1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * PCIe host controller driver for Tegra SoCs
4 *
5 * Copyright (c) 2010, CompuLab, Ltd.
6 * Author: Mike Rapoport <mike@compulab.co.il>
7 *
8 * Based on NVIDIA PCIe driver
9 * Copyright (c) 2008-2009, NVIDIA Corporation.
10 *
11 * Bits taken from arch/arm/mach-dove/pcie.c
12 *
13 * Author: Thierry Reding <treding@nvidia.com>
14 */
15
16 #include <linux/clk.h>
17 #include <linux/debugfs.h>
18 #include <linux/delay.h>
19 #include <linux/export.h>
20 #include <linux/gpio/consumer.h>
21 #include <linux/interrupt.h>
22 #include <linux/iopoll.h>
23 #include <linux/irq.h>
24 #include <linux/irqchip/chained_irq.h>
25 #include <linux/irqdomain.h>
26 #include <linux/kernel.h>
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/msi.h>
30 #include <linux/of_address.h>
31 #include <linux/of_pci.h>
32 #include <linux/of_platform.h>
33 #include <linux/pci.h>
34 #include <linux/phy/phy.h>
35 #include <linux/pinctrl/consumer.h>
36 #include <linux/platform_device.h>
37 #include <linux/reset.h>
38 #include <linux/sizes.h>
39 #include <linux/slab.h>
40 #include <linux/vmalloc.h>
41 #include <linux/regulator/consumer.h>
42
43 #include <soc/tegra/cpuidle.h>
44 #include <soc/tegra/pmc.h>
45
46 #include "../pci.h"
47
48 #define INT_PCI_MSI_NR (8 * 32)
49
50 /* register definitions */
51
52 #define AFI_AXI_BAR0_SZ 0x00
53 #define AFI_AXI_BAR1_SZ 0x04
54 #define AFI_AXI_BAR2_SZ 0x08
55 #define AFI_AXI_BAR3_SZ 0x0c
56 #define AFI_AXI_BAR4_SZ 0x10
57 #define AFI_AXI_BAR5_SZ 0x14
58
59 #define AFI_AXI_BAR0_START 0x18
60 #define AFI_AXI_BAR1_START 0x1c
61 #define AFI_AXI_BAR2_START 0x20
62 #define AFI_AXI_BAR3_START 0x24
63 #define AFI_AXI_BAR4_START 0x28
64 #define AFI_AXI_BAR5_START 0x2c
65
66 #define AFI_FPCI_BAR0 0x30
67 #define AFI_FPCI_BAR1 0x34
68 #define AFI_FPCI_BAR2 0x38
69 #define AFI_FPCI_BAR3 0x3c
70 #define AFI_FPCI_BAR4 0x40
71 #define AFI_FPCI_BAR5 0x44
72
73 #define AFI_CACHE_BAR0_SZ 0x48
74 #define AFI_CACHE_BAR0_ST 0x4c
75 #define AFI_CACHE_BAR1_SZ 0x50
76 #define AFI_CACHE_BAR1_ST 0x54
77
78 #define AFI_MSI_BAR_SZ 0x60
79 #define AFI_MSI_FPCI_BAR_ST 0x64
80 #define AFI_MSI_AXI_BAR_ST 0x68
81
82 #define AFI_MSI_VEC(x) (0x6c + ((x) * 4))
83 #define AFI_MSI_EN_VEC(x) (0x8c + ((x) * 4))
84
85 #define AFI_CONFIGURATION 0xac
86 #define AFI_CONFIGURATION_EN_FPCI (1 << 0)
87 #define AFI_CONFIGURATION_CLKEN_OVERRIDE (1 << 31)
88
89 #define AFI_FPCI_ERROR_MASKS 0xb0
90
91 #define AFI_INTR_MASK 0xb4
92 #define AFI_INTR_MASK_INT_MASK (1 << 0)
93 #define AFI_INTR_MASK_MSI_MASK (1 << 8)
94
95 #define AFI_INTR_CODE 0xb8
96 #define AFI_INTR_CODE_MASK 0xf
97 #define AFI_INTR_INI_SLAVE_ERROR 1
98 #define AFI_INTR_INI_DECODE_ERROR 2
99 #define AFI_INTR_TARGET_ABORT 3
100 #define AFI_INTR_MASTER_ABORT 4
101 #define AFI_INTR_INVALID_WRITE 5
102 #define AFI_INTR_LEGACY 6
103 #define AFI_INTR_FPCI_DECODE_ERROR 7
104 #define AFI_INTR_AXI_DECODE_ERROR 8
105 #define AFI_INTR_FPCI_TIMEOUT 9
106 #define AFI_INTR_PE_PRSNT_SENSE 10
107 #define AFI_INTR_PE_CLKREQ_SENSE 11
108 #define AFI_INTR_CLKCLAMP_SENSE 12
109 #define AFI_INTR_RDY4PD_SENSE 13
110 #define AFI_INTR_P2P_ERROR 14
111
112 #define AFI_INTR_SIGNATURE 0xbc
113 #define AFI_UPPER_FPCI_ADDRESS 0xc0
114 #define AFI_SM_INTR_ENABLE 0xc4
115 #define AFI_SM_INTR_INTA_ASSERT (1 << 0)
116 #define AFI_SM_INTR_INTB_ASSERT (1 << 1)
117 #define AFI_SM_INTR_INTC_ASSERT (1 << 2)
118 #define AFI_SM_INTR_INTD_ASSERT (1 << 3)
119 #define AFI_SM_INTR_INTA_DEASSERT (1 << 4)
120 #define AFI_SM_INTR_INTB_DEASSERT (1 << 5)
121 #define AFI_SM_INTR_INTC_DEASSERT (1 << 6)
122 #define AFI_SM_INTR_INTD_DEASSERT (1 << 7)
123
124 #define AFI_AFI_INTR_ENABLE 0xc8
125 #define AFI_INTR_EN_INI_SLVERR (1 << 0)
126 #define AFI_INTR_EN_INI_DECERR (1 << 1)
127 #define AFI_INTR_EN_TGT_SLVERR (1 << 2)
128 #define AFI_INTR_EN_TGT_DECERR (1 << 3)
129 #define AFI_INTR_EN_TGT_WRERR (1 << 4)
130 #define AFI_INTR_EN_DFPCI_DECERR (1 << 5)
131 #define AFI_INTR_EN_AXI_DECERR (1 << 6)
132 #define AFI_INTR_EN_FPCI_TIMEOUT (1 << 7)
133 #define AFI_INTR_EN_PRSNT_SENSE (1 << 8)
134
135 #define AFI_PCIE_PME 0xf0
136
137 #define AFI_PCIE_CONFIG 0x0f8
138 #define AFI_PCIE_CONFIG_PCIE_DISABLE(x) (1 << ((x) + 1))
139 #define AFI_PCIE_CONFIG_PCIE_DISABLE_ALL 0xe
140 #define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_MASK (0xf << 20)
141 #define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_SINGLE (0x0 << 20)
142 #define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_420 (0x0 << 20)
143 #define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_X2_X1 (0x0 << 20)
144 #define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_401 (0x0 << 20)
145 #define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_DUAL (0x1 << 20)
146 #define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_222 (0x1 << 20)
147 #define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_X4_X1 (0x1 << 20)
148 #define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_211 (0x1 << 20)
149 #define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_411 (0x2 << 20)
150 #define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_111 (0x2 << 20)
151 #define AFI_PCIE_CONFIG_PCIE_CLKREQ_GPIO(x) (1 << ((x) + 29))
152 #define AFI_PCIE_CONFIG_PCIE_CLKREQ_GPIO_ALL (0x7 << 29)
153
154 #define AFI_FUSE 0x104
155 #define AFI_FUSE_PCIE_T0_GEN2_DIS (1 << 2)
156
157 #define AFI_PEX0_CTRL 0x110
158 #define AFI_PEX1_CTRL 0x118
159 #define AFI_PEX_CTRL_RST (1 << 0)
160 #define AFI_PEX_CTRL_CLKREQ_EN (1 << 1)
161 #define AFI_PEX_CTRL_REFCLK_EN (1 << 3)
162 #define AFI_PEX_CTRL_OVERRIDE_EN (1 << 4)
163
164 #define AFI_PLLE_CONTROL 0x160
165 #define AFI_PLLE_CONTROL_BYPASS_PADS2PLLE_CONTROL (1 << 9)
166 #define AFI_PLLE_CONTROL_PADS2PLLE_CONTROL_EN (1 << 1)
167
168 #define AFI_PEXBIAS_CTRL_0 0x168
169
170 #define RP_ECTL_2_R1 0x00000e84
171 #define RP_ECTL_2_R1_RX_CTLE_1C_MASK 0xffff
172
173 #define RP_ECTL_4_R1 0x00000e8c
174 #define RP_ECTL_4_R1_RX_CDR_CTRL_1C_MASK (0xffff << 16)
175 #define RP_ECTL_4_R1_RX_CDR_CTRL_1C_SHIFT 16
176
177 #define RP_ECTL_5_R1 0x00000e90
178 #define RP_ECTL_5_R1_RX_EQ_CTRL_L_1C_MASK 0xffffffff
179
180 #define RP_ECTL_6_R1 0x00000e94
181 #define RP_ECTL_6_R1_RX_EQ_CTRL_H_1C_MASK 0xffffffff
182
183 #define RP_ECTL_2_R2 0x00000ea4
184 #define RP_ECTL_2_R2_RX_CTLE_1C_MASK 0xffff
185
186 #define RP_ECTL_4_R2 0x00000eac
187 #define RP_ECTL_4_R2_RX_CDR_CTRL_1C_MASK (0xffff << 16)
188 #define RP_ECTL_4_R2_RX_CDR_CTRL_1C_SHIFT 16
189
190 #define RP_ECTL_5_R2 0x00000eb0
191 #define RP_ECTL_5_R2_RX_EQ_CTRL_L_1C_MASK 0xffffffff
192
193 #define RP_ECTL_6_R2 0x00000eb4
194 #define RP_ECTL_6_R2_RX_EQ_CTRL_H_1C_MASK 0xffffffff
195
196 #define RP_VEND_XP 0x00000f00
197 #define RP_VEND_XP_DL_UP (1 << 30)
198 #define RP_VEND_XP_OPPORTUNISTIC_ACK (1 << 27)
199 #define RP_VEND_XP_OPPORTUNISTIC_UPDATEFC (1 << 28)
200 #define RP_VEND_XP_UPDATE_FC_THRESHOLD_MASK (0xff << 18)
201
202 #define RP_VEND_CTL0 0x00000f44
203 #define RP_VEND_CTL0_DSK_RST_PULSE_WIDTH_MASK (0xf << 12)
204 #define RP_VEND_CTL0_DSK_RST_PULSE_WIDTH (0x9 << 12)
205
206 #define RP_VEND_CTL1 0x00000f48
207 #define RP_VEND_CTL1_ERPT (1 << 13)
208
209 #define RP_VEND_XP_BIST 0x00000f4c
210 #define RP_VEND_XP_BIST_GOTO_L1_L2_AFTER_DLLP_DONE (1 << 28)
211
212 #define RP_VEND_CTL2 0x00000fa8
213 #define RP_VEND_CTL2_PCA_ENABLE (1 << 7)
214
215 #define RP_PRIV_MISC 0x00000fe0
216 #define RP_PRIV_MISC_PRSNT_MAP_EP_PRSNT (0xe << 0)
217 #define RP_PRIV_MISC_PRSNT_MAP_EP_ABSNT (0xf << 0)
218 #define RP_PRIV_MISC_CTLR_CLK_CLAMP_THRESHOLD_MASK (0x7f << 16)
219 #define RP_PRIV_MISC_CTLR_CLK_CLAMP_THRESHOLD (0xf << 16)
220 #define RP_PRIV_MISC_CTLR_CLK_CLAMP_ENABLE (1 << 23)
221 #define RP_PRIV_MISC_TMS_CLK_CLAMP_THRESHOLD_MASK (0x7f << 24)
222 #define RP_PRIV_MISC_TMS_CLK_CLAMP_THRESHOLD (0xf << 24)
223 #define RP_PRIV_MISC_TMS_CLK_CLAMP_ENABLE (1 << 31)
224
225 #define RP_LINK_CONTROL_STATUS 0x00000090
226 #define RP_LINK_CONTROL_STATUS_DL_LINK_ACTIVE 0x20000000
227 #define RP_LINK_CONTROL_STATUS_LINKSTAT_MASK 0x3fff0000
228
229 #define RP_LINK_CONTROL_STATUS_2 0x000000b0
230
231 #define PADS_CTL_SEL 0x0000009c
232
233 #define PADS_CTL 0x000000a0
234 #define PADS_CTL_IDDQ_1L (1 << 0)
235 #define PADS_CTL_TX_DATA_EN_1L (1 << 6)
236 #define PADS_CTL_RX_DATA_EN_1L (1 << 10)
237
238 #define PADS_PLL_CTL_TEGRA20 0x000000b8
239 #define PADS_PLL_CTL_TEGRA30 0x000000b4
240 #define PADS_PLL_CTL_RST_B4SM (1 << 1)
241 #define PADS_PLL_CTL_LOCKDET (1 << 8)
242 #define PADS_PLL_CTL_REFCLK_MASK (0x3 << 16)
243 #define PADS_PLL_CTL_REFCLK_INTERNAL_CML (0 << 16)
244 #define PADS_PLL_CTL_REFCLK_INTERNAL_CMOS (1 << 16)
245 #define PADS_PLL_CTL_REFCLK_EXTERNAL (2 << 16)
246 #define PADS_PLL_CTL_TXCLKREF_MASK (0x1 << 20)
247 #define PADS_PLL_CTL_TXCLKREF_DIV10 (0 << 20)
248 #define PADS_PLL_CTL_TXCLKREF_DIV5 (1 << 20)
249 #define PADS_PLL_CTL_TXCLKREF_BUF_EN (1 << 22)
250
251 #define PADS_REFCLK_CFG0 0x000000c8
252 #define PADS_REFCLK_CFG1 0x000000cc
253 #define PADS_REFCLK_BIAS 0x000000d0
254
255 /*
256 * Fields in PADS_REFCLK_CFG*. Those registers form an array of 16-bit
257 * entries, one entry per PCIe port. These field definitions and desired
258 * values aren't in the TRM, but do come from NVIDIA.
259 */
260 #define PADS_REFCLK_CFG_TERM_SHIFT 2 /* 6:2 */
261 #define PADS_REFCLK_CFG_E_TERM_SHIFT 7
262 #define PADS_REFCLK_CFG_PREDI_SHIFT 8 /* 11:8 */
263 #define PADS_REFCLK_CFG_DRVI_SHIFT 12 /* 15:12 */
264
265 #define PME_ACK_TIMEOUT 10000
266 #define LINK_RETRAIN_TIMEOUT 100000 /* in usec */
267
268 struct tegra_msi {
269 DECLARE_BITMAP(used, INT_PCI_MSI_NR);
270 struct irq_domain *domain;
271 struct mutex map_lock;
272 spinlock_t mask_lock;
273 void *virt;
274 dma_addr_t phys;
275 int irq;
276 };
277
278 /* used to differentiate between Tegra SoC generations */
279 struct tegra_pcie_port_soc {
280 struct {
281 u8 turnoff_bit;
282 u8 ack_bit;
283 } pme;
284 };
285
286 struct tegra_pcie_soc {
287 unsigned int num_ports;
288 const struct tegra_pcie_port_soc *ports;
289 unsigned int msi_base_shift;
290 unsigned long afi_pex2_ctrl;
291 u32 pads_pll_ctl;
292 u32 tx_ref_sel;
293 u32 pads_refclk_cfg0;
294 u32 pads_refclk_cfg1;
295 u32 update_fc_threshold;
296 bool has_pex_clkreq_en;
297 bool has_pex_bias_ctrl;
298 bool has_intr_prsnt_sense;
299 bool has_cml_clk;
300 bool has_gen2;
301 bool force_pca_enable;
302 bool program_uphy;
303 bool update_clamp_threshold;
304 bool program_deskew_time;
305 bool update_fc_timer;
306 bool has_cache_bars;
307 struct {
308 struct {
309 u32 rp_ectl_2_r1;
310 u32 rp_ectl_4_r1;
311 u32 rp_ectl_5_r1;
312 u32 rp_ectl_6_r1;
313 u32 rp_ectl_2_r2;
314 u32 rp_ectl_4_r2;
315 u32 rp_ectl_5_r2;
316 u32 rp_ectl_6_r2;
317 } regs;
318 bool enable;
319 } ectl;
320 };
321
322 struct tegra_pcie {
323 struct device *dev;
324
325 void __iomem *pads;
326 void __iomem *afi;
327 void __iomem *cfg;
328 int irq;
329
330 struct resource cs;
331
332 struct clk *pex_clk;
333 struct clk *afi_clk;
334 struct clk *pll_e;
335 struct clk *cml_clk;
336
337 struct reset_control *pex_rst;
338 struct reset_control *afi_rst;
339 struct reset_control *pcie_xrst;
340
341 bool legacy_phy;
342 struct phy *phy;
343
344 struct tegra_msi msi;
345
346 struct list_head ports;
347 u32 xbar_config;
348
349 struct regulator_bulk_data *supplies;
350 unsigned int num_supplies;
351
352 const struct tegra_pcie_soc *soc;
353 struct dentry *debugfs;
354 };
355
msi_to_pcie(struct tegra_msi * msi)356 static inline struct tegra_pcie *msi_to_pcie(struct tegra_msi *msi)
357 {
358 return container_of(msi, struct tegra_pcie, msi);
359 }
360
361 struct tegra_pcie_port {
362 struct tegra_pcie *pcie;
363 struct device_node *np;
364 struct list_head list;
365 struct resource regs;
366 void __iomem *base;
367 unsigned int index;
368 unsigned int lanes;
369
370 struct phy **phys;
371
372 struct gpio_desc *reset_gpio;
373 };
374
afi_writel(struct tegra_pcie * pcie,u32 value,unsigned long offset)375 static inline void afi_writel(struct tegra_pcie *pcie, u32 value,
376 unsigned long offset)
377 {
378 writel(value, pcie->afi + offset);
379 }
380
afi_readl(struct tegra_pcie * pcie,unsigned long offset)381 static inline u32 afi_readl(struct tegra_pcie *pcie, unsigned long offset)
382 {
383 return readl(pcie->afi + offset);
384 }
385
pads_writel(struct tegra_pcie * pcie,u32 value,unsigned long offset)386 static inline void pads_writel(struct tegra_pcie *pcie, u32 value,
387 unsigned long offset)
388 {
389 writel(value, pcie->pads + offset);
390 }
391
pads_readl(struct tegra_pcie * pcie,unsigned long offset)392 static inline u32 pads_readl(struct tegra_pcie *pcie, unsigned long offset)
393 {
394 return readl(pcie->pads + offset);
395 }
396
397 /*
398 * The configuration space mapping on Tegra is somewhat similar to the ECAM
399 * defined by PCIe. However it deviates a bit in how the 4 bits for extended
400 * register accesses are mapped:
401 *
402 * [27:24] extended register number
403 * [23:16] bus number
404 * [15:11] device number
405 * [10: 8] function number
406 * [ 7: 0] register number
407 *
408 * Mapping the whole extended configuration space would require 256 MiB of
409 * virtual address space, only a small part of which will actually be used.
410 *
411 * To work around this, a 4 KiB region is used to generate the required
412 * configuration transaction with relevant B:D:F and register offset values.
413 * This is achieved by dynamically programming base address and size of
414 * AFI_AXI_BAR used for end point config space mapping to make sure that the
415 * address (access to which generates correct config transaction) falls in
416 * this 4 KiB region.
417 */
tegra_pcie_conf_offset(u8 bus,unsigned int devfn,unsigned int where)418 static unsigned int tegra_pcie_conf_offset(u8 bus, unsigned int devfn,
419 unsigned int where)
420 {
421 return ((where & 0xf00) << 16) | (bus << 16) | (PCI_SLOT(devfn) << 11) |
422 (PCI_FUNC(devfn) << 8) | (where & 0xff);
423 }
424
tegra_pcie_map_bus(struct pci_bus * bus,unsigned int devfn,int where)425 static void __iomem *tegra_pcie_map_bus(struct pci_bus *bus,
426 unsigned int devfn,
427 int where)
428 {
429 struct tegra_pcie *pcie = bus->sysdata;
430 void __iomem *addr = NULL;
431
432 if (bus->number == 0) {
433 unsigned int slot = PCI_SLOT(devfn);
434 struct tegra_pcie_port *port;
435
436 list_for_each_entry(port, &pcie->ports, list) {
437 if (port->index + 1 == slot) {
438 addr = port->base + (where & ~3);
439 break;
440 }
441 }
442 } else {
443 unsigned int offset;
444 u32 base;
445
446 offset = tegra_pcie_conf_offset(bus->number, devfn, where);
447
448 /* move 4 KiB window to offset within the FPCI region */
449 base = 0xfe100000 + ((offset & ~(SZ_4K - 1)) >> 8);
450 afi_writel(pcie, base, AFI_FPCI_BAR0);
451
452 /* move to correct offset within the 4 KiB page */
453 addr = pcie->cfg + (offset & (SZ_4K - 1));
454 }
455
456 return addr;
457 }
458
tegra_pcie_config_read(struct pci_bus * bus,unsigned int devfn,int where,int size,u32 * value)459 static int tegra_pcie_config_read(struct pci_bus *bus, unsigned int devfn,
460 int where, int size, u32 *value)
461 {
462 if (bus->number == 0)
463 return pci_generic_config_read32(bus, devfn, where, size,
464 value);
465
466 return pci_generic_config_read(bus, devfn, where, size, value);
467 }
468
tegra_pcie_config_write(struct pci_bus * bus,unsigned int devfn,int where,int size,u32 value)469 static int tegra_pcie_config_write(struct pci_bus *bus, unsigned int devfn,
470 int where, int size, u32 value)
471 {
472 if (bus->number == 0)
473 return pci_generic_config_write32(bus, devfn, where, size,
474 value);
475
476 return pci_generic_config_write(bus, devfn, where, size, value);
477 }
478
479 static struct pci_ops tegra_pcie_ops = {
480 .map_bus = tegra_pcie_map_bus,
481 .read = tegra_pcie_config_read,
482 .write = tegra_pcie_config_write,
483 };
484
tegra_pcie_port_get_pex_ctrl(struct tegra_pcie_port * port)485 static unsigned long tegra_pcie_port_get_pex_ctrl(struct tegra_pcie_port *port)
486 {
487 const struct tegra_pcie_soc *soc = port->pcie->soc;
488 unsigned long ret = 0;
489
490 switch (port->index) {
491 case 0:
492 ret = AFI_PEX0_CTRL;
493 break;
494
495 case 1:
496 ret = AFI_PEX1_CTRL;
497 break;
498
499 case 2:
500 ret = soc->afi_pex2_ctrl;
501 break;
502 }
503
504 return ret;
505 }
506
tegra_pcie_port_reset(struct tegra_pcie_port * port)507 static void tegra_pcie_port_reset(struct tegra_pcie_port *port)
508 {
509 unsigned long ctrl = tegra_pcie_port_get_pex_ctrl(port);
510 unsigned long value;
511
512 /* pulse reset signal */
513 if (port->reset_gpio) {
514 gpiod_set_value(port->reset_gpio, 1);
515 } else {
516 value = afi_readl(port->pcie, ctrl);
517 value &= ~AFI_PEX_CTRL_RST;
518 afi_writel(port->pcie, value, ctrl);
519 }
520
521 usleep_range(1000, 2000);
522
523 if (port->reset_gpio) {
524 gpiod_set_value(port->reset_gpio, 0);
525 } else {
526 value = afi_readl(port->pcie, ctrl);
527 value |= AFI_PEX_CTRL_RST;
528 afi_writel(port->pcie, value, ctrl);
529 }
530 }
531
tegra_pcie_enable_rp_features(struct tegra_pcie_port * port)532 static void tegra_pcie_enable_rp_features(struct tegra_pcie_port *port)
533 {
534 const struct tegra_pcie_soc *soc = port->pcie->soc;
535 u32 value;
536
537 /* Enable AER capability */
538 value = readl(port->base + RP_VEND_CTL1);
539 value |= RP_VEND_CTL1_ERPT;
540 writel(value, port->base + RP_VEND_CTL1);
541
542 /* Optimal settings to enhance bandwidth */
543 value = readl(port->base + RP_VEND_XP);
544 value |= RP_VEND_XP_OPPORTUNISTIC_ACK;
545 value |= RP_VEND_XP_OPPORTUNISTIC_UPDATEFC;
546 writel(value, port->base + RP_VEND_XP);
547
548 /*
549 * LTSSM will wait for DLLP to finish before entering L1 or L2,
550 * to avoid truncation of PM messages which results in receiver errors
551 */
552 value = readl(port->base + RP_VEND_XP_BIST);
553 value |= RP_VEND_XP_BIST_GOTO_L1_L2_AFTER_DLLP_DONE;
554 writel(value, port->base + RP_VEND_XP_BIST);
555
556 value = readl(port->base + RP_PRIV_MISC);
557 value |= RP_PRIV_MISC_CTLR_CLK_CLAMP_ENABLE;
558 value |= RP_PRIV_MISC_TMS_CLK_CLAMP_ENABLE;
559
560 if (soc->update_clamp_threshold) {
561 value &= ~(RP_PRIV_MISC_CTLR_CLK_CLAMP_THRESHOLD_MASK |
562 RP_PRIV_MISC_TMS_CLK_CLAMP_THRESHOLD_MASK);
563 value |= RP_PRIV_MISC_CTLR_CLK_CLAMP_THRESHOLD |
564 RP_PRIV_MISC_TMS_CLK_CLAMP_THRESHOLD;
565 }
566
567 writel(value, port->base + RP_PRIV_MISC);
568 }
569
tegra_pcie_program_ectl_settings(struct tegra_pcie_port * port)570 static void tegra_pcie_program_ectl_settings(struct tegra_pcie_port *port)
571 {
572 const struct tegra_pcie_soc *soc = port->pcie->soc;
573 u32 value;
574
575 value = readl(port->base + RP_ECTL_2_R1);
576 value &= ~RP_ECTL_2_R1_RX_CTLE_1C_MASK;
577 value |= soc->ectl.regs.rp_ectl_2_r1;
578 writel(value, port->base + RP_ECTL_2_R1);
579
580 value = readl(port->base + RP_ECTL_4_R1);
581 value &= ~RP_ECTL_4_R1_RX_CDR_CTRL_1C_MASK;
582 value |= soc->ectl.regs.rp_ectl_4_r1 <<
583 RP_ECTL_4_R1_RX_CDR_CTRL_1C_SHIFT;
584 writel(value, port->base + RP_ECTL_4_R1);
585
586 value = readl(port->base + RP_ECTL_5_R1);
587 value &= ~RP_ECTL_5_R1_RX_EQ_CTRL_L_1C_MASK;
588 value |= soc->ectl.regs.rp_ectl_5_r1;
589 writel(value, port->base + RP_ECTL_5_R1);
590
591 value = readl(port->base + RP_ECTL_6_R1);
592 value &= ~RP_ECTL_6_R1_RX_EQ_CTRL_H_1C_MASK;
593 value |= soc->ectl.regs.rp_ectl_6_r1;
594 writel(value, port->base + RP_ECTL_6_R1);
595
596 value = readl(port->base + RP_ECTL_2_R2);
597 value &= ~RP_ECTL_2_R2_RX_CTLE_1C_MASK;
598 value |= soc->ectl.regs.rp_ectl_2_r2;
599 writel(value, port->base + RP_ECTL_2_R2);
600
601 value = readl(port->base + RP_ECTL_4_R2);
602 value &= ~RP_ECTL_4_R2_RX_CDR_CTRL_1C_MASK;
603 value |= soc->ectl.regs.rp_ectl_4_r2 <<
604 RP_ECTL_4_R2_RX_CDR_CTRL_1C_SHIFT;
605 writel(value, port->base + RP_ECTL_4_R2);
606
607 value = readl(port->base + RP_ECTL_5_R2);
608 value &= ~RP_ECTL_5_R2_RX_EQ_CTRL_L_1C_MASK;
609 value |= soc->ectl.regs.rp_ectl_5_r2;
610 writel(value, port->base + RP_ECTL_5_R2);
611
612 value = readl(port->base + RP_ECTL_6_R2);
613 value &= ~RP_ECTL_6_R2_RX_EQ_CTRL_H_1C_MASK;
614 value |= soc->ectl.regs.rp_ectl_6_r2;
615 writel(value, port->base + RP_ECTL_6_R2);
616 }
617
tegra_pcie_apply_sw_fixup(struct tegra_pcie_port * port)618 static void tegra_pcie_apply_sw_fixup(struct tegra_pcie_port *port)
619 {
620 const struct tegra_pcie_soc *soc = port->pcie->soc;
621 u32 value;
622
623 /*
624 * Sometimes link speed change from Gen2 to Gen1 fails due to
625 * instability in deskew logic on lane-0. Increase the deskew
626 * retry time to resolve this issue.
627 */
628 if (soc->program_deskew_time) {
629 value = readl(port->base + RP_VEND_CTL0);
630 value &= ~RP_VEND_CTL0_DSK_RST_PULSE_WIDTH_MASK;
631 value |= RP_VEND_CTL0_DSK_RST_PULSE_WIDTH;
632 writel(value, port->base + RP_VEND_CTL0);
633 }
634
635 if (soc->update_fc_timer) {
636 value = readl(port->base + RP_VEND_XP);
637 value &= ~RP_VEND_XP_UPDATE_FC_THRESHOLD_MASK;
638 value |= soc->update_fc_threshold;
639 writel(value, port->base + RP_VEND_XP);
640 }
641
642 /*
643 * PCIe link doesn't come up with few legacy PCIe endpoints if
644 * root port advertises both Gen-1 and Gen-2 speeds in Tegra.
645 * Hence, the strategy followed here is to initially advertise
646 * only Gen-1 and after link is up, retrain link to Gen-2 speed
647 */
648 value = readl(port->base + RP_LINK_CONTROL_STATUS_2);
649 value &= ~PCI_EXP_LNKSTA_CLS;
650 value |= PCI_EXP_LNKSTA_CLS_2_5GB;
651 writel(value, port->base + RP_LINK_CONTROL_STATUS_2);
652 }
653
tegra_pcie_port_enable(struct tegra_pcie_port * port)654 static void tegra_pcie_port_enable(struct tegra_pcie_port *port)
655 {
656 unsigned long ctrl = tegra_pcie_port_get_pex_ctrl(port);
657 const struct tegra_pcie_soc *soc = port->pcie->soc;
658 unsigned long value;
659
660 /* enable reference clock */
661 value = afi_readl(port->pcie, ctrl);
662 value |= AFI_PEX_CTRL_REFCLK_EN;
663
664 if (soc->has_pex_clkreq_en)
665 value |= AFI_PEX_CTRL_CLKREQ_EN;
666
667 value |= AFI_PEX_CTRL_OVERRIDE_EN;
668
669 afi_writel(port->pcie, value, ctrl);
670
671 tegra_pcie_port_reset(port);
672
673 if (soc->force_pca_enable) {
674 value = readl(port->base + RP_VEND_CTL2);
675 value |= RP_VEND_CTL2_PCA_ENABLE;
676 writel(value, port->base + RP_VEND_CTL2);
677 }
678
679 tegra_pcie_enable_rp_features(port);
680
681 if (soc->ectl.enable)
682 tegra_pcie_program_ectl_settings(port);
683
684 tegra_pcie_apply_sw_fixup(port);
685 }
686
tegra_pcie_port_disable(struct tegra_pcie_port * port)687 static void tegra_pcie_port_disable(struct tegra_pcie_port *port)
688 {
689 unsigned long ctrl = tegra_pcie_port_get_pex_ctrl(port);
690 const struct tegra_pcie_soc *soc = port->pcie->soc;
691 unsigned long value;
692
693 /* assert port reset */
694 value = afi_readl(port->pcie, ctrl);
695 value &= ~AFI_PEX_CTRL_RST;
696 afi_writel(port->pcie, value, ctrl);
697
698 /* disable reference clock */
699 value = afi_readl(port->pcie, ctrl);
700
701 if (soc->has_pex_clkreq_en)
702 value &= ~AFI_PEX_CTRL_CLKREQ_EN;
703
704 value &= ~AFI_PEX_CTRL_REFCLK_EN;
705 afi_writel(port->pcie, value, ctrl);
706
707 /* disable PCIe port and set CLKREQ# as GPIO to allow PLLE power down */
708 value = afi_readl(port->pcie, AFI_PCIE_CONFIG);
709 value |= AFI_PCIE_CONFIG_PCIE_DISABLE(port->index);
710 value |= AFI_PCIE_CONFIG_PCIE_CLKREQ_GPIO(port->index);
711 afi_writel(port->pcie, value, AFI_PCIE_CONFIG);
712 }
713
tegra_pcie_port_free(struct tegra_pcie_port * port)714 static void tegra_pcie_port_free(struct tegra_pcie_port *port)
715 {
716 struct tegra_pcie *pcie = port->pcie;
717 struct device *dev = pcie->dev;
718
719 devm_iounmap(dev, port->base);
720 devm_release_mem_region(dev, port->regs.start,
721 resource_size(&port->regs));
722 list_del(&port->list);
723 devm_kfree(dev, port);
724 }
725
726 /* Tegra PCIE root complex wrongly reports device class */
tegra_pcie_fixup_class(struct pci_dev * dev)727 static void tegra_pcie_fixup_class(struct pci_dev *dev)
728 {
729 dev->class = PCI_CLASS_BRIDGE_PCI_NORMAL;
730 }
731 DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_NVIDIA, 0x0bf0, tegra_pcie_fixup_class);
732 DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_NVIDIA, 0x0bf1, tegra_pcie_fixup_class);
733 DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_NVIDIA, 0x0e1c, tegra_pcie_fixup_class);
734 DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_NVIDIA, 0x0e1d, tegra_pcie_fixup_class);
735
736 /* Tegra20 and Tegra30 PCIE requires relaxed ordering */
tegra_pcie_relax_enable(struct pci_dev * dev)737 static void tegra_pcie_relax_enable(struct pci_dev *dev)
738 {
739 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN);
740 }
741 DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_NVIDIA, 0x0bf0, tegra_pcie_relax_enable);
742 DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_NVIDIA, 0x0bf1, tegra_pcie_relax_enable);
743 DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_NVIDIA, 0x0e1c, tegra_pcie_relax_enable);
744 DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_NVIDIA, 0x0e1d, tegra_pcie_relax_enable);
745
tegra_pcie_map_irq(const struct pci_dev * pdev,u8 slot,u8 pin)746 static int tegra_pcie_map_irq(const struct pci_dev *pdev, u8 slot, u8 pin)
747 {
748 struct tegra_pcie *pcie = pdev->bus->sysdata;
749 int irq;
750
751 tegra_cpuidle_pcie_irqs_in_use();
752
753 irq = of_irq_parse_and_map_pci(pdev, slot, pin);
754 if (!irq)
755 irq = pcie->irq;
756
757 return irq;
758 }
759
tegra_pcie_isr(int irq,void * arg)760 static irqreturn_t tegra_pcie_isr(int irq, void *arg)
761 {
762 static const char * const err_msg[] = {
763 "Unknown",
764 "AXI slave error",
765 "AXI decode error",
766 "Target abort",
767 "Master abort",
768 "Invalid write",
769 "Legacy interrupt",
770 "Response decoding error",
771 "AXI response decoding error",
772 "Transaction timeout",
773 "Slot present pin change",
774 "Slot clock request change",
775 "TMS clock ramp change",
776 "TMS ready for power down",
777 "Peer2Peer error",
778 };
779 struct tegra_pcie *pcie = arg;
780 struct device *dev = pcie->dev;
781 u32 code, signature;
782
783 code = afi_readl(pcie, AFI_INTR_CODE) & AFI_INTR_CODE_MASK;
784 signature = afi_readl(pcie, AFI_INTR_SIGNATURE);
785 afi_writel(pcie, 0, AFI_INTR_CODE);
786
787 if (code == AFI_INTR_LEGACY)
788 return IRQ_NONE;
789
790 if (code >= ARRAY_SIZE(err_msg))
791 code = 0;
792
793 /*
794 * do not pollute kernel log with master abort reports since they
795 * happen a lot during enumeration
796 */
797 if (code == AFI_INTR_MASTER_ABORT || code == AFI_INTR_PE_PRSNT_SENSE)
798 dev_dbg(dev, "%s, signature: %08x\n", err_msg[code], signature);
799 else
800 dev_err(dev, "%s, signature: %08x\n", err_msg[code], signature);
801
802 if (code == AFI_INTR_TARGET_ABORT || code == AFI_INTR_MASTER_ABORT ||
803 code == AFI_INTR_FPCI_DECODE_ERROR) {
804 u32 fpci = afi_readl(pcie, AFI_UPPER_FPCI_ADDRESS) & 0xff;
805 u64 address = (u64)fpci << 32 | (signature & 0xfffffffc);
806
807 if (code == AFI_INTR_MASTER_ABORT)
808 dev_dbg(dev, " FPCI address: %10llx\n", address);
809 else
810 dev_err(dev, " FPCI address: %10llx\n", address);
811 }
812
813 return IRQ_HANDLED;
814 }
815
816 /*
817 * FPCI map is as follows:
818 * - 0xfdfc000000: I/O space
819 * - 0xfdfe000000: type 0 configuration space
820 * - 0xfdff000000: type 1 configuration space
821 * - 0xfe00000000: type 0 extended configuration space
822 * - 0xfe10000000: type 1 extended configuration space
823 */
tegra_pcie_setup_translations(struct tegra_pcie * pcie)824 static void tegra_pcie_setup_translations(struct tegra_pcie *pcie)
825 {
826 u32 size;
827 struct resource_entry *entry;
828 struct pci_host_bridge *bridge = pci_host_bridge_from_priv(pcie);
829
830 /* Bar 0: type 1 extended configuration space */
831 size = resource_size(&pcie->cs);
832 afi_writel(pcie, pcie->cs.start, AFI_AXI_BAR0_START);
833 afi_writel(pcie, size >> 12, AFI_AXI_BAR0_SZ);
834
835 resource_list_for_each_entry(entry, &bridge->windows) {
836 u32 fpci_bar, axi_address;
837 struct resource *res = entry->res;
838
839 size = resource_size(res);
840
841 switch (resource_type(res)) {
842 case IORESOURCE_IO:
843 /* Bar 1: downstream IO bar */
844 fpci_bar = 0xfdfc0000;
845 axi_address = pci_pio_to_address(res->start);
846 afi_writel(pcie, axi_address, AFI_AXI_BAR1_START);
847 afi_writel(pcie, size >> 12, AFI_AXI_BAR1_SZ);
848 afi_writel(pcie, fpci_bar, AFI_FPCI_BAR1);
849 break;
850 case IORESOURCE_MEM:
851 fpci_bar = (((res->start >> 12) & 0x0fffffff) << 4) | 0x1;
852 axi_address = res->start;
853
854 if (res->flags & IORESOURCE_PREFETCH) {
855 /* Bar 2: prefetchable memory BAR */
856 afi_writel(pcie, axi_address, AFI_AXI_BAR2_START);
857 afi_writel(pcie, size >> 12, AFI_AXI_BAR2_SZ);
858 afi_writel(pcie, fpci_bar, AFI_FPCI_BAR2);
859
860 } else {
861 /* Bar 3: non prefetchable memory BAR */
862 afi_writel(pcie, axi_address, AFI_AXI_BAR3_START);
863 afi_writel(pcie, size >> 12, AFI_AXI_BAR3_SZ);
864 afi_writel(pcie, fpci_bar, AFI_FPCI_BAR3);
865 }
866 break;
867 }
868 }
869
870 /* NULL out the remaining BARs as they are not used */
871 afi_writel(pcie, 0, AFI_AXI_BAR4_START);
872 afi_writel(pcie, 0, AFI_AXI_BAR4_SZ);
873 afi_writel(pcie, 0, AFI_FPCI_BAR4);
874
875 afi_writel(pcie, 0, AFI_AXI_BAR5_START);
876 afi_writel(pcie, 0, AFI_AXI_BAR5_SZ);
877 afi_writel(pcie, 0, AFI_FPCI_BAR5);
878
879 if (pcie->soc->has_cache_bars) {
880 /* map all upstream transactions as uncached */
881 afi_writel(pcie, 0, AFI_CACHE_BAR0_ST);
882 afi_writel(pcie, 0, AFI_CACHE_BAR0_SZ);
883 afi_writel(pcie, 0, AFI_CACHE_BAR1_ST);
884 afi_writel(pcie, 0, AFI_CACHE_BAR1_SZ);
885 }
886
887 /* MSI translations are setup only when needed */
888 afi_writel(pcie, 0, AFI_MSI_FPCI_BAR_ST);
889 afi_writel(pcie, 0, AFI_MSI_BAR_SZ);
890 afi_writel(pcie, 0, AFI_MSI_AXI_BAR_ST);
891 afi_writel(pcie, 0, AFI_MSI_BAR_SZ);
892 }
893
tegra_pcie_pll_wait(struct tegra_pcie * pcie,unsigned long timeout)894 static int tegra_pcie_pll_wait(struct tegra_pcie *pcie, unsigned long timeout)
895 {
896 const struct tegra_pcie_soc *soc = pcie->soc;
897 u32 value;
898
899 timeout = jiffies + msecs_to_jiffies(timeout);
900
901 while (time_before(jiffies, timeout)) {
902 value = pads_readl(pcie, soc->pads_pll_ctl);
903 if (value & PADS_PLL_CTL_LOCKDET)
904 return 0;
905 }
906
907 return -ETIMEDOUT;
908 }
909
tegra_pcie_phy_enable(struct tegra_pcie * pcie)910 static int tegra_pcie_phy_enable(struct tegra_pcie *pcie)
911 {
912 struct device *dev = pcie->dev;
913 const struct tegra_pcie_soc *soc = pcie->soc;
914 u32 value;
915 int err;
916
917 /* initialize internal PHY, enable up to 16 PCIE lanes */
918 pads_writel(pcie, 0x0, PADS_CTL_SEL);
919
920 /* override IDDQ to 1 on all 4 lanes */
921 value = pads_readl(pcie, PADS_CTL);
922 value |= PADS_CTL_IDDQ_1L;
923 pads_writel(pcie, value, PADS_CTL);
924
925 /*
926 * Set up PHY PLL inputs select PLLE output as refclock,
927 * set TX ref sel to div10 (not div5).
928 */
929 value = pads_readl(pcie, soc->pads_pll_ctl);
930 value &= ~(PADS_PLL_CTL_REFCLK_MASK | PADS_PLL_CTL_TXCLKREF_MASK);
931 value |= PADS_PLL_CTL_REFCLK_INTERNAL_CML | soc->tx_ref_sel;
932 pads_writel(pcie, value, soc->pads_pll_ctl);
933
934 /* reset PLL */
935 value = pads_readl(pcie, soc->pads_pll_ctl);
936 value &= ~PADS_PLL_CTL_RST_B4SM;
937 pads_writel(pcie, value, soc->pads_pll_ctl);
938
939 usleep_range(20, 100);
940
941 /* take PLL out of reset */
942 value = pads_readl(pcie, soc->pads_pll_ctl);
943 value |= PADS_PLL_CTL_RST_B4SM;
944 pads_writel(pcie, value, soc->pads_pll_ctl);
945
946 /* wait for the PLL to lock */
947 err = tegra_pcie_pll_wait(pcie, 500);
948 if (err < 0) {
949 dev_err(dev, "PLL failed to lock: %d\n", err);
950 return err;
951 }
952
953 /* turn off IDDQ override */
954 value = pads_readl(pcie, PADS_CTL);
955 value &= ~PADS_CTL_IDDQ_1L;
956 pads_writel(pcie, value, PADS_CTL);
957
958 /* enable TX/RX data */
959 value = pads_readl(pcie, PADS_CTL);
960 value |= PADS_CTL_TX_DATA_EN_1L | PADS_CTL_RX_DATA_EN_1L;
961 pads_writel(pcie, value, PADS_CTL);
962
963 return 0;
964 }
965
tegra_pcie_phy_disable(struct tegra_pcie * pcie)966 static int tegra_pcie_phy_disable(struct tegra_pcie *pcie)
967 {
968 const struct tegra_pcie_soc *soc = pcie->soc;
969 u32 value;
970
971 /* disable TX/RX data */
972 value = pads_readl(pcie, PADS_CTL);
973 value &= ~(PADS_CTL_TX_DATA_EN_1L | PADS_CTL_RX_DATA_EN_1L);
974 pads_writel(pcie, value, PADS_CTL);
975
976 /* override IDDQ */
977 value = pads_readl(pcie, PADS_CTL);
978 value |= PADS_CTL_IDDQ_1L;
979 pads_writel(pcie, value, PADS_CTL);
980
981 /* reset PLL */
982 value = pads_readl(pcie, soc->pads_pll_ctl);
983 value &= ~PADS_PLL_CTL_RST_B4SM;
984 pads_writel(pcie, value, soc->pads_pll_ctl);
985
986 usleep_range(20, 100);
987
988 return 0;
989 }
990
tegra_pcie_port_phy_power_on(struct tegra_pcie_port * port)991 static int tegra_pcie_port_phy_power_on(struct tegra_pcie_port *port)
992 {
993 struct device *dev = port->pcie->dev;
994 unsigned int i;
995 int err;
996
997 for (i = 0; i < port->lanes; i++) {
998 err = phy_power_on(port->phys[i]);
999 if (err < 0) {
1000 dev_err(dev, "failed to power on PHY#%u: %d\n", i, err);
1001 return err;
1002 }
1003 }
1004
1005 return 0;
1006 }
1007
tegra_pcie_port_phy_power_off(struct tegra_pcie_port * port)1008 static int tegra_pcie_port_phy_power_off(struct tegra_pcie_port *port)
1009 {
1010 struct device *dev = port->pcie->dev;
1011 unsigned int i;
1012 int err;
1013
1014 for (i = 0; i < port->lanes; i++) {
1015 err = phy_power_off(port->phys[i]);
1016 if (err < 0) {
1017 dev_err(dev, "failed to power off PHY#%u: %d\n", i,
1018 err);
1019 return err;
1020 }
1021 }
1022
1023 return 0;
1024 }
1025
tegra_pcie_phy_power_on(struct tegra_pcie * pcie)1026 static int tegra_pcie_phy_power_on(struct tegra_pcie *pcie)
1027 {
1028 struct device *dev = pcie->dev;
1029 struct tegra_pcie_port *port;
1030 int err;
1031
1032 if (pcie->legacy_phy) {
1033 if (pcie->phy)
1034 err = phy_power_on(pcie->phy);
1035 else
1036 err = tegra_pcie_phy_enable(pcie);
1037
1038 if (err < 0)
1039 dev_err(dev, "failed to power on PHY: %d\n", err);
1040
1041 return err;
1042 }
1043
1044 list_for_each_entry(port, &pcie->ports, list) {
1045 err = tegra_pcie_port_phy_power_on(port);
1046 if (err < 0) {
1047 dev_err(dev,
1048 "failed to power on PCIe port %u PHY: %d\n",
1049 port->index, err);
1050 return err;
1051 }
1052 }
1053
1054 return 0;
1055 }
1056
tegra_pcie_phy_power_off(struct tegra_pcie * pcie)1057 static int tegra_pcie_phy_power_off(struct tegra_pcie *pcie)
1058 {
1059 struct device *dev = pcie->dev;
1060 struct tegra_pcie_port *port;
1061 int err;
1062
1063 if (pcie->legacy_phy) {
1064 if (pcie->phy)
1065 err = phy_power_off(pcie->phy);
1066 else
1067 err = tegra_pcie_phy_disable(pcie);
1068
1069 if (err < 0)
1070 dev_err(dev, "failed to power off PHY: %d\n", err);
1071
1072 return err;
1073 }
1074
1075 list_for_each_entry(port, &pcie->ports, list) {
1076 err = tegra_pcie_port_phy_power_off(port);
1077 if (err < 0) {
1078 dev_err(dev,
1079 "failed to power off PCIe port %u PHY: %d\n",
1080 port->index, err);
1081 return err;
1082 }
1083 }
1084
1085 return 0;
1086 }
1087
tegra_pcie_enable_controller(struct tegra_pcie * pcie)1088 static void tegra_pcie_enable_controller(struct tegra_pcie *pcie)
1089 {
1090 const struct tegra_pcie_soc *soc = pcie->soc;
1091 struct tegra_pcie_port *port;
1092 unsigned long value;
1093
1094 /* enable PLL power down */
1095 if (pcie->phy) {
1096 value = afi_readl(pcie, AFI_PLLE_CONTROL);
1097 value &= ~AFI_PLLE_CONTROL_BYPASS_PADS2PLLE_CONTROL;
1098 value |= AFI_PLLE_CONTROL_PADS2PLLE_CONTROL_EN;
1099 afi_writel(pcie, value, AFI_PLLE_CONTROL);
1100 }
1101
1102 /* power down PCIe slot clock bias pad */
1103 if (soc->has_pex_bias_ctrl)
1104 afi_writel(pcie, 0, AFI_PEXBIAS_CTRL_0);
1105
1106 /* configure mode and disable all ports */
1107 value = afi_readl(pcie, AFI_PCIE_CONFIG);
1108 value &= ~AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_MASK;
1109 value |= AFI_PCIE_CONFIG_PCIE_DISABLE_ALL | pcie->xbar_config;
1110 value |= AFI_PCIE_CONFIG_PCIE_CLKREQ_GPIO_ALL;
1111
1112 list_for_each_entry(port, &pcie->ports, list) {
1113 value &= ~AFI_PCIE_CONFIG_PCIE_DISABLE(port->index);
1114 value &= ~AFI_PCIE_CONFIG_PCIE_CLKREQ_GPIO(port->index);
1115 }
1116
1117 afi_writel(pcie, value, AFI_PCIE_CONFIG);
1118
1119 if (soc->has_gen2) {
1120 value = afi_readl(pcie, AFI_FUSE);
1121 value &= ~AFI_FUSE_PCIE_T0_GEN2_DIS;
1122 afi_writel(pcie, value, AFI_FUSE);
1123 } else {
1124 value = afi_readl(pcie, AFI_FUSE);
1125 value |= AFI_FUSE_PCIE_T0_GEN2_DIS;
1126 afi_writel(pcie, value, AFI_FUSE);
1127 }
1128
1129 /* Disable AFI dynamic clock gating and enable PCIe */
1130 value = afi_readl(pcie, AFI_CONFIGURATION);
1131 value |= AFI_CONFIGURATION_EN_FPCI;
1132 value |= AFI_CONFIGURATION_CLKEN_OVERRIDE;
1133 afi_writel(pcie, value, AFI_CONFIGURATION);
1134
1135 value = AFI_INTR_EN_INI_SLVERR | AFI_INTR_EN_INI_DECERR |
1136 AFI_INTR_EN_TGT_SLVERR | AFI_INTR_EN_TGT_DECERR |
1137 AFI_INTR_EN_TGT_WRERR | AFI_INTR_EN_DFPCI_DECERR;
1138
1139 if (soc->has_intr_prsnt_sense)
1140 value |= AFI_INTR_EN_PRSNT_SENSE;
1141
1142 afi_writel(pcie, value, AFI_AFI_INTR_ENABLE);
1143 afi_writel(pcie, 0xffffffff, AFI_SM_INTR_ENABLE);
1144
1145 /* don't enable MSI for now, only when needed */
1146 afi_writel(pcie, AFI_INTR_MASK_INT_MASK, AFI_INTR_MASK);
1147
1148 /* disable all exceptions */
1149 afi_writel(pcie, 0, AFI_FPCI_ERROR_MASKS);
1150 }
1151
tegra_pcie_power_off(struct tegra_pcie * pcie)1152 static void tegra_pcie_power_off(struct tegra_pcie *pcie)
1153 {
1154 struct device *dev = pcie->dev;
1155 const struct tegra_pcie_soc *soc = pcie->soc;
1156 int err;
1157
1158 reset_control_assert(pcie->afi_rst);
1159
1160 clk_disable_unprepare(pcie->pll_e);
1161 if (soc->has_cml_clk)
1162 clk_disable_unprepare(pcie->cml_clk);
1163 clk_disable_unprepare(pcie->afi_clk);
1164
1165 if (!dev->pm_domain)
1166 tegra_powergate_power_off(TEGRA_POWERGATE_PCIE);
1167
1168 err = regulator_bulk_disable(pcie->num_supplies, pcie->supplies);
1169 if (err < 0)
1170 dev_warn(dev, "failed to disable regulators: %d\n", err);
1171 }
1172
tegra_pcie_power_on(struct tegra_pcie * pcie)1173 static int tegra_pcie_power_on(struct tegra_pcie *pcie)
1174 {
1175 struct device *dev = pcie->dev;
1176 const struct tegra_pcie_soc *soc = pcie->soc;
1177 int err;
1178
1179 reset_control_assert(pcie->pcie_xrst);
1180 reset_control_assert(pcie->afi_rst);
1181 reset_control_assert(pcie->pex_rst);
1182
1183 if (!dev->pm_domain)
1184 tegra_powergate_power_off(TEGRA_POWERGATE_PCIE);
1185
1186 /* enable regulators */
1187 err = regulator_bulk_enable(pcie->num_supplies, pcie->supplies);
1188 if (err < 0)
1189 dev_err(dev, "failed to enable regulators: %d\n", err);
1190
1191 if (!dev->pm_domain) {
1192 err = tegra_powergate_power_on(TEGRA_POWERGATE_PCIE);
1193 if (err) {
1194 dev_err(dev, "failed to power ungate: %d\n", err);
1195 goto regulator_disable;
1196 }
1197 err = tegra_powergate_remove_clamping(TEGRA_POWERGATE_PCIE);
1198 if (err) {
1199 dev_err(dev, "failed to remove clamp: %d\n", err);
1200 goto powergate;
1201 }
1202 }
1203
1204 err = clk_prepare_enable(pcie->afi_clk);
1205 if (err < 0) {
1206 dev_err(dev, "failed to enable AFI clock: %d\n", err);
1207 goto powergate;
1208 }
1209
1210 if (soc->has_cml_clk) {
1211 err = clk_prepare_enable(pcie->cml_clk);
1212 if (err < 0) {
1213 dev_err(dev, "failed to enable CML clock: %d\n", err);
1214 goto disable_afi_clk;
1215 }
1216 }
1217
1218 err = clk_prepare_enable(pcie->pll_e);
1219 if (err < 0) {
1220 dev_err(dev, "failed to enable PLLE clock: %d\n", err);
1221 goto disable_cml_clk;
1222 }
1223
1224 reset_control_deassert(pcie->afi_rst);
1225
1226 return 0;
1227
1228 disable_cml_clk:
1229 if (soc->has_cml_clk)
1230 clk_disable_unprepare(pcie->cml_clk);
1231 disable_afi_clk:
1232 clk_disable_unprepare(pcie->afi_clk);
1233 powergate:
1234 if (!dev->pm_domain)
1235 tegra_powergate_power_off(TEGRA_POWERGATE_PCIE);
1236 regulator_disable:
1237 regulator_bulk_disable(pcie->num_supplies, pcie->supplies);
1238
1239 return err;
1240 }
1241
tegra_pcie_apply_pad_settings(struct tegra_pcie * pcie)1242 static void tegra_pcie_apply_pad_settings(struct tegra_pcie *pcie)
1243 {
1244 const struct tegra_pcie_soc *soc = pcie->soc;
1245
1246 /* Configure the reference clock driver */
1247 pads_writel(pcie, soc->pads_refclk_cfg0, PADS_REFCLK_CFG0);
1248
1249 if (soc->num_ports > 2)
1250 pads_writel(pcie, soc->pads_refclk_cfg1, PADS_REFCLK_CFG1);
1251 }
1252
tegra_pcie_clocks_get(struct tegra_pcie * pcie)1253 static int tegra_pcie_clocks_get(struct tegra_pcie *pcie)
1254 {
1255 struct device *dev = pcie->dev;
1256 const struct tegra_pcie_soc *soc = pcie->soc;
1257
1258 pcie->pex_clk = devm_clk_get(dev, "pex");
1259 if (IS_ERR(pcie->pex_clk))
1260 return PTR_ERR(pcie->pex_clk);
1261
1262 pcie->afi_clk = devm_clk_get(dev, "afi");
1263 if (IS_ERR(pcie->afi_clk))
1264 return PTR_ERR(pcie->afi_clk);
1265
1266 pcie->pll_e = devm_clk_get(dev, "pll_e");
1267 if (IS_ERR(pcie->pll_e))
1268 return PTR_ERR(pcie->pll_e);
1269
1270 if (soc->has_cml_clk) {
1271 pcie->cml_clk = devm_clk_get(dev, "cml");
1272 if (IS_ERR(pcie->cml_clk))
1273 return PTR_ERR(pcie->cml_clk);
1274 }
1275
1276 return 0;
1277 }
1278
tegra_pcie_resets_get(struct tegra_pcie * pcie)1279 static int tegra_pcie_resets_get(struct tegra_pcie *pcie)
1280 {
1281 struct device *dev = pcie->dev;
1282
1283 pcie->pex_rst = devm_reset_control_get_exclusive(dev, "pex");
1284 if (IS_ERR(pcie->pex_rst))
1285 return PTR_ERR(pcie->pex_rst);
1286
1287 pcie->afi_rst = devm_reset_control_get_exclusive(dev, "afi");
1288 if (IS_ERR(pcie->afi_rst))
1289 return PTR_ERR(pcie->afi_rst);
1290
1291 pcie->pcie_xrst = devm_reset_control_get_exclusive(dev, "pcie_x");
1292 if (IS_ERR(pcie->pcie_xrst))
1293 return PTR_ERR(pcie->pcie_xrst);
1294
1295 return 0;
1296 }
1297
tegra_pcie_phys_get_legacy(struct tegra_pcie * pcie)1298 static int tegra_pcie_phys_get_legacy(struct tegra_pcie *pcie)
1299 {
1300 struct device *dev = pcie->dev;
1301 int err;
1302
1303 pcie->phy = devm_phy_optional_get(dev, "pcie");
1304 if (IS_ERR(pcie->phy)) {
1305 err = PTR_ERR(pcie->phy);
1306 dev_err(dev, "failed to get PHY: %d\n", err);
1307 return err;
1308 }
1309
1310 err = phy_init(pcie->phy);
1311 if (err < 0) {
1312 dev_err(dev, "failed to initialize PHY: %d\n", err);
1313 return err;
1314 }
1315
1316 pcie->legacy_phy = true;
1317
1318 return 0;
1319 }
1320
devm_of_phy_optional_get_index(struct device * dev,struct device_node * np,const char * consumer,unsigned int index)1321 static struct phy *devm_of_phy_optional_get_index(struct device *dev,
1322 struct device_node *np,
1323 const char *consumer,
1324 unsigned int index)
1325 {
1326 struct phy *phy;
1327 char *name;
1328
1329 name = kasprintf(GFP_KERNEL, "%s-%u", consumer, index);
1330 if (!name)
1331 return ERR_PTR(-ENOMEM);
1332
1333 phy = devm_of_phy_optional_get(dev, np, name);
1334 kfree(name);
1335
1336 return phy;
1337 }
1338
tegra_pcie_port_get_phys(struct tegra_pcie_port * port)1339 static int tegra_pcie_port_get_phys(struct tegra_pcie_port *port)
1340 {
1341 struct device *dev = port->pcie->dev;
1342 struct phy *phy;
1343 unsigned int i;
1344 int err;
1345
1346 port->phys = devm_kcalloc(dev, sizeof(phy), port->lanes, GFP_KERNEL);
1347 if (!port->phys)
1348 return -ENOMEM;
1349
1350 for (i = 0; i < port->lanes; i++) {
1351 phy = devm_of_phy_optional_get_index(dev, port->np, "pcie", i);
1352 if (IS_ERR(phy)) {
1353 dev_err(dev, "failed to get PHY#%u: %ld\n", i,
1354 PTR_ERR(phy));
1355 return PTR_ERR(phy);
1356 }
1357
1358 err = phy_init(phy);
1359 if (err < 0) {
1360 dev_err(dev, "failed to initialize PHY#%u: %d\n", i,
1361 err);
1362 return err;
1363 }
1364
1365 port->phys[i] = phy;
1366 }
1367
1368 return 0;
1369 }
1370
tegra_pcie_phys_get(struct tegra_pcie * pcie)1371 static int tegra_pcie_phys_get(struct tegra_pcie *pcie)
1372 {
1373 const struct tegra_pcie_soc *soc = pcie->soc;
1374 struct device_node *np = pcie->dev->of_node;
1375 struct tegra_pcie_port *port;
1376 int err;
1377
1378 if (!soc->has_gen2 || of_property_present(np, "phys"))
1379 return tegra_pcie_phys_get_legacy(pcie);
1380
1381 list_for_each_entry(port, &pcie->ports, list) {
1382 err = tegra_pcie_port_get_phys(port);
1383 if (err < 0)
1384 return err;
1385 }
1386
1387 return 0;
1388 }
1389
tegra_pcie_phys_put(struct tegra_pcie * pcie)1390 static void tegra_pcie_phys_put(struct tegra_pcie *pcie)
1391 {
1392 struct tegra_pcie_port *port;
1393 struct device *dev = pcie->dev;
1394 int err, i;
1395
1396 if (pcie->legacy_phy) {
1397 err = phy_exit(pcie->phy);
1398 if (err < 0)
1399 dev_err(dev, "failed to teardown PHY: %d\n", err);
1400 return;
1401 }
1402
1403 list_for_each_entry(port, &pcie->ports, list) {
1404 for (i = 0; i < port->lanes; i++) {
1405 err = phy_exit(port->phys[i]);
1406 if (err < 0)
1407 dev_err(dev, "failed to teardown PHY#%u: %d\n",
1408 i, err);
1409 }
1410 }
1411 }
1412
tegra_pcie_get_resources(struct tegra_pcie * pcie)1413 static int tegra_pcie_get_resources(struct tegra_pcie *pcie)
1414 {
1415 struct device *dev = pcie->dev;
1416 struct platform_device *pdev = to_platform_device(dev);
1417 struct resource *res;
1418 const struct tegra_pcie_soc *soc = pcie->soc;
1419 int err;
1420
1421 err = tegra_pcie_clocks_get(pcie);
1422 if (err) {
1423 dev_err(dev, "failed to get clocks: %d\n", err);
1424 return err;
1425 }
1426
1427 err = tegra_pcie_resets_get(pcie);
1428 if (err) {
1429 dev_err(dev, "failed to get resets: %d\n", err);
1430 return err;
1431 }
1432
1433 if (soc->program_uphy) {
1434 err = tegra_pcie_phys_get(pcie);
1435 if (err < 0) {
1436 dev_err(dev, "failed to get PHYs: %d\n", err);
1437 return err;
1438 }
1439 }
1440
1441 pcie->pads = devm_platform_ioremap_resource_byname(pdev, "pads");
1442 if (IS_ERR(pcie->pads)) {
1443 err = PTR_ERR(pcie->pads);
1444 goto phys_put;
1445 }
1446
1447 pcie->afi = devm_platform_ioremap_resource_byname(pdev, "afi");
1448 if (IS_ERR(pcie->afi)) {
1449 err = PTR_ERR(pcie->afi);
1450 goto phys_put;
1451 }
1452
1453 /* request configuration space, but remap later, on demand */
1454 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "cs");
1455 if (!res) {
1456 err = -EADDRNOTAVAIL;
1457 goto phys_put;
1458 }
1459
1460 pcie->cs = *res;
1461
1462 /* constrain configuration space to 4 KiB */
1463 pcie->cs.end = pcie->cs.start + SZ_4K - 1;
1464
1465 pcie->cfg = devm_ioremap_resource(dev, &pcie->cs);
1466 if (IS_ERR(pcie->cfg)) {
1467 err = PTR_ERR(pcie->cfg);
1468 goto phys_put;
1469 }
1470
1471 /* request interrupt */
1472 err = platform_get_irq_byname(pdev, "intr");
1473 if (err < 0)
1474 goto phys_put;
1475
1476 pcie->irq = err;
1477
1478 err = request_irq(pcie->irq, tegra_pcie_isr, IRQF_SHARED, "PCIE", pcie);
1479 if (err) {
1480 dev_err(dev, "failed to register IRQ: %d\n", err);
1481 goto phys_put;
1482 }
1483
1484 return 0;
1485
1486 phys_put:
1487 if (soc->program_uphy)
1488 tegra_pcie_phys_put(pcie);
1489
1490 return err;
1491 }
1492
tegra_pcie_put_resources(struct tegra_pcie * pcie)1493 static int tegra_pcie_put_resources(struct tegra_pcie *pcie)
1494 {
1495 const struct tegra_pcie_soc *soc = pcie->soc;
1496
1497 if (pcie->irq > 0)
1498 free_irq(pcie->irq, pcie);
1499
1500 if (soc->program_uphy)
1501 tegra_pcie_phys_put(pcie);
1502
1503 return 0;
1504 }
1505
tegra_pcie_pme_turnoff(struct tegra_pcie_port * port)1506 static void tegra_pcie_pme_turnoff(struct tegra_pcie_port *port)
1507 {
1508 struct tegra_pcie *pcie = port->pcie;
1509 const struct tegra_pcie_soc *soc = pcie->soc;
1510 int err;
1511 u32 val;
1512 u8 ack_bit;
1513
1514 val = afi_readl(pcie, AFI_PCIE_PME);
1515 val |= (0x1 << soc->ports[port->index].pme.turnoff_bit);
1516 afi_writel(pcie, val, AFI_PCIE_PME);
1517
1518 ack_bit = soc->ports[port->index].pme.ack_bit;
1519 err = readl_poll_timeout(pcie->afi + AFI_PCIE_PME, val,
1520 val & (0x1 << ack_bit), 1, PME_ACK_TIMEOUT);
1521 if (err)
1522 dev_err(pcie->dev, "PME Ack is not received on port: %d\n",
1523 port->index);
1524
1525 usleep_range(10000, 11000);
1526
1527 val = afi_readl(pcie, AFI_PCIE_PME);
1528 val &= ~(0x1 << soc->ports[port->index].pme.turnoff_bit);
1529 afi_writel(pcie, val, AFI_PCIE_PME);
1530 }
1531
tegra_pcie_msi_irq(struct irq_desc * desc)1532 static void tegra_pcie_msi_irq(struct irq_desc *desc)
1533 {
1534 struct tegra_pcie *pcie = irq_desc_get_handler_data(desc);
1535 struct irq_chip *chip = irq_desc_get_chip(desc);
1536 struct tegra_msi *msi = &pcie->msi;
1537 struct device *dev = pcie->dev;
1538 unsigned int i;
1539
1540 chained_irq_enter(chip, desc);
1541
1542 for (i = 0; i < 8; i++) {
1543 unsigned long reg = afi_readl(pcie, AFI_MSI_VEC(i));
1544
1545 while (reg) {
1546 unsigned int offset = find_first_bit(®, 32);
1547 unsigned int index = i * 32 + offset;
1548 int ret;
1549
1550 ret = generic_handle_domain_irq(msi->domain->parent, index);
1551 if (ret) {
1552 /*
1553 * that's weird who triggered this?
1554 * just clear it
1555 */
1556 dev_info(dev, "unexpected MSI\n");
1557 afi_writel(pcie, BIT(index % 32), AFI_MSI_VEC(index));
1558 }
1559
1560 /* see if there's any more pending in this vector */
1561 reg = afi_readl(pcie, AFI_MSI_VEC(i));
1562 }
1563 }
1564
1565 chained_irq_exit(chip, desc);
1566 }
1567
tegra_msi_top_irq_ack(struct irq_data * d)1568 static void tegra_msi_top_irq_ack(struct irq_data *d)
1569 {
1570 irq_chip_ack_parent(d);
1571 }
1572
tegra_msi_top_irq_mask(struct irq_data * d)1573 static void tegra_msi_top_irq_mask(struct irq_data *d)
1574 {
1575 pci_msi_mask_irq(d);
1576 irq_chip_mask_parent(d);
1577 }
1578
tegra_msi_top_irq_unmask(struct irq_data * d)1579 static void tegra_msi_top_irq_unmask(struct irq_data *d)
1580 {
1581 pci_msi_unmask_irq(d);
1582 irq_chip_unmask_parent(d);
1583 }
1584
1585 static struct irq_chip tegra_msi_top_chip = {
1586 .name = "Tegra PCIe MSI",
1587 .irq_ack = tegra_msi_top_irq_ack,
1588 .irq_mask = tegra_msi_top_irq_mask,
1589 .irq_unmask = tegra_msi_top_irq_unmask,
1590 };
1591
tegra_msi_irq_ack(struct irq_data * d)1592 static void tegra_msi_irq_ack(struct irq_data *d)
1593 {
1594 struct tegra_msi *msi = irq_data_get_irq_chip_data(d);
1595 struct tegra_pcie *pcie = msi_to_pcie(msi);
1596 unsigned int index = d->hwirq / 32;
1597
1598 /* clear the interrupt */
1599 afi_writel(pcie, BIT(d->hwirq % 32), AFI_MSI_VEC(index));
1600 }
1601
tegra_msi_irq_mask(struct irq_data * d)1602 static void tegra_msi_irq_mask(struct irq_data *d)
1603 {
1604 struct tegra_msi *msi = irq_data_get_irq_chip_data(d);
1605 struct tegra_pcie *pcie = msi_to_pcie(msi);
1606 unsigned int index = d->hwirq / 32;
1607 unsigned long flags;
1608 u32 value;
1609
1610 spin_lock_irqsave(&msi->mask_lock, flags);
1611 value = afi_readl(pcie, AFI_MSI_EN_VEC(index));
1612 value &= ~BIT(d->hwirq % 32);
1613 afi_writel(pcie, value, AFI_MSI_EN_VEC(index));
1614 spin_unlock_irqrestore(&msi->mask_lock, flags);
1615 }
1616
tegra_msi_irq_unmask(struct irq_data * d)1617 static void tegra_msi_irq_unmask(struct irq_data *d)
1618 {
1619 struct tegra_msi *msi = irq_data_get_irq_chip_data(d);
1620 struct tegra_pcie *pcie = msi_to_pcie(msi);
1621 unsigned int index = d->hwirq / 32;
1622 unsigned long flags;
1623 u32 value;
1624
1625 spin_lock_irqsave(&msi->mask_lock, flags);
1626 value = afi_readl(pcie, AFI_MSI_EN_VEC(index));
1627 value |= BIT(d->hwirq % 32);
1628 afi_writel(pcie, value, AFI_MSI_EN_VEC(index));
1629 spin_unlock_irqrestore(&msi->mask_lock, flags);
1630 }
1631
tegra_msi_set_affinity(struct irq_data * d,const struct cpumask * mask,bool force)1632 static int tegra_msi_set_affinity(struct irq_data *d, const struct cpumask *mask, bool force)
1633 {
1634 return -EINVAL;
1635 }
1636
tegra_compose_msi_msg(struct irq_data * data,struct msi_msg * msg)1637 static void tegra_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
1638 {
1639 struct tegra_msi *msi = irq_data_get_irq_chip_data(data);
1640
1641 msg->address_lo = lower_32_bits(msi->phys);
1642 msg->address_hi = upper_32_bits(msi->phys);
1643 msg->data = data->hwirq;
1644 }
1645
1646 static struct irq_chip tegra_msi_bottom_chip = {
1647 .name = "Tegra MSI",
1648 .irq_ack = tegra_msi_irq_ack,
1649 .irq_mask = tegra_msi_irq_mask,
1650 .irq_unmask = tegra_msi_irq_unmask,
1651 .irq_set_affinity = tegra_msi_set_affinity,
1652 .irq_compose_msi_msg = tegra_compose_msi_msg,
1653 };
1654
tegra_msi_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * args)1655 static int tegra_msi_domain_alloc(struct irq_domain *domain, unsigned int virq,
1656 unsigned int nr_irqs, void *args)
1657 {
1658 struct tegra_msi *msi = domain->host_data;
1659 unsigned int i;
1660 int hwirq;
1661
1662 mutex_lock(&msi->map_lock);
1663
1664 hwirq = bitmap_find_free_region(msi->used, INT_PCI_MSI_NR, order_base_2(nr_irqs));
1665
1666 mutex_unlock(&msi->map_lock);
1667
1668 if (hwirq < 0)
1669 return -ENOSPC;
1670
1671 for (i = 0; i < nr_irqs; i++)
1672 irq_domain_set_info(domain, virq + i, hwirq + i,
1673 &tegra_msi_bottom_chip, domain->host_data,
1674 handle_edge_irq, NULL, NULL);
1675
1676 tegra_cpuidle_pcie_irqs_in_use();
1677
1678 return 0;
1679 }
1680
tegra_msi_domain_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)1681 static void tegra_msi_domain_free(struct irq_domain *domain, unsigned int virq,
1682 unsigned int nr_irqs)
1683 {
1684 struct irq_data *d = irq_domain_get_irq_data(domain, virq);
1685 struct tegra_msi *msi = domain->host_data;
1686
1687 mutex_lock(&msi->map_lock);
1688
1689 bitmap_release_region(msi->used, d->hwirq, order_base_2(nr_irqs));
1690
1691 mutex_unlock(&msi->map_lock);
1692 }
1693
1694 static const struct irq_domain_ops tegra_msi_domain_ops = {
1695 .alloc = tegra_msi_domain_alloc,
1696 .free = tegra_msi_domain_free,
1697 };
1698
1699 static struct msi_domain_info tegra_msi_info = {
1700 .flags = (MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
1701 MSI_FLAG_PCI_MSIX),
1702 .chip = &tegra_msi_top_chip,
1703 };
1704
tegra_allocate_domains(struct tegra_msi * msi)1705 static int tegra_allocate_domains(struct tegra_msi *msi)
1706 {
1707 struct tegra_pcie *pcie = msi_to_pcie(msi);
1708 struct fwnode_handle *fwnode = dev_fwnode(pcie->dev);
1709 struct irq_domain *parent;
1710
1711 parent = irq_domain_create_linear(fwnode, INT_PCI_MSI_NR,
1712 &tegra_msi_domain_ops, msi);
1713 if (!parent) {
1714 dev_err(pcie->dev, "failed to create IRQ domain\n");
1715 return -ENOMEM;
1716 }
1717 irq_domain_update_bus_token(parent, DOMAIN_BUS_NEXUS);
1718
1719 msi->domain = pci_msi_create_irq_domain(fwnode, &tegra_msi_info, parent);
1720 if (!msi->domain) {
1721 dev_err(pcie->dev, "failed to create MSI domain\n");
1722 irq_domain_remove(parent);
1723 return -ENOMEM;
1724 }
1725
1726 return 0;
1727 }
1728
tegra_free_domains(struct tegra_msi * msi)1729 static void tegra_free_domains(struct tegra_msi *msi)
1730 {
1731 struct irq_domain *parent = msi->domain->parent;
1732
1733 irq_domain_remove(msi->domain);
1734 irq_domain_remove(parent);
1735 }
1736
tegra_pcie_msi_setup(struct tegra_pcie * pcie)1737 static int tegra_pcie_msi_setup(struct tegra_pcie *pcie)
1738 {
1739 struct platform_device *pdev = to_platform_device(pcie->dev);
1740 struct tegra_msi *msi = &pcie->msi;
1741 struct device *dev = pcie->dev;
1742 int err;
1743
1744 mutex_init(&msi->map_lock);
1745 spin_lock_init(&msi->mask_lock);
1746
1747 if (IS_ENABLED(CONFIG_PCI_MSI)) {
1748 err = tegra_allocate_domains(msi);
1749 if (err)
1750 return err;
1751 }
1752
1753 err = platform_get_irq_byname(pdev, "msi");
1754 if (err < 0)
1755 goto free_irq_domain;
1756
1757 msi->irq = err;
1758
1759 irq_set_chained_handler_and_data(msi->irq, tegra_pcie_msi_irq, pcie);
1760
1761 /* Though the PCIe controller can address >32-bit address space, to
1762 * facilitate endpoints that support only 32-bit MSI target address,
1763 * the mask is set to 32-bit to make sure that MSI target address is
1764 * always a 32-bit address
1765 */
1766 err = dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
1767 if (err < 0) {
1768 dev_err(dev, "failed to set DMA coherent mask: %d\n", err);
1769 goto free_irq;
1770 }
1771
1772 msi->virt = dma_alloc_attrs(dev, PAGE_SIZE, &msi->phys, GFP_KERNEL,
1773 DMA_ATTR_NO_KERNEL_MAPPING);
1774 if (!msi->virt) {
1775 dev_err(dev, "failed to allocate DMA memory for MSI\n");
1776 err = -ENOMEM;
1777 goto free_irq;
1778 }
1779
1780 return 0;
1781
1782 free_irq:
1783 irq_set_chained_handler_and_data(msi->irq, NULL, NULL);
1784 free_irq_domain:
1785 if (IS_ENABLED(CONFIG_PCI_MSI))
1786 tegra_free_domains(msi);
1787
1788 return err;
1789 }
1790
tegra_pcie_enable_msi(struct tegra_pcie * pcie)1791 static void tegra_pcie_enable_msi(struct tegra_pcie *pcie)
1792 {
1793 const struct tegra_pcie_soc *soc = pcie->soc;
1794 struct tegra_msi *msi = &pcie->msi;
1795 u32 reg, msi_state[INT_PCI_MSI_NR / 32];
1796 int i;
1797
1798 afi_writel(pcie, msi->phys >> soc->msi_base_shift, AFI_MSI_FPCI_BAR_ST);
1799 afi_writel(pcie, msi->phys, AFI_MSI_AXI_BAR_ST);
1800 /* this register is in 4K increments */
1801 afi_writel(pcie, 1, AFI_MSI_BAR_SZ);
1802
1803 /* Restore the MSI allocation state */
1804 bitmap_to_arr32(msi_state, msi->used, INT_PCI_MSI_NR);
1805 for (i = 0; i < ARRAY_SIZE(msi_state); i++)
1806 afi_writel(pcie, msi_state[i], AFI_MSI_EN_VEC(i));
1807
1808 /* and unmask the MSI interrupt */
1809 reg = afi_readl(pcie, AFI_INTR_MASK);
1810 reg |= AFI_INTR_MASK_MSI_MASK;
1811 afi_writel(pcie, reg, AFI_INTR_MASK);
1812 }
1813
tegra_pcie_msi_teardown(struct tegra_pcie * pcie)1814 static void tegra_pcie_msi_teardown(struct tegra_pcie *pcie)
1815 {
1816 struct tegra_msi *msi = &pcie->msi;
1817 unsigned int i, irq;
1818
1819 dma_free_attrs(pcie->dev, PAGE_SIZE, msi->virt, msi->phys,
1820 DMA_ATTR_NO_KERNEL_MAPPING);
1821
1822 for (i = 0; i < INT_PCI_MSI_NR; i++) {
1823 irq = irq_find_mapping(msi->domain, i);
1824 if (irq > 0)
1825 irq_domain_free_irqs(irq, 1);
1826 }
1827
1828 irq_set_chained_handler_and_data(msi->irq, NULL, NULL);
1829
1830 if (IS_ENABLED(CONFIG_PCI_MSI))
1831 tegra_free_domains(msi);
1832 }
1833
tegra_pcie_disable_msi(struct tegra_pcie * pcie)1834 static int tegra_pcie_disable_msi(struct tegra_pcie *pcie)
1835 {
1836 u32 value;
1837
1838 /* mask the MSI interrupt */
1839 value = afi_readl(pcie, AFI_INTR_MASK);
1840 value &= ~AFI_INTR_MASK_MSI_MASK;
1841 afi_writel(pcie, value, AFI_INTR_MASK);
1842
1843 return 0;
1844 }
1845
tegra_pcie_disable_interrupts(struct tegra_pcie * pcie)1846 static void tegra_pcie_disable_interrupts(struct tegra_pcie *pcie)
1847 {
1848 u32 value;
1849
1850 value = afi_readl(pcie, AFI_INTR_MASK);
1851 value &= ~AFI_INTR_MASK_INT_MASK;
1852 afi_writel(pcie, value, AFI_INTR_MASK);
1853 }
1854
tegra_pcie_get_xbar_config(struct tegra_pcie * pcie,u32 lanes,u32 * xbar)1855 static int tegra_pcie_get_xbar_config(struct tegra_pcie *pcie, u32 lanes,
1856 u32 *xbar)
1857 {
1858 struct device *dev = pcie->dev;
1859 struct device_node *np = dev->of_node;
1860
1861 if (of_device_is_compatible(np, "nvidia,tegra186-pcie")) {
1862 switch (lanes) {
1863 case 0x010004:
1864 dev_info(dev, "4x1, 1x1 configuration\n");
1865 *xbar = AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_401;
1866 return 0;
1867
1868 case 0x010102:
1869 dev_info(dev, "2x1, 1X1, 1x1 configuration\n");
1870 *xbar = AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_211;
1871 return 0;
1872
1873 case 0x010101:
1874 dev_info(dev, "1x1, 1x1, 1x1 configuration\n");
1875 *xbar = AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_111;
1876 return 0;
1877
1878 default:
1879 dev_info(dev, "wrong configuration updated in DT, "
1880 "switching to default 2x1, 1x1, 1x1 "
1881 "configuration\n");
1882 *xbar = AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_211;
1883 return 0;
1884 }
1885 } else if (of_device_is_compatible(np, "nvidia,tegra124-pcie") ||
1886 of_device_is_compatible(np, "nvidia,tegra210-pcie")) {
1887 switch (lanes) {
1888 case 0x0000104:
1889 dev_info(dev, "4x1, 1x1 configuration\n");
1890 *xbar = AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_X4_X1;
1891 return 0;
1892
1893 case 0x0000102:
1894 dev_info(dev, "2x1, 1x1 configuration\n");
1895 *xbar = AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_X2_X1;
1896 return 0;
1897 }
1898 } else if (of_device_is_compatible(np, "nvidia,tegra30-pcie")) {
1899 switch (lanes) {
1900 case 0x00000204:
1901 dev_info(dev, "4x1, 2x1 configuration\n");
1902 *xbar = AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_420;
1903 return 0;
1904
1905 case 0x00020202:
1906 dev_info(dev, "2x3 configuration\n");
1907 *xbar = AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_222;
1908 return 0;
1909
1910 case 0x00010104:
1911 dev_info(dev, "4x1, 1x2 configuration\n");
1912 *xbar = AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_411;
1913 return 0;
1914 }
1915 } else if (of_device_is_compatible(np, "nvidia,tegra20-pcie")) {
1916 switch (lanes) {
1917 case 0x00000004:
1918 dev_info(dev, "single-mode configuration\n");
1919 *xbar = AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_SINGLE;
1920 return 0;
1921
1922 case 0x00000202:
1923 dev_info(dev, "dual-mode configuration\n");
1924 *xbar = AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_DUAL;
1925 return 0;
1926 }
1927 }
1928
1929 return -EINVAL;
1930 }
1931
1932 /*
1933 * Check whether a given set of supplies is available in a device tree node.
1934 * This is used to check whether the new or the legacy device tree bindings
1935 * should be used.
1936 */
of_regulator_bulk_available(struct device_node * np,struct regulator_bulk_data * supplies,unsigned int num_supplies)1937 static bool of_regulator_bulk_available(struct device_node *np,
1938 struct regulator_bulk_data *supplies,
1939 unsigned int num_supplies)
1940 {
1941 char property[32];
1942 unsigned int i;
1943
1944 for (i = 0; i < num_supplies; i++) {
1945 snprintf(property, 32, "%s-supply", supplies[i].supply);
1946
1947 if (!of_property_present(np, property))
1948 return false;
1949 }
1950
1951 return true;
1952 }
1953
1954 /*
1955 * Old versions of the device tree binding for this device used a set of power
1956 * supplies that didn't match the hardware inputs. This happened to work for a
1957 * number of cases but is not future proof. However to preserve backwards-
1958 * compatibility with old device trees, this function will try to use the old
1959 * set of supplies.
1960 */
tegra_pcie_get_legacy_regulators(struct tegra_pcie * pcie)1961 static int tegra_pcie_get_legacy_regulators(struct tegra_pcie *pcie)
1962 {
1963 struct device *dev = pcie->dev;
1964 struct device_node *np = dev->of_node;
1965
1966 if (of_device_is_compatible(np, "nvidia,tegra30-pcie"))
1967 pcie->num_supplies = 3;
1968 else if (of_device_is_compatible(np, "nvidia,tegra20-pcie"))
1969 pcie->num_supplies = 2;
1970
1971 if (pcie->num_supplies == 0) {
1972 dev_err(dev, "device %pOF not supported in legacy mode\n", np);
1973 return -ENODEV;
1974 }
1975
1976 pcie->supplies = devm_kcalloc(dev, pcie->num_supplies,
1977 sizeof(*pcie->supplies),
1978 GFP_KERNEL);
1979 if (!pcie->supplies)
1980 return -ENOMEM;
1981
1982 pcie->supplies[0].supply = "pex-clk";
1983 pcie->supplies[1].supply = "vdd";
1984
1985 if (pcie->num_supplies > 2)
1986 pcie->supplies[2].supply = "avdd";
1987
1988 return devm_regulator_bulk_get(dev, pcie->num_supplies, pcie->supplies);
1989 }
1990
1991 /*
1992 * Obtains the list of regulators required for a particular generation of the
1993 * IP block.
1994 *
1995 * This would've been nice to do simply by providing static tables for use
1996 * with the regulator_bulk_*() API, but unfortunately Tegra30 is a bit quirky
1997 * in that it has two pairs or AVDD_PEX and VDD_PEX supplies (PEXA and PEXB)
1998 * and either seems to be optional depending on which ports are being used.
1999 */
tegra_pcie_get_regulators(struct tegra_pcie * pcie,u32 lane_mask)2000 static int tegra_pcie_get_regulators(struct tegra_pcie *pcie, u32 lane_mask)
2001 {
2002 struct device *dev = pcie->dev;
2003 struct device_node *np = dev->of_node;
2004 unsigned int i = 0;
2005
2006 if (of_device_is_compatible(np, "nvidia,tegra186-pcie")) {
2007 pcie->num_supplies = 4;
2008
2009 pcie->supplies = devm_kcalloc(pcie->dev, pcie->num_supplies,
2010 sizeof(*pcie->supplies),
2011 GFP_KERNEL);
2012 if (!pcie->supplies)
2013 return -ENOMEM;
2014
2015 pcie->supplies[i++].supply = "dvdd-pex";
2016 pcie->supplies[i++].supply = "hvdd-pex-pll";
2017 pcie->supplies[i++].supply = "hvdd-pex";
2018 pcie->supplies[i++].supply = "vddio-pexctl-aud";
2019 } else if (of_device_is_compatible(np, "nvidia,tegra210-pcie")) {
2020 pcie->num_supplies = 3;
2021
2022 pcie->supplies = devm_kcalloc(pcie->dev, pcie->num_supplies,
2023 sizeof(*pcie->supplies),
2024 GFP_KERNEL);
2025 if (!pcie->supplies)
2026 return -ENOMEM;
2027
2028 pcie->supplies[i++].supply = "hvddio-pex";
2029 pcie->supplies[i++].supply = "dvddio-pex";
2030 pcie->supplies[i++].supply = "vddio-pex-ctl";
2031 } else if (of_device_is_compatible(np, "nvidia,tegra124-pcie")) {
2032 pcie->num_supplies = 4;
2033
2034 pcie->supplies = devm_kcalloc(dev, pcie->num_supplies,
2035 sizeof(*pcie->supplies),
2036 GFP_KERNEL);
2037 if (!pcie->supplies)
2038 return -ENOMEM;
2039
2040 pcie->supplies[i++].supply = "avddio-pex";
2041 pcie->supplies[i++].supply = "dvddio-pex";
2042 pcie->supplies[i++].supply = "hvdd-pex";
2043 pcie->supplies[i++].supply = "vddio-pex-ctl";
2044 } else if (of_device_is_compatible(np, "nvidia,tegra30-pcie")) {
2045 bool need_pexa = false, need_pexb = false;
2046
2047 /* VDD_PEXA and AVDD_PEXA supply lanes 0 to 3 */
2048 if (lane_mask & 0x0f)
2049 need_pexa = true;
2050
2051 /* VDD_PEXB and AVDD_PEXB supply lanes 4 to 5 */
2052 if (lane_mask & 0x30)
2053 need_pexb = true;
2054
2055 pcie->num_supplies = 4 + (need_pexa ? 2 : 0) +
2056 (need_pexb ? 2 : 0);
2057
2058 pcie->supplies = devm_kcalloc(dev, pcie->num_supplies,
2059 sizeof(*pcie->supplies),
2060 GFP_KERNEL);
2061 if (!pcie->supplies)
2062 return -ENOMEM;
2063
2064 pcie->supplies[i++].supply = "avdd-pex-pll";
2065 pcie->supplies[i++].supply = "hvdd-pex";
2066 pcie->supplies[i++].supply = "vddio-pex-ctl";
2067 pcie->supplies[i++].supply = "avdd-plle";
2068
2069 if (need_pexa) {
2070 pcie->supplies[i++].supply = "avdd-pexa";
2071 pcie->supplies[i++].supply = "vdd-pexa";
2072 }
2073
2074 if (need_pexb) {
2075 pcie->supplies[i++].supply = "avdd-pexb";
2076 pcie->supplies[i++].supply = "vdd-pexb";
2077 }
2078 } else if (of_device_is_compatible(np, "nvidia,tegra20-pcie")) {
2079 pcie->num_supplies = 5;
2080
2081 pcie->supplies = devm_kcalloc(dev, pcie->num_supplies,
2082 sizeof(*pcie->supplies),
2083 GFP_KERNEL);
2084 if (!pcie->supplies)
2085 return -ENOMEM;
2086
2087 pcie->supplies[0].supply = "avdd-pex";
2088 pcie->supplies[1].supply = "vdd-pex";
2089 pcie->supplies[2].supply = "avdd-pex-pll";
2090 pcie->supplies[3].supply = "avdd-plle";
2091 pcie->supplies[4].supply = "vddio-pex-clk";
2092 }
2093
2094 if (of_regulator_bulk_available(dev->of_node, pcie->supplies,
2095 pcie->num_supplies))
2096 return devm_regulator_bulk_get(dev, pcie->num_supplies,
2097 pcie->supplies);
2098
2099 /*
2100 * If not all regulators are available for this new scheme, assume
2101 * that the device tree complies with an older version of the device
2102 * tree binding.
2103 */
2104 dev_info(dev, "using legacy DT binding for power supplies\n");
2105
2106 devm_kfree(dev, pcie->supplies);
2107 pcie->num_supplies = 0;
2108
2109 return tegra_pcie_get_legacy_regulators(pcie);
2110 }
2111
tegra_pcie_parse_dt(struct tegra_pcie * pcie)2112 static int tegra_pcie_parse_dt(struct tegra_pcie *pcie)
2113 {
2114 struct device *dev = pcie->dev;
2115 struct device_node *np = dev->of_node, *port;
2116 const struct tegra_pcie_soc *soc = pcie->soc;
2117 u32 lanes = 0, mask = 0;
2118 unsigned int lane = 0;
2119 int err;
2120
2121 /* parse root ports */
2122 for_each_child_of_node(np, port) {
2123 struct tegra_pcie_port *rp;
2124 unsigned int index;
2125 u32 value;
2126 char *label;
2127
2128 err = of_pci_get_devfn(port);
2129 if (err < 0) {
2130 dev_err(dev, "failed to parse address: %d\n", err);
2131 goto err_node_put;
2132 }
2133
2134 index = PCI_SLOT(err);
2135
2136 if (index < 1 || index > soc->num_ports) {
2137 dev_err(dev, "invalid port number: %d\n", index);
2138 err = -EINVAL;
2139 goto err_node_put;
2140 }
2141
2142 index--;
2143
2144 err = of_property_read_u32(port, "nvidia,num-lanes", &value);
2145 if (err < 0) {
2146 dev_err(dev, "failed to parse # of lanes: %d\n",
2147 err);
2148 goto err_node_put;
2149 }
2150
2151 if (value > 16) {
2152 dev_err(dev, "invalid # of lanes: %u\n", value);
2153 err = -EINVAL;
2154 goto err_node_put;
2155 }
2156
2157 lanes |= value << (index << 3);
2158
2159 if (!of_device_is_available(port)) {
2160 lane += value;
2161 continue;
2162 }
2163
2164 mask |= ((1 << value) - 1) << lane;
2165 lane += value;
2166
2167 rp = devm_kzalloc(dev, sizeof(*rp), GFP_KERNEL);
2168 if (!rp) {
2169 err = -ENOMEM;
2170 goto err_node_put;
2171 }
2172
2173 err = of_address_to_resource(port, 0, &rp->regs);
2174 if (err < 0) {
2175 dev_err(dev, "failed to parse address: %d\n", err);
2176 goto err_node_put;
2177 }
2178
2179 INIT_LIST_HEAD(&rp->list);
2180 rp->index = index;
2181 rp->lanes = value;
2182 rp->pcie = pcie;
2183 rp->np = port;
2184
2185 rp->base = devm_pci_remap_cfg_resource(dev, &rp->regs);
2186 if (IS_ERR(rp->base)) {
2187 err = PTR_ERR(rp->base);
2188 goto err_node_put;
2189 }
2190
2191 label = devm_kasprintf(dev, GFP_KERNEL, "pex-reset-%u", index);
2192 if (!label) {
2193 err = -ENOMEM;
2194 goto err_node_put;
2195 }
2196
2197 /*
2198 * Returns -ENOENT if reset-gpios property is not populated
2199 * and in this case fall back to using AFI per port register
2200 * to toggle PERST# SFIO line.
2201 */
2202 rp->reset_gpio = devm_fwnode_gpiod_get(dev,
2203 of_fwnode_handle(port),
2204 "reset",
2205 GPIOD_OUT_LOW,
2206 label);
2207 if (IS_ERR(rp->reset_gpio)) {
2208 if (PTR_ERR(rp->reset_gpio) == -ENOENT) {
2209 rp->reset_gpio = NULL;
2210 } else {
2211 dev_err(dev, "failed to get reset GPIO: %ld\n",
2212 PTR_ERR(rp->reset_gpio));
2213 err = PTR_ERR(rp->reset_gpio);
2214 goto err_node_put;
2215 }
2216 }
2217
2218 list_add_tail(&rp->list, &pcie->ports);
2219 }
2220
2221 err = tegra_pcie_get_xbar_config(pcie, lanes, &pcie->xbar_config);
2222 if (err < 0) {
2223 dev_err(dev, "invalid lane configuration\n");
2224 return err;
2225 }
2226
2227 err = tegra_pcie_get_regulators(pcie, mask);
2228 if (err < 0)
2229 return err;
2230
2231 return 0;
2232
2233 err_node_put:
2234 of_node_put(port);
2235 return err;
2236 }
2237
2238 /*
2239 * FIXME: If there are no PCIe cards attached, then calling this function
2240 * can result in the increase of the bootup time as there are big timeout
2241 * loops.
2242 */
2243 #define TEGRA_PCIE_LINKUP_TIMEOUT 200 /* up to 1.2 seconds */
tegra_pcie_port_check_link(struct tegra_pcie_port * port)2244 static bool tegra_pcie_port_check_link(struct tegra_pcie_port *port)
2245 {
2246 struct device *dev = port->pcie->dev;
2247 unsigned int retries = 3;
2248 unsigned long value;
2249
2250 /* override presence detection */
2251 value = readl(port->base + RP_PRIV_MISC);
2252 value &= ~RP_PRIV_MISC_PRSNT_MAP_EP_ABSNT;
2253 value |= RP_PRIV_MISC_PRSNT_MAP_EP_PRSNT;
2254 writel(value, port->base + RP_PRIV_MISC);
2255
2256 do {
2257 unsigned int timeout = TEGRA_PCIE_LINKUP_TIMEOUT;
2258
2259 do {
2260 value = readl(port->base + RP_VEND_XP);
2261
2262 if (value & RP_VEND_XP_DL_UP)
2263 break;
2264
2265 usleep_range(1000, 2000);
2266 } while (--timeout);
2267
2268 if (!timeout) {
2269 dev_dbg(dev, "link %u down, retrying\n", port->index);
2270 goto retry;
2271 }
2272
2273 timeout = TEGRA_PCIE_LINKUP_TIMEOUT;
2274
2275 do {
2276 value = readl(port->base + RP_LINK_CONTROL_STATUS);
2277
2278 if (value & RP_LINK_CONTROL_STATUS_DL_LINK_ACTIVE)
2279 return true;
2280
2281 usleep_range(1000, 2000);
2282 } while (--timeout);
2283
2284 retry:
2285 tegra_pcie_port_reset(port);
2286 } while (--retries);
2287
2288 return false;
2289 }
2290
tegra_pcie_change_link_speed(struct tegra_pcie * pcie)2291 static void tegra_pcie_change_link_speed(struct tegra_pcie *pcie)
2292 {
2293 struct device *dev = pcie->dev;
2294 struct tegra_pcie_port *port;
2295 ktime_t deadline;
2296 u32 value;
2297
2298 list_for_each_entry(port, &pcie->ports, list) {
2299 /*
2300 * "Supported Link Speeds Vector" in "Link Capabilities 2"
2301 * is not supported by Tegra. tegra_pcie_change_link_speed()
2302 * is called only for Tegra chips which support Gen2.
2303 * So there no harm if supported link speed is not verified.
2304 */
2305 value = readl(port->base + RP_LINK_CONTROL_STATUS_2);
2306 value &= ~PCI_EXP_LNKSTA_CLS;
2307 value |= PCI_EXP_LNKSTA_CLS_5_0GB;
2308 writel(value, port->base + RP_LINK_CONTROL_STATUS_2);
2309
2310 /*
2311 * Poll until link comes back from recovery to avoid race
2312 * condition.
2313 */
2314 deadline = ktime_add_us(ktime_get(), LINK_RETRAIN_TIMEOUT);
2315
2316 while (ktime_before(ktime_get(), deadline)) {
2317 value = readl(port->base + RP_LINK_CONTROL_STATUS);
2318 if ((value & PCI_EXP_LNKSTA_LT) == 0)
2319 break;
2320
2321 usleep_range(2000, 3000);
2322 }
2323
2324 if (value & PCI_EXP_LNKSTA_LT)
2325 dev_warn(dev, "PCIe port %u link is in recovery\n",
2326 port->index);
2327
2328 /* Retrain the link */
2329 value = readl(port->base + RP_LINK_CONTROL_STATUS);
2330 value |= PCI_EXP_LNKCTL_RL;
2331 writel(value, port->base + RP_LINK_CONTROL_STATUS);
2332
2333 deadline = ktime_add_us(ktime_get(), LINK_RETRAIN_TIMEOUT);
2334
2335 while (ktime_before(ktime_get(), deadline)) {
2336 value = readl(port->base + RP_LINK_CONTROL_STATUS);
2337 if ((value & PCI_EXP_LNKSTA_LT) == 0)
2338 break;
2339
2340 usleep_range(2000, 3000);
2341 }
2342
2343 if (value & PCI_EXP_LNKSTA_LT)
2344 dev_err(dev, "failed to retrain link of port %u\n",
2345 port->index);
2346 }
2347 }
2348
tegra_pcie_enable_ports(struct tegra_pcie * pcie)2349 static void tegra_pcie_enable_ports(struct tegra_pcie *pcie)
2350 {
2351 struct device *dev = pcie->dev;
2352 struct tegra_pcie_port *port, *tmp;
2353
2354 list_for_each_entry_safe(port, tmp, &pcie->ports, list) {
2355 dev_info(dev, "probing port %u, using %u lanes\n",
2356 port->index, port->lanes);
2357
2358 tegra_pcie_port_enable(port);
2359 }
2360
2361 /* Start LTSSM from Tegra side */
2362 reset_control_deassert(pcie->pcie_xrst);
2363
2364 list_for_each_entry_safe(port, tmp, &pcie->ports, list) {
2365 if (tegra_pcie_port_check_link(port))
2366 continue;
2367
2368 dev_info(dev, "link %u down, ignoring\n", port->index);
2369
2370 tegra_pcie_port_disable(port);
2371 tegra_pcie_port_free(port);
2372 }
2373
2374 if (pcie->soc->has_gen2)
2375 tegra_pcie_change_link_speed(pcie);
2376 }
2377
tegra_pcie_disable_ports(struct tegra_pcie * pcie)2378 static void tegra_pcie_disable_ports(struct tegra_pcie *pcie)
2379 {
2380 struct tegra_pcie_port *port, *tmp;
2381
2382 reset_control_assert(pcie->pcie_xrst);
2383
2384 list_for_each_entry_safe(port, tmp, &pcie->ports, list)
2385 tegra_pcie_port_disable(port);
2386 }
2387
2388 static const struct tegra_pcie_port_soc tegra20_pcie_ports[] = {
2389 { .pme.turnoff_bit = 0, .pme.ack_bit = 5 },
2390 { .pme.turnoff_bit = 8, .pme.ack_bit = 10 },
2391 };
2392
2393 static const struct tegra_pcie_soc tegra20_pcie = {
2394 .num_ports = 2,
2395 .ports = tegra20_pcie_ports,
2396 .msi_base_shift = 0,
2397 .pads_pll_ctl = PADS_PLL_CTL_TEGRA20,
2398 .tx_ref_sel = PADS_PLL_CTL_TXCLKREF_DIV10,
2399 .pads_refclk_cfg0 = 0xfa5cfa5c,
2400 .has_pex_clkreq_en = false,
2401 .has_pex_bias_ctrl = false,
2402 .has_intr_prsnt_sense = false,
2403 .has_cml_clk = false,
2404 .has_gen2 = false,
2405 .force_pca_enable = false,
2406 .program_uphy = true,
2407 .update_clamp_threshold = false,
2408 .program_deskew_time = false,
2409 .update_fc_timer = false,
2410 .has_cache_bars = true,
2411 .ectl.enable = false,
2412 };
2413
2414 static const struct tegra_pcie_port_soc tegra30_pcie_ports[] = {
2415 { .pme.turnoff_bit = 0, .pme.ack_bit = 5 },
2416 { .pme.turnoff_bit = 8, .pme.ack_bit = 10 },
2417 { .pme.turnoff_bit = 16, .pme.ack_bit = 18 },
2418 };
2419
2420 static const struct tegra_pcie_soc tegra30_pcie = {
2421 .num_ports = 3,
2422 .ports = tegra30_pcie_ports,
2423 .msi_base_shift = 8,
2424 .afi_pex2_ctrl = 0x128,
2425 .pads_pll_ctl = PADS_PLL_CTL_TEGRA30,
2426 .tx_ref_sel = PADS_PLL_CTL_TXCLKREF_BUF_EN,
2427 .pads_refclk_cfg0 = 0xfa5cfa5c,
2428 .pads_refclk_cfg1 = 0xfa5cfa5c,
2429 .has_pex_clkreq_en = true,
2430 .has_pex_bias_ctrl = true,
2431 .has_intr_prsnt_sense = true,
2432 .has_cml_clk = true,
2433 .has_gen2 = false,
2434 .force_pca_enable = false,
2435 .program_uphy = true,
2436 .update_clamp_threshold = false,
2437 .program_deskew_time = false,
2438 .update_fc_timer = false,
2439 .has_cache_bars = false,
2440 .ectl.enable = false,
2441 };
2442
2443 static const struct tegra_pcie_soc tegra124_pcie = {
2444 .num_ports = 2,
2445 .ports = tegra20_pcie_ports,
2446 .msi_base_shift = 8,
2447 .pads_pll_ctl = PADS_PLL_CTL_TEGRA30,
2448 .tx_ref_sel = PADS_PLL_CTL_TXCLKREF_BUF_EN,
2449 .pads_refclk_cfg0 = 0x44ac44ac,
2450 .has_pex_clkreq_en = true,
2451 .has_pex_bias_ctrl = true,
2452 .has_intr_prsnt_sense = true,
2453 .has_cml_clk = true,
2454 .has_gen2 = true,
2455 .force_pca_enable = false,
2456 .program_uphy = true,
2457 .update_clamp_threshold = true,
2458 .program_deskew_time = false,
2459 .update_fc_timer = false,
2460 .has_cache_bars = false,
2461 .ectl.enable = false,
2462 };
2463
2464 static const struct tegra_pcie_soc tegra210_pcie = {
2465 .num_ports = 2,
2466 .ports = tegra20_pcie_ports,
2467 .msi_base_shift = 8,
2468 .pads_pll_ctl = PADS_PLL_CTL_TEGRA30,
2469 .tx_ref_sel = PADS_PLL_CTL_TXCLKREF_BUF_EN,
2470 .pads_refclk_cfg0 = 0x90b890b8,
2471 /* FC threshold is bit[25:18] */
2472 .update_fc_threshold = 0x01800000,
2473 .has_pex_clkreq_en = true,
2474 .has_pex_bias_ctrl = true,
2475 .has_intr_prsnt_sense = true,
2476 .has_cml_clk = true,
2477 .has_gen2 = true,
2478 .force_pca_enable = true,
2479 .program_uphy = true,
2480 .update_clamp_threshold = true,
2481 .program_deskew_time = true,
2482 .update_fc_timer = true,
2483 .has_cache_bars = false,
2484 .ectl = {
2485 .regs = {
2486 .rp_ectl_2_r1 = 0x0000000f,
2487 .rp_ectl_4_r1 = 0x00000067,
2488 .rp_ectl_5_r1 = 0x55010000,
2489 .rp_ectl_6_r1 = 0x00000001,
2490 .rp_ectl_2_r2 = 0x0000008f,
2491 .rp_ectl_4_r2 = 0x000000c7,
2492 .rp_ectl_5_r2 = 0x55010000,
2493 .rp_ectl_6_r2 = 0x00000001,
2494 },
2495 .enable = true,
2496 },
2497 };
2498
2499 static const struct tegra_pcie_port_soc tegra186_pcie_ports[] = {
2500 { .pme.turnoff_bit = 0, .pme.ack_bit = 5 },
2501 { .pme.turnoff_bit = 8, .pme.ack_bit = 10 },
2502 { .pme.turnoff_bit = 12, .pme.ack_bit = 14 },
2503 };
2504
2505 static const struct tegra_pcie_soc tegra186_pcie = {
2506 .num_ports = 3,
2507 .ports = tegra186_pcie_ports,
2508 .msi_base_shift = 8,
2509 .afi_pex2_ctrl = 0x19c,
2510 .pads_pll_ctl = PADS_PLL_CTL_TEGRA30,
2511 .tx_ref_sel = PADS_PLL_CTL_TXCLKREF_BUF_EN,
2512 .pads_refclk_cfg0 = 0x80b880b8,
2513 .pads_refclk_cfg1 = 0x000480b8,
2514 .has_pex_clkreq_en = true,
2515 .has_pex_bias_ctrl = true,
2516 .has_intr_prsnt_sense = true,
2517 .has_cml_clk = false,
2518 .has_gen2 = true,
2519 .force_pca_enable = false,
2520 .program_uphy = false,
2521 .update_clamp_threshold = false,
2522 .program_deskew_time = false,
2523 .update_fc_timer = false,
2524 .has_cache_bars = false,
2525 .ectl.enable = false,
2526 };
2527
2528 static const struct of_device_id tegra_pcie_of_match[] = {
2529 { .compatible = "nvidia,tegra186-pcie", .data = &tegra186_pcie },
2530 { .compatible = "nvidia,tegra210-pcie", .data = &tegra210_pcie },
2531 { .compatible = "nvidia,tegra124-pcie", .data = &tegra124_pcie },
2532 { .compatible = "nvidia,tegra30-pcie", .data = &tegra30_pcie },
2533 { .compatible = "nvidia,tegra20-pcie", .data = &tegra20_pcie },
2534 { },
2535 };
2536 MODULE_DEVICE_TABLE(of, tegra_pcie_of_match);
2537
tegra_pcie_ports_seq_start(struct seq_file * s,loff_t * pos)2538 static void *tegra_pcie_ports_seq_start(struct seq_file *s, loff_t *pos)
2539 {
2540 struct tegra_pcie *pcie = s->private;
2541
2542 if (list_empty(&pcie->ports))
2543 return NULL;
2544
2545 seq_puts(s, "Index Status\n");
2546
2547 return seq_list_start(&pcie->ports, *pos);
2548 }
2549
tegra_pcie_ports_seq_next(struct seq_file * s,void * v,loff_t * pos)2550 static void *tegra_pcie_ports_seq_next(struct seq_file *s, void *v, loff_t *pos)
2551 {
2552 struct tegra_pcie *pcie = s->private;
2553
2554 return seq_list_next(v, &pcie->ports, pos);
2555 }
2556
tegra_pcie_ports_seq_stop(struct seq_file * s,void * v)2557 static void tegra_pcie_ports_seq_stop(struct seq_file *s, void *v)
2558 {
2559 }
2560
tegra_pcie_ports_seq_show(struct seq_file * s,void * v)2561 static int tegra_pcie_ports_seq_show(struct seq_file *s, void *v)
2562 {
2563 bool up = false, active = false;
2564 struct tegra_pcie_port *port;
2565 unsigned int value;
2566
2567 port = list_entry(v, struct tegra_pcie_port, list);
2568
2569 value = readl(port->base + RP_VEND_XP);
2570
2571 if (value & RP_VEND_XP_DL_UP)
2572 up = true;
2573
2574 value = readl(port->base + RP_LINK_CONTROL_STATUS);
2575
2576 if (value & RP_LINK_CONTROL_STATUS_DL_LINK_ACTIVE)
2577 active = true;
2578
2579 seq_printf(s, "%2u ", port->index);
2580
2581 if (up)
2582 seq_puts(s, "up");
2583
2584 if (active) {
2585 if (up)
2586 seq_puts(s, ", ");
2587
2588 seq_puts(s, "active");
2589 }
2590
2591 seq_puts(s, "\n");
2592 return 0;
2593 }
2594
2595 static const struct seq_operations tegra_pcie_ports_sops = {
2596 .start = tegra_pcie_ports_seq_start,
2597 .next = tegra_pcie_ports_seq_next,
2598 .stop = tegra_pcie_ports_seq_stop,
2599 .show = tegra_pcie_ports_seq_show,
2600 };
2601
2602 DEFINE_SEQ_ATTRIBUTE(tegra_pcie_ports);
2603
tegra_pcie_debugfs_exit(struct tegra_pcie * pcie)2604 static void tegra_pcie_debugfs_exit(struct tegra_pcie *pcie)
2605 {
2606 debugfs_remove_recursive(pcie->debugfs);
2607 pcie->debugfs = NULL;
2608 }
2609
tegra_pcie_debugfs_init(struct tegra_pcie * pcie)2610 static void tegra_pcie_debugfs_init(struct tegra_pcie *pcie)
2611 {
2612 pcie->debugfs = debugfs_create_dir("pcie", NULL);
2613
2614 debugfs_create_file("ports", S_IFREG | S_IRUGO, pcie->debugfs, pcie,
2615 &tegra_pcie_ports_fops);
2616 }
2617
tegra_pcie_probe(struct platform_device * pdev)2618 static int tegra_pcie_probe(struct platform_device *pdev)
2619 {
2620 struct device *dev = &pdev->dev;
2621 struct pci_host_bridge *host;
2622 struct tegra_pcie *pcie;
2623 int err;
2624
2625 host = devm_pci_alloc_host_bridge(dev, sizeof(*pcie));
2626 if (!host)
2627 return -ENOMEM;
2628
2629 pcie = pci_host_bridge_priv(host);
2630 host->sysdata = pcie;
2631 platform_set_drvdata(pdev, pcie);
2632
2633 pcie->soc = of_device_get_match_data(dev);
2634 INIT_LIST_HEAD(&pcie->ports);
2635 pcie->dev = dev;
2636
2637 err = tegra_pcie_parse_dt(pcie);
2638 if (err < 0)
2639 return err;
2640
2641 err = tegra_pcie_get_resources(pcie);
2642 if (err < 0) {
2643 dev_err(dev, "failed to request resources: %d\n", err);
2644 return err;
2645 }
2646
2647 err = tegra_pcie_msi_setup(pcie);
2648 if (err < 0) {
2649 dev_err(dev, "failed to enable MSI support: %d\n", err);
2650 goto put_resources;
2651 }
2652
2653 pm_runtime_enable(pcie->dev);
2654 err = pm_runtime_get_sync(pcie->dev);
2655 if (err < 0) {
2656 dev_err(dev, "fail to enable pcie controller: %d\n", err);
2657 goto pm_runtime_put;
2658 }
2659
2660 host->ops = &tegra_pcie_ops;
2661 host->map_irq = tegra_pcie_map_irq;
2662
2663 err = pci_host_probe(host);
2664 if (err < 0) {
2665 dev_err(dev, "failed to register host: %d\n", err);
2666 goto pm_runtime_put;
2667 }
2668
2669 if (IS_ENABLED(CONFIG_DEBUG_FS))
2670 tegra_pcie_debugfs_init(pcie);
2671
2672 return 0;
2673
2674 pm_runtime_put:
2675 pm_runtime_put_sync(pcie->dev);
2676 pm_runtime_disable(pcie->dev);
2677 tegra_pcie_msi_teardown(pcie);
2678 put_resources:
2679 tegra_pcie_put_resources(pcie);
2680 return err;
2681 }
2682
tegra_pcie_remove(struct platform_device * pdev)2683 static void tegra_pcie_remove(struct platform_device *pdev)
2684 {
2685 struct tegra_pcie *pcie = platform_get_drvdata(pdev);
2686 struct pci_host_bridge *host = pci_host_bridge_from_priv(pcie);
2687 struct tegra_pcie_port *port, *tmp;
2688
2689 if (IS_ENABLED(CONFIG_DEBUG_FS))
2690 tegra_pcie_debugfs_exit(pcie);
2691
2692 pci_stop_root_bus(host->bus);
2693 pci_remove_root_bus(host->bus);
2694 pm_runtime_put_sync(pcie->dev);
2695 pm_runtime_disable(pcie->dev);
2696
2697 if (IS_ENABLED(CONFIG_PCI_MSI))
2698 tegra_pcie_msi_teardown(pcie);
2699
2700 tegra_pcie_put_resources(pcie);
2701
2702 list_for_each_entry_safe(port, tmp, &pcie->ports, list)
2703 tegra_pcie_port_free(port);
2704 }
2705
tegra_pcie_pm_suspend(struct device * dev)2706 static int tegra_pcie_pm_suspend(struct device *dev)
2707 {
2708 struct tegra_pcie *pcie = dev_get_drvdata(dev);
2709 struct tegra_pcie_port *port;
2710 int err;
2711
2712 list_for_each_entry(port, &pcie->ports, list)
2713 tegra_pcie_pme_turnoff(port);
2714
2715 tegra_pcie_disable_ports(pcie);
2716
2717 /*
2718 * AFI_INTR is unmasked in tegra_pcie_enable_controller(), mask it to
2719 * avoid unwanted interrupts raised by AFI after pex_rst is asserted.
2720 */
2721 tegra_pcie_disable_interrupts(pcie);
2722
2723 if (pcie->soc->program_uphy) {
2724 err = tegra_pcie_phy_power_off(pcie);
2725 if (err < 0)
2726 dev_err(dev, "failed to power off PHY(s): %d\n", err);
2727 }
2728
2729 reset_control_assert(pcie->pex_rst);
2730 clk_disable_unprepare(pcie->pex_clk);
2731
2732 if (IS_ENABLED(CONFIG_PCI_MSI))
2733 tegra_pcie_disable_msi(pcie);
2734
2735 pinctrl_pm_select_idle_state(dev);
2736 tegra_pcie_power_off(pcie);
2737
2738 return 0;
2739 }
2740
tegra_pcie_pm_resume(struct device * dev)2741 static int tegra_pcie_pm_resume(struct device *dev)
2742 {
2743 struct tegra_pcie *pcie = dev_get_drvdata(dev);
2744 int err;
2745
2746 err = tegra_pcie_power_on(pcie);
2747 if (err) {
2748 dev_err(dev, "tegra pcie power on fail: %d\n", err);
2749 return err;
2750 }
2751
2752 err = pinctrl_pm_select_default_state(dev);
2753 if (err < 0) {
2754 dev_err(dev, "failed to disable PCIe IO DPD: %d\n", err);
2755 goto poweroff;
2756 }
2757
2758 tegra_pcie_enable_controller(pcie);
2759 tegra_pcie_setup_translations(pcie);
2760
2761 if (IS_ENABLED(CONFIG_PCI_MSI))
2762 tegra_pcie_enable_msi(pcie);
2763
2764 err = clk_prepare_enable(pcie->pex_clk);
2765 if (err) {
2766 dev_err(dev, "failed to enable PEX clock: %d\n", err);
2767 goto pex_dpd_enable;
2768 }
2769
2770 reset_control_deassert(pcie->pex_rst);
2771
2772 if (pcie->soc->program_uphy) {
2773 err = tegra_pcie_phy_power_on(pcie);
2774 if (err < 0) {
2775 dev_err(dev, "failed to power on PHY(s): %d\n", err);
2776 goto disable_pex_clk;
2777 }
2778 }
2779
2780 tegra_pcie_apply_pad_settings(pcie);
2781 tegra_pcie_enable_ports(pcie);
2782
2783 return 0;
2784
2785 disable_pex_clk:
2786 reset_control_assert(pcie->pex_rst);
2787 clk_disable_unprepare(pcie->pex_clk);
2788 pex_dpd_enable:
2789 pinctrl_pm_select_idle_state(dev);
2790 poweroff:
2791 tegra_pcie_power_off(pcie);
2792
2793 return err;
2794 }
2795
2796 static const struct dev_pm_ops tegra_pcie_pm_ops = {
2797 RUNTIME_PM_OPS(tegra_pcie_pm_suspend, tegra_pcie_pm_resume, NULL)
2798 NOIRQ_SYSTEM_SLEEP_PM_OPS(tegra_pcie_pm_suspend, tegra_pcie_pm_resume)
2799 };
2800
2801 static struct platform_driver tegra_pcie_driver = {
2802 .driver = {
2803 .name = "tegra-pcie",
2804 .of_match_table = tegra_pcie_of_match,
2805 .suppress_bind_attrs = true,
2806 .pm = &tegra_pcie_pm_ops,
2807 },
2808 .probe = tegra_pcie_probe,
2809 .remove_new = tegra_pcie_remove,
2810 };
2811 module_platform_driver(tegra_pcie_driver);
2812