1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2014 Hauke Mehrtens <hauke@hauke-m.de> 4 * Copyright (C) 2015 Broadcom Corporation 5 */ 6 7 #include <linux/kernel.h> 8 #include <linux/pci.h> 9 #include <linux/msi.h> 10 #include <linux/clk.h> 11 #include <linux/module.h> 12 #include <linux/mbus.h> 13 #include <linux/slab.h> 14 #include <linux/delay.h> 15 #include <linux/interrupt.h> 16 #include <linux/irqchip/arm-gic-v3.h> 17 #include <linux/platform_device.h> 18 #include <linux/of_address.h> 19 #include <linux/of_pci.h> 20 #include <linux/of_irq.h> 21 #include <linux/of_platform.h> 22 #include <linux/phy/phy.h> 23 24 #include "pcie-iproc.h" 25 26 #define EP_PERST_SOURCE_SELECT_SHIFT 2 27 #define EP_PERST_SOURCE_SELECT BIT(EP_PERST_SOURCE_SELECT_SHIFT) 28 #define EP_MODE_SURVIVE_PERST_SHIFT 1 29 #define EP_MODE_SURVIVE_PERST BIT(EP_MODE_SURVIVE_PERST_SHIFT) 30 #define RC_PCIE_RST_OUTPUT_SHIFT 0 31 #define RC_PCIE_RST_OUTPUT BIT(RC_PCIE_RST_OUTPUT_SHIFT) 32 #define PAXC_RESET_MASK 0x7f 33 34 #define GIC_V3_CFG_SHIFT 0 35 #define GIC_V3_CFG BIT(GIC_V3_CFG_SHIFT) 36 37 #define MSI_ENABLE_CFG_SHIFT 0 38 #define MSI_ENABLE_CFG BIT(MSI_ENABLE_CFG_SHIFT) 39 40 #define CFG_IND_ADDR_MASK 0x00001ffc 41 42 #define CFG_ADDR_BUS_NUM_SHIFT 20 43 #define CFG_ADDR_BUS_NUM_MASK 0x0ff00000 44 #define CFG_ADDR_DEV_NUM_SHIFT 15 45 #define CFG_ADDR_DEV_NUM_MASK 0x000f8000 46 #define CFG_ADDR_FUNC_NUM_SHIFT 12 47 #define CFG_ADDR_FUNC_NUM_MASK 0x00007000 48 #define CFG_ADDR_REG_NUM_SHIFT 2 49 #define CFG_ADDR_REG_NUM_MASK 0x00000ffc 50 #define CFG_ADDR_CFG_TYPE_SHIFT 0 51 #define CFG_ADDR_CFG_TYPE_MASK 0x00000003 52 53 #define SYS_RC_INTX_MASK 0xf 54 55 #define PCIE_PHYLINKUP_SHIFT 3 56 #define PCIE_PHYLINKUP BIT(PCIE_PHYLINKUP_SHIFT) 57 #define PCIE_DL_ACTIVE_SHIFT 2 58 #define PCIE_DL_ACTIVE BIT(PCIE_DL_ACTIVE_SHIFT) 59 60 #define APB_ERR_EN_SHIFT 0 61 #define APB_ERR_EN BIT(APB_ERR_EN_SHIFT) 62 63 #define CFG_RD_SUCCESS 0 64 #define CFG_RD_UR 1 65 #define CFG_RD_CRS 2 66 #define CFG_RD_CA 3 67 #define CFG_RETRY_STATUS 0xffff0001 68 #define CFG_RETRY_STATUS_TIMEOUT_US 500000 /* 500 milliseconds */ 69 70 /* derive the enum index of the outbound/inbound mapping registers */ 71 #define MAP_REG(base_reg, index) ((base_reg) + (index) * 2) 72 73 /* 74 * Maximum number of outbound mapping window sizes that can be supported by any 75 * OARR/OMAP mapping pair 76 */ 77 #define MAX_NUM_OB_WINDOW_SIZES 4 78 79 #define OARR_VALID_SHIFT 0 80 #define OARR_VALID BIT(OARR_VALID_SHIFT) 81 #define OARR_SIZE_CFG_SHIFT 1 82 83 /* 84 * Maximum number of inbound mapping region sizes that can be supported by an 85 * IARR 86 */ 87 #define MAX_NUM_IB_REGION_SIZES 9 88 89 #define IMAP_VALID_SHIFT 0 90 #define IMAP_VALID BIT(IMAP_VALID_SHIFT) 91 92 #define IPROC_PCI_PM_CAP 0x48 93 #define IPROC_PCI_PM_CAP_MASK 0xffff 94 #define IPROC_PCI_EXP_CAP 0xac 95 96 #define IPROC_PCIE_REG_INVALID 0xffff 97 98 /** 99 * iProc PCIe outbound mapping controller specific parameters 100 * 101 * @window_sizes: list of supported outbound mapping window sizes in MB 102 * @nr_sizes: number of supported outbound mapping window sizes 103 */ 104 struct iproc_pcie_ob_map { 105 resource_size_t window_sizes[MAX_NUM_OB_WINDOW_SIZES]; 106 unsigned int nr_sizes; 107 }; 108 109 static const struct iproc_pcie_ob_map paxb_ob_map[] = { 110 { 111 /* OARR0/OMAP0 */ 112 .window_sizes = { 128, 256 }, 113 .nr_sizes = 2, 114 }, 115 { 116 /* OARR1/OMAP1 */ 117 .window_sizes = { 128, 256 }, 118 .nr_sizes = 2, 119 }, 120 }; 121 122 static const struct iproc_pcie_ob_map paxb_v2_ob_map[] = { 123 { 124 /* OARR0/OMAP0 */ 125 .window_sizes = { 128, 256 }, 126 .nr_sizes = 2, 127 }, 128 { 129 /* OARR1/OMAP1 */ 130 .window_sizes = { 128, 256 }, 131 .nr_sizes = 2, 132 }, 133 { 134 /* OARR2/OMAP2 */ 135 .window_sizes = { 128, 256, 512, 1024 }, 136 .nr_sizes = 4, 137 }, 138 { 139 /* OARR3/OMAP3 */ 140 .window_sizes = { 128, 256, 512, 1024 }, 141 .nr_sizes = 4, 142 }, 143 }; 144 145 /** 146 * iProc PCIe inbound mapping type 147 */ 148 enum iproc_pcie_ib_map_type { 149 /* for DDR memory */ 150 IPROC_PCIE_IB_MAP_MEM = 0, 151 152 /* for device I/O memory */ 153 IPROC_PCIE_IB_MAP_IO, 154 155 /* invalid or unused */ 156 IPROC_PCIE_IB_MAP_INVALID 157 }; 158 159 /** 160 * iProc PCIe inbound mapping controller specific parameters 161 * 162 * @type: inbound mapping region type 163 * @size_unit: inbound mapping region size unit, could be SZ_1K, SZ_1M, or 164 * SZ_1G 165 * @region_sizes: list of supported inbound mapping region sizes in KB, MB, or 166 * GB, depedning on the size unit 167 * @nr_sizes: number of supported inbound mapping region sizes 168 * @nr_windows: number of supported inbound mapping windows for the region 169 * @imap_addr_offset: register offset between the upper and lower 32-bit 170 * IMAP address registers 171 * @imap_window_offset: register offset between each IMAP window 172 */ 173 struct iproc_pcie_ib_map { 174 enum iproc_pcie_ib_map_type type; 175 unsigned int size_unit; 176 resource_size_t region_sizes[MAX_NUM_IB_REGION_SIZES]; 177 unsigned int nr_sizes; 178 unsigned int nr_windows; 179 u16 imap_addr_offset; 180 u16 imap_window_offset; 181 }; 182 183 static const struct iproc_pcie_ib_map paxb_v2_ib_map[] = { 184 { 185 /* IARR0/IMAP0 */ 186 .type = IPROC_PCIE_IB_MAP_IO, 187 .size_unit = SZ_1K, 188 .region_sizes = { 32 }, 189 .nr_sizes = 1, 190 .nr_windows = 8, 191 .imap_addr_offset = 0x40, 192 .imap_window_offset = 0x4, 193 }, 194 { 195 /* IARR1/IMAP1 (currently unused) */ 196 .type = IPROC_PCIE_IB_MAP_INVALID, 197 }, 198 { 199 /* IARR2/IMAP2 */ 200 .type = IPROC_PCIE_IB_MAP_MEM, 201 .size_unit = SZ_1M, 202 .region_sizes = { 64, 128, 256, 512, 1024, 2048, 4096, 8192, 203 16384 }, 204 .nr_sizes = 9, 205 .nr_windows = 1, 206 .imap_addr_offset = 0x4, 207 .imap_window_offset = 0x8, 208 }, 209 { 210 /* IARR3/IMAP3 */ 211 .type = IPROC_PCIE_IB_MAP_MEM, 212 .size_unit = SZ_1G, 213 .region_sizes = { 1, 2, 4, 8, 16, 32 }, 214 .nr_sizes = 6, 215 .nr_windows = 8, 216 .imap_addr_offset = 0x4, 217 .imap_window_offset = 0x8, 218 }, 219 { 220 /* IARR4/IMAP4 */ 221 .type = IPROC_PCIE_IB_MAP_MEM, 222 .size_unit = SZ_1G, 223 .region_sizes = { 32, 64, 128, 256, 512 }, 224 .nr_sizes = 5, 225 .nr_windows = 8, 226 .imap_addr_offset = 0x4, 227 .imap_window_offset = 0x8, 228 }, 229 }; 230 231 /* 232 * iProc PCIe host registers 233 */ 234 enum iproc_pcie_reg { 235 /* clock/reset signal control */ 236 IPROC_PCIE_CLK_CTRL = 0, 237 238 /* 239 * To allow MSI to be steered to an external MSI controller (e.g., ARM 240 * GICv3 ITS) 241 */ 242 IPROC_PCIE_MSI_GIC_MODE, 243 244 /* 245 * IPROC_PCIE_MSI_BASE_ADDR and IPROC_PCIE_MSI_WINDOW_SIZE define the 246 * window where the MSI posted writes are written, for the writes to be 247 * interpreted as MSI writes. 248 */ 249 IPROC_PCIE_MSI_BASE_ADDR, 250 IPROC_PCIE_MSI_WINDOW_SIZE, 251 252 /* 253 * To hold the address of the register where the MSI writes are 254 * programed. When ARM GICv3 ITS is used, this should be programmed 255 * with the address of the GITS_TRANSLATER register. 256 */ 257 IPROC_PCIE_MSI_ADDR_LO, 258 IPROC_PCIE_MSI_ADDR_HI, 259 260 /* enable MSI */ 261 IPROC_PCIE_MSI_EN_CFG, 262 263 /* allow access to root complex configuration space */ 264 IPROC_PCIE_CFG_IND_ADDR, 265 IPROC_PCIE_CFG_IND_DATA, 266 267 /* allow access to device configuration space */ 268 IPROC_PCIE_CFG_ADDR, 269 IPROC_PCIE_CFG_DATA, 270 271 /* enable INTx */ 272 IPROC_PCIE_INTX_EN, 273 274 /* outbound address mapping */ 275 IPROC_PCIE_OARR0, 276 IPROC_PCIE_OMAP0, 277 IPROC_PCIE_OARR1, 278 IPROC_PCIE_OMAP1, 279 IPROC_PCIE_OARR2, 280 IPROC_PCIE_OMAP2, 281 IPROC_PCIE_OARR3, 282 IPROC_PCIE_OMAP3, 283 284 /* inbound address mapping */ 285 IPROC_PCIE_IARR0, 286 IPROC_PCIE_IMAP0, 287 IPROC_PCIE_IARR1, 288 IPROC_PCIE_IMAP1, 289 IPROC_PCIE_IARR2, 290 IPROC_PCIE_IMAP2, 291 IPROC_PCIE_IARR3, 292 IPROC_PCIE_IMAP3, 293 IPROC_PCIE_IARR4, 294 IPROC_PCIE_IMAP4, 295 296 /* config read status */ 297 IPROC_PCIE_CFG_RD_STATUS, 298 299 /* link status */ 300 IPROC_PCIE_LINK_STATUS, 301 302 /* enable APB error for unsupported requests */ 303 IPROC_PCIE_APB_ERR_EN, 304 305 /* total number of core registers */ 306 IPROC_PCIE_MAX_NUM_REG, 307 }; 308 309 /* iProc PCIe PAXB BCMA registers */ 310 static const u16 iproc_pcie_reg_paxb_bcma[] = { 311 [IPROC_PCIE_CLK_CTRL] = 0x000, 312 [IPROC_PCIE_CFG_IND_ADDR] = 0x120, 313 [IPROC_PCIE_CFG_IND_DATA] = 0x124, 314 [IPROC_PCIE_CFG_ADDR] = 0x1f8, 315 [IPROC_PCIE_CFG_DATA] = 0x1fc, 316 [IPROC_PCIE_INTX_EN] = 0x330, 317 [IPROC_PCIE_LINK_STATUS] = 0xf0c, 318 }; 319 320 /* iProc PCIe PAXB registers */ 321 static const u16 iproc_pcie_reg_paxb[] = { 322 [IPROC_PCIE_CLK_CTRL] = 0x000, 323 [IPROC_PCIE_CFG_IND_ADDR] = 0x120, 324 [IPROC_PCIE_CFG_IND_DATA] = 0x124, 325 [IPROC_PCIE_CFG_ADDR] = 0x1f8, 326 [IPROC_PCIE_CFG_DATA] = 0x1fc, 327 [IPROC_PCIE_INTX_EN] = 0x330, 328 [IPROC_PCIE_OARR0] = 0xd20, 329 [IPROC_PCIE_OMAP0] = 0xd40, 330 [IPROC_PCIE_OARR1] = 0xd28, 331 [IPROC_PCIE_OMAP1] = 0xd48, 332 [IPROC_PCIE_LINK_STATUS] = 0xf0c, 333 [IPROC_PCIE_APB_ERR_EN] = 0xf40, 334 }; 335 336 /* iProc PCIe PAXB v2 registers */ 337 static const u16 iproc_pcie_reg_paxb_v2[] = { 338 [IPROC_PCIE_CLK_CTRL] = 0x000, 339 [IPROC_PCIE_CFG_IND_ADDR] = 0x120, 340 [IPROC_PCIE_CFG_IND_DATA] = 0x124, 341 [IPROC_PCIE_CFG_ADDR] = 0x1f8, 342 [IPROC_PCIE_CFG_DATA] = 0x1fc, 343 [IPROC_PCIE_INTX_EN] = 0x330, 344 [IPROC_PCIE_OARR0] = 0xd20, 345 [IPROC_PCIE_OMAP0] = 0xd40, 346 [IPROC_PCIE_OARR1] = 0xd28, 347 [IPROC_PCIE_OMAP1] = 0xd48, 348 [IPROC_PCIE_OARR2] = 0xd60, 349 [IPROC_PCIE_OMAP2] = 0xd68, 350 [IPROC_PCIE_OARR3] = 0xdf0, 351 [IPROC_PCIE_OMAP3] = 0xdf8, 352 [IPROC_PCIE_IARR0] = 0xd00, 353 [IPROC_PCIE_IMAP0] = 0xc00, 354 [IPROC_PCIE_IARR2] = 0xd10, 355 [IPROC_PCIE_IMAP2] = 0xcc0, 356 [IPROC_PCIE_IARR3] = 0xe00, 357 [IPROC_PCIE_IMAP3] = 0xe08, 358 [IPROC_PCIE_IARR4] = 0xe68, 359 [IPROC_PCIE_IMAP4] = 0xe70, 360 [IPROC_PCIE_CFG_RD_STATUS] = 0xee0, 361 [IPROC_PCIE_LINK_STATUS] = 0xf0c, 362 [IPROC_PCIE_APB_ERR_EN] = 0xf40, 363 }; 364 365 /* iProc PCIe PAXC v1 registers */ 366 static const u16 iproc_pcie_reg_paxc[] = { 367 [IPROC_PCIE_CLK_CTRL] = 0x000, 368 [IPROC_PCIE_CFG_IND_ADDR] = 0x1f0, 369 [IPROC_PCIE_CFG_IND_DATA] = 0x1f4, 370 [IPROC_PCIE_CFG_ADDR] = 0x1f8, 371 [IPROC_PCIE_CFG_DATA] = 0x1fc, 372 }; 373 374 /* iProc PCIe PAXC v2 registers */ 375 static const u16 iproc_pcie_reg_paxc_v2[] = { 376 [IPROC_PCIE_MSI_GIC_MODE] = 0x050, 377 [IPROC_PCIE_MSI_BASE_ADDR] = 0x074, 378 [IPROC_PCIE_MSI_WINDOW_SIZE] = 0x078, 379 [IPROC_PCIE_MSI_ADDR_LO] = 0x07c, 380 [IPROC_PCIE_MSI_ADDR_HI] = 0x080, 381 [IPROC_PCIE_MSI_EN_CFG] = 0x09c, 382 [IPROC_PCIE_CFG_IND_ADDR] = 0x1f0, 383 [IPROC_PCIE_CFG_IND_DATA] = 0x1f4, 384 [IPROC_PCIE_CFG_ADDR] = 0x1f8, 385 [IPROC_PCIE_CFG_DATA] = 0x1fc, 386 }; 387 388 /* 389 * List of device IDs of controllers that have corrupted capability list that 390 * require SW fixup 391 */ 392 static const u16 iproc_pcie_corrupt_cap_did[] = { 393 0x16cd, 394 0x16f0, 395 0xd802, 396 0xd804 397 }; 398 399 static inline struct iproc_pcie *iproc_data(struct pci_bus *bus) 400 { 401 struct iproc_pcie *pcie = bus->sysdata; 402 return pcie; 403 } 404 405 static inline bool iproc_pcie_reg_is_invalid(u16 reg_offset) 406 { 407 return !!(reg_offset == IPROC_PCIE_REG_INVALID); 408 } 409 410 static inline u16 iproc_pcie_reg_offset(struct iproc_pcie *pcie, 411 enum iproc_pcie_reg reg) 412 { 413 return pcie->reg_offsets[reg]; 414 } 415 416 static inline u32 iproc_pcie_read_reg(struct iproc_pcie *pcie, 417 enum iproc_pcie_reg reg) 418 { 419 u16 offset = iproc_pcie_reg_offset(pcie, reg); 420 421 if (iproc_pcie_reg_is_invalid(offset)) 422 return 0; 423 424 return readl(pcie->base + offset); 425 } 426 427 static inline void iproc_pcie_write_reg(struct iproc_pcie *pcie, 428 enum iproc_pcie_reg reg, u32 val) 429 { 430 u16 offset = iproc_pcie_reg_offset(pcie, reg); 431 432 if (iproc_pcie_reg_is_invalid(offset)) 433 return; 434 435 writel(val, pcie->base + offset); 436 } 437 438 /** 439 * APB error forwarding can be disabled during access of configuration 440 * registers of the endpoint device, to prevent unsupported requests 441 * (typically seen during enumeration with multi-function devices) from 442 * triggering a system exception. 443 */ 444 static inline void iproc_pcie_apb_err_disable(struct pci_bus *bus, 445 bool disable) 446 { 447 struct iproc_pcie *pcie = iproc_data(bus); 448 u32 val; 449 450 if (bus->number && pcie->has_apb_err_disable) { 451 val = iproc_pcie_read_reg(pcie, IPROC_PCIE_APB_ERR_EN); 452 if (disable) 453 val &= ~APB_ERR_EN; 454 else 455 val |= APB_ERR_EN; 456 iproc_pcie_write_reg(pcie, IPROC_PCIE_APB_ERR_EN, val); 457 } 458 } 459 460 static void __iomem *iproc_pcie_map_ep_cfg_reg(struct iproc_pcie *pcie, 461 unsigned int busno, 462 unsigned int slot, 463 unsigned int fn, 464 int where) 465 { 466 u16 offset; 467 u32 val; 468 469 /* EP device access */ 470 val = (busno << CFG_ADDR_BUS_NUM_SHIFT) | 471 (slot << CFG_ADDR_DEV_NUM_SHIFT) | 472 (fn << CFG_ADDR_FUNC_NUM_SHIFT) | 473 (where & CFG_ADDR_REG_NUM_MASK) | 474 (1 & CFG_ADDR_CFG_TYPE_MASK); 475 476 iproc_pcie_write_reg(pcie, IPROC_PCIE_CFG_ADDR, val); 477 offset = iproc_pcie_reg_offset(pcie, IPROC_PCIE_CFG_DATA); 478 479 if (iproc_pcie_reg_is_invalid(offset)) 480 return NULL; 481 482 return (pcie->base + offset); 483 } 484 485 static unsigned int iproc_pcie_cfg_retry(struct iproc_pcie *pcie, 486 void __iomem *cfg_data_p) 487 { 488 int timeout = CFG_RETRY_STATUS_TIMEOUT_US; 489 unsigned int data; 490 u32 status; 491 492 /* 493 * As per PCIe spec r3.1, sec 2.3.2, CRS Software Visibility only 494 * affects config reads of the Vendor ID. For config writes or any 495 * other config reads, the Root may automatically reissue the 496 * configuration request again as a new request. 497 * 498 * For config reads, this hardware returns CFG_RETRY_STATUS data 499 * when it receives a CRS completion, regardless of the address of 500 * the read or the CRS Software Visibility Enable bit. As a 501 * partial workaround for this, we retry in software any read that 502 * returns CFG_RETRY_STATUS. 503 * 504 * Note that a non-Vendor ID config register may have a value of 505 * CFG_RETRY_STATUS. If we read that, we can't distinguish it from 506 * a CRS completion, so we will incorrectly retry the read and 507 * eventually return the wrong data (0xffffffff). 508 */ 509 data = readl(cfg_data_p); 510 while (data == CFG_RETRY_STATUS && timeout--) { 511 /* 512 * CRS state is set in CFG_RD status register 513 * This will handle the case where CFG_RETRY_STATUS is 514 * valid config data. 515 */ 516 status = iproc_pcie_read_reg(pcie, IPROC_PCIE_CFG_RD_STATUS); 517 if (status != CFG_RD_CRS) 518 return data; 519 520 udelay(1); 521 data = readl(cfg_data_p); 522 } 523 524 if (data == CFG_RETRY_STATUS) 525 data = 0xffffffff; 526 527 return data; 528 } 529 530 static void iproc_pcie_fix_cap(struct iproc_pcie *pcie, int where, u32 *val) 531 { 532 u32 i, dev_id; 533 534 switch (where & ~0x3) { 535 case PCI_VENDOR_ID: 536 dev_id = *val >> 16; 537 538 /* 539 * Activate fixup for those controllers that have corrupted 540 * capability list registers 541 */ 542 for (i = 0; i < ARRAY_SIZE(iproc_pcie_corrupt_cap_did); i++) 543 if (dev_id == iproc_pcie_corrupt_cap_did[i]) 544 pcie->fix_paxc_cap = true; 545 break; 546 547 case IPROC_PCI_PM_CAP: 548 if (pcie->fix_paxc_cap) { 549 /* advertise PM, force next capability to PCIe */ 550 *val &= ~IPROC_PCI_PM_CAP_MASK; 551 *val |= IPROC_PCI_EXP_CAP << 8 | PCI_CAP_ID_PM; 552 } 553 break; 554 555 case IPROC_PCI_EXP_CAP: 556 if (pcie->fix_paxc_cap) { 557 /* advertise root port, version 2, terminate here */ 558 *val = (PCI_EXP_TYPE_ROOT_PORT << 4 | 2) << 16 | 559 PCI_CAP_ID_EXP; 560 } 561 break; 562 563 case IPROC_PCI_EXP_CAP + PCI_EXP_RTCTL: 564 /* Don't advertise CRS SV support */ 565 *val &= ~(PCI_EXP_RTCAP_CRSVIS << 16); 566 break; 567 568 default: 569 break; 570 } 571 } 572 573 static int iproc_pcie_config_read(struct pci_bus *bus, unsigned int devfn, 574 int where, int size, u32 *val) 575 { 576 struct iproc_pcie *pcie = iproc_data(bus); 577 unsigned int slot = PCI_SLOT(devfn); 578 unsigned int fn = PCI_FUNC(devfn); 579 unsigned int busno = bus->number; 580 void __iomem *cfg_data_p; 581 unsigned int data; 582 int ret; 583 584 /* root complex access */ 585 if (busno == 0) { 586 ret = pci_generic_config_read32(bus, devfn, where, size, val); 587 if (ret == PCIBIOS_SUCCESSFUL) 588 iproc_pcie_fix_cap(pcie, where, val); 589 590 return ret; 591 } 592 593 cfg_data_p = iproc_pcie_map_ep_cfg_reg(pcie, busno, slot, fn, where); 594 595 if (!cfg_data_p) 596 return PCIBIOS_DEVICE_NOT_FOUND; 597 598 data = iproc_pcie_cfg_retry(pcie, cfg_data_p); 599 600 *val = data; 601 if (size <= 2) 602 *val = (data >> (8 * (where & 3))) & ((1 << (size * 8)) - 1); 603 604 /* 605 * For PAXC and PAXCv2, the total number of PFs that one can enumerate 606 * depends on the firmware configuration. Unfortunately, due to an ASIC 607 * bug, unconfigured PFs cannot be properly hidden from the root 608 * complex. As a result, write access to these PFs will cause bus lock 609 * up on the embedded processor 610 * 611 * Since all unconfigured PFs are left with an incorrect, staled device 612 * ID of 0x168e (PCI_DEVICE_ID_NX2_57810), we try to catch those access 613 * early here and reject them all 614 */ 615 #define DEVICE_ID_MASK 0xffff0000 616 #define DEVICE_ID_SHIFT 16 617 if (pcie->rej_unconfig_pf && 618 (where & CFG_ADDR_REG_NUM_MASK) == PCI_VENDOR_ID) 619 if ((*val & DEVICE_ID_MASK) == 620 (PCI_DEVICE_ID_NX2_57810 << DEVICE_ID_SHIFT)) 621 return PCIBIOS_FUNC_NOT_SUPPORTED; 622 623 return PCIBIOS_SUCCESSFUL; 624 } 625 626 /** 627 * Note access to the configuration registers are protected at the higher layer 628 * by 'pci_lock' in drivers/pci/access.c 629 */ 630 static void __iomem *iproc_pcie_map_cfg_bus(struct iproc_pcie *pcie, 631 int busno, unsigned int devfn, 632 int where) 633 { 634 unsigned slot = PCI_SLOT(devfn); 635 unsigned fn = PCI_FUNC(devfn); 636 u16 offset; 637 638 /* root complex access */ 639 if (busno == 0) { 640 if (slot > 0 || fn > 0) 641 return NULL; 642 643 iproc_pcie_write_reg(pcie, IPROC_PCIE_CFG_IND_ADDR, 644 where & CFG_IND_ADDR_MASK); 645 offset = iproc_pcie_reg_offset(pcie, IPROC_PCIE_CFG_IND_DATA); 646 if (iproc_pcie_reg_is_invalid(offset)) 647 return NULL; 648 else 649 return (pcie->base + offset); 650 } 651 652 return iproc_pcie_map_ep_cfg_reg(pcie, busno, slot, fn, where); 653 } 654 655 static void __iomem *iproc_pcie_bus_map_cfg_bus(struct pci_bus *bus, 656 unsigned int devfn, 657 int where) 658 { 659 return iproc_pcie_map_cfg_bus(iproc_data(bus), bus->number, devfn, 660 where); 661 } 662 663 static int iproc_pci_raw_config_read32(struct iproc_pcie *pcie, 664 unsigned int devfn, int where, 665 int size, u32 *val) 666 { 667 void __iomem *addr; 668 669 addr = iproc_pcie_map_cfg_bus(pcie, 0, devfn, where & ~0x3); 670 if (!addr) { 671 *val = ~0; 672 return PCIBIOS_DEVICE_NOT_FOUND; 673 } 674 675 *val = readl(addr); 676 677 if (size <= 2) 678 *val = (*val >> (8 * (where & 3))) & ((1 << (size * 8)) - 1); 679 680 return PCIBIOS_SUCCESSFUL; 681 } 682 683 static int iproc_pci_raw_config_write32(struct iproc_pcie *pcie, 684 unsigned int devfn, int where, 685 int size, u32 val) 686 { 687 void __iomem *addr; 688 u32 mask, tmp; 689 690 addr = iproc_pcie_map_cfg_bus(pcie, 0, devfn, where & ~0x3); 691 if (!addr) 692 return PCIBIOS_DEVICE_NOT_FOUND; 693 694 if (size == 4) { 695 writel(val, addr); 696 return PCIBIOS_SUCCESSFUL; 697 } 698 699 mask = ~(((1 << (size * 8)) - 1) << ((where & 0x3) * 8)); 700 tmp = readl(addr) & mask; 701 tmp |= val << ((where & 0x3) * 8); 702 writel(tmp, addr); 703 704 return PCIBIOS_SUCCESSFUL; 705 } 706 707 static int iproc_pcie_config_read32(struct pci_bus *bus, unsigned int devfn, 708 int where, int size, u32 *val) 709 { 710 int ret; 711 struct iproc_pcie *pcie = iproc_data(bus); 712 713 iproc_pcie_apb_err_disable(bus, true); 714 if (pcie->iproc_cfg_read) 715 ret = iproc_pcie_config_read(bus, devfn, where, size, val); 716 else 717 ret = pci_generic_config_read32(bus, devfn, where, size, val); 718 iproc_pcie_apb_err_disable(bus, false); 719 720 return ret; 721 } 722 723 static int iproc_pcie_config_write32(struct pci_bus *bus, unsigned int devfn, 724 int where, int size, u32 val) 725 { 726 int ret; 727 728 iproc_pcie_apb_err_disable(bus, true); 729 ret = pci_generic_config_write32(bus, devfn, where, size, val); 730 iproc_pcie_apb_err_disable(bus, false); 731 732 return ret; 733 } 734 735 static struct pci_ops iproc_pcie_ops = { 736 .map_bus = iproc_pcie_bus_map_cfg_bus, 737 .read = iproc_pcie_config_read32, 738 .write = iproc_pcie_config_write32, 739 }; 740 741 static void iproc_pcie_perst_ctrl(struct iproc_pcie *pcie, bool assert) 742 { 743 u32 val; 744 745 /* 746 * PAXC and the internal emulated endpoint device downstream should not 747 * be reset. If firmware has been loaded on the endpoint device at an 748 * earlier boot stage, reset here causes issues. 749 */ 750 if (pcie->ep_is_internal) 751 return; 752 753 if (assert) { 754 val = iproc_pcie_read_reg(pcie, IPROC_PCIE_CLK_CTRL); 755 val &= ~EP_PERST_SOURCE_SELECT & ~EP_MODE_SURVIVE_PERST & 756 ~RC_PCIE_RST_OUTPUT; 757 iproc_pcie_write_reg(pcie, IPROC_PCIE_CLK_CTRL, val); 758 udelay(250); 759 } else { 760 val = iproc_pcie_read_reg(pcie, IPROC_PCIE_CLK_CTRL); 761 val |= RC_PCIE_RST_OUTPUT; 762 iproc_pcie_write_reg(pcie, IPROC_PCIE_CLK_CTRL, val); 763 msleep(100); 764 } 765 } 766 767 int iproc_pcie_shutdown(struct iproc_pcie *pcie) 768 { 769 iproc_pcie_perst_ctrl(pcie, true); 770 msleep(500); 771 772 return 0; 773 } 774 EXPORT_SYMBOL_GPL(iproc_pcie_shutdown); 775 776 static int iproc_pcie_check_link(struct iproc_pcie *pcie) 777 { 778 struct device *dev = pcie->dev; 779 u32 hdr_type, link_ctrl, link_status, class, val; 780 bool link_is_active = false; 781 782 /* 783 * PAXC connects to emulated endpoint devices directly and does not 784 * have a Serdes. Therefore skip the link detection logic here. 785 */ 786 if (pcie->ep_is_internal) 787 return 0; 788 789 val = iproc_pcie_read_reg(pcie, IPROC_PCIE_LINK_STATUS); 790 if (!(val & PCIE_PHYLINKUP) || !(val & PCIE_DL_ACTIVE)) { 791 dev_err(dev, "PHY or data link is INACTIVE!\n"); 792 return -ENODEV; 793 } 794 795 /* make sure we are not in EP mode */ 796 iproc_pci_raw_config_read32(pcie, 0, PCI_HEADER_TYPE, 1, &hdr_type); 797 if ((hdr_type & 0x7f) != PCI_HEADER_TYPE_BRIDGE) { 798 dev_err(dev, "in EP mode, hdr=%#02x\n", hdr_type); 799 return -EFAULT; 800 } 801 802 /* force class to PCI_CLASS_BRIDGE_PCI (0x0604) */ 803 #define PCI_BRIDGE_CTRL_REG_OFFSET 0x43c 804 #define PCI_CLASS_BRIDGE_MASK 0xffff00 805 #define PCI_CLASS_BRIDGE_SHIFT 8 806 iproc_pci_raw_config_read32(pcie, 0, PCI_BRIDGE_CTRL_REG_OFFSET, 807 4, &class); 808 class &= ~PCI_CLASS_BRIDGE_MASK; 809 class |= (PCI_CLASS_BRIDGE_PCI << PCI_CLASS_BRIDGE_SHIFT); 810 iproc_pci_raw_config_write32(pcie, 0, PCI_BRIDGE_CTRL_REG_OFFSET, 811 4, class); 812 813 /* check link status to see if link is active */ 814 iproc_pci_raw_config_read32(pcie, 0, IPROC_PCI_EXP_CAP + PCI_EXP_LNKSTA, 815 2, &link_status); 816 if (link_status & PCI_EXP_LNKSTA_NLW) 817 link_is_active = true; 818 819 if (!link_is_active) { 820 /* try GEN 1 link speed */ 821 #define PCI_TARGET_LINK_SPEED_MASK 0xf 822 #define PCI_TARGET_LINK_SPEED_GEN2 0x2 823 #define PCI_TARGET_LINK_SPEED_GEN1 0x1 824 iproc_pci_raw_config_read32(pcie, 0, 825 IPROC_PCI_EXP_CAP + PCI_EXP_LNKCTL2, 826 4, &link_ctrl); 827 if ((link_ctrl & PCI_TARGET_LINK_SPEED_MASK) == 828 PCI_TARGET_LINK_SPEED_GEN2) { 829 link_ctrl &= ~PCI_TARGET_LINK_SPEED_MASK; 830 link_ctrl |= PCI_TARGET_LINK_SPEED_GEN1; 831 iproc_pci_raw_config_write32(pcie, 0, 832 IPROC_PCI_EXP_CAP + PCI_EXP_LNKCTL2, 833 4, link_ctrl); 834 msleep(100); 835 836 iproc_pci_raw_config_read32(pcie, 0, 837 IPROC_PCI_EXP_CAP + PCI_EXP_LNKSTA, 838 2, &link_status); 839 if (link_status & PCI_EXP_LNKSTA_NLW) 840 link_is_active = true; 841 } 842 } 843 844 dev_info(dev, "link: %s\n", link_is_active ? "UP" : "DOWN"); 845 846 return link_is_active ? 0 : -ENODEV; 847 } 848 849 static void iproc_pcie_enable(struct iproc_pcie *pcie) 850 { 851 iproc_pcie_write_reg(pcie, IPROC_PCIE_INTX_EN, SYS_RC_INTX_MASK); 852 } 853 854 static inline bool iproc_pcie_ob_is_valid(struct iproc_pcie *pcie, 855 int window_idx) 856 { 857 u32 val; 858 859 val = iproc_pcie_read_reg(pcie, MAP_REG(IPROC_PCIE_OARR0, window_idx)); 860 861 return !!(val & OARR_VALID); 862 } 863 864 static inline int iproc_pcie_ob_write(struct iproc_pcie *pcie, int window_idx, 865 int size_idx, u64 axi_addr, u64 pci_addr) 866 { 867 struct device *dev = pcie->dev; 868 u16 oarr_offset, omap_offset; 869 870 /* 871 * Derive the OARR/OMAP offset from the first pair (OARR0/OMAP0) based 872 * on window index. 873 */ 874 oarr_offset = iproc_pcie_reg_offset(pcie, MAP_REG(IPROC_PCIE_OARR0, 875 window_idx)); 876 omap_offset = iproc_pcie_reg_offset(pcie, MAP_REG(IPROC_PCIE_OMAP0, 877 window_idx)); 878 if (iproc_pcie_reg_is_invalid(oarr_offset) || 879 iproc_pcie_reg_is_invalid(omap_offset)) 880 return -EINVAL; 881 882 /* 883 * Program the OARR registers. The upper 32-bit OARR register is 884 * always right after the lower 32-bit OARR register. 885 */ 886 writel(lower_32_bits(axi_addr) | (size_idx << OARR_SIZE_CFG_SHIFT) | 887 OARR_VALID, pcie->base + oarr_offset); 888 writel(upper_32_bits(axi_addr), pcie->base + oarr_offset + 4); 889 890 /* now program the OMAP registers */ 891 writel(lower_32_bits(pci_addr), pcie->base + omap_offset); 892 writel(upper_32_bits(pci_addr), pcie->base + omap_offset + 4); 893 894 dev_dbg(dev, "ob window [%d]: offset 0x%x axi %pap pci %pap\n", 895 window_idx, oarr_offset, &axi_addr, &pci_addr); 896 dev_dbg(dev, "oarr lo 0x%x oarr hi 0x%x\n", 897 readl(pcie->base + oarr_offset), 898 readl(pcie->base + oarr_offset + 4)); 899 dev_dbg(dev, "omap lo 0x%x omap hi 0x%x\n", 900 readl(pcie->base + omap_offset), 901 readl(pcie->base + omap_offset + 4)); 902 903 return 0; 904 } 905 906 /** 907 * Some iProc SoCs require the SW to configure the outbound address mapping 908 * 909 * Outbound address translation: 910 * 911 * iproc_pcie_address = axi_address - axi_offset 912 * OARR = iproc_pcie_address 913 * OMAP = pci_addr 914 * 915 * axi_addr -> iproc_pcie_address -> OARR -> OMAP -> pci_address 916 */ 917 static int iproc_pcie_setup_ob(struct iproc_pcie *pcie, u64 axi_addr, 918 u64 pci_addr, resource_size_t size) 919 { 920 struct iproc_pcie_ob *ob = &pcie->ob; 921 struct device *dev = pcie->dev; 922 int ret = -EINVAL, window_idx, size_idx; 923 924 if (axi_addr < ob->axi_offset) { 925 dev_err(dev, "axi address %pap less than offset %pap\n", 926 &axi_addr, &ob->axi_offset); 927 return -EINVAL; 928 } 929 930 /* 931 * Translate the AXI address to the internal address used by the iProc 932 * PCIe core before programming the OARR 933 */ 934 axi_addr -= ob->axi_offset; 935 936 /* iterate through all OARR/OMAP mapping windows */ 937 for (window_idx = ob->nr_windows - 1; window_idx >= 0; window_idx--) { 938 const struct iproc_pcie_ob_map *ob_map = 939 &pcie->ob_map[window_idx]; 940 941 /* 942 * If current outbound window is already in use, move on to the 943 * next one. 944 */ 945 if (iproc_pcie_ob_is_valid(pcie, window_idx)) 946 continue; 947 948 /* 949 * Iterate through all supported window sizes within the 950 * OARR/OMAP pair to find a match. Go through the window sizes 951 * in a descending order. 952 */ 953 for (size_idx = ob_map->nr_sizes - 1; size_idx >= 0; 954 size_idx--) { 955 resource_size_t window_size = 956 ob_map->window_sizes[size_idx] * SZ_1M; 957 958 /* 959 * Keep iterating until we reach the last window and 960 * with the minimal window size at index zero. In this 961 * case, we take a compromise by mapping it using the 962 * minimum window size that can be supported 963 */ 964 if (size < window_size) { 965 if (size_idx > 0 || window_idx > 0) 966 continue; 967 968 /* 969 * For the corner case of reaching the minimal 970 * window size that can be supported on the 971 * last window 972 */ 973 axi_addr = ALIGN_DOWN(axi_addr, window_size); 974 pci_addr = ALIGN_DOWN(pci_addr, window_size); 975 size = window_size; 976 } 977 978 if (!IS_ALIGNED(axi_addr, window_size) || 979 !IS_ALIGNED(pci_addr, window_size)) { 980 dev_err(dev, 981 "axi %pap or pci %pap not aligned\n", 982 &axi_addr, &pci_addr); 983 return -EINVAL; 984 } 985 986 /* 987 * Match found! Program both OARR and OMAP and mark 988 * them as a valid entry. 989 */ 990 ret = iproc_pcie_ob_write(pcie, window_idx, size_idx, 991 axi_addr, pci_addr); 992 if (ret) 993 goto err_ob; 994 995 size -= window_size; 996 if (size == 0) 997 return 0; 998 999 /* 1000 * If we are here, we are done with the current window, 1001 * but not yet finished all mappings. Need to move on 1002 * to the next window. 1003 */ 1004 axi_addr += window_size; 1005 pci_addr += window_size; 1006 break; 1007 } 1008 } 1009 1010 err_ob: 1011 dev_err(dev, "unable to configure outbound mapping\n"); 1012 dev_err(dev, 1013 "axi %pap, axi offset %pap, pci %pap, res size %pap\n", 1014 &axi_addr, &ob->axi_offset, &pci_addr, &size); 1015 1016 return ret; 1017 } 1018 1019 static int iproc_pcie_map_ranges(struct iproc_pcie *pcie, 1020 struct list_head *resources) 1021 { 1022 struct device *dev = pcie->dev; 1023 struct resource_entry *window; 1024 int ret; 1025 1026 resource_list_for_each_entry(window, resources) { 1027 struct resource *res = window->res; 1028 u64 res_type = resource_type(res); 1029 1030 switch (res_type) { 1031 case IORESOURCE_IO: 1032 case IORESOURCE_BUS: 1033 break; 1034 case IORESOURCE_MEM: 1035 ret = iproc_pcie_setup_ob(pcie, res->start, 1036 res->start - window->offset, 1037 resource_size(res)); 1038 if (ret) 1039 return ret; 1040 break; 1041 default: 1042 dev_err(dev, "invalid resource %pR\n", res); 1043 return -EINVAL; 1044 } 1045 } 1046 1047 return 0; 1048 } 1049 1050 static inline bool iproc_pcie_ib_is_in_use(struct iproc_pcie *pcie, 1051 int region_idx) 1052 { 1053 const struct iproc_pcie_ib_map *ib_map = &pcie->ib_map[region_idx]; 1054 u32 val; 1055 1056 val = iproc_pcie_read_reg(pcie, MAP_REG(IPROC_PCIE_IARR0, region_idx)); 1057 1058 return !!(val & (BIT(ib_map->nr_sizes) - 1)); 1059 } 1060 1061 static inline bool iproc_pcie_ib_check_type(const struct iproc_pcie_ib_map *ib_map, 1062 enum iproc_pcie_ib_map_type type) 1063 { 1064 return !!(ib_map->type == type); 1065 } 1066 1067 static int iproc_pcie_ib_write(struct iproc_pcie *pcie, int region_idx, 1068 int size_idx, int nr_windows, u64 axi_addr, 1069 u64 pci_addr, resource_size_t size) 1070 { 1071 struct device *dev = pcie->dev; 1072 const struct iproc_pcie_ib_map *ib_map = &pcie->ib_map[region_idx]; 1073 u16 iarr_offset, imap_offset; 1074 u32 val; 1075 int window_idx; 1076 1077 iarr_offset = iproc_pcie_reg_offset(pcie, 1078 MAP_REG(IPROC_PCIE_IARR0, region_idx)); 1079 imap_offset = iproc_pcie_reg_offset(pcie, 1080 MAP_REG(IPROC_PCIE_IMAP0, region_idx)); 1081 if (iproc_pcie_reg_is_invalid(iarr_offset) || 1082 iproc_pcie_reg_is_invalid(imap_offset)) 1083 return -EINVAL; 1084 1085 dev_dbg(dev, "ib region [%d]: offset 0x%x axi %pap pci %pap\n", 1086 region_idx, iarr_offset, &axi_addr, &pci_addr); 1087 1088 /* 1089 * Program the IARR registers. The upper 32-bit IARR register is 1090 * always right after the lower 32-bit IARR register. 1091 */ 1092 writel(lower_32_bits(pci_addr) | BIT(size_idx), 1093 pcie->base + iarr_offset); 1094 writel(upper_32_bits(pci_addr), pcie->base + iarr_offset + 4); 1095 1096 dev_dbg(dev, "iarr lo 0x%x iarr hi 0x%x\n", 1097 readl(pcie->base + iarr_offset), 1098 readl(pcie->base + iarr_offset + 4)); 1099 1100 /* 1101 * Now program the IMAP registers. Each IARR region may have one or 1102 * more IMAP windows. 1103 */ 1104 size >>= ilog2(nr_windows); 1105 for (window_idx = 0; window_idx < nr_windows; window_idx++) { 1106 val = readl(pcie->base + imap_offset); 1107 val |= lower_32_bits(axi_addr) | IMAP_VALID; 1108 writel(val, pcie->base + imap_offset); 1109 writel(upper_32_bits(axi_addr), 1110 pcie->base + imap_offset + ib_map->imap_addr_offset); 1111 1112 dev_dbg(dev, "imap window [%d] lo 0x%x hi 0x%x\n", 1113 window_idx, readl(pcie->base + imap_offset), 1114 readl(pcie->base + imap_offset + 1115 ib_map->imap_addr_offset)); 1116 1117 imap_offset += ib_map->imap_window_offset; 1118 axi_addr += size; 1119 } 1120 1121 return 0; 1122 } 1123 1124 static int iproc_pcie_setup_ib(struct iproc_pcie *pcie, 1125 struct of_pci_range *range, 1126 enum iproc_pcie_ib_map_type type) 1127 { 1128 struct device *dev = pcie->dev; 1129 struct iproc_pcie_ib *ib = &pcie->ib; 1130 int ret; 1131 unsigned int region_idx, size_idx; 1132 u64 axi_addr = range->cpu_addr, pci_addr = range->pci_addr; 1133 resource_size_t size = range->size; 1134 1135 /* iterate through all IARR mapping regions */ 1136 for (region_idx = 0; region_idx < ib->nr_regions; region_idx++) { 1137 const struct iproc_pcie_ib_map *ib_map = 1138 &pcie->ib_map[region_idx]; 1139 1140 /* 1141 * If current inbound region is already in use or not a 1142 * compatible type, move on to the next. 1143 */ 1144 if (iproc_pcie_ib_is_in_use(pcie, region_idx) || 1145 !iproc_pcie_ib_check_type(ib_map, type)) 1146 continue; 1147 1148 /* iterate through all supported region sizes to find a match */ 1149 for (size_idx = 0; size_idx < ib_map->nr_sizes; size_idx++) { 1150 resource_size_t region_size = 1151 ib_map->region_sizes[size_idx] * ib_map->size_unit; 1152 1153 if (size != region_size) 1154 continue; 1155 1156 if (!IS_ALIGNED(axi_addr, region_size) || 1157 !IS_ALIGNED(pci_addr, region_size)) { 1158 dev_err(dev, 1159 "axi %pap or pci %pap not aligned\n", 1160 &axi_addr, &pci_addr); 1161 return -EINVAL; 1162 } 1163 1164 /* Match found! Program IARR and all IMAP windows. */ 1165 ret = iproc_pcie_ib_write(pcie, region_idx, size_idx, 1166 ib_map->nr_windows, axi_addr, 1167 pci_addr, size); 1168 if (ret) 1169 goto err_ib; 1170 else 1171 return 0; 1172 1173 } 1174 } 1175 ret = -EINVAL; 1176 1177 err_ib: 1178 dev_err(dev, "unable to configure inbound mapping\n"); 1179 dev_err(dev, "axi %pap, pci %pap, res size %pap\n", 1180 &axi_addr, &pci_addr, &size); 1181 1182 return ret; 1183 } 1184 1185 static int iproc_pcie_add_dma_range(struct device *dev, 1186 struct list_head *resources, 1187 struct of_pci_range *range) 1188 { 1189 struct resource *res; 1190 struct resource_entry *entry, *tmp; 1191 struct list_head *head = resources; 1192 1193 res = devm_kzalloc(dev, sizeof(struct resource), GFP_KERNEL); 1194 if (!res) 1195 return -ENOMEM; 1196 1197 resource_list_for_each_entry(tmp, resources) { 1198 if (tmp->res->start < range->cpu_addr) 1199 head = &tmp->node; 1200 } 1201 1202 res->start = range->cpu_addr; 1203 res->end = res->start + range->size - 1; 1204 1205 entry = resource_list_create_entry(res, 0); 1206 if (!entry) 1207 return -ENOMEM; 1208 1209 entry->offset = res->start - range->cpu_addr; 1210 resource_list_add(entry, head); 1211 1212 return 0; 1213 } 1214 1215 static int iproc_pcie_map_dma_ranges(struct iproc_pcie *pcie) 1216 { 1217 struct pci_host_bridge *host = pci_host_bridge_from_priv(pcie); 1218 struct of_pci_range range; 1219 struct of_pci_range_parser parser; 1220 int ret; 1221 LIST_HEAD(resources); 1222 1223 /* Get the dma-ranges from DT */ 1224 ret = of_pci_dma_range_parser_init(&parser, pcie->dev->of_node); 1225 if (ret) 1226 return ret; 1227 1228 for_each_of_pci_range(&parser, &range) { 1229 ret = iproc_pcie_add_dma_range(pcie->dev, 1230 &resources, 1231 &range); 1232 if (ret) 1233 goto out; 1234 /* Each range entry corresponds to an inbound mapping region */ 1235 ret = iproc_pcie_setup_ib(pcie, &range, IPROC_PCIE_IB_MAP_MEM); 1236 if (ret) 1237 goto out; 1238 } 1239 1240 list_splice_init(&resources, &host->dma_ranges); 1241 1242 return 0; 1243 out: 1244 pci_free_resource_list(&resources); 1245 return ret; 1246 } 1247 1248 static int iproce_pcie_get_msi(struct iproc_pcie *pcie, 1249 struct device_node *msi_node, 1250 u64 *msi_addr) 1251 { 1252 struct device *dev = pcie->dev; 1253 int ret; 1254 struct resource res; 1255 1256 /* 1257 * Check if 'msi-map' points to ARM GICv3 ITS, which is the only 1258 * supported external MSI controller that requires steering. 1259 */ 1260 if (!of_device_is_compatible(msi_node, "arm,gic-v3-its")) { 1261 dev_err(dev, "unable to find compatible MSI controller\n"); 1262 return -ENODEV; 1263 } 1264 1265 /* derive GITS_TRANSLATER address from GICv3 */ 1266 ret = of_address_to_resource(msi_node, 0, &res); 1267 if (ret < 0) { 1268 dev_err(dev, "unable to obtain MSI controller resources\n"); 1269 return ret; 1270 } 1271 1272 *msi_addr = res.start + GITS_TRANSLATER; 1273 return 0; 1274 } 1275 1276 static int iproc_pcie_paxb_v2_msi_steer(struct iproc_pcie *pcie, u64 msi_addr) 1277 { 1278 int ret; 1279 struct of_pci_range range; 1280 1281 memset(&range, 0, sizeof(range)); 1282 range.size = SZ_32K; 1283 range.pci_addr = range.cpu_addr = msi_addr & ~(range.size - 1); 1284 1285 ret = iproc_pcie_setup_ib(pcie, &range, IPROC_PCIE_IB_MAP_IO); 1286 return ret; 1287 } 1288 1289 static void iproc_pcie_paxc_v2_msi_steer(struct iproc_pcie *pcie, u64 msi_addr, 1290 bool enable) 1291 { 1292 u32 val; 1293 1294 if (!enable) { 1295 /* 1296 * Disable PAXC MSI steering. All write transfers will be 1297 * treated as non-MSI transfers 1298 */ 1299 val = iproc_pcie_read_reg(pcie, IPROC_PCIE_MSI_EN_CFG); 1300 val &= ~MSI_ENABLE_CFG; 1301 iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_EN_CFG, val); 1302 return; 1303 } 1304 1305 /* 1306 * Program bits [43:13] of address of GITS_TRANSLATER register into 1307 * bits [30:0] of the MSI base address register. In fact, in all iProc 1308 * based SoCs, all I/O register bases are well below the 32-bit 1309 * boundary, so we can safely assume bits [43:32] are always zeros. 1310 */ 1311 iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_BASE_ADDR, 1312 (u32)(msi_addr >> 13)); 1313 1314 /* use a default 8K window size */ 1315 iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_WINDOW_SIZE, 0); 1316 1317 /* steering MSI to GICv3 ITS */ 1318 val = iproc_pcie_read_reg(pcie, IPROC_PCIE_MSI_GIC_MODE); 1319 val |= GIC_V3_CFG; 1320 iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_GIC_MODE, val); 1321 1322 /* 1323 * Program bits [43:2] of address of GITS_TRANSLATER register into the 1324 * iProc MSI address registers. 1325 */ 1326 msi_addr >>= 2; 1327 iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_ADDR_HI, 1328 upper_32_bits(msi_addr)); 1329 iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_ADDR_LO, 1330 lower_32_bits(msi_addr)); 1331 1332 /* enable MSI */ 1333 val = iproc_pcie_read_reg(pcie, IPROC_PCIE_MSI_EN_CFG); 1334 val |= MSI_ENABLE_CFG; 1335 iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_EN_CFG, val); 1336 } 1337 1338 static int iproc_pcie_msi_steer(struct iproc_pcie *pcie, 1339 struct device_node *msi_node) 1340 { 1341 struct device *dev = pcie->dev; 1342 int ret; 1343 u64 msi_addr; 1344 1345 ret = iproce_pcie_get_msi(pcie, msi_node, &msi_addr); 1346 if (ret < 0) { 1347 dev_err(dev, "msi steering failed\n"); 1348 return ret; 1349 } 1350 1351 switch (pcie->type) { 1352 case IPROC_PCIE_PAXB_V2: 1353 ret = iproc_pcie_paxb_v2_msi_steer(pcie, msi_addr); 1354 if (ret) 1355 return ret; 1356 break; 1357 case IPROC_PCIE_PAXC_V2: 1358 iproc_pcie_paxc_v2_msi_steer(pcie, msi_addr, true); 1359 break; 1360 default: 1361 return -EINVAL; 1362 } 1363 1364 return 0; 1365 } 1366 1367 static int iproc_pcie_msi_enable(struct iproc_pcie *pcie) 1368 { 1369 struct device_node *msi_node; 1370 int ret; 1371 1372 /* 1373 * Either the "msi-parent" or the "msi-map" phandle needs to exist 1374 * for us to obtain the MSI node. 1375 */ 1376 1377 msi_node = of_parse_phandle(pcie->dev->of_node, "msi-parent", 0); 1378 if (!msi_node) { 1379 const __be32 *msi_map = NULL; 1380 int len; 1381 u32 phandle; 1382 1383 msi_map = of_get_property(pcie->dev->of_node, "msi-map", &len); 1384 if (!msi_map) 1385 return -ENODEV; 1386 1387 phandle = be32_to_cpup(msi_map + 1); 1388 msi_node = of_find_node_by_phandle(phandle); 1389 if (!msi_node) 1390 return -ENODEV; 1391 } 1392 1393 /* 1394 * Certain revisions of the iProc PCIe controller require additional 1395 * configurations to steer the MSI writes towards an external MSI 1396 * controller. 1397 */ 1398 if (pcie->need_msi_steer) { 1399 ret = iproc_pcie_msi_steer(pcie, msi_node); 1400 if (ret) 1401 goto out_put_node; 1402 } 1403 1404 /* 1405 * If another MSI controller is being used, the call below should fail 1406 * but that is okay 1407 */ 1408 ret = iproc_msi_init(pcie, msi_node); 1409 1410 out_put_node: 1411 of_node_put(msi_node); 1412 return ret; 1413 } 1414 1415 static void iproc_pcie_msi_disable(struct iproc_pcie *pcie) 1416 { 1417 iproc_msi_exit(pcie); 1418 } 1419 1420 static int iproc_pcie_rev_init(struct iproc_pcie *pcie) 1421 { 1422 struct device *dev = pcie->dev; 1423 unsigned int reg_idx; 1424 const u16 *regs; 1425 1426 switch (pcie->type) { 1427 case IPROC_PCIE_PAXB_BCMA: 1428 regs = iproc_pcie_reg_paxb_bcma; 1429 break; 1430 case IPROC_PCIE_PAXB: 1431 regs = iproc_pcie_reg_paxb; 1432 pcie->has_apb_err_disable = true; 1433 if (pcie->need_ob_cfg) { 1434 pcie->ob_map = paxb_ob_map; 1435 pcie->ob.nr_windows = ARRAY_SIZE(paxb_ob_map); 1436 } 1437 break; 1438 case IPROC_PCIE_PAXB_V2: 1439 regs = iproc_pcie_reg_paxb_v2; 1440 pcie->iproc_cfg_read = true; 1441 pcie->has_apb_err_disable = true; 1442 if (pcie->need_ob_cfg) { 1443 pcie->ob_map = paxb_v2_ob_map; 1444 pcie->ob.nr_windows = ARRAY_SIZE(paxb_v2_ob_map); 1445 } 1446 pcie->ib.nr_regions = ARRAY_SIZE(paxb_v2_ib_map); 1447 pcie->ib_map = paxb_v2_ib_map; 1448 pcie->need_msi_steer = true; 1449 dev_warn(dev, "reads of config registers that contain %#x return incorrect data\n", 1450 CFG_RETRY_STATUS); 1451 break; 1452 case IPROC_PCIE_PAXC: 1453 regs = iproc_pcie_reg_paxc; 1454 pcie->ep_is_internal = true; 1455 pcie->iproc_cfg_read = true; 1456 pcie->rej_unconfig_pf = true; 1457 break; 1458 case IPROC_PCIE_PAXC_V2: 1459 regs = iproc_pcie_reg_paxc_v2; 1460 pcie->ep_is_internal = true; 1461 pcie->iproc_cfg_read = true; 1462 pcie->rej_unconfig_pf = true; 1463 pcie->need_msi_steer = true; 1464 break; 1465 default: 1466 dev_err(dev, "incompatible iProc PCIe interface\n"); 1467 return -EINVAL; 1468 } 1469 1470 pcie->reg_offsets = devm_kcalloc(dev, IPROC_PCIE_MAX_NUM_REG, 1471 sizeof(*pcie->reg_offsets), 1472 GFP_KERNEL); 1473 if (!pcie->reg_offsets) 1474 return -ENOMEM; 1475 1476 /* go through the register table and populate all valid registers */ 1477 pcie->reg_offsets[0] = (pcie->type == IPROC_PCIE_PAXC_V2) ? 1478 IPROC_PCIE_REG_INVALID : regs[0]; 1479 for (reg_idx = 1; reg_idx < IPROC_PCIE_MAX_NUM_REG; reg_idx++) 1480 pcie->reg_offsets[reg_idx] = regs[reg_idx] ? 1481 regs[reg_idx] : IPROC_PCIE_REG_INVALID; 1482 1483 return 0; 1484 } 1485 1486 int iproc_pcie_setup(struct iproc_pcie *pcie, struct list_head *res) 1487 { 1488 struct device *dev; 1489 int ret; 1490 struct pci_bus *child; 1491 struct pci_host_bridge *host = pci_host_bridge_from_priv(pcie); 1492 1493 dev = pcie->dev; 1494 1495 ret = iproc_pcie_rev_init(pcie); 1496 if (ret) { 1497 dev_err(dev, "unable to initialize controller parameters\n"); 1498 return ret; 1499 } 1500 1501 ret = devm_request_pci_bus_resources(dev, res); 1502 if (ret) 1503 return ret; 1504 1505 ret = phy_init(pcie->phy); 1506 if (ret) { 1507 dev_err(dev, "unable to initialize PCIe PHY\n"); 1508 return ret; 1509 } 1510 1511 ret = phy_power_on(pcie->phy); 1512 if (ret) { 1513 dev_err(dev, "unable to power on PCIe PHY\n"); 1514 goto err_exit_phy; 1515 } 1516 1517 iproc_pcie_perst_ctrl(pcie, true); 1518 iproc_pcie_perst_ctrl(pcie, false); 1519 1520 if (pcie->need_ob_cfg) { 1521 ret = iproc_pcie_map_ranges(pcie, res); 1522 if (ret) { 1523 dev_err(dev, "map failed\n"); 1524 goto err_power_off_phy; 1525 } 1526 } 1527 1528 if (pcie->need_ib_cfg) { 1529 ret = iproc_pcie_map_dma_ranges(pcie); 1530 if (ret && ret != -ENOENT) 1531 goto err_power_off_phy; 1532 } 1533 1534 ret = iproc_pcie_check_link(pcie); 1535 if (ret) { 1536 dev_err(dev, "no PCIe EP device detected\n"); 1537 goto err_power_off_phy; 1538 } 1539 1540 iproc_pcie_enable(pcie); 1541 1542 if (IS_ENABLED(CONFIG_PCI_MSI)) 1543 if (iproc_pcie_msi_enable(pcie)) 1544 dev_info(dev, "not using iProc MSI\n"); 1545 1546 list_splice_init(res, &host->windows); 1547 host->busnr = 0; 1548 host->dev.parent = dev; 1549 host->ops = &iproc_pcie_ops; 1550 host->sysdata = pcie; 1551 host->map_irq = pcie->map_irq; 1552 host->swizzle_irq = pci_common_swizzle; 1553 1554 ret = pci_scan_root_bus_bridge(host); 1555 if (ret < 0) { 1556 dev_err(dev, "failed to scan host: %d\n", ret); 1557 goto err_power_off_phy; 1558 } 1559 1560 pci_assign_unassigned_bus_resources(host->bus); 1561 1562 pcie->root_bus = host->bus; 1563 1564 list_for_each_entry(child, &host->bus->children, node) 1565 pcie_bus_configure_settings(child); 1566 1567 pci_bus_add_devices(host->bus); 1568 1569 return 0; 1570 1571 err_power_off_phy: 1572 phy_power_off(pcie->phy); 1573 err_exit_phy: 1574 phy_exit(pcie->phy); 1575 return ret; 1576 } 1577 EXPORT_SYMBOL(iproc_pcie_setup); 1578 1579 int iproc_pcie_remove(struct iproc_pcie *pcie) 1580 { 1581 pci_stop_root_bus(pcie->root_bus); 1582 pci_remove_root_bus(pcie->root_bus); 1583 1584 iproc_pcie_msi_disable(pcie); 1585 1586 phy_power_off(pcie->phy); 1587 phy_exit(pcie->phy); 1588 1589 return 0; 1590 } 1591 EXPORT_SYMBOL(iproc_pcie_remove); 1592 1593 /* 1594 * The MSI parsing logic in certain revisions of Broadcom PAXC based root 1595 * complex does not work and needs to be disabled 1596 */ 1597 static void quirk_paxc_disable_msi_parsing(struct pci_dev *pdev) 1598 { 1599 struct iproc_pcie *pcie = iproc_data(pdev->bus); 1600 1601 if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) 1602 iproc_pcie_paxc_v2_msi_steer(pcie, 0, false); 1603 } 1604 DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0x16f0, 1605 quirk_paxc_disable_msi_parsing); 1606 DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0xd802, 1607 quirk_paxc_disable_msi_parsing); 1608 DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0xd804, 1609 quirk_paxc_disable_msi_parsing); 1610 1611 MODULE_AUTHOR("Ray Jui <rjui@broadcom.com>"); 1612 MODULE_DESCRIPTION("Broadcom iPROC PCIe common driver"); 1613 MODULE_LICENSE("GPL v2"); 1614