1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2015 Broadcom Corporation 4 */ 5 6 #include <linux/interrupt.h> 7 #include <linux/irqchip/chained_irq.h> 8 #include <linux/irqdomain.h> 9 #include <linux/msi.h> 10 #include <linux/of_irq.h> 11 #include <linux/of_pci.h> 12 #include <linux/pci.h> 13 14 #include "pcie-iproc.h" 15 16 #define IPROC_MSI_INTR_EN_SHIFT 11 17 #define IPROC_MSI_INTR_EN BIT(IPROC_MSI_INTR_EN_SHIFT) 18 #define IPROC_MSI_INT_N_EVENT_SHIFT 1 19 #define IPROC_MSI_INT_N_EVENT BIT(IPROC_MSI_INT_N_EVENT_SHIFT) 20 #define IPROC_MSI_EQ_EN_SHIFT 0 21 #define IPROC_MSI_EQ_EN BIT(IPROC_MSI_EQ_EN_SHIFT) 22 23 #define IPROC_MSI_EQ_MASK 0x3f 24 25 /* Max number of GIC interrupts */ 26 #define NR_HW_IRQS 6 27 28 /* Number of entries in each event queue */ 29 #define EQ_LEN 64 30 31 /* Size of each event queue memory region */ 32 #define EQ_MEM_REGION_SIZE SZ_4K 33 34 /* Size of each MSI address region */ 35 #define MSI_MEM_REGION_SIZE SZ_4K 36 37 enum iproc_msi_reg { 38 IPROC_MSI_EQ_PAGE = 0, 39 IPROC_MSI_EQ_PAGE_UPPER, 40 IPROC_MSI_PAGE, 41 IPROC_MSI_PAGE_UPPER, 42 IPROC_MSI_CTRL, 43 IPROC_MSI_EQ_HEAD, 44 IPROC_MSI_EQ_TAIL, 45 IPROC_MSI_INTS_EN, 46 IPROC_MSI_REG_SIZE, 47 }; 48 49 struct iproc_msi; 50 51 /** 52 * struct iproc_msi_grp - iProc MSI group 53 * 54 * One MSI group is allocated per GIC interrupt, serviced by one iProc MSI 55 * event queue. 56 * 57 * @msi: pointer to iProc MSI data 58 * @gic_irq: GIC interrupt 59 * @eq: Event queue number 60 */ 61 struct iproc_msi_grp { 62 struct iproc_msi *msi; 63 int gic_irq; 64 unsigned int eq; 65 }; 66 67 /** 68 * struct iproc_msi - iProc event queue based MSI 69 * 70 * Only meant to be used on platforms without MSI support integrated into the 71 * GIC. 72 * 73 * @pcie: pointer to iProc PCIe data 74 * @reg_offsets: MSI register offsets 75 * @grps: MSI groups 76 * @nr_irqs: number of total interrupts connected to GIC 77 * @nr_cpus: number of toal CPUs 78 * @has_inten_reg: indicates the MSI interrupt enable register needs to be 79 * set explicitly (required for some legacy platforms) 80 * @bitmap: MSI vector bitmap 81 * @bitmap_lock: lock to protect access to the MSI bitmap 82 * @nr_msi_vecs: total number of MSI vectors 83 * @inner_domain: inner IRQ domain 84 * @msi_domain: MSI IRQ domain 85 * @nr_eq_region: required number of 4K aligned memory region for MSI event 86 * queues 87 * @nr_msi_region: required number of 4K aligned address region for MSI posted 88 * writes 89 * @eq_cpu: pointer to allocated memory region for MSI event queues 90 * @eq_dma: DMA address of MSI event queues 91 * @msi_addr: MSI address 92 */ 93 struct iproc_msi { 94 struct iproc_pcie *pcie; 95 const u16 (*reg_offsets)[IPROC_MSI_REG_SIZE]; 96 struct iproc_msi_grp *grps; 97 int nr_irqs; 98 int nr_cpus; 99 bool has_inten_reg; 100 unsigned long *bitmap; 101 struct mutex bitmap_lock; 102 unsigned int nr_msi_vecs; 103 struct irq_domain *inner_domain; 104 struct irq_domain *msi_domain; 105 unsigned int nr_eq_region; 106 unsigned int nr_msi_region; 107 void *eq_cpu; 108 dma_addr_t eq_dma; 109 phys_addr_t msi_addr; 110 }; 111 112 static const u16 iproc_msi_reg_paxb[NR_HW_IRQS][IPROC_MSI_REG_SIZE] = { 113 { 0x200, 0x2c0, 0x204, 0x2c4, 0x210, 0x250, 0x254, 0x208 }, 114 { 0x200, 0x2c0, 0x204, 0x2c4, 0x214, 0x258, 0x25c, 0x208 }, 115 { 0x200, 0x2c0, 0x204, 0x2c4, 0x218, 0x260, 0x264, 0x208 }, 116 { 0x200, 0x2c0, 0x204, 0x2c4, 0x21c, 0x268, 0x26c, 0x208 }, 117 { 0x200, 0x2c0, 0x204, 0x2c4, 0x220, 0x270, 0x274, 0x208 }, 118 { 0x200, 0x2c0, 0x204, 0x2c4, 0x224, 0x278, 0x27c, 0x208 }, 119 }; 120 121 static const u16 iproc_msi_reg_paxc[NR_HW_IRQS][IPROC_MSI_REG_SIZE] = { 122 { 0xc00, 0xc04, 0xc08, 0xc0c, 0xc40, 0xc50, 0xc60 }, 123 { 0xc10, 0xc14, 0xc18, 0xc1c, 0xc44, 0xc54, 0xc64 }, 124 { 0xc20, 0xc24, 0xc28, 0xc2c, 0xc48, 0xc58, 0xc68 }, 125 { 0xc30, 0xc34, 0xc38, 0xc3c, 0xc4c, 0xc5c, 0xc6c }, 126 }; 127 128 static inline u32 iproc_msi_read_reg(struct iproc_msi *msi, 129 enum iproc_msi_reg reg, 130 unsigned int eq) 131 { 132 struct iproc_pcie *pcie = msi->pcie; 133 134 return readl_relaxed(pcie->base + msi->reg_offsets[eq][reg]); 135 } 136 137 static inline void iproc_msi_write_reg(struct iproc_msi *msi, 138 enum iproc_msi_reg reg, 139 int eq, u32 val) 140 { 141 struct iproc_pcie *pcie = msi->pcie; 142 143 writel_relaxed(val, pcie->base + msi->reg_offsets[eq][reg]); 144 } 145 146 static inline u32 hwirq_to_group(struct iproc_msi *msi, unsigned long hwirq) 147 { 148 return (hwirq % msi->nr_irqs); 149 } 150 151 static inline unsigned int iproc_msi_addr_offset(struct iproc_msi *msi, 152 unsigned long hwirq) 153 { 154 if (msi->nr_msi_region > 1) 155 return hwirq_to_group(msi, hwirq) * MSI_MEM_REGION_SIZE; 156 else 157 return hwirq_to_group(msi, hwirq) * sizeof(u32); 158 } 159 160 static inline unsigned int iproc_msi_eq_offset(struct iproc_msi *msi, u32 eq) 161 { 162 if (msi->nr_eq_region > 1) 163 return eq * EQ_MEM_REGION_SIZE; 164 else 165 return eq * EQ_LEN * sizeof(u32); 166 } 167 168 static struct irq_chip iproc_msi_irq_chip = { 169 .name = "iProc-MSI", 170 }; 171 172 static struct msi_domain_info iproc_msi_domain_info = { 173 .flags = MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS | 174 MSI_FLAG_PCI_MSIX, 175 .chip = &iproc_msi_irq_chip, 176 }; 177 178 /* 179 * In iProc PCIe core, each MSI group is serviced by a GIC interrupt and a 180 * dedicated event queue. Each MSI group can support up to 64 MSI vectors. 181 * 182 * The number of MSI groups varies between different iProc SoCs. The total 183 * number of CPU cores also varies. To support MSI IRQ affinity, we 184 * distribute GIC interrupts across all available CPUs. MSI vector is moved 185 * from one GIC interrupt to another to steer to the target CPU. 186 * 187 * Assuming: 188 * - the number of MSI groups is M 189 * - the number of CPU cores is N 190 * - M is always a multiple of N 191 * 192 * Total number of raw MSI vectors = M * 64 193 * Total number of supported MSI vectors = (M * 64) / N 194 */ 195 static inline int hwirq_to_cpu(struct iproc_msi *msi, unsigned long hwirq) 196 { 197 return (hwirq % msi->nr_cpus); 198 } 199 200 static inline unsigned long hwirq_to_canonical_hwirq(struct iproc_msi *msi, 201 unsigned long hwirq) 202 { 203 return (hwirq - hwirq_to_cpu(msi, hwirq)); 204 } 205 206 static int iproc_msi_irq_set_affinity(struct irq_data *data, 207 const struct cpumask *mask, bool force) 208 { 209 struct iproc_msi *msi = irq_data_get_irq_chip_data(data); 210 int target_cpu = cpumask_first(mask); 211 int curr_cpu; 212 int ret; 213 214 curr_cpu = hwirq_to_cpu(msi, data->hwirq); 215 if (curr_cpu == target_cpu) 216 ret = IRQ_SET_MASK_OK_DONE; 217 else { 218 /* steer MSI to the target CPU */ 219 data->hwirq = hwirq_to_canonical_hwirq(msi, data->hwirq) + target_cpu; 220 ret = IRQ_SET_MASK_OK; 221 } 222 223 irq_data_update_effective_affinity(data, cpumask_of(target_cpu)); 224 225 return ret; 226 } 227 228 static void iproc_msi_irq_compose_msi_msg(struct irq_data *data, 229 struct msi_msg *msg) 230 { 231 struct iproc_msi *msi = irq_data_get_irq_chip_data(data); 232 dma_addr_t addr; 233 234 addr = msi->msi_addr + iproc_msi_addr_offset(msi, data->hwirq); 235 msg->address_lo = lower_32_bits(addr); 236 msg->address_hi = upper_32_bits(addr); 237 msg->data = data->hwirq << 5; 238 } 239 240 static struct irq_chip iproc_msi_bottom_irq_chip = { 241 .name = "MSI", 242 .irq_set_affinity = iproc_msi_irq_set_affinity, 243 .irq_compose_msi_msg = iproc_msi_irq_compose_msi_msg, 244 }; 245 246 static int iproc_msi_irq_domain_alloc(struct irq_domain *domain, 247 unsigned int virq, unsigned int nr_irqs, 248 void *args) 249 { 250 struct iproc_msi *msi = domain->host_data; 251 int hwirq, i; 252 253 if (msi->nr_cpus > 1 && nr_irqs > 1) 254 return -EINVAL; 255 256 mutex_lock(&msi->bitmap_lock); 257 258 /* 259 * Allocate 'nr_irqs' multiplied by 'nr_cpus' number of MSI vectors 260 * each time 261 */ 262 hwirq = bitmap_find_free_region(msi->bitmap, msi->nr_msi_vecs, 263 order_base_2(msi->nr_cpus * nr_irqs)); 264 265 mutex_unlock(&msi->bitmap_lock); 266 267 if (hwirq < 0) 268 return -ENOSPC; 269 270 for (i = 0; i < nr_irqs; i++) { 271 irq_domain_set_info(domain, virq + i, hwirq + i, 272 &iproc_msi_bottom_irq_chip, 273 domain->host_data, handle_simple_irq, 274 NULL, NULL); 275 } 276 277 return 0; 278 } 279 280 static void iproc_msi_irq_domain_free(struct irq_domain *domain, 281 unsigned int virq, unsigned int nr_irqs) 282 { 283 struct irq_data *data = irq_domain_get_irq_data(domain, virq); 284 struct iproc_msi *msi = irq_data_get_irq_chip_data(data); 285 unsigned int hwirq; 286 287 mutex_lock(&msi->bitmap_lock); 288 289 hwirq = hwirq_to_canonical_hwirq(msi, data->hwirq); 290 bitmap_release_region(msi->bitmap, hwirq, 291 order_base_2(msi->nr_cpus * nr_irqs)); 292 293 mutex_unlock(&msi->bitmap_lock); 294 295 irq_domain_free_irqs_parent(domain, virq, nr_irqs); 296 } 297 298 static const struct irq_domain_ops msi_domain_ops = { 299 .alloc = iproc_msi_irq_domain_alloc, 300 .free = iproc_msi_irq_domain_free, 301 }; 302 303 static inline u32 decode_msi_hwirq(struct iproc_msi *msi, u32 eq, u32 head) 304 { 305 u32 __iomem *msg; 306 u32 hwirq; 307 unsigned int offs; 308 309 offs = iproc_msi_eq_offset(msi, eq) + head * sizeof(u32); 310 msg = (u32 __iomem *)(msi->eq_cpu + offs); 311 hwirq = readl(msg); 312 hwirq = (hwirq >> 5) + (hwirq & 0x1f); 313 314 /* 315 * Since we have multiple hwirq mapped to a single MSI vector, 316 * now we need to derive the hwirq at CPU0. It can then be used to 317 * mapped back to virq. 318 */ 319 return hwirq_to_canonical_hwirq(msi, hwirq); 320 } 321 322 static void iproc_msi_handler(struct irq_desc *desc) 323 { 324 struct irq_chip *chip = irq_desc_get_chip(desc); 325 struct iproc_msi_grp *grp; 326 struct iproc_msi *msi; 327 u32 eq, head, tail, nr_events; 328 unsigned long hwirq; 329 int virq; 330 331 chained_irq_enter(chip, desc); 332 333 grp = irq_desc_get_handler_data(desc); 334 msi = grp->msi; 335 eq = grp->eq; 336 337 /* 338 * iProc MSI event queue is tracked by head and tail pointers. Head 339 * pointer indicates the next entry (MSI data) to be consumed by SW in 340 * the queue and needs to be updated by SW. iProc MSI core uses the 341 * tail pointer as the next data insertion point. 342 * 343 * Entries between head and tail pointers contain valid MSI data. MSI 344 * data is guaranteed to be in the event queue memory before the tail 345 * pointer is updated by the iProc MSI core. 346 */ 347 head = iproc_msi_read_reg(msi, IPROC_MSI_EQ_HEAD, 348 eq) & IPROC_MSI_EQ_MASK; 349 do { 350 tail = iproc_msi_read_reg(msi, IPROC_MSI_EQ_TAIL, 351 eq) & IPROC_MSI_EQ_MASK; 352 353 /* 354 * Figure out total number of events (MSI data) to be 355 * processed. 356 */ 357 nr_events = (tail < head) ? 358 (EQ_LEN - (head - tail)) : (tail - head); 359 if (!nr_events) 360 break; 361 362 /* process all outstanding events */ 363 while (nr_events--) { 364 hwirq = decode_msi_hwirq(msi, eq, head); 365 virq = irq_find_mapping(msi->inner_domain, hwirq); 366 generic_handle_irq(virq); 367 368 head++; 369 head %= EQ_LEN; 370 } 371 372 /* 373 * Now all outstanding events have been processed. Update the 374 * head pointer. 375 */ 376 iproc_msi_write_reg(msi, IPROC_MSI_EQ_HEAD, eq, head); 377 378 /* 379 * Now go read the tail pointer again to see if there are new 380 * outstanding events that came in during the above window. 381 */ 382 } while (true); 383 384 chained_irq_exit(chip, desc); 385 } 386 387 static void iproc_msi_enable(struct iproc_msi *msi) 388 { 389 int i, eq; 390 u32 val; 391 392 /* Program memory region for each event queue */ 393 for (i = 0; i < msi->nr_eq_region; i++) { 394 dma_addr_t addr = msi->eq_dma + (i * EQ_MEM_REGION_SIZE); 395 396 iproc_msi_write_reg(msi, IPROC_MSI_EQ_PAGE, i, 397 lower_32_bits(addr)); 398 iproc_msi_write_reg(msi, IPROC_MSI_EQ_PAGE_UPPER, i, 399 upper_32_bits(addr)); 400 } 401 402 /* Program address region for MSI posted writes */ 403 for (i = 0; i < msi->nr_msi_region; i++) { 404 phys_addr_t addr = msi->msi_addr + (i * MSI_MEM_REGION_SIZE); 405 406 iproc_msi_write_reg(msi, IPROC_MSI_PAGE, i, 407 lower_32_bits(addr)); 408 iproc_msi_write_reg(msi, IPROC_MSI_PAGE_UPPER, i, 409 upper_32_bits(addr)); 410 } 411 412 for (eq = 0; eq < msi->nr_irqs; eq++) { 413 /* Enable MSI event queue */ 414 val = IPROC_MSI_INTR_EN | IPROC_MSI_INT_N_EVENT | 415 IPROC_MSI_EQ_EN; 416 iproc_msi_write_reg(msi, IPROC_MSI_CTRL, eq, val); 417 418 /* 419 * Some legacy platforms require the MSI interrupt enable 420 * register to be set explicitly. 421 */ 422 if (msi->has_inten_reg) { 423 val = iproc_msi_read_reg(msi, IPROC_MSI_INTS_EN, eq); 424 val |= BIT(eq); 425 iproc_msi_write_reg(msi, IPROC_MSI_INTS_EN, eq, val); 426 } 427 } 428 } 429 430 static void iproc_msi_disable(struct iproc_msi *msi) 431 { 432 u32 eq, val; 433 434 for (eq = 0; eq < msi->nr_irqs; eq++) { 435 if (msi->has_inten_reg) { 436 val = iproc_msi_read_reg(msi, IPROC_MSI_INTS_EN, eq); 437 val &= ~BIT(eq); 438 iproc_msi_write_reg(msi, IPROC_MSI_INTS_EN, eq, val); 439 } 440 441 val = iproc_msi_read_reg(msi, IPROC_MSI_CTRL, eq); 442 val &= ~(IPROC_MSI_INTR_EN | IPROC_MSI_INT_N_EVENT | 443 IPROC_MSI_EQ_EN); 444 iproc_msi_write_reg(msi, IPROC_MSI_CTRL, eq, val); 445 } 446 } 447 448 static int iproc_msi_alloc_domains(struct device_node *node, 449 struct iproc_msi *msi) 450 { 451 msi->inner_domain = irq_domain_add_linear(NULL, msi->nr_msi_vecs, 452 &msi_domain_ops, msi); 453 if (!msi->inner_domain) 454 return -ENOMEM; 455 456 msi->msi_domain = pci_msi_create_irq_domain(of_node_to_fwnode(node), 457 &iproc_msi_domain_info, 458 msi->inner_domain); 459 if (!msi->msi_domain) { 460 irq_domain_remove(msi->inner_domain); 461 return -ENOMEM; 462 } 463 464 return 0; 465 } 466 467 static void iproc_msi_free_domains(struct iproc_msi *msi) 468 { 469 if (msi->msi_domain) 470 irq_domain_remove(msi->msi_domain); 471 472 if (msi->inner_domain) 473 irq_domain_remove(msi->inner_domain); 474 } 475 476 static void iproc_msi_irq_free(struct iproc_msi *msi, unsigned int cpu) 477 { 478 int i; 479 480 for (i = cpu; i < msi->nr_irqs; i += msi->nr_cpus) { 481 irq_set_chained_handler_and_data(msi->grps[i].gic_irq, 482 NULL, NULL); 483 } 484 } 485 486 static int iproc_msi_irq_setup(struct iproc_msi *msi, unsigned int cpu) 487 { 488 int i, ret; 489 cpumask_var_t mask; 490 struct iproc_pcie *pcie = msi->pcie; 491 492 for (i = cpu; i < msi->nr_irqs; i += msi->nr_cpus) { 493 irq_set_chained_handler_and_data(msi->grps[i].gic_irq, 494 iproc_msi_handler, 495 &msi->grps[i]); 496 /* Dedicate GIC interrupt to each CPU core */ 497 if (alloc_cpumask_var(&mask, GFP_KERNEL)) { 498 cpumask_clear(mask); 499 cpumask_set_cpu(cpu, mask); 500 ret = irq_set_affinity(msi->grps[i].gic_irq, mask); 501 if (ret) 502 dev_err(pcie->dev, 503 "failed to set affinity for IRQ%d\n", 504 msi->grps[i].gic_irq); 505 free_cpumask_var(mask); 506 } else { 507 dev_err(pcie->dev, "failed to alloc CPU mask\n"); 508 ret = -EINVAL; 509 } 510 511 if (ret) { 512 /* Free all configured/unconfigured IRQs */ 513 iproc_msi_irq_free(msi, cpu); 514 return ret; 515 } 516 } 517 518 return 0; 519 } 520 521 int iproc_msi_init(struct iproc_pcie *pcie, struct device_node *node) 522 { 523 struct iproc_msi *msi; 524 int i, ret; 525 unsigned int cpu; 526 527 if (!of_device_is_compatible(node, "brcm,iproc-msi")) 528 return -ENODEV; 529 530 if (!of_find_property(node, "msi-controller", NULL)) 531 return -ENODEV; 532 533 if (pcie->msi) 534 return -EBUSY; 535 536 msi = devm_kzalloc(pcie->dev, sizeof(*msi), GFP_KERNEL); 537 if (!msi) 538 return -ENOMEM; 539 540 msi->pcie = pcie; 541 pcie->msi = msi; 542 msi->msi_addr = pcie->base_addr; 543 mutex_init(&msi->bitmap_lock); 544 msi->nr_cpus = num_possible_cpus(); 545 546 if (msi->nr_cpus == 1) 547 iproc_msi_domain_info.flags |= MSI_FLAG_MULTI_PCI_MSI; 548 549 msi->nr_irqs = of_irq_count(node); 550 if (!msi->nr_irqs) { 551 dev_err(pcie->dev, "found no MSI GIC interrupt\n"); 552 return -ENODEV; 553 } 554 555 if (msi->nr_irqs > NR_HW_IRQS) { 556 dev_warn(pcie->dev, "too many MSI GIC interrupts defined %d\n", 557 msi->nr_irqs); 558 msi->nr_irqs = NR_HW_IRQS; 559 } 560 561 if (msi->nr_irqs < msi->nr_cpus) { 562 dev_err(pcie->dev, 563 "not enough GIC interrupts for MSI affinity\n"); 564 return -EINVAL; 565 } 566 567 if (msi->nr_irqs % msi->nr_cpus != 0) { 568 msi->nr_irqs -= msi->nr_irqs % msi->nr_cpus; 569 dev_warn(pcie->dev, "Reducing number of interrupts to %d\n", 570 msi->nr_irqs); 571 } 572 573 switch (pcie->type) { 574 case IPROC_PCIE_PAXB_BCMA: 575 case IPROC_PCIE_PAXB: 576 msi->reg_offsets = iproc_msi_reg_paxb; 577 msi->nr_eq_region = 1; 578 msi->nr_msi_region = 1; 579 break; 580 case IPROC_PCIE_PAXC: 581 msi->reg_offsets = iproc_msi_reg_paxc; 582 msi->nr_eq_region = msi->nr_irqs; 583 msi->nr_msi_region = msi->nr_irqs; 584 break; 585 default: 586 dev_err(pcie->dev, "incompatible iProc PCIe interface\n"); 587 return -EINVAL; 588 } 589 590 if (of_find_property(node, "brcm,pcie-msi-inten", NULL)) 591 msi->has_inten_reg = true; 592 593 msi->nr_msi_vecs = msi->nr_irqs * EQ_LEN; 594 msi->bitmap = devm_kcalloc(pcie->dev, BITS_TO_LONGS(msi->nr_msi_vecs), 595 sizeof(*msi->bitmap), GFP_KERNEL); 596 if (!msi->bitmap) 597 return -ENOMEM; 598 599 msi->grps = devm_kcalloc(pcie->dev, msi->nr_irqs, sizeof(*msi->grps), 600 GFP_KERNEL); 601 if (!msi->grps) 602 return -ENOMEM; 603 604 for (i = 0; i < msi->nr_irqs; i++) { 605 unsigned int irq = irq_of_parse_and_map(node, i); 606 607 if (!irq) { 608 dev_err(pcie->dev, "unable to parse/map interrupt\n"); 609 ret = -ENODEV; 610 goto free_irqs; 611 } 612 msi->grps[i].gic_irq = irq; 613 msi->grps[i].msi = msi; 614 msi->grps[i].eq = i; 615 } 616 617 /* Reserve memory for event queue and make sure memories are zeroed */ 618 msi->eq_cpu = dma_alloc_coherent(pcie->dev, 619 msi->nr_eq_region * EQ_MEM_REGION_SIZE, 620 &msi->eq_dma, GFP_KERNEL); 621 if (!msi->eq_cpu) { 622 ret = -ENOMEM; 623 goto free_irqs; 624 } 625 626 ret = iproc_msi_alloc_domains(node, msi); 627 if (ret) { 628 dev_err(pcie->dev, "failed to create MSI domains\n"); 629 goto free_eq_dma; 630 } 631 632 for_each_online_cpu(cpu) { 633 ret = iproc_msi_irq_setup(msi, cpu); 634 if (ret) 635 goto free_msi_irq; 636 } 637 638 iproc_msi_enable(msi); 639 640 return 0; 641 642 free_msi_irq: 643 for_each_online_cpu(cpu) 644 iproc_msi_irq_free(msi, cpu); 645 iproc_msi_free_domains(msi); 646 647 free_eq_dma: 648 dma_free_coherent(pcie->dev, msi->nr_eq_region * EQ_MEM_REGION_SIZE, 649 msi->eq_cpu, msi->eq_dma); 650 651 free_irqs: 652 for (i = 0; i < msi->nr_irqs; i++) { 653 if (msi->grps[i].gic_irq) 654 irq_dispose_mapping(msi->grps[i].gic_irq); 655 } 656 pcie->msi = NULL; 657 return ret; 658 } 659 EXPORT_SYMBOL(iproc_msi_init); 660 661 void iproc_msi_exit(struct iproc_pcie *pcie) 662 { 663 struct iproc_msi *msi = pcie->msi; 664 unsigned int i, cpu; 665 666 if (!msi) 667 return; 668 669 iproc_msi_disable(msi); 670 671 for_each_online_cpu(cpu) 672 iproc_msi_irq_free(msi, cpu); 673 674 iproc_msi_free_domains(msi); 675 676 dma_free_coherent(pcie->dev, msi->nr_eq_region * EQ_MEM_REGION_SIZE, 677 msi->eq_cpu, msi->eq_dma); 678 679 for (i = 0; i < msi->nr_irqs; i++) { 680 if (msi->grps[i].gic_irq) 681 irq_dispose_mapping(msi->grps[i].gic_irq); 682 } 683 } 684 EXPORT_SYMBOL(iproc_msi_exit); 685