found! Program IARR and all IMAP windows. */ 1166 ret = iproc_pcie_ib_write(pcie, region_idx, size_idx, 1167 ib_map->nr_windows, axi_addr, 1168 pci_addr, size); 1169 if (ret) 1170 goto err_ib; 1171 else 1172 return 0; 1173 1174 } 1175 } 1176 ret = -EINVAL; 1177 1178 err_ib: 1179 dev_err(dev, "unable to configure inbound mapping\n"); 1180 dev_err(dev, "axi %pap, pci %pap, res size %pap\n", 1181 &axi_addr, &pci_addr, &size); 1182 1183 return ret; 1184 } 1185 1186 static int iproc_pcie_map_dma_ranges(struct iproc_pcie *pcie) 1187 { 1188 struct pci_host_bridge *host = pci_host_bridge_from_priv(pcie); 1189 struct resource_entry *entry; 1190 int ret = 0; 1191 1192 resource_list_for_each_entry(entry, &host->dma_ranges) { 1193 /* Each range entry corresponds to an inbound mapping region */ 1194 ret = iproc_pcie_setup_ib(pcie, entry, IPROC_PCIE_IB_MAP_MEM); 1195 if (ret) 1196 break; 1197 } 1198 1199 return ret; 1200 } 1201 1202 static void iproc_pcie_invalidate_mapping(struct iproc_pcie *pcie) 1203 { 1204 struct iproc_pcie_ib *ib = &pcie->ib; 1205 struct iproc_pcie_ob *ob = &pcie->ob; 1206 int idx; 1207 1208 if (pcie->ep_is_internal) 1209 return; 1210 1211 if (pcie->need_ob_cfg) { 1212 /* iterate through all OARR mapping regions */ 1213 for (idx = ob->nr_windows - 1; idx >= 0; idx--) { 1214 iproc_pcie_write_reg(pcie, 1215 MAP_REG(IPROC_PCIE_OARR0, idx), 0); 1216 } 1217 } 1218 1219 if (pcie->need_ib_cfg) { 1220 /* iterate through all IARR mapping regions */ 1221 for (idx = 0; idx < ib->nr_regions; idx++) { 1222 iproc_pcie_write_reg(pcie, 1223 MAP_REG(IPROC_PCIE_IARR0, idx), 0); 1224 } 1225 } 1226 } 1227 1228 static int iproce_pcie_get_msi(struct iproc_pcie *pcie, 1229 struct device_node *msi_node, 1230 u64 *msi_addr) 1231 { 1232 struct device *dev = pcie->dev; 1233 int ret; 1234 struct resource res; 1235 1236 /* 1237 * Check if 'msi-map' points to ARM GICv3 ITS, which is the only 1238 * supported external MSI controller that requires steering. 1239 */ 1240 if (!of_device_is_compatible(msi_node, "arm,gic-v3-its")) { 1241 dev_err(dev, "unable to find compatible MSI controller\n"); 1242 return -ENODEV; 1243 } 1244 1245 /* derive GITS_TRANSLATER address from GICv3 */ 1246 ret = of_address_to_resource(msi_node, 0, &res); 1247 if (ret < 0) { 1248 dev_err(dev, "unable to obtain MSI controller resources\n"); 1249 return ret; 1250 } 1251 1252 *msi_addr = res.start + GITS_TRANSLATER; 1253 return 0; 1254 } 1255 1256 static int iproc_pcie_paxb_v2_msi_steer(struct iproc_pcie *pcie, u64 msi_addr) 1257 { 1258 int ret; 1259 struct resource_entry entry; 1260 1261 memset(&entry, 0, sizeof(entry)); 1262 entry.res = &entry.__res; 1263 1264 msi_addr &= ~(SZ_32K - 1); 1265 entry.res->start = msi_addr; 1266 entry.res->end = msi_addr + SZ_32K - 1; 1267 1268 ret = iproc_pcie_setup_ib(pcie, &entry, IPROC_PCIE_IB_MAP_IO); 1269 return ret; 1270 } 1271 1272 static void iproc_pcie_paxc_v2_msi_steer(struct iproc_pcie *pcie, u64 msi_addr, 1273 bool enable) 1274 { 1275 u32 val; 1276 1277 if (!enable) { 1278 /* 1279 * Disable PAXC MSI steering. All write transfers will be 1280 * treated as non-MSI transfers 1281 */ 1282 val = iproc_pcie_read_reg(pcie, IPROC_PCIE_MSI_EN_CFG); 1283 val &= ~MSI_ENABLE_CFG; 1284 iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_EN_CFG, val); 1285 return; 1286 } 1287 1288 /* 1289 * Program bits [43:13] of address of GITS_TRANSLATER register into 1290 * bits [30:0] of the MSI base address register. In fact, in all iProc 1291 * based SoCs, all I/O register bases are well below the 32-bit 1292 * boundary, so we can safely assume bits [43:32] are always zeros. 1293 */ 1294 iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_BASE_ADDR, 1295 (u32)(msi_addr >> 13)); 1296 1297 /* use a default 8K window size */ 1298 iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_WINDOW_SIZE, 0); 1299 1300 /* steering MSI to GICv3 ITS */ 1301 val = iproc_pcie_read_reg(pcie, IPROC_PCIE_MSI_GIC_MODE); 1302 val |= GIC_V3_CFG; 1303 iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_GIC_MODE, val); 1304 1305 /* 1306 * Program bits [43:2] of address of GITS_TRANSLATER register into the 1307 * iProc MSI address registers. 1308 */ 1309 msi_addr >>= 2; 1310 iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_ADDR_HI, 1311 upper_32_bits(msi_addr)); 1312 iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_ADDR_LO, 1313 lower_32_bits(msi_addr)); 1314 1315 /* enable MSI */ 1316 val = iproc_pcie_read_reg(pcie, IPROC_PCIE_MSI_EN_CFG); 1317 val |= MSI_ENABLE_CFG; 1318 iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_EN_CFG, val); 1319 } 1320 1321 static int iproc_pcie_msi_steer(struct iproc_pcie *pcie, 1322 struct device_node *msi_node) 1323 { 1324 struct device *dev = pcie->dev; 1325 int ret; 1326 u64 msi_addr; 1327 1328 ret = iproce_pcie_get_msi(pcie, msi_node, &msi_addr); 1329 if (ret < 0) { 1330 dev_err(dev, "msi steering failed\n"); 1331 return ret; 1332 } 1333 1334 switch (pcie->type) { 1335 case IPROC_PCIE_PAXB_V2: 1336 ret = iproc_pcie_paxb_v2_msi_steer(pcie, msi_addr); 1337 if (ret) 1338 return ret; 1339 break; 1340 case IPROC_PCIE_PAXC_V2: 1341 iproc_pcie_paxc_v2_msi_steer(pcie, msi_addr, true); 1342 break; 1343 default: 1344 return -EINVAL; 1345 } 1346 1347 return 0; 1348 } 1349 1350 static int iproc_pcie_msi_enable(struct iproc_pcie *pcie) 1351 { 1352 struct device_node *msi_node; 1353 int ret; 1354 1355 /* 1356 * Either the "msi-parent" or the "msi-map" phandle needs to exist 1357 * for us to obtain the MSI node. 1358 */ 1359 1360 msi_node = of_parse_phandle(pcie->dev->of_node, "msi-parent", 0); 1361 if (!msi_node) { 1362 const __be32 *msi_map = NULL; 1363 int len; 1364 u32 phandle; 1365 1366 msi_map = of_get_property(pcie->dev->of_node, "msi-map", &len); 1367 if (!msi_map) 1368 return -ENODEV; 1369 1370 phandle = be32_to_cpup(msi_map + 1); 1371 msi_node = of_find_node_by_phandle(phandle); 1372 if (!msi_node) 1373 return -ENODEV; 1374 } 1375 1376 /* 1377 * Certain revisions of the iProc PCIe controller require additional 1378 * configurations to steer the MSI writes towards an external MSI 1379 * controller. 1380 */ 1381 if (pcie->need_msi_steer) { 1382 ret = iproc_pcie_msi_steer(pcie, msi_node); 1383 if (ret) 1384 goto out_put_node; 1385 } 1386 1387 /* 1388 * If another MSI controller is being used, the call below should fail 1389 * but that is okay 1390 */ 1391 ret = iproc_msi_init(pcie, msi_node); 1392 1393 out_put_node: 1394 of_node_put(msi_node); 1395 return ret; 1396 } 1397 1398 static void iproc_pcie_msi_disable(struct iproc_pcie *pcie) 1399 { 1400 iproc_msi_exit(pcie); 1401 } 1402 1403 static int iproc_pcie_rev_init(struct iproc_pcie *pcie) 1404 { 1405 struct device *dev = pcie->dev; 1406 unsigned int reg_idx; 1407 const u16 *regs; 1408 1409 switch (pcie->type) { 1410 case IPROC_PCIE_PAXB_BCMA: 1411 regs = iproc_pcie_reg_paxb_bcma; 1412 break; 1413 case IPROC_PCIE_PAXB: 1414 regs = iproc_pcie_reg_paxb; 1415 pcie->has_apb_err_disable = true; 1416 if (pcie->need_ob_cfg) { 1417 pcie->ob_map = paxb_ob_map; 1418 pcie->ob.nr_windows = ARRAY_SIZE(paxb_ob_map); 1419 } 1420 break; 1421 case IPROC_PCIE_PAXB_V2: 1422 regs = iproc_pcie_reg_paxb_v2; 1423 pcie->iproc_cfg_read = true; 1424 pcie->has_apb_err_disable = true; 1425 if (pcie->need_ob_cfg) { 1426 pcie->ob_map = paxb_v2_ob_map; 1427 pcie->ob.nr_windows = ARRAY_SIZE(paxb_v2_ob_map); 1428 } 1429 pcie->ib.nr_regions = ARRAY_SIZE(paxb_v2_ib_map); 1430 pcie->ib_map = paxb_v2_ib_map; 1431 pcie->need_msi_steer = true; 1432 dev_warn(dev, "reads of config registers that contain %#x return incorrect data\n", 1433 CFG_RETRY_STATUS); 1434 break; 1435 case IPROC_PCIE_PAXC: 1436 regs = iproc_pcie_reg_paxc; 1437 pcie->ep_is_internal = true; 1438 pcie->iproc_cfg_read = true; 1439 pcie->rej_unconfig_pf = true; 1440 break; 1441 case IPROC_PCIE_PAXC_V2: 1442 regs = iproc_pcie_reg_paxc_v2; 1443 pcie->ep_is_internal = true; 1444 pcie->iproc_cfg_read = true; 1445 pcie->rej_unconfig_pf = true; 1446 pcie->need_msi_steer = true; 1447 break; 1448 default: 1449 dev_err(dev, "incompatible iProc PCIe interface\n"); 1450 return -EINVAL; 1451 } 1452 1453 pcie->reg_offsets = devm_kcalloc(dev, IPROC_PCIE_MAX_NUM_REG, 1454 sizeof(*pcie->reg_offsets), 1455 GFP_KERNEL); 1456 if (!pcie->reg_offsets) 1457 return -ENOMEM; 1458 1459 /* go through the register table and populate all valid registers */ 1460 pcie->reg_offsets[0] = (pcie->type == IPROC_PCIE_PAXC_V2) ? 1461 IPROC_PCIE_REG_INVALID : regs[0]; 1462 for (reg_idx = 1; reg_idx < IPROC_PCIE_MAX_NUM_REG; reg_idx++) 1463 pcie->reg_offsets[reg_idx] = regs[reg_idx] ? 1464 regs[reg_idx] : IPROC_PCIE_REG_INVALID; 1465 1466 return 0; 1467 } 1468 1469 int iproc_pcie_setup(struct iproc_pcie *pcie, struct list_head *res) 1470 { 1471 struct device *dev; 1472 int ret; 1473 struct pci_bus *child; 1474 struct pci_host_bridge *host = pci_host_bridge_from_priv(pcie); 1475 1476 dev = pcie->dev; 1477 1478 ret = iproc_pcie_rev_init(pcie); 1479 if (ret) { 1480 dev_err(dev, "unable to initialize controller parameters\n"); 1481 return ret; 1482 } 1483 1484 ret = phy_init(pcie->phy); 1485 if (ret) { 1486 dev_err(dev, "unable to initialize PCIe PHY\n"); 1487 return ret; 1488 } 1489 1490 ret = phy_power_on(pcie->phy); 1491 if (ret) { 1492 dev_err(dev, "unable to power on PCIe PHY\n"); 1493 goto err_exit_phy; 1494 } 1495 1496 iproc_pcie_perst_ctrl(pcie, true); 1497 iproc_pcie_perst_ctrl(pcie, false); 1498 1499 iproc_pcie_invalidate_mapping(pcie); 1500 1501 if (pcie->need_ob_cfg) { 1502 ret = iproc_pcie_map_ranges(pcie, res); 1503 if (ret) { 1504 dev_err(dev, "map failed\n"); 1505 goto err_power_off_phy; 1506 } 1507 } 1508 1509 if (pcie->need_ib_cfg) { 1510 ret = iproc_pcie_map_dma_ranges(pcie); 1511 if (ret && ret != -ENOENT) 1512 goto err_power_off_phy; 1513 } 1514 1515 ret = iproc_pcie_check_link(pcie); 1516 if (ret) { 1517 dev_err(dev, "no PCIe EP device detected\n"); 1518 goto err_power_off_phy; 1519 } 1520 1521 iproc_pcie_enable(pcie); 1522 1523 if (IS_ENABLED(CONFIG_PCI_MSI)) 1524 if (iproc_pcie_msi_enable(pcie)) 1525 dev_info(dev, "not using iProc MSI\n"); 1526 1527 host->busnr = 0; 1528 host->dev.parent = dev; 1529 host->ops = &iproc_pcie_ops; 1530 host->sysdata = pcie; 1531 host->map_irq = pcie->map_irq; 1532 host->swizzle_irq = pci_common_swizzle; 1533 1534 ret = pci_scan_root_bus_bridge(host); 1535 if (ret < 0) { 1536 dev_err(dev, "failed to scan host: %d\n", ret); 1537 goto err_power_off_phy; 1538 } 1539 1540 pci_assign_unassigned_bus_resources(host->bus); 1541 1542 pcie->root_bus = host->bus; 1543 1544 list_for_each_entry(child, &host->bus->children, node) 1545 pcie_bus_configure_settings(child); 1546 1547 pci_bus_add_devices(host->bus); 1548 1549 return 0; 1550 1551 err_power_off_phy: 1552 phy_power_off(pcie->phy); 1553 err_exit_phy: 1554 phy_exit(pcie->phy); 1555 return ret; 1556 } 1557 EXPORT_SYMBOL(iproc_pcie_setup); 1558 1559 int iproc_pcie_remove(struct iproc_pcie *pcie) 1560 { 1561 pci_stop_root_bus(pcie->root_bus); 1562 pci_remove_root_bus(pcie->root_bus); 1563 1564 iproc_pcie_msi_disable(pcie); 1565 1566 phy_power_off(pcie->phy); 1567 phy_exit(pcie->phy); 1568 1569 return 0; 1570 } 1571 EXPORT_SYMBOL(iproc_pcie_remove); 1572 1573 /* 1574 * The MSI parsing logic in certain revisions of Broadcom PAXC based root 1575 * complex does not work and needs to be disabled 1576 */ 1577 static void quirk_paxc_disable_msi_parsing(struct pci_dev *pdev) 1578 { 1579 struct iproc_pcie *pcie = iproc_data(pdev->bus); 1580 1581 if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) 1582 iproc_pcie_paxc_v2_msi_steer(pcie, 0, false); 1583 } 1584 DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0x16f0, 1585 quirk_paxc_disable_msi_parsing); 1586 DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0xd802, 1587 quirk_paxc_disable_msi_parsing); 1588 DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0xd804, 1589 quirk_paxc_disable_msi_parsing); 1590 1591 static void quirk_paxc_bridge(struct pci_dev *pdev) 1592 { 1593 /* 1594 * The PCI config space is shared with the PAXC root port and the first 1595 * Ethernet device. So, we need to workaround this by telling the PCI 1596 * code that the bridge is not an Ethernet device. 1597 */ 1598 if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) 1599 pdev->class = PCI_CLASS_BRIDGE_PCI << 8; 1600 1601 /* 1602 * MPSS is not being set properly (as it is currently 0). This is 1603 * because that area of the PCI config space is hard coded to zero, and 1604 * is not modifiable by firmware. Set this to 2 (e.g., 512 byte MPS) 1605 * so that the MPS can be set to the real max value. 1606 */ 1607 pdev->pcie_mpss = 2; 1608 } 1609 DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0x16cd, quirk_paxc_bridge); 1610 DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0x16f0, quirk_paxc_bridge); 1611 DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0xd750, quirk_paxc_bridge); 1612 DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0xd802, quirk_paxc_bridge); 1613 DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0xd804, quirk_paxc_bridge); 1614 1615 MODULE_AUTHOR("Ray Jui <rjui@broadcom.com>"); 1616 MODULE_DESCRIPTION("Broadcom iPROC PCIe common driver"); 1617 MODULE_LICENSE("GPL v2"); 1618