xref: /openbmc/linux/drivers/pci/controller/pci-thunder-pem.c (revision 05cf4fe738242183f1237f1b3a28b4479348c0a1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2015 - 2016 Cavium, Inc.
4  */
5 
6 #include <linux/bitfield.h>
7 #include <linux/kernel.h>
8 #include <linux/init.h>
9 #include <linux/of_address.h>
10 #include <linux/of_pci.h>
11 #include <linux/pci-acpi.h>
12 #include <linux/pci-ecam.h>
13 #include <linux/platform_device.h>
14 #include "../pci.h"
15 
16 #if defined(CONFIG_PCI_HOST_THUNDER_PEM) || (defined(CONFIG_ACPI) && defined(CONFIG_PCI_QUIRKS))
17 
18 #define PEM_CFG_WR 0x28
19 #define PEM_CFG_RD 0x30
20 
21 struct thunder_pem_pci {
22 	u32		ea_entry[3];
23 	void __iomem	*pem_reg_base;
24 };
25 
26 static int thunder_pem_bridge_read(struct pci_bus *bus, unsigned int devfn,
27 				   int where, int size, u32 *val)
28 {
29 	u64 read_val, tmp_val;
30 	struct pci_config_window *cfg = bus->sysdata;
31 	struct thunder_pem_pci *pem_pci = (struct thunder_pem_pci *)cfg->priv;
32 
33 	if (devfn != 0 || where >= 2048) {
34 		*val = ~0;
35 		return PCIBIOS_DEVICE_NOT_FOUND;
36 	}
37 
38 	/*
39 	 * 32-bit accesses only.  Write the address to the low order
40 	 * bits of PEM_CFG_RD, then trigger the read by reading back.
41 	 * The config data lands in the upper 32-bits of PEM_CFG_RD.
42 	 */
43 	read_val = where & ~3ull;
44 	writeq(read_val, pem_pci->pem_reg_base + PEM_CFG_RD);
45 	read_val = readq(pem_pci->pem_reg_base + PEM_CFG_RD);
46 	read_val >>= 32;
47 
48 	/*
49 	 * The config space contains some garbage, fix it up.  Also
50 	 * synthesize an EA capability for the BAR used by MSI-X.
51 	 */
52 	switch (where & ~3) {
53 	case 0x40:
54 		read_val &= 0xffff00ff;
55 		read_val |= 0x00007000; /* Skip MSI CAP */
56 		break;
57 	case 0x70: /* Express Cap */
58 		/*
59 		 * Change PME interrupt to vector 2 on T88 where it
60 		 * reads as 0, else leave it alone.
61 		 */
62 		if (!(read_val & (0x1f << 25)))
63 			read_val |= (2u << 25);
64 		break;
65 	case 0xb0: /* MSI-X Cap */
66 		/* TableSize=2 or 4, Next Cap is EA */
67 		read_val &= 0xc00000ff;
68 		/*
69 		 * If Express Cap(0x70) raw PME vector reads as 0 we are on
70 		 * T88 and TableSize is reported as 4, else TableSize
71 		 * is 2.
72 		 */
73 		writeq(0x70, pem_pci->pem_reg_base + PEM_CFG_RD);
74 		tmp_val = readq(pem_pci->pem_reg_base + PEM_CFG_RD);
75 		tmp_val >>= 32;
76 		if (!(tmp_val & (0x1f << 25)))
77 			read_val |= 0x0003bc00;
78 		else
79 			read_val |= 0x0001bc00;
80 		break;
81 	case 0xb4:
82 		/* Table offset=0, BIR=0 */
83 		read_val = 0x00000000;
84 		break;
85 	case 0xb8:
86 		/* BPA offset=0xf0000, BIR=0 */
87 		read_val = 0x000f0000;
88 		break;
89 	case 0xbc:
90 		/* EA, 1 entry, no next Cap */
91 		read_val = 0x00010014;
92 		break;
93 	case 0xc0:
94 		/* DW2 for type-1 */
95 		read_val = 0x00000000;
96 		break;
97 	case 0xc4:
98 		/* Entry BEI=0, PP=0x00, SP=0xff, ES=3 */
99 		read_val = 0x80ff0003;
100 		break;
101 	case 0xc8:
102 		read_val = pem_pci->ea_entry[0];
103 		break;
104 	case 0xcc:
105 		read_val = pem_pci->ea_entry[1];
106 		break;
107 	case 0xd0:
108 		read_val = pem_pci->ea_entry[2];
109 		break;
110 	default:
111 		break;
112 	}
113 	read_val >>= (8 * (where & 3));
114 	switch (size) {
115 	case 1:
116 		read_val &= 0xff;
117 		break;
118 	case 2:
119 		read_val &= 0xffff;
120 		break;
121 	default:
122 		break;
123 	}
124 	*val = read_val;
125 	return PCIBIOS_SUCCESSFUL;
126 }
127 
128 static int thunder_pem_config_read(struct pci_bus *bus, unsigned int devfn,
129 				   int where, int size, u32 *val)
130 {
131 	struct pci_config_window *cfg = bus->sysdata;
132 
133 	if (bus->number < cfg->busr.start ||
134 	    bus->number > cfg->busr.end)
135 		return PCIBIOS_DEVICE_NOT_FOUND;
136 
137 	/*
138 	 * The first device on the bus is the PEM PCIe bridge.
139 	 * Special case its config access.
140 	 */
141 	if (bus->number == cfg->busr.start)
142 		return thunder_pem_bridge_read(bus, devfn, where, size, val);
143 
144 	return pci_generic_config_read(bus, devfn, where, size, val);
145 }
146 
147 /*
148  * Some of the w1c_bits below also include read-only or non-writable
149  * reserved bits, this makes the code simpler and is OK as the bits
150  * are not affected by writing zeros to them.
151  */
152 static u32 thunder_pem_bridge_w1c_bits(u64 where_aligned)
153 {
154 	u32 w1c_bits = 0;
155 
156 	switch (where_aligned) {
157 	case 0x04: /* Command/Status */
158 	case 0x1c: /* Base and I/O Limit/Secondary Status */
159 		w1c_bits = 0xff000000;
160 		break;
161 	case 0x44: /* Power Management Control and Status */
162 		w1c_bits = 0xfffffe00;
163 		break;
164 	case 0x78: /* Device Control/Device Status */
165 	case 0x80: /* Link Control/Link Status */
166 	case 0x88: /* Slot Control/Slot Status */
167 	case 0x90: /* Root Status */
168 	case 0xa0: /* Link Control 2 Registers/Link Status 2 */
169 		w1c_bits = 0xffff0000;
170 		break;
171 	case 0x104: /* Uncorrectable Error Status */
172 	case 0x110: /* Correctable Error Status */
173 	case 0x130: /* Error Status */
174 	case 0x160: /* Link Control 4 */
175 		w1c_bits = 0xffffffff;
176 		break;
177 	default:
178 		break;
179 	}
180 	return w1c_bits;
181 }
182 
183 /* Some bits must be written to one so they appear to be read-only. */
184 static u32 thunder_pem_bridge_w1_bits(u64 where_aligned)
185 {
186 	u32 w1_bits;
187 
188 	switch (where_aligned) {
189 	case 0x1c: /* I/O Base / I/O Limit, Secondary Status */
190 		/* Force 32-bit I/O addressing. */
191 		w1_bits = 0x0101;
192 		break;
193 	case 0x24: /* Prefetchable Memory Base / Prefetchable Memory Limit */
194 		/* Force 64-bit addressing */
195 		w1_bits = 0x00010001;
196 		break;
197 	default:
198 		w1_bits = 0;
199 		break;
200 	}
201 	return w1_bits;
202 }
203 
204 static int thunder_pem_bridge_write(struct pci_bus *bus, unsigned int devfn,
205 				    int where, int size, u32 val)
206 {
207 	struct pci_config_window *cfg = bus->sysdata;
208 	struct thunder_pem_pci *pem_pci = (struct thunder_pem_pci *)cfg->priv;
209 	u64 write_val, read_val;
210 	u64 where_aligned = where & ~3ull;
211 	u32 mask = 0;
212 
213 
214 	if (devfn != 0 || where >= 2048)
215 		return PCIBIOS_DEVICE_NOT_FOUND;
216 
217 	/*
218 	 * 32-bit accesses only.  If the write is for a size smaller
219 	 * than 32-bits, we must first read the 32-bit value and merge
220 	 * in the desired bits and then write the whole 32-bits back
221 	 * out.
222 	 */
223 	switch (size) {
224 	case 1:
225 		writeq(where_aligned, pem_pci->pem_reg_base + PEM_CFG_RD);
226 		read_val = readq(pem_pci->pem_reg_base + PEM_CFG_RD);
227 		read_val >>= 32;
228 		mask = ~(0xff << (8 * (where & 3)));
229 		read_val &= mask;
230 		val = (val & 0xff) << (8 * (where & 3));
231 		val |= (u32)read_val;
232 		break;
233 	case 2:
234 		writeq(where_aligned, pem_pci->pem_reg_base + PEM_CFG_RD);
235 		read_val = readq(pem_pci->pem_reg_base + PEM_CFG_RD);
236 		read_val >>= 32;
237 		mask = ~(0xffff << (8 * (where & 3)));
238 		read_val &= mask;
239 		val = (val & 0xffff) << (8 * (where & 3));
240 		val |= (u32)read_val;
241 		break;
242 	default:
243 		break;
244 	}
245 
246 	/*
247 	 * By expanding the write width to 32 bits, we may
248 	 * inadvertently hit some W1C bits that were not intended to
249 	 * be written.  Calculate the mask that must be applied to the
250 	 * data to be written to avoid these cases.
251 	 */
252 	if (mask) {
253 		u32 w1c_bits = thunder_pem_bridge_w1c_bits(where);
254 
255 		if (w1c_bits) {
256 			mask &= w1c_bits;
257 			val &= ~mask;
258 		}
259 	}
260 
261 	/*
262 	 * Some bits must be read-only with value of one.  Since the
263 	 * access method allows these to be cleared if a zero is
264 	 * written, force them to one before writing.
265 	 */
266 	val |= thunder_pem_bridge_w1_bits(where_aligned);
267 
268 	/*
269 	 * Low order bits are the config address, the high order 32
270 	 * bits are the data to be written.
271 	 */
272 	write_val = (((u64)val) << 32) | where_aligned;
273 	writeq(write_val, pem_pci->pem_reg_base + PEM_CFG_WR);
274 	return PCIBIOS_SUCCESSFUL;
275 }
276 
277 static int thunder_pem_config_write(struct pci_bus *bus, unsigned int devfn,
278 				    int where, int size, u32 val)
279 {
280 	struct pci_config_window *cfg = bus->sysdata;
281 
282 	if (bus->number < cfg->busr.start ||
283 	    bus->number > cfg->busr.end)
284 		return PCIBIOS_DEVICE_NOT_FOUND;
285 	/*
286 	 * The first device on the bus is the PEM PCIe bridge.
287 	 * Special case its config access.
288 	 */
289 	if (bus->number == cfg->busr.start)
290 		return thunder_pem_bridge_write(bus, devfn, where, size, val);
291 
292 
293 	return pci_generic_config_write(bus, devfn, where, size, val);
294 }
295 
296 static int thunder_pem_init(struct device *dev, struct pci_config_window *cfg,
297 			    struct resource *res_pem)
298 {
299 	struct thunder_pem_pci *pem_pci;
300 	resource_size_t bar4_start;
301 
302 	pem_pci = devm_kzalloc(dev, sizeof(*pem_pci), GFP_KERNEL);
303 	if (!pem_pci)
304 		return -ENOMEM;
305 
306 	pem_pci->pem_reg_base = devm_ioremap(dev, res_pem->start, 0x10000);
307 	if (!pem_pci->pem_reg_base)
308 		return -ENOMEM;
309 
310 	/*
311 	 * The MSI-X BAR for the PEM and AER interrupts is located at
312 	 * a fixed offset from the PEM register base.  Generate a
313 	 * fragment of the synthesized Enhanced Allocation capability
314 	 * structure here for the BAR.
315 	 */
316 	bar4_start = res_pem->start + 0xf00000;
317 	pem_pci->ea_entry[0] = (u32)bar4_start | 2;
318 	pem_pci->ea_entry[1] = (u32)(res_pem->end - bar4_start) & ~3u;
319 	pem_pci->ea_entry[2] = (u32)(bar4_start >> 32);
320 
321 	cfg->priv = pem_pci;
322 	return 0;
323 }
324 
325 #if defined(CONFIG_ACPI) && defined(CONFIG_PCI_QUIRKS)
326 
327 #define PEM_RES_BASE		0x87e0c0000000UL
328 #define PEM_NODE_MASK		GENMASK(45, 44)
329 #define PEM_INDX_MASK		GENMASK(26, 24)
330 #define PEM_MIN_DOM_IN_NODE	4
331 #define PEM_MAX_DOM_IN_NODE	10
332 
333 static void thunder_pem_reserve_range(struct device *dev, int seg,
334 				      struct resource *r)
335 {
336 	resource_size_t start = r->start, end = r->end;
337 	struct resource *res;
338 	const char *regionid;
339 
340 	regionid = kasprintf(GFP_KERNEL, "PEM RC:%d", seg);
341 	if (!regionid)
342 		return;
343 
344 	res = request_mem_region(start, end - start + 1, regionid);
345 	if (res)
346 		res->flags &= ~IORESOURCE_BUSY;
347 	else
348 		kfree(regionid);
349 
350 	dev_info(dev, "%pR %s reserved\n", r,
351 		 res ? "has been" : "could not be");
352 }
353 
354 static void thunder_pem_legacy_fw(struct acpi_pci_root *root,
355 				 struct resource *res_pem)
356 {
357 	int node = acpi_get_node(root->device->handle);
358 	int index;
359 
360 	if (node == NUMA_NO_NODE)
361 		node = 0;
362 
363 	index = root->segment - PEM_MIN_DOM_IN_NODE;
364 	index -= node * PEM_MAX_DOM_IN_NODE;
365 	res_pem->start = PEM_RES_BASE | FIELD_PREP(PEM_NODE_MASK, node) |
366 					FIELD_PREP(PEM_INDX_MASK, index);
367 	res_pem->flags = IORESOURCE_MEM;
368 }
369 
370 static int thunder_pem_acpi_init(struct pci_config_window *cfg)
371 {
372 	struct device *dev = cfg->parent;
373 	struct acpi_device *adev = to_acpi_device(dev);
374 	struct acpi_pci_root *root = acpi_driver_data(adev);
375 	struct resource *res_pem;
376 	int ret;
377 
378 	res_pem = devm_kzalloc(&adev->dev, sizeof(*res_pem), GFP_KERNEL);
379 	if (!res_pem)
380 		return -ENOMEM;
381 
382 	ret = acpi_get_rc_resources(dev, "CAVA02B", root->segment, res_pem);
383 
384 	/*
385 	 * If we fail to gather resources it means that we run with old
386 	 * FW where we need to calculate PEM-specific resources manually.
387 	 */
388 	if (ret) {
389 		thunder_pem_legacy_fw(root, res_pem);
390 		/*
391 		 * Reserve 64K size PEM specific resources. The full 16M range
392 		 * size is required for thunder_pem_init() call.
393 		 */
394 		res_pem->end = res_pem->start + SZ_64K - 1;
395 		thunder_pem_reserve_range(dev, root->segment, res_pem);
396 		res_pem->end = res_pem->start + SZ_16M - 1;
397 
398 		/* Reserve PCI configuration space as well. */
399 		thunder_pem_reserve_range(dev, root->segment, &cfg->res);
400 	}
401 
402 	return thunder_pem_init(dev, cfg, res_pem);
403 }
404 
405 struct pci_ecam_ops thunder_pem_ecam_ops = {
406 	.bus_shift	= 24,
407 	.init		= thunder_pem_acpi_init,
408 	.pci_ops	= {
409 		.map_bus	= pci_ecam_map_bus,
410 		.read		= thunder_pem_config_read,
411 		.write		= thunder_pem_config_write,
412 	}
413 };
414 
415 #endif
416 
417 #ifdef CONFIG_PCI_HOST_THUNDER_PEM
418 
419 static int thunder_pem_platform_init(struct pci_config_window *cfg)
420 {
421 	struct device *dev = cfg->parent;
422 	struct platform_device *pdev = to_platform_device(dev);
423 	struct resource *res_pem;
424 
425 	if (!dev->of_node)
426 		return -EINVAL;
427 
428 	/*
429 	 * The second register range is the PEM bridge to the PCIe
430 	 * bus.  It has a different config access method than those
431 	 * devices behind the bridge.
432 	 */
433 	res_pem = platform_get_resource(pdev, IORESOURCE_MEM, 1);
434 	if (!res_pem) {
435 		dev_err(dev, "missing \"reg[1]\"property\n");
436 		return -EINVAL;
437 	}
438 
439 	return thunder_pem_init(dev, cfg, res_pem);
440 }
441 
442 static struct pci_ecam_ops pci_thunder_pem_ops = {
443 	.bus_shift	= 24,
444 	.init		= thunder_pem_platform_init,
445 	.pci_ops	= {
446 		.map_bus	= pci_ecam_map_bus,
447 		.read		= thunder_pem_config_read,
448 		.write		= thunder_pem_config_write,
449 	}
450 };
451 
452 static const struct of_device_id thunder_pem_of_match[] = {
453 	{ .compatible = "cavium,pci-host-thunder-pem" },
454 	{ },
455 };
456 
457 static int thunder_pem_probe(struct platform_device *pdev)
458 {
459 	return pci_host_common_probe(pdev, &pci_thunder_pem_ops);
460 }
461 
462 static struct platform_driver thunder_pem_driver = {
463 	.driver = {
464 		.name = KBUILD_MODNAME,
465 		.of_match_table = thunder_pem_of_match,
466 		.suppress_bind_attrs = true,
467 	},
468 	.probe = thunder_pem_probe,
469 };
470 builtin_platform_driver(thunder_pem_driver);
471 
472 #endif
473 #endif
474