1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2014 Hauke Mehrtens <hauke@hauke-m.de>
4  * Copyright (C) 2015 Broadcom Corporation
5  */
6 
7 #include <linux/kernel.h>
8 #include <linux/pci.h>
9 #include <linux/msi.h>
10 #include <linux/clk.h>
11 #include <linux/module.h>
12 #include <linux/mbus.h>
13 #include <linux/slab.h>
14 #include <linux/delay.h>
15 #include <linux/interrupt.h>
16 #include <linux/irqchip/arm-gic-v3.h>
17 #include <linux/platform_device.h>
18 #include <linux/of_address.h>
19 #include <linux/of_pci.h>
20 #include <linux/of_irq.h>
21 #include <linux/of_platform.h>
22 #include <linux/phy/phy.h>
23 
24 #include "pcie-iproc.h"
25 
26 #define EP_PERST_SOURCE_SELECT_SHIFT	2
27 #define EP_PERST_SOURCE_SELECT		BIT(EP_PERST_SOURCE_SELECT_SHIFT)
28 #define EP_MODE_SURVIVE_PERST_SHIFT	1
29 #define EP_MODE_SURVIVE_PERST		BIT(EP_MODE_SURVIVE_PERST_SHIFT)
30 #define RC_PCIE_RST_OUTPUT_SHIFT	0
31 #define RC_PCIE_RST_OUTPUT		BIT(RC_PCIE_RST_OUTPUT_SHIFT)
32 #define PAXC_RESET_MASK			0x7f
33 
34 #define GIC_V3_CFG_SHIFT		0
35 #define GIC_V3_CFG			BIT(GIC_V3_CFG_SHIFT)
36 
37 #define MSI_ENABLE_CFG_SHIFT		0
38 #define MSI_ENABLE_CFG			BIT(MSI_ENABLE_CFG_SHIFT)
39 
40 #define CFG_IND_ADDR_MASK		0x00001ffc
41 
42 #define CFG_ADDR_BUS_NUM_SHIFT		20
43 #define CFG_ADDR_BUS_NUM_MASK		0x0ff00000
44 #define CFG_ADDR_DEV_NUM_SHIFT		15
45 #define CFG_ADDR_DEV_NUM_MASK		0x000f8000
46 #define CFG_ADDR_FUNC_NUM_SHIFT		12
47 #define CFG_ADDR_FUNC_NUM_MASK		0x00007000
48 #define CFG_ADDR_REG_NUM_SHIFT		2
49 #define CFG_ADDR_REG_NUM_MASK		0x00000ffc
50 #define CFG_ADDR_CFG_TYPE_SHIFT		0
51 #define CFG_ADDR_CFG_TYPE_MASK		0x00000003
52 
53 #define SYS_RC_INTX_MASK		0xf
54 
55 #define PCIE_PHYLINKUP_SHIFT		3
56 #define PCIE_PHYLINKUP			BIT(PCIE_PHYLINKUP_SHIFT)
57 #define PCIE_DL_ACTIVE_SHIFT		2
58 #define PCIE_DL_ACTIVE			BIT(PCIE_DL_ACTIVE_SHIFT)
59 
60 #define APB_ERR_EN_SHIFT		0
61 #define APB_ERR_EN			BIT(APB_ERR_EN_SHIFT)
62 
63 #define CFG_RETRY_STATUS		0xffff0001
64 #define CFG_RETRY_STATUS_TIMEOUT_US	500000 /* 500 milliseconds */
65 
66 /* derive the enum index of the outbound/inbound mapping registers */
67 #define MAP_REG(base_reg, index)	((base_reg) + (index) * 2)
68 
69 /*
70  * Maximum number of outbound mapping window sizes that can be supported by any
71  * OARR/OMAP mapping pair
72  */
73 #define MAX_NUM_OB_WINDOW_SIZES		4
74 
75 #define OARR_VALID_SHIFT		0
76 #define OARR_VALID			BIT(OARR_VALID_SHIFT)
77 #define OARR_SIZE_CFG_SHIFT		1
78 
79 /*
80  * Maximum number of inbound mapping region sizes that can be supported by an
81  * IARR
82  */
83 #define MAX_NUM_IB_REGION_SIZES		9
84 
85 #define IMAP_VALID_SHIFT		0
86 #define IMAP_VALID			BIT(IMAP_VALID_SHIFT)
87 
88 #define IPROC_PCI_EXP_CAP		0xac
89 
90 #define IPROC_PCIE_REG_INVALID		0xffff
91 
92 /**
93  * iProc PCIe outbound mapping controller specific parameters
94  *
95  * @window_sizes: list of supported outbound mapping window sizes in MB
96  * @nr_sizes: number of supported outbound mapping window sizes
97  */
98 struct iproc_pcie_ob_map {
99 	resource_size_t window_sizes[MAX_NUM_OB_WINDOW_SIZES];
100 	unsigned int nr_sizes;
101 };
102 
103 static const struct iproc_pcie_ob_map paxb_ob_map[] = {
104 	{
105 		/* OARR0/OMAP0 */
106 		.window_sizes = { 128, 256 },
107 		.nr_sizes = 2,
108 	},
109 	{
110 		/* OARR1/OMAP1 */
111 		.window_sizes = { 128, 256 },
112 		.nr_sizes = 2,
113 	},
114 };
115 
116 static const struct iproc_pcie_ob_map paxb_v2_ob_map[] = {
117 	{
118 		/* OARR0/OMAP0 */
119 		.window_sizes = { 128, 256 },
120 		.nr_sizes = 2,
121 	},
122 	{
123 		/* OARR1/OMAP1 */
124 		.window_sizes = { 128, 256 },
125 		.nr_sizes = 2,
126 	},
127 	{
128 		/* OARR2/OMAP2 */
129 		.window_sizes = { 128, 256, 512, 1024 },
130 		.nr_sizes = 4,
131 	},
132 	{
133 		/* OARR3/OMAP3 */
134 		.window_sizes = { 128, 256, 512, 1024 },
135 		.nr_sizes = 4,
136 	},
137 };
138 
139 /**
140  * iProc PCIe inbound mapping type
141  */
142 enum iproc_pcie_ib_map_type {
143 	/* for DDR memory */
144 	IPROC_PCIE_IB_MAP_MEM = 0,
145 
146 	/* for device I/O memory */
147 	IPROC_PCIE_IB_MAP_IO,
148 
149 	/* invalid or unused */
150 	IPROC_PCIE_IB_MAP_INVALID
151 };
152 
153 /**
154  * iProc PCIe inbound mapping controller specific parameters
155  *
156  * @type: inbound mapping region type
157  * @size_unit: inbound mapping region size unit, could be SZ_1K, SZ_1M, or
158  * SZ_1G
159  * @region_sizes: list of supported inbound mapping region sizes in KB, MB, or
160  * GB, depedning on the size unit
161  * @nr_sizes: number of supported inbound mapping region sizes
162  * @nr_windows: number of supported inbound mapping windows for the region
163  * @imap_addr_offset: register offset between the upper and lower 32-bit
164  * IMAP address registers
165  * @imap_window_offset: register offset between each IMAP window
166  */
167 struct iproc_pcie_ib_map {
168 	enum iproc_pcie_ib_map_type type;
169 	unsigned int size_unit;
170 	resource_size_t region_sizes[MAX_NUM_IB_REGION_SIZES];
171 	unsigned int nr_sizes;
172 	unsigned int nr_windows;
173 	u16 imap_addr_offset;
174 	u16 imap_window_offset;
175 };
176 
177 static const struct iproc_pcie_ib_map paxb_v2_ib_map[] = {
178 	{
179 		/* IARR0/IMAP0 */
180 		.type = IPROC_PCIE_IB_MAP_IO,
181 		.size_unit = SZ_1K,
182 		.region_sizes = { 32 },
183 		.nr_sizes = 1,
184 		.nr_windows = 8,
185 		.imap_addr_offset = 0x40,
186 		.imap_window_offset = 0x4,
187 	},
188 	{
189 		/* IARR1/IMAP1 (currently unused) */
190 		.type = IPROC_PCIE_IB_MAP_INVALID,
191 	},
192 	{
193 		/* IARR2/IMAP2 */
194 		.type = IPROC_PCIE_IB_MAP_MEM,
195 		.size_unit = SZ_1M,
196 		.region_sizes = { 64, 128, 256, 512, 1024, 2048, 4096, 8192,
197 				  16384 },
198 		.nr_sizes = 9,
199 		.nr_windows = 1,
200 		.imap_addr_offset = 0x4,
201 		.imap_window_offset = 0x8,
202 	},
203 	{
204 		/* IARR3/IMAP3 */
205 		.type = IPROC_PCIE_IB_MAP_MEM,
206 		.size_unit = SZ_1G,
207 		.region_sizes = { 1, 2, 4, 8, 16, 32 },
208 		.nr_sizes = 6,
209 		.nr_windows = 8,
210 		.imap_addr_offset = 0x4,
211 		.imap_window_offset = 0x8,
212 	},
213 	{
214 		/* IARR4/IMAP4 */
215 		.type = IPROC_PCIE_IB_MAP_MEM,
216 		.size_unit = SZ_1G,
217 		.region_sizes = { 32, 64, 128, 256, 512 },
218 		.nr_sizes = 5,
219 		.nr_windows = 8,
220 		.imap_addr_offset = 0x4,
221 		.imap_window_offset = 0x8,
222 	},
223 };
224 
225 /*
226  * iProc PCIe host registers
227  */
228 enum iproc_pcie_reg {
229 	/* clock/reset signal control */
230 	IPROC_PCIE_CLK_CTRL = 0,
231 
232 	/*
233 	 * To allow MSI to be steered to an external MSI controller (e.g., ARM
234 	 * GICv3 ITS)
235 	 */
236 	IPROC_PCIE_MSI_GIC_MODE,
237 
238 	/*
239 	 * IPROC_PCIE_MSI_BASE_ADDR and IPROC_PCIE_MSI_WINDOW_SIZE define the
240 	 * window where the MSI posted writes are written, for the writes to be
241 	 * interpreted as MSI writes.
242 	 */
243 	IPROC_PCIE_MSI_BASE_ADDR,
244 	IPROC_PCIE_MSI_WINDOW_SIZE,
245 
246 	/*
247 	 * To hold the address of the register where the MSI writes are
248 	 * programed.  When ARM GICv3 ITS is used, this should be programmed
249 	 * with the address of the GITS_TRANSLATER register.
250 	 */
251 	IPROC_PCIE_MSI_ADDR_LO,
252 	IPROC_PCIE_MSI_ADDR_HI,
253 
254 	/* enable MSI */
255 	IPROC_PCIE_MSI_EN_CFG,
256 
257 	/* allow access to root complex configuration space */
258 	IPROC_PCIE_CFG_IND_ADDR,
259 	IPROC_PCIE_CFG_IND_DATA,
260 
261 	/* allow access to device configuration space */
262 	IPROC_PCIE_CFG_ADDR,
263 	IPROC_PCIE_CFG_DATA,
264 
265 	/* enable INTx */
266 	IPROC_PCIE_INTX_EN,
267 
268 	/* outbound address mapping */
269 	IPROC_PCIE_OARR0,
270 	IPROC_PCIE_OMAP0,
271 	IPROC_PCIE_OARR1,
272 	IPROC_PCIE_OMAP1,
273 	IPROC_PCIE_OARR2,
274 	IPROC_PCIE_OMAP2,
275 	IPROC_PCIE_OARR3,
276 	IPROC_PCIE_OMAP3,
277 
278 	/* inbound address mapping */
279 	IPROC_PCIE_IARR0,
280 	IPROC_PCIE_IMAP0,
281 	IPROC_PCIE_IARR1,
282 	IPROC_PCIE_IMAP1,
283 	IPROC_PCIE_IARR2,
284 	IPROC_PCIE_IMAP2,
285 	IPROC_PCIE_IARR3,
286 	IPROC_PCIE_IMAP3,
287 	IPROC_PCIE_IARR4,
288 	IPROC_PCIE_IMAP4,
289 
290 	/* link status */
291 	IPROC_PCIE_LINK_STATUS,
292 
293 	/* enable APB error for unsupported requests */
294 	IPROC_PCIE_APB_ERR_EN,
295 
296 	/* total number of core registers */
297 	IPROC_PCIE_MAX_NUM_REG,
298 };
299 
300 /* iProc PCIe PAXB BCMA registers */
301 static const u16 iproc_pcie_reg_paxb_bcma[] = {
302 	[IPROC_PCIE_CLK_CTRL]		= 0x000,
303 	[IPROC_PCIE_CFG_IND_ADDR]	= 0x120,
304 	[IPROC_PCIE_CFG_IND_DATA]	= 0x124,
305 	[IPROC_PCIE_CFG_ADDR]		= 0x1f8,
306 	[IPROC_PCIE_CFG_DATA]		= 0x1fc,
307 	[IPROC_PCIE_INTX_EN]		= 0x330,
308 	[IPROC_PCIE_LINK_STATUS]	= 0xf0c,
309 };
310 
311 /* iProc PCIe PAXB registers */
312 static const u16 iproc_pcie_reg_paxb[] = {
313 	[IPROC_PCIE_CLK_CTRL]		= 0x000,
314 	[IPROC_PCIE_CFG_IND_ADDR]	= 0x120,
315 	[IPROC_PCIE_CFG_IND_DATA]	= 0x124,
316 	[IPROC_PCIE_CFG_ADDR]		= 0x1f8,
317 	[IPROC_PCIE_CFG_DATA]		= 0x1fc,
318 	[IPROC_PCIE_INTX_EN]		= 0x330,
319 	[IPROC_PCIE_OARR0]		= 0xd20,
320 	[IPROC_PCIE_OMAP0]		= 0xd40,
321 	[IPROC_PCIE_OARR1]		= 0xd28,
322 	[IPROC_PCIE_OMAP1]		= 0xd48,
323 	[IPROC_PCIE_LINK_STATUS]	= 0xf0c,
324 	[IPROC_PCIE_APB_ERR_EN]		= 0xf40,
325 };
326 
327 /* iProc PCIe PAXB v2 registers */
328 static const u16 iproc_pcie_reg_paxb_v2[] = {
329 	[IPROC_PCIE_CLK_CTRL]		= 0x000,
330 	[IPROC_PCIE_CFG_IND_ADDR]	= 0x120,
331 	[IPROC_PCIE_CFG_IND_DATA]	= 0x124,
332 	[IPROC_PCIE_CFG_ADDR]		= 0x1f8,
333 	[IPROC_PCIE_CFG_DATA]		= 0x1fc,
334 	[IPROC_PCIE_INTX_EN]		= 0x330,
335 	[IPROC_PCIE_OARR0]		= 0xd20,
336 	[IPROC_PCIE_OMAP0]		= 0xd40,
337 	[IPROC_PCIE_OARR1]		= 0xd28,
338 	[IPROC_PCIE_OMAP1]		= 0xd48,
339 	[IPROC_PCIE_OARR2]		= 0xd60,
340 	[IPROC_PCIE_OMAP2]		= 0xd68,
341 	[IPROC_PCIE_OARR3]		= 0xdf0,
342 	[IPROC_PCIE_OMAP3]		= 0xdf8,
343 	[IPROC_PCIE_IARR0]		= 0xd00,
344 	[IPROC_PCIE_IMAP0]		= 0xc00,
345 	[IPROC_PCIE_IARR2]		= 0xd10,
346 	[IPROC_PCIE_IMAP2]		= 0xcc0,
347 	[IPROC_PCIE_IARR3]		= 0xe00,
348 	[IPROC_PCIE_IMAP3]		= 0xe08,
349 	[IPROC_PCIE_IARR4]		= 0xe68,
350 	[IPROC_PCIE_IMAP4]		= 0xe70,
351 	[IPROC_PCIE_LINK_STATUS]	= 0xf0c,
352 	[IPROC_PCIE_APB_ERR_EN]		= 0xf40,
353 };
354 
355 /* iProc PCIe PAXC v1 registers */
356 static const u16 iproc_pcie_reg_paxc[] = {
357 	[IPROC_PCIE_CLK_CTRL]		= 0x000,
358 	[IPROC_PCIE_CFG_IND_ADDR]	= 0x1f0,
359 	[IPROC_PCIE_CFG_IND_DATA]	= 0x1f4,
360 	[IPROC_PCIE_CFG_ADDR]		= 0x1f8,
361 	[IPROC_PCIE_CFG_DATA]		= 0x1fc,
362 };
363 
364 /* iProc PCIe PAXC v2 registers */
365 static const u16 iproc_pcie_reg_paxc_v2[] = {
366 	[IPROC_PCIE_MSI_GIC_MODE]	= 0x050,
367 	[IPROC_PCIE_MSI_BASE_ADDR]	= 0x074,
368 	[IPROC_PCIE_MSI_WINDOW_SIZE]	= 0x078,
369 	[IPROC_PCIE_MSI_ADDR_LO]	= 0x07c,
370 	[IPROC_PCIE_MSI_ADDR_HI]	= 0x080,
371 	[IPROC_PCIE_MSI_EN_CFG]		= 0x09c,
372 	[IPROC_PCIE_CFG_IND_ADDR]	= 0x1f0,
373 	[IPROC_PCIE_CFG_IND_DATA]	= 0x1f4,
374 	[IPROC_PCIE_CFG_ADDR]		= 0x1f8,
375 	[IPROC_PCIE_CFG_DATA]		= 0x1fc,
376 };
377 
378 static inline struct iproc_pcie *iproc_data(struct pci_bus *bus)
379 {
380 	struct iproc_pcie *pcie = bus->sysdata;
381 	return pcie;
382 }
383 
384 static inline bool iproc_pcie_reg_is_invalid(u16 reg_offset)
385 {
386 	return !!(reg_offset == IPROC_PCIE_REG_INVALID);
387 }
388 
389 static inline u16 iproc_pcie_reg_offset(struct iproc_pcie *pcie,
390 					enum iproc_pcie_reg reg)
391 {
392 	return pcie->reg_offsets[reg];
393 }
394 
395 static inline u32 iproc_pcie_read_reg(struct iproc_pcie *pcie,
396 				      enum iproc_pcie_reg reg)
397 {
398 	u16 offset = iproc_pcie_reg_offset(pcie, reg);
399 
400 	if (iproc_pcie_reg_is_invalid(offset))
401 		return 0;
402 
403 	return readl(pcie->base + offset);
404 }
405 
406 static inline void iproc_pcie_write_reg(struct iproc_pcie *pcie,
407 					enum iproc_pcie_reg reg, u32 val)
408 {
409 	u16 offset = iproc_pcie_reg_offset(pcie, reg);
410 
411 	if (iproc_pcie_reg_is_invalid(offset))
412 		return;
413 
414 	writel(val, pcie->base + offset);
415 }
416 
417 /**
418  * APB error forwarding can be disabled during access of configuration
419  * registers of the endpoint device, to prevent unsupported requests
420  * (typically seen during enumeration with multi-function devices) from
421  * triggering a system exception.
422  */
423 static inline void iproc_pcie_apb_err_disable(struct pci_bus *bus,
424 					      bool disable)
425 {
426 	struct iproc_pcie *pcie = iproc_data(bus);
427 	u32 val;
428 
429 	if (bus->number && pcie->has_apb_err_disable) {
430 		val = iproc_pcie_read_reg(pcie, IPROC_PCIE_APB_ERR_EN);
431 		if (disable)
432 			val &= ~APB_ERR_EN;
433 		else
434 			val |= APB_ERR_EN;
435 		iproc_pcie_write_reg(pcie, IPROC_PCIE_APB_ERR_EN, val);
436 	}
437 }
438 
439 static void __iomem *iproc_pcie_map_ep_cfg_reg(struct iproc_pcie *pcie,
440 					       unsigned int busno,
441 					       unsigned int slot,
442 					       unsigned int fn,
443 					       int where)
444 {
445 	u16 offset;
446 	u32 val;
447 
448 	/* EP device access */
449 	val = (busno << CFG_ADDR_BUS_NUM_SHIFT) |
450 		(slot << CFG_ADDR_DEV_NUM_SHIFT) |
451 		(fn << CFG_ADDR_FUNC_NUM_SHIFT) |
452 		(where & CFG_ADDR_REG_NUM_MASK) |
453 		(1 & CFG_ADDR_CFG_TYPE_MASK);
454 
455 	iproc_pcie_write_reg(pcie, IPROC_PCIE_CFG_ADDR, val);
456 	offset = iproc_pcie_reg_offset(pcie, IPROC_PCIE_CFG_DATA);
457 
458 	if (iproc_pcie_reg_is_invalid(offset))
459 		return NULL;
460 
461 	return (pcie->base + offset);
462 }
463 
464 static unsigned int iproc_pcie_cfg_retry(void __iomem *cfg_data_p)
465 {
466 	int timeout = CFG_RETRY_STATUS_TIMEOUT_US;
467 	unsigned int data;
468 
469 	/*
470 	 * As per PCIe spec r3.1, sec 2.3.2, CRS Software Visibility only
471 	 * affects config reads of the Vendor ID.  For config writes or any
472 	 * other config reads, the Root may automatically reissue the
473 	 * configuration request again as a new request.
474 	 *
475 	 * For config reads, this hardware returns CFG_RETRY_STATUS data
476 	 * when it receives a CRS completion, regardless of the address of
477 	 * the read or the CRS Software Visibility Enable bit.  As a
478 	 * partial workaround for this, we retry in software any read that
479 	 * returns CFG_RETRY_STATUS.
480 	 *
481 	 * Note that a non-Vendor ID config register may have a value of
482 	 * CFG_RETRY_STATUS.  If we read that, we can't distinguish it from
483 	 * a CRS completion, so we will incorrectly retry the read and
484 	 * eventually return the wrong data (0xffffffff).
485 	 */
486 	data = readl(cfg_data_p);
487 	while (data == CFG_RETRY_STATUS && timeout--) {
488 		udelay(1);
489 		data = readl(cfg_data_p);
490 	}
491 
492 	if (data == CFG_RETRY_STATUS)
493 		data = 0xffffffff;
494 
495 	return data;
496 }
497 
498 static int iproc_pcie_config_read(struct pci_bus *bus, unsigned int devfn,
499 				  int where, int size, u32 *val)
500 {
501 	struct iproc_pcie *pcie = iproc_data(bus);
502 	unsigned int slot = PCI_SLOT(devfn);
503 	unsigned int fn = PCI_FUNC(devfn);
504 	unsigned int busno = bus->number;
505 	void __iomem *cfg_data_p;
506 	unsigned int data;
507 	int ret;
508 
509 	/* root complex access */
510 	if (busno == 0) {
511 		ret = pci_generic_config_read32(bus, devfn, where, size, val);
512 		if (ret != PCIBIOS_SUCCESSFUL)
513 			return ret;
514 
515 		/* Don't advertise CRS SV support */
516 		if ((where & ~0x3) == IPROC_PCI_EXP_CAP + PCI_EXP_RTCTL)
517 			*val &= ~(PCI_EXP_RTCAP_CRSVIS << 16);
518 		return PCIBIOS_SUCCESSFUL;
519 	}
520 
521 	cfg_data_p = iproc_pcie_map_ep_cfg_reg(pcie, busno, slot, fn, where);
522 
523 	if (!cfg_data_p)
524 		return PCIBIOS_DEVICE_NOT_FOUND;
525 
526 	data = iproc_pcie_cfg_retry(cfg_data_p);
527 
528 	*val = data;
529 	if (size <= 2)
530 		*val = (data >> (8 * (where & 3))) & ((1 << (size * 8)) - 1);
531 
532 	return PCIBIOS_SUCCESSFUL;
533 }
534 
535 /**
536  * Note access to the configuration registers are protected at the higher layer
537  * by 'pci_lock' in drivers/pci/access.c
538  */
539 static void __iomem *iproc_pcie_map_cfg_bus(struct iproc_pcie *pcie,
540 					    int busno, unsigned int devfn,
541 					    int where)
542 {
543 	unsigned slot = PCI_SLOT(devfn);
544 	unsigned fn = PCI_FUNC(devfn);
545 	u16 offset;
546 
547 	/* root complex access */
548 	if (busno == 0) {
549 		if (slot > 0 || fn > 0)
550 			return NULL;
551 
552 		iproc_pcie_write_reg(pcie, IPROC_PCIE_CFG_IND_ADDR,
553 				     where & CFG_IND_ADDR_MASK);
554 		offset = iproc_pcie_reg_offset(pcie, IPROC_PCIE_CFG_IND_DATA);
555 		if (iproc_pcie_reg_is_invalid(offset))
556 			return NULL;
557 		else
558 			return (pcie->base + offset);
559 	}
560 
561 	/*
562 	 * PAXC is connected to an internally emulated EP within the SoC.  It
563 	 * allows only one device.
564 	 */
565 	if (pcie->ep_is_internal)
566 		if (slot > 0)
567 			return NULL;
568 
569 	return iproc_pcie_map_ep_cfg_reg(pcie, busno, slot, fn, where);
570 }
571 
572 static void __iomem *iproc_pcie_bus_map_cfg_bus(struct pci_bus *bus,
573 						unsigned int devfn,
574 						int where)
575 {
576 	return iproc_pcie_map_cfg_bus(iproc_data(bus), bus->number, devfn,
577 				      where);
578 }
579 
580 static int iproc_pci_raw_config_read32(struct iproc_pcie *pcie,
581 				       unsigned int devfn, int where,
582 				       int size, u32 *val)
583 {
584 	void __iomem *addr;
585 
586 	addr = iproc_pcie_map_cfg_bus(pcie, 0, devfn, where & ~0x3);
587 	if (!addr) {
588 		*val = ~0;
589 		return PCIBIOS_DEVICE_NOT_FOUND;
590 	}
591 
592 	*val = readl(addr);
593 
594 	if (size <= 2)
595 		*val = (*val >> (8 * (where & 3))) & ((1 << (size * 8)) - 1);
596 
597 	return PCIBIOS_SUCCESSFUL;
598 }
599 
600 static int iproc_pci_raw_config_write32(struct iproc_pcie *pcie,
601 					unsigned int devfn, int where,
602 					int size, u32 val)
603 {
604 	void __iomem *addr;
605 	u32 mask, tmp;
606 
607 	addr = iproc_pcie_map_cfg_bus(pcie, 0, devfn, where & ~0x3);
608 	if (!addr)
609 		return PCIBIOS_DEVICE_NOT_FOUND;
610 
611 	if (size == 4) {
612 		writel(val, addr);
613 		return PCIBIOS_SUCCESSFUL;
614 	}
615 
616 	mask = ~(((1 << (size * 8)) - 1) << ((where & 0x3) * 8));
617 	tmp = readl(addr) & mask;
618 	tmp |= val << ((where & 0x3) * 8);
619 	writel(tmp, addr);
620 
621 	return PCIBIOS_SUCCESSFUL;
622 }
623 
624 static int iproc_pcie_config_read32(struct pci_bus *bus, unsigned int devfn,
625 				    int where, int size, u32 *val)
626 {
627 	int ret;
628 	struct iproc_pcie *pcie = iproc_data(bus);
629 
630 	iproc_pcie_apb_err_disable(bus, true);
631 	if (pcie->type == IPROC_PCIE_PAXB_V2)
632 		ret = iproc_pcie_config_read(bus, devfn, where, size, val);
633 	else
634 		ret = pci_generic_config_read32(bus, devfn, where, size, val);
635 	iproc_pcie_apb_err_disable(bus, false);
636 
637 	return ret;
638 }
639 
640 static int iproc_pcie_config_write32(struct pci_bus *bus, unsigned int devfn,
641 				     int where, int size, u32 val)
642 {
643 	int ret;
644 
645 	iproc_pcie_apb_err_disable(bus, true);
646 	ret = pci_generic_config_write32(bus, devfn, where, size, val);
647 	iproc_pcie_apb_err_disable(bus, false);
648 
649 	return ret;
650 }
651 
652 static struct pci_ops iproc_pcie_ops = {
653 	.map_bus = iproc_pcie_bus_map_cfg_bus,
654 	.read = iproc_pcie_config_read32,
655 	.write = iproc_pcie_config_write32,
656 };
657 
658 static void iproc_pcie_perst_ctrl(struct iproc_pcie *pcie, bool assert)
659 {
660 	u32 val;
661 
662 	/*
663 	 * PAXC and the internal emulated endpoint device downstream should not
664 	 * be reset.  If firmware has been loaded on the endpoint device at an
665 	 * earlier boot stage, reset here causes issues.
666 	 */
667 	if (pcie->ep_is_internal)
668 		return;
669 
670 	if (assert) {
671 		val = iproc_pcie_read_reg(pcie, IPROC_PCIE_CLK_CTRL);
672 		val &= ~EP_PERST_SOURCE_SELECT & ~EP_MODE_SURVIVE_PERST &
673 			~RC_PCIE_RST_OUTPUT;
674 		iproc_pcie_write_reg(pcie, IPROC_PCIE_CLK_CTRL, val);
675 		udelay(250);
676 	} else {
677 		val = iproc_pcie_read_reg(pcie, IPROC_PCIE_CLK_CTRL);
678 		val |= RC_PCIE_RST_OUTPUT;
679 		iproc_pcie_write_reg(pcie, IPROC_PCIE_CLK_CTRL, val);
680 		msleep(100);
681 	}
682 }
683 
684 int iproc_pcie_shutdown(struct iproc_pcie *pcie)
685 {
686 	iproc_pcie_perst_ctrl(pcie, true);
687 	msleep(500);
688 
689 	return 0;
690 }
691 EXPORT_SYMBOL_GPL(iproc_pcie_shutdown);
692 
693 static int iproc_pcie_check_link(struct iproc_pcie *pcie)
694 {
695 	struct device *dev = pcie->dev;
696 	u32 hdr_type, link_ctrl, link_status, class, val;
697 	bool link_is_active = false;
698 
699 	/*
700 	 * PAXC connects to emulated endpoint devices directly and does not
701 	 * have a Serdes.  Therefore skip the link detection logic here.
702 	 */
703 	if (pcie->ep_is_internal)
704 		return 0;
705 
706 	val = iproc_pcie_read_reg(pcie, IPROC_PCIE_LINK_STATUS);
707 	if (!(val & PCIE_PHYLINKUP) || !(val & PCIE_DL_ACTIVE)) {
708 		dev_err(dev, "PHY or data link is INACTIVE!\n");
709 		return -ENODEV;
710 	}
711 
712 	/* make sure we are not in EP mode */
713 	iproc_pci_raw_config_read32(pcie, 0, PCI_HEADER_TYPE, 1, &hdr_type);
714 	if ((hdr_type & 0x7f) != PCI_HEADER_TYPE_BRIDGE) {
715 		dev_err(dev, "in EP mode, hdr=%#02x\n", hdr_type);
716 		return -EFAULT;
717 	}
718 
719 	/* force class to PCI_CLASS_BRIDGE_PCI (0x0604) */
720 #define PCI_BRIDGE_CTRL_REG_OFFSET	0x43c
721 #define PCI_CLASS_BRIDGE_MASK		0xffff00
722 #define PCI_CLASS_BRIDGE_SHIFT		8
723 	iproc_pci_raw_config_read32(pcie, 0, PCI_BRIDGE_CTRL_REG_OFFSET,
724 				    4, &class);
725 	class &= ~PCI_CLASS_BRIDGE_MASK;
726 	class |= (PCI_CLASS_BRIDGE_PCI << PCI_CLASS_BRIDGE_SHIFT);
727 	iproc_pci_raw_config_write32(pcie, 0, PCI_BRIDGE_CTRL_REG_OFFSET,
728 				     4, class);
729 
730 	/* check link status to see if link is active */
731 	iproc_pci_raw_config_read32(pcie, 0, IPROC_PCI_EXP_CAP + PCI_EXP_LNKSTA,
732 				    2, &link_status);
733 	if (link_status & PCI_EXP_LNKSTA_NLW)
734 		link_is_active = true;
735 
736 	if (!link_is_active) {
737 		/* try GEN 1 link speed */
738 #define PCI_TARGET_LINK_SPEED_MASK	0xf
739 #define PCI_TARGET_LINK_SPEED_GEN2	0x2
740 #define PCI_TARGET_LINK_SPEED_GEN1	0x1
741 		iproc_pci_raw_config_read32(pcie, 0,
742 					    IPROC_PCI_EXP_CAP + PCI_EXP_LNKCTL2,
743 					    4, &link_ctrl);
744 		if ((link_ctrl & PCI_TARGET_LINK_SPEED_MASK) ==
745 		    PCI_TARGET_LINK_SPEED_GEN2) {
746 			link_ctrl &= ~PCI_TARGET_LINK_SPEED_MASK;
747 			link_ctrl |= PCI_TARGET_LINK_SPEED_GEN1;
748 			iproc_pci_raw_config_write32(pcie, 0,
749 					IPROC_PCI_EXP_CAP + PCI_EXP_LNKCTL2,
750 					4, link_ctrl);
751 			msleep(100);
752 
753 			iproc_pci_raw_config_read32(pcie, 0,
754 					IPROC_PCI_EXP_CAP + PCI_EXP_LNKSTA,
755 					2, &link_status);
756 			if (link_status & PCI_EXP_LNKSTA_NLW)
757 				link_is_active = true;
758 		}
759 	}
760 
761 	dev_info(dev, "link: %s\n", link_is_active ? "UP" : "DOWN");
762 
763 	return link_is_active ? 0 : -ENODEV;
764 }
765 
766 static void iproc_pcie_enable(struct iproc_pcie *pcie)
767 {
768 	iproc_pcie_write_reg(pcie, IPROC_PCIE_INTX_EN, SYS_RC_INTX_MASK);
769 }
770 
771 static inline bool iproc_pcie_ob_is_valid(struct iproc_pcie *pcie,
772 					  int window_idx)
773 {
774 	u32 val;
775 
776 	val = iproc_pcie_read_reg(pcie, MAP_REG(IPROC_PCIE_OARR0, window_idx));
777 
778 	return !!(val & OARR_VALID);
779 }
780 
781 static inline int iproc_pcie_ob_write(struct iproc_pcie *pcie, int window_idx,
782 				      int size_idx, u64 axi_addr, u64 pci_addr)
783 {
784 	struct device *dev = pcie->dev;
785 	u16 oarr_offset, omap_offset;
786 
787 	/*
788 	 * Derive the OARR/OMAP offset from the first pair (OARR0/OMAP0) based
789 	 * on window index.
790 	 */
791 	oarr_offset = iproc_pcie_reg_offset(pcie, MAP_REG(IPROC_PCIE_OARR0,
792 							  window_idx));
793 	omap_offset = iproc_pcie_reg_offset(pcie, MAP_REG(IPROC_PCIE_OMAP0,
794 							  window_idx));
795 	if (iproc_pcie_reg_is_invalid(oarr_offset) ||
796 	    iproc_pcie_reg_is_invalid(omap_offset))
797 		return -EINVAL;
798 
799 	/*
800 	 * Program the OARR registers.  The upper 32-bit OARR register is
801 	 * always right after the lower 32-bit OARR register.
802 	 */
803 	writel(lower_32_bits(axi_addr) | (size_idx << OARR_SIZE_CFG_SHIFT) |
804 	       OARR_VALID, pcie->base + oarr_offset);
805 	writel(upper_32_bits(axi_addr), pcie->base + oarr_offset + 4);
806 
807 	/* now program the OMAP registers */
808 	writel(lower_32_bits(pci_addr), pcie->base + omap_offset);
809 	writel(upper_32_bits(pci_addr), pcie->base + omap_offset + 4);
810 
811 	dev_info(dev, "ob window [%d]: offset 0x%x axi %pap pci %pap\n",
812 		 window_idx, oarr_offset, &axi_addr, &pci_addr);
813 	dev_info(dev, "oarr lo 0x%x oarr hi 0x%x\n",
814 		 readl(pcie->base + oarr_offset),
815 		 readl(pcie->base + oarr_offset + 4));
816 	dev_info(dev, "omap lo 0x%x omap hi 0x%x\n",
817 		 readl(pcie->base + omap_offset),
818 		 readl(pcie->base + omap_offset + 4));
819 
820 	return 0;
821 }
822 
823 /**
824  * Some iProc SoCs require the SW to configure the outbound address mapping
825  *
826  * Outbound address translation:
827  *
828  * iproc_pcie_address = axi_address - axi_offset
829  * OARR = iproc_pcie_address
830  * OMAP = pci_addr
831  *
832  * axi_addr -> iproc_pcie_address -> OARR -> OMAP -> pci_address
833  */
834 static int iproc_pcie_setup_ob(struct iproc_pcie *pcie, u64 axi_addr,
835 			       u64 pci_addr, resource_size_t size)
836 {
837 	struct iproc_pcie_ob *ob = &pcie->ob;
838 	struct device *dev = pcie->dev;
839 	int ret = -EINVAL, window_idx, size_idx;
840 
841 	if (axi_addr < ob->axi_offset) {
842 		dev_err(dev, "axi address %pap less than offset %pap\n",
843 			&axi_addr, &ob->axi_offset);
844 		return -EINVAL;
845 	}
846 
847 	/*
848 	 * Translate the AXI address to the internal address used by the iProc
849 	 * PCIe core before programming the OARR
850 	 */
851 	axi_addr -= ob->axi_offset;
852 
853 	/* iterate through all OARR/OMAP mapping windows */
854 	for (window_idx = ob->nr_windows - 1; window_idx >= 0; window_idx--) {
855 		const struct iproc_pcie_ob_map *ob_map =
856 			&pcie->ob_map[window_idx];
857 
858 		/*
859 		 * If current outbound window is already in use, move on to the
860 		 * next one.
861 		 */
862 		if (iproc_pcie_ob_is_valid(pcie, window_idx))
863 			continue;
864 
865 		/*
866 		 * Iterate through all supported window sizes within the
867 		 * OARR/OMAP pair to find a match.  Go through the window sizes
868 		 * in a descending order.
869 		 */
870 		for (size_idx = ob_map->nr_sizes - 1; size_idx >= 0;
871 		     size_idx--) {
872 			resource_size_t window_size =
873 				ob_map->window_sizes[size_idx] * SZ_1M;
874 
875 			if (size < window_size)
876 				continue;
877 
878 			if (!IS_ALIGNED(axi_addr, window_size) ||
879 			    !IS_ALIGNED(pci_addr, window_size)) {
880 				dev_err(dev,
881 					"axi %pap or pci %pap not aligned\n",
882 					&axi_addr, &pci_addr);
883 				return -EINVAL;
884 			}
885 
886 			/*
887 			 * Match found!  Program both OARR and OMAP and mark
888 			 * them as a valid entry.
889 			 */
890 			ret = iproc_pcie_ob_write(pcie, window_idx, size_idx,
891 						  axi_addr, pci_addr);
892 			if (ret)
893 				goto err_ob;
894 
895 			size -= window_size;
896 			if (size == 0)
897 				return 0;
898 
899 			/*
900 			 * If we are here, we are done with the current window,
901 			 * but not yet finished all mappings.  Need to move on
902 			 * to the next window.
903 			 */
904 			axi_addr += window_size;
905 			pci_addr += window_size;
906 			break;
907 		}
908 	}
909 
910 err_ob:
911 	dev_err(dev, "unable to configure outbound mapping\n");
912 	dev_err(dev,
913 		"axi %pap, axi offset %pap, pci %pap, res size %pap\n",
914 		&axi_addr, &ob->axi_offset, &pci_addr, &size);
915 
916 	return ret;
917 }
918 
919 static int iproc_pcie_map_ranges(struct iproc_pcie *pcie,
920 				 struct list_head *resources)
921 {
922 	struct device *dev = pcie->dev;
923 	struct resource_entry *window;
924 	int ret;
925 
926 	resource_list_for_each_entry(window, resources) {
927 		struct resource *res = window->res;
928 		u64 res_type = resource_type(res);
929 
930 		switch (res_type) {
931 		case IORESOURCE_IO:
932 		case IORESOURCE_BUS:
933 			break;
934 		case IORESOURCE_MEM:
935 			ret = iproc_pcie_setup_ob(pcie, res->start,
936 						  res->start - window->offset,
937 						  resource_size(res));
938 			if (ret)
939 				return ret;
940 			break;
941 		default:
942 			dev_err(dev, "invalid resource %pR\n", res);
943 			return -EINVAL;
944 		}
945 	}
946 
947 	return 0;
948 }
949 
950 static inline bool iproc_pcie_ib_is_in_use(struct iproc_pcie *pcie,
951 					   int region_idx)
952 {
953 	const struct iproc_pcie_ib_map *ib_map = &pcie->ib_map[region_idx];
954 	u32 val;
955 
956 	val = iproc_pcie_read_reg(pcie, MAP_REG(IPROC_PCIE_IARR0, region_idx));
957 
958 	return !!(val & (BIT(ib_map->nr_sizes) - 1));
959 }
960 
961 static inline bool iproc_pcie_ib_check_type(const struct iproc_pcie_ib_map *ib_map,
962 					    enum iproc_pcie_ib_map_type type)
963 {
964 	return !!(ib_map->type == type);
965 }
966 
967 static int iproc_pcie_ib_write(struct iproc_pcie *pcie, int region_idx,
968 			       int size_idx, int nr_windows, u64 axi_addr,
969 			       u64 pci_addr, resource_size_t size)
970 {
971 	struct device *dev = pcie->dev;
972 	const struct iproc_pcie_ib_map *ib_map = &pcie->ib_map[region_idx];
973 	u16 iarr_offset, imap_offset;
974 	u32 val;
975 	int window_idx;
976 
977 	iarr_offset = iproc_pcie_reg_offset(pcie,
978 				MAP_REG(IPROC_PCIE_IARR0, region_idx));
979 	imap_offset = iproc_pcie_reg_offset(pcie,
980 				MAP_REG(IPROC_PCIE_IMAP0, region_idx));
981 	if (iproc_pcie_reg_is_invalid(iarr_offset) ||
982 	    iproc_pcie_reg_is_invalid(imap_offset))
983 		return -EINVAL;
984 
985 	dev_info(dev, "ib region [%d]: offset 0x%x axi %pap pci %pap\n",
986 		 region_idx, iarr_offset, &axi_addr, &pci_addr);
987 
988 	/*
989 	 * Program the IARR registers.  The upper 32-bit IARR register is
990 	 * always right after the lower 32-bit IARR register.
991 	 */
992 	writel(lower_32_bits(pci_addr) | BIT(size_idx),
993 	       pcie->base + iarr_offset);
994 	writel(upper_32_bits(pci_addr), pcie->base + iarr_offset + 4);
995 
996 	dev_info(dev, "iarr lo 0x%x iarr hi 0x%x\n",
997 		 readl(pcie->base + iarr_offset),
998 		 readl(pcie->base + iarr_offset + 4));
999 
1000 	/*
1001 	 * Now program the IMAP registers.  Each IARR region may have one or
1002 	 * more IMAP windows.
1003 	 */
1004 	size >>= ilog2(nr_windows);
1005 	for (window_idx = 0; window_idx < nr_windows; window_idx++) {
1006 		val = readl(pcie->base + imap_offset);
1007 		val |= lower_32_bits(axi_addr) | IMAP_VALID;
1008 		writel(val, pcie->base + imap_offset);
1009 		writel(upper_32_bits(axi_addr),
1010 		       pcie->base + imap_offset + ib_map->imap_addr_offset);
1011 
1012 		dev_info(dev, "imap window [%d] lo 0x%x hi 0x%x\n",
1013 			 window_idx, readl(pcie->base + imap_offset),
1014 			 readl(pcie->base + imap_offset +
1015 			       ib_map->imap_addr_offset));
1016 
1017 		imap_offset += ib_map->imap_window_offset;
1018 		axi_addr += size;
1019 	}
1020 
1021 	return 0;
1022 }
1023 
1024 static int iproc_pcie_setup_ib(struct iproc_pcie *pcie,
1025 			       struct of_pci_range *range,
1026 			       enum iproc_pcie_ib_map_type type)
1027 {
1028 	struct device *dev = pcie->dev;
1029 	struct iproc_pcie_ib *ib = &pcie->ib;
1030 	int ret;
1031 	unsigned int region_idx, size_idx;
1032 	u64 axi_addr = range->cpu_addr, pci_addr = range->pci_addr;
1033 	resource_size_t size = range->size;
1034 
1035 	/* iterate through all IARR mapping regions */
1036 	for (region_idx = 0; region_idx < ib->nr_regions; region_idx++) {
1037 		const struct iproc_pcie_ib_map *ib_map =
1038 			&pcie->ib_map[region_idx];
1039 
1040 		/*
1041 		 * If current inbound region is already in use or not a
1042 		 * compatible type, move on to the next.
1043 		 */
1044 		if (iproc_pcie_ib_is_in_use(pcie, region_idx) ||
1045 		    !iproc_pcie_ib_check_type(ib_map, type))
1046 			continue;
1047 
1048 		/* iterate through all supported region sizes to find a match */
1049 		for (size_idx = 0; size_idx < ib_map->nr_sizes; size_idx++) {
1050 			resource_size_t region_size =
1051 			ib_map->region_sizes[size_idx] * ib_map->size_unit;
1052 
1053 			if (size != region_size)
1054 				continue;
1055 
1056 			if (!IS_ALIGNED(axi_addr, region_size) ||
1057 			    !IS_ALIGNED(pci_addr, region_size)) {
1058 				dev_err(dev,
1059 					"axi %pap or pci %pap not aligned\n",
1060 					&axi_addr, &pci_addr);
1061 				return -EINVAL;
1062 			}
1063 
1064 			/* Match found!  Program IARR and all IMAP windows. */
1065 			ret = iproc_pcie_ib_write(pcie, region_idx, size_idx,
1066 						  ib_map->nr_windows, axi_addr,
1067 						  pci_addr, size);
1068 			if (ret)
1069 				goto err_ib;
1070 			else
1071 				return 0;
1072 
1073 		}
1074 	}
1075 	ret = -EINVAL;
1076 
1077 err_ib:
1078 	dev_err(dev, "unable to configure inbound mapping\n");
1079 	dev_err(dev, "axi %pap, pci %pap, res size %pap\n",
1080 		&axi_addr, &pci_addr, &size);
1081 
1082 	return ret;
1083 }
1084 
1085 static int iproc_pcie_map_dma_ranges(struct iproc_pcie *pcie)
1086 {
1087 	struct of_pci_range range;
1088 	struct of_pci_range_parser parser;
1089 	int ret;
1090 
1091 	/* Get the dma-ranges from DT */
1092 	ret = of_pci_dma_range_parser_init(&parser, pcie->dev->of_node);
1093 	if (ret)
1094 		return ret;
1095 
1096 	for_each_of_pci_range(&parser, &range) {
1097 		/* Each range entry corresponds to an inbound mapping region */
1098 		ret = iproc_pcie_setup_ib(pcie, &range, IPROC_PCIE_IB_MAP_MEM);
1099 		if (ret)
1100 			return ret;
1101 	}
1102 
1103 	return 0;
1104 }
1105 
1106 static int iproce_pcie_get_msi(struct iproc_pcie *pcie,
1107 			       struct device_node *msi_node,
1108 			       u64 *msi_addr)
1109 {
1110 	struct device *dev = pcie->dev;
1111 	int ret;
1112 	struct resource res;
1113 
1114 	/*
1115 	 * Check if 'msi-map' points to ARM GICv3 ITS, which is the only
1116 	 * supported external MSI controller that requires steering.
1117 	 */
1118 	if (!of_device_is_compatible(msi_node, "arm,gic-v3-its")) {
1119 		dev_err(dev, "unable to find compatible MSI controller\n");
1120 		return -ENODEV;
1121 	}
1122 
1123 	/* derive GITS_TRANSLATER address from GICv3 */
1124 	ret = of_address_to_resource(msi_node, 0, &res);
1125 	if (ret < 0) {
1126 		dev_err(dev, "unable to obtain MSI controller resources\n");
1127 		return ret;
1128 	}
1129 
1130 	*msi_addr = res.start + GITS_TRANSLATER;
1131 	return 0;
1132 }
1133 
1134 static int iproc_pcie_paxb_v2_msi_steer(struct iproc_pcie *pcie, u64 msi_addr)
1135 {
1136 	int ret;
1137 	struct of_pci_range range;
1138 
1139 	memset(&range, 0, sizeof(range));
1140 	range.size = SZ_32K;
1141 	range.pci_addr = range.cpu_addr = msi_addr & ~(range.size - 1);
1142 
1143 	ret = iproc_pcie_setup_ib(pcie, &range, IPROC_PCIE_IB_MAP_IO);
1144 	return ret;
1145 }
1146 
1147 static void iproc_pcie_paxc_v2_msi_steer(struct iproc_pcie *pcie, u64 msi_addr)
1148 {
1149 	u32 val;
1150 
1151 	/*
1152 	 * Program bits [43:13] of address of GITS_TRANSLATER register into
1153 	 * bits [30:0] of the MSI base address register.  In fact, in all iProc
1154 	 * based SoCs, all I/O register bases are well below the 32-bit
1155 	 * boundary, so we can safely assume bits [43:32] are always zeros.
1156 	 */
1157 	iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_BASE_ADDR,
1158 			     (u32)(msi_addr >> 13));
1159 
1160 	/* use a default 8K window size */
1161 	iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_WINDOW_SIZE, 0);
1162 
1163 	/* steering MSI to GICv3 ITS */
1164 	val = iproc_pcie_read_reg(pcie, IPROC_PCIE_MSI_GIC_MODE);
1165 	val |= GIC_V3_CFG;
1166 	iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_GIC_MODE, val);
1167 
1168 	/*
1169 	 * Program bits [43:2] of address of GITS_TRANSLATER register into the
1170 	 * iProc MSI address registers.
1171 	 */
1172 	msi_addr >>= 2;
1173 	iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_ADDR_HI,
1174 			     upper_32_bits(msi_addr));
1175 	iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_ADDR_LO,
1176 			     lower_32_bits(msi_addr));
1177 
1178 	/* enable MSI */
1179 	val = iproc_pcie_read_reg(pcie, IPROC_PCIE_MSI_EN_CFG);
1180 	val |= MSI_ENABLE_CFG;
1181 	iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_EN_CFG, val);
1182 }
1183 
1184 static int iproc_pcie_msi_steer(struct iproc_pcie *pcie,
1185 				struct device_node *msi_node)
1186 {
1187 	struct device *dev = pcie->dev;
1188 	int ret;
1189 	u64 msi_addr;
1190 
1191 	ret = iproce_pcie_get_msi(pcie, msi_node, &msi_addr);
1192 	if (ret < 0) {
1193 		dev_err(dev, "msi steering failed\n");
1194 		return ret;
1195 	}
1196 
1197 	switch (pcie->type) {
1198 	case IPROC_PCIE_PAXB_V2:
1199 		ret = iproc_pcie_paxb_v2_msi_steer(pcie, msi_addr);
1200 		if (ret)
1201 			return ret;
1202 		break;
1203 	case IPROC_PCIE_PAXC_V2:
1204 		iproc_pcie_paxc_v2_msi_steer(pcie, msi_addr);
1205 		break;
1206 	default:
1207 		return -EINVAL;
1208 	}
1209 
1210 	return 0;
1211 }
1212 
1213 static int iproc_pcie_msi_enable(struct iproc_pcie *pcie)
1214 {
1215 	struct device_node *msi_node;
1216 	int ret;
1217 
1218 	/*
1219 	 * Either the "msi-parent" or the "msi-map" phandle needs to exist
1220 	 * for us to obtain the MSI node.
1221 	 */
1222 
1223 	msi_node = of_parse_phandle(pcie->dev->of_node, "msi-parent", 0);
1224 	if (!msi_node) {
1225 		const __be32 *msi_map = NULL;
1226 		int len;
1227 		u32 phandle;
1228 
1229 		msi_map = of_get_property(pcie->dev->of_node, "msi-map", &len);
1230 		if (!msi_map)
1231 			return -ENODEV;
1232 
1233 		phandle = be32_to_cpup(msi_map + 1);
1234 		msi_node = of_find_node_by_phandle(phandle);
1235 		if (!msi_node)
1236 			return -ENODEV;
1237 	}
1238 
1239 	/*
1240 	 * Certain revisions of the iProc PCIe controller require additional
1241 	 * configurations to steer the MSI writes towards an external MSI
1242 	 * controller.
1243 	 */
1244 	if (pcie->need_msi_steer) {
1245 		ret = iproc_pcie_msi_steer(pcie, msi_node);
1246 		if (ret)
1247 			return ret;
1248 	}
1249 
1250 	/*
1251 	 * If another MSI controller is being used, the call below should fail
1252 	 * but that is okay
1253 	 */
1254 	return iproc_msi_init(pcie, msi_node);
1255 }
1256 
1257 static void iproc_pcie_msi_disable(struct iproc_pcie *pcie)
1258 {
1259 	iproc_msi_exit(pcie);
1260 }
1261 
1262 static int iproc_pcie_rev_init(struct iproc_pcie *pcie)
1263 {
1264 	struct device *dev = pcie->dev;
1265 	unsigned int reg_idx;
1266 	const u16 *regs;
1267 
1268 	switch (pcie->type) {
1269 	case IPROC_PCIE_PAXB_BCMA:
1270 		regs = iproc_pcie_reg_paxb_bcma;
1271 		break;
1272 	case IPROC_PCIE_PAXB:
1273 		regs = iproc_pcie_reg_paxb;
1274 		pcie->has_apb_err_disable = true;
1275 		if (pcie->need_ob_cfg) {
1276 			pcie->ob_map = paxb_ob_map;
1277 			pcie->ob.nr_windows = ARRAY_SIZE(paxb_ob_map);
1278 		}
1279 		break;
1280 	case IPROC_PCIE_PAXB_V2:
1281 		regs = iproc_pcie_reg_paxb_v2;
1282 		pcie->has_apb_err_disable = true;
1283 		if (pcie->need_ob_cfg) {
1284 			pcie->ob_map = paxb_v2_ob_map;
1285 			pcie->ob.nr_windows = ARRAY_SIZE(paxb_v2_ob_map);
1286 		}
1287 		pcie->ib.nr_regions = ARRAY_SIZE(paxb_v2_ib_map);
1288 		pcie->ib_map = paxb_v2_ib_map;
1289 		pcie->need_msi_steer = true;
1290 		dev_warn(dev, "reads of config registers that contain %#x return incorrect data\n",
1291 			 CFG_RETRY_STATUS);
1292 		break;
1293 	case IPROC_PCIE_PAXC:
1294 		regs = iproc_pcie_reg_paxc;
1295 		pcie->ep_is_internal = true;
1296 		break;
1297 	case IPROC_PCIE_PAXC_V2:
1298 		regs = iproc_pcie_reg_paxc_v2;
1299 		pcie->ep_is_internal = true;
1300 		pcie->need_msi_steer = true;
1301 		break;
1302 	default:
1303 		dev_err(dev, "incompatible iProc PCIe interface\n");
1304 		return -EINVAL;
1305 	}
1306 
1307 	pcie->reg_offsets = devm_kcalloc(dev, IPROC_PCIE_MAX_NUM_REG,
1308 					 sizeof(*pcie->reg_offsets),
1309 					 GFP_KERNEL);
1310 	if (!pcie->reg_offsets)
1311 		return -ENOMEM;
1312 
1313 	/* go through the register table and populate all valid registers */
1314 	pcie->reg_offsets[0] = (pcie->type == IPROC_PCIE_PAXC_V2) ?
1315 		IPROC_PCIE_REG_INVALID : regs[0];
1316 	for (reg_idx = 1; reg_idx < IPROC_PCIE_MAX_NUM_REG; reg_idx++)
1317 		pcie->reg_offsets[reg_idx] = regs[reg_idx] ?
1318 			regs[reg_idx] : IPROC_PCIE_REG_INVALID;
1319 
1320 	return 0;
1321 }
1322 
1323 int iproc_pcie_setup(struct iproc_pcie *pcie, struct list_head *res)
1324 {
1325 	struct device *dev;
1326 	int ret;
1327 	struct pci_bus *child;
1328 	struct pci_host_bridge *host = pci_host_bridge_from_priv(pcie);
1329 
1330 	dev = pcie->dev;
1331 
1332 	ret = iproc_pcie_rev_init(pcie);
1333 	if (ret) {
1334 		dev_err(dev, "unable to initialize controller parameters\n");
1335 		return ret;
1336 	}
1337 
1338 	ret = devm_request_pci_bus_resources(dev, res);
1339 	if (ret)
1340 		return ret;
1341 
1342 	ret = phy_init(pcie->phy);
1343 	if (ret) {
1344 		dev_err(dev, "unable to initialize PCIe PHY\n");
1345 		return ret;
1346 	}
1347 
1348 	ret = phy_power_on(pcie->phy);
1349 	if (ret) {
1350 		dev_err(dev, "unable to power on PCIe PHY\n");
1351 		goto err_exit_phy;
1352 	}
1353 
1354 	iproc_pcie_perst_ctrl(pcie, true);
1355 	iproc_pcie_perst_ctrl(pcie, false);
1356 
1357 	if (pcie->need_ob_cfg) {
1358 		ret = iproc_pcie_map_ranges(pcie, res);
1359 		if (ret) {
1360 			dev_err(dev, "map failed\n");
1361 			goto err_power_off_phy;
1362 		}
1363 	}
1364 
1365 	if (pcie->need_ib_cfg) {
1366 		ret = iproc_pcie_map_dma_ranges(pcie);
1367 		if (ret && ret != -ENOENT)
1368 			goto err_power_off_phy;
1369 	}
1370 
1371 	ret = iproc_pcie_check_link(pcie);
1372 	if (ret) {
1373 		dev_err(dev, "no PCIe EP device detected\n");
1374 		goto err_power_off_phy;
1375 	}
1376 
1377 	iproc_pcie_enable(pcie);
1378 
1379 	if (IS_ENABLED(CONFIG_PCI_MSI))
1380 		if (iproc_pcie_msi_enable(pcie))
1381 			dev_info(dev, "not using iProc MSI\n");
1382 
1383 	list_splice_init(res, &host->windows);
1384 	host->busnr = 0;
1385 	host->dev.parent = dev;
1386 	host->ops = &iproc_pcie_ops;
1387 	host->sysdata = pcie;
1388 	host->map_irq = pcie->map_irq;
1389 	host->swizzle_irq = pci_common_swizzle;
1390 
1391 	ret = pci_scan_root_bus_bridge(host);
1392 	if (ret < 0) {
1393 		dev_err(dev, "failed to scan host: %d\n", ret);
1394 		goto err_power_off_phy;
1395 	}
1396 
1397 	pci_assign_unassigned_bus_resources(host->bus);
1398 
1399 	pcie->root_bus = host->bus;
1400 
1401 	list_for_each_entry(child, &host->bus->children, node)
1402 		pcie_bus_configure_settings(child);
1403 
1404 	pci_bus_add_devices(host->bus);
1405 
1406 	return 0;
1407 
1408 err_power_off_phy:
1409 	phy_power_off(pcie->phy);
1410 err_exit_phy:
1411 	phy_exit(pcie->phy);
1412 	return ret;
1413 }
1414 EXPORT_SYMBOL(iproc_pcie_setup);
1415 
1416 int iproc_pcie_remove(struct iproc_pcie *pcie)
1417 {
1418 	pci_stop_root_bus(pcie->root_bus);
1419 	pci_remove_root_bus(pcie->root_bus);
1420 
1421 	iproc_pcie_msi_disable(pcie);
1422 
1423 	phy_power_off(pcie->phy);
1424 	phy_exit(pcie->phy);
1425 
1426 	return 0;
1427 }
1428 EXPORT_SYMBOL(iproc_pcie_remove);
1429 
1430 MODULE_AUTHOR("Ray Jui <rjui@broadcom.com>");
1431 MODULE_DESCRIPTION("Broadcom iPROC PCIe common driver");
1432 MODULE_LICENSE("GPL v2");
1433