xref: /openbmc/linux/drivers/pci/controller/pci-mvebu.c (revision 2e7c04aec86758e0adfcad4a24c86593b45807a3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PCIe driver for Marvell Armada 370 and Armada XP SoCs
4  *
5  * Author: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
6  */
7 
8 #include <linux/kernel.h>
9 #include <linux/pci.h>
10 #include <linux/clk.h>
11 #include <linux/delay.h>
12 #include <linux/gpio.h>
13 #include <linux/init.h>
14 #include <linux/mbus.h>
15 #include <linux/msi.h>
16 #include <linux/slab.h>
17 #include <linux/platform_device.h>
18 #include <linux/of_address.h>
19 #include <linux/of_irq.h>
20 #include <linux/of_gpio.h>
21 #include <linux/of_pci.h>
22 #include <linux/of_platform.h>
23 
24 #include "../pci.h"
25 
26 /*
27  * PCIe unit register offsets.
28  */
29 #define PCIE_DEV_ID_OFF		0x0000
30 #define PCIE_CMD_OFF		0x0004
31 #define PCIE_DEV_REV_OFF	0x0008
32 #define PCIE_BAR_LO_OFF(n)	(0x0010 + ((n) << 3))
33 #define PCIE_BAR_HI_OFF(n)	(0x0014 + ((n) << 3))
34 #define PCIE_CAP_PCIEXP		0x0060
35 #define PCIE_HEADER_LOG_4_OFF	0x0128
36 #define PCIE_BAR_CTRL_OFF(n)	(0x1804 + (((n) - 1) * 4))
37 #define PCIE_WIN04_CTRL_OFF(n)	(0x1820 + ((n) << 4))
38 #define PCIE_WIN04_BASE_OFF(n)	(0x1824 + ((n) << 4))
39 #define PCIE_WIN04_REMAP_OFF(n)	(0x182c + ((n) << 4))
40 #define PCIE_WIN5_CTRL_OFF	0x1880
41 #define PCIE_WIN5_BASE_OFF	0x1884
42 #define PCIE_WIN5_REMAP_OFF	0x188c
43 #define PCIE_CONF_ADDR_OFF	0x18f8
44 #define  PCIE_CONF_ADDR_EN		0x80000000
45 #define  PCIE_CONF_REG(r)		((((r) & 0xf00) << 16) | ((r) & 0xfc))
46 #define  PCIE_CONF_BUS(b)		(((b) & 0xff) << 16)
47 #define  PCIE_CONF_DEV(d)		(((d) & 0x1f) << 11)
48 #define  PCIE_CONF_FUNC(f)		(((f) & 0x7) << 8)
49 #define  PCIE_CONF_ADDR(bus, devfn, where) \
50 	(PCIE_CONF_BUS(bus) | PCIE_CONF_DEV(PCI_SLOT(devfn))    | \
51 	 PCIE_CONF_FUNC(PCI_FUNC(devfn)) | PCIE_CONF_REG(where) | \
52 	 PCIE_CONF_ADDR_EN)
53 #define PCIE_CONF_DATA_OFF	0x18fc
54 #define PCIE_MASK_OFF		0x1910
55 #define  PCIE_MASK_ENABLE_INTS          0x0f000000
56 #define PCIE_CTRL_OFF		0x1a00
57 #define  PCIE_CTRL_X1_MODE		0x0001
58 #define PCIE_STAT_OFF		0x1a04
59 #define  PCIE_STAT_BUS                  0xff00
60 #define  PCIE_STAT_DEV                  0x1f0000
61 #define  PCIE_STAT_LINK_DOWN		BIT(0)
62 #define PCIE_RC_RTSTA		0x1a14
63 #define PCIE_DEBUG_CTRL         0x1a60
64 #define  PCIE_DEBUG_SOFT_RESET		BIT(20)
65 
66 enum {
67 	PCISWCAP = PCI_BRIDGE_CONTROL + 2,
68 	PCISWCAP_EXP_LIST_ID	= PCISWCAP + PCI_CAP_LIST_ID,
69 	PCISWCAP_EXP_DEVCAP	= PCISWCAP + PCI_EXP_DEVCAP,
70 	PCISWCAP_EXP_DEVCTL	= PCISWCAP + PCI_EXP_DEVCTL,
71 	PCISWCAP_EXP_LNKCAP	= PCISWCAP + PCI_EXP_LNKCAP,
72 	PCISWCAP_EXP_LNKCTL	= PCISWCAP + PCI_EXP_LNKCTL,
73 	PCISWCAP_EXP_SLTCAP	= PCISWCAP + PCI_EXP_SLTCAP,
74 	PCISWCAP_EXP_SLTCTL	= PCISWCAP + PCI_EXP_SLTCTL,
75 	PCISWCAP_EXP_RTCTL	= PCISWCAP + PCI_EXP_RTCTL,
76 	PCISWCAP_EXP_RTSTA	= PCISWCAP + PCI_EXP_RTSTA,
77 	PCISWCAP_EXP_DEVCAP2	= PCISWCAP + PCI_EXP_DEVCAP2,
78 	PCISWCAP_EXP_DEVCTL2	= PCISWCAP + PCI_EXP_DEVCTL2,
79 	PCISWCAP_EXP_LNKCAP2	= PCISWCAP + PCI_EXP_LNKCAP2,
80 	PCISWCAP_EXP_LNKCTL2	= PCISWCAP + PCI_EXP_LNKCTL2,
81 	PCISWCAP_EXP_SLTCAP2	= PCISWCAP + PCI_EXP_SLTCAP2,
82 	PCISWCAP_EXP_SLTCTL2	= PCISWCAP + PCI_EXP_SLTCTL2,
83 };
84 
85 /* PCI configuration space of a PCI-to-PCI bridge */
86 struct mvebu_sw_pci_bridge {
87 	u16 vendor;
88 	u16 device;
89 	u16 command;
90 	u16 status;
91 	u16 class;
92 	u8 interface;
93 	u8 revision;
94 	u8 bist;
95 	u8 header_type;
96 	u8 latency_timer;
97 	u8 cache_line_size;
98 	u32 bar[2];
99 	u8 primary_bus;
100 	u8 secondary_bus;
101 	u8 subordinate_bus;
102 	u8 secondary_latency_timer;
103 	u8 iobase;
104 	u8 iolimit;
105 	u16 secondary_status;
106 	u16 membase;
107 	u16 memlimit;
108 	u16 iobaseupper;
109 	u16 iolimitupper;
110 	u32 romaddr;
111 	u8 intline;
112 	u8 intpin;
113 	u16 bridgectrl;
114 
115 	/* PCI express capability */
116 	u32 pcie_sltcap;
117 	u16 pcie_devctl;
118 	u16 pcie_rtctl;
119 };
120 
121 struct mvebu_pcie_port;
122 
123 /* Structure representing all PCIe interfaces */
124 struct mvebu_pcie {
125 	struct platform_device *pdev;
126 	struct mvebu_pcie_port *ports;
127 	struct msi_controller *msi;
128 	struct list_head resources;
129 	struct resource io;
130 	struct resource realio;
131 	struct resource mem;
132 	struct resource busn;
133 	int nports;
134 };
135 
136 struct mvebu_pcie_window {
137 	phys_addr_t base;
138 	phys_addr_t remap;
139 	size_t size;
140 };
141 
142 /* Structure representing one PCIe interface */
143 struct mvebu_pcie_port {
144 	char *name;
145 	void __iomem *base;
146 	u32 port;
147 	u32 lane;
148 	int devfn;
149 	unsigned int mem_target;
150 	unsigned int mem_attr;
151 	unsigned int io_target;
152 	unsigned int io_attr;
153 	struct clk *clk;
154 	struct gpio_desc *reset_gpio;
155 	char *reset_name;
156 	struct mvebu_sw_pci_bridge bridge;
157 	struct device_node *dn;
158 	struct mvebu_pcie *pcie;
159 	struct mvebu_pcie_window memwin;
160 	struct mvebu_pcie_window iowin;
161 	u32 saved_pcie_stat;
162 };
163 
164 static inline void mvebu_writel(struct mvebu_pcie_port *port, u32 val, u32 reg)
165 {
166 	writel(val, port->base + reg);
167 }
168 
169 static inline u32 mvebu_readl(struct mvebu_pcie_port *port, u32 reg)
170 {
171 	return readl(port->base + reg);
172 }
173 
174 static inline bool mvebu_has_ioport(struct mvebu_pcie_port *port)
175 {
176 	return port->io_target != -1 && port->io_attr != -1;
177 }
178 
179 static bool mvebu_pcie_link_up(struct mvebu_pcie_port *port)
180 {
181 	return !(mvebu_readl(port, PCIE_STAT_OFF) & PCIE_STAT_LINK_DOWN);
182 }
183 
184 static void mvebu_pcie_set_local_bus_nr(struct mvebu_pcie_port *port, int nr)
185 {
186 	u32 stat;
187 
188 	stat = mvebu_readl(port, PCIE_STAT_OFF);
189 	stat &= ~PCIE_STAT_BUS;
190 	stat |= nr << 8;
191 	mvebu_writel(port, stat, PCIE_STAT_OFF);
192 }
193 
194 static void mvebu_pcie_set_local_dev_nr(struct mvebu_pcie_port *port, int nr)
195 {
196 	u32 stat;
197 
198 	stat = mvebu_readl(port, PCIE_STAT_OFF);
199 	stat &= ~PCIE_STAT_DEV;
200 	stat |= nr << 16;
201 	mvebu_writel(port, stat, PCIE_STAT_OFF);
202 }
203 
204 /*
205  * Setup PCIE BARs and Address Decode Wins:
206  * BAR[0,2] -> disabled, BAR[1] -> covers all DRAM banks
207  * WIN[0-3] -> DRAM bank[0-3]
208  */
209 static void mvebu_pcie_setup_wins(struct mvebu_pcie_port *port)
210 {
211 	const struct mbus_dram_target_info *dram;
212 	u32 size;
213 	int i;
214 
215 	dram = mv_mbus_dram_info();
216 
217 	/* First, disable and clear BARs and windows. */
218 	for (i = 1; i < 3; i++) {
219 		mvebu_writel(port, 0, PCIE_BAR_CTRL_OFF(i));
220 		mvebu_writel(port, 0, PCIE_BAR_LO_OFF(i));
221 		mvebu_writel(port, 0, PCIE_BAR_HI_OFF(i));
222 	}
223 
224 	for (i = 0; i < 5; i++) {
225 		mvebu_writel(port, 0, PCIE_WIN04_CTRL_OFF(i));
226 		mvebu_writel(port, 0, PCIE_WIN04_BASE_OFF(i));
227 		mvebu_writel(port, 0, PCIE_WIN04_REMAP_OFF(i));
228 	}
229 
230 	mvebu_writel(port, 0, PCIE_WIN5_CTRL_OFF);
231 	mvebu_writel(port, 0, PCIE_WIN5_BASE_OFF);
232 	mvebu_writel(port, 0, PCIE_WIN5_REMAP_OFF);
233 
234 	/* Setup windows for DDR banks.  Count total DDR size on the fly. */
235 	size = 0;
236 	for (i = 0; i < dram->num_cs; i++) {
237 		const struct mbus_dram_window *cs = dram->cs + i;
238 
239 		mvebu_writel(port, cs->base & 0xffff0000,
240 			     PCIE_WIN04_BASE_OFF(i));
241 		mvebu_writel(port, 0, PCIE_WIN04_REMAP_OFF(i));
242 		mvebu_writel(port,
243 			     ((cs->size - 1) & 0xffff0000) |
244 			     (cs->mbus_attr << 8) |
245 			     (dram->mbus_dram_target_id << 4) | 1,
246 			     PCIE_WIN04_CTRL_OFF(i));
247 
248 		size += cs->size;
249 	}
250 
251 	/* Round up 'size' to the nearest power of two. */
252 	if ((size & (size - 1)) != 0)
253 		size = 1 << fls(size);
254 
255 	/* Setup BAR[1] to all DRAM banks. */
256 	mvebu_writel(port, dram->cs[0].base, PCIE_BAR_LO_OFF(1));
257 	mvebu_writel(port, 0, PCIE_BAR_HI_OFF(1));
258 	mvebu_writel(port, ((size - 1) & 0xffff0000) | 1,
259 		     PCIE_BAR_CTRL_OFF(1));
260 }
261 
262 static void mvebu_pcie_setup_hw(struct mvebu_pcie_port *port)
263 {
264 	u32 cmd, mask;
265 
266 	/* Point PCIe unit MBUS decode windows to DRAM space. */
267 	mvebu_pcie_setup_wins(port);
268 
269 	/* Master + slave enable. */
270 	cmd = mvebu_readl(port, PCIE_CMD_OFF);
271 	cmd |= PCI_COMMAND_IO;
272 	cmd |= PCI_COMMAND_MEMORY;
273 	cmd |= PCI_COMMAND_MASTER;
274 	mvebu_writel(port, cmd, PCIE_CMD_OFF);
275 
276 	/* Enable interrupt lines A-D. */
277 	mask = mvebu_readl(port, PCIE_MASK_OFF);
278 	mask |= PCIE_MASK_ENABLE_INTS;
279 	mvebu_writel(port, mask, PCIE_MASK_OFF);
280 }
281 
282 static int mvebu_pcie_hw_rd_conf(struct mvebu_pcie_port *port,
283 				 struct pci_bus *bus,
284 				 u32 devfn, int where, int size, u32 *val)
285 {
286 	void __iomem *conf_data = port->base + PCIE_CONF_DATA_OFF;
287 
288 	mvebu_writel(port, PCIE_CONF_ADDR(bus->number, devfn, where),
289 		     PCIE_CONF_ADDR_OFF);
290 
291 	switch (size) {
292 	case 1:
293 		*val = readb_relaxed(conf_data + (where & 3));
294 		break;
295 	case 2:
296 		*val = readw_relaxed(conf_data + (where & 2));
297 		break;
298 	case 4:
299 		*val = readl_relaxed(conf_data);
300 		break;
301 	}
302 
303 	return PCIBIOS_SUCCESSFUL;
304 }
305 
306 static int mvebu_pcie_hw_wr_conf(struct mvebu_pcie_port *port,
307 				 struct pci_bus *bus,
308 				 u32 devfn, int where, int size, u32 val)
309 {
310 	void __iomem *conf_data = port->base + PCIE_CONF_DATA_OFF;
311 
312 	mvebu_writel(port, PCIE_CONF_ADDR(bus->number, devfn, where),
313 		     PCIE_CONF_ADDR_OFF);
314 
315 	switch (size) {
316 	case 1:
317 		writeb(val, conf_data + (where & 3));
318 		break;
319 	case 2:
320 		writew(val, conf_data + (where & 2));
321 		break;
322 	case 4:
323 		writel(val, conf_data);
324 		break;
325 	default:
326 		return PCIBIOS_BAD_REGISTER_NUMBER;
327 	}
328 
329 	return PCIBIOS_SUCCESSFUL;
330 }
331 
332 /*
333  * Remove windows, starting from the largest ones to the smallest
334  * ones.
335  */
336 static void mvebu_pcie_del_windows(struct mvebu_pcie_port *port,
337 				   phys_addr_t base, size_t size)
338 {
339 	while (size) {
340 		size_t sz = 1 << (fls(size) - 1);
341 
342 		mvebu_mbus_del_window(base, sz);
343 		base += sz;
344 		size -= sz;
345 	}
346 }
347 
348 /*
349  * MBus windows can only have a power of two size, but PCI BARs do not
350  * have this constraint. Therefore, we have to split the PCI BAR into
351  * areas each having a power of two size. We start from the largest
352  * one (i.e highest order bit set in the size).
353  */
354 static void mvebu_pcie_add_windows(struct mvebu_pcie_port *port,
355 				   unsigned int target, unsigned int attribute,
356 				   phys_addr_t base, size_t size,
357 				   phys_addr_t remap)
358 {
359 	size_t size_mapped = 0;
360 
361 	while (size) {
362 		size_t sz = 1 << (fls(size) - 1);
363 		int ret;
364 
365 		ret = mvebu_mbus_add_window_remap_by_id(target, attribute, base,
366 							sz, remap);
367 		if (ret) {
368 			phys_addr_t end = base + sz - 1;
369 
370 			dev_err(&port->pcie->pdev->dev,
371 				"Could not create MBus window at [mem %pa-%pa]: %d\n",
372 				&base, &end, ret);
373 			mvebu_pcie_del_windows(port, base - size_mapped,
374 					       size_mapped);
375 			return;
376 		}
377 
378 		size -= sz;
379 		size_mapped += sz;
380 		base += sz;
381 		if (remap != MVEBU_MBUS_NO_REMAP)
382 			remap += sz;
383 	}
384 }
385 
386 static void mvebu_pcie_set_window(struct mvebu_pcie_port *port,
387 				  unsigned int target, unsigned int attribute,
388 				  const struct mvebu_pcie_window *desired,
389 				  struct mvebu_pcie_window *cur)
390 {
391 	if (desired->base == cur->base && desired->remap == cur->remap &&
392 	    desired->size == cur->size)
393 		return;
394 
395 	if (cur->size != 0) {
396 		mvebu_pcie_del_windows(port, cur->base, cur->size);
397 		cur->size = 0;
398 		cur->base = 0;
399 
400 		/*
401 		 * If something tries to change the window while it is enabled
402 		 * the change will not be done atomically. That would be
403 		 * difficult to do in the general case.
404 		 */
405 	}
406 
407 	if (desired->size == 0)
408 		return;
409 
410 	mvebu_pcie_add_windows(port, target, attribute, desired->base,
411 			       desired->size, desired->remap);
412 	*cur = *desired;
413 }
414 
415 static void mvebu_pcie_handle_iobase_change(struct mvebu_pcie_port *port)
416 {
417 	struct mvebu_pcie_window desired = {};
418 
419 	/* Are the new iobase/iolimit values invalid? */
420 	if (port->bridge.iolimit < port->bridge.iobase ||
421 	    port->bridge.iolimitupper < port->bridge.iobaseupper ||
422 	    !(port->bridge.command & PCI_COMMAND_IO)) {
423 		mvebu_pcie_set_window(port, port->io_target, port->io_attr,
424 				      &desired, &port->iowin);
425 		return;
426 	}
427 
428 	if (!mvebu_has_ioport(port)) {
429 		dev_WARN(&port->pcie->pdev->dev,
430 			 "Attempt to set IO when IO is disabled\n");
431 		return;
432 	}
433 
434 	/*
435 	 * We read the PCI-to-PCI bridge emulated registers, and
436 	 * calculate the base address and size of the address decoding
437 	 * window to setup, according to the PCI-to-PCI bridge
438 	 * specifications. iobase is the bus address, port->iowin_base
439 	 * is the CPU address.
440 	 */
441 	desired.remap = ((port->bridge.iobase & 0xF0) << 8) |
442 			(port->bridge.iobaseupper << 16);
443 	desired.base = port->pcie->io.start + desired.remap;
444 	desired.size = ((0xFFF | ((port->bridge.iolimit & 0xF0) << 8) |
445 			 (port->bridge.iolimitupper << 16)) -
446 			desired.remap) +
447 		       1;
448 
449 	mvebu_pcie_set_window(port, port->io_target, port->io_attr, &desired,
450 			      &port->iowin);
451 }
452 
453 static void mvebu_pcie_handle_membase_change(struct mvebu_pcie_port *port)
454 {
455 	struct mvebu_pcie_window desired = {.remap = MVEBU_MBUS_NO_REMAP};
456 
457 	/* Are the new membase/memlimit values invalid? */
458 	if (port->bridge.memlimit < port->bridge.membase ||
459 	    !(port->bridge.command & PCI_COMMAND_MEMORY)) {
460 		mvebu_pcie_set_window(port, port->mem_target, port->mem_attr,
461 				      &desired, &port->memwin);
462 		return;
463 	}
464 
465 	/*
466 	 * We read the PCI-to-PCI bridge emulated registers, and
467 	 * calculate the base address and size of the address decoding
468 	 * window to setup, according to the PCI-to-PCI bridge
469 	 * specifications.
470 	 */
471 	desired.base = ((port->bridge.membase & 0xFFF0) << 16);
472 	desired.size = (((port->bridge.memlimit & 0xFFF0) << 16) | 0xFFFFF) -
473 		       desired.base + 1;
474 
475 	mvebu_pcie_set_window(port, port->mem_target, port->mem_attr, &desired,
476 			      &port->memwin);
477 }
478 
479 /*
480  * Initialize the configuration space of the PCI-to-PCI bridge
481  * associated with the given PCIe interface.
482  */
483 static void mvebu_sw_pci_bridge_init(struct mvebu_pcie_port *port)
484 {
485 	struct mvebu_sw_pci_bridge *bridge = &port->bridge;
486 
487 	memset(bridge, 0, sizeof(struct mvebu_sw_pci_bridge));
488 
489 	bridge->class = PCI_CLASS_BRIDGE_PCI;
490 	bridge->vendor = PCI_VENDOR_ID_MARVELL;
491 	bridge->device = mvebu_readl(port, PCIE_DEV_ID_OFF) >> 16;
492 	bridge->revision = mvebu_readl(port, PCIE_DEV_REV_OFF) & 0xff;
493 	bridge->header_type = PCI_HEADER_TYPE_BRIDGE;
494 	bridge->cache_line_size = 0x10;
495 
496 	/* We support 32 bits I/O addressing */
497 	bridge->iobase = PCI_IO_RANGE_TYPE_32;
498 	bridge->iolimit = PCI_IO_RANGE_TYPE_32;
499 
500 	/* Add capabilities */
501 	bridge->status = PCI_STATUS_CAP_LIST;
502 }
503 
504 /*
505  * Read the configuration space of the PCI-to-PCI bridge associated to
506  * the given PCIe interface.
507  */
508 static int mvebu_sw_pci_bridge_read(struct mvebu_pcie_port *port,
509 				  unsigned int where, int size, u32 *value)
510 {
511 	struct mvebu_sw_pci_bridge *bridge = &port->bridge;
512 
513 	switch (where & ~3) {
514 	case PCI_VENDOR_ID:
515 		*value = bridge->device << 16 | bridge->vendor;
516 		break;
517 
518 	case PCI_COMMAND:
519 		*value = bridge->command | bridge->status << 16;
520 		break;
521 
522 	case PCI_CLASS_REVISION:
523 		*value = bridge->class << 16 | bridge->interface << 8 |
524 			 bridge->revision;
525 		break;
526 
527 	case PCI_CACHE_LINE_SIZE:
528 		*value = bridge->bist << 24 | bridge->header_type << 16 |
529 			 bridge->latency_timer << 8 | bridge->cache_line_size;
530 		break;
531 
532 	case PCI_BASE_ADDRESS_0 ... PCI_BASE_ADDRESS_1:
533 		*value = bridge->bar[((where & ~3) - PCI_BASE_ADDRESS_0) / 4];
534 		break;
535 
536 	case PCI_PRIMARY_BUS:
537 		*value = (bridge->secondary_latency_timer << 24 |
538 			  bridge->subordinate_bus         << 16 |
539 			  bridge->secondary_bus           <<  8 |
540 			  bridge->primary_bus);
541 		break;
542 
543 	case PCI_IO_BASE:
544 		if (!mvebu_has_ioport(port))
545 			*value = bridge->secondary_status << 16;
546 		else
547 			*value = (bridge->secondary_status << 16 |
548 				  bridge->iolimit          <<  8 |
549 				  bridge->iobase);
550 		break;
551 
552 	case PCI_MEMORY_BASE:
553 		*value = (bridge->memlimit << 16 | bridge->membase);
554 		break;
555 
556 	case PCI_PREF_MEMORY_BASE:
557 		*value = 0;
558 		break;
559 
560 	case PCI_IO_BASE_UPPER16:
561 		*value = (bridge->iolimitupper << 16 | bridge->iobaseupper);
562 		break;
563 
564 	case PCI_CAPABILITY_LIST:
565 		*value = PCISWCAP;
566 		break;
567 
568 	case PCI_ROM_ADDRESS1:
569 		*value = 0;
570 		break;
571 
572 	case PCI_INTERRUPT_LINE:
573 		/* LINE PIN MIN_GNT MAX_LAT */
574 		*value = 0;
575 		break;
576 
577 	case PCISWCAP_EXP_LIST_ID:
578 		/* Set PCIe v2, root port, slot support */
579 		*value = (PCI_EXP_TYPE_ROOT_PORT << 4 | 2 |
580 			  PCI_EXP_FLAGS_SLOT) << 16 | PCI_CAP_ID_EXP;
581 		break;
582 
583 	case PCISWCAP_EXP_DEVCAP:
584 		*value = mvebu_readl(port, PCIE_CAP_PCIEXP + PCI_EXP_DEVCAP);
585 		break;
586 
587 	case PCISWCAP_EXP_DEVCTL:
588 		*value = mvebu_readl(port, PCIE_CAP_PCIEXP + PCI_EXP_DEVCTL) &
589 				 ~(PCI_EXP_DEVCTL_URRE | PCI_EXP_DEVCTL_FERE |
590 				   PCI_EXP_DEVCTL_NFERE | PCI_EXP_DEVCTL_CERE);
591 		*value |= bridge->pcie_devctl;
592 		break;
593 
594 	case PCISWCAP_EXP_LNKCAP:
595 		/*
596 		 * PCIe requires the clock power management capability to be
597 		 * hard-wired to zero for downstream ports
598 		 */
599 		*value = mvebu_readl(port, PCIE_CAP_PCIEXP + PCI_EXP_LNKCAP) &
600 			 ~PCI_EXP_LNKCAP_CLKPM;
601 		break;
602 
603 	case PCISWCAP_EXP_LNKCTL:
604 		*value = mvebu_readl(port, PCIE_CAP_PCIEXP + PCI_EXP_LNKCTL);
605 		break;
606 
607 	case PCISWCAP_EXP_SLTCAP:
608 		*value = bridge->pcie_sltcap;
609 		break;
610 
611 	case PCISWCAP_EXP_SLTCTL:
612 		*value = PCI_EXP_SLTSTA_PDS << 16;
613 		break;
614 
615 	case PCISWCAP_EXP_RTCTL:
616 		*value = bridge->pcie_rtctl;
617 		break;
618 
619 	case PCISWCAP_EXP_RTSTA:
620 		*value = mvebu_readl(port, PCIE_RC_RTSTA);
621 		break;
622 
623 	/* PCIe requires the v2 fields to be hard-wired to zero */
624 	case PCISWCAP_EXP_DEVCAP2:
625 	case PCISWCAP_EXP_DEVCTL2:
626 	case PCISWCAP_EXP_LNKCAP2:
627 	case PCISWCAP_EXP_LNKCTL2:
628 	case PCISWCAP_EXP_SLTCAP2:
629 	case PCISWCAP_EXP_SLTCTL2:
630 	default:
631 		/*
632 		 * PCI defines configuration read accesses to reserved or
633 		 * unimplemented registers to read as zero and complete
634 		 * normally.
635 		 */
636 		*value = 0;
637 		return PCIBIOS_SUCCESSFUL;
638 	}
639 
640 	if (size == 2)
641 		*value = (*value >> (8 * (where & 3))) & 0xffff;
642 	else if (size == 1)
643 		*value = (*value >> (8 * (where & 3))) & 0xff;
644 
645 	return PCIBIOS_SUCCESSFUL;
646 }
647 
648 /* Write to the PCI-to-PCI bridge configuration space */
649 static int mvebu_sw_pci_bridge_write(struct mvebu_pcie_port *port,
650 				     unsigned int where, int size, u32 value)
651 {
652 	struct mvebu_sw_pci_bridge *bridge = &port->bridge;
653 	u32 mask, reg;
654 	int err;
655 
656 	if (size == 4)
657 		mask = 0x0;
658 	else if (size == 2)
659 		mask = ~(0xffff << ((where & 3) * 8));
660 	else if (size == 1)
661 		mask = ~(0xff << ((where & 3) * 8));
662 	else
663 		return PCIBIOS_BAD_REGISTER_NUMBER;
664 
665 	err = mvebu_sw_pci_bridge_read(port, where & ~3, 4, &reg);
666 	if (err)
667 		return err;
668 
669 	value = (reg & mask) | value << ((where & 3) * 8);
670 
671 	switch (where & ~3) {
672 	case PCI_COMMAND:
673 	{
674 		u32 old = bridge->command;
675 
676 		if (!mvebu_has_ioport(port))
677 			value &= ~PCI_COMMAND_IO;
678 
679 		bridge->command = value & 0xffff;
680 		if ((old ^ bridge->command) & PCI_COMMAND_IO)
681 			mvebu_pcie_handle_iobase_change(port);
682 		if ((old ^ bridge->command) & PCI_COMMAND_MEMORY)
683 			mvebu_pcie_handle_membase_change(port);
684 		break;
685 	}
686 
687 	case PCI_BASE_ADDRESS_0 ... PCI_BASE_ADDRESS_1:
688 		bridge->bar[((where & ~3) - PCI_BASE_ADDRESS_0) / 4] = value;
689 		break;
690 
691 	case PCI_IO_BASE:
692 		/*
693 		 * We also keep bit 1 set, it is a read-only bit that
694 		 * indicates we support 32 bits addressing for the
695 		 * I/O
696 		 */
697 		bridge->iobase = (value & 0xff) | PCI_IO_RANGE_TYPE_32;
698 		bridge->iolimit = ((value >> 8) & 0xff) | PCI_IO_RANGE_TYPE_32;
699 		mvebu_pcie_handle_iobase_change(port);
700 		break;
701 
702 	case PCI_MEMORY_BASE:
703 		bridge->membase = value & 0xffff;
704 		bridge->memlimit = value >> 16;
705 		mvebu_pcie_handle_membase_change(port);
706 		break;
707 
708 	case PCI_IO_BASE_UPPER16:
709 		bridge->iobaseupper = value & 0xffff;
710 		bridge->iolimitupper = value >> 16;
711 		mvebu_pcie_handle_iobase_change(port);
712 		break;
713 
714 	case PCI_PRIMARY_BUS:
715 		bridge->primary_bus             = value & 0xff;
716 		bridge->secondary_bus           = (value >> 8) & 0xff;
717 		bridge->subordinate_bus         = (value >> 16) & 0xff;
718 		bridge->secondary_latency_timer = (value >> 24) & 0xff;
719 		mvebu_pcie_set_local_bus_nr(port, bridge->secondary_bus);
720 		break;
721 
722 	case PCISWCAP_EXP_DEVCTL:
723 		/*
724 		 * Armada370 data says these bits must always
725 		 * be zero when in root complex mode.
726 		 */
727 		value &= ~(PCI_EXP_DEVCTL_URRE | PCI_EXP_DEVCTL_FERE |
728 			   PCI_EXP_DEVCTL_NFERE | PCI_EXP_DEVCTL_CERE);
729 
730 		/*
731 		 * If the mask is 0xffff0000, then we only want to write
732 		 * the device control register, rather than clearing the
733 		 * RW1C bits in the device status register.  Mask out the
734 		 * status register bits.
735 		 */
736 		if (mask == 0xffff0000)
737 			value &= 0xffff;
738 
739 		mvebu_writel(port, value, PCIE_CAP_PCIEXP + PCI_EXP_DEVCTL);
740 		break;
741 
742 	case PCISWCAP_EXP_LNKCTL:
743 		/*
744 		 * If we don't support CLKREQ, we must ensure that the
745 		 * CLKREQ enable bit always reads zero.  Since we haven't
746 		 * had this capability, and it's dependent on board wiring,
747 		 * disable it for the time being.
748 		 */
749 		value &= ~PCI_EXP_LNKCTL_CLKREQ_EN;
750 
751 		/*
752 		 * If the mask is 0xffff0000, then we only want to write
753 		 * the link control register, rather than clearing the
754 		 * RW1C bits in the link status register.  Mask out the
755 		 * RW1C status register bits.
756 		 */
757 		if (mask == 0xffff0000)
758 			value &= ~((PCI_EXP_LNKSTA_LABS |
759 				    PCI_EXP_LNKSTA_LBMS) << 16);
760 
761 		mvebu_writel(port, value, PCIE_CAP_PCIEXP + PCI_EXP_LNKCTL);
762 		break;
763 
764 	case PCISWCAP_EXP_RTSTA:
765 		mvebu_writel(port, value, PCIE_RC_RTSTA);
766 		break;
767 
768 	default:
769 		break;
770 	}
771 
772 	return PCIBIOS_SUCCESSFUL;
773 }
774 
775 static inline struct mvebu_pcie *sys_to_pcie(struct pci_sys_data *sys)
776 {
777 	return sys->private_data;
778 }
779 
780 static struct mvebu_pcie_port *mvebu_pcie_find_port(struct mvebu_pcie *pcie,
781 						    struct pci_bus *bus,
782 						    int devfn)
783 {
784 	int i;
785 
786 	for (i = 0; i < pcie->nports; i++) {
787 		struct mvebu_pcie_port *port = &pcie->ports[i];
788 
789 		if (bus->number == 0 && port->devfn == devfn)
790 			return port;
791 		if (bus->number != 0 &&
792 		    bus->number >= port->bridge.secondary_bus &&
793 		    bus->number <= port->bridge.subordinate_bus)
794 			return port;
795 	}
796 
797 	return NULL;
798 }
799 
800 /* PCI configuration space write function */
801 static int mvebu_pcie_wr_conf(struct pci_bus *bus, u32 devfn,
802 			      int where, int size, u32 val)
803 {
804 	struct mvebu_pcie *pcie = bus->sysdata;
805 	struct mvebu_pcie_port *port;
806 	int ret;
807 
808 	port = mvebu_pcie_find_port(pcie, bus, devfn);
809 	if (!port)
810 		return PCIBIOS_DEVICE_NOT_FOUND;
811 
812 	/* Access the emulated PCI-to-PCI bridge */
813 	if (bus->number == 0)
814 		return mvebu_sw_pci_bridge_write(port, where, size, val);
815 
816 	if (!mvebu_pcie_link_up(port))
817 		return PCIBIOS_DEVICE_NOT_FOUND;
818 
819 	/* Access the real PCIe interface */
820 	ret = mvebu_pcie_hw_wr_conf(port, bus, devfn,
821 				    where, size, val);
822 
823 	return ret;
824 }
825 
826 /* PCI configuration space read function */
827 static int mvebu_pcie_rd_conf(struct pci_bus *bus, u32 devfn, int where,
828 			      int size, u32 *val)
829 {
830 	struct mvebu_pcie *pcie = bus->sysdata;
831 	struct mvebu_pcie_port *port;
832 	int ret;
833 
834 	port = mvebu_pcie_find_port(pcie, bus, devfn);
835 	if (!port) {
836 		*val = 0xffffffff;
837 		return PCIBIOS_DEVICE_NOT_FOUND;
838 	}
839 
840 	/* Access the emulated PCI-to-PCI bridge */
841 	if (bus->number == 0)
842 		return mvebu_sw_pci_bridge_read(port, where, size, val);
843 
844 	if (!mvebu_pcie_link_up(port)) {
845 		*val = 0xffffffff;
846 		return PCIBIOS_DEVICE_NOT_FOUND;
847 	}
848 
849 	/* Access the real PCIe interface */
850 	ret = mvebu_pcie_hw_rd_conf(port, bus, devfn,
851 				    where, size, val);
852 
853 	return ret;
854 }
855 
856 static struct pci_ops mvebu_pcie_ops = {
857 	.read = mvebu_pcie_rd_conf,
858 	.write = mvebu_pcie_wr_conf,
859 };
860 
861 static resource_size_t mvebu_pcie_align_resource(struct pci_dev *dev,
862 						 const struct resource *res,
863 						 resource_size_t start,
864 						 resource_size_t size,
865 						 resource_size_t align)
866 {
867 	if (dev->bus->number != 0)
868 		return start;
869 
870 	/*
871 	 * On the PCI-to-PCI bridge side, the I/O windows must have at
872 	 * least a 64 KB size and the memory windows must have at
873 	 * least a 1 MB size. Moreover, MBus windows need to have a
874 	 * base address aligned on their size, and their size must be
875 	 * a power of two. This means that if the BAR doesn't have a
876 	 * power of two size, several MBus windows will actually be
877 	 * created. We need to ensure that the biggest MBus window
878 	 * (which will be the first one) is aligned on its size, which
879 	 * explains the rounddown_pow_of_two() being done here.
880 	 */
881 	if (res->flags & IORESOURCE_IO)
882 		return round_up(start, max_t(resource_size_t, SZ_64K,
883 					     rounddown_pow_of_two(size)));
884 	else if (res->flags & IORESOURCE_MEM)
885 		return round_up(start, max_t(resource_size_t, SZ_1M,
886 					     rounddown_pow_of_two(size)));
887 	else
888 		return start;
889 }
890 
891 static void __iomem *mvebu_pcie_map_registers(struct platform_device *pdev,
892 					      struct device_node *np,
893 					      struct mvebu_pcie_port *port)
894 {
895 	struct resource regs;
896 	int ret = 0;
897 
898 	ret = of_address_to_resource(np, 0, &regs);
899 	if (ret)
900 		return ERR_PTR(ret);
901 
902 	return devm_ioremap_resource(&pdev->dev, &regs);
903 }
904 
905 #define DT_FLAGS_TO_TYPE(flags)       (((flags) >> 24) & 0x03)
906 #define    DT_TYPE_IO                 0x1
907 #define    DT_TYPE_MEM32              0x2
908 #define DT_CPUADDR_TO_TARGET(cpuaddr) (((cpuaddr) >> 56) & 0xFF)
909 #define DT_CPUADDR_TO_ATTR(cpuaddr)   (((cpuaddr) >> 48) & 0xFF)
910 
911 static int mvebu_get_tgt_attr(struct device_node *np, int devfn,
912 			      unsigned long type,
913 			      unsigned int *tgt,
914 			      unsigned int *attr)
915 {
916 	const int na = 3, ns = 2;
917 	const __be32 *range;
918 	int rlen, nranges, rangesz, pna, i;
919 
920 	*tgt = -1;
921 	*attr = -1;
922 
923 	range = of_get_property(np, "ranges", &rlen);
924 	if (!range)
925 		return -EINVAL;
926 
927 	pna = of_n_addr_cells(np);
928 	rangesz = pna + na + ns;
929 	nranges = rlen / sizeof(__be32) / rangesz;
930 
931 	for (i = 0; i < nranges; i++, range += rangesz) {
932 		u32 flags = of_read_number(range, 1);
933 		u32 slot = of_read_number(range + 1, 1);
934 		u64 cpuaddr = of_read_number(range + na, pna);
935 		unsigned long rtype;
936 
937 		if (DT_FLAGS_TO_TYPE(flags) == DT_TYPE_IO)
938 			rtype = IORESOURCE_IO;
939 		else if (DT_FLAGS_TO_TYPE(flags) == DT_TYPE_MEM32)
940 			rtype = IORESOURCE_MEM;
941 		else
942 			continue;
943 
944 		if (slot == PCI_SLOT(devfn) && type == rtype) {
945 			*tgt = DT_CPUADDR_TO_TARGET(cpuaddr);
946 			*attr = DT_CPUADDR_TO_ATTR(cpuaddr);
947 			return 0;
948 		}
949 	}
950 
951 	return -ENOENT;
952 }
953 
954 #ifdef CONFIG_PM_SLEEP
955 static int mvebu_pcie_suspend(struct device *dev)
956 {
957 	struct mvebu_pcie *pcie;
958 	int i;
959 
960 	pcie = dev_get_drvdata(dev);
961 	for (i = 0; i < pcie->nports; i++) {
962 		struct mvebu_pcie_port *port = pcie->ports + i;
963 		port->saved_pcie_stat = mvebu_readl(port, PCIE_STAT_OFF);
964 	}
965 
966 	return 0;
967 }
968 
969 static int mvebu_pcie_resume(struct device *dev)
970 {
971 	struct mvebu_pcie *pcie;
972 	int i;
973 
974 	pcie = dev_get_drvdata(dev);
975 	for (i = 0; i < pcie->nports; i++) {
976 		struct mvebu_pcie_port *port = pcie->ports + i;
977 		mvebu_writel(port, port->saved_pcie_stat, PCIE_STAT_OFF);
978 		mvebu_pcie_setup_hw(port);
979 	}
980 
981 	return 0;
982 }
983 #endif
984 
985 static void mvebu_pcie_port_clk_put(void *data)
986 {
987 	struct mvebu_pcie_port *port = data;
988 
989 	clk_put(port->clk);
990 }
991 
992 static int mvebu_pcie_parse_port(struct mvebu_pcie *pcie,
993 	struct mvebu_pcie_port *port, struct device_node *child)
994 {
995 	struct device *dev = &pcie->pdev->dev;
996 	enum of_gpio_flags flags;
997 	int reset_gpio, ret;
998 
999 	port->pcie = pcie;
1000 
1001 	if (of_property_read_u32(child, "marvell,pcie-port", &port->port)) {
1002 		dev_warn(dev, "ignoring %pOF, missing pcie-port property\n",
1003 			 child);
1004 		goto skip;
1005 	}
1006 
1007 	if (of_property_read_u32(child, "marvell,pcie-lane", &port->lane))
1008 		port->lane = 0;
1009 
1010 	port->name = devm_kasprintf(dev, GFP_KERNEL, "pcie%d.%d", port->port,
1011 				    port->lane);
1012 	if (!port->name) {
1013 		ret = -ENOMEM;
1014 		goto err;
1015 	}
1016 
1017 	port->devfn = of_pci_get_devfn(child);
1018 	if (port->devfn < 0)
1019 		goto skip;
1020 
1021 	ret = mvebu_get_tgt_attr(dev->of_node, port->devfn, IORESOURCE_MEM,
1022 				 &port->mem_target, &port->mem_attr);
1023 	if (ret < 0) {
1024 		dev_err(dev, "%s: cannot get tgt/attr for mem window\n",
1025 			port->name);
1026 		goto skip;
1027 	}
1028 
1029 	if (resource_size(&pcie->io) != 0) {
1030 		mvebu_get_tgt_attr(dev->of_node, port->devfn, IORESOURCE_IO,
1031 				   &port->io_target, &port->io_attr);
1032 	} else {
1033 		port->io_target = -1;
1034 		port->io_attr = -1;
1035 	}
1036 
1037 	reset_gpio = of_get_named_gpio_flags(child, "reset-gpios", 0, &flags);
1038 	if (reset_gpio == -EPROBE_DEFER) {
1039 		ret = reset_gpio;
1040 		goto err;
1041 	}
1042 
1043 	if (gpio_is_valid(reset_gpio)) {
1044 		unsigned long gpio_flags;
1045 
1046 		port->reset_name = devm_kasprintf(dev, GFP_KERNEL, "%s-reset",
1047 						  port->name);
1048 		if (!port->reset_name) {
1049 			ret = -ENOMEM;
1050 			goto err;
1051 		}
1052 
1053 		if (flags & OF_GPIO_ACTIVE_LOW) {
1054 			dev_info(dev, "%pOF: reset gpio is active low\n",
1055 				 child);
1056 			gpio_flags = GPIOF_ACTIVE_LOW |
1057 				     GPIOF_OUT_INIT_LOW;
1058 		} else {
1059 			gpio_flags = GPIOF_OUT_INIT_HIGH;
1060 		}
1061 
1062 		ret = devm_gpio_request_one(dev, reset_gpio, gpio_flags,
1063 					    port->reset_name);
1064 		if (ret) {
1065 			if (ret == -EPROBE_DEFER)
1066 				goto err;
1067 			goto skip;
1068 		}
1069 
1070 		port->reset_gpio = gpio_to_desc(reset_gpio);
1071 	}
1072 
1073 	port->clk = of_clk_get_by_name(child, NULL);
1074 	if (IS_ERR(port->clk)) {
1075 		dev_err(dev, "%s: cannot get clock\n", port->name);
1076 		goto skip;
1077 	}
1078 
1079 	ret = devm_add_action(dev, mvebu_pcie_port_clk_put, port);
1080 	if (ret < 0) {
1081 		clk_put(port->clk);
1082 		goto err;
1083 	}
1084 
1085 	return 1;
1086 
1087 skip:
1088 	ret = 0;
1089 
1090 	/* In the case of skipping, we need to free these */
1091 	devm_kfree(dev, port->reset_name);
1092 	port->reset_name = NULL;
1093 	devm_kfree(dev, port->name);
1094 	port->name = NULL;
1095 
1096 err:
1097 	return ret;
1098 }
1099 
1100 /*
1101  * Power up a PCIe port.  PCIe requires the refclk to be stable for 100µs
1102  * prior to releasing PERST.  See table 2-4 in section 2.6.2 AC Specifications
1103  * of the PCI Express Card Electromechanical Specification, 1.1.
1104  */
1105 static int mvebu_pcie_powerup(struct mvebu_pcie_port *port)
1106 {
1107 	int ret;
1108 
1109 	ret = clk_prepare_enable(port->clk);
1110 	if (ret < 0)
1111 		return ret;
1112 
1113 	if (port->reset_gpio) {
1114 		u32 reset_udelay = PCI_PM_D3COLD_WAIT * 1000;
1115 
1116 		of_property_read_u32(port->dn, "reset-delay-us",
1117 				     &reset_udelay);
1118 
1119 		udelay(100);
1120 
1121 		gpiod_set_value_cansleep(port->reset_gpio, 0);
1122 		msleep(reset_udelay / 1000);
1123 	}
1124 
1125 	return 0;
1126 }
1127 
1128 /*
1129  * Power down a PCIe port.  Strictly, PCIe requires us to place the card
1130  * in D3hot state before asserting PERST#.
1131  */
1132 static void mvebu_pcie_powerdown(struct mvebu_pcie_port *port)
1133 {
1134 	gpiod_set_value_cansleep(port->reset_gpio, 1);
1135 
1136 	clk_disable_unprepare(port->clk);
1137 }
1138 
1139 /*
1140  * We can't use devm_of_pci_get_host_bridge_resources() because we
1141  * need to parse our special DT properties encoding the MEM and IO
1142  * apertures.
1143  */
1144 static int mvebu_pcie_parse_request_resources(struct mvebu_pcie *pcie)
1145 {
1146 	struct device *dev = &pcie->pdev->dev;
1147 	struct device_node *np = dev->of_node;
1148 	unsigned int i;
1149 	int ret;
1150 
1151 	INIT_LIST_HEAD(&pcie->resources);
1152 
1153 	/* Get the bus range */
1154 	ret = of_pci_parse_bus_range(np, &pcie->busn);
1155 	if (ret) {
1156 		dev_err(dev, "failed to parse bus-range property: %d\n", ret);
1157 		return ret;
1158 	}
1159 	pci_add_resource(&pcie->resources, &pcie->busn);
1160 
1161 	/* Get the PCIe memory aperture */
1162 	mvebu_mbus_get_pcie_mem_aperture(&pcie->mem);
1163 	if (resource_size(&pcie->mem) == 0) {
1164 		dev_err(dev, "invalid memory aperture size\n");
1165 		return -EINVAL;
1166 	}
1167 
1168 	pcie->mem.name = "PCI MEM";
1169 	pci_add_resource(&pcie->resources, &pcie->mem);
1170 
1171 	/* Get the PCIe IO aperture */
1172 	mvebu_mbus_get_pcie_io_aperture(&pcie->io);
1173 
1174 	if (resource_size(&pcie->io) != 0) {
1175 		pcie->realio.flags = pcie->io.flags;
1176 		pcie->realio.start = PCIBIOS_MIN_IO;
1177 		pcie->realio.end = min_t(resource_size_t,
1178 					 IO_SPACE_LIMIT - SZ_64K,
1179 					 resource_size(&pcie->io) - 1);
1180 		pcie->realio.name = "PCI I/O";
1181 
1182 		for (i = 0; i < resource_size(&pcie->realio); i += SZ_64K)
1183 			pci_ioremap_io(i, pcie->io.start + i);
1184 
1185 		pci_add_resource(&pcie->resources, &pcie->realio);
1186 	}
1187 
1188 	return devm_request_pci_bus_resources(dev, &pcie->resources);
1189 }
1190 
1191 static int mvebu_pcie_probe(struct platform_device *pdev)
1192 {
1193 	struct device *dev = &pdev->dev;
1194 	struct mvebu_pcie *pcie;
1195 	struct pci_host_bridge *bridge;
1196 	struct device_node *np = dev->of_node;
1197 	struct device_node *child;
1198 	int num, i, ret;
1199 
1200 	bridge = devm_pci_alloc_host_bridge(dev, sizeof(struct mvebu_pcie));
1201 	if (!bridge)
1202 		return -ENOMEM;
1203 
1204 	pcie = pci_host_bridge_priv(bridge);
1205 	pcie->pdev = pdev;
1206 	platform_set_drvdata(pdev, pcie);
1207 
1208 	ret = mvebu_pcie_parse_request_resources(pcie);
1209 	if (ret)
1210 		return ret;
1211 
1212 	num = of_get_available_child_count(np);
1213 
1214 	pcie->ports = devm_kcalloc(dev, num, sizeof(*pcie->ports), GFP_KERNEL);
1215 	if (!pcie->ports)
1216 		return -ENOMEM;
1217 
1218 	i = 0;
1219 	for_each_available_child_of_node(np, child) {
1220 		struct mvebu_pcie_port *port = &pcie->ports[i];
1221 
1222 		ret = mvebu_pcie_parse_port(pcie, port, child);
1223 		if (ret < 0) {
1224 			of_node_put(child);
1225 			return ret;
1226 		} else if (ret == 0) {
1227 			continue;
1228 		}
1229 
1230 		port->dn = child;
1231 		i++;
1232 	}
1233 	pcie->nports = i;
1234 
1235 	for (i = 0; i < pcie->nports; i++) {
1236 		struct mvebu_pcie_port *port = &pcie->ports[i];
1237 
1238 		child = port->dn;
1239 		if (!child)
1240 			continue;
1241 
1242 		ret = mvebu_pcie_powerup(port);
1243 		if (ret < 0)
1244 			continue;
1245 
1246 		port->base = mvebu_pcie_map_registers(pdev, child, port);
1247 		if (IS_ERR(port->base)) {
1248 			dev_err(dev, "%s: cannot map registers\n", port->name);
1249 			port->base = NULL;
1250 			mvebu_pcie_powerdown(port);
1251 			continue;
1252 		}
1253 
1254 		mvebu_pcie_setup_hw(port);
1255 		mvebu_pcie_set_local_dev_nr(port, 1);
1256 		mvebu_sw_pci_bridge_init(port);
1257 	}
1258 
1259 	pcie->nports = i;
1260 
1261 	list_splice_init(&pcie->resources, &bridge->windows);
1262 	bridge->dev.parent = dev;
1263 	bridge->sysdata = pcie;
1264 	bridge->busnr = 0;
1265 	bridge->ops = &mvebu_pcie_ops;
1266 	bridge->map_irq = of_irq_parse_and_map_pci;
1267 	bridge->swizzle_irq = pci_common_swizzle;
1268 	bridge->align_resource = mvebu_pcie_align_resource;
1269 	bridge->msi = pcie->msi;
1270 
1271 	return pci_host_probe(bridge);
1272 }
1273 
1274 static const struct of_device_id mvebu_pcie_of_match_table[] = {
1275 	{ .compatible = "marvell,armada-xp-pcie", },
1276 	{ .compatible = "marvell,armada-370-pcie", },
1277 	{ .compatible = "marvell,dove-pcie", },
1278 	{ .compatible = "marvell,kirkwood-pcie", },
1279 	{},
1280 };
1281 
1282 static const struct dev_pm_ops mvebu_pcie_pm_ops = {
1283 	SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(mvebu_pcie_suspend, mvebu_pcie_resume)
1284 };
1285 
1286 static struct platform_driver mvebu_pcie_driver = {
1287 	.driver = {
1288 		.name = "mvebu-pcie",
1289 		.of_match_table = mvebu_pcie_of_match_table,
1290 		/* driver unloading/unbinding currently not supported */
1291 		.suppress_bind_attrs = true,
1292 		.pm = &mvebu_pcie_pm_ops,
1293 	},
1294 	.probe = mvebu_pcie_probe,
1295 };
1296 builtin_platform_driver(mvebu_pcie_driver);
1297