xref: /openbmc/linux/drivers/pci/controller/pcie-iproc.c (revision 4b0aaacee51eb6592a03fdefd5ce97558518e291)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2014 Hauke Mehrtens <hauke@hauke-m.de>
4  * Copyright (C) 2015 Broadcom Corporation
5  */
6 
7 #include <linux/kernel.h>
8 #include <linux/pci.h>
9 #include <linux/msi.h>
10 #include <linux/clk.h>
11 #include <linux/module.h>
12 #include <linux/mbus.h>
13 #include <linux/slab.h>
14 #include <linux/delay.h>
15 #include <linux/interrupt.h>
16 #include <linux/irqchip/arm-gic-v3.h>
17 #include <linux/platform_device.h>
18 #include <linux/of_address.h>
19 #include <linux/of_pci.h>
20 #include <linux/of_irq.h>
21 #include <linux/of_platform.h>
22 #include <linux/phy/phy.h>
23 
24 #include "pcie-iproc.h"
25 
26 #define EP_PERST_SOURCE_SELECT_SHIFT	2
27 #define EP_PERST_SOURCE_SELECT		BIT(EP_PERST_SOURCE_SELECT_SHIFT)
28 #define EP_MODE_SURVIVE_PERST_SHIFT	1
29 #define EP_MODE_SURVIVE_PERST		BIT(EP_MODE_SURVIVE_PERST_SHIFT)
30 #define RC_PCIE_RST_OUTPUT_SHIFT	0
31 #define RC_PCIE_RST_OUTPUT		BIT(RC_PCIE_RST_OUTPUT_SHIFT)
32 #define PAXC_RESET_MASK			0x7f
33 
34 #define GIC_V3_CFG_SHIFT		0
35 #define GIC_V3_CFG			BIT(GIC_V3_CFG_SHIFT)
36 
37 #define MSI_ENABLE_CFG_SHIFT		0
38 #define MSI_ENABLE_CFG			BIT(MSI_ENABLE_CFG_SHIFT)
39 
40 #define CFG_IND_ADDR_MASK		0x00001ffc
41 
42 #define CFG_ADDR_BUS_NUM_SHIFT		20
43 #define CFG_ADDR_BUS_NUM_MASK		0x0ff00000
44 #define CFG_ADDR_DEV_NUM_SHIFT		15
45 #define CFG_ADDR_DEV_NUM_MASK		0x000f8000
46 #define CFG_ADDR_FUNC_NUM_SHIFT		12
47 #define CFG_ADDR_FUNC_NUM_MASK		0x00007000
48 #define CFG_ADDR_REG_NUM_SHIFT		2
49 #define CFG_ADDR_REG_NUM_MASK		0x00000ffc
50 #define CFG_ADDR_CFG_TYPE_SHIFT		0
51 #define CFG_ADDR_CFG_TYPE_MASK		0x00000003
52 
53 #define SYS_RC_INTX_MASK		0xf
54 
55 #define PCIE_PHYLINKUP_SHIFT		3
56 #define PCIE_PHYLINKUP			BIT(PCIE_PHYLINKUP_SHIFT)
57 #define PCIE_DL_ACTIVE_SHIFT		2
58 #define PCIE_DL_ACTIVE			BIT(PCIE_DL_ACTIVE_SHIFT)
59 
60 #define APB_ERR_EN_SHIFT		0
61 #define APB_ERR_EN			BIT(APB_ERR_EN_SHIFT)
62 
63 #define CFG_RETRY_STATUS		0xffff0001
64 #define CFG_RETRY_STATUS_TIMEOUT_US	500000 /* 500 milliseconds */
65 
66 /* derive the enum index of the outbound/inbound mapping registers */
67 #define MAP_REG(base_reg, index)	((base_reg) + (index) * 2)
68 
69 /*
70  * Maximum number of outbound mapping window sizes that can be supported by any
71  * OARR/OMAP mapping pair
72  */
73 #define MAX_NUM_OB_WINDOW_SIZES		4
74 
75 #define OARR_VALID_SHIFT		0
76 #define OARR_VALID			BIT(OARR_VALID_SHIFT)
77 #define OARR_SIZE_CFG_SHIFT		1
78 
79 /*
80  * Maximum number of inbound mapping region sizes that can be supported by an
81  * IARR
82  */
83 #define MAX_NUM_IB_REGION_SIZES		9
84 
85 #define IMAP_VALID_SHIFT		0
86 #define IMAP_VALID			BIT(IMAP_VALID_SHIFT)
87 
88 #define IPROC_PCI_PM_CAP		0x48
89 #define IPROC_PCI_PM_CAP_MASK		0xffff
90 #define IPROC_PCI_EXP_CAP		0xac
91 
92 #define IPROC_PCIE_REG_INVALID		0xffff
93 
94 /**
95  * iProc PCIe outbound mapping controller specific parameters
96  *
97  * @window_sizes: list of supported outbound mapping window sizes in MB
98  * @nr_sizes: number of supported outbound mapping window sizes
99  */
100 struct iproc_pcie_ob_map {
101 	resource_size_t window_sizes[MAX_NUM_OB_WINDOW_SIZES];
102 	unsigned int nr_sizes;
103 };
104 
105 static const struct iproc_pcie_ob_map paxb_ob_map[] = {
106 	{
107 		/* OARR0/OMAP0 */
108 		.window_sizes = { 128, 256 },
109 		.nr_sizes = 2,
110 	},
111 	{
112 		/* OARR1/OMAP1 */
113 		.window_sizes = { 128, 256 },
114 		.nr_sizes = 2,
115 	},
116 };
117 
118 static const struct iproc_pcie_ob_map paxb_v2_ob_map[] = {
119 	{
120 		/* OARR0/OMAP0 */
121 		.window_sizes = { 128, 256 },
122 		.nr_sizes = 2,
123 	},
124 	{
125 		/* OARR1/OMAP1 */
126 		.window_sizes = { 128, 256 },
127 		.nr_sizes = 2,
128 	},
129 	{
130 		/* OARR2/OMAP2 */
131 		.window_sizes = { 128, 256, 512, 1024 },
132 		.nr_sizes = 4,
133 	},
134 	{
135 		/* OARR3/OMAP3 */
136 		.window_sizes = { 128, 256, 512, 1024 },
137 		.nr_sizes = 4,
138 	},
139 };
140 
141 /**
142  * iProc PCIe inbound mapping type
143  */
144 enum iproc_pcie_ib_map_type {
145 	/* for DDR memory */
146 	IPROC_PCIE_IB_MAP_MEM = 0,
147 
148 	/* for device I/O memory */
149 	IPROC_PCIE_IB_MAP_IO,
150 
151 	/* invalid or unused */
152 	IPROC_PCIE_IB_MAP_INVALID
153 };
154 
155 /**
156  * iProc PCIe inbound mapping controller specific parameters
157  *
158  * @type: inbound mapping region type
159  * @size_unit: inbound mapping region size unit, could be SZ_1K, SZ_1M, or
160  * SZ_1G
161  * @region_sizes: list of supported inbound mapping region sizes in KB, MB, or
162  * GB, depedning on the size unit
163  * @nr_sizes: number of supported inbound mapping region sizes
164  * @nr_windows: number of supported inbound mapping windows for the region
165  * @imap_addr_offset: register offset between the upper and lower 32-bit
166  * IMAP address registers
167  * @imap_window_offset: register offset between each IMAP window
168  */
169 struct iproc_pcie_ib_map {
170 	enum iproc_pcie_ib_map_type type;
171 	unsigned int size_unit;
172 	resource_size_t region_sizes[MAX_NUM_IB_REGION_SIZES];
173 	unsigned int nr_sizes;
174 	unsigned int nr_windows;
175 	u16 imap_addr_offset;
176 	u16 imap_window_offset;
177 };
178 
179 static const struct iproc_pcie_ib_map paxb_v2_ib_map[] = {
180 	{
181 		/* IARR0/IMAP0 */
182 		.type = IPROC_PCIE_IB_MAP_IO,
183 		.size_unit = SZ_1K,
184 		.region_sizes = { 32 },
185 		.nr_sizes = 1,
186 		.nr_windows = 8,
187 		.imap_addr_offset = 0x40,
188 		.imap_window_offset = 0x4,
189 	},
190 	{
191 		/* IARR1/IMAP1 (currently unused) */
192 		.type = IPROC_PCIE_IB_MAP_INVALID,
193 	},
194 	{
195 		/* IARR2/IMAP2 */
196 		.type = IPROC_PCIE_IB_MAP_MEM,
197 		.size_unit = SZ_1M,
198 		.region_sizes = { 64, 128, 256, 512, 1024, 2048, 4096, 8192,
199 				  16384 },
200 		.nr_sizes = 9,
201 		.nr_windows = 1,
202 		.imap_addr_offset = 0x4,
203 		.imap_window_offset = 0x8,
204 	},
205 	{
206 		/* IARR3/IMAP3 */
207 		.type = IPROC_PCIE_IB_MAP_MEM,
208 		.size_unit = SZ_1G,
209 		.region_sizes = { 1, 2, 4, 8, 16, 32 },
210 		.nr_sizes = 6,
211 		.nr_windows = 8,
212 		.imap_addr_offset = 0x4,
213 		.imap_window_offset = 0x8,
214 	},
215 	{
216 		/* IARR4/IMAP4 */
217 		.type = IPROC_PCIE_IB_MAP_MEM,
218 		.size_unit = SZ_1G,
219 		.region_sizes = { 32, 64, 128, 256, 512 },
220 		.nr_sizes = 5,
221 		.nr_windows = 8,
222 		.imap_addr_offset = 0x4,
223 		.imap_window_offset = 0x8,
224 	},
225 };
226 
227 /*
228  * iProc PCIe host registers
229  */
230 enum iproc_pcie_reg {
231 	/* clock/reset signal control */
232 	IPROC_PCIE_CLK_CTRL = 0,
233 
234 	/*
235 	 * To allow MSI to be steered to an external MSI controller (e.g., ARM
236 	 * GICv3 ITS)
237 	 */
238 	IPROC_PCIE_MSI_GIC_MODE,
239 
240 	/*
241 	 * IPROC_PCIE_MSI_BASE_ADDR and IPROC_PCIE_MSI_WINDOW_SIZE define the
242 	 * window where the MSI posted writes are written, for the writes to be
243 	 * interpreted as MSI writes.
244 	 */
245 	IPROC_PCIE_MSI_BASE_ADDR,
246 	IPROC_PCIE_MSI_WINDOW_SIZE,
247 
248 	/*
249 	 * To hold the address of the register where the MSI writes are
250 	 * programed.  When ARM GICv3 ITS is used, this should be programmed
251 	 * with the address of the GITS_TRANSLATER register.
252 	 */
253 	IPROC_PCIE_MSI_ADDR_LO,
254 	IPROC_PCIE_MSI_ADDR_HI,
255 
256 	/* enable MSI */
257 	IPROC_PCIE_MSI_EN_CFG,
258 
259 	/* allow access to root complex configuration space */
260 	IPROC_PCIE_CFG_IND_ADDR,
261 	IPROC_PCIE_CFG_IND_DATA,
262 
263 	/* allow access to device configuration space */
264 	IPROC_PCIE_CFG_ADDR,
265 	IPROC_PCIE_CFG_DATA,
266 
267 	/* enable INTx */
268 	IPROC_PCIE_INTX_EN,
269 
270 	/* outbound address mapping */
271 	IPROC_PCIE_OARR0,
272 	IPROC_PCIE_OMAP0,
273 	IPROC_PCIE_OARR1,
274 	IPROC_PCIE_OMAP1,
275 	IPROC_PCIE_OARR2,
276 	IPROC_PCIE_OMAP2,
277 	IPROC_PCIE_OARR3,
278 	IPROC_PCIE_OMAP3,
279 
280 	/* inbound address mapping */
281 	IPROC_PCIE_IARR0,
282 	IPROC_PCIE_IMAP0,
283 	IPROC_PCIE_IARR1,
284 	IPROC_PCIE_IMAP1,
285 	IPROC_PCIE_IARR2,
286 	IPROC_PCIE_IMAP2,
287 	IPROC_PCIE_IARR3,
288 	IPROC_PCIE_IMAP3,
289 	IPROC_PCIE_IARR4,
290 	IPROC_PCIE_IMAP4,
291 
292 	/* link status */
293 	IPROC_PCIE_LINK_STATUS,
294 
295 	/* enable APB error for unsupported requests */
296 	IPROC_PCIE_APB_ERR_EN,
297 
298 	/* total number of core registers */
299 	IPROC_PCIE_MAX_NUM_REG,
300 };
301 
302 /* iProc PCIe PAXB BCMA registers */
303 static const u16 iproc_pcie_reg_paxb_bcma[] = {
304 	[IPROC_PCIE_CLK_CTRL]		= 0x000,
305 	[IPROC_PCIE_CFG_IND_ADDR]	= 0x120,
306 	[IPROC_PCIE_CFG_IND_DATA]	= 0x124,
307 	[IPROC_PCIE_CFG_ADDR]		= 0x1f8,
308 	[IPROC_PCIE_CFG_DATA]		= 0x1fc,
309 	[IPROC_PCIE_INTX_EN]		= 0x330,
310 	[IPROC_PCIE_LINK_STATUS]	= 0xf0c,
311 };
312 
313 /* iProc PCIe PAXB registers */
314 static const u16 iproc_pcie_reg_paxb[] = {
315 	[IPROC_PCIE_CLK_CTRL]		= 0x000,
316 	[IPROC_PCIE_CFG_IND_ADDR]	= 0x120,
317 	[IPROC_PCIE_CFG_IND_DATA]	= 0x124,
318 	[IPROC_PCIE_CFG_ADDR]		= 0x1f8,
319 	[IPROC_PCIE_CFG_DATA]		= 0x1fc,
320 	[IPROC_PCIE_INTX_EN]		= 0x330,
321 	[IPROC_PCIE_OARR0]		= 0xd20,
322 	[IPROC_PCIE_OMAP0]		= 0xd40,
323 	[IPROC_PCIE_OARR1]		= 0xd28,
324 	[IPROC_PCIE_OMAP1]		= 0xd48,
325 	[IPROC_PCIE_LINK_STATUS]	= 0xf0c,
326 	[IPROC_PCIE_APB_ERR_EN]		= 0xf40,
327 };
328 
329 /* iProc PCIe PAXB v2 registers */
330 static const u16 iproc_pcie_reg_paxb_v2[] = {
331 	[IPROC_PCIE_CLK_CTRL]		= 0x000,
332 	[IPROC_PCIE_CFG_IND_ADDR]	= 0x120,
333 	[IPROC_PCIE_CFG_IND_DATA]	= 0x124,
334 	[IPROC_PCIE_CFG_ADDR]		= 0x1f8,
335 	[IPROC_PCIE_CFG_DATA]		= 0x1fc,
336 	[IPROC_PCIE_INTX_EN]		= 0x330,
337 	[IPROC_PCIE_OARR0]		= 0xd20,
338 	[IPROC_PCIE_OMAP0]		= 0xd40,
339 	[IPROC_PCIE_OARR1]		= 0xd28,
340 	[IPROC_PCIE_OMAP1]		= 0xd48,
341 	[IPROC_PCIE_OARR2]		= 0xd60,
342 	[IPROC_PCIE_OMAP2]		= 0xd68,
343 	[IPROC_PCIE_OARR3]		= 0xdf0,
344 	[IPROC_PCIE_OMAP3]		= 0xdf8,
345 	[IPROC_PCIE_IARR0]		= 0xd00,
346 	[IPROC_PCIE_IMAP0]		= 0xc00,
347 	[IPROC_PCIE_IARR2]		= 0xd10,
348 	[IPROC_PCIE_IMAP2]		= 0xcc0,
349 	[IPROC_PCIE_IARR3]		= 0xe00,
350 	[IPROC_PCIE_IMAP3]		= 0xe08,
351 	[IPROC_PCIE_IARR4]		= 0xe68,
352 	[IPROC_PCIE_IMAP4]		= 0xe70,
353 	[IPROC_PCIE_LINK_STATUS]	= 0xf0c,
354 	[IPROC_PCIE_APB_ERR_EN]		= 0xf40,
355 };
356 
357 /* iProc PCIe PAXC v1 registers */
358 static const u16 iproc_pcie_reg_paxc[] = {
359 	[IPROC_PCIE_CLK_CTRL]		= 0x000,
360 	[IPROC_PCIE_CFG_IND_ADDR]	= 0x1f0,
361 	[IPROC_PCIE_CFG_IND_DATA]	= 0x1f4,
362 	[IPROC_PCIE_CFG_ADDR]		= 0x1f8,
363 	[IPROC_PCIE_CFG_DATA]		= 0x1fc,
364 };
365 
366 /* iProc PCIe PAXC v2 registers */
367 static const u16 iproc_pcie_reg_paxc_v2[] = {
368 	[IPROC_PCIE_MSI_GIC_MODE]	= 0x050,
369 	[IPROC_PCIE_MSI_BASE_ADDR]	= 0x074,
370 	[IPROC_PCIE_MSI_WINDOW_SIZE]	= 0x078,
371 	[IPROC_PCIE_MSI_ADDR_LO]	= 0x07c,
372 	[IPROC_PCIE_MSI_ADDR_HI]	= 0x080,
373 	[IPROC_PCIE_MSI_EN_CFG]		= 0x09c,
374 	[IPROC_PCIE_CFG_IND_ADDR]	= 0x1f0,
375 	[IPROC_PCIE_CFG_IND_DATA]	= 0x1f4,
376 	[IPROC_PCIE_CFG_ADDR]		= 0x1f8,
377 	[IPROC_PCIE_CFG_DATA]		= 0x1fc,
378 };
379 
380 /*
381  * List of device IDs of controllers that have corrupted capability list that
382  * require SW fixup
383  */
384 static const u16 iproc_pcie_corrupt_cap_did[] = {
385 	0x16cd,
386 	0x16f0,
387 	0xd802,
388 	0xd804
389 };
390 
391 static inline struct iproc_pcie *iproc_data(struct pci_bus *bus)
392 {
393 	struct iproc_pcie *pcie = bus->sysdata;
394 	return pcie;
395 }
396 
397 static inline bool iproc_pcie_reg_is_invalid(u16 reg_offset)
398 {
399 	return !!(reg_offset == IPROC_PCIE_REG_INVALID);
400 }
401 
402 static inline u16 iproc_pcie_reg_offset(struct iproc_pcie *pcie,
403 					enum iproc_pcie_reg reg)
404 {
405 	return pcie->reg_offsets[reg];
406 }
407 
408 static inline u32 iproc_pcie_read_reg(struct iproc_pcie *pcie,
409 				      enum iproc_pcie_reg reg)
410 {
411 	u16 offset = iproc_pcie_reg_offset(pcie, reg);
412 
413 	if (iproc_pcie_reg_is_invalid(offset))
414 		return 0;
415 
416 	return readl(pcie->base + offset);
417 }
418 
419 static inline void iproc_pcie_write_reg(struct iproc_pcie *pcie,
420 					enum iproc_pcie_reg reg, u32 val)
421 {
422 	u16 offset = iproc_pcie_reg_offset(pcie, reg);
423 
424 	if (iproc_pcie_reg_is_invalid(offset))
425 		return;
426 
427 	writel(val, pcie->base + offset);
428 }
429 
430 /**
431  * APB error forwarding can be disabled during access of configuration
432  * registers of the endpoint device, to prevent unsupported requests
433  * (typically seen during enumeration with multi-function devices) from
434  * triggering a system exception.
435  */
436 static inline void iproc_pcie_apb_err_disable(struct pci_bus *bus,
437 					      bool disable)
438 {
439 	struct iproc_pcie *pcie = iproc_data(bus);
440 	u32 val;
441 
442 	if (bus->number && pcie->has_apb_err_disable) {
443 		val = iproc_pcie_read_reg(pcie, IPROC_PCIE_APB_ERR_EN);
444 		if (disable)
445 			val &= ~APB_ERR_EN;
446 		else
447 			val |= APB_ERR_EN;
448 		iproc_pcie_write_reg(pcie, IPROC_PCIE_APB_ERR_EN, val);
449 	}
450 }
451 
452 static void __iomem *iproc_pcie_map_ep_cfg_reg(struct iproc_pcie *pcie,
453 					       unsigned int busno,
454 					       unsigned int slot,
455 					       unsigned int fn,
456 					       int where)
457 {
458 	u16 offset;
459 	u32 val;
460 
461 	/* EP device access */
462 	val = (busno << CFG_ADDR_BUS_NUM_SHIFT) |
463 		(slot << CFG_ADDR_DEV_NUM_SHIFT) |
464 		(fn << CFG_ADDR_FUNC_NUM_SHIFT) |
465 		(where & CFG_ADDR_REG_NUM_MASK) |
466 		(1 & CFG_ADDR_CFG_TYPE_MASK);
467 
468 	iproc_pcie_write_reg(pcie, IPROC_PCIE_CFG_ADDR, val);
469 	offset = iproc_pcie_reg_offset(pcie, IPROC_PCIE_CFG_DATA);
470 
471 	if (iproc_pcie_reg_is_invalid(offset))
472 		return NULL;
473 
474 	return (pcie->base + offset);
475 }
476 
477 static unsigned int iproc_pcie_cfg_retry(void __iomem *cfg_data_p)
478 {
479 	int timeout = CFG_RETRY_STATUS_TIMEOUT_US;
480 	unsigned int data;
481 
482 	/*
483 	 * As per PCIe spec r3.1, sec 2.3.2, CRS Software Visibility only
484 	 * affects config reads of the Vendor ID.  For config writes or any
485 	 * other config reads, the Root may automatically reissue the
486 	 * configuration request again as a new request.
487 	 *
488 	 * For config reads, this hardware returns CFG_RETRY_STATUS data
489 	 * when it receives a CRS completion, regardless of the address of
490 	 * the read or the CRS Software Visibility Enable bit.  As a
491 	 * partial workaround for this, we retry in software any read that
492 	 * returns CFG_RETRY_STATUS.
493 	 *
494 	 * Note that a non-Vendor ID config register may have a value of
495 	 * CFG_RETRY_STATUS.  If we read that, we can't distinguish it from
496 	 * a CRS completion, so we will incorrectly retry the read and
497 	 * eventually return the wrong data (0xffffffff).
498 	 */
499 	data = readl(cfg_data_p);
500 	while (data == CFG_RETRY_STATUS && timeout--) {
501 		udelay(1);
502 		data = readl(cfg_data_p);
503 	}
504 
505 	if (data == CFG_RETRY_STATUS)
506 		data = 0xffffffff;
507 
508 	return data;
509 }
510 
511 static void iproc_pcie_fix_cap(struct iproc_pcie *pcie, int where, u32 *val)
512 {
513 	u32 i, dev_id;
514 
515 	switch (where & ~0x3) {
516 	case PCI_VENDOR_ID:
517 		dev_id = *val >> 16;
518 
519 		/*
520 		 * Activate fixup for those controllers that have corrupted
521 		 * capability list registers
522 		 */
523 		for (i = 0; i < ARRAY_SIZE(iproc_pcie_corrupt_cap_did); i++)
524 			if (dev_id == iproc_pcie_corrupt_cap_did[i])
525 				pcie->fix_paxc_cap = true;
526 		break;
527 
528 	case IPROC_PCI_PM_CAP:
529 		if (pcie->fix_paxc_cap) {
530 			/* advertise PM, force next capability to PCIe */
531 			*val &= ~IPROC_PCI_PM_CAP_MASK;
532 			*val |= IPROC_PCI_EXP_CAP << 8 | PCI_CAP_ID_PM;
533 		}
534 		break;
535 
536 	case IPROC_PCI_EXP_CAP:
537 		if (pcie->fix_paxc_cap) {
538 			/* advertise root port, version 2, terminate here */
539 			*val = (PCI_EXP_TYPE_ROOT_PORT << 4 | 2) << 16 |
540 				PCI_CAP_ID_EXP;
541 		}
542 		break;
543 
544 	case IPROC_PCI_EXP_CAP + PCI_EXP_RTCTL:
545 		/* Don't advertise CRS SV support */
546 		*val &= ~(PCI_EXP_RTCAP_CRSVIS << 16);
547 		break;
548 
549 	default:
550 		break;
551 	}
552 }
553 
554 static int iproc_pcie_config_read(struct pci_bus *bus, unsigned int devfn,
555 				  int where, int size, u32 *val)
556 {
557 	struct iproc_pcie *pcie = iproc_data(bus);
558 	unsigned int slot = PCI_SLOT(devfn);
559 	unsigned int fn = PCI_FUNC(devfn);
560 	unsigned int busno = bus->number;
561 	void __iomem *cfg_data_p;
562 	unsigned int data;
563 	int ret;
564 
565 	/* root complex access */
566 	if (busno == 0) {
567 		ret = pci_generic_config_read32(bus, devfn, where, size, val);
568 		if (ret == PCIBIOS_SUCCESSFUL)
569 			iproc_pcie_fix_cap(pcie, where, val);
570 
571 		return ret;
572 	}
573 
574 	cfg_data_p = iproc_pcie_map_ep_cfg_reg(pcie, busno, slot, fn, where);
575 
576 	if (!cfg_data_p)
577 		return PCIBIOS_DEVICE_NOT_FOUND;
578 
579 	data = iproc_pcie_cfg_retry(cfg_data_p);
580 
581 	*val = data;
582 	if (size <= 2)
583 		*val = (data >> (8 * (where & 3))) & ((1 << (size * 8)) - 1);
584 
585 	/*
586 	 * For PAXC and PAXCv2, the total number of PFs that one can enumerate
587 	 * depends on the firmware configuration. Unfortunately, due to an ASIC
588 	 * bug, unconfigured PFs cannot be properly hidden from the root
589 	 * complex. As a result, write access to these PFs will cause bus lock
590 	 * up on the embedded processor
591 	 *
592 	 * Since all unconfigured PFs are left with an incorrect, staled device
593 	 * ID of 0x168e (PCI_DEVICE_ID_NX2_57810), we try to catch those access
594 	 * early here and reject them all
595 	 */
596 #define DEVICE_ID_MASK     0xffff0000
597 #define DEVICE_ID_SHIFT    16
598 	if (pcie->rej_unconfig_pf &&
599 	    (where & CFG_ADDR_REG_NUM_MASK) == PCI_VENDOR_ID)
600 		if ((*val & DEVICE_ID_MASK) ==
601 		    (PCI_DEVICE_ID_NX2_57810 << DEVICE_ID_SHIFT))
602 			return PCIBIOS_FUNC_NOT_SUPPORTED;
603 
604 	return PCIBIOS_SUCCESSFUL;
605 }
606 
607 /**
608  * Note access to the configuration registers are protected at the higher layer
609  * by 'pci_lock' in drivers/pci/access.c
610  */
611 static void __iomem *iproc_pcie_map_cfg_bus(struct iproc_pcie *pcie,
612 					    int busno, unsigned int devfn,
613 					    int where)
614 {
615 	unsigned slot = PCI_SLOT(devfn);
616 	unsigned fn = PCI_FUNC(devfn);
617 	u16 offset;
618 
619 	/* root complex access */
620 	if (busno == 0) {
621 		if (slot > 0 || fn > 0)
622 			return NULL;
623 
624 		iproc_pcie_write_reg(pcie, IPROC_PCIE_CFG_IND_ADDR,
625 				     where & CFG_IND_ADDR_MASK);
626 		offset = iproc_pcie_reg_offset(pcie, IPROC_PCIE_CFG_IND_DATA);
627 		if (iproc_pcie_reg_is_invalid(offset))
628 			return NULL;
629 		else
630 			return (pcie->base + offset);
631 	}
632 
633 	/*
634 	 * PAXC is connected to an internally emulated EP within the SoC.  It
635 	 * allows only one device.
636 	 */
637 	if (pcie->ep_is_internal)
638 		if (slot > 0)
639 			return NULL;
640 
641 	return iproc_pcie_map_ep_cfg_reg(pcie, busno, slot, fn, where);
642 }
643 
644 static void __iomem *iproc_pcie_bus_map_cfg_bus(struct pci_bus *bus,
645 						unsigned int devfn,
646 						int where)
647 {
648 	return iproc_pcie_map_cfg_bus(iproc_data(bus), bus->number, devfn,
649 				      where);
650 }
651 
652 static int iproc_pci_raw_config_read32(struct iproc_pcie *pcie,
653 				       unsigned int devfn, int where,
654 				       int size, u32 *val)
655 {
656 	void __iomem *addr;
657 
658 	addr = iproc_pcie_map_cfg_bus(pcie, 0, devfn, where & ~0x3);
659 	if (!addr) {
660 		*val = ~0;
661 		return PCIBIOS_DEVICE_NOT_FOUND;
662 	}
663 
664 	*val = readl(addr);
665 
666 	if (size <= 2)
667 		*val = (*val >> (8 * (where & 3))) & ((1 << (size * 8)) - 1);
668 
669 	return PCIBIOS_SUCCESSFUL;
670 }
671 
672 static int iproc_pci_raw_config_write32(struct iproc_pcie *pcie,
673 					unsigned int devfn, int where,
674 					int size, u32 val)
675 {
676 	void __iomem *addr;
677 	u32 mask, tmp;
678 
679 	addr = iproc_pcie_map_cfg_bus(pcie, 0, devfn, where & ~0x3);
680 	if (!addr)
681 		return PCIBIOS_DEVICE_NOT_FOUND;
682 
683 	if (size == 4) {
684 		writel(val, addr);
685 		return PCIBIOS_SUCCESSFUL;
686 	}
687 
688 	mask = ~(((1 << (size * 8)) - 1) << ((where & 0x3) * 8));
689 	tmp = readl(addr) & mask;
690 	tmp |= val << ((where & 0x3) * 8);
691 	writel(tmp, addr);
692 
693 	return PCIBIOS_SUCCESSFUL;
694 }
695 
696 static int iproc_pcie_config_read32(struct pci_bus *bus, unsigned int devfn,
697 				    int where, int size, u32 *val)
698 {
699 	int ret;
700 	struct iproc_pcie *pcie = iproc_data(bus);
701 
702 	iproc_pcie_apb_err_disable(bus, true);
703 	if (pcie->iproc_cfg_read)
704 		ret = iproc_pcie_config_read(bus, devfn, where, size, val);
705 	else
706 		ret = pci_generic_config_read32(bus, devfn, where, size, val);
707 	iproc_pcie_apb_err_disable(bus, false);
708 
709 	return ret;
710 }
711 
712 static int iproc_pcie_config_write32(struct pci_bus *bus, unsigned int devfn,
713 				     int where, int size, u32 val)
714 {
715 	int ret;
716 
717 	iproc_pcie_apb_err_disable(bus, true);
718 	ret = pci_generic_config_write32(bus, devfn, where, size, val);
719 	iproc_pcie_apb_err_disable(bus, false);
720 
721 	return ret;
722 }
723 
724 static struct pci_ops iproc_pcie_ops = {
725 	.map_bus = iproc_pcie_bus_map_cfg_bus,
726 	.read = iproc_pcie_config_read32,
727 	.write = iproc_pcie_config_write32,
728 };
729 
730 static void iproc_pcie_perst_ctrl(struct iproc_pcie *pcie, bool assert)
731 {
732 	u32 val;
733 
734 	/*
735 	 * PAXC and the internal emulated endpoint device downstream should not
736 	 * be reset.  If firmware has been loaded on the endpoint device at an
737 	 * earlier boot stage, reset here causes issues.
738 	 */
739 	if (pcie->ep_is_internal)
740 		return;
741 
742 	if (assert) {
743 		val = iproc_pcie_read_reg(pcie, IPROC_PCIE_CLK_CTRL);
744 		val &= ~EP_PERST_SOURCE_SELECT & ~EP_MODE_SURVIVE_PERST &
745 			~RC_PCIE_RST_OUTPUT;
746 		iproc_pcie_write_reg(pcie, IPROC_PCIE_CLK_CTRL, val);
747 		udelay(250);
748 	} else {
749 		val = iproc_pcie_read_reg(pcie, IPROC_PCIE_CLK_CTRL);
750 		val |= RC_PCIE_RST_OUTPUT;
751 		iproc_pcie_write_reg(pcie, IPROC_PCIE_CLK_CTRL, val);
752 		msleep(100);
753 	}
754 }
755 
756 int iproc_pcie_shutdown(struct iproc_pcie *pcie)
757 {
758 	iproc_pcie_perst_ctrl(pcie, true);
759 	msleep(500);
760 
761 	return 0;
762 }
763 EXPORT_SYMBOL_GPL(iproc_pcie_shutdown);
764 
765 static int iproc_pcie_check_link(struct iproc_pcie *pcie)
766 {
767 	struct device *dev = pcie->dev;
768 	u32 hdr_type, link_ctrl, link_status, class, val;
769 	bool link_is_active = false;
770 
771 	/*
772 	 * PAXC connects to emulated endpoint devices directly and does not
773 	 * have a Serdes.  Therefore skip the link detection logic here.
774 	 */
775 	if (pcie->ep_is_internal)
776 		return 0;
777 
778 	val = iproc_pcie_read_reg(pcie, IPROC_PCIE_LINK_STATUS);
779 	if (!(val & PCIE_PHYLINKUP) || !(val & PCIE_DL_ACTIVE)) {
780 		dev_err(dev, "PHY or data link is INACTIVE!\n");
781 		return -ENODEV;
782 	}
783 
784 	/* make sure we are not in EP mode */
785 	iproc_pci_raw_config_read32(pcie, 0, PCI_HEADER_TYPE, 1, &hdr_type);
786 	if ((hdr_type & 0x7f) != PCI_HEADER_TYPE_BRIDGE) {
787 		dev_err(dev, "in EP mode, hdr=%#02x\n", hdr_type);
788 		return -EFAULT;
789 	}
790 
791 	/* force class to PCI_CLASS_BRIDGE_PCI (0x0604) */
792 #define PCI_BRIDGE_CTRL_REG_OFFSET	0x43c
793 #define PCI_CLASS_BRIDGE_MASK		0xffff00
794 #define PCI_CLASS_BRIDGE_SHIFT		8
795 	iproc_pci_raw_config_read32(pcie, 0, PCI_BRIDGE_CTRL_REG_OFFSET,
796 				    4, &class);
797 	class &= ~PCI_CLASS_BRIDGE_MASK;
798 	class |= (PCI_CLASS_BRIDGE_PCI << PCI_CLASS_BRIDGE_SHIFT);
799 	iproc_pci_raw_config_write32(pcie, 0, PCI_BRIDGE_CTRL_REG_OFFSET,
800 				     4, class);
801 
802 	/* check link status to see if link is active */
803 	iproc_pci_raw_config_read32(pcie, 0, IPROC_PCI_EXP_CAP + PCI_EXP_LNKSTA,
804 				    2, &link_status);
805 	if (link_status & PCI_EXP_LNKSTA_NLW)
806 		link_is_active = true;
807 
808 	if (!link_is_active) {
809 		/* try GEN 1 link speed */
810 #define PCI_TARGET_LINK_SPEED_MASK	0xf
811 #define PCI_TARGET_LINK_SPEED_GEN2	0x2
812 #define PCI_TARGET_LINK_SPEED_GEN1	0x1
813 		iproc_pci_raw_config_read32(pcie, 0,
814 					    IPROC_PCI_EXP_CAP + PCI_EXP_LNKCTL2,
815 					    4, &link_ctrl);
816 		if ((link_ctrl & PCI_TARGET_LINK_SPEED_MASK) ==
817 		    PCI_TARGET_LINK_SPEED_GEN2) {
818 			link_ctrl &= ~PCI_TARGET_LINK_SPEED_MASK;
819 			link_ctrl |= PCI_TARGET_LINK_SPEED_GEN1;
820 			iproc_pci_raw_config_write32(pcie, 0,
821 					IPROC_PCI_EXP_CAP + PCI_EXP_LNKCTL2,
822 					4, link_ctrl);
823 			msleep(100);
824 
825 			iproc_pci_raw_config_read32(pcie, 0,
826 					IPROC_PCI_EXP_CAP + PCI_EXP_LNKSTA,
827 					2, &link_status);
828 			if (link_status & PCI_EXP_LNKSTA_NLW)
829 				link_is_active = true;
830 		}
831 	}
832 
833 	dev_info(dev, "link: %s\n", link_is_active ? "UP" : "DOWN");
834 
835 	return link_is_active ? 0 : -ENODEV;
836 }
837 
838 static void iproc_pcie_enable(struct iproc_pcie *pcie)
839 {
840 	iproc_pcie_write_reg(pcie, IPROC_PCIE_INTX_EN, SYS_RC_INTX_MASK);
841 }
842 
843 static inline bool iproc_pcie_ob_is_valid(struct iproc_pcie *pcie,
844 					  int window_idx)
845 {
846 	u32 val;
847 
848 	val = iproc_pcie_read_reg(pcie, MAP_REG(IPROC_PCIE_OARR0, window_idx));
849 
850 	return !!(val & OARR_VALID);
851 }
852 
853 static inline int iproc_pcie_ob_write(struct iproc_pcie *pcie, int window_idx,
854 				      int size_idx, u64 axi_addr, u64 pci_addr)
855 {
856 	struct device *dev = pcie->dev;
857 	u16 oarr_offset, omap_offset;
858 
859 	/*
860 	 * Derive the OARR/OMAP offset from the first pair (OARR0/OMAP0) based
861 	 * on window index.
862 	 */
863 	oarr_offset = iproc_pcie_reg_offset(pcie, MAP_REG(IPROC_PCIE_OARR0,
864 							  window_idx));
865 	omap_offset = iproc_pcie_reg_offset(pcie, MAP_REG(IPROC_PCIE_OMAP0,
866 							  window_idx));
867 	if (iproc_pcie_reg_is_invalid(oarr_offset) ||
868 	    iproc_pcie_reg_is_invalid(omap_offset))
869 		return -EINVAL;
870 
871 	/*
872 	 * Program the OARR registers.  The upper 32-bit OARR register is
873 	 * always right after the lower 32-bit OARR register.
874 	 */
875 	writel(lower_32_bits(axi_addr) | (size_idx << OARR_SIZE_CFG_SHIFT) |
876 	       OARR_VALID, pcie->base + oarr_offset);
877 	writel(upper_32_bits(axi_addr), pcie->base + oarr_offset + 4);
878 
879 	/* now program the OMAP registers */
880 	writel(lower_32_bits(pci_addr), pcie->base + omap_offset);
881 	writel(upper_32_bits(pci_addr), pcie->base + omap_offset + 4);
882 
883 	dev_dbg(dev, "ob window [%d]: offset 0x%x axi %pap pci %pap\n",
884 		window_idx, oarr_offset, &axi_addr, &pci_addr);
885 	dev_dbg(dev, "oarr lo 0x%x oarr hi 0x%x\n",
886 		readl(pcie->base + oarr_offset),
887 		readl(pcie->base + oarr_offset + 4));
888 	dev_dbg(dev, "omap lo 0x%x omap hi 0x%x\n",
889 		readl(pcie->base + omap_offset),
890 		readl(pcie->base + omap_offset + 4));
891 
892 	return 0;
893 }
894 
895 /**
896  * Some iProc SoCs require the SW to configure the outbound address mapping
897  *
898  * Outbound address translation:
899  *
900  * iproc_pcie_address = axi_address - axi_offset
901  * OARR = iproc_pcie_address
902  * OMAP = pci_addr
903  *
904  * axi_addr -> iproc_pcie_address -> OARR -> OMAP -> pci_address
905  */
906 static int iproc_pcie_setup_ob(struct iproc_pcie *pcie, u64 axi_addr,
907 			       u64 pci_addr, resource_size_t size)
908 {
909 	struct iproc_pcie_ob *ob = &pcie->ob;
910 	struct device *dev = pcie->dev;
911 	int ret = -EINVAL, window_idx, size_idx;
912 
913 	if (axi_addr < ob->axi_offset) {
914 		dev_err(dev, "axi address %pap less than offset %pap\n",
915 			&axi_addr, &ob->axi_offset);
916 		return -EINVAL;
917 	}
918 
919 	/*
920 	 * Translate the AXI address to the internal address used by the iProc
921 	 * PCIe core before programming the OARR
922 	 */
923 	axi_addr -= ob->axi_offset;
924 
925 	/* iterate through all OARR/OMAP mapping windows */
926 	for (window_idx = ob->nr_windows - 1; window_idx >= 0; window_idx--) {
927 		const struct iproc_pcie_ob_map *ob_map =
928 			&pcie->ob_map[window_idx];
929 
930 		/*
931 		 * If current outbound window is already in use, move on to the
932 		 * next one.
933 		 */
934 		if (iproc_pcie_ob_is_valid(pcie, window_idx))
935 			continue;
936 
937 		/*
938 		 * Iterate through all supported window sizes within the
939 		 * OARR/OMAP pair to find a match.  Go through the window sizes
940 		 * in a descending order.
941 		 */
942 		for (size_idx = ob_map->nr_sizes - 1; size_idx >= 0;
943 		     size_idx--) {
944 			resource_size_t window_size =
945 				ob_map->window_sizes[size_idx] * SZ_1M;
946 
947 			if (size < window_size)
948 				continue;
949 
950 			if (!IS_ALIGNED(axi_addr, window_size) ||
951 			    !IS_ALIGNED(pci_addr, window_size)) {
952 				dev_err(dev,
953 					"axi %pap or pci %pap not aligned\n",
954 					&axi_addr, &pci_addr);
955 				return -EINVAL;
956 			}
957 
958 			/*
959 			 * Match found!  Program both OARR and OMAP and mark
960 			 * them as a valid entry.
961 			 */
962 			ret = iproc_pcie_ob_write(pcie, window_idx, size_idx,
963 						  axi_addr, pci_addr);
964 			if (ret)
965 				goto err_ob;
966 
967 			size -= window_size;
968 			if (size == 0)
969 				return 0;
970 
971 			/*
972 			 * If we are here, we are done with the current window,
973 			 * but not yet finished all mappings.  Need to move on
974 			 * to the next window.
975 			 */
976 			axi_addr += window_size;
977 			pci_addr += window_size;
978 			break;
979 		}
980 	}
981 
982 err_ob:
983 	dev_err(dev, "unable to configure outbound mapping\n");
984 	dev_err(dev,
985 		"axi %pap, axi offset %pap, pci %pap, res size %pap\n",
986 		&axi_addr, &ob->axi_offset, &pci_addr, &size);
987 
988 	return ret;
989 }
990 
991 static int iproc_pcie_map_ranges(struct iproc_pcie *pcie,
992 				 struct list_head *resources)
993 {
994 	struct device *dev = pcie->dev;
995 	struct resource_entry *window;
996 	int ret;
997 
998 	resource_list_for_each_entry(window, resources) {
999 		struct resource *res = window->res;
1000 		u64 res_type = resource_type(res);
1001 
1002 		switch (res_type) {
1003 		case IORESOURCE_IO:
1004 		case IORESOURCE_BUS:
1005 			break;
1006 		case IORESOURCE_MEM:
1007 			ret = iproc_pcie_setup_ob(pcie, res->start,
1008 						  res->start - window->offset,
1009 						  resource_size(res));
1010 			if (ret)
1011 				return ret;
1012 			break;
1013 		default:
1014 			dev_err(dev, "invalid resource %pR\n", res);
1015 			return -EINVAL;
1016 		}
1017 	}
1018 
1019 	return 0;
1020 }
1021 
1022 static inline bool iproc_pcie_ib_is_in_use(struct iproc_pcie *pcie,
1023 					   int region_idx)
1024 {
1025 	const struct iproc_pcie_ib_map *ib_map = &pcie->ib_map[region_idx];
1026 	u32 val;
1027 
1028 	val = iproc_pcie_read_reg(pcie, MAP_REG(IPROC_PCIE_IARR0, region_idx));
1029 
1030 	return !!(val & (BIT(ib_map->nr_sizes) - 1));
1031 }
1032 
1033 static inline bool iproc_pcie_ib_check_type(const struct iproc_pcie_ib_map *ib_map,
1034 					    enum iproc_pcie_ib_map_type type)
1035 {
1036 	return !!(ib_map->type == type);
1037 }
1038 
1039 static int iproc_pcie_ib_write(struct iproc_pcie *pcie, int region_idx,
1040 			       int size_idx, int nr_windows, u64 axi_addr,
1041 			       u64 pci_addr, resource_size_t size)
1042 {
1043 	struct device *dev = pcie->dev;
1044 	const struct iproc_pcie_ib_map *ib_map = &pcie->ib_map[region_idx];
1045 	u16 iarr_offset, imap_offset;
1046 	u32 val;
1047 	int window_idx;
1048 
1049 	iarr_offset = iproc_pcie_reg_offset(pcie,
1050 				MAP_REG(IPROC_PCIE_IARR0, region_idx));
1051 	imap_offset = iproc_pcie_reg_offset(pcie,
1052 				MAP_REG(IPROC_PCIE_IMAP0, region_idx));
1053 	if (iproc_pcie_reg_is_invalid(iarr_offset) ||
1054 	    iproc_pcie_reg_is_invalid(imap_offset))
1055 		return -EINVAL;
1056 
1057 	dev_dbg(dev, "ib region [%d]: offset 0x%x axi %pap pci %pap\n",
1058 		region_idx, iarr_offset, &axi_addr, &pci_addr);
1059 
1060 	/*
1061 	 * Program the IARR registers.  The upper 32-bit IARR register is
1062 	 * always right after the lower 32-bit IARR register.
1063 	 */
1064 	writel(lower_32_bits(pci_addr) | BIT(size_idx),
1065 	       pcie->base + iarr_offset);
1066 	writel(upper_32_bits(pci_addr), pcie->base + iarr_offset + 4);
1067 
1068 	dev_dbg(dev, "iarr lo 0x%x iarr hi 0x%x\n",
1069 		readl(pcie->base + iarr_offset),
1070 		readl(pcie->base + iarr_offset + 4));
1071 
1072 	/*
1073 	 * Now program the IMAP registers.  Each IARR region may have one or
1074 	 * more IMAP windows.
1075 	 */
1076 	size >>= ilog2(nr_windows);
1077 	for (window_idx = 0; window_idx < nr_windows; window_idx++) {
1078 		val = readl(pcie->base + imap_offset);
1079 		val |= lower_32_bits(axi_addr) | IMAP_VALID;
1080 		writel(val, pcie->base + imap_offset);
1081 		writel(upper_32_bits(axi_addr),
1082 		       pcie->base + imap_offset + ib_map->imap_addr_offset);
1083 
1084 		dev_dbg(dev, "imap window [%d] lo 0x%x hi 0x%x\n",
1085 			window_idx, readl(pcie->base + imap_offset),
1086 			readl(pcie->base + imap_offset +
1087 			      ib_map->imap_addr_offset));
1088 
1089 		imap_offset += ib_map->imap_window_offset;
1090 		axi_addr += size;
1091 	}
1092 
1093 	return 0;
1094 }
1095 
1096 static int iproc_pcie_setup_ib(struct iproc_pcie *pcie,
1097 			       struct of_pci_range *range,
1098 			       enum iproc_pcie_ib_map_type type)
1099 {
1100 	struct device *dev = pcie->dev;
1101 	struct iproc_pcie_ib *ib = &pcie->ib;
1102 	int ret;
1103 	unsigned int region_idx, size_idx;
1104 	u64 axi_addr = range->cpu_addr, pci_addr = range->pci_addr;
1105 	resource_size_t size = range->size;
1106 
1107 	/* iterate through all IARR mapping regions */
1108 	for (region_idx = 0; region_idx < ib->nr_regions; region_idx++) {
1109 		const struct iproc_pcie_ib_map *ib_map =
1110 			&pcie->ib_map[region_idx];
1111 
1112 		/*
1113 		 * If current inbound region is already in use or not a
1114 		 * compatible type, move on to the next.
1115 		 */
1116 		if (iproc_pcie_ib_is_in_use(pcie, region_idx) ||
1117 		    !iproc_pcie_ib_check_type(ib_map, type))
1118 			continue;
1119 
1120 		/* iterate through all supported region sizes to find a match */
1121 		for (size_idx = 0; size_idx < ib_map->nr_sizes; size_idx++) {
1122 			resource_size_t region_size =
1123 			ib_map->region_sizes[size_idx] * ib_map->size_unit;
1124 
1125 			if (size != region_size)
1126 				continue;
1127 
1128 			if (!IS_ALIGNED(axi_addr, region_size) ||
1129 			    !IS_ALIGNED(pci_addr, region_size)) {
1130 				dev_err(dev,
1131 					"axi %pap or pci %pap not aligned\n",
1132 					&axi_addr, &pci_addr);
1133 				return -EINVAL;
1134 			}
1135 
1136 			/* Match found!  Program IARR and all IMAP windows. */
1137 			ret = iproc_pcie_ib_write(pcie, region_idx, size_idx,
1138 						  ib_map->nr_windows, axi_addr,
1139 						  pci_addr, size);
1140 			if (ret)
1141 				goto err_ib;
1142 			else
1143 				return 0;
1144 
1145 		}
1146 	}
1147 	ret = -EINVAL;
1148 
1149 err_ib:
1150 	dev_err(dev, "unable to configure inbound mapping\n");
1151 	dev_err(dev, "axi %pap, pci %pap, res size %pap\n",
1152 		&axi_addr, &pci_addr, &size);
1153 
1154 	return ret;
1155 }
1156 
1157 static int iproc_pcie_map_dma_ranges(struct iproc_pcie *pcie)
1158 {
1159 	struct of_pci_range range;
1160 	struct of_pci_range_parser parser;
1161 	int ret;
1162 
1163 	/* Get the dma-ranges from DT */
1164 	ret = of_pci_dma_range_parser_init(&parser, pcie->dev->of_node);
1165 	if (ret)
1166 		return ret;
1167 
1168 	for_each_of_pci_range(&parser, &range) {
1169 		/* Each range entry corresponds to an inbound mapping region */
1170 		ret = iproc_pcie_setup_ib(pcie, &range, IPROC_PCIE_IB_MAP_MEM);
1171 		if (ret)
1172 			return ret;
1173 	}
1174 
1175 	return 0;
1176 }
1177 
1178 static int iproce_pcie_get_msi(struct iproc_pcie *pcie,
1179 			       struct device_node *msi_node,
1180 			       u64 *msi_addr)
1181 {
1182 	struct device *dev = pcie->dev;
1183 	int ret;
1184 	struct resource res;
1185 
1186 	/*
1187 	 * Check if 'msi-map' points to ARM GICv3 ITS, which is the only
1188 	 * supported external MSI controller that requires steering.
1189 	 */
1190 	if (!of_device_is_compatible(msi_node, "arm,gic-v3-its")) {
1191 		dev_err(dev, "unable to find compatible MSI controller\n");
1192 		return -ENODEV;
1193 	}
1194 
1195 	/* derive GITS_TRANSLATER address from GICv3 */
1196 	ret = of_address_to_resource(msi_node, 0, &res);
1197 	if (ret < 0) {
1198 		dev_err(dev, "unable to obtain MSI controller resources\n");
1199 		return ret;
1200 	}
1201 
1202 	*msi_addr = res.start + GITS_TRANSLATER;
1203 	return 0;
1204 }
1205 
1206 static int iproc_pcie_paxb_v2_msi_steer(struct iproc_pcie *pcie, u64 msi_addr)
1207 {
1208 	int ret;
1209 	struct of_pci_range range;
1210 
1211 	memset(&range, 0, sizeof(range));
1212 	range.size = SZ_32K;
1213 	range.pci_addr = range.cpu_addr = msi_addr & ~(range.size - 1);
1214 
1215 	ret = iproc_pcie_setup_ib(pcie, &range, IPROC_PCIE_IB_MAP_IO);
1216 	return ret;
1217 }
1218 
1219 static void iproc_pcie_paxc_v2_msi_steer(struct iproc_pcie *pcie, u64 msi_addr,
1220 					 bool enable)
1221 {
1222 	u32 val;
1223 
1224 	if (!enable) {
1225 		/*
1226 		 * Disable PAXC MSI steering. All write transfers will be
1227 		 * treated as non-MSI transfers
1228 		 */
1229 		val = iproc_pcie_read_reg(pcie, IPROC_PCIE_MSI_EN_CFG);
1230 		val &= ~MSI_ENABLE_CFG;
1231 		iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_EN_CFG, val);
1232 		return;
1233 	}
1234 
1235 	/*
1236 	 * Program bits [43:13] of address of GITS_TRANSLATER register into
1237 	 * bits [30:0] of the MSI base address register.  In fact, in all iProc
1238 	 * based SoCs, all I/O register bases are well below the 32-bit
1239 	 * boundary, so we can safely assume bits [43:32] are always zeros.
1240 	 */
1241 	iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_BASE_ADDR,
1242 			     (u32)(msi_addr >> 13));
1243 
1244 	/* use a default 8K window size */
1245 	iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_WINDOW_SIZE, 0);
1246 
1247 	/* steering MSI to GICv3 ITS */
1248 	val = iproc_pcie_read_reg(pcie, IPROC_PCIE_MSI_GIC_MODE);
1249 	val |= GIC_V3_CFG;
1250 	iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_GIC_MODE, val);
1251 
1252 	/*
1253 	 * Program bits [43:2] of address of GITS_TRANSLATER register into the
1254 	 * iProc MSI address registers.
1255 	 */
1256 	msi_addr >>= 2;
1257 	iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_ADDR_HI,
1258 			     upper_32_bits(msi_addr));
1259 	iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_ADDR_LO,
1260 			     lower_32_bits(msi_addr));
1261 
1262 	/* enable MSI */
1263 	val = iproc_pcie_read_reg(pcie, IPROC_PCIE_MSI_EN_CFG);
1264 	val |= MSI_ENABLE_CFG;
1265 	iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_EN_CFG, val);
1266 }
1267 
1268 static int iproc_pcie_msi_steer(struct iproc_pcie *pcie,
1269 				struct device_node *msi_node)
1270 {
1271 	struct device *dev = pcie->dev;
1272 	int ret;
1273 	u64 msi_addr;
1274 
1275 	ret = iproce_pcie_get_msi(pcie, msi_node, &msi_addr);
1276 	if (ret < 0) {
1277 		dev_err(dev, "msi steering failed\n");
1278 		return ret;
1279 	}
1280 
1281 	switch (pcie->type) {
1282 	case IPROC_PCIE_PAXB_V2:
1283 		ret = iproc_pcie_paxb_v2_msi_steer(pcie, msi_addr);
1284 		if (ret)
1285 			return ret;
1286 		break;
1287 	case IPROC_PCIE_PAXC_V2:
1288 		iproc_pcie_paxc_v2_msi_steer(pcie, msi_addr, true);
1289 		break;
1290 	default:
1291 		return -EINVAL;
1292 	}
1293 
1294 	return 0;
1295 }
1296 
1297 static int iproc_pcie_msi_enable(struct iproc_pcie *pcie)
1298 {
1299 	struct device_node *msi_node;
1300 	int ret;
1301 
1302 	/*
1303 	 * Either the "msi-parent" or the "msi-map" phandle needs to exist
1304 	 * for us to obtain the MSI node.
1305 	 */
1306 
1307 	msi_node = of_parse_phandle(pcie->dev->of_node, "msi-parent", 0);
1308 	if (!msi_node) {
1309 		const __be32 *msi_map = NULL;
1310 		int len;
1311 		u32 phandle;
1312 
1313 		msi_map = of_get_property(pcie->dev->of_node, "msi-map", &len);
1314 		if (!msi_map)
1315 			return -ENODEV;
1316 
1317 		phandle = be32_to_cpup(msi_map + 1);
1318 		msi_node = of_find_node_by_phandle(phandle);
1319 		if (!msi_node)
1320 			return -ENODEV;
1321 	}
1322 
1323 	/*
1324 	 * Certain revisions of the iProc PCIe controller require additional
1325 	 * configurations to steer the MSI writes towards an external MSI
1326 	 * controller.
1327 	 */
1328 	if (pcie->need_msi_steer) {
1329 		ret = iproc_pcie_msi_steer(pcie, msi_node);
1330 		if (ret)
1331 			return ret;
1332 	}
1333 
1334 	/*
1335 	 * If another MSI controller is being used, the call below should fail
1336 	 * but that is okay
1337 	 */
1338 	return iproc_msi_init(pcie, msi_node);
1339 }
1340 
1341 static void iproc_pcie_msi_disable(struct iproc_pcie *pcie)
1342 {
1343 	iproc_msi_exit(pcie);
1344 }
1345 
1346 static int iproc_pcie_rev_init(struct iproc_pcie *pcie)
1347 {
1348 	struct device *dev = pcie->dev;
1349 	unsigned int reg_idx;
1350 	const u16 *regs;
1351 
1352 	switch (pcie->type) {
1353 	case IPROC_PCIE_PAXB_BCMA:
1354 		regs = iproc_pcie_reg_paxb_bcma;
1355 		break;
1356 	case IPROC_PCIE_PAXB:
1357 		regs = iproc_pcie_reg_paxb;
1358 		pcie->iproc_cfg_read = true;
1359 		pcie->has_apb_err_disable = true;
1360 		if (pcie->need_ob_cfg) {
1361 			pcie->ob_map = paxb_ob_map;
1362 			pcie->ob.nr_windows = ARRAY_SIZE(paxb_ob_map);
1363 		}
1364 		break;
1365 	case IPROC_PCIE_PAXB_V2:
1366 		regs = iproc_pcie_reg_paxb_v2;
1367 		pcie->has_apb_err_disable = true;
1368 		if (pcie->need_ob_cfg) {
1369 			pcie->ob_map = paxb_v2_ob_map;
1370 			pcie->ob.nr_windows = ARRAY_SIZE(paxb_v2_ob_map);
1371 		}
1372 		pcie->ib.nr_regions = ARRAY_SIZE(paxb_v2_ib_map);
1373 		pcie->ib_map = paxb_v2_ib_map;
1374 		pcie->need_msi_steer = true;
1375 		dev_warn(dev, "reads of config registers that contain %#x return incorrect data\n",
1376 			 CFG_RETRY_STATUS);
1377 		break;
1378 	case IPROC_PCIE_PAXC:
1379 		regs = iproc_pcie_reg_paxc;
1380 		pcie->ep_is_internal = true;
1381 		pcie->iproc_cfg_read = true;
1382 		pcie->rej_unconfig_pf = true;
1383 		break;
1384 	case IPROC_PCIE_PAXC_V2:
1385 		regs = iproc_pcie_reg_paxc_v2;
1386 		pcie->ep_is_internal = true;
1387 		pcie->iproc_cfg_read = true;
1388 		pcie->rej_unconfig_pf = true;
1389 		pcie->need_msi_steer = true;
1390 		break;
1391 	default:
1392 		dev_err(dev, "incompatible iProc PCIe interface\n");
1393 		return -EINVAL;
1394 	}
1395 
1396 	pcie->reg_offsets = devm_kcalloc(dev, IPROC_PCIE_MAX_NUM_REG,
1397 					 sizeof(*pcie->reg_offsets),
1398 					 GFP_KERNEL);
1399 	if (!pcie->reg_offsets)
1400 		return -ENOMEM;
1401 
1402 	/* go through the register table and populate all valid registers */
1403 	pcie->reg_offsets[0] = (pcie->type == IPROC_PCIE_PAXC_V2) ?
1404 		IPROC_PCIE_REG_INVALID : regs[0];
1405 	for (reg_idx = 1; reg_idx < IPROC_PCIE_MAX_NUM_REG; reg_idx++)
1406 		pcie->reg_offsets[reg_idx] = regs[reg_idx] ?
1407 			regs[reg_idx] : IPROC_PCIE_REG_INVALID;
1408 
1409 	return 0;
1410 }
1411 
1412 int iproc_pcie_setup(struct iproc_pcie *pcie, struct list_head *res)
1413 {
1414 	struct device *dev;
1415 	int ret;
1416 	struct pci_bus *child;
1417 	struct pci_host_bridge *host = pci_host_bridge_from_priv(pcie);
1418 
1419 	dev = pcie->dev;
1420 
1421 	ret = iproc_pcie_rev_init(pcie);
1422 	if (ret) {
1423 		dev_err(dev, "unable to initialize controller parameters\n");
1424 		return ret;
1425 	}
1426 
1427 	ret = devm_request_pci_bus_resources(dev, res);
1428 	if (ret)
1429 		return ret;
1430 
1431 	ret = phy_init(pcie->phy);
1432 	if (ret) {
1433 		dev_err(dev, "unable to initialize PCIe PHY\n");
1434 		return ret;
1435 	}
1436 
1437 	ret = phy_power_on(pcie->phy);
1438 	if (ret) {
1439 		dev_err(dev, "unable to power on PCIe PHY\n");
1440 		goto err_exit_phy;
1441 	}
1442 
1443 	iproc_pcie_perst_ctrl(pcie, true);
1444 	iproc_pcie_perst_ctrl(pcie, false);
1445 
1446 	if (pcie->need_ob_cfg) {
1447 		ret = iproc_pcie_map_ranges(pcie, res);
1448 		if (ret) {
1449 			dev_err(dev, "map failed\n");
1450 			goto err_power_off_phy;
1451 		}
1452 	}
1453 
1454 	if (pcie->need_ib_cfg) {
1455 		ret = iproc_pcie_map_dma_ranges(pcie);
1456 		if (ret && ret != -ENOENT)
1457 			goto err_power_off_phy;
1458 	}
1459 
1460 	ret = iproc_pcie_check_link(pcie);
1461 	if (ret) {
1462 		dev_err(dev, "no PCIe EP device detected\n");
1463 		goto err_power_off_phy;
1464 	}
1465 
1466 	iproc_pcie_enable(pcie);
1467 
1468 	if (IS_ENABLED(CONFIG_PCI_MSI))
1469 		if (iproc_pcie_msi_enable(pcie))
1470 			dev_info(dev, "not using iProc MSI\n");
1471 
1472 	list_splice_init(res, &host->windows);
1473 	host->busnr = 0;
1474 	host->dev.parent = dev;
1475 	host->ops = &iproc_pcie_ops;
1476 	host->sysdata = pcie;
1477 	host->map_irq = pcie->map_irq;
1478 	host->swizzle_irq = pci_common_swizzle;
1479 
1480 	ret = pci_scan_root_bus_bridge(host);
1481 	if (ret < 0) {
1482 		dev_err(dev, "failed to scan host: %d\n", ret);
1483 		goto err_power_off_phy;
1484 	}
1485 
1486 	pci_assign_unassigned_bus_resources(host->bus);
1487 
1488 	pcie->root_bus = host->bus;
1489 
1490 	list_for_each_entry(child, &host->bus->children, node)
1491 		pcie_bus_configure_settings(child);
1492 
1493 	pci_bus_add_devices(host->bus);
1494 
1495 	return 0;
1496 
1497 err_power_off_phy:
1498 	phy_power_off(pcie->phy);
1499 err_exit_phy:
1500 	phy_exit(pcie->phy);
1501 	return ret;
1502 }
1503 EXPORT_SYMBOL(iproc_pcie_setup);
1504 
1505 int iproc_pcie_remove(struct iproc_pcie *pcie)
1506 {
1507 	pci_stop_root_bus(pcie->root_bus);
1508 	pci_remove_root_bus(pcie->root_bus);
1509 
1510 	iproc_pcie_msi_disable(pcie);
1511 
1512 	phy_power_off(pcie->phy);
1513 	phy_exit(pcie->phy);
1514 
1515 	return 0;
1516 }
1517 EXPORT_SYMBOL(iproc_pcie_remove);
1518 
1519 /*
1520  * The MSI parsing logic in certain revisions of Broadcom PAXC based root
1521  * complex does not work and needs to be disabled
1522  */
1523 static void quirk_paxc_disable_msi_parsing(struct pci_dev *pdev)
1524 {
1525 	struct iproc_pcie *pcie = iproc_data(pdev->bus);
1526 
1527 	if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
1528 		iproc_pcie_paxc_v2_msi_steer(pcie, 0, false);
1529 }
1530 DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0x16f0,
1531 			quirk_paxc_disable_msi_parsing);
1532 DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0xd802,
1533 			quirk_paxc_disable_msi_parsing);
1534 DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0xd804,
1535 			quirk_paxc_disable_msi_parsing);
1536 
1537 MODULE_AUTHOR("Ray Jui <rjui@broadcom.com>");
1538 MODULE_DESCRIPTION("Broadcom iPROC PCIe common driver");
1539 MODULE_LICENSE("GPL v2");
1540