1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * PCIe host controller driver for Tegra SoCs 4 * 5 * Copyright (c) 2010, CompuLab, Ltd. 6 * Author: Mike Rapoport <mike@compulab.co.il> 7 * 8 * Based on NVIDIA PCIe driver 9 * Copyright (c) 2008-2009, NVIDIA Corporation. 10 * 11 * Bits taken from arch/arm/mach-dove/pcie.c 12 * 13 * Author: Thierry Reding <treding@nvidia.com> 14 */ 15 16 #include <linux/clk.h> 17 #include <linux/debugfs.h> 18 #include <linux/delay.h> 19 #include <linux/export.h> 20 #include <linux/gpio/consumer.h> 21 #include <linux/interrupt.h> 22 #include <linux/iopoll.h> 23 #include <linux/irq.h> 24 #include <linux/irqchip/chained_irq.h> 25 #include <linux/irqdomain.h> 26 #include <linux/kernel.h> 27 #include <linux/init.h> 28 #include <linux/module.h> 29 #include <linux/msi.h> 30 #include <linux/of_address.h> 31 #include <linux/of_pci.h> 32 #include <linux/of_platform.h> 33 #include <linux/pci.h> 34 #include <linux/phy/phy.h> 35 #include <linux/pinctrl/consumer.h> 36 #include <linux/platform_device.h> 37 #include <linux/reset.h> 38 #include <linux/sizes.h> 39 #include <linux/slab.h> 40 #include <linux/vmalloc.h> 41 #include <linux/regulator/consumer.h> 42 43 #include <soc/tegra/cpuidle.h> 44 #include <soc/tegra/pmc.h> 45 46 #include "../pci.h" 47 48 #define INT_PCI_MSI_NR (8 * 32) 49 50 /* register definitions */ 51 52 #define AFI_AXI_BAR0_SZ 0x00 53 #define AFI_AXI_BAR1_SZ 0x04 54 #define AFI_AXI_BAR2_SZ 0x08 55 #define AFI_AXI_BAR3_SZ 0x0c 56 #define AFI_AXI_BAR4_SZ 0x10 57 #define AFI_AXI_BAR5_SZ 0x14 58 59 #define AFI_AXI_BAR0_START 0x18 60 #define AFI_AXI_BAR1_START 0x1c 61 #define AFI_AXI_BAR2_START 0x20 62 #define AFI_AXI_BAR3_START 0x24 63 #define AFI_AXI_BAR4_START 0x28 64 #define AFI_AXI_BAR5_START 0x2c 65 66 #define AFI_FPCI_BAR0 0x30 67 #define AFI_FPCI_BAR1 0x34 68 #define AFI_FPCI_BAR2 0x38 69 #define AFI_FPCI_BAR3 0x3c 70 #define AFI_FPCI_BAR4 0x40 71 #define AFI_FPCI_BAR5 0x44 72 73 #define AFI_CACHE_BAR0_SZ 0x48 74 #define AFI_CACHE_BAR0_ST 0x4c 75 #define AFI_CACHE_BAR1_SZ 0x50 76 #define AFI_CACHE_BAR1_ST 0x54 77 78 #define AFI_MSI_BAR_SZ 0x60 79 #define AFI_MSI_FPCI_BAR_ST 0x64 80 #define AFI_MSI_AXI_BAR_ST 0x68 81 82 #define AFI_MSI_VEC(x) (0x6c + ((x) * 4)) 83 #define AFI_MSI_EN_VEC(x) (0x8c + ((x) * 4)) 84 85 #define AFI_CONFIGURATION 0xac 86 #define AFI_CONFIGURATION_EN_FPCI (1 << 0) 87 #define AFI_CONFIGURATION_CLKEN_OVERRIDE (1 << 31) 88 89 #define AFI_FPCI_ERROR_MASKS 0xb0 90 91 #define AFI_INTR_MASK 0xb4 92 #define AFI_INTR_MASK_INT_MASK (1 << 0) 93 #define AFI_INTR_MASK_MSI_MASK (1 << 8) 94 95 #define AFI_INTR_CODE 0xb8 96 #define AFI_INTR_CODE_MASK 0xf 97 #define AFI_INTR_INI_SLAVE_ERROR 1 98 #define AFI_INTR_INI_DECODE_ERROR 2 99 #define AFI_INTR_TARGET_ABORT 3 100 #define AFI_INTR_MASTER_ABORT 4 101 #define AFI_INTR_INVALID_WRITE 5 102 #define AFI_INTR_LEGACY 6 103 #define AFI_INTR_FPCI_DECODE_ERROR 7 104 #define AFI_INTR_AXI_DECODE_ERROR 8 105 #define AFI_INTR_FPCI_TIMEOUT 9 106 #define AFI_INTR_PE_PRSNT_SENSE 10 107 #define AFI_INTR_PE_CLKREQ_SENSE 11 108 #define AFI_INTR_CLKCLAMP_SENSE 12 109 #define AFI_INTR_RDY4PD_SENSE 13 110 #define AFI_INTR_P2P_ERROR 14 111 112 #define AFI_INTR_SIGNATURE 0xbc 113 #define AFI_UPPER_FPCI_ADDRESS 0xc0 114 #define AFI_SM_INTR_ENABLE 0xc4 115 #define AFI_SM_INTR_INTA_ASSERT (1 << 0) 116 #define AFI_SM_INTR_INTB_ASSERT (1 << 1) 117 #define AFI_SM_INTR_INTC_ASSERT (1 << 2) 118 #define AFI_SM_INTR_INTD_ASSERT (1 << 3) 119 #define AFI_SM_INTR_INTA_DEASSERT (1 << 4) 120 #define AFI_SM_INTR_INTB_DEASSERT (1 << 5) 121 #define AFI_SM_INTR_INTC_DEASSERT (1 << 6) 122 #define AFI_SM_INTR_INTD_DEASSERT (1 << 7) 123 124 #define AFI_AFI_INTR_ENABLE 0xc8 125 #define AFI_INTR_EN_INI_SLVERR (1 << 0) 126 #define AFI_INTR_EN_INI_DECERR (1 << 1) 127 #define AFI_INTR_EN_TGT_SLVERR (1 << 2) 128 #define AFI_INTR_EN_TGT_DECERR (1 << 3) 129 #define AFI_INTR_EN_TGT_WRERR (1 << 4) 130 #define AFI_INTR_EN_DFPCI_DECERR (1 << 5) 131 #define AFI_INTR_EN_AXI_DECERR (1 << 6) 132 #define AFI_INTR_EN_FPCI_TIMEOUT (1 << 7) 133 #define AFI_INTR_EN_PRSNT_SENSE (1 << 8) 134 135 #define AFI_PCIE_PME 0xf0 136 137 #define AFI_PCIE_CONFIG 0x0f8 138 #define AFI_PCIE_CONFIG_PCIE_DISABLE(x) (1 << ((x) + 1)) 139 #define AFI_PCIE_CONFIG_PCIE_DISABLE_ALL 0xe 140 #define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_MASK (0xf << 20) 141 #define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_SINGLE (0x0 << 20) 142 #define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_420 (0x0 << 20) 143 #define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_X2_X1 (0x0 << 20) 144 #define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_401 (0x0 << 20) 145 #define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_DUAL (0x1 << 20) 146 #define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_222 (0x1 << 20) 147 #define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_X4_X1 (0x1 << 20) 148 #define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_211 (0x1 << 20) 149 #define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_411 (0x2 << 20) 150 #define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_111 (0x2 << 20) 151 #define AFI_PCIE_CONFIG_PCIE_CLKREQ_GPIO(x) (1 << ((x) + 29)) 152 #define AFI_PCIE_CONFIG_PCIE_CLKREQ_GPIO_ALL (0x7 << 29) 153 154 #define AFI_FUSE 0x104 155 #define AFI_FUSE_PCIE_T0_GEN2_DIS (1 << 2) 156 157 #define AFI_PEX0_CTRL 0x110 158 #define AFI_PEX1_CTRL 0x118 159 #define AFI_PEX_CTRL_RST (1 << 0) 160 #define AFI_PEX_CTRL_CLKREQ_EN (1 << 1) 161 #define AFI_PEX_CTRL_REFCLK_EN (1 << 3) 162 #define AFI_PEX_CTRL_OVERRIDE_EN (1 << 4) 163 164 #define AFI_PLLE_CONTROL 0x160 165 #define AFI_PLLE_CONTROL_BYPASS_PADS2PLLE_CONTROL (1 << 9) 166 #define AFI_PLLE_CONTROL_PADS2PLLE_CONTROL_EN (1 << 1) 167 168 #define AFI_PEXBIAS_CTRL_0 0x168 169 170 #define RP_ECTL_2_R1 0x00000e84 171 #define RP_ECTL_2_R1_RX_CTLE_1C_MASK 0xffff 172 173 #define RP_ECTL_4_R1 0x00000e8c 174 #define RP_ECTL_4_R1_RX_CDR_CTRL_1C_MASK (0xffff << 16) 175 #define RP_ECTL_4_R1_RX_CDR_CTRL_1C_SHIFT 16 176 177 #define RP_ECTL_5_R1 0x00000e90 178 #define RP_ECTL_5_R1_RX_EQ_CTRL_L_1C_MASK 0xffffffff 179 180 #define RP_ECTL_6_R1 0x00000e94 181 #define RP_ECTL_6_R1_RX_EQ_CTRL_H_1C_MASK 0xffffffff 182 183 #define RP_ECTL_2_R2 0x00000ea4 184 #define RP_ECTL_2_R2_RX_CTLE_1C_MASK 0xffff 185 186 #define RP_ECTL_4_R2 0x00000eac 187 #define RP_ECTL_4_R2_RX_CDR_CTRL_1C_MASK (0xffff << 16) 188 #define RP_ECTL_4_R2_RX_CDR_CTRL_1C_SHIFT 16 189 190 #define RP_ECTL_5_R2 0x00000eb0 191 #define RP_ECTL_5_R2_RX_EQ_CTRL_L_1C_MASK 0xffffffff 192 193 #define RP_ECTL_6_R2 0x00000eb4 194 #define RP_ECTL_6_R2_RX_EQ_CTRL_H_1C_MASK 0xffffffff 195 196 #define RP_VEND_XP 0x00000f00 197 #define RP_VEND_XP_DL_UP (1 << 30) 198 #define RP_VEND_XP_OPPORTUNISTIC_ACK (1 << 27) 199 #define RP_VEND_XP_OPPORTUNISTIC_UPDATEFC (1 << 28) 200 #define RP_VEND_XP_UPDATE_FC_THRESHOLD_MASK (0xff << 18) 201 202 #define RP_VEND_CTL0 0x00000f44 203 #define RP_VEND_CTL0_DSK_RST_PULSE_WIDTH_MASK (0xf << 12) 204 #define RP_VEND_CTL0_DSK_RST_PULSE_WIDTH (0x9 << 12) 205 206 #define RP_VEND_CTL1 0x00000f48 207 #define RP_VEND_CTL1_ERPT (1 << 13) 208 209 #define RP_VEND_XP_BIST 0x00000f4c 210 #define RP_VEND_XP_BIST_GOTO_L1_L2_AFTER_DLLP_DONE (1 << 28) 211 212 #define RP_VEND_CTL2 0x00000fa8 213 #define RP_VEND_CTL2_PCA_ENABLE (1 << 7) 214 215 #define RP_PRIV_MISC 0x00000fe0 216 #define RP_PRIV_MISC_PRSNT_MAP_EP_PRSNT (0xe << 0) 217 #define RP_PRIV_MISC_PRSNT_MAP_EP_ABSNT (0xf << 0) 218 #define RP_PRIV_MISC_CTLR_CLK_CLAMP_THRESHOLD_MASK (0x7f << 16) 219 #define RP_PRIV_MISC_CTLR_CLK_CLAMP_THRESHOLD (0xf << 16) 220 #define RP_PRIV_MISC_CTLR_CLK_CLAMP_ENABLE (1 << 23) 221 #define RP_PRIV_MISC_TMS_CLK_CLAMP_THRESHOLD_MASK (0x7f << 24) 222 #define RP_PRIV_MISC_TMS_CLK_CLAMP_THRESHOLD (0xf << 24) 223 #define RP_PRIV_MISC_TMS_CLK_CLAMP_ENABLE (1 << 31) 224 225 #define RP_LINK_CONTROL_STATUS 0x00000090 226 #define RP_LINK_CONTROL_STATUS_DL_LINK_ACTIVE 0x20000000 227 #define RP_LINK_CONTROL_STATUS_LINKSTAT_MASK 0x3fff0000 228 229 #define RP_LINK_CONTROL_STATUS_2 0x000000b0 230 231 #define PADS_CTL_SEL 0x0000009c 232 233 #define PADS_CTL 0x000000a0 234 #define PADS_CTL_IDDQ_1L (1 << 0) 235 #define PADS_CTL_TX_DATA_EN_1L (1 << 6) 236 #define PADS_CTL_RX_DATA_EN_1L (1 << 10) 237 238 #define PADS_PLL_CTL_TEGRA20 0x000000b8 239 #define PADS_PLL_CTL_TEGRA30 0x000000b4 240 #define PADS_PLL_CTL_RST_B4SM (1 << 1) 241 #define PADS_PLL_CTL_LOCKDET (1 << 8) 242 #define PADS_PLL_CTL_REFCLK_MASK (0x3 << 16) 243 #define PADS_PLL_CTL_REFCLK_INTERNAL_CML (0 << 16) 244 #define PADS_PLL_CTL_REFCLK_INTERNAL_CMOS (1 << 16) 245 #define PADS_PLL_CTL_REFCLK_EXTERNAL (2 << 16) 246 #define PADS_PLL_CTL_TXCLKREF_MASK (0x1 << 20) 247 #define PADS_PLL_CTL_TXCLKREF_DIV10 (0 << 20) 248 #define PADS_PLL_CTL_TXCLKREF_DIV5 (1 << 20) 249 #define PADS_PLL_CTL_TXCLKREF_BUF_EN (1 << 22) 250 251 #define PADS_REFCLK_CFG0 0x000000c8 252 #define PADS_REFCLK_CFG1 0x000000cc 253 #define PADS_REFCLK_BIAS 0x000000d0 254 255 /* 256 * Fields in PADS_REFCLK_CFG*. Those registers form an array of 16-bit 257 * entries, one entry per PCIe port. These field definitions and desired 258 * values aren't in the TRM, but do come from NVIDIA. 259 */ 260 #define PADS_REFCLK_CFG_TERM_SHIFT 2 /* 6:2 */ 261 #define PADS_REFCLK_CFG_E_TERM_SHIFT 7 262 #define PADS_REFCLK_CFG_PREDI_SHIFT 8 /* 11:8 */ 263 #define PADS_REFCLK_CFG_DRVI_SHIFT 12 /* 15:12 */ 264 265 #define PME_ACK_TIMEOUT 10000 266 #define LINK_RETRAIN_TIMEOUT 100000 /* in usec */ 267 268 struct tegra_msi { 269 DECLARE_BITMAP(used, INT_PCI_MSI_NR); 270 struct irq_domain *domain; 271 struct mutex map_lock; 272 spinlock_t mask_lock; 273 void *virt; 274 dma_addr_t phys; 275 int irq; 276 }; 277 278 /* used to differentiate between Tegra SoC generations */ 279 struct tegra_pcie_port_soc { 280 struct { 281 u8 turnoff_bit; 282 u8 ack_bit; 283 } pme; 284 }; 285 286 struct tegra_pcie_soc { 287 unsigned int num_ports; 288 const struct tegra_pcie_port_soc *ports; 289 unsigned int msi_base_shift; 290 unsigned long afi_pex2_ctrl; 291 u32 pads_pll_ctl; 292 u32 tx_ref_sel; 293 u32 pads_refclk_cfg0; 294 u32 pads_refclk_cfg1; 295 u32 update_fc_threshold; 296 bool has_pex_clkreq_en; 297 bool has_pex_bias_ctrl; 298 bool has_intr_prsnt_sense; 299 bool has_cml_clk; 300 bool has_gen2; 301 bool force_pca_enable; 302 bool program_uphy; 303 bool update_clamp_threshold; 304 bool program_deskew_time; 305 bool update_fc_timer; 306 bool has_cache_bars; 307 struct { 308 struct { 309 u32 rp_ectl_2_r1; 310 u32 rp_ectl_4_r1; 311 u32 rp_ectl_5_r1; 312 u32 rp_ectl_6_r1; 313 u32 rp_ectl_2_r2; 314 u32 rp_ectl_4_r2; 315 u32 rp_ectl_5_r2; 316 u32 rp_ectl_6_r2; 317 } regs; 318 bool enable; 319 } ectl; 320 }; 321 322 struct tegra_pcie { 323 struct device *dev; 324 325 void __iomem *pads; 326 void __iomem *afi; 327 void __iomem *cfg; 328 int irq; 329 330 struct resource cs; 331 332 struct clk *pex_clk; 333 struct clk *afi_clk; 334 struct clk *pll_e; 335 struct clk *cml_clk; 336 337 struct reset_control *pex_rst; 338 struct reset_control *afi_rst; 339 struct reset_control *pcie_xrst; 340 341 bool legacy_phy; 342 struct phy *phy; 343 344 struct tegra_msi msi; 345 346 struct list_head ports; 347 u32 xbar_config; 348 349 struct regulator_bulk_data *supplies; 350 unsigned int num_supplies; 351 352 const struct tegra_pcie_soc *soc; 353 struct dentry *debugfs; 354 }; 355 356 static inline struct tegra_pcie *msi_to_pcie(struct tegra_msi *msi) 357 { 358 return container_of(msi, struct tegra_pcie, msi); 359 } 360 361 struct tegra_pcie_port { 362 struct tegra_pcie *pcie; 363 struct device_node *np; 364 struct list_head list; 365 struct resource regs; 366 void __iomem *base; 367 unsigned int index; 368 unsigned int lanes; 369 370 struct phy **phys; 371 372 struct gpio_desc *reset_gpio; 373 }; 374 375 static inline void afi_writel(struct tegra_pcie *pcie, u32 value, 376 unsigned long offset) 377 { 378 writel(value, pcie->afi + offset); 379 } 380 381 static inline u32 afi_readl(struct tegra_pcie *pcie, unsigned long offset) 382 { 383 return readl(pcie->afi + offset); 384 } 385 386 static inline void pads_writel(struct tegra_pcie *pcie, u32 value, 387 unsigned long offset) 388 { 389 writel(value, pcie->pads + offset); 390 } 391 392 static inline u32 pads_readl(struct tegra_pcie *pcie, unsigned long offset) 393 { 394 return readl(pcie->pads + offset); 395 } 396 397 /* 398 * The configuration space mapping on Tegra is somewhat similar to the ECAM 399 * defined by PCIe. However it deviates a bit in how the 4 bits for extended 400 * register accesses are mapped: 401 * 402 * [27:24] extended register number 403 * [23:16] bus number 404 * [15:11] device number 405 * [10: 8] function number 406 * [ 7: 0] register number 407 * 408 * Mapping the whole extended configuration space would require 256 MiB of 409 * virtual address space, only a small part of which will actually be used. 410 * 411 * To work around this, a 4 KiB region is used to generate the required 412 * configuration transaction with relevant B:D:F and register offset values. 413 * This is achieved by dynamically programming base address and size of 414 * AFI_AXI_BAR used for end point config space mapping to make sure that the 415 * address (access to which generates correct config transaction) falls in 416 * this 4 KiB region. 417 */ 418 static unsigned int tegra_pcie_conf_offset(u8 bus, unsigned int devfn, 419 unsigned int where) 420 { 421 return ((where & 0xf00) << 16) | (bus << 16) | (PCI_SLOT(devfn) << 11) | 422 (PCI_FUNC(devfn) << 8) | (where & 0xff); 423 } 424 425 static void __iomem *tegra_pcie_map_bus(struct pci_bus *bus, 426 unsigned int devfn, 427 int where) 428 { 429 struct tegra_pcie *pcie = bus->sysdata; 430 void __iomem *addr = NULL; 431 432 if (bus->number == 0) { 433 unsigned int slot = PCI_SLOT(devfn); 434 struct tegra_pcie_port *port; 435 436 list_for_each_entry(port, &pcie->ports, list) { 437 if (port->index + 1 == slot) { 438 addr = port->base + (where & ~3); 439 break; 440 } 441 } 442 } else { 443 unsigned int offset; 444 u32 base; 445 446 offset = tegra_pcie_conf_offset(bus->number, devfn, where); 447 448 /* move 4 KiB window to offset within the FPCI region */ 449 base = 0xfe100000 + ((offset & ~(SZ_4K - 1)) >> 8); 450 afi_writel(pcie, base, AFI_FPCI_BAR0); 451 452 /* move to correct offset within the 4 KiB page */ 453 addr = pcie->cfg + (offset & (SZ_4K - 1)); 454 } 455 456 return addr; 457 } 458 459 static int tegra_pcie_config_read(struct pci_bus *bus, unsigned int devfn, 460 int where, int size, u32 *value) 461 { 462 if (bus->number == 0) 463 return pci_generic_config_read32(bus, devfn, where, size, 464 value); 465 466 return pci_generic_config_read(bus, devfn, where, size, value); 467 } 468 469 static int tegra_pcie_config_write(struct pci_bus *bus, unsigned int devfn, 470 int where, int size, u32 value) 471 { 472 if (bus->number == 0) 473 return pci_generic_config_write32(bus, devfn, where, size, 474 value); 475 476 return pci_generic_config_write(bus, devfn, where, size, value); 477 } 478 479 static struct pci_ops tegra_pcie_ops = { 480 .map_bus = tegra_pcie_map_bus, 481 .read = tegra_pcie_config_read, 482 .write = tegra_pcie_config_write, 483 }; 484 485 static unsigned long tegra_pcie_port_get_pex_ctrl(struct tegra_pcie_port *port) 486 { 487 const struct tegra_pcie_soc *soc = port->pcie->soc; 488 unsigned long ret = 0; 489 490 switch (port->index) { 491 case 0: 492 ret = AFI_PEX0_CTRL; 493 break; 494 495 case 1: 496 ret = AFI_PEX1_CTRL; 497 break; 498 499 case 2: 500 ret = soc->afi_pex2_ctrl; 501 break; 502 } 503 504 return ret; 505 } 506 507 static void tegra_pcie_port_reset(struct tegra_pcie_port *port) 508 { 509 unsigned long ctrl = tegra_pcie_port_get_pex_ctrl(port); 510 unsigned long value; 511 512 /* pulse reset signal */ 513 if (port->reset_gpio) { 514 gpiod_set_value(port->reset_gpio, 1); 515 } else { 516 value = afi_readl(port->pcie, ctrl); 517 value &= ~AFI_PEX_CTRL_RST; 518 afi_writel(port->pcie, value, ctrl); 519 } 520 521 usleep_range(1000, 2000); 522 523 if (port->reset_gpio) { 524 gpiod_set_value(port->reset_gpio, 0); 525 } else { 526 value = afi_readl(port->pcie, ctrl); 527 value |= AFI_PEX_CTRL_RST; 528 afi_writel(port->pcie, value, ctrl); 529 } 530 } 531 532 static void tegra_pcie_enable_rp_features(struct tegra_pcie_port *port) 533 { 534 const struct tegra_pcie_soc *soc = port->pcie->soc; 535 u32 value; 536 537 /* Enable AER capability */ 538 value = readl(port->base + RP_VEND_CTL1); 539 value |= RP_VEND_CTL1_ERPT; 540 writel(value, port->base + RP_VEND_CTL1); 541 542 /* Optimal settings to enhance bandwidth */ 543 value = readl(port->base + RP_VEND_XP); 544 value |= RP_VEND_XP_OPPORTUNISTIC_ACK; 545 value |= RP_VEND_XP_OPPORTUNISTIC_UPDATEFC; 546 writel(value, port->base + RP_VEND_XP); 547 548 /* 549 * LTSSM will wait for DLLP to finish before entering L1 or L2, 550 * to avoid truncation of PM messages which results in receiver errors 551 */ 552 value = readl(port->base + RP_VEND_XP_BIST); 553 value |= RP_VEND_XP_BIST_GOTO_L1_L2_AFTER_DLLP_DONE; 554 writel(value, port->base + RP_VEND_XP_BIST); 555 556 value = readl(port->base + RP_PRIV_MISC); 557 value |= RP_PRIV_MISC_CTLR_CLK_CLAMP_ENABLE; 558 value |= RP_PRIV_MISC_TMS_CLK_CLAMP_ENABLE; 559 560 if (soc->update_clamp_threshold) { 561 value &= ~(RP_PRIV_MISC_CTLR_CLK_CLAMP_THRESHOLD_MASK | 562 RP_PRIV_MISC_TMS_CLK_CLAMP_THRESHOLD_MASK); 563 value |= RP_PRIV_MISC_CTLR_CLK_CLAMP_THRESHOLD | 564 RP_PRIV_MISC_TMS_CLK_CLAMP_THRESHOLD; 565 } 566 567 writel(value, port->base + RP_PRIV_MISC); 568 } 569 570 static void tegra_pcie_program_ectl_settings(struct tegra_pcie_port *port) 571 { 572 const struct tegra_pcie_soc *soc = port->pcie->soc; 573 u32 value; 574 575 value = readl(port->base + RP_ECTL_2_R1); 576 value &= ~RP_ECTL_2_R1_RX_CTLE_1C_MASK; 577 value |= soc->ectl.regs.rp_ectl_2_r1; 578 writel(value, port->base + RP_ECTL_2_R1); 579 580 value = readl(port->base + RP_ECTL_4_R1); 581 value &= ~RP_ECTL_4_R1_RX_CDR_CTRL_1C_MASK; 582 value |= soc->ectl.regs.rp_ectl_4_r1 << 583 RP_ECTL_4_R1_RX_CDR_CTRL_1C_SHIFT; 584 writel(value, port->base + RP_ECTL_4_R1); 585 586 value = readl(port->base + RP_ECTL_5_R1); 587 value &= ~RP_ECTL_5_R1_RX_EQ_CTRL_L_1C_MASK; 588 value |= soc->ectl.regs.rp_ectl_5_r1; 589 writel(value, port->base + RP_ECTL_5_R1); 590 591 value = readl(port->base + RP_ECTL_6_R1); 592 value &= ~RP_ECTL_6_R1_RX_EQ_CTRL_H_1C_MASK; 593 value |= soc->ectl.regs.rp_ectl_6_r1; 594 writel(value, port->base + RP_ECTL_6_R1); 595 596 value = readl(port->base + RP_ECTL_2_R2); 597 value &= ~RP_ECTL_2_R2_RX_CTLE_1C_MASK; 598 value |= soc->ectl.regs.rp_ectl_2_r2; 599 writel(value, port->base + RP_ECTL_2_R2); 600 601 value = readl(port->base + RP_ECTL_4_R2); 602 value &= ~RP_ECTL_4_R2_RX_CDR_CTRL_1C_MASK; 603 value |= soc->ectl.regs.rp_ectl_4_r2 << 604 RP_ECTL_4_R2_RX_CDR_CTRL_1C_SHIFT; 605 writel(value, port->base + RP_ECTL_4_R2); 606 607 value = readl(port->base + RP_ECTL_5_R2); 608 value &= ~RP_ECTL_5_R2_RX_EQ_CTRL_L_1C_MASK; 609 value |= soc->ectl.regs.rp_ectl_5_r2; 610 writel(value, port->base + RP_ECTL_5_R2); 611 612 value = readl(port->base + RP_ECTL_6_R2); 613 value &= ~RP_ECTL_6_R2_RX_EQ_CTRL_H_1C_MASK; 614 value |= soc->ectl.regs.rp_ectl_6_r2; 615 writel(value, port->base + RP_ECTL_6_R2); 616 } 617 618 static void tegra_pcie_apply_sw_fixup(struct tegra_pcie_port *port) 619 { 620 const struct tegra_pcie_soc *soc = port->pcie->soc; 621 u32 value; 622 623 /* 624 * Sometimes link speed change from Gen2 to Gen1 fails due to 625 * instability in deskew logic on lane-0. Increase the deskew 626 * retry time to resolve this issue. 627 */ 628 if (soc->program_deskew_time) { 629 value = readl(port->base + RP_VEND_CTL0); 630 value &= ~RP_VEND_CTL0_DSK_RST_PULSE_WIDTH_MASK; 631 value |= RP_VEND_CTL0_DSK_RST_PULSE_WIDTH; 632 writel(value, port->base + RP_VEND_CTL0); 633 } 634 635 if (soc->update_fc_timer) { 636 value = readl(port->base + RP_VEND_XP); 637 value &= ~RP_VEND_XP_UPDATE_FC_THRESHOLD_MASK; 638 value |= soc->update_fc_threshold; 639 writel(value, port->base + RP_VEND_XP); 640 } 641 642 /* 643 * PCIe link doesn't come up with few legacy PCIe endpoints if 644 * root port advertises both Gen-1 and Gen-2 speeds in Tegra. 645 * Hence, the strategy followed here is to initially advertise 646 * only Gen-1 and after link is up, retrain link to Gen-2 speed 647 */ 648 value = readl(port->base + RP_LINK_CONTROL_STATUS_2); 649 value &= ~PCI_EXP_LNKSTA_CLS; 650 value |= PCI_EXP_LNKSTA_CLS_2_5GB; 651 writel(value, port->base + RP_LINK_CONTROL_STATUS_2); 652 } 653 654 static void tegra_pcie_port_enable(struct tegra_pcie_port *port) 655 { 656 unsigned long ctrl = tegra_pcie_port_get_pex_ctrl(port); 657 const struct tegra_pcie_soc *soc = port->pcie->soc; 658 unsigned long value; 659 660 /* enable reference clock */ 661 value = afi_readl(port->pcie, ctrl); 662 value |= AFI_PEX_CTRL_REFCLK_EN; 663 664 if (soc->has_pex_clkreq_en) 665 value |= AFI_PEX_CTRL_CLKREQ_EN; 666 667 value |= AFI_PEX_CTRL_OVERRIDE_EN; 668 669 afi_writel(port->pcie, value, ctrl); 670 671 tegra_pcie_port_reset(port); 672 673 if (soc->force_pca_enable) { 674 value = readl(port->base + RP_VEND_CTL2); 675 value |= RP_VEND_CTL2_PCA_ENABLE; 676 writel(value, port->base + RP_VEND_CTL2); 677 } 678 679 tegra_pcie_enable_rp_features(port); 680 681 if (soc->ectl.enable) 682 tegra_pcie_program_ectl_settings(port); 683 684 tegra_pcie_apply_sw_fixup(port); 685 } 686 687 static void tegra_pcie_port_disable(struct tegra_pcie_port *port) 688 { 689 unsigned long ctrl = tegra_pcie_port_get_pex_ctrl(port); 690 const struct tegra_pcie_soc *soc = port->pcie->soc; 691 unsigned long value; 692 693 /* assert port reset */ 694 value = afi_readl(port->pcie, ctrl); 695 value &= ~AFI_PEX_CTRL_RST; 696 afi_writel(port->pcie, value, ctrl); 697 698 /* disable reference clock */ 699 value = afi_readl(port->pcie, ctrl); 700 701 if (soc->has_pex_clkreq_en) 702 value &= ~AFI_PEX_CTRL_CLKREQ_EN; 703 704 value &= ~AFI_PEX_CTRL_REFCLK_EN; 705 afi_writel(port->pcie, value, ctrl); 706 707 /* disable PCIe port and set CLKREQ# as GPIO to allow PLLE power down */ 708 value = afi_readl(port->pcie, AFI_PCIE_CONFIG); 709 value |= AFI_PCIE_CONFIG_PCIE_DISABLE(port->index); 710 value |= AFI_PCIE_CONFIG_PCIE_CLKREQ_GPIO(port->index); 711 afi_writel(port->pcie, value, AFI_PCIE_CONFIG); 712 } 713 714 static void tegra_pcie_port_free(struct tegra_pcie_port *port) 715 { 716 struct tegra_pcie *pcie = port->pcie; 717 struct device *dev = pcie->dev; 718 719 devm_iounmap(dev, port->base); 720 devm_release_mem_region(dev, port->regs.start, 721 resource_size(&port->regs)); 722 list_del(&port->list); 723 devm_kfree(dev, port); 724 } 725 726 /* Tegra PCIE root complex wrongly reports device class */ 727 static void tegra_pcie_fixup_class(struct pci_dev *dev) 728 { 729 dev->class = PCI_CLASS_BRIDGE_PCI << 8; 730 } 731 DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_NVIDIA, 0x0bf0, tegra_pcie_fixup_class); 732 DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_NVIDIA, 0x0bf1, tegra_pcie_fixup_class); 733 DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_NVIDIA, 0x0e1c, tegra_pcie_fixup_class); 734 DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_NVIDIA, 0x0e1d, tegra_pcie_fixup_class); 735 736 /* Tegra20 and Tegra30 PCIE requires relaxed ordering */ 737 static void tegra_pcie_relax_enable(struct pci_dev *dev) 738 { 739 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN); 740 } 741 DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_NVIDIA, 0x0bf0, tegra_pcie_relax_enable); 742 DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_NVIDIA, 0x0bf1, tegra_pcie_relax_enable); 743 DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_NVIDIA, 0x0e1c, tegra_pcie_relax_enable); 744 DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_NVIDIA, 0x0e1d, tegra_pcie_relax_enable); 745 746 static int tegra_pcie_map_irq(const struct pci_dev *pdev, u8 slot, u8 pin) 747 { 748 struct tegra_pcie *pcie = pdev->bus->sysdata; 749 int irq; 750 751 tegra_cpuidle_pcie_irqs_in_use(); 752 753 irq = of_irq_parse_and_map_pci(pdev, slot, pin); 754 if (!irq) 755 irq = pcie->irq; 756 757 return irq; 758 } 759 760 static irqreturn_t tegra_pcie_isr(int irq, void *arg) 761 { 762 static const char * const err_msg[] = { 763 "Unknown", 764 "AXI slave error", 765 "AXI decode error", 766 "Target abort", 767 "Master abort", 768 "Invalid write", 769 "Legacy interrupt", 770 "Response decoding error", 771 "AXI response decoding error", 772 "Transaction timeout", 773 "Slot present pin change", 774 "Slot clock request change", 775 "TMS clock ramp change", 776 "TMS ready for power down", 777 "Peer2Peer error", 778 }; 779 struct tegra_pcie *pcie = arg; 780 struct device *dev = pcie->dev; 781 u32 code, signature; 782 783 code = afi_readl(pcie, AFI_INTR_CODE) & AFI_INTR_CODE_MASK; 784 signature = afi_readl(pcie, AFI_INTR_SIGNATURE); 785 afi_writel(pcie, 0, AFI_INTR_CODE); 786 787 if (code == AFI_INTR_LEGACY) 788 return IRQ_NONE; 789 790 if (code >= ARRAY_SIZE(err_msg)) 791 code = 0; 792 793 /* 794 * do not pollute kernel log with master abort reports since they 795 * happen a lot during enumeration 796 */ 797 if (code == AFI_INTR_MASTER_ABORT || code == AFI_INTR_PE_PRSNT_SENSE) 798 dev_dbg(dev, "%s, signature: %08x\n", err_msg[code], signature); 799 else 800 dev_err(dev, "%s, signature: %08x\n", err_msg[code], signature); 801 802 if (code == AFI_INTR_TARGET_ABORT || code == AFI_INTR_MASTER_ABORT || 803 code == AFI_INTR_FPCI_DECODE_ERROR) { 804 u32 fpci = afi_readl(pcie, AFI_UPPER_FPCI_ADDRESS) & 0xff; 805 u64 address = (u64)fpci << 32 | (signature & 0xfffffffc); 806 807 if (code == AFI_INTR_MASTER_ABORT) 808 dev_dbg(dev, " FPCI address: %10llx\n", address); 809 else 810 dev_err(dev, " FPCI address: %10llx\n", address); 811 } 812 813 return IRQ_HANDLED; 814 } 815 816 /* 817 * FPCI map is as follows: 818 * - 0xfdfc000000: I/O space 819 * - 0xfdfe000000: type 0 configuration space 820 * - 0xfdff000000: type 1 configuration space 821 * - 0xfe00000000: type 0 extended configuration space 822 * - 0xfe10000000: type 1 extended configuration space 823 */ 824 static void tegra_pcie_setup_translations(struct tegra_pcie *pcie) 825 { 826 u32 size; 827 struct resource_entry *entry; 828 struct pci_host_bridge *bridge = pci_host_bridge_from_priv(pcie); 829 830 /* Bar 0: type 1 extended configuration space */ 831 size = resource_size(&pcie->cs); 832 afi_writel(pcie, pcie->cs.start, AFI_AXI_BAR0_START); 833 afi_writel(pcie, size >> 12, AFI_AXI_BAR0_SZ); 834 835 resource_list_for_each_entry(entry, &bridge->windows) { 836 u32 fpci_bar, axi_address; 837 struct resource *res = entry->res; 838 839 size = resource_size(res); 840 841 switch (resource_type(res)) { 842 case IORESOURCE_IO: 843 /* Bar 1: downstream IO bar */ 844 fpci_bar = 0xfdfc0000; 845 axi_address = pci_pio_to_address(res->start); 846 afi_writel(pcie, axi_address, AFI_AXI_BAR1_START); 847 afi_writel(pcie, size >> 12, AFI_AXI_BAR1_SZ); 848 afi_writel(pcie, fpci_bar, AFI_FPCI_BAR1); 849 break; 850 case IORESOURCE_MEM: 851 fpci_bar = (((res->start >> 12) & 0x0fffffff) << 4) | 0x1; 852 axi_address = res->start; 853 854 if (res->flags & IORESOURCE_PREFETCH) { 855 /* Bar 2: prefetchable memory BAR */ 856 afi_writel(pcie, axi_address, AFI_AXI_BAR2_START); 857 afi_writel(pcie, size >> 12, AFI_AXI_BAR2_SZ); 858 afi_writel(pcie, fpci_bar, AFI_FPCI_BAR2); 859 860 } else { 861 /* Bar 3: non prefetchable memory BAR */ 862 afi_writel(pcie, axi_address, AFI_AXI_BAR3_START); 863 afi_writel(pcie, size >> 12, AFI_AXI_BAR3_SZ); 864 afi_writel(pcie, fpci_bar, AFI_FPCI_BAR3); 865 } 866 break; 867 } 868 } 869 870 /* NULL out the remaining BARs as they are not used */ 871 afi_writel(pcie, 0, AFI_AXI_BAR4_START); 872 afi_writel(pcie, 0, AFI_AXI_BAR4_SZ); 873 afi_writel(pcie, 0, AFI_FPCI_BAR4); 874 875 afi_writel(pcie, 0, AFI_AXI_BAR5_START); 876 afi_writel(pcie, 0, AFI_AXI_BAR5_SZ); 877 afi_writel(pcie, 0, AFI_FPCI_BAR5); 878 879 if (pcie->soc->has_cache_bars) { 880 /* map all upstream transactions as uncached */ 881 afi_writel(pcie, 0, AFI_CACHE_BAR0_ST); 882 afi_writel(pcie, 0, AFI_CACHE_BAR0_SZ); 883 afi_writel(pcie, 0, AFI_CACHE_BAR1_ST); 884 afi_writel(pcie, 0, AFI_CACHE_BAR1_SZ); 885 } 886 887 /* MSI translations are setup only when needed */ 888 afi_writel(pcie, 0, AFI_MSI_FPCI_BAR_ST); 889 afi_writel(pcie, 0, AFI_MSI_BAR_SZ); 890 afi_writel(pcie, 0, AFI_MSI_AXI_BAR_ST); 891 afi_writel(pcie, 0, AFI_MSI_BAR_SZ); 892 } 893 894 static int tegra_pcie_pll_wait(struct tegra_pcie *pcie, unsigned long timeout) 895 { 896 const struct tegra_pcie_soc *soc = pcie->soc; 897 u32 value; 898 899 timeout = jiffies + msecs_to_jiffies(timeout); 900 901 while (time_before(jiffies, timeout)) { 902 value = pads_readl(pcie, soc->pads_pll_ctl); 903 if (value & PADS_PLL_CTL_LOCKDET) 904 return 0; 905 } 906 907 return -ETIMEDOUT; 908 } 909 910 static int tegra_pcie_phy_enable(struct tegra_pcie *pcie) 911 { 912 struct device *dev = pcie->dev; 913 const struct tegra_pcie_soc *soc = pcie->soc; 914 u32 value; 915 int err; 916 917 /* initialize internal PHY, enable up to 16 PCIE lanes */ 918 pads_writel(pcie, 0x0, PADS_CTL_SEL); 919 920 /* override IDDQ to 1 on all 4 lanes */ 921 value = pads_readl(pcie, PADS_CTL); 922 value |= PADS_CTL_IDDQ_1L; 923 pads_writel(pcie, value, PADS_CTL); 924 925 /* 926 * Set up PHY PLL inputs select PLLE output as refclock, 927 * set TX ref sel to div10 (not div5). 928 */ 929 value = pads_readl(pcie, soc->pads_pll_ctl); 930 value &= ~(PADS_PLL_CTL_REFCLK_MASK | PADS_PLL_CTL_TXCLKREF_MASK); 931 value |= PADS_PLL_CTL_REFCLK_INTERNAL_CML | soc->tx_ref_sel; 932 pads_writel(pcie, value, soc->pads_pll_ctl); 933 934 /* reset PLL */ 935 value = pads_readl(pcie, soc->pads_pll_ctl); 936 value &= ~PADS_PLL_CTL_RST_B4SM; 937 pads_writel(pcie, value, soc->pads_pll_ctl); 938 939 usleep_range(20, 100); 940 941 /* take PLL out of reset */ 942 value = pads_readl(pcie, soc->pads_pll_ctl); 943 value |= PADS_PLL_CTL_RST_B4SM; 944 pads_writel(pcie, value, soc->pads_pll_ctl); 945 946 /* wait for the PLL to lock */ 947 err = tegra_pcie_pll_wait(pcie, 500); 948 if (err < 0) { 949 dev_err(dev, "PLL failed to lock: %d\n", err); 950 return err; 951 } 952 953 /* turn off IDDQ override */ 954 value = pads_readl(pcie, PADS_CTL); 955 value &= ~PADS_CTL_IDDQ_1L; 956 pads_writel(pcie, value, PADS_CTL); 957 958 /* enable TX/RX data */ 959 value = pads_readl(pcie, PADS_CTL); 960 value |= PADS_CTL_TX_DATA_EN_1L | PADS_CTL_RX_DATA_EN_1L; 961 pads_writel(pcie, value, PADS_CTL); 962 963 return 0; 964 } 965 966 static int tegra_pcie_phy_disable(struct tegra_pcie *pcie) 967 { 968 const struct tegra_pcie_soc *soc = pcie->soc; 969 u32 value; 970 971 /* disable TX/RX data */ 972 value = pads_readl(pcie, PADS_CTL); 973 value &= ~(PADS_CTL_TX_DATA_EN_1L | PADS_CTL_RX_DATA_EN_1L); 974 pads_writel(pcie, value, PADS_CTL); 975 976 /* override IDDQ */ 977 value = pads_readl(pcie, PADS_CTL); 978 value |= PADS_CTL_IDDQ_1L; 979 pads_writel(pcie, value, PADS_CTL); 980 981 /* reset PLL */ 982 value = pads_readl(pcie, soc->pads_pll_ctl); 983 value &= ~PADS_PLL_CTL_RST_B4SM; 984 pads_writel(pcie, value, soc->pads_pll_ctl); 985 986 usleep_range(20, 100); 987 988 return 0; 989 } 990 991 static int tegra_pcie_port_phy_power_on(struct tegra_pcie_port *port) 992 { 993 struct device *dev = port->pcie->dev; 994 unsigned int i; 995 int err; 996 997 for (i = 0; i < port->lanes; i++) { 998 err = phy_power_on(port->phys[i]); 999 if (err < 0) { 1000 dev_err(dev, "failed to power on PHY#%u: %d\n", i, err); 1001 return err; 1002 } 1003 } 1004 1005 return 0; 1006 } 1007 1008 static int tegra_pcie_port_phy_power_off(struct tegra_pcie_port *port) 1009 { 1010 struct device *dev = port->pcie->dev; 1011 unsigned int i; 1012 int err; 1013 1014 for (i = 0; i < port->lanes; i++) { 1015 err = phy_power_off(port->phys[i]); 1016 if (err < 0) { 1017 dev_err(dev, "failed to power off PHY#%u: %d\n", i, 1018 err); 1019 return err; 1020 } 1021 } 1022 1023 return 0; 1024 } 1025 1026 static int tegra_pcie_phy_power_on(struct tegra_pcie *pcie) 1027 { 1028 struct device *dev = pcie->dev; 1029 struct tegra_pcie_port *port; 1030 int err; 1031 1032 if (pcie->legacy_phy) { 1033 if (pcie->phy) 1034 err = phy_power_on(pcie->phy); 1035 else 1036 err = tegra_pcie_phy_enable(pcie); 1037 1038 if (err < 0) 1039 dev_err(dev, "failed to power on PHY: %d\n", err); 1040 1041 return err; 1042 } 1043 1044 list_for_each_entry(port, &pcie->ports, list) { 1045 err = tegra_pcie_port_phy_power_on(port); 1046 if (err < 0) { 1047 dev_err(dev, 1048 "failed to power on PCIe port %u PHY: %d\n", 1049 port->index, err); 1050 return err; 1051 } 1052 } 1053 1054 return 0; 1055 } 1056 1057 static int tegra_pcie_phy_power_off(struct tegra_pcie *pcie) 1058 { 1059 struct device *dev = pcie->dev; 1060 struct tegra_pcie_port *port; 1061 int err; 1062 1063 if (pcie->legacy_phy) { 1064 if (pcie->phy) 1065 err = phy_power_off(pcie->phy); 1066 else 1067 err = tegra_pcie_phy_disable(pcie); 1068 1069 if (err < 0) 1070 dev_err(dev, "failed to power off PHY: %d\n", err); 1071 1072 return err; 1073 } 1074 1075 list_for_each_entry(port, &pcie->ports, list) { 1076 err = tegra_pcie_port_phy_power_off(port); 1077 if (err < 0) { 1078 dev_err(dev, 1079 "failed to power off PCIe port %u PHY: %d\n", 1080 port->index, err); 1081 return err; 1082 } 1083 } 1084 1085 return 0; 1086 } 1087 1088 static void tegra_pcie_enable_controller(struct tegra_pcie *pcie) 1089 { 1090 const struct tegra_pcie_soc *soc = pcie->soc; 1091 struct tegra_pcie_port *port; 1092 unsigned long value; 1093 1094 /* enable PLL power down */ 1095 if (pcie->phy) { 1096 value = afi_readl(pcie, AFI_PLLE_CONTROL); 1097 value &= ~AFI_PLLE_CONTROL_BYPASS_PADS2PLLE_CONTROL; 1098 value |= AFI_PLLE_CONTROL_PADS2PLLE_CONTROL_EN; 1099 afi_writel(pcie, value, AFI_PLLE_CONTROL); 1100 } 1101 1102 /* power down PCIe slot clock bias pad */ 1103 if (soc->has_pex_bias_ctrl) 1104 afi_writel(pcie, 0, AFI_PEXBIAS_CTRL_0); 1105 1106 /* configure mode and disable all ports */ 1107 value = afi_readl(pcie, AFI_PCIE_CONFIG); 1108 value &= ~AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_MASK; 1109 value |= AFI_PCIE_CONFIG_PCIE_DISABLE_ALL | pcie->xbar_config; 1110 value |= AFI_PCIE_CONFIG_PCIE_CLKREQ_GPIO_ALL; 1111 1112 list_for_each_entry(port, &pcie->ports, list) { 1113 value &= ~AFI_PCIE_CONFIG_PCIE_DISABLE(port->index); 1114 value &= ~AFI_PCIE_CONFIG_PCIE_CLKREQ_GPIO(port->index); 1115 } 1116 1117 afi_writel(pcie, value, AFI_PCIE_CONFIG); 1118 1119 if (soc->has_gen2) { 1120 value = afi_readl(pcie, AFI_FUSE); 1121 value &= ~AFI_FUSE_PCIE_T0_GEN2_DIS; 1122 afi_writel(pcie, value, AFI_FUSE); 1123 } else { 1124 value = afi_readl(pcie, AFI_FUSE); 1125 value |= AFI_FUSE_PCIE_T0_GEN2_DIS; 1126 afi_writel(pcie, value, AFI_FUSE); 1127 } 1128 1129 /* Disable AFI dynamic clock gating and enable PCIe */ 1130 value = afi_readl(pcie, AFI_CONFIGURATION); 1131 value |= AFI_CONFIGURATION_EN_FPCI; 1132 value |= AFI_CONFIGURATION_CLKEN_OVERRIDE; 1133 afi_writel(pcie, value, AFI_CONFIGURATION); 1134 1135 value = AFI_INTR_EN_INI_SLVERR | AFI_INTR_EN_INI_DECERR | 1136 AFI_INTR_EN_TGT_SLVERR | AFI_INTR_EN_TGT_DECERR | 1137 AFI_INTR_EN_TGT_WRERR | AFI_INTR_EN_DFPCI_DECERR; 1138 1139 if (soc->has_intr_prsnt_sense) 1140 value |= AFI_INTR_EN_PRSNT_SENSE; 1141 1142 afi_writel(pcie, value, AFI_AFI_INTR_ENABLE); 1143 afi_writel(pcie, 0xffffffff, AFI_SM_INTR_ENABLE); 1144 1145 /* don't enable MSI for now, only when needed */ 1146 afi_writel(pcie, AFI_INTR_MASK_INT_MASK, AFI_INTR_MASK); 1147 1148 /* disable all exceptions */ 1149 afi_writel(pcie, 0, AFI_FPCI_ERROR_MASKS); 1150 } 1151 1152 static void tegra_pcie_power_off(struct tegra_pcie *pcie) 1153 { 1154 struct device *dev = pcie->dev; 1155 const struct tegra_pcie_soc *soc = pcie->soc; 1156 int err; 1157 1158 reset_control_assert(pcie->afi_rst); 1159 1160 clk_disable_unprepare(pcie->pll_e); 1161 if (soc->has_cml_clk) 1162 clk_disable_unprepare(pcie->cml_clk); 1163 clk_disable_unprepare(pcie->afi_clk); 1164 1165 if (!dev->pm_domain) 1166 tegra_powergate_power_off(TEGRA_POWERGATE_PCIE); 1167 1168 err = regulator_bulk_disable(pcie->num_supplies, pcie->supplies); 1169 if (err < 0) 1170 dev_warn(dev, "failed to disable regulators: %d\n", err); 1171 } 1172 1173 static int tegra_pcie_power_on(struct tegra_pcie *pcie) 1174 { 1175 struct device *dev = pcie->dev; 1176 const struct tegra_pcie_soc *soc = pcie->soc; 1177 int err; 1178 1179 reset_control_assert(pcie->pcie_xrst); 1180 reset_control_assert(pcie->afi_rst); 1181 reset_control_assert(pcie->pex_rst); 1182 1183 if (!dev->pm_domain) 1184 tegra_powergate_power_off(TEGRA_POWERGATE_PCIE); 1185 1186 /* enable regulators */ 1187 err = regulator_bulk_enable(pcie->num_supplies, pcie->supplies); 1188 if (err < 0) 1189 dev_err(dev, "failed to enable regulators: %d\n", err); 1190 1191 if (!dev->pm_domain) { 1192 err = tegra_powergate_power_on(TEGRA_POWERGATE_PCIE); 1193 if (err) { 1194 dev_err(dev, "failed to power ungate: %d\n", err); 1195 goto regulator_disable; 1196 } 1197 err = tegra_powergate_remove_clamping(TEGRA_POWERGATE_PCIE); 1198 if (err) { 1199 dev_err(dev, "failed to remove clamp: %d\n", err); 1200 goto powergate; 1201 } 1202 } 1203 1204 err = clk_prepare_enable(pcie->afi_clk); 1205 if (err < 0) { 1206 dev_err(dev, "failed to enable AFI clock: %d\n", err); 1207 goto powergate; 1208 } 1209 1210 if (soc->has_cml_clk) { 1211 err = clk_prepare_enable(pcie->cml_clk); 1212 if (err < 0) { 1213 dev_err(dev, "failed to enable CML clock: %d\n", err); 1214 goto disable_afi_clk; 1215 } 1216 } 1217 1218 err = clk_prepare_enable(pcie->pll_e); 1219 if (err < 0) { 1220 dev_err(dev, "failed to enable PLLE clock: %d\n", err); 1221 goto disable_cml_clk; 1222 } 1223 1224 reset_control_deassert(pcie->afi_rst); 1225 1226 return 0; 1227 1228 disable_cml_clk: 1229 if (soc->has_cml_clk) 1230 clk_disable_unprepare(pcie->cml_clk); 1231 disable_afi_clk: 1232 clk_disable_unprepare(pcie->afi_clk); 1233 powergate: 1234 if (!dev->pm_domain) 1235 tegra_powergate_power_off(TEGRA_POWERGATE_PCIE); 1236 regulator_disable: 1237 regulator_bulk_disable(pcie->num_supplies, pcie->supplies); 1238 1239 return err; 1240 } 1241 1242 static void tegra_pcie_apply_pad_settings(struct tegra_pcie *pcie) 1243 { 1244 const struct tegra_pcie_soc *soc = pcie->soc; 1245 1246 /* Configure the reference clock driver */ 1247 pads_writel(pcie, soc->pads_refclk_cfg0, PADS_REFCLK_CFG0); 1248 1249 if (soc->num_ports > 2) 1250 pads_writel(pcie, soc->pads_refclk_cfg1, PADS_REFCLK_CFG1); 1251 } 1252 1253 static int tegra_pcie_clocks_get(struct tegra_pcie *pcie) 1254 { 1255 struct device *dev = pcie->dev; 1256 const struct tegra_pcie_soc *soc = pcie->soc; 1257 1258 pcie->pex_clk = devm_clk_get(dev, "pex"); 1259 if (IS_ERR(pcie->pex_clk)) 1260 return PTR_ERR(pcie->pex_clk); 1261 1262 pcie->afi_clk = devm_clk_get(dev, "afi"); 1263 if (IS_ERR(pcie->afi_clk)) 1264 return PTR_ERR(pcie->afi_clk); 1265 1266 pcie->pll_e = devm_clk_get(dev, "pll_e"); 1267 if (IS_ERR(pcie->pll_e)) 1268 return PTR_ERR(pcie->pll_e); 1269 1270 if (soc->has_cml_clk) { 1271 pcie->cml_clk = devm_clk_get(dev, "cml"); 1272 if (IS_ERR(pcie->cml_clk)) 1273 return PTR_ERR(pcie->cml_clk); 1274 } 1275 1276 return 0; 1277 } 1278 1279 static int tegra_pcie_resets_get(struct tegra_pcie *pcie) 1280 { 1281 struct device *dev = pcie->dev; 1282 1283 pcie->pex_rst = devm_reset_control_get_exclusive(dev, "pex"); 1284 if (IS_ERR(pcie->pex_rst)) 1285 return PTR_ERR(pcie->pex_rst); 1286 1287 pcie->afi_rst = devm_reset_control_get_exclusive(dev, "afi"); 1288 if (IS_ERR(pcie->afi_rst)) 1289 return PTR_ERR(pcie->afi_rst); 1290 1291 pcie->pcie_xrst = devm_reset_control_get_exclusive(dev, "pcie_x"); 1292 if (IS_ERR(pcie->pcie_xrst)) 1293 return PTR_ERR(pcie->pcie_xrst); 1294 1295 return 0; 1296 } 1297 1298 static int tegra_pcie_phys_get_legacy(struct tegra_pcie *pcie) 1299 { 1300 struct device *dev = pcie->dev; 1301 int err; 1302 1303 pcie->phy = devm_phy_optional_get(dev, "pcie"); 1304 if (IS_ERR(pcie->phy)) { 1305 err = PTR_ERR(pcie->phy); 1306 dev_err(dev, "failed to get PHY: %d\n", err); 1307 return err; 1308 } 1309 1310 err = phy_init(pcie->phy); 1311 if (err < 0) { 1312 dev_err(dev, "failed to initialize PHY: %d\n", err); 1313 return err; 1314 } 1315 1316 pcie->legacy_phy = true; 1317 1318 return 0; 1319 } 1320 1321 static struct phy *devm_of_phy_optional_get_index(struct device *dev, 1322 struct device_node *np, 1323 const char *consumer, 1324 unsigned int index) 1325 { 1326 struct phy *phy; 1327 char *name; 1328 1329 name = kasprintf(GFP_KERNEL, "%s-%u", consumer, index); 1330 if (!name) 1331 return ERR_PTR(-ENOMEM); 1332 1333 phy = devm_of_phy_get(dev, np, name); 1334 kfree(name); 1335 1336 if (PTR_ERR(phy) == -ENODEV) 1337 phy = NULL; 1338 1339 return phy; 1340 } 1341 1342 static int tegra_pcie_port_get_phys(struct tegra_pcie_port *port) 1343 { 1344 struct device *dev = port->pcie->dev; 1345 struct phy *phy; 1346 unsigned int i; 1347 int err; 1348 1349 port->phys = devm_kcalloc(dev, sizeof(phy), port->lanes, GFP_KERNEL); 1350 if (!port->phys) 1351 return -ENOMEM; 1352 1353 for (i = 0; i < port->lanes; i++) { 1354 phy = devm_of_phy_optional_get_index(dev, port->np, "pcie", i); 1355 if (IS_ERR(phy)) { 1356 dev_err(dev, "failed to get PHY#%u: %ld\n", i, 1357 PTR_ERR(phy)); 1358 return PTR_ERR(phy); 1359 } 1360 1361 err = phy_init(phy); 1362 if (err < 0) { 1363 dev_err(dev, "failed to initialize PHY#%u: %d\n", i, 1364 err); 1365 return err; 1366 } 1367 1368 port->phys[i] = phy; 1369 } 1370 1371 return 0; 1372 } 1373 1374 static int tegra_pcie_phys_get(struct tegra_pcie *pcie) 1375 { 1376 const struct tegra_pcie_soc *soc = pcie->soc; 1377 struct device_node *np = pcie->dev->of_node; 1378 struct tegra_pcie_port *port; 1379 int err; 1380 1381 if (!soc->has_gen2 || of_find_property(np, "phys", NULL) != NULL) 1382 return tegra_pcie_phys_get_legacy(pcie); 1383 1384 list_for_each_entry(port, &pcie->ports, list) { 1385 err = tegra_pcie_port_get_phys(port); 1386 if (err < 0) 1387 return err; 1388 } 1389 1390 return 0; 1391 } 1392 1393 static void tegra_pcie_phys_put(struct tegra_pcie *pcie) 1394 { 1395 struct tegra_pcie_port *port; 1396 struct device *dev = pcie->dev; 1397 int err, i; 1398 1399 if (pcie->legacy_phy) { 1400 err = phy_exit(pcie->phy); 1401 if (err < 0) 1402 dev_err(dev, "failed to teardown PHY: %d\n", err); 1403 return; 1404 } 1405 1406 list_for_each_entry(port, &pcie->ports, list) { 1407 for (i = 0; i < port->lanes; i++) { 1408 err = phy_exit(port->phys[i]); 1409 if (err < 0) 1410 dev_err(dev, "failed to teardown PHY#%u: %d\n", 1411 i, err); 1412 } 1413 } 1414 } 1415 1416 static int tegra_pcie_get_resources(struct tegra_pcie *pcie) 1417 { 1418 struct device *dev = pcie->dev; 1419 struct platform_device *pdev = to_platform_device(dev); 1420 struct resource *res; 1421 const struct tegra_pcie_soc *soc = pcie->soc; 1422 int err; 1423 1424 err = tegra_pcie_clocks_get(pcie); 1425 if (err) { 1426 dev_err(dev, "failed to get clocks: %d\n", err); 1427 return err; 1428 } 1429 1430 err = tegra_pcie_resets_get(pcie); 1431 if (err) { 1432 dev_err(dev, "failed to get resets: %d\n", err); 1433 return err; 1434 } 1435 1436 if (soc->program_uphy) { 1437 err = tegra_pcie_phys_get(pcie); 1438 if (err < 0) { 1439 dev_err(dev, "failed to get PHYs: %d\n", err); 1440 return err; 1441 } 1442 } 1443 1444 pcie->pads = devm_platform_ioremap_resource_byname(pdev, "pads"); 1445 if (IS_ERR(pcie->pads)) { 1446 err = PTR_ERR(pcie->pads); 1447 goto phys_put; 1448 } 1449 1450 pcie->afi = devm_platform_ioremap_resource_byname(pdev, "afi"); 1451 if (IS_ERR(pcie->afi)) { 1452 err = PTR_ERR(pcie->afi); 1453 goto phys_put; 1454 } 1455 1456 /* request configuration space, but remap later, on demand */ 1457 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "cs"); 1458 if (!res) { 1459 err = -EADDRNOTAVAIL; 1460 goto phys_put; 1461 } 1462 1463 pcie->cs = *res; 1464 1465 /* constrain configuration space to 4 KiB */ 1466 pcie->cs.end = pcie->cs.start + SZ_4K - 1; 1467 1468 pcie->cfg = devm_ioremap_resource(dev, &pcie->cs); 1469 if (IS_ERR(pcie->cfg)) { 1470 err = PTR_ERR(pcie->cfg); 1471 goto phys_put; 1472 } 1473 1474 /* request interrupt */ 1475 err = platform_get_irq_byname(pdev, "intr"); 1476 if (err < 0) 1477 goto phys_put; 1478 1479 pcie->irq = err; 1480 1481 err = request_irq(pcie->irq, tegra_pcie_isr, IRQF_SHARED, "PCIE", pcie); 1482 if (err) { 1483 dev_err(dev, "failed to register IRQ: %d\n", err); 1484 goto phys_put; 1485 } 1486 1487 return 0; 1488 1489 phys_put: 1490 if (soc->program_uphy) 1491 tegra_pcie_phys_put(pcie); 1492 1493 return err; 1494 } 1495 1496 static int tegra_pcie_put_resources(struct tegra_pcie *pcie) 1497 { 1498 const struct tegra_pcie_soc *soc = pcie->soc; 1499 1500 if (pcie->irq > 0) 1501 free_irq(pcie->irq, pcie); 1502 1503 if (soc->program_uphy) 1504 tegra_pcie_phys_put(pcie); 1505 1506 return 0; 1507 } 1508 1509 static void tegra_pcie_pme_turnoff(struct tegra_pcie_port *port) 1510 { 1511 struct tegra_pcie *pcie = port->pcie; 1512 const struct tegra_pcie_soc *soc = pcie->soc; 1513 int err; 1514 u32 val; 1515 u8 ack_bit; 1516 1517 val = afi_readl(pcie, AFI_PCIE_PME); 1518 val |= (0x1 << soc->ports[port->index].pme.turnoff_bit); 1519 afi_writel(pcie, val, AFI_PCIE_PME); 1520 1521 ack_bit = soc->ports[port->index].pme.ack_bit; 1522 err = readl_poll_timeout(pcie->afi + AFI_PCIE_PME, val, 1523 val & (0x1 << ack_bit), 1, PME_ACK_TIMEOUT); 1524 if (err) 1525 dev_err(pcie->dev, "PME Ack is not received on port: %d\n", 1526 port->index); 1527 1528 usleep_range(10000, 11000); 1529 1530 val = afi_readl(pcie, AFI_PCIE_PME); 1531 val &= ~(0x1 << soc->ports[port->index].pme.turnoff_bit); 1532 afi_writel(pcie, val, AFI_PCIE_PME); 1533 } 1534 1535 static void tegra_pcie_msi_irq(struct irq_desc *desc) 1536 { 1537 struct tegra_pcie *pcie = irq_desc_get_handler_data(desc); 1538 struct irq_chip *chip = irq_desc_get_chip(desc); 1539 struct tegra_msi *msi = &pcie->msi; 1540 struct device *dev = pcie->dev; 1541 unsigned int i; 1542 1543 chained_irq_enter(chip, desc); 1544 1545 for (i = 0; i < 8; i++) { 1546 unsigned long reg = afi_readl(pcie, AFI_MSI_VEC(i)); 1547 1548 while (reg) { 1549 unsigned int offset = find_first_bit(®, 32); 1550 unsigned int index = i * 32 + offset; 1551 int ret; 1552 1553 ret = generic_handle_domain_irq(msi->domain->parent, index); 1554 if (ret) { 1555 /* 1556 * that's weird who triggered this? 1557 * just clear it 1558 */ 1559 dev_info(dev, "unexpected MSI\n"); 1560 afi_writel(pcie, BIT(index % 32), AFI_MSI_VEC(index)); 1561 } 1562 1563 /* see if there's any more pending in this vector */ 1564 reg = afi_readl(pcie, AFI_MSI_VEC(i)); 1565 } 1566 } 1567 1568 chained_irq_exit(chip, desc); 1569 } 1570 1571 static void tegra_msi_top_irq_ack(struct irq_data *d) 1572 { 1573 irq_chip_ack_parent(d); 1574 } 1575 1576 static void tegra_msi_top_irq_mask(struct irq_data *d) 1577 { 1578 pci_msi_mask_irq(d); 1579 irq_chip_mask_parent(d); 1580 } 1581 1582 static void tegra_msi_top_irq_unmask(struct irq_data *d) 1583 { 1584 pci_msi_unmask_irq(d); 1585 irq_chip_unmask_parent(d); 1586 } 1587 1588 static struct irq_chip tegra_msi_top_chip = { 1589 .name = "Tegra PCIe MSI", 1590 .irq_ack = tegra_msi_top_irq_ack, 1591 .irq_mask = tegra_msi_top_irq_mask, 1592 .irq_unmask = tegra_msi_top_irq_unmask, 1593 }; 1594 1595 static void tegra_msi_irq_ack(struct irq_data *d) 1596 { 1597 struct tegra_msi *msi = irq_data_get_irq_chip_data(d); 1598 struct tegra_pcie *pcie = msi_to_pcie(msi); 1599 unsigned int index = d->hwirq / 32; 1600 1601 /* clear the interrupt */ 1602 afi_writel(pcie, BIT(d->hwirq % 32), AFI_MSI_VEC(index)); 1603 } 1604 1605 static void tegra_msi_irq_mask(struct irq_data *d) 1606 { 1607 struct tegra_msi *msi = irq_data_get_irq_chip_data(d); 1608 struct tegra_pcie *pcie = msi_to_pcie(msi); 1609 unsigned int index = d->hwirq / 32; 1610 unsigned long flags; 1611 u32 value; 1612 1613 spin_lock_irqsave(&msi->mask_lock, flags); 1614 value = afi_readl(pcie, AFI_MSI_EN_VEC(index)); 1615 value &= ~BIT(d->hwirq % 32); 1616 afi_writel(pcie, value, AFI_MSI_EN_VEC(index)); 1617 spin_unlock_irqrestore(&msi->mask_lock, flags); 1618 } 1619 1620 static void tegra_msi_irq_unmask(struct irq_data *d) 1621 { 1622 struct tegra_msi *msi = irq_data_get_irq_chip_data(d); 1623 struct tegra_pcie *pcie = msi_to_pcie(msi); 1624 unsigned int index = d->hwirq / 32; 1625 unsigned long flags; 1626 u32 value; 1627 1628 spin_lock_irqsave(&msi->mask_lock, flags); 1629 value = afi_readl(pcie, AFI_MSI_EN_VEC(index)); 1630 value |= BIT(d->hwirq % 32); 1631 afi_writel(pcie, value, AFI_MSI_EN_VEC(index)); 1632 spin_unlock_irqrestore(&msi->mask_lock, flags); 1633 } 1634 1635 static int tegra_msi_set_affinity(struct irq_data *d, const struct cpumask *mask, bool force) 1636 { 1637 return -EINVAL; 1638 } 1639 1640 static void tegra_compose_msi_msg(struct irq_data *data, struct msi_msg *msg) 1641 { 1642 struct tegra_msi *msi = irq_data_get_irq_chip_data(data); 1643 1644 msg->address_lo = lower_32_bits(msi->phys); 1645 msg->address_hi = upper_32_bits(msi->phys); 1646 msg->data = data->hwirq; 1647 } 1648 1649 static struct irq_chip tegra_msi_bottom_chip = { 1650 .name = "Tegra MSI", 1651 .irq_ack = tegra_msi_irq_ack, 1652 .irq_mask = tegra_msi_irq_mask, 1653 .irq_unmask = tegra_msi_irq_unmask, 1654 .irq_set_affinity = tegra_msi_set_affinity, 1655 .irq_compose_msi_msg = tegra_compose_msi_msg, 1656 }; 1657 1658 static int tegra_msi_domain_alloc(struct irq_domain *domain, unsigned int virq, 1659 unsigned int nr_irqs, void *args) 1660 { 1661 struct tegra_msi *msi = domain->host_data; 1662 unsigned int i; 1663 int hwirq; 1664 1665 mutex_lock(&msi->map_lock); 1666 1667 hwirq = bitmap_find_free_region(msi->used, INT_PCI_MSI_NR, order_base_2(nr_irqs)); 1668 1669 mutex_unlock(&msi->map_lock); 1670 1671 if (hwirq < 0) 1672 return -ENOSPC; 1673 1674 for (i = 0; i < nr_irqs; i++) 1675 irq_domain_set_info(domain, virq + i, hwirq + i, 1676 &tegra_msi_bottom_chip, domain->host_data, 1677 handle_edge_irq, NULL, NULL); 1678 1679 tegra_cpuidle_pcie_irqs_in_use(); 1680 1681 return 0; 1682 } 1683 1684 static void tegra_msi_domain_free(struct irq_domain *domain, unsigned int virq, 1685 unsigned int nr_irqs) 1686 { 1687 struct irq_data *d = irq_domain_get_irq_data(domain, virq); 1688 struct tegra_msi *msi = domain->host_data; 1689 1690 mutex_lock(&msi->map_lock); 1691 1692 bitmap_release_region(msi->used, d->hwirq, order_base_2(nr_irqs)); 1693 1694 mutex_unlock(&msi->map_lock); 1695 } 1696 1697 static const struct irq_domain_ops tegra_msi_domain_ops = { 1698 .alloc = tegra_msi_domain_alloc, 1699 .free = tegra_msi_domain_free, 1700 }; 1701 1702 static struct msi_domain_info tegra_msi_info = { 1703 .flags = (MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS | 1704 MSI_FLAG_PCI_MSIX), 1705 .chip = &tegra_msi_top_chip, 1706 }; 1707 1708 static int tegra_allocate_domains(struct tegra_msi *msi) 1709 { 1710 struct tegra_pcie *pcie = msi_to_pcie(msi); 1711 struct fwnode_handle *fwnode = dev_fwnode(pcie->dev); 1712 struct irq_domain *parent; 1713 1714 parent = irq_domain_create_linear(fwnode, INT_PCI_MSI_NR, 1715 &tegra_msi_domain_ops, msi); 1716 if (!parent) { 1717 dev_err(pcie->dev, "failed to create IRQ domain\n"); 1718 return -ENOMEM; 1719 } 1720 irq_domain_update_bus_token(parent, DOMAIN_BUS_NEXUS); 1721 1722 msi->domain = pci_msi_create_irq_domain(fwnode, &tegra_msi_info, parent); 1723 if (!msi->domain) { 1724 dev_err(pcie->dev, "failed to create MSI domain\n"); 1725 irq_domain_remove(parent); 1726 return -ENOMEM; 1727 } 1728 1729 return 0; 1730 } 1731 1732 static void tegra_free_domains(struct tegra_msi *msi) 1733 { 1734 struct irq_domain *parent = msi->domain->parent; 1735 1736 irq_domain_remove(msi->domain); 1737 irq_domain_remove(parent); 1738 } 1739 1740 static int tegra_pcie_msi_setup(struct tegra_pcie *pcie) 1741 { 1742 struct platform_device *pdev = to_platform_device(pcie->dev); 1743 struct tegra_msi *msi = &pcie->msi; 1744 struct device *dev = pcie->dev; 1745 int err; 1746 1747 mutex_init(&msi->map_lock); 1748 spin_lock_init(&msi->mask_lock); 1749 1750 if (IS_ENABLED(CONFIG_PCI_MSI)) { 1751 err = tegra_allocate_domains(msi); 1752 if (err) 1753 return err; 1754 } 1755 1756 err = platform_get_irq_byname(pdev, "msi"); 1757 if (err < 0) 1758 goto free_irq_domain; 1759 1760 msi->irq = err; 1761 1762 irq_set_chained_handler_and_data(msi->irq, tegra_pcie_msi_irq, pcie); 1763 1764 /* Though the PCIe controller can address >32-bit address space, to 1765 * facilitate endpoints that support only 32-bit MSI target address, 1766 * the mask is set to 32-bit to make sure that MSI target address is 1767 * always a 32-bit address 1768 */ 1769 err = dma_set_coherent_mask(dev, DMA_BIT_MASK(32)); 1770 if (err < 0) { 1771 dev_err(dev, "failed to set DMA coherent mask: %d\n", err); 1772 goto free_irq; 1773 } 1774 1775 msi->virt = dma_alloc_attrs(dev, PAGE_SIZE, &msi->phys, GFP_KERNEL, 1776 DMA_ATTR_NO_KERNEL_MAPPING); 1777 if (!msi->virt) { 1778 dev_err(dev, "failed to allocate DMA memory for MSI\n"); 1779 err = -ENOMEM; 1780 goto free_irq; 1781 } 1782 1783 return 0; 1784 1785 free_irq: 1786 irq_set_chained_handler_and_data(msi->irq, NULL, NULL); 1787 free_irq_domain: 1788 if (IS_ENABLED(CONFIG_PCI_MSI)) 1789 tegra_free_domains(msi); 1790 1791 return err; 1792 } 1793 1794 static void tegra_pcie_enable_msi(struct tegra_pcie *pcie) 1795 { 1796 const struct tegra_pcie_soc *soc = pcie->soc; 1797 struct tegra_msi *msi = &pcie->msi; 1798 u32 reg, msi_state[INT_PCI_MSI_NR / 32]; 1799 int i; 1800 1801 afi_writel(pcie, msi->phys >> soc->msi_base_shift, AFI_MSI_FPCI_BAR_ST); 1802 afi_writel(pcie, msi->phys, AFI_MSI_AXI_BAR_ST); 1803 /* this register is in 4K increments */ 1804 afi_writel(pcie, 1, AFI_MSI_BAR_SZ); 1805 1806 /* Restore the MSI allocation state */ 1807 bitmap_to_arr32(msi_state, msi->used, INT_PCI_MSI_NR); 1808 for (i = 0; i < ARRAY_SIZE(msi_state); i++) 1809 afi_writel(pcie, msi_state[i], AFI_MSI_EN_VEC(i)); 1810 1811 /* and unmask the MSI interrupt */ 1812 reg = afi_readl(pcie, AFI_INTR_MASK); 1813 reg |= AFI_INTR_MASK_MSI_MASK; 1814 afi_writel(pcie, reg, AFI_INTR_MASK); 1815 } 1816 1817 static void tegra_pcie_msi_teardown(struct tegra_pcie *pcie) 1818 { 1819 struct tegra_msi *msi = &pcie->msi; 1820 unsigned int i, irq; 1821 1822 dma_free_attrs(pcie->dev, PAGE_SIZE, msi->virt, msi->phys, 1823 DMA_ATTR_NO_KERNEL_MAPPING); 1824 1825 for (i = 0; i < INT_PCI_MSI_NR; i++) { 1826 irq = irq_find_mapping(msi->domain, i); 1827 if (irq > 0) 1828 irq_domain_free_irqs(irq, 1); 1829 } 1830 1831 irq_set_chained_handler_and_data(msi->irq, NULL, NULL); 1832 1833 if (IS_ENABLED(CONFIG_PCI_MSI)) 1834 tegra_free_domains(msi); 1835 } 1836 1837 static int tegra_pcie_disable_msi(struct tegra_pcie *pcie) 1838 { 1839 u32 value; 1840 1841 /* mask the MSI interrupt */ 1842 value = afi_readl(pcie, AFI_INTR_MASK); 1843 value &= ~AFI_INTR_MASK_MSI_MASK; 1844 afi_writel(pcie, value, AFI_INTR_MASK); 1845 1846 return 0; 1847 } 1848 1849 static void tegra_pcie_disable_interrupts(struct tegra_pcie *pcie) 1850 { 1851 u32 value; 1852 1853 value = afi_readl(pcie, AFI_INTR_MASK); 1854 value &= ~AFI_INTR_MASK_INT_MASK; 1855 afi_writel(pcie, value, AFI_INTR_MASK); 1856 } 1857 1858 static int tegra_pcie_get_xbar_config(struct tegra_pcie *pcie, u32 lanes, 1859 u32 *xbar) 1860 { 1861 struct device *dev = pcie->dev; 1862 struct device_node *np = dev->of_node; 1863 1864 if (of_device_is_compatible(np, "nvidia,tegra186-pcie")) { 1865 switch (lanes) { 1866 case 0x010004: 1867 dev_info(dev, "4x1, 1x1 configuration\n"); 1868 *xbar = AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_401; 1869 return 0; 1870 1871 case 0x010102: 1872 dev_info(dev, "2x1, 1X1, 1x1 configuration\n"); 1873 *xbar = AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_211; 1874 return 0; 1875 1876 case 0x010101: 1877 dev_info(dev, "1x1, 1x1, 1x1 configuration\n"); 1878 *xbar = AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_111; 1879 return 0; 1880 1881 default: 1882 dev_info(dev, "wrong configuration updated in DT, " 1883 "switching to default 2x1, 1x1, 1x1 " 1884 "configuration\n"); 1885 *xbar = AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_211; 1886 return 0; 1887 } 1888 } else if (of_device_is_compatible(np, "nvidia,tegra124-pcie") || 1889 of_device_is_compatible(np, "nvidia,tegra210-pcie")) { 1890 switch (lanes) { 1891 case 0x0000104: 1892 dev_info(dev, "4x1, 1x1 configuration\n"); 1893 *xbar = AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_X4_X1; 1894 return 0; 1895 1896 case 0x0000102: 1897 dev_info(dev, "2x1, 1x1 configuration\n"); 1898 *xbar = AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_X2_X1; 1899 return 0; 1900 } 1901 } else if (of_device_is_compatible(np, "nvidia,tegra30-pcie")) { 1902 switch (lanes) { 1903 case 0x00000204: 1904 dev_info(dev, "4x1, 2x1 configuration\n"); 1905 *xbar = AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_420; 1906 return 0; 1907 1908 case 0x00020202: 1909 dev_info(dev, "2x3 configuration\n"); 1910 *xbar = AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_222; 1911 return 0; 1912 1913 case 0x00010104: 1914 dev_info(dev, "4x1, 1x2 configuration\n"); 1915 *xbar = AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_411; 1916 return 0; 1917 } 1918 } else if (of_device_is_compatible(np, "nvidia,tegra20-pcie")) { 1919 switch (lanes) { 1920 case 0x00000004: 1921 dev_info(dev, "single-mode configuration\n"); 1922 *xbar = AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_SINGLE; 1923 return 0; 1924 1925 case 0x00000202: 1926 dev_info(dev, "dual-mode configuration\n"); 1927 *xbar = AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_DUAL; 1928 return 0; 1929 } 1930 } 1931 1932 return -EINVAL; 1933 } 1934 1935 /* 1936 * Check whether a given set of supplies is available in a device tree node. 1937 * This is used to check whether the new or the legacy device tree bindings 1938 * should be used. 1939 */ 1940 static bool of_regulator_bulk_available(struct device_node *np, 1941 struct regulator_bulk_data *supplies, 1942 unsigned int num_supplies) 1943 { 1944 char property[32]; 1945 unsigned int i; 1946 1947 for (i = 0; i < num_supplies; i++) { 1948 snprintf(property, 32, "%s-supply", supplies[i].supply); 1949 1950 if (of_find_property(np, property, NULL) == NULL) 1951 return false; 1952 } 1953 1954 return true; 1955 } 1956 1957 /* 1958 * Old versions of the device tree binding for this device used a set of power 1959 * supplies that didn't match the hardware inputs. This happened to work for a 1960 * number of cases but is not future proof. However to preserve backwards- 1961 * compatibility with old device trees, this function will try to use the old 1962 * set of supplies. 1963 */ 1964 static int tegra_pcie_get_legacy_regulators(struct tegra_pcie *pcie) 1965 { 1966 struct device *dev = pcie->dev; 1967 struct device_node *np = dev->of_node; 1968 1969 if (of_device_is_compatible(np, "nvidia,tegra30-pcie")) 1970 pcie->num_supplies = 3; 1971 else if (of_device_is_compatible(np, "nvidia,tegra20-pcie")) 1972 pcie->num_supplies = 2; 1973 1974 if (pcie->num_supplies == 0) { 1975 dev_err(dev, "device %pOF not supported in legacy mode\n", np); 1976 return -ENODEV; 1977 } 1978 1979 pcie->supplies = devm_kcalloc(dev, pcie->num_supplies, 1980 sizeof(*pcie->supplies), 1981 GFP_KERNEL); 1982 if (!pcie->supplies) 1983 return -ENOMEM; 1984 1985 pcie->supplies[0].supply = "pex-clk"; 1986 pcie->supplies[1].supply = "vdd"; 1987 1988 if (pcie->num_supplies > 2) 1989 pcie->supplies[2].supply = "avdd"; 1990 1991 return devm_regulator_bulk_get(dev, pcie->num_supplies, pcie->supplies); 1992 } 1993 1994 /* 1995 * Obtains the list of regulators required for a particular generation of the 1996 * IP block. 1997 * 1998 * This would've been nice to do simply by providing static tables for use 1999 * with the regulator_bulk_*() API, but unfortunately Tegra30 is a bit quirky 2000 * in that it has two pairs or AVDD_PEX and VDD_PEX supplies (PEXA and PEXB) 2001 * and either seems to be optional depending on which ports are being used. 2002 */ 2003 static int tegra_pcie_get_regulators(struct tegra_pcie *pcie, u32 lane_mask) 2004 { 2005 struct device *dev = pcie->dev; 2006 struct device_node *np = dev->of_node; 2007 unsigned int i = 0; 2008 2009 if (of_device_is_compatible(np, "nvidia,tegra186-pcie")) { 2010 pcie->num_supplies = 4; 2011 2012 pcie->supplies = devm_kcalloc(pcie->dev, pcie->num_supplies, 2013 sizeof(*pcie->supplies), 2014 GFP_KERNEL); 2015 if (!pcie->supplies) 2016 return -ENOMEM; 2017 2018 pcie->supplies[i++].supply = "dvdd-pex"; 2019 pcie->supplies[i++].supply = "hvdd-pex-pll"; 2020 pcie->supplies[i++].supply = "hvdd-pex"; 2021 pcie->supplies[i++].supply = "vddio-pexctl-aud"; 2022 } else if (of_device_is_compatible(np, "nvidia,tegra210-pcie")) { 2023 pcie->num_supplies = 3; 2024 2025 pcie->supplies = devm_kcalloc(pcie->dev, pcie->num_supplies, 2026 sizeof(*pcie->supplies), 2027 GFP_KERNEL); 2028 if (!pcie->supplies) 2029 return -ENOMEM; 2030 2031 pcie->supplies[i++].supply = "hvddio-pex"; 2032 pcie->supplies[i++].supply = "dvddio-pex"; 2033 pcie->supplies[i++].supply = "vddio-pex-ctl"; 2034 } else if (of_device_is_compatible(np, "nvidia,tegra124-pcie")) { 2035 pcie->num_supplies = 4; 2036 2037 pcie->supplies = devm_kcalloc(dev, pcie->num_supplies, 2038 sizeof(*pcie->supplies), 2039 GFP_KERNEL); 2040 if (!pcie->supplies) 2041 return -ENOMEM; 2042 2043 pcie->supplies[i++].supply = "avddio-pex"; 2044 pcie->supplies[i++].supply = "dvddio-pex"; 2045 pcie->supplies[i++].supply = "hvdd-pex"; 2046 pcie->supplies[i++].supply = "vddio-pex-ctl"; 2047 } else if (of_device_is_compatible(np, "nvidia,tegra30-pcie")) { 2048 bool need_pexa = false, need_pexb = false; 2049 2050 /* VDD_PEXA and AVDD_PEXA supply lanes 0 to 3 */ 2051 if (lane_mask & 0x0f) 2052 need_pexa = true; 2053 2054 /* VDD_PEXB and AVDD_PEXB supply lanes 4 to 5 */ 2055 if (lane_mask & 0x30) 2056 need_pexb = true; 2057 2058 pcie->num_supplies = 4 + (need_pexa ? 2 : 0) + 2059 (need_pexb ? 2 : 0); 2060 2061 pcie->supplies = devm_kcalloc(dev, pcie->num_supplies, 2062 sizeof(*pcie->supplies), 2063 GFP_KERNEL); 2064 if (!pcie->supplies) 2065 return -ENOMEM; 2066 2067 pcie->supplies[i++].supply = "avdd-pex-pll"; 2068 pcie->supplies[i++].supply = "hvdd-pex"; 2069 pcie->supplies[i++].supply = "vddio-pex-ctl"; 2070 pcie->supplies[i++].supply = "avdd-plle"; 2071 2072 if (need_pexa) { 2073 pcie->supplies[i++].supply = "avdd-pexa"; 2074 pcie->supplies[i++].supply = "vdd-pexa"; 2075 } 2076 2077 if (need_pexb) { 2078 pcie->supplies[i++].supply = "avdd-pexb"; 2079 pcie->supplies[i++].supply = "vdd-pexb"; 2080 } 2081 } else if (of_device_is_compatible(np, "nvidia,tegra20-pcie")) { 2082 pcie->num_supplies = 5; 2083 2084 pcie->supplies = devm_kcalloc(dev, pcie->num_supplies, 2085 sizeof(*pcie->supplies), 2086 GFP_KERNEL); 2087 if (!pcie->supplies) 2088 return -ENOMEM; 2089 2090 pcie->supplies[0].supply = "avdd-pex"; 2091 pcie->supplies[1].supply = "vdd-pex"; 2092 pcie->supplies[2].supply = "avdd-pex-pll"; 2093 pcie->supplies[3].supply = "avdd-plle"; 2094 pcie->supplies[4].supply = "vddio-pex-clk"; 2095 } 2096 2097 if (of_regulator_bulk_available(dev->of_node, pcie->supplies, 2098 pcie->num_supplies)) 2099 return devm_regulator_bulk_get(dev, pcie->num_supplies, 2100 pcie->supplies); 2101 2102 /* 2103 * If not all regulators are available for this new scheme, assume 2104 * that the device tree complies with an older version of the device 2105 * tree binding. 2106 */ 2107 dev_info(dev, "using legacy DT binding for power supplies\n"); 2108 2109 devm_kfree(dev, pcie->supplies); 2110 pcie->num_supplies = 0; 2111 2112 return tegra_pcie_get_legacy_regulators(pcie); 2113 } 2114 2115 static int tegra_pcie_parse_dt(struct tegra_pcie *pcie) 2116 { 2117 struct device *dev = pcie->dev; 2118 struct device_node *np = dev->of_node, *port; 2119 const struct tegra_pcie_soc *soc = pcie->soc; 2120 u32 lanes = 0, mask = 0; 2121 unsigned int lane = 0; 2122 int err; 2123 2124 /* parse root ports */ 2125 for_each_child_of_node(np, port) { 2126 struct tegra_pcie_port *rp; 2127 unsigned int index; 2128 u32 value; 2129 char *label; 2130 2131 err = of_pci_get_devfn(port); 2132 if (err < 0) { 2133 dev_err(dev, "failed to parse address: %d\n", err); 2134 goto err_node_put; 2135 } 2136 2137 index = PCI_SLOT(err); 2138 2139 if (index < 1 || index > soc->num_ports) { 2140 dev_err(dev, "invalid port number: %d\n", index); 2141 err = -EINVAL; 2142 goto err_node_put; 2143 } 2144 2145 index--; 2146 2147 err = of_property_read_u32(port, "nvidia,num-lanes", &value); 2148 if (err < 0) { 2149 dev_err(dev, "failed to parse # of lanes: %d\n", 2150 err); 2151 goto err_node_put; 2152 } 2153 2154 if (value > 16) { 2155 dev_err(dev, "invalid # of lanes: %u\n", value); 2156 err = -EINVAL; 2157 goto err_node_put; 2158 } 2159 2160 lanes |= value << (index << 3); 2161 2162 if (!of_device_is_available(port)) { 2163 lane += value; 2164 continue; 2165 } 2166 2167 mask |= ((1 << value) - 1) << lane; 2168 lane += value; 2169 2170 rp = devm_kzalloc(dev, sizeof(*rp), GFP_KERNEL); 2171 if (!rp) { 2172 err = -ENOMEM; 2173 goto err_node_put; 2174 } 2175 2176 err = of_address_to_resource(port, 0, &rp->regs); 2177 if (err < 0) { 2178 dev_err(dev, "failed to parse address: %d\n", err); 2179 goto err_node_put; 2180 } 2181 2182 INIT_LIST_HEAD(&rp->list); 2183 rp->index = index; 2184 rp->lanes = value; 2185 rp->pcie = pcie; 2186 rp->np = port; 2187 2188 rp->base = devm_pci_remap_cfg_resource(dev, &rp->regs); 2189 if (IS_ERR(rp->base)) { 2190 err = PTR_ERR(rp->base); 2191 goto err_node_put; 2192 } 2193 2194 label = devm_kasprintf(dev, GFP_KERNEL, "pex-reset-%u", index); 2195 if (!label) { 2196 err = -ENOMEM; 2197 goto err_node_put; 2198 } 2199 2200 /* 2201 * Returns -ENOENT if reset-gpios property is not populated 2202 * and in this case fall back to using AFI per port register 2203 * to toggle PERST# SFIO line. 2204 */ 2205 rp->reset_gpio = devm_gpiod_get_from_of_node(dev, port, 2206 "reset-gpios", 0, 2207 GPIOD_OUT_LOW, 2208 label); 2209 if (IS_ERR(rp->reset_gpio)) { 2210 if (PTR_ERR(rp->reset_gpio) == -ENOENT) { 2211 rp->reset_gpio = NULL; 2212 } else { 2213 dev_err(dev, "failed to get reset GPIO: %ld\n", 2214 PTR_ERR(rp->reset_gpio)); 2215 err = PTR_ERR(rp->reset_gpio); 2216 goto err_node_put; 2217 } 2218 } 2219 2220 list_add_tail(&rp->list, &pcie->ports); 2221 } 2222 2223 err = tegra_pcie_get_xbar_config(pcie, lanes, &pcie->xbar_config); 2224 if (err < 0) { 2225 dev_err(dev, "invalid lane configuration\n"); 2226 return err; 2227 } 2228 2229 err = tegra_pcie_get_regulators(pcie, mask); 2230 if (err < 0) 2231 return err; 2232 2233 return 0; 2234 2235 err_node_put: 2236 of_node_put(port); 2237 return err; 2238 } 2239 2240 /* 2241 * FIXME: If there are no PCIe cards attached, then calling this function 2242 * can result in the increase of the bootup time as there are big timeout 2243 * loops. 2244 */ 2245 #define TEGRA_PCIE_LINKUP_TIMEOUT 200 /* up to 1.2 seconds */ 2246 static bool tegra_pcie_port_check_link(struct tegra_pcie_port *port) 2247 { 2248 struct device *dev = port->pcie->dev; 2249 unsigned int retries = 3; 2250 unsigned long value; 2251 2252 /* override presence detection */ 2253 value = readl(port->base + RP_PRIV_MISC); 2254 value &= ~RP_PRIV_MISC_PRSNT_MAP_EP_ABSNT; 2255 value |= RP_PRIV_MISC_PRSNT_MAP_EP_PRSNT; 2256 writel(value, port->base + RP_PRIV_MISC); 2257 2258 do { 2259 unsigned int timeout = TEGRA_PCIE_LINKUP_TIMEOUT; 2260 2261 do { 2262 value = readl(port->base + RP_VEND_XP); 2263 2264 if (value & RP_VEND_XP_DL_UP) 2265 break; 2266 2267 usleep_range(1000, 2000); 2268 } while (--timeout); 2269 2270 if (!timeout) { 2271 dev_dbg(dev, "link %u down, retrying\n", port->index); 2272 goto retry; 2273 } 2274 2275 timeout = TEGRA_PCIE_LINKUP_TIMEOUT; 2276 2277 do { 2278 value = readl(port->base + RP_LINK_CONTROL_STATUS); 2279 2280 if (value & RP_LINK_CONTROL_STATUS_DL_LINK_ACTIVE) 2281 return true; 2282 2283 usleep_range(1000, 2000); 2284 } while (--timeout); 2285 2286 retry: 2287 tegra_pcie_port_reset(port); 2288 } while (--retries); 2289 2290 return false; 2291 } 2292 2293 static void tegra_pcie_change_link_speed(struct tegra_pcie *pcie) 2294 { 2295 struct device *dev = pcie->dev; 2296 struct tegra_pcie_port *port; 2297 ktime_t deadline; 2298 u32 value; 2299 2300 list_for_each_entry(port, &pcie->ports, list) { 2301 /* 2302 * "Supported Link Speeds Vector" in "Link Capabilities 2" 2303 * is not supported by Tegra. tegra_pcie_change_link_speed() 2304 * is called only for Tegra chips which support Gen2. 2305 * So there no harm if supported link speed is not verified. 2306 */ 2307 value = readl(port->base + RP_LINK_CONTROL_STATUS_2); 2308 value &= ~PCI_EXP_LNKSTA_CLS; 2309 value |= PCI_EXP_LNKSTA_CLS_5_0GB; 2310 writel(value, port->base + RP_LINK_CONTROL_STATUS_2); 2311 2312 /* 2313 * Poll until link comes back from recovery to avoid race 2314 * condition. 2315 */ 2316 deadline = ktime_add_us(ktime_get(), LINK_RETRAIN_TIMEOUT); 2317 2318 while (ktime_before(ktime_get(), deadline)) { 2319 value = readl(port->base + RP_LINK_CONTROL_STATUS); 2320 if ((value & PCI_EXP_LNKSTA_LT) == 0) 2321 break; 2322 2323 usleep_range(2000, 3000); 2324 } 2325 2326 if (value & PCI_EXP_LNKSTA_LT) 2327 dev_warn(dev, "PCIe port %u link is in recovery\n", 2328 port->index); 2329 2330 /* Retrain the link */ 2331 value = readl(port->base + RP_LINK_CONTROL_STATUS); 2332 value |= PCI_EXP_LNKCTL_RL; 2333 writel(value, port->base + RP_LINK_CONTROL_STATUS); 2334 2335 deadline = ktime_add_us(ktime_get(), LINK_RETRAIN_TIMEOUT); 2336 2337 while (ktime_before(ktime_get(), deadline)) { 2338 value = readl(port->base + RP_LINK_CONTROL_STATUS); 2339 if ((value & PCI_EXP_LNKSTA_LT) == 0) 2340 break; 2341 2342 usleep_range(2000, 3000); 2343 } 2344 2345 if (value & PCI_EXP_LNKSTA_LT) 2346 dev_err(dev, "failed to retrain link of port %u\n", 2347 port->index); 2348 } 2349 } 2350 2351 static void tegra_pcie_enable_ports(struct tegra_pcie *pcie) 2352 { 2353 struct device *dev = pcie->dev; 2354 struct tegra_pcie_port *port, *tmp; 2355 2356 list_for_each_entry_safe(port, tmp, &pcie->ports, list) { 2357 dev_info(dev, "probing port %u, using %u lanes\n", 2358 port->index, port->lanes); 2359 2360 tegra_pcie_port_enable(port); 2361 } 2362 2363 /* Start LTSSM from Tegra side */ 2364 reset_control_deassert(pcie->pcie_xrst); 2365 2366 list_for_each_entry_safe(port, tmp, &pcie->ports, list) { 2367 if (tegra_pcie_port_check_link(port)) 2368 continue; 2369 2370 dev_info(dev, "link %u down, ignoring\n", port->index); 2371 2372 tegra_pcie_port_disable(port); 2373 tegra_pcie_port_free(port); 2374 } 2375 2376 if (pcie->soc->has_gen2) 2377 tegra_pcie_change_link_speed(pcie); 2378 } 2379 2380 static void tegra_pcie_disable_ports(struct tegra_pcie *pcie) 2381 { 2382 struct tegra_pcie_port *port, *tmp; 2383 2384 reset_control_assert(pcie->pcie_xrst); 2385 2386 list_for_each_entry_safe(port, tmp, &pcie->ports, list) 2387 tegra_pcie_port_disable(port); 2388 } 2389 2390 static const struct tegra_pcie_port_soc tegra20_pcie_ports[] = { 2391 { .pme.turnoff_bit = 0, .pme.ack_bit = 5 }, 2392 { .pme.turnoff_bit = 8, .pme.ack_bit = 10 }, 2393 }; 2394 2395 static const struct tegra_pcie_soc tegra20_pcie = { 2396 .num_ports = 2, 2397 .ports = tegra20_pcie_ports, 2398 .msi_base_shift = 0, 2399 .pads_pll_ctl = PADS_PLL_CTL_TEGRA20, 2400 .tx_ref_sel = PADS_PLL_CTL_TXCLKREF_DIV10, 2401 .pads_refclk_cfg0 = 0xfa5cfa5c, 2402 .has_pex_clkreq_en = false, 2403 .has_pex_bias_ctrl = false, 2404 .has_intr_prsnt_sense = false, 2405 .has_cml_clk = false, 2406 .has_gen2 = false, 2407 .force_pca_enable = false, 2408 .program_uphy = true, 2409 .update_clamp_threshold = false, 2410 .program_deskew_time = false, 2411 .update_fc_timer = false, 2412 .has_cache_bars = true, 2413 .ectl.enable = false, 2414 }; 2415 2416 static const struct tegra_pcie_port_soc tegra30_pcie_ports[] = { 2417 { .pme.turnoff_bit = 0, .pme.ack_bit = 5 }, 2418 { .pme.turnoff_bit = 8, .pme.ack_bit = 10 }, 2419 { .pme.turnoff_bit = 16, .pme.ack_bit = 18 }, 2420 }; 2421 2422 static const struct tegra_pcie_soc tegra30_pcie = { 2423 .num_ports = 3, 2424 .ports = tegra30_pcie_ports, 2425 .msi_base_shift = 8, 2426 .afi_pex2_ctrl = 0x128, 2427 .pads_pll_ctl = PADS_PLL_CTL_TEGRA30, 2428 .tx_ref_sel = PADS_PLL_CTL_TXCLKREF_BUF_EN, 2429 .pads_refclk_cfg0 = 0xfa5cfa5c, 2430 .pads_refclk_cfg1 = 0xfa5cfa5c, 2431 .has_pex_clkreq_en = true, 2432 .has_pex_bias_ctrl = true, 2433 .has_intr_prsnt_sense = true, 2434 .has_cml_clk = true, 2435 .has_gen2 = false, 2436 .force_pca_enable = false, 2437 .program_uphy = true, 2438 .update_clamp_threshold = false, 2439 .program_deskew_time = false, 2440 .update_fc_timer = false, 2441 .has_cache_bars = false, 2442 .ectl.enable = false, 2443 }; 2444 2445 static const struct tegra_pcie_soc tegra124_pcie = { 2446 .num_ports = 2, 2447 .ports = tegra20_pcie_ports, 2448 .msi_base_shift = 8, 2449 .pads_pll_ctl = PADS_PLL_CTL_TEGRA30, 2450 .tx_ref_sel = PADS_PLL_CTL_TXCLKREF_BUF_EN, 2451 .pads_refclk_cfg0 = 0x44ac44ac, 2452 .has_pex_clkreq_en = true, 2453 .has_pex_bias_ctrl = true, 2454 .has_intr_prsnt_sense = true, 2455 .has_cml_clk = true, 2456 .has_gen2 = true, 2457 .force_pca_enable = false, 2458 .program_uphy = true, 2459 .update_clamp_threshold = true, 2460 .program_deskew_time = false, 2461 .update_fc_timer = false, 2462 .has_cache_bars = false, 2463 .ectl.enable = false, 2464 }; 2465 2466 static const struct tegra_pcie_soc tegra210_pcie = { 2467 .num_ports = 2, 2468 .ports = tegra20_pcie_ports, 2469 .msi_base_shift = 8, 2470 .pads_pll_ctl = PADS_PLL_CTL_TEGRA30, 2471 .tx_ref_sel = PADS_PLL_CTL_TXCLKREF_BUF_EN, 2472 .pads_refclk_cfg0 = 0x90b890b8, 2473 /* FC threshold is bit[25:18] */ 2474 .update_fc_threshold = 0x01800000, 2475 .has_pex_clkreq_en = true, 2476 .has_pex_bias_ctrl = true, 2477 .has_intr_prsnt_sense = true, 2478 .has_cml_clk = true, 2479 .has_gen2 = true, 2480 .force_pca_enable = true, 2481 .program_uphy = true, 2482 .update_clamp_threshold = true, 2483 .program_deskew_time = true, 2484 .update_fc_timer = true, 2485 .has_cache_bars = false, 2486 .ectl = { 2487 .regs = { 2488 .rp_ectl_2_r1 = 0x0000000f, 2489 .rp_ectl_4_r1 = 0x00000067, 2490 .rp_ectl_5_r1 = 0x55010000, 2491 .rp_ectl_6_r1 = 0x00000001, 2492 .rp_ectl_2_r2 = 0x0000008f, 2493 .rp_ectl_4_r2 = 0x000000c7, 2494 .rp_ectl_5_r2 = 0x55010000, 2495 .rp_ectl_6_r2 = 0x00000001, 2496 }, 2497 .enable = true, 2498 }, 2499 }; 2500 2501 static const struct tegra_pcie_port_soc tegra186_pcie_ports[] = { 2502 { .pme.turnoff_bit = 0, .pme.ack_bit = 5 }, 2503 { .pme.turnoff_bit = 8, .pme.ack_bit = 10 }, 2504 { .pme.turnoff_bit = 12, .pme.ack_bit = 14 }, 2505 }; 2506 2507 static const struct tegra_pcie_soc tegra186_pcie = { 2508 .num_ports = 3, 2509 .ports = tegra186_pcie_ports, 2510 .msi_base_shift = 8, 2511 .afi_pex2_ctrl = 0x19c, 2512 .pads_pll_ctl = PADS_PLL_CTL_TEGRA30, 2513 .tx_ref_sel = PADS_PLL_CTL_TXCLKREF_BUF_EN, 2514 .pads_refclk_cfg0 = 0x80b880b8, 2515 .pads_refclk_cfg1 = 0x000480b8, 2516 .has_pex_clkreq_en = true, 2517 .has_pex_bias_ctrl = true, 2518 .has_intr_prsnt_sense = true, 2519 .has_cml_clk = false, 2520 .has_gen2 = true, 2521 .force_pca_enable = false, 2522 .program_uphy = false, 2523 .update_clamp_threshold = false, 2524 .program_deskew_time = false, 2525 .update_fc_timer = false, 2526 .has_cache_bars = false, 2527 .ectl.enable = false, 2528 }; 2529 2530 static const struct of_device_id tegra_pcie_of_match[] = { 2531 { .compatible = "nvidia,tegra186-pcie", .data = &tegra186_pcie }, 2532 { .compatible = "nvidia,tegra210-pcie", .data = &tegra210_pcie }, 2533 { .compatible = "nvidia,tegra124-pcie", .data = &tegra124_pcie }, 2534 { .compatible = "nvidia,tegra30-pcie", .data = &tegra30_pcie }, 2535 { .compatible = "nvidia,tegra20-pcie", .data = &tegra20_pcie }, 2536 { }, 2537 }; 2538 MODULE_DEVICE_TABLE(of, tegra_pcie_of_match); 2539 2540 static void *tegra_pcie_ports_seq_start(struct seq_file *s, loff_t *pos) 2541 { 2542 struct tegra_pcie *pcie = s->private; 2543 2544 if (list_empty(&pcie->ports)) 2545 return NULL; 2546 2547 seq_puts(s, "Index Status\n"); 2548 2549 return seq_list_start(&pcie->ports, *pos); 2550 } 2551 2552 static void *tegra_pcie_ports_seq_next(struct seq_file *s, void *v, loff_t *pos) 2553 { 2554 struct tegra_pcie *pcie = s->private; 2555 2556 return seq_list_next(v, &pcie->ports, pos); 2557 } 2558 2559 static void tegra_pcie_ports_seq_stop(struct seq_file *s, void *v) 2560 { 2561 } 2562 2563 static int tegra_pcie_ports_seq_show(struct seq_file *s, void *v) 2564 { 2565 bool up = false, active = false; 2566 struct tegra_pcie_port *port; 2567 unsigned int value; 2568 2569 port = list_entry(v, struct tegra_pcie_port, list); 2570 2571 value = readl(port->base + RP_VEND_XP); 2572 2573 if (value & RP_VEND_XP_DL_UP) 2574 up = true; 2575 2576 value = readl(port->base + RP_LINK_CONTROL_STATUS); 2577 2578 if (value & RP_LINK_CONTROL_STATUS_DL_LINK_ACTIVE) 2579 active = true; 2580 2581 seq_printf(s, "%2u ", port->index); 2582 2583 if (up) 2584 seq_puts(s, "up"); 2585 2586 if (active) { 2587 if (up) 2588 seq_puts(s, ", "); 2589 2590 seq_puts(s, "active"); 2591 } 2592 2593 seq_puts(s, "\n"); 2594 return 0; 2595 } 2596 2597 static const struct seq_operations tegra_pcie_ports_sops = { 2598 .start = tegra_pcie_ports_seq_start, 2599 .next = tegra_pcie_ports_seq_next, 2600 .stop = tegra_pcie_ports_seq_stop, 2601 .show = tegra_pcie_ports_seq_show, 2602 }; 2603 2604 DEFINE_SEQ_ATTRIBUTE(tegra_pcie_ports); 2605 2606 static void tegra_pcie_debugfs_exit(struct tegra_pcie *pcie) 2607 { 2608 debugfs_remove_recursive(pcie->debugfs); 2609 pcie->debugfs = NULL; 2610 } 2611 2612 static void tegra_pcie_debugfs_init(struct tegra_pcie *pcie) 2613 { 2614 pcie->debugfs = debugfs_create_dir("pcie", NULL); 2615 2616 debugfs_create_file("ports", S_IFREG | S_IRUGO, pcie->debugfs, pcie, 2617 &tegra_pcie_ports_fops); 2618 } 2619 2620 static int tegra_pcie_probe(struct platform_device *pdev) 2621 { 2622 struct device *dev = &pdev->dev; 2623 struct pci_host_bridge *host; 2624 struct tegra_pcie *pcie; 2625 int err; 2626 2627 host = devm_pci_alloc_host_bridge(dev, sizeof(*pcie)); 2628 if (!host) 2629 return -ENOMEM; 2630 2631 pcie = pci_host_bridge_priv(host); 2632 host->sysdata = pcie; 2633 platform_set_drvdata(pdev, pcie); 2634 2635 pcie->soc = of_device_get_match_data(dev); 2636 INIT_LIST_HEAD(&pcie->ports); 2637 pcie->dev = dev; 2638 2639 err = tegra_pcie_parse_dt(pcie); 2640 if (err < 0) 2641 return err; 2642 2643 err = tegra_pcie_get_resources(pcie); 2644 if (err < 0) { 2645 dev_err(dev, "failed to request resources: %d\n", err); 2646 return err; 2647 } 2648 2649 err = tegra_pcie_msi_setup(pcie); 2650 if (err < 0) { 2651 dev_err(dev, "failed to enable MSI support: %d\n", err); 2652 goto put_resources; 2653 } 2654 2655 pm_runtime_enable(pcie->dev); 2656 err = pm_runtime_get_sync(pcie->dev); 2657 if (err < 0) { 2658 dev_err(dev, "fail to enable pcie controller: %d\n", err); 2659 goto pm_runtime_put; 2660 } 2661 2662 host->ops = &tegra_pcie_ops; 2663 host->map_irq = tegra_pcie_map_irq; 2664 2665 err = pci_host_probe(host); 2666 if (err < 0) { 2667 dev_err(dev, "failed to register host: %d\n", err); 2668 goto pm_runtime_put; 2669 } 2670 2671 if (IS_ENABLED(CONFIG_DEBUG_FS)) 2672 tegra_pcie_debugfs_init(pcie); 2673 2674 return 0; 2675 2676 pm_runtime_put: 2677 pm_runtime_put_sync(pcie->dev); 2678 pm_runtime_disable(pcie->dev); 2679 tegra_pcie_msi_teardown(pcie); 2680 put_resources: 2681 tegra_pcie_put_resources(pcie); 2682 return err; 2683 } 2684 2685 static int tegra_pcie_remove(struct platform_device *pdev) 2686 { 2687 struct tegra_pcie *pcie = platform_get_drvdata(pdev); 2688 struct pci_host_bridge *host = pci_host_bridge_from_priv(pcie); 2689 struct tegra_pcie_port *port, *tmp; 2690 2691 if (IS_ENABLED(CONFIG_DEBUG_FS)) 2692 tegra_pcie_debugfs_exit(pcie); 2693 2694 pci_stop_root_bus(host->bus); 2695 pci_remove_root_bus(host->bus); 2696 pm_runtime_put_sync(pcie->dev); 2697 pm_runtime_disable(pcie->dev); 2698 2699 if (IS_ENABLED(CONFIG_PCI_MSI)) 2700 tegra_pcie_msi_teardown(pcie); 2701 2702 tegra_pcie_put_resources(pcie); 2703 2704 list_for_each_entry_safe(port, tmp, &pcie->ports, list) 2705 tegra_pcie_port_free(port); 2706 2707 return 0; 2708 } 2709 2710 static int __maybe_unused tegra_pcie_pm_suspend(struct device *dev) 2711 { 2712 struct tegra_pcie *pcie = dev_get_drvdata(dev); 2713 struct tegra_pcie_port *port; 2714 int err; 2715 2716 list_for_each_entry(port, &pcie->ports, list) 2717 tegra_pcie_pme_turnoff(port); 2718 2719 tegra_pcie_disable_ports(pcie); 2720 2721 /* 2722 * AFI_INTR is unmasked in tegra_pcie_enable_controller(), mask it to 2723 * avoid unwanted interrupts raised by AFI after pex_rst is asserted. 2724 */ 2725 tegra_pcie_disable_interrupts(pcie); 2726 2727 if (pcie->soc->program_uphy) { 2728 err = tegra_pcie_phy_power_off(pcie); 2729 if (err < 0) 2730 dev_err(dev, "failed to power off PHY(s): %d\n", err); 2731 } 2732 2733 reset_control_assert(pcie->pex_rst); 2734 clk_disable_unprepare(pcie->pex_clk); 2735 2736 if (IS_ENABLED(CONFIG_PCI_MSI)) 2737 tegra_pcie_disable_msi(pcie); 2738 2739 pinctrl_pm_select_idle_state(dev); 2740 tegra_pcie_power_off(pcie); 2741 2742 return 0; 2743 } 2744 2745 static int __maybe_unused tegra_pcie_pm_resume(struct device *dev) 2746 { 2747 struct tegra_pcie *pcie = dev_get_drvdata(dev); 2748 int err; 2749 2750 err = tegra_pcie_power_on(pcie); 2751 if (err) { 2752 dev_err(dev, "tegra pcie power on fail: %d\n", err); 2753 return err; 2754 } 2755 2756 err = pinctrl_pm_select_default_state(dev); 2757 if (err < 0) { 2758 dev_err(dev, "failed to disable PCIe IO DPD: %d\n", err); 2759 goto poweroff; 2760 } 2761 2762 tegra_pcie_enable_controller(pcie); 2763 tegra_pcie_setup_translations(pcie); 2764 2765 if (IS_ENABLED(CONFIG_PCI_MSI)) 2766 tegra_pcie_enable_msi(pcie); 2767 2768 err = clk_prepare_enable(pcie->pex_clk); 2769 if (err) { 2770 dev_err(dev, "failed to enable PEX clock: %d\n", err); 2771 goto pex_dpd_enable; 2772 } 2773 2774 reset_control_deassert(pcie->pex_rst); 2775 2776 if (pcie->soc->program_uphy) { 2777 err = tegra_pcie_phy_power_on(pcie); 2778 if (err < 0) { 2779 dev_err(dev, "failed to power on PHY(s): %d\n", err); 2780 goto disable_pex_clk; 2781 } 2782 } 2783 2784 tegra_pcie_apply_pad_settings(pcie); 2785 tegra_pcie_enable_ports(pcie); 2786 2787 return 0; 2788 2789 disable_pex_clk: 2790 reset_control_assert(pcie->pex_rst); 2791 clk_disable_unprepare(pcie->pex_clk); 2792 pex_dpd_enable: 2793 pinctrl_pm_select_idle_state(dev); 2794 poweroff: 2795 tegra_pcie_power_off(pcie); 2796 2797 return err; 2798 } 2799 2800 static const struct dev_pm_ops tegra_pcie_pm_ops = { 2801 SET_RUNTIME_PM_OPS(tegra_pcie_pm_suspend, tegra_pcie_pm_resume, NULL) 2802 SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(tegra_pcie_pm_suspend, 2803 tegra_pcie_pm_resume) 2804 }; 2805 2806 static struct platform_driver tegra_pcie_driver = { 2807 .driver = { 2808 .name = "tegra-pcie", 2809 .of_match_table = tegra_pcie_of_match, 2810 .suppress_bind_attrs = true, 2811 .pm = &tegra_pcie_pm_ops, 2812 }, 2813 .probe = tegra_pcie_probe, 2814 .remove = tegra_pcie_remove, 2815 }; 2816 module_platform_driver(tegra_pcie_driver); 2817 MODULE_LICENSE("GPL"); 2818