1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2014 Hauke Mehrtens <hauke@hauke-m.de>
4 * Copyright (C) 2015 Broadcom Corporation
5 */
6
7 #include <linux/kernel.h>
8 #include <linux/pci.h>
9 #include <linux/pci-ecam.h>
10 #include <linux/msi.h>
11 #include <linux/clk.h>
12 #include <linux/module.h>
13 #include <linux/mbus.h>
14 #include <linux/slab.h>
15 #include <linux/delay.h>
16 #include <linux/interrupt.h>
17 #include <linux/irqchip/arm-gic-v3.h>
18 #include <linux/platform_device.h>
19 #include <linux/of_address.h>
20 #include <linux/of_pci.h>
21 #include <linux/of_platform.h>
22 #include <linux/phy/phy.h>
23
24 #include "pcie-iproc.h"
25
26 #define EP_PERST_SOURCE_SELECT_SHIFT 2
27 #define EP_PERST_SOURCE_SELECT BIT(EP_PERST_SOURCE_SELECT_SHIFT)
28 #define EP_MODE_SURVIVE_PERST_SHIFT 1
29 #define EP_MODE_SURVIVE_PERST BIT(EP_MODE_SURVIVE_PERST_SHIFT)
30 #define RC_PCIE_RST_OUTPUT_SHIFT 0
31 #define RC_PCIE_RST_OUTPUT BIT(RC_PCIE_RST_OUTPUT_SHIFT)
32 #define PAXC_RESET_MASK 0x7f
33
34 #define GIC_V3_CFG_SHIFT 0
35 #define GIC_V3_CFG BIT(GIC_V3_CFG_SHIFT)
36
37 #define MSI_ENABLE_CFG_SHIFT 0
38 #define MSI_ENABLE_CFG BIT(MSI_ENABLE_CFG_SHIFT)
39
40 #define CFG_IND_ADDR_MASK 0x00001ffc
41
42 #define CFG_ADDR_REG_NUM_MASK 0x00000ffc
43 #define CFG_ADDR_CFG_TYPE_1 1
44
45 #define SYS_RC_INTX_MASK 0xf
46
47 #define PCIE_PHYLINKUP_SHIFT 3
48 #define PCIE_PHYLINKUP BIT(PCIE_PHYLINKUP_SHIFT)
49 #define PCIE_DL_ACTIVE_SHIFT 2
50 #define PCIE_DL_ACTIVE BIT(PCIE_DL_ACTIVE_SHIFT)
51
52 #define APB_ERR_EN_SHIFT 0
53 #define APB_ERR_EN BIT(APB_ERR_EN_SHIFT)
54
55 #define CFG_RD_SUCCESS 0
56 #define CFG_RD_UR 1
57 #define CFG_RD_CRS 2
58 #define CFG_RD_CA 3
59 #define CFG_RETRY_STATUS 0xffff0001
60 #define CFG_RETRY_STATUS_TIMEOUT_US 500000 /* 500 milliseconds */
61
62 /* derive the enum index of the outbound/inbound mapping registers */
63 #define MAP_REG(base_reg, index) ((base_reg) + (index) * 2)
64
65 /*
66 * Maximum number of outbound mapping window sizes that can be supported by any
67 * OARR/OMAP mapping pair
68 */
69 #define MAX_NUM_OB_WINDOW_SIZES 4
70
71 #define OARR_VALID_SHIFT 0
72 #define OARR_VALID BIT(OARR_VALID_SHIFT)
73 #define OARR_SIZE_CFG_SHIFT 1
74
75 /*
76 * Maximum number of inbound mapping region sizes that can be supported by an
77 * IARR
78 */
79 #define MAX_NUM_IB_REGION_SIZES 9
80
81 #define IMAP_VALID_SHIFT 0
82 #define IMAP_VALID BIT(IMAP_VALID_SHIFT)
83
84 #define IPROC_PCI_PM_CAP 0x48
85 #define IPROC_PCI_PM_CAP_MASK 0xffff
86 #define IPROC_PCI_EXP_CAP 0xac
87
88 #define IPROC_PCIE_REG_INVALID 0xffff
89
90 /**
91 * struct iproc_pcie_ob_map - iProc PCIe outbound mapping controller-specific
92 * parameters
93 * @window_sizes: list of supported outbound mapping window sizes in MB
94 * @nr_sizes: number of supported outbound mapping window sizes
95 */
96 struct iproc_pcie_ob_map {
97 resource_size_t window_sizes[MAX_NUM_OB_WINDOW_SIZES];
98 unsigned int nr_sizes;
99 };
100
101 static const struct iproc_pcie_ob_map paxb_ob_map[] = {
102 {
103 /* OARR0/OMAP0 */
104 .window_sizes = { 128, 256 },
105 .nr_sizes = 2,
106 },
107 {
108 /* OARR1/OMAP1 */
109 .window_sizes = { 128, 256 },
110 .nr_sizes = 2,
111 },
112 };
113
114 static const struct iproc_pcie_ob_map paxb_v2_ob_map[] = {
115 {
116 /* OARR0/OMAP0 */
117 .window_sizes = { 128, 256 },
118 .nr_sizes = 2,
119 },
120 {
121 /* OARR1/OMAP1 */
122 .window_sizes = { 128, 256 },
123 .nr_sizes = 2,
124 },
125 {
126 /* OARR2/OMAP2 */
127 .window_sizes = { 128, 256, 512, 1024 },
128 .nr_sizes = 4,
129 },
130 {
131 /* OARR3/OMAP3 */
132 .window_sizes = { 128, 256, 512, 1024 },
133 .nr_sizes = 4,
134 },
135 };
136
137 /**
138 * enum iproc_pcie_ib_map_type - iProc PCIe inbound mapping type
139 * @IPROC_PCIE_IB_MAP_MEM: DDR memory
140 * @IPROC_PCIE_IB_MAP_IO: device I/O memory
141 * @IPROC_PCIE_IB_MAP_INVALID: invalid or unused
142 */
143 enum iproc_pcie_ib_map_type {
144 IPROC_PCIE_IB_MAP_MEM = 0,
145 IPROC_PCIE_IB_MAP_IO,
146 IPROC_PCIE_IB_MAP_INVALID
147 };
148
149 /**
150 * struct iproc_pcie_ib_map - iProc PCIe inbound mapping controller-specific
151 * parameters
152 * @type: inbound mapping region type
153 * @size_unit: inbound mapping region size unit, could be SZ_1K, SZ_1M, or
154 * SZ_1G
155 * @region_sizes: list of supported inbound mapping region sizes in KB, MB, or
156 * GB, depending on the size unit
157 * @nr_sizes: number of supported inbound mapping region sizes
158 * @nr_windows: number of supported inbound mapping windows for the region
159 * @imap_addr_offset: register offset between the upper and lower 32-bit
160 * IMAP address registers
161 * @imap_window_offset: register offset between each IMAP window
162 */
163 struct iproc_pcie_ib_map {
164 enum iproc_pcie_ib_map_type type;
165 unsigned int size_unit;
166 resource_size_t region_sizes[MAX_NUM_IB_REGION_SIZES];
167 unsigned int nr_sizes;
168 unsigned int nr_windows;
169 u16 imap_addr_offset;
170 u16 imap_window_offset;
171 };
172
173 static const struct iproc_pcie_ib_map paxb_v2_ib_map[] = {
174 {
175 /* IARR0/IMAP0 */
176 .type = IPROC_PCIE_IB_MAP_IO,
177 .size_unit = SZ_1K,
178 .region_sizes = { 32 },
179 .nr_sizes = 1,
180 .nr_windows = 8,
181 .imap_addr_offset = 0x40,
182 .imap_window_offset = 0x4,
183 },
184 {
185 /* IARR1/IMAP1 */
186 .type = IPROC_PCIE_IB_MAP_MEM,
187 .size_unit = SZ_1M,
188 .region_sizes = { 8 },
189 .nr_sizes = 1,
190 .nr_windows = 8,
191 .imap_addr_offset = 0x4,
192 .imap_window_offset = 0x8,
193
194 },
195 {
196 /* IARR2/IMAP2 */
197 .type = IPROC_PCIE_IB_MAP_MEM,
198 .size_unit = SZ_1M,
199 .region_sizes = { 64, 128, 256, 512, 1024, 2048, 4096, 8192,
200 16384 },
201 .nr_sizes = 9,
202 .nr_windows = 1,
203 .imap_addr_offset = 0x4,
204 .imap_window_offset = 0x8,
205 },
206 {
207 /* IARR3/IMAP3 */
208 .type = IPROC_PCIE_IB_MAP_MEM,
209 .size_unit = SZ_1G,
210 .region_sizes = { 1, 2, 4, 8, 16, 32 },
211 .nr_sizes = 6,
212 .nr_windows = 8,
213 .imap_addr_offset = 0x4,
214 .imap_window_offset = 0x8,
215 },
216 {
217 /* IARR4/IMAP4 */
218 .type = IPROC_PCIE_IB_MAP_MEM,
219 .size_unit = SZ_1G,
220 .region_sizes = { 32, 64, 128, 256, 512 },
221 .nr_sizes = 5,
222 .nr_windows = 8,
223 .imap_addr_offset = 0x4,
224 .imap_window_offset = 0x8,
225 },
226 };
227
228 /*
229 * iProc PCIe host registers
230 */
231 enum iproc_pcie_reg {
232 /* clock/reset signal control */
233 IPROC_PCIE_CLK_CTRL = 0,
234
235 /*
236 * To allow MSI to be steered to an external MSI controller (e.g., ARM
237 * GICv3 ITS)
238 */
239 IPROC_PCIE_MSI_GIC_MODE,
240
241 /*
242 * IPROC_PCIE_MSI_BASE_ADDR and IPROC_PCIE_MSI_WINDOW_SIZE define the
243 * window where the MSI posted writes are written, for the writes to be
244 * interpreted as MSI writes.
245 */
246 IPROC_PCIE_MSI_BASE_ADDR,
247 IPROC_PCIE_MSI_WINDOW_SIZE,
248
249 /*
250 * To hold the address of the register where the MSI writes are
251 * programmed. When ARM GICv3 ITS is used, this should be programmed
252 * with the address of the GITS_TRANSLATER register.
253 */
254 IPROC_PCIE_MSI_ADDR_LO,
255 IPROC_PCIE_MSI_ADDR_HI,
256
257 /* enable MSI */
258 IPROC_PCIE_MSI_EN_CFG,
259
260 /* allow access to root complex configuration space */
261 IPROC_PCIE_CFG_IND_ADDR,
262 IPROC_PCIE_CFG_IND_DATA,
263
264 /* allow access to device configuration space */
265 IPROC_PCIE_CFG_ADDR,
266 IPROC_PCIE_CFG_DATA,
267
268 /* enable INTx */
269 IPROC_PCIE_INTX_EN,
270
271 /* outbound address mapping */
272 IPROC_PCIE_OARR0,
273 IPROC_PCIE_OMAP0,
274 IPROC_PCIE_OARR1,
275 IPROC_PCIE_OMAP1,
276 IPROC_PCIE_OARR2,
277 IPROC_PCIE_OMAP2,
278 IPROC_PCIE_OARR3,
279 IPROC_PCIE_OMAP3,
280
281 /* inbound address mapping */
282 IPROC_PCIE_IARR0,
283 IPROC_PCIE_IMAP0,
284 IPROC_PCIE_IARR1,
285 IPROC_PCIE_IMAP1,
286 IPROC_PCIE_IARR2,
287 IPROC_PCIE_IMAP2,
288 IPROC_PCIE_IARR3,
289 IPROC_PCIE_IMAP3,
290 IPROC_PCIE_IARR4,
291 IPROC_PCIE_IMAP4,
292
293 /* config read status */
294 IPROC_PCIE_CFG_RD_STATUS,
295
296 /* link status */
297 IPROC_PCIE_LINK_STATUS,
298
299 /* enable APB error for unsupported requests */
300 IPROC_PCIE_APB_ERR_EN,
301
302 /* total number of core registers */
303 IPROC_PCIE_MAX_NUM_REG,
304 };
305
306 /* iProc PCIe PAXB BCMA registers */
307 static const u16 iproc_pcie_reg_paxb_bcma[IPROC_PCIE_MAX_NUM_REG] = {
308 [IPROC_PCIE_CLK_CTRL] = 0x000,
309 [IPROC_PCIE_CFG_IND_ADDR] = 0x120,
310 [IPROC_PCIE_CFG_IND_DATA] = 0x124,
311 [IPROC_PCIE_CFG_ADDR] = 0x1f8,
312 [IPROC_PCIE_CFG_DATA] = 0x1fc,
313 [IPROC_PCIE_INTX_EN] = 0x330,
314 [IPROC_PCIE_LINK_STATUS] = 0xf0c,
315 };
316
317 /* iProc PCIe PAXB registers */
318 static const u16 iproc_pcie_reg_paxb[IPROC_PCIE_MAX_NUM_REG] = {
319 [IPROC_PCIE_CLK_CTRL] = 0x000,
320 [IPROC_PCIE_CFG_IND_ADDR] = 0x120,
321 [IPROC_PCIE_CFG_IND_DATA] = 0x124,
322 [IPROC_PCIE_CFG_ADDR] = 0x1f8,
323 [IPROC_PCIE_CFG_DATA] = 0x1fc,
324 [IPROC_PCIE_INTX_EN] = 0x330,
325 [IPROC_PCIE_OARR0] = 0xd20,
326 [IPROC_PCIE_OMAP0] = 0xd40,
327 [IPROC_PCIE_OARR1] = 0xd28,
328 [IPROC_PCIE_OMAP1] = 0xd48,
329 [IPROC_PCIE_LINK_STATUS] = 0xf0c,
330 [IPROC_PCIE_APB_ERR_EN] = 0xf40,
331 };
332
333 /* iProc PCIe PAXB v2 registers */
334 static const u16 iproc_pcie_reg_paxb_v2[IPROC_PCIE_MAX_NUM_REG] = {
335 [IPROC_PCIE_CLK_CTRL] = 0x000,
336 [IPROC_PCIE_CFG_IND_ADDR] = 0x120,
337 [IPROC_PCIE_CFG_IND_DATA] = 0x124,
338 [IPROC_PCIE_CFG_ADDR] = 0x1f8,
339 [IPROC_PCIE_CFG_DATA] = 0x1fc,
340 [IPROC_PCIE_INTX_EN] = 0x330,
341 [IPROC_PCIE_OARR0] = 0xd20,
342 [IPROC_PCIE_OMAP0] = 0xd40,
343 [IPROC_PCIE_OARR1] = 0xd28,
344 [IPROC_PCIE_OMAP1] = 0xd48,
345 [IPROC_PCIE_OARR2] = 0xd60,
346 [IPROC_PCIE_OMAP2] = 0xd68,
347 [IPROC_PCIE_OARR3] = 0xdf0,
348 [IPROC_PCIE_OMAP3] = 0xdf8,
349 [IPROC_PCIE_IARR0] = 0xd00,
350 [IPROC_PCIE_IMAP0] = 0xc00,
351 [IPROC_PCIE_IARR1] = 0xd08,
352 [IPROC_PCIE_IMAP1] = 0xd70,
353 [IPROC_PCIE_IARR2] = 0xd10,
354 [IPROC_PCIE_IMAP2] = 0xcc0,
355 [IPROC_PCIE_IARR3] = 0xe00,
356 [IPROC_PCIE_IMAP3] = 0xe08,
357 [IPROC_PCIE_IARR4] = 0xe68,
358 [IPROC_PCIE_IMAP4] = 0xe70,
359 [IPROC_PCIE_CFG_RD_STATUS] = 0xee0,
360 [IPROC_PCIE_LINK_STATUS] = 0xf0c,
361 [IPROC_PCIE_APB_ERR_EN] = 0xf40,
362 };
363
364 /* iProc PCIe PAXC v1 registers */
365 static const u16 iproc_pcie_reg_paxc[IPROC_PCIE_MAX_NUM_REG] = {
366 [IPROC_PCIE_CLK_CTRL] = 0x000,
367 [IPROC_PCIE_CFG_IND_ADDR] = 0x1f0,
368 [IPROC_PCIE_CFG_IND_DATA] = 0x1f4,
369 [IPROC_PCIE_CFG_ADDR] = 0x1f8,
370 [IPROC_PCIE_CFG_DATA] = 0x1fc,
371 };
372
373 /* iProc PCIe PAXC v2 registers */
374 static const u16 iproc_pcie_reg_paxc_v2[IPROC_PCIE_MAX_NUM_REG] = {
375 [IPROC_PCIE_MSI_GIC_MODE] = 0x050,
376 [IPROC_PCIE_MSI_BASE_ADDR] = 0x074,
377 [IPROC_PCIE_MSI_WINDOW_SIZE] = 0x078,
378 [IPROC_PCIE_MSI_ADDR_LO] = 0x07c,
379 [IPROC_PCIE_MSI_ADDR_HI] = 0x080,
380 [IPROC_PCIE_MSI_EN_CFG] = 0x09c,
381 [IPROC_PCIE_CFG_IND_ADDR] = 0x1f0,
382 [IPROC_PCIE_CFG_IND_DATA] = 0x1f4,
383 [IPROC_PCIE_CFG_ADDR] = 0x1f8,
384 [IPROC_PCIE_CFG_DATA] = 0x1fc,
385 };
386
387 /*
388 * List of device IDs of controllers that have corrupted capability list that
389 * require SW fixup
390 */
391 static const u16 iproc_pcie_corrupt_cap_did[] = {
392 0x16cd,
393 0x16f0,
394 0xd802,
395 0xd804
396 };
397
iproc_data(struct pci_bus * bus)398 static inline struct iproc_pcie *iproc_data(struct pci_bus *bus)
399 {
400 struct iproc_pcie *pcie = bus->sysdata;
401 return pcie;
402 }
403
iproc_pcie_reg_is_invalid(u16 reg_offset)404 static inline bool iproc_pcie_reg_is_invalid(u16 reg_offset)
405 {
406 return !!(reg_offset == IPROC_PCIE_REG_INVALID);
407 }
408
iproc_pcie_reg_offset(struct iproc_pcie * pcie,enum iproc_pcie_reg reg)409 static inline u16 iproc_pcie_reg_offset(struct iproc_pcie *pcie,
410 enum iproc_pcie_reg reg)
411 {
412 return pcie->reg_offsets[reg];
413 }
414
iproc_pcie_read_reg(struct iproc_pcie * pcie,enum iproc_pcie_reg reg)415 static inline u32 iproc_pcie_read_reg(struct iproc_pcie *pcie,
416 enum iproc_pcie_reg reg)
417 {
418 u16 offset = iproc_pcie_reg_offset(pcie, reg);
419
420 if (iproc_pcie_reg_is_invalid(offset))
421 return 0;
422
423 return readl(pcie->base + offset);
424 }
425
iproc_pcie_write_reg(struct iproc_pcie * pcie,enum iproc_pcie_reg reg,u32 val)426 static inline void iproc_pcie_write_reg(struct iproc_pcie *pcie,
427 enum iproc_pcie_reg reg, u32 val)
428 {
429 u16 offset = iproc_pcie_reg_offset(pcie, reg);
430
431 if (iproc_pcie_reg_is_invalid(offset))
432 return;
433
434 writel(val, pcie->base + offset);
435 }
436
437 /*
438 * APB error forwarding can be disabled during access of configuration
439 * registers of the endpoint device, to prevent unsupported requests
440 * (typically seen during enumeration with multi-function devices) from
441 * triggering a system exception.
442 */
iproc_pcie_apb_err_disable(struct pci_bus * bus,bool disable)443 static inline void iproc_pcie_apb_err_disable(struct pci_bus *bus,
444 bool disable)
445 {
446 struct iproc_pcie *pcie = iproc_data(bus);
447 u32 val;
448
449 if (bus->number && pcie->has_apb_err_disable) {
450 val = iproc_pcie_read_reg(pcie, IPROC_PCIE_APB_ERR_EN);
451 if (disable)
452 val &= ~APB_ERR_EN;
453 else
454 val |= APB_ERR_EN;
455 iproc_pcie_write_reg(pcie, IPROC_PCIE_APB_ERR_EN, val);
456 }
457 }
458
iproc_pcie_map_ep_cfg_reg(struct iproc_pcie * pcie,unsigned int busno,unsigned int devfn,int where)459 static void __iomem *iproc_pcie_map_ep_cfg_reg(struct iproc_pcie *pcie,
460 unsigned int busno,
461 unsigned int devfn,
462 int where)
463 {
464 u16 offset;
465 u32 val;
466
467 /* EP device access */
468 val = ALIGN_DOWN(PCIE_ECAM_OFFSET(busno, devfn, where), 4) |
469 CFG_ADDR_CFG_TYPE_1;
470
471 iproc_pcie_write_reg(pcie, IPROC_PCIE_CFG_ADDR, val);
472 offset = iproc_pcie_reg_offset(pcie, IPROC_PCIE_CFG_DATA);
473
474 if (iproc_pcie_reg_is_invalid(offset))
475 return NULL;
476
477 return (pcie->base + offset);
478 }
479
iproc_pcie_cfg_retry(struct iproc_pcie * pcie,void __iomem * cfg_data_p)480 static unsigned int iproc_pcie_cfg_retry(struct iproc_pcie *pcie,
481 void __iomem *cfg_data_p)
482 {
483 int timeout = CFG_RETRY_STATUS_TIMEOUT_US;
484 unsigned int data;
485 u32 status;
486
487 /*
488 * As per PCIe spec r3.1, sec 2.3.2, CRS Software Visibility only
489 * affects config reads of the Vendor ID. For config writes or any
490 * other config reads, the Root may automatically reissue the
491 * configuration request again as a new request.
492 *
493 * For config reads, this hardware returns CFG_RETRY_STATUS data
494 * when it receives a CRS completion, regardless of the address of
495 * the read or the CRS Software Visibility Enable bit. As a
496 * partial workaround for this, we retry in software any read that
497 * returns CFG_RETRY_STATUS.
498 *
499 * Note that a non-Vendor ID config register may have a value of
500 * CFG_RETRY_STATUS. If we read that, we can't distinguish it from
501 * a CRS completion, so we will incorrectly retry the read and
502 * eventually return the wrong data (0xffffffff).
503 */
504 data = readl(cfg_data_p);
505 while (data == CFG_RETRY_STATUS && timeout--) {
506 /*
507 * CRS state is set in CFG_RD status register
508 * This will handle the case where CFG_RETRY_STATUS is
509 * valid config data.
510 */
511 status = iproc_pcie_read_reg(pcie, IPROC_PCIE_CFG_RD_STATUS);
512 if (status != CFG_RD_CRS)
513 return data;
514
515 udelay(1);
516 data = readl(cfg_data_p);
517 }
518
519 if (data == CFG_RETRY_STATUS)
520 data = 0xffffffff;
521
522 return data;
523 }
524
iproc_pcie_fix_cap(struct iproc_pcie * pcie,int where,u32 * val)525 static void iproc_pcie_fix_cap(struct iproc_pcie *pcie, int where, u32 *val)
526 {
527 u32 i, dev_id;
528
529 switch (where & ~0x3) {
530 case PCI_VENDOR_ID:
531 dev_id = *val >> 16;
532
533 /*
534 * Activate fixup for those controllers that have corrupted
535 * capability list registers
536 */
537 for (i = 0; i < ARRAY_SIZE(iproc_pcie_corrupt_cap_did); i++)
538 if (dev_id == iproc_pcie_corrupt_cap_did[i])
539 pcie->fix_paxc_cap = true;
540 break;
541
542 case IPROC_PCI_PM_CAP:
543 if (pcie->fix_paxc_cap) {
544 /* advertise PM, force next capability to PCIe */
545 *val &= ~IPROC_PCI_PM_CAP_MASK;
546 *val |= IPROC_PCI_EXP_CAP << 8 | PCI_CAP_ID_PM;
547 }
548 break;
549
550 case IPROC_PCI_EXP_CAP:
551 if (pcie->fix_paxc_cap) {
552 /* advertise root port, version 2, terminate here */
553 *val = (PCI_EXP_TYPE_ROOT_PORT << 4 | 2) << 16 |
554 PCI_CAP_ID_EXP;
555 }
556 break;
557
558 case IPROC_PCI_EXP_CAP + PCI_EXP_RTCTL:
559 /* Don't advertise CRS SV support */
560 *val &= ~(PCI_EXP_RTCAP_CRSVIS << 16);
561 break;
562
563 default:
564 break;
565 }
566 }
567
iproc_pcie_config_read(struct pci_bus * bus,unsigned int devfn,int where,int size,u32 * val)568 static int iproc_pcie_config_read(struct pci_bus *bus, unsigned int devfn,
569 int where, int size, u32 *val)
570 {
571 struct iproc_pcie *pcie = iproc_data(bus);
572 unsigned int busno = bus->number;
573 void __iomem *cfg_data_p;
574 unsigned int data;
575 int ret;
576
577 /* root complex access */
578 if (busno == 0) {
579 ret = pci_generic_config_read32(bus, devfn, where, size, val);
580 if (ret == PCIBIOS_SUCCESSFUL)
581 iproc_pcie_fix_cap(pcie, where, val);
582
583 return ret;
584 }
585
586 cfg_data_p = iproc_pcie_map_ep_cfg_reg(pcie, busno, devfn, where);
587
588 if (!cfg_data_p)
589 return PCIBIOS_DEVICE_NOT_FOUND;
590
591 data = iproc_pcie_cfg_retry(pcie, cfg_data_p);
592
593 *val = data;
594 if (size <= 2)
595 *val = (data >> (8 * (where & 3))) & ((1 << (size * 8)) - 1);
596
597 /*
598 * For PAXC and PAXCv2, the total number of PFs that one can enumerate
599 * depends on the firmware configuration. Unfortunately, due to an ASIC
600 * bug, unconfigured PFs cannot be properly hidden from the root
601 * complex. As a result, write access to these PFs will cause bus lock
602 * up on the embedded processor
603 *
604 * Since all unconfigured PFs are left with an incorrect, staled device
605 * ID of 0x168e (PCI_DEVICE_ID_NX2_57810), we try to catch those access
606 * early here and reject them all
607 */
608 #define DEVICE_ID_MASK 0xffff0000
609 #define DEVICE_ID_SHIFT 16
610 if (pcie->rej_unconfig_pf &&
611 (where & CFG_ADDR_REG_NUM_MASK) == PCI_VENDOR_ID)
612 if ((*val & DEVICE_ID_MASK) ==
613 (PCI_DEVICE_ID_NX2_57810 << DEVICE_ID_SHIFT))
614 return PCIBIOS_FUNC_NOT_SUPPORTED;
615
616 return PCIBIOS_SUCCESSFUL;
617 }
618
619 /*
620 * Note access to the configuration registers are protected at the higher layer
621 * by 'pci_lock' in drivers/pci/access.c
622 */
iproc_pcie_map_cfg_bus(struct iproc_pcie * pcie,int busno,unsigned int devfn,int where)623 static void __iomem *iproc_pcie_map_cfg_bus(struct iproc_pcie *pcie,
624 int busno, unsigned int devfn,
625 int where)
626 {
627 u16 offset;
628
629 /* root complex access */
630 if (busno == 0) {
631 if (PCIE_ECAM_DEVFN(devfn) > 0)
632 return NULL;
633
634 iproc_pcie_write_reg(pcie, IPROC_PCIE_CFG_IND_ADDR,
635 where & CFG_IND_ADDR_MASK);
636 offset = iproc_pcie_reg_offset(pcie, IPROC_PCIE_CFG_IND_DATA);
637 if (iproc_pcie_reg_is_invalid(offset))
638 return NULL;
639 else
640 return (pcie->base + offset);
641 }
642
643 return iproc_pcie_map_ep_cfg_reg(pcie, busno, devfn, where);
644 }
645
iproc_pcie_bus_map_cfg_bus(struct pci_bus * bus,unsigned int devfn,int where)646 static void __iomem *iproc_pcie_bus_map_cfg_bus(struct pci_bus *bus,
647 unsigned int devfn,
648 int where)
649 {
650 return iproc_pcie_map_cfg_bus(iproc_data(bus), bus->number, devfn,
651 where);
652 }
653
iproc_pci_raw_config_read32(struct iproc_pcie * pcie,unsigned int devfn,int where,int size,u32 * val)654 static int iproc_pci_raw_config_read32(struct iproc_pcie *pcie,
655 unsigned int devfn, int where,
656 int size, u32 *val)
657 {
658 void __iomem *addr;
659
660 addr = iproc_pcie_map_cfg_bus(pcie, 0, devfn, where & ~0x3);
661 if (!addr)
662 return PCIBIOS_DEVICE_NOT_FOUND;
663
664 *val = readl(addr);
665
666 if (size <= 2)
667 *val = (*val >> (8 * (where & 3))) & ((1 << (size * 8)) - 1);
668
669 return PCIBIOS_SUCCESSFUL;
670 }
671
iproc_pci_raw_config_write32(struct iproc_pcie * pcie,unsigned int devfn,int where,int size,u32 val)672 static int iproc_pci_raw_config_write32(struct iproc_pcie *pcie,
673 unsigned int devfn, int where,
674 int size, u32 val)
675 {
676 void __iomem *addr;
677 u32 mask, tmp;
678
679 addr = iproc_pcie_map_cfg_bus(pcie, 0, devfn, where & ~0x3);
680 if (!addr)
681 return PCIBIOS_DEVICE_NOT_FOUND;
682
683 if (size == 4) {
684 writel(val, addr);
685 return PCIBIOS_SUCCESSFUL;
686 }
687
688 mask = ~(((1 << (size * 8)) - 1) << ((where & 0x3) * 8));
689 tmp = readl(addr) & mask;
690 tmp |= val << ((where & 0x3) * 8);
691 writel(tmp, addr);
692
693 return PCIBIOS_SUCCESSFUL;
694 }
695
iproc_pcie_config_read32(struct pci_bus * bus,unsigned int devfn,int where,int size,u32 * val)696 static int iproc_pcie_config_read32(struct pci_bus *bus, unsigned int devfn,
697 int where, int size, u32 *val)
698 {
699 int ret;
700 struct iproc_pcie *pcie = iproc_data(bus);
701
702 iproc_pcie_apb_err_disable(bus, true);
703 if (pcie->iproc_cfg_read)
704 ret = iproc_pcie_config_read(bus, devfn, where, size, val);
705 else
706 ret = pci_generic_config_read32(bus, devfn, where, size, val);
707 iproc_pcie_apb_err_disable(bus, false);
708
709 return ret;
710 }
711
iproc_pcie_config_write32(struct pci_bus * bus,unsigned int devfn,int where,int size,u32 val)712 static int iproc_pcie_config_write32(struct pci_bus *bus, unsigned int devfn,
713 int where, int size, u32 val)
714 {
715 int ret;
716
717 iproc_pcie_apb_err_disable(bus, true);
718 ret = pci_generic_config_write32(bus, devfn, where, size, val);
719 iproc_pcie_apb_err_disable(bus, false);
720
721 return ret;
722 }
723
724 static struct pci_ops iproc_pcie_ops = {
725 .map_bus = iproc_pcie_bus_map_cfg_bus,
726 .read = iproc_pcie_config_read32,
727 .write = iproc_pcie_config_write32,
728 };
729
iproc_pcie_perst_ctrl(struct iproc_pcie * pcie,bool assert)730 static void iproc_pcie_perst_ctrl(struct iproc_pcie *pcie, bool assert)
731 {
732 u32 val;
733
734 /*
735 * PAXC and the internal emulated endpoint device downstream should not
736 * be reset. If firmware has been loaded on the endpoint device at an
737 * earlier boot stage, reset here causes issues.
738 */
739 if (pcie->ep_is_internal)
740 return;
741
742 if (assert) {
743 val = iproc_pcie_read_reg(pcie, IPROC_PCIE_CLK_CTRL);
744 val &= ~EP_PERST_SOURCE_SELECT & ~EP_MODE_SURVIVE_PERST &
745 ~RC_PCIE_RST_OUTPUT;
746 iproc_pcie_write_reg(pcie, IPROC_PCIE_CLK_CTRL, val);
747 udelay(250);
748 } else {
749 val = iproc_pcie_read_reg(pcie, IPROC_PCIE_CLK_CTRL);
750 val |= RC_PCIE_RST_OUTPUT;
751 iproc_pcie_write_reg(pcie, IPROC_PCIE_CLK_CTRL, val);
752 msleep(100);
753 }
754 }
755
iproc_pcie_shutdown(struct iproc_pcie * pcie)756 int iproc_pcie_shutdown(struct iproc_pcie *pcie)
757 {
758 iproc_pcie_perst_ctrl(pcie, true);
759 msleep(500);
760
761 return 0;
762 }
763 EXPORT_SYMBOL_GPL(iproc_pcie_shutdown);
764
iproc_pcie_check_link(struct iproc_pcie * pcie)765 static int iproc_pcie_check_link(struct iproc_pcie *pcie)
766 {
767 struct device *dev = pcie->dev;
768 u32 hdr_type, link_ctrl, link_status, class, val;
769 bool link_is_active = false;
770
771 /*
772 * PAXC connects to emulated endpoint devices directly and does not
773 * have a Serdes. Therefore skip the link detection logic here.
774 */
775 if (pcie->ep_is_internal)
776 return 0;
777
778 val = iproc_pcie_read_reg(pcie, IPROC_PCIE_LINK_STATUS);
779 if (!(val & PCIE_PHYLINKUP) || !(val & PCIE_DL_ACTIVE)) {
780 dev_err(dev, "PHY or data link is INACTIVE!\n");
781 return -ENODEV;
782 }
783
784 /* make sure we are not in EP mode */
785 iproc_pci_raw_config_read32(pcie, 0, PCI_HEADER_TYPE, 1, &hdr_type);
786 if ((hdr_type & 0x7f) != PCI_HEADER_TYPE_BRIDGE) {
787 dev_err(dev, "in EP mode, hdr=%#02x\n", hdr_type);
788 return -EFAULT;
789 }
790
791 /* force class to PCI_CLASS_BRIDGE_PCI_NORMAL (0x060400) */
792 #define PCI_BRIDGE_CTRL_REG_OFFSET 0x43c
793 #define PCI_BRIDGE_CTRL_REG_CLASS_MASK 0xffffff
794 iproc_pci_raw_config_read32(pcie, 0, PCI_BRIDGE_CTRL_REG_OFFSET,
795 4, &class);
796 class &= ~PCI_BRIDGE_CTRL_REG_CLASS_MASK;
797 class |= PCI_CLASS_BRIDGE_PCI_NORMAL;
798 iproc_pci_raw_config_write32(pcie, 0, PCI_BRIDGE_CTRL_REG_OFFSET,
799 4, class);
800
801 /* check link status to see if link is active */
802 iproc_pci_raw_config_read32(pcie, 0, IPROC_PCI_EXP_CAP + PCI_EXP_LNKSTA,
803 2, &link_status);
804 if (link_status & PCI_EXP_LNKSTA_NLW)
805 link_is_active = true;
806
807 if (!link_is_active) {
808 /* try GEN 1 link speed */
809 #define PCI_TARGET_LINK_SPEED_MASK 0xf
810 #define PCI_TARGET_LINK_SPEED_GEN2 0x2
811 #define PCI_TARGET_LINK_SPEED_GEN1 0x1
812 iproc_pci_raw_config_read32(pcie, 0,
813 IPROC_PCI_EXP_CAP + PCI_EXP_LNKCTL2,
814 4, &link_ctrl);
815 if ((link_ctrl & PCI_TARGET_LINK_SPEED_MASK) ==
816 PCI_TARGET_LINK_SPEED_GEN2) {
817 link_ctrl &= ~PCI_TARGET_LINK_SPEED_MASK;
818 link_ctrl |= PCI_TARGET_LINK_SPEED_GEN1;
819 iproc_pci_raw_config_write32(pcie, 0,
820 IPROC_PCI_EXP_CAP + PCI_EXP_LNKCTL2,
821 4, link_ctrl);
822 msleep(100);
823
824 iproc_pci_raw_config_read32(pcie, 0,
825 IPROC_PCI_EXP_CAP + PCI_EXP_LNKSTA,
826 2, &link_status);
827 if (link_status & PCI_EXP_LNKSTA_NLW)
828 link_is_active = true;
829 }
830 }
831
832 dev_info(dev, "link: %s\n", link_is_active ? "UP" : "DOWN");
833
834 return link_is_active ? 0 : -ENODEV;
835 }
836
iproc_pcie_enable(struct iproc_pcie * pcie)837 static void iproc_pcie_enable(struct iproc_pcie *pcie)
838 {
839 iproc_pcie_write_reg(pcie, IPROC_PCIE_INTX_EN, SYS_RC_INTX_MASK);
840 }
841
iproc_pcie_ob_is_valid(struct iproc_pcie * pcie,int window_idx)842 static inline bool iproc_pcie_ob_is_valid(struct iproc_pcie *pcie,
843 int window_idx)
844 {
845 u32 val;
846
847 val = iproc_pcie_read_reg(pcie, MAP_REG(IPROC_PCIE_OARR0, window_idx));
848
849 return !!(val & OARR_VALID);
850 }
851
iproc_pcie_ob_write(struct iproc_pcie * pcie,int window_idx,int size_idx,u64 axi_addr,u64 pci_addr)852 static inline int iproc_pcie_ob_write(struct iproc_pcie *pcie, int window_idx,
853 int size_idx, u64 axi_addr, u64 pci_addr)
854 {
855 struct device *dev = pcie->dev;
856 u16 oarr_offset, omap_offset;
857
858 /*
859 * Derive the OARR/OMAP offset from the first pair (OARR0/OMAP0) based
860 * on window index.
861 */
862 oarr_offset = iproc_pcie_reg_offset(pcie, MAP_REG(IPROC_PCIE_OARR0,
863 window_idx));
864 omap_offset = iproc_pcie_reg_offset(pcie, MAP_REG(IPROC_PCIE_OMAP0,
865 window_idx));
866 if (iproc_pcie_reg_is_invalid(oarr_offset) ||
867 iproc_pcie_reg_is_invalid(omap_offset))
868 return -EINVAL;
869
870 /*
871 * Program the OARR registers. The upper 32-bit OARR register is
872 * always right after the lower 32-bit OARR register.
873 */
874 writel(lower_32_bits(axi_addr) | (size_idx << OARR_SIZE_CFG_SHIFT) |
875 OARR_VALID, pcie->base + oarr_offset);
876 writel(upper_32_bits(axi_addr), pcie->base + oarr_offset + 4);
877
878 /* now program the OMAP registers */
879 writel(lower_32_bits(pci_addr), pcie->base + omap_offset);
880 writel(upper_32_bits(pci_addr), pcie->base + omap_offset + 4);
881
882 dev_dbg(dev, "ob window [%d]: offset 0x%x axi %pap pci %pap\n",
883 window_idx, oarr_offset, &axi_addr, &pci_addr);
884 dev_dbg(dev, "oarr lo 0x%x oarr hi 0x%x\n",
885 readl(pcie->base + oarr_offset),
886 readl(pcie->base + oarr_offset + 4));
887 dev_dbg(dev, "omap lo 0x%x omap hi 0x%x\n",
888 readl(pcie->base + omap_offset),
889 readl(pcie->base + omap_offset + 4));
890
891 return 0;
892 }
893
894 /*
895 * Some iProc SoCs require the SW to configure the outbound address mapping
896 *
897 * Outbound address translation:
898 *
899 * iproc_pcie_address = axi_address - axi_offset
900 * OARR = iproc_pcie_address
901 * OMAP = pci_addr
902 *
903 * axi_addr -> iproc_pcie_address -> OARR -> OMAP -> pci_address
904 */
iproc_pcie_setup_ob(struct iproc_pcie * pcie,u64 axi_addr,u64 pci_addr,resource_size_t size)905 static int iproc_pcie_setup_ob(struct iproc_pcie *pcie, u64 axi_addr,
906 u64 pci_addr, resource_size_t size)
907 {
908 struct iproc_pcie_ob *ob = &pcie->ob;
909 struct device *dev = pcie->dev;
910 int ret = -EINVAL, window_idx, size_idx;
911
912 if (axi_addr < ob->axi_offset) {
913 dev_err(dev, "axi address %pap less than offset %pap\n",
914 &axi_addr, &ob->axi_offset);
915 return -EINVAL;
916 }
917
918 /*
919 * Translate the AXI address to the internal address used by the iProc
920 * PCIe core before programming the OARR
921 */
922 axi_addr -= ob->axi_offset;
923
924 /* iterate through all OARR/OMAP mapping windows */
925 for (window_idx = ob->nr_windows - 1; window_idx >= 0; window_idx--) {
926 const struct iproc_pcie_ob_map *ob_map =
927 &pcie->ob_map[window_idx];
928
929 /*
930 * If current outbound window is already in use, move on to the
931 * next one.
932 */
933 if (iproc_pcie_ob_is_valid(pcie, window_idx))
934 continue;
935
936 /*
937 * Iterate through all supported window sizes within the
938 * OARR/OMAP pair to find a match. Go through the window sizes
939 * in a descending order.
940 */
941 for (size_idx = ob_map->nr_sizes - 1; size_idx >= 0;
942 size_idx--) {
943 resource_size_t window_size =
944 ob_map->window_sizes[size_idx] * SZ_1M;
945
946 /*
947 * Keep iterating until we reach the last window and
948 * with the minimal window size at index zero. In this
949 * case, we take a compromise by mapping it using the
950 * minimum window size that can be supported
951 */
952 if (size < window_size) {
953 if (size_idx > 0 || window_idx > 0)
954 continue;
955
956 /*
957 * For the corner case of reaching the minimal
958 * window size that can be supported on the
959 * last window
960 */
961 axi_addr = ALIGN_DOWN(axi_addr, window_size);
962 pci_addr = ALIGN_DOWN(pci_addr, window_size);
963 size = window_size;
964 }
965
966 if (!IS_ALIGNED(axi_addr, window_size) ||
967 !IS_ALIGNED(pci_addr, window_size)) {
968 dev_err(dev,
969 "axi %pap or pci %pap not aligned\n",
970 &axi_addr, &pci_addr);
971 return -EINVAL;
972 }
973
974 /*
975 * Match found! Program both OARR and OMAP and mark
976 * them as a valid entry.
977 */
978 ret = iproc_pcie_ob_write(pcie, window_idx, size_idx,
979 axi_addr, pci_addr);
980 if (ret)
981 goto err_ob;
982
983 size -= window_size;
984 if (size == 0)
985 return 0;
986
987 /*
988 * If we are here, we are done with the current window,
989 * but not yet finished all mappings. Need to move on
990 * to the next window.
991 */
992 axi_addr += window_size;
993 pci_addr += window_size;
994 break;
995 }
996 }
997
998 err_ob:
999 dev_err(dev, "unable to configure outbound mapping\n");
1000 dev_err(dev,
1001 "axi %pap, axi offset %pap, pci %pap, res size %pap\n",
1002 &axi_addr, &ob->axi_offset, &pci_addr, &size);
1003
1004 return ret;
1005 }
1006
iproc_pcie_map_ranges(struct iproc_pcie * pcie,struct list_head * resources)1007 static int iproc_pcie_map_ranges(struct iproc_pcie *pcie,
1008 struct list_head *resources)
1009 {
1010 struct device *dev = pcie->dev;
1011 struct resource_entry *window;
1012 int ret;
1013
1014 resource_list_for_each_entry(window, resources) {
1015 struct resource *res = window->res;
1016 u64 res_type = resource_type(res);
1017
1018 switch (res_type) {
1019 case IORESOURCE_IO:
1020 case IORESOURCE_BUS:
1021 break;
1022 case IORESOURCE_MEM:
1023 ret = iproc_pcie_setup_ob(pcie, res->start,
1024 res->start - window->offset,
1025 resource_size(res));
1026 if (ret)
1027 return ret;
1028 break;
1029 default:
1030 dev_err(dev, "invalid resource %pR\n", res);
1031 return -EINVAL;
1032 }
1033 }
1034
1035 return 0;
1036 }
1037
iproc_pcie_ib_is_in_use(struct iproc_pcie * pcie,int region_idx)1038 static inline bool iproc_pcie_ib_is_in_use(struct iproc_pcie *pcie,
1039 int region_idx)
1040 {
1041 const struct iproc_pcie_ib_map *ib_map = &pcie->ib_map[region_idx];
1042 u32 val;
1043
1044 val = iproc_pcie_read_reg(pcie, MAP_REG(IPROC_PCIE_IARR0, region_idx));
1045
1046 return !!(val & (BIT(ib_map->nr_sizes) - 1));
1047 }
1048
iproc_pcie_ib_check_type(const struct iproc_pcie_ib_map * ib_map,enum iproc_pcie_ib_map_type type)1049 static inline bool iproc_pcie_ib_check_type(const struct iproc_pcie_ib_map *ib_map,
1050 enum iproc_pcie_ib_map_type type)
1051 {
1052 return !!(ib_map->type == type);
1053 }
1054
iproc_pcie_ib_write(struct iproc_pcie * pcie,int region_idx,int size_idx,int nr_windows,u64 axi_addr,u64 pci_addr,resource_size_t size)1055 static int iproc_pcie_ib_write(struct iproc_pcie *pcie, int region_idx,
1056 int size_idx, int nr_windows, u64 axi_addr,
1057 u64 pci_addr, resource_size_t size)
1058 {
1059 struct device *dev = pcie->dev;
1060 const struct iproc_pcie_ib_map *ib_map = &pcie->ib_map[region_idx];
1061 u16 iarr_offset, imap_offset;
1062 u32 val;
1063 int window_idx;
1064
1065 iarr_offset = iproc_pcie_reg_offset(pcie,
1066 MAP_REG(IPROC_PCIE_IARR0, region_idx));
1067 imap_offset = iproc_pcie_reg_offset(pcie,
1068 MAP_REG(IPROC_PCIE_IMAP0, region_idx));
1069 if (iproc_pcie_reg_is_invalid(iarr_offset) ||
1070 iproc_pcie_reg_is_invalid(imap_offset))
1071 return -EINVAL;
1072
1073 dev_dbg(dev, "ib region [%d]: offset 0x%x axi %pap pci %pap\n",
1074 region_idx, iarr_offset, &axi_addr, &pci_addr);
1075
1076 /*
1077 * Program the IARR registers. The upper 32-bit IARR register is
1078 * always right after the lower 32-bit IARR register.
1079 */
1080 writel(lower_32_bits(pci_addr) | BIT(size_idx),
1081 pcie->base + iarr_offset);
1082 writel(upper_32_bits(pci_addr), pcie->base + iarr_offset + 4);
1083
1084 dev_dbg(dev, "iarr lo 0x%x iarr hi 0x%x\n",
1085 readl(pcie->base + iarr_offset),
1086 readl(pcie->base + iarr_offset + 4));
1087
1088 /*
1089 * Now program the IMAP registers. Each IARR region may have one or
1090 * more IMAP windows.
1091 */
1092 size >>= ilog2(nr_windows);
1093 for (window_idx = 0; window_idx < nr_windows; window_idx++) {
1094 val = readl(pcie->base + imap_offset);
1095 val |= lower_32_bits(axi_addr) | IMAP_VALID;
1096 writel(val, pcie->base + imap_offset);
1097 writel(upper_32_bits(axi_addr),
1098 pcie->base + imap_offset + ib_map->imap_addr_offset);
1099
1100 dev_dbg(dev, "imap window [%d] lo 0x%x hi 0x%x\n",
1101 window_idx, readl(pcie->base + imap_offset),
1102 readl(pcie->base + imap_offset +
1103 ib_map->imap_addr_offset));
1104
1105 imap_offset += ib_map->imap_window_offset;
1106 axi_addr += size;
1107 }
1108
1109 return 0;
1110 }
1111
iproc_pcie_setup_ib(struct iproc_pcie * pcie,struct resource_entry * entry,enum iproc_pcie_ib_map_type type)1112 static int iproc_pcie_setup_ib(struct iproc_pcie *pcie,
1113 struct resource_entry *entry,
1114 enum iproc_pcie_ib_map_type type)
1115 {
1116 struct device *dev = pcie->dev;
1117 struct iproc_pcie_ib *ib = &pcie->ib;
1118 int ret;
1119 unsigned int region_idx, size_idx;
1120 u64 axi_addr = entry->res->start;
1121 u64 pci_addr = entry->res->start - entry->offset;
1122 resource_size_t size = resource_size(entry->res);
1123
1124 /* iterate through all IARR mapping regions */
1125 for (region_idx = 0; region_idx < ib->nr_regions; region_idx++) {
1126 const struct iproc_pcie_ib_map *ib_map =
1127 &pcie->ib_map[region_idx];
1128
1129 /*
1130 * If current inbound region is already in use or not a
1131 * compatible type, move on to the next.
1132 */
1133 if (iproc_pcie_ib_is_in_use(pcie, region_idx) ||
1134 !iproc_pcie_ib_check_type(ib_map, type))
1135 continue;
1136
1137 /* iterate through all supported region sizes to find a match */
1138 for (size_idx = 0; size_idx < ib_map->nr_sizes; size_idx++) {
1139 resource_size_t region_size =
1140 ib_map->region_sizes[size_idx] * ib_map->size_unit;
1141
1142 if (size != region_size)
1143 continue;
1144
1145 if (!IS_ALIGNED(axi_addr, region_size) ||
1146 !IS_ALIGNED(pci_addr, region_size)) {
1147 dev_err(dev,
1148 "axi %pap or pci %pap not aligned\n",
1149 &axi_addr, &pci_addr);
1150 return -EINVAL;
1151 }
1152
1153 /* Match found! Program IARR and all IMAP windows. */
1154 ret = iproc_pcie_ib_write(pcie, region_idx, size_idx,
1155 ib_map->nr_windows, axi_addr,
1156 pci_addr, size);
1157 if (ret)
1158 goto err_ib;
1159 else
1160 return 0;
1161
1162 }
1163 }
1164 ret = -EINVAL;
1165
1166 err_ib:
1167 dev_err(dev, "unable to configure inbound mapping\n");
1168 dev_err(dev, "axi %pap, pci %pap, res size %pap\n",
1169 &axi_addr, &pci_addr, &size);
1170
1171 return ret;
1172 }
1173
iproc_pcie_map_dma_ranges(struct iproc_pcie * pcie)1174 static int iproc_pcie_map_dma_ranges(struct iproc_pcie *pcie)
1175 {
1176 struct pci_host_bridge *host = pci_host_bridge_from_priv(pcie);
1177 struct resource_entry *entry;
1178 int ret = 0;
1179
1180 resource_list_for_each_entry(entry, &host->dma_ranges) {
1181 /* Each range entry corresponds to an inbound mapping region */
1182 ret = iproc_pcie_setup_ib(pcie, entry, IPROC_PCIE_IB_MAP_MEM);
1183 if (ret)
1184 break;
1185 }
1186
1187 return ret;
1188 }
1189
iproc_pcie_invalidate_mapping(struct iproc_pcie * pcie)1190 static void iproc_pcie_invalidate_mapping(struct iproc_pcie *pcie)
1191 {
1192 struct iproc_pcie_ib *ib = &pcie->ib;
1193 struct iproc_pcie_ob *ob = &pcie->ob;
1194 int idx;
1195
1196 if (pcie->ep_is_internal)
1197 return;
1198
1199 if (pcie->need_ob_cfg) {
1200 /* iterate through all OARR mapping regions */
1201 for (idx = ob->nr_windows - 1; idx >= 0; idx--) {
1202 iproc_pcie_write_reg(pcie,
1203 MAP_REG(IPROC_PCIE_OARR0, idx), 0);
1204 }
1205 }
1206
1207 if (pcie->need_ib_cfg) {
1208 /* iterate through all IARR mapping regions */
1209 for (idx = 0; idx < ib->nr_regions; idx++) {
1210 iproc_pcie_write_reg(pcie,
1211 MAP_REG(IPROC_PCIE_IARR0, idx), 0);
1212 }
1213 }
1214 }
1215
iproce_pcie_get_msi(struct iproc_pcie * pcie,struct device_node * msi_node,u64 * msi_addr)1216 static int iproce_pcie_get_msi(struct iproc_pcie *pcie,
1217 struct device_node *msi_node,
1218 u64 *msi_addr)
1219 {
1220 struct device *dev = pcie->dev;
1221 int ret;
1222 struct resource res;
1223
1224 /*
1225 * Check if 'msi-map' points to ARM GICv3 ITS, which is the only
1226 * supported external MSI controller that requires steering.
1227 */
1228 if (!of_device_is_compatible(msi_node, "arm,gic-v3-its")) {
1229 dev_err(dev, "unable to find compatible MSI controller\n");
1230 return -ENODEV;
1231 }
1232
1233 /* derive GITS_TRANSLATER address from GICv3 */
1234 ret = of_address_to_resource(msi_node, 0, &res);
1235 if (ret < 0) {
1236 dev_err(dev, "unable to obtain MSI controller resources\n");
1237 return ret;
1238 }
1239
1240 *msi_addr = res.start + GITS_TRANSLATER;
1241 return 0;
1242 }
1243
iproc_pcie_paxb_v2_msi_steer(struct iproc_pcie * pcie,u64 msi_addr)1244 static int iproc_pcie_paxb_v2_msi_steer(struct iproc_pcie *pcie, u64 msi_addr)
1245 {
1246 int ret;
1247 struct resource_entry entry;
1248
1249 memset(&entry, 0, sizeof(entry));
1250 entry.res = &entry.__res;
1251
1252 msi_addr &= ~(SZ_32K - 1);
1253 entry.res->start = msi_addr;
1254 entry.res->end = msi_addr + SZ_32K - 1;
1255
1256 ret = iproc_pcie_setup_ib(pcie, &entry, IPROC_PCIE_IB_MAP_IO);
1257 return ret;
1258 }
1259
iproc_pcie_paxc_v2_msi_steer(struct iproc_pcie * pcie,u64 msi_addr,bool enable)1260 static void iproc_pcie_paxc_v2_msi_steer(struct iproc_pcie *pcie, u64 msi_addr,
1261 bool enable)
1262 {
1263 u32 val;
1264
1265 if (!enable) {
1266 /*
1267 * Disable PAXC MSI steering. All write transfers will be
1268 * treated as non-MSI transfers
1269 */
1270 val = iproc_pcie_read_reg(pcie, IPROC_PCIE_MSI_EN_CFG);
1271 val &= ~MSI_ENABLE_CFG;
1272 iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_EN_CFG, val);
1273 return;
1274 }
1275
1276 /*
1277 * Program bits [43:13] of address of GITS_TRANSLATER register into
1278 * bits [30:0] of the MSI base address register. In fact, in all iProc
1279 * based SoCs, all I/O register bases are well below the 32-bit
1280 * boundary, so we can safely assume bits [43:32] are always zeros.
1281 */
1282 iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_BASE_ADDR,
1283 (u32)(msi_addr >> 13));
1284
1285 /* use a default 8K window size */
1286 iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_WINDOW_SIZE, 0);
1287
1288 /* steering MSI to GICv3 ITS */
1289 val = iproc_pcie_read_reg(pcie, IPROC_PCIE_MSI_GIC_MODE);
1290 val |= GIC_V3_CFG;
1291 iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_GIC_MODE, val);
1292
1293 /*
1294 * Program bits [43:2] of address of GITS_TRANSLATER register into the
1295 * iProc MSI address registers.
1296 */
1297 msi_addr >>= 2;
1298 iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_ADDR_HI,
1299 upper_32_bits(msi_addr));
1300 iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_ADDR_LO,
1301 lower_32_bits(msi_addr));
1302
1303 /* enable MSI */
1304 val = iproc_pcie_read_reg(pcie, IPROC_PCIE_MSI_EN_CFG);
1305 val |= MSI_ENABLE_CFG;
1306 iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_EN_CFG, val);
1307 }
1308
iproc_pcie_msi_steer(struct iproc_pcie * pcie,struct device_node * msi_node)1309 static int iproc_pcie_msi_steer(struct iproc_pcie *pcie,
1310 struct device_node *msi_node)
1311 {
1312 struct device *dev = pcie->dev;
1313 int ret;
1314 u64 msi_addr;
1315
1316 ret = iproce_pcie_get_msi(pcie, msi_node, &msi_addr);
1317 if (ret < 0) {
1318 dev_err(dev, "msi steering failed\n");
1319 return ret;
1320 }
1321
1322 switch (pcie->type) {
1323 case IPROC_PCIE_PAXB_V2:
1324 ret = iproc_pcie_paxb_v2_msi_steer(pcie, msi_addr);
1325 if (ret)
1326 return ret;
1327 break;
1328 case IPROC_PCIE_PAXC_V2:
1329 iproc_pcie_paxc_v2_msi_steer(pcie, msi_addr, true);
1330 break;
1331 default:
1332 return -EINVAL;
1333 }
1334
1335 return 0;
1336 }
1337
iproc_pcie_msi_enable(struct iproc_pcie * pcie)1338 static int iproc_pcie_msi_enable(struct iproc_pcie *pcie)
1339 {
1340 struct device_node *msi_node;
1341 int ret;
1342
1343 /*
1344 * Either the "msi-parent" or the "msi-map" phandle needs to exist
1345 * for us to obtain the MSI node.
1346 */
1347
1348 msi_node = of_parse_phandle(pcie->dev->of_node, "msi-parent", 0);
1349 if (!msi_node) {
1350 const __be32 *msi_map = NULL;
1351 int len;
1352 u32 phandle;
1353
1354 msi_map = of_get_property(pcie->dev->of_node, "msi-map", &len);
1355 if (!msi_map)
1356 return -ENODEV;
1357
1358 phandle = be32_to_cpup(msi_map + 1);
1359 msi_node = of_find_node_by_phandle(phandle);
1360 if (!msi_node)
1361 return -ENODEV;
1362 }
1363
1364 /*
1365 * Certain revisions of the iProc PCIe controller require additional
1366 * configurations to steer the MSI writes towards an external MSI
1367 * controller.
1368 */
1369 if (pcie->need_msi_steer) {
1370 ret = iproc_pcie_msi_steer(pcie, msi_node);
1371 if (ret)
1372 goto out_put_node;
1373 }
1374
1375 /*
1376 * If another MSI controller is being used, the call below should fail
1377 * but that is okay
1378 */
1379 ret = iproc_msi_init(pcie, msi_node);
1380
1381 out_put_node:
1382 of_node_put(msi_node);
1383 return ret;
1384 }
1385
iproc_pcie_msi_disable(struct iproc_pcie * pcie)1386 static void iproc_pcie_msi_disable(struct iproc_pcie *pcie)
1387 {
1388 iproc_msi_exit(pcie);
1389 }
1390
iproc_pcie_rev_init(struct iproc_pcie * pcie)1391 static int iproc_pcie_rev_init(struct iproc_pcie *pcie)
1392 {
1393 struct device *dev = pcie->dev;
1394 unsigned int reg_idx;
1395 const u16 *regs;
1396
1397 switch (pcie->type) {
1398 case IPROC_PCIE_PAXB_BCMA:
1399 regs = iproc_pcie_reg_paxb_bcma;
1400 break;
1401 case IPROC_PCIE_PAXB:
1402 regs = iproc_pcie_reg_paxb;
1403 pcie->has_apb_err_disable = true;
1404 if (pcie->need_ob_cfg) {
1405 pcie->ob_map = paxb_ob_map;
1406 pcie->ob.nr_windows = ARRAY_SIZE(paxb_ob_map);
1407 }
1408 break;
1409 case IPROC_PCIE_PAXB_V2:
1410 regs = iproc_pcie_reg_paxb_v2;
1411 pcie->iproc_cfg_read = true;
1412 pcie->has_apb_err_disable = true;
1413 if (pcie->need_ob_cfg) {
1414 pcie->ob_map = paxb_v2_ob_map;
1415 pcie->ob.nr_windows = ARRAY_SIZE(paxb_v2_ob_map);
1416 }
1417 pcie->ib.nr_regions = ARRAY_SIZE(paxb_v2_ib_map);
1418 pcie->ib_map = paxb_v2_ib_map;
1419 pcie->need_msi_steer = true;
1420 dev_warn(dev, "reads of config registers that contain %#x return incorrect data\n",
1421 CFG_RETRY_STATUS);
1422 break;
1423 case IPROC_PCIE_PAXC:
1424 regs = iproc_pcie_reg_paxc;
1425 pcie->ep_is_internal = true;
1426 pcie->iproc_cfg_read = true;
1427 pcie->rej_unconfig_pf = true;
1428 break;
1429 case IPROC_PCIE_PAXC_V2:
1430 regs = iproc_pcie_reg_paxc_v2;
1431 pcie->ep_is_internal = true;
1432 pcie->iproc_cfg_read = true;
1433 pcie->rej_unconfig_pf = true;
1434 pcie->need_msi_steer = true;
1435 break;
1436 default:
1437 dev_err(dev, "incompatible iProc PCIe interface\n");
1438 return -EINVAL;
1439 }
1440
1441 pcie->reg_offsets = devm_kcalloc(dev, IPROC_PCIE_MAX_NUM_REG,
1442 sizeof(*pcie->reg_offsets),
1443 GFP_KERNEL);
1444 if (!pcie->reg_offsets)
1445 return -ENOMEM;
1446
1447 /* go through the register table and populate all valid registers */
1448 pcie->reg_offsets[0] = (pcie->type == IPROC_PCIE_PAXC_V2) ?
1449 IPROC_PCIE_REG_INVALID : regs[0];
1450 for (reg_idx = 1; reg_idx < IPROC_PCIE_MAX_NUM_REG; reg_idx++)
1451 pcie->reg_offsets[reg_idx] = regs[reg_idx] ?
1452 regs[reg_idx] : IPROC_PCIE_REG_INVALID;
1453
1454 return 0;
1455 }
1456
iproc_pcie_setup(struct iproc_pcie * pcie,struct list_head * res)1457 int iproc_pcie_setup(struct iproc_pcie *pcie, struct list_head *res)
1458 {
1459 struct device *dev;
1460 int ret;
1461 struct pci_dev *pdev;
1462 struct pci_host_bridge *host = pci_host_bridge_from_priv(pcie);
1463
1464 dev = pcie->dev;
1465
1466 ret = iproc_pcie_rev_init(pcie);
1467 if (ret) {
1468 dev_err(dev, "unable to initialize controller parameters\n");
1469 return ret;
1470 }
1471
1472 ret = phy_init(pcie->phy);
1473 if (ret) {
1474 dev_err(dev, "unable to initialize PCIe PHY\n");
1475 return ret;
1476 }
1477
1478 ret = phy_power_on(pcie->phy);
1479 if (ret) {
1480 dev_err(dev, "unable to power on PCIe PHY\n");
1481 goto err_exit_phy;
1482 }
1483
1484 iproc_pcie_perst_ctrl(pcie, true);
1485 iproc_pcie_perst_ctrl(pcie, false);
1486
1487 iproc_pcie_invalidate_mapping(pcie);
1488
1489 if (pcie->need_ob_cfg) {
1490 ret = iproc_pcie_map_ranges(pcie, res);
1491 if (ret) {
1492 dev_err(dev, "map failed\n");
1493 goto err_power_off_phy;
1494 }
1495 }
1496
1497 if (pcie->need_ib_cfg) {
1498 ret = iproc_pcie_map_dma_ranges(pcie);
1499 if (ret && ret != -ENOENT)
1500 goto err_power_off_phy;
1501 }
1502
1503 ret = iproc_pcie_check_link(pcie);
1504 if (ret) {
1505 dev_err(dev, "no PCIe EP device detected\n");
1506 goto err_power_off_phy;
1507 }
1508
1509 iproc_pcie_enable(pcie);
1510
1511 if (IS_ENABLED(CONFIG_PCI_MSI))
1512 if (iproc_pcie_msi_enable(pcie))
1513 dev_info(dev, "not using iProc MSI\n");
1514
1515 host->ops = &iproc_pcie_ops;
1516 host->sysdata = pcie;
1517 host->map_irq = pcie->map_irq;
1518
1519 ret = pci_host_probe(host);
1520 if (ret < 0) {
1521 dev_err(dev, "failed to scan host: %d\n", ret);
1522 goto err_power_off_phy;
1523 }
1524
1525 for_each_pci_bridge(pdev, host->bus) {
1526 if (pci_pcie_type(pdev) == PCI_EXP_TYPE_ROOT_PORT)
1527 pcie_print_link_status(pdev);
1528 }
1529
1530 return 0;
1531
1532 err_power_off_phy:
1533 phy_power_off(pcie->phy);
1534 err_exit_phy:
1535 phy_exit(pcie->phy);
1536 return ret;
1537 }
1538 EXPORT_SYMBOL(iproc_pcie_setup);
1539
iproc_pcie_remove(struct iproc_pcie * pcie)1540 void iproc_pcie_remove(struct iproc_pcie *pcie)
1541 {
1542 struct pci_host_bridge *host = pci_host_bridge_from_priv(pcie);
1543
1544 pci_stop_root_bus(host->bus);
1545 pci_remove_root_bus(host->bus);
1546
1547 iproc_pcie_msi_disable(pcie);
1548
1549 phy_power_off(pcie->phy);
1550 phy_exit(pcie->phy);
1551 }
1552 EXPORT_SYMBOL(iproc_pcie_remove);
1553
1554 /*
1555 * The MSI parsing logic in certain revisions of Broadcom PAXC based root
1556 * complex does not work and needs to be disabled
1557 */
quirk_paxc_disable_msi_parsing(struct pci_dev * pdev)1558 static void quirk_paxc_disable_msi_parsing(struct pci_dev *pdev)
1559 {
1560 struct iproc_pcie *pcie = iproc_data(pdev->bus);
1561
1562 if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
1563 iproc_pcie_paxc_v2_msi_steer(pcie, 0, false);
1564 }
1565 DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0x16f0,
1566 quirk_paxc_disable_msi_parsing);
1567 DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0xd802,
1568 quirk_paxc_disable_msi_parsing);
1569 DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0xd804,
1570 quirk_paxc_disable_msi_parsing);
1571
quirk_paxc_bridge(struct pci_dev * pdev)1572 static void quirk_paxc_bridge(struct pci_dev *pdev)
1573 {
1574 /*
1575 * The PCI config space is shared with the PAXC root port and the first
1576 * Ethernet device. So, we need to workaround this by telling the PCI
1577 * code that the bridge is not an Ethernet device.
1578 */
1579 if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
1580 pdev->class = PCI_CLASS_BRIDGE_PCI_NORMAL;
1581
1582 /*
1583 * MPSS is not being set properly (as it is currently 0). This is
1584 * because that area of the PCI config space is hard coded to zero, and
1585 * is not modifiable by firmware. Set this to 2 (e.g., 512 byte MPS)
1586 * so that the MPS can be set to the real max value.
1587 */
1588 pdev->pcie_mpss = 2;
1589 }
1590 DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0x16cd, quirk_paxc_bridge);
1591 DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0x16f0, quirk_paxc_bridge);
1592 DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0xd750, quirk_paxc_bridge);
1593 DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0xd802, quirk_paxc_bridge);
1594 DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0xd804, quirk_paxc_bridge);
1595
1596 MODULE_AUTHOR("Ray Jui <rjui@broadcom.com>");
1597 MODULE_DESCRIPTION("Broadcom iPROC PCIe common driver");
1598 MODULE_LICENSE("GPL v2");
1599