xref: /openbmc/linux/drivers/pci/controller/pci-hyperv.c (revision e65e175b07bef5974045cc42238de99057669ca7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) Microsoft Corporation.
4  *
5  * Author:
6  *   Jake Oshins <jakeo@microsoft.com>
7  *
8  * This driver acts as a paravirtual front-end for PCI Express root buses.
9  * When a PCI Express function (either an entire device or an SR-IOV
10  * Virtual Function) is being passed through to the VM, this driver exposes
11  * a new bus to the guest VM.  This is modeled as a root PCI bus because
12  * no bridges are being exposed to the VM.  In fact, with a "Generation 2"
13  * VM within Hyper-V, there may seem to be no PCI bus at all in the VM
14  * until a device as been exposed using this driver.
15  *
16  * Each root PCI bus has its own PCI domain, which is called "Segment" in
17  * the PCI Firmware Specifications.  Thus while each device passed through
18  * to the VM using this front-end will appear at "device 0", the domain will
19  * be unique.  Typically, each bus will have one PCI function on it, though
20  * this driver does support more than one.
21  *
22  * In order to map the interrupts from the device through to the guest VM,
23  * this driver also implements an IRQ Domain, which handles interrupts (either
24  * MSI or MSI-X) associated with the functions on the bus.  As interrupts are
25  * set up, torn down, or reaffined, this driver communicates with the
26  * underlying hypervisor to adjust the mappings in the I/O MMU so that each
27  * interrupt will be delivered to the correct virtual processor at the right
28  * vector.  This driver does not support level-triggered (line-based)
29  * interrupts, and will report that the Interrupt Line register in the
30  * function's configuration space is zero.
31  *
32  * The rest of this driver mostly maps PCI concepts onto underlying Hyper-V
33  * facilities.  For instance, the configuration space of a function exposed
34  * by Hyper-V is mapped into a single page of memory space, and the
35  * read and write handlers for config space must be aware of this mechanism.
36  * Similarly, device setup and teardown involves messages sent to and from
37  * the PCI back-end driver in Hyper-V.
38  */
39 
40 #include <linux/kernel.h>
41 #include <linux/module.h>
42 #include <linux/pci.h>
43 #include <linux/pci-ecam.h>
44 #include <linux/delay.h>
45 #include <linux/semaphore.h>
46 #include <linux/irq.h>
47 #include <linux/msi.h>
48 #include <linux/hyperv.h>
49 #include <linux/refcount.h>
50 #include <linux/irqdomain.h>
51 #include <linux/acpi.h>
52 #include <asm/mshyperv.h>
53 
54 /*
55  * Protocol versions. The low word is the minor version, the high word the
56  * major version.
57  */
58 
59 #define PCI_MAKE_VERSION(major, minor) ((u32)(((major) << 16) | (minor)))
60 #define PCI_MAJOR_VERSION(version) ((u32)(version) >> 16)
61 #define PCI_MINOR_VERSION(version) ((u32)(version) & 0xff)
62 
63 enum pci_protocol_version_t {
64 	PCI_PROTOCOL_VERSION_1_1 = PCI_MAKE_VERSION(1, 1),	/* Win10 */
65 	PCI_PROTOCOL_VERSION_1_2 = PCI_MAKE_VERSION(1, 2),	/* RS1 */
66 	PCI_PROTOCOL_VERSION_1_3 = PCI_MAKE_VERSION(1, 3),	/* Vibranium */
67 	PCI_PROTOCOL_VERSION_1_4 = PCI_MAKE_VERSION(1, 4),	/* WS2022 */
68 };
69 
70 #define CPU_AFFINITY_ALL	-1ULL
71 
72 /*
73  * Supported protocol versions in the order of probing - highest go
74  * first.
75  */
76 static enum pci_protocol_version_t pci_protocol_versions[] = {
77 	PCI_PROTOCOL_VERSION_1_4,
78 	PCI_PROTOCOL_VERSION_1_3,
79 	PCI_PROTOCOL_VERSION_1_2,
80 	PCI_PROTOCOL_VERSION_1_1,
81 };
82 
83 #define PCI_CONFIG_MMIO_LENGTH	0x2000
84 #define CFG_PAGE_OFFSET 0x1000
85 #define CFG_PAGE_SIZE (PCI_CONFIG_MMIO_LENGTH - CFG_PAGE_OFFSET)
86 
87 #define MAX_SUPPORTED_MSI_MESSAGES 0x400
88 
89 #define STATUS_REVISION_MISMATCH 0xC0000059
90 
91 /* space for 32bit serial number as string */
92 #define SLOT_NAME_SIZE 11
93 
94 /*
95  * Size of requestor for VMbus; the value is based on the observation
96  * that having more than one request outstanding is 'rare', and so 64
97  * should be generous in ensuring that we don't ever run out.
98  */
99 #define HV_PCI_RQSTOR_SIZE 64
100 
101 /*
102  * Message Types
103  */
104 
105 enum pci_message_type {
106 	/*
107 	 * Version 1.1
108 	 */
109 	PCI_MESSAGE_BASE                = 0x42490000,
110 	PCI_BUS_RELATIONS               = PCI_MESSAGE_BASE + 0,
111 	PCI_QUERY_BUS_RELATIONS         = PCI_MESSAGE_BASE + 1,
112 	PCI_POWER_STATE_CHANGE          = PCI_MESSAGE_BASE + 4,
113 	PCI_QUERY_RESOURCE_REQUIREMENTS = PCI_MESSAGE_BASE + 5,
114 	PCI_QUERY_RESOURCE_RESOURCES    = PCI_MESSAGE_BASE + 6,
115 	PCI_BUS_D0ENTRY                 = PCI_MESSAGE_BASE + 7,
116 	PCI_BUS_D0EXIT                  = PCI_MESSAGE_BASE + 8,
117 	PCI_READ_BLOCK                  = PCI_MESSAGE_BASE + 9,
118 	PCI_WRITE_BLOCK                 = PCI_MESSAGE_BASE + 0xA,
119 	PCI_EJECT                       = PCI_MESSAGE_BASE + 0xB,
120 	PCI_QUERY_STOP                  = PCI_MESSAGE_BASE + 0xC,
121 	PCI_REENABLE                    = PCI_MESSAGE_BASE + 0xD,
122 	PCI_QUERY_STOP_FAILED           = PCI_MESSAGE_BASE + 0xE,
123 	PCI_EJECTION_COMPLETE           = PCI_MESSAGE_BASE + 0xF,
124 	PCI_RESOURCES_ASSIGNED          = PCI_MESSAGE_BASE + 0x10,
125 	PCI_RESOURCES_RELEASED          = PCI_MESSAGE_BASE + 0x11,
126 	PCI_INVALIDATE_BLOCK            = PCI_MESSAGE_BASE + 0x12,
127 	PCI_QUERY_PROTOCOL_VERSION      = PCI_MESSAGE_BASE + 0x13,
128 	PCI_CREATE_INTERRUPT_MESSAGE    = PCI_MESSAGE_BASE + 0x14,
129 	PCI_DELETE_INTERRUPT_MESSAGE    = PCI_MESSAGE_BASE + 0x15,
130 	PCI_RESOURCES_ASSIGNED2		= PCI_MESSAGE_BASE + 0x16,
131 	PCI_CREATE_INTERRUPT_MESSAGE2	= PCI_MESSAGE_BASE + 0x17,
132 	PCI_DELETE_INTERRUPT_MESSAGE2	= PCI_MESSAGE_BASE + 0x18, /* unused */
133 	PCI_BUS_RELATIONS2		= PCI_MESSAGE_BASE + 0x19,
134 	PCI_RESOURCES_ASSIGNED3         = PCI_MESSAGE_BASE + 0x1A,
135 	PCI_CREATE_INTERRUPT_MESSAGE3   = PCI_MESSAGE_BASE + 0x1B,
136 	PCI_MESSAGE_MAXIMUM
137 };
138 
139 /*
140  * Structures defining the virtual PCI Express protocol.
141  */
142 
143 union pci_version {
144 	struct {
145 		u16 minor_version;
146 		u16 major_version;
147 	} parts;
148 	u32 version;
149 } __packed;
150 
151 /*
152  * Function numbers are 8-bits wide on Express, as interpreted through ARI,
153  * which is all this driver does.  This representation is the one used in
154  * Windows, which is what is expected when sending this back and forth with
155  * the Hyper-V parent partition.
156  */
157 union win_slot_encoding {
158 	struct {
159 		u32	dev:5;
160 		u32	func:3;
161 		u32	reserved:24;
162 	} bits;
163 	u32 slot;
164 } __packed;
165 
166 /*
167  * Pretty much as defined in the PCI Specifications.
168  */
169 struct pci_function_description {
170 	u16	v_id;	/* vendor ID */
171 	u16	d_id;	/* device ID */
172 	u8	rev;
173 	u8	prog_intf;
174 	u8	subclass;
175 	u8	base_class;
176 	u32	subsystem_id;
177 	union win_slot_encoding win_slot;
178 	u32	ser;	/* serial number */
179 } __packed;
180 
181 enum pci_device_description_flags {
182 	HV_PCI_DEVICE_FLAG_NONE			= 0x0,
183 	HV_PCI_DEVICE_FLAG_NUMA_AFFINITY	= 0x1,
184 };
185 
186 struct pci_function_description2 {
187 	u16	v_id;	/* vendor ID */
188 	u16	d_id;	/* device ID */
189 	u8	rev;
190 	u8	prog_intf;
191 	u8	subclass;
192 	u8	base_class;
193 	u32	subsystem_id;
194 	union	win_slot_encoding win_slot;
195 	u32	ser;	/* serial number */
196 	u32	flags;
197 	u16	virtual_numa_node;
198 	u16	reserved;
199 } __packed;
200 
201 /**
202  * struct hv_msi_desc
203  * @vector:		IDT entry
204  * @delivery_mode:	As defined in Intel's Programmer's
205  *			Reference Manual, Volume 3, Chapter 8.
206  * @vector_count:	Number of contiguous entries in the
207  *			Interrupt Descriptor Table that are
208  *			occupied by this Message-Signaled
209  *			Interrupt. For "MSI", as first defined
210  *			in PCI 2.2, this can be between 1 and
211  *			32. For "MSI-X," as first defined in PCI
212  *			3.0, this must be 1, as each MSI-X table
213  *			entry would have its own descriptor.
214  * @reserved:		Empty space
215  * @cpu_mask:		All the target virtual processors.
216  */
217 struct hv_msi_desc {
218 	u8	vector;
219 	u8	delivery_mode;
220 	u16	vector_count;
221 	u32	reserved;
222 	u64	cpu_mask;
223 } __packed;
224 
225 /**
226  * struct hv_msi_desc2 - 1.2 version of hv_msi_desc
227  * @vector:		IDT entry
228  * @delivery_mode:	As defined in Intel's Programmer's
229  *			Reference Manual, Volume 3, Chapter 8.
230  * @vector_count:	Number of contiguous entries in the
231  *			Interrupt Descriptor Table that are
232  *			occupied by this Message-Signaled
233  *			Interrupt. For "MSI", as first defined
234  *			in PCI 2.2, this can be between 1 and
235  *			32. For "MSI-X," as first defined in PCI
236  *			3.0, this must be 1, as each MSI-X table
237  *			entry would have its own descriptor.
238  * @processor_count:	number of bits enabled in array.
239  * @processor_array:	All the target virtual processors.
240  */
241 struct hv_msi_desc2 {
242 	u8	vector;
243 	u8	delivery_mode;
244 	u16	vector_count;
245 	u16	processor_count;
246 	u16	processor_array[32];
247 } __packed;
248 
249 /*
250  * struct hv_msi_desc3 - 1.3 version of hv_msi_desc
251  *	Everything is the same as in 'hv_msi_desc2' except that the size of the
252  *	'vector' field is larger to support bigger vector values. For ex: LPI
253  *	vectors on ARM.
254  */
255 struct hv_msi_desc3 {
256 	u32	vector;
257 	u8	delivery_mode;
258 	u8	reserved;
259 	u16	vector_count;
260 	u16	processor_count;
261 	u16	processor_array[32];
262 } __packed;
263 
264 /**
265  * struct tran_int_desc
266  * @reserved:		unused, padding
267  * @vector_count:	same as in hv_msi_desc
268  * @data:		This is the "data payload" value that is
269  *			written by the device when it generates
270  *			a message-signaled interrupt, either MSI
271  *			or MSI-X.
272  * @address:		This is the address to which the data
273  *			payload is written on interrupt
274  *			generation.
275  */
276 struct tran_int_desc {
277 	u16	reserved;
278 	u16	vector_count;
279 	u32	data;
280 	u64	address;
281 } __packed;
282 
283 /*
284  * A generic message format for virtual PCI.
285  * Specific message formats are defined later in the file.
286  */
287 
288 struct pci_message {
289 	u32 type;
290 } __packed;
291 
292 struct pci_child_message {
293 	struct pci_message message_type;
294 	union win_slot_encoding wslot;
295 } __packed;
296 
297 struct pci_incoming_message {
298 	struct vmpacket_descriptor hdr;
299 	struct pci_message message_type;
300 } __packed;
301 
302 struct pci_response {
303 	struct vmpacket_descriptor hdr;
304 	s32 status;			/* negative values are failures */
305 } __packed;
306 
307 struct pci_packet {
308 	void (*completion_func)(void *context, struct pci_response *resp,
309 				int resp_packet_size);
310 	void *compl_ctxt;
311 
312 	struct pci_message message[];
313 };
314 
315 /*
316  * Specific message types supporting the PCI protocol.
317  */
318 
319 /*
320  * Version negotiation message. Sent from the guest to the host.
321  * The guest is free to try different versions until the host
322  * accepts the version.
323  *
324  * pci_version: The protocol version requested.
325  * is_last_attempt: If TRUE, this is the last version guest will request.
326  * reservedz: Reserved field, set to zero.
327  */
328 
329 struct pci_version_request {
330 	struct pci_message message_type;
331 	u32 protocol_version;
332 } __packed;
333 
334 /*
335  * Bus D0 Entry.  This is sent from the guest to the host when the virtual
336  * bus (PCI Express port) is ready for action.
337  */
338 
339 struct pci_bus_d0_entry {
340 	struct pci_message message_type;
341 	u32 reserved;
342 	u64 mmio_base;
343 } __packed;
344 
345 struct pci_bus_relations {
346 	struct pci_incoming_message incoming;
347 	u32 device_count;
348 	struct pci_function_description func[];
349 } __packed;
350 
351 struct pci_bus_relations2 {
352 	struct pci_incoming_message incoming;
353 	u32 device_count;
354 	struct pci_function_description2 func[];
355 } __packed;
356 
357 struct pci_q_res_req_response {
358 	struct vmpacket_descriptor hdr;
359 	s32 status;			/* negative values are failures */
360 	u32 probed_bar[PCI_STD_NUM_BARS];
361 } __packed;
362 
363 struct pci_set_power {
364 	struct pci_message message_type;
365 	union win_slot_encoding wslot;
366 	u32 power_state;		/* In Windows terms */
367 	u32 reserved;
368 } __packed;
369 
370 struct pci_set_power_response {
371 	struct vmpacket_descriptor hdr;
372 	s32 status;			/* negative values are failures */
373 	union win_slot_encoding wslot;
374 	u32 resultant_state;		/* In Windows terms */
375 	u32 reserved;
376 } __packed;
377 
378 struct pci_resources_assigned {
379 	struct pci_message message_type;
380 	union win_slot_encoding wslot;
381 	u8 memory_range[0x14][6];	/* not used here */
382 	u32 msi_descriptors;
383 	u32 reserved[4];
384 } __packed;
385 
386 struct pci_resources_assigned2 {
387 	struct pci_message message_type;
388 	union win_slot_encoding wslot;
389 	u8 memory_range[0x14][6];	/* not used here */
390 	u32 msi_descriptor_count;
391 	u8 reserved[70];
392 } __packed;
393 
394 struct pci_create_interrupt {
395 	struct pci_message message_type;
396 	union win_slot_encoding wslot;
397 	struct hv_msi_desc int_desc;
398 } __packed;
399 
400 struct pci_create_int_response {
401 	struct pci_response response;
402 	u32 reserved;
403 	struct tran_int_desc int_desc;
404 } __packed;
405 
406 struct pci_create_interrupt2 {
407 	struct pci_message message_type;
408 	union win_slot_encoding wslot;
409 	struct hv_msi_desc2 int_desc;
410 } __packed;
411 
412 struct pci_create_interrupt3 {
413 	struct pci_message message_type;
414 	union win_slot_encoding wslot;
415 	struct hv_msi_desc3 int_desc;
416 } __packed;
417 
418 struct pci_delete_interrupt {
419 	struct pci_message message_type;
420 	union win_slot_encoding wslot;
421 	struct tran_int_desc int_desc;
422 } __packed;
423 
424 /*
425  * Note: the VM must pass a valid block id, wslot and bytes_requested.
426  */
427 struct pci_read_block {
428 	struct pci_message message_type;
429 	u32 block_id;
430 	union win_slot_encoding wslot;
431 	u32 bytes_requested;
432 } __packed;
433 
434 struct pci_read_block_response {
435 	struct vmpacket_descriptor hdr;
436 	u32 status;
437 	u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX];
438 } __packed;
439 
440 /*
441  * Note: the VM must pass a valid block id, wslot and byte_count.
442  */
443 struct pci_write_block {
444 	struct pci_message message_type;
445 	u32 block_id;
446 	union win_slot_encoding wslot;
447 	u32 byte_count;
448 	u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX];
449 } __packed;
450 
451 struct pci_dev_inval_block {
452 	struct pci_incoming_message incoming;
453 	union win_slot_encoding wslot;
454 	u64 block_mask;
455 } __packed;
456 
457 struct pci_dev_incoming {
458 	struct pci_incoming_message incoming;
459 	union win_slot_encoding wslot;
460 } __packed;
461 
462 struct pci_eject_response {
463 	struct pci_message message_type;
464 	union win_slot_encoding wslot;
465 	u32 status;
466 } __packed;
467 
468 static int pci_ring_size = (4 * PAGE_SIZE);
469 
470 /*
471  * Driver specific state.
472  */
473 
474 enum hv_pcibus_state {
475 	hv_pcibus_init = 0,
476 	hv_pcibus_probed,
477 	hv_pcibus_installed,
478 	hv_pcibus_removing,
479 	hv_pcibus_maximum
480 };
481 
482 struct hv_pcibus_device {
483 #ifdef CONFIG_X86
484 	struct pci_sysdata sysdata;
485 #elif defined(CONFIG_ARM64)
486 	struct pci_config_window sysdata;
487 #endif
488 	struct pci_host_bridge *bridge;
489 	struct fwnode_handle *fwnode;
490 	/* Protocol version negotiated with the host */
491 	enum pci_protocol_version_t protocol_version;
492 	enum hv_pcibus_state state;
493 	struct hv_device *hdev;
494 	resource_size_t low_mmio_space;
495 	resource_size_t high_mmio_space;
496 	struct resource *mem_config;
497 	struct resource *low_mmio_res;
498 	struct resource *high_mmio_res;
499 	struct completion *survey_event;
500 	struct pci_bus *pci_bus;
501 	spinlock_t config_lock;	/* Avoid two threads writing index page */
502 	spinlock_t device_list_lock;	/* Protect lists below */
503 	void __iomem *cfg_addr;
504 
505 	struct list_head children;
506 	struct list_head dr_list;
507 
508 	struct msi_domain_info msi_info;
509 	struct irq_domain *irq_domain;
510 
511 	spinlock_t retarget_msi_interrupt_lock;
512 
513 	struct workqueue_struct *wq;
514 
515 	/* Highest slot of child device with resources allocated */
516 	int wslot_res_allocated;
517 
518 	/* hypercall arg, must not cross page boundary */
519 	struct hv_retarget_device_interrupt retarget_msi_interrupt_params;
520 
521 	/*
522 	 * Don't put anything here: retarget_msi_interrupt_params must be last
523 	 */
524 };
525 
526 /*
527  * Tracks "Device Relations" messages from the host, which must be both
528  * processed in order and deferred so that they don't run in the context
529  * of the incoming packet callback.
530  */
531 struct hv_dr_work {
532 	struct work_struct wrk;
533 	struct hv_pcibus_device *bus;
534 };
535 
536 struct hv_pcidev_description {
537 	u16	v_id;	/* vendor ID */
538 	u16	d_id;	/* device ID */
539 	u8	rev;
540 	u8	prog_intf;
541 	u8	subclass;
542 	u8	base_class;
543 	u32	subsystem_id;
544 	union	win_slot_encoding win_slot;
545 	u32	ser;	/* serial number */
546 	u32	flags;
547 	u16	virtual_numa_node;
548 };
549 
550 struct hv_dr_state {
551 	struct list_head list_entry;
552 	u32 device_count;
553 	struct hv_pcidev_description func[];
554 };
555 
556 enum hv_pcichild_state {
557 	hv_pcichild_init = 0,
558 	hv_pcichild_requirements,
559 	hv_pcichild_resourced,
560 	hv_pcichild_ejecting,
561 	hv_pcichild_maximum
562 };
563 
564 struct hv_pci_dev {
565 	/* List protected by pci_rescan_remove_lock */
566 	struct list_head list_entry;
567 	refcount_t refs;
568 	enum hv_pcichild_state state;
569 	struct pci_slot *pci_slot;
570 	struct hv_pcidev_description desc;
571 	bool reported_missing;
572 	struct hv_pcibus_device *hbus;
573 	struct work_struct wrk;
574 
575 	void (*block_invalidate)(void *context, u64 block_mask);
576 	void *invalidate_context;
577 
578 	/*
579 	 * What would be observed if one wrote 0xFFFFFFFF to a BAR and then
580 	 * read it back, for each of the BAR offsets within config space.
581 	 */
582 	u32 probed_bar[PCI_STD_NUM_BARS];
583 };
584 
585 struct hv_pci_compl {
586 	struct completion host_event;
587 	s32 completion_status;
588 };
589 
590 static void hv_pci_onchannelcallback(void *context);
591 
592 #ifdef CONFIG_X86
593 #define DELIVERY_MODE	APIC_DELIVERY_MODE_FIXED
594 #define FLOW_HANDLER	handle_edge_irq
595 #define FLOW_NAME	"edge"
596 
597 static int hv_pci_irqchip_init(void)
598 {
599 	return 0;
600 }
601 
602 static struct irq_domain *hv_pci_get_root_domain(void)
603 {
604 	return x86_vector_domain;
605 }
606 
607 static unsigned int hv_msi_get_int_vector(struct irq_data *data)
608 {
609 	struct irq_cfg *cfg = irqd_cfg(data);
610 
611 	return cfg->vector;
612 }
613 
614 #define hv_msi_prepare		pci_msi_prepare
615 
616 /**
617  * hv_arch_irq_unmask() - "Unmask" the IRQ by setting its current
618  * affinity.
619  * @data:	Describes the IRQ
620  *
621  * Build new a destination for the MSI and make a hypercall to
622  * update the Interrupt Redirection Table. "Device Logical ID"
623  * is built out of this PCI bus's instance GUID and the function
624  * number of the device.
625  */
626 static void hv_arch_irq_unmask(struct irq_data *data)
627 {
628 	struct msi_desc *msi_desc = irq_data_get_msi_desc(data);
629 	struct hv_retarget_device_interrupt *params;
630 	struct tran_int_desc *int_desc;
631 	struct hv_pcibus_device *hbus;
632 	const struct cpumask *dest;
633 	cpumask_var_t tmp;
634 	struct pci_bus *pbus;
635 	struct pci_dev *pdev;
636 	unsigned long flags;
637 	u32 var_size = 0;
638 	int cpu, nr_bank;
639 	u64 res;
640 
641 	dest = irq_data_get_effective_affinity_mask(data);
642 	pdev = msi_desc_to_pci_dev(msi_desc);
643 	pbus = pdev->bus;
644 	hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
645 	int_desc = data->chip_data;
646 
647 	spin_lock_irqsave(&hbus->retarget_msi_interrupt_lock, flags);
648 
649 	params = &hbus->retarget_msi_interrupt_params;
650 	memset(params, 0, sizeof(*params));
651 	params->partition_id = HV_PARTITION_ID_SELF;
652 	params->int_entry.source = HV_INTERRUPT_SOURCE_MSI;
653 	params->int_entry.msi_entry.address.as_uint32 = int_desc->address & 0xffffffff;
654 	params->int_entry.msi_entry.data.as_uint32 = int_desc->data;
655 	params->device_id = (hbus->hdev->dev_instance.b[5] << 24) |
656 			   (hbus->hdev->dev_instance.b[4] << 16) |
657 			   (hbus->hdev->dev_instance.b[7] << 8) |
658 			   (hbus->hdev->dev_instance.b[6] & 0xf8) |
659 			   PCI_FUNC(pdev->devfn);
660 	params->int_target.vector = hv_msi_get_int_vector(data);
661 
662 	/*
663 	 * Honoring apic->delivery_mode set to APIC_DELIVERY_MODE_FIXED by
664 	 * setting the HV_DEVICE_INTERRUPT_TARGET_MULTICAST flag results in a
665 	 * spurious interrupt storm. Not doing so does not seem to have a
666 	 * negative effect (yet?).
667 	 */
668 
669 	if (hbus->protocol_version >= PCI_PROTOCOL_VERSION_1_2) {
670 		/*
671 		 * PCI_PROTOCOL_VERSION_1_2 supports the VP_SET version of the
672 		 * HVCALL_RETARGET_INTERRUPT hypercall, which also coincides
673 		 * with >64 VP support.
674 		 * ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED
675 		 * is not sufficient for this hypercall.
676 		 */
677 		params->int_target.flags |=
678 			HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET;
679 
680 		if (!alloc_cpumask_var(&tmp, GFP_ATOMIC)) {
681 			res = 1;
682 			goto exit_unlock;
683 		}
684 
685 		cpumask_and(tmp, dest, cpu_online_mask);
686 		nr_bank = cpumask_to_vpset(&params->int_target.vp_set, tmp);
687 		free_cpumask_var(tmp);
688 
689 		if (nr_bank <= 0) {
690 			res = 1;
691 			goto exit_unlock;
692 		}
693 
694 		/*
695 		 * var-sized hypercall, var-size starts after vp_mask (thus
696 		 * vp_set.format does not count, but vp_set.valid_bank_mask
697 		 * does).
698 		 */
699 		var_size = 1 + nr_bank;
700 	} else {
701 		for_each_cpu_and(cpu, dest, cpu_online_mask) {
702 			params->int_target.vp_mask |=
703 				(1ULL << hv_cpu_number_to_vp_number(cpu));
704 		}
705 	}
706 
707 	res = hv_do_hypercall(HVCALL_RETARGET_INTERRUPT | (var_size << 17),
708 			      params, NULL);
709 
710 exit_unlock:
711 	spin_unlock_irqrestore(&hbus->retarget_msi_interrupt_lock, flags);
712 
713 	/*
714 	 * During hibernation, when a CPU is offlined, the kernel tries
715 	 * to move the interrupt to the remaining CPUs that haven't
716 	 * been offlined yet. In this case, the below hv_do_hypercall()
717 	 * always fails since the vmbus channel has been closed:
718 	 * refer to cpu_disable_common() -> fixup_irqs() ->
719 	 * irq_migrate_all_off_this_cpu() -> migrate_one_irq().
720 	 *
721 	 * Suppress the error message for hibernation because the failure
722 	 * during hibernation does not matter (at this time all the devices
723 	 * have been frozen). Note: the correct affinity info is still updated
724 	 * into the irqdata data structure in migrate_one_irq() ->
725 	 * irq_do_set_affinity(), so later when the VM resumes,
726 	 * hv_pci_restore_msi_state() is able to correctly restore the
727 	 * interrupt with the correct affinity.
728 	 */
729 	if (!hv_result_success(res) && hbus->state != hv_pcibus_removing)
730 		dev_err(&hbus->hdev->device,
731 			"%s() failed: %#llx", __func__, res);
732 }
733 #elif defined(CONFIG_ARM64)
734 /*
735  * SPI vectors to use for vPCI; arch SPIs range is [32, 1019], but leaving a bit
736  * of room at the start to allow for SPIs to be specified through ACPI and
737  * starting with a power of two to satisfy power of 2 multi-MSI requirement.
738  */
739 #define HV_PCI_MSI_SPI_START	64
740 #define HV_PCI_MSI_SPI_NR	(1020 - HV_PCI_MSI_SPI_START)
741 #define DELIVERY_MODE		0
742 #define FLOW_HANDLER		NULL
743 #define FLOW_NAME		NULL
744 #define hv_msi_prepare		NULL
745 
746 struct hv_pci_chip_data {
747 	DECLARE_BITMAP(spi_map, HV_PCI_MSI_SPI_NR);
748 	struct mutex	map_lock;
749 };
750 
751 /* Hyper-V vPCI MSI GIC IRQ domain */
752 static struct irq_domain *hv_msi_gic_irq_domain;
753 
754 /* Hyper-V PCI MSI IRQ chip */
755 static struct irq_chip hv_arm64_msi_irq_chip = {
756 	.name = "MSI",
757 	.irq_set_affinity = irq_chip_set_affinity_parent,
758 	.irq_eoi = irq_chip_eoi_parent,
759 	.irq_mask = irq_chip_mask_parent,
760 	.irq_unmask = irq_chip_unmask_parent
761 };
762 
763 static unsigned int hv_msi_get_int_vector(struct irq_data *irqd)
764 {
765 	return irqd->parent_data->hwirq;
766 }
767 
768 /*
769  * @nr_bm_irqs:		Indicates the number of IRQs that were allocated from
770  *			the bitmap.
771  * @nr_dom_irqs:	Indicates the number of IRQs that were allocated from
772  *			the parent domain.
773  */
774 static void hv_pci_vec_irq_free(struct irq_domain *domain,
775 				unsigned int virq,
776 				unsigned int nr_bm_irqs,
777 				unsigned int nr_dom_irqs)
778 {
779 	struct hv_pci_chip_data *chip_data = domain->host_data;
780 	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
781 	int first = d->hwirq - HV_PCI_MSI_SPI_START;
782 	int i;
783 
784 	mutex_lock(&chip_data->map_lock);
785 	bitmap_release_region(chip_data->spi_map,
786 			      first,
787 			      get_count_order(nr_bm_irqs));
788 	mutex_unlock(&chip_data->map_lock);
789 	for (i = 0; i < nr_dom_irqs; i++) {
790 		if (i)
791 			d = irq_domain_get_irq_data(domain, virq + i);
792 		irq_domain_reset_irq_data(d);
793 	}
794 
795 	irq_domain_free_irqs_parent(domain, virq, nr_dom_irqs);
796 }
797 
798 static void hv_pci_vec_irq_domain_free(struct irq_domain *domain,
799 				       unsigned int virq,
800 				       unsigned int nr_irqs)
801 {
802 	hv_pci_vec_irq_free(domain, virq, nr_irqs, nr_irqs);
803 }
804 
805 static int hv_pci_vec_alloc_device_irq(struct irq_domain *domain,
806 				       unsigned int nr_irqs,
807 				       irq_hw_number_t *hwirq)
808 {
809 	struct hv_pci_chip_data *chip_data = domain->host_data;
810 	int index;
811 
812 	/* Find and allocate region from the SPI bitmap */
813 	mutex_lock(&chip_data->map_lock);
814 	index = bitmap_find_free_region(chip_data->spi_map,
815 					HV_PCI_MSI_SPI_NR,
816 					get_count_order(nr_irqs));
817 	mutex_unlock(&chip_data->map_lock);
818 	if (index < 0)
819 		return -ENOSPC;
820 
821 	*hwirq = index + HV_PCI_MSI_SPI_START;
822 
823 	return 0;
824 }
825 
826 static int hv_pci_vec_irq_gic_domain_alloc(struct irq_domain *domain,
827 					   unsigned int virq,
828 					   irq_hw_number_t hwirq)
829 {
830 	struct irq_fwspec fwspec;
831 	struct irq_data *d;
832 	int ret;
833 
834 	fwspec.fwnode = domain->parent->fwnode;
835 	fwspec.param_count = 2;
836 	fwspec.param[0] = hwirq;
837 	fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
838 
839 	ret = irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
840 	if (ret)
841 		return ret;
842 
843 	/*
844 	 * Since the interrupt specifier is not coming from ACPI or DT, the
845 	 * trigger type will need to be set explicitly. Otherwise, it will be
846 	 * set to whatever is in the GIC configuration.
847 	 */
848 	d = irq_domain_get_irq_data(domain->parent, virq);
849 
850 	return d->chip->irq_set_type(d, IRQ_TYPE_EDGE_RISING);
851 }
852 
853 static int hv_pci_vec_irq_domain_alloc(struct irq_domain *domain,
854 				       unsigned int virq, unsigned int nr_irqs,
855 				       void *args)
856 {
857 	irq_hw_number_t hwirq;
858 	unsigned int i;
859 	int ret;
860 
861 	ret = hv_pci_vec_alloc_device_irq(domain, nr_irqs, &hwirq);
862 	if (ret)
863 		return ret;
864 
865 	for (i = 0; i < nr_irqs; i++) {
866 		ret = hv_pci_vec_irq_gic_domain_alloc(domain, virq + i,
867 						      hwirq + i);
868 		if (ret) {
869 			hv_pci_vec_irq_free(domain, virq, nr_irqs, i);
870 			return ret;
871 		}
872 
873 		irq_domain_set_hwirq_and_chip(domain, virq + i,
874 					      hwirq + i,
875 					      &hv_arm64_msi_irq_chip,
876 					      domain->host_data);
877 		pr_debug("pID:%d vID:%u\n", (int)(hwirq + i), virq + i);
878 	}
879 
880 	return 0;
881 }
882 
883 /*
884  * Pick the first cpu as the irq affinity that can be temporarily used for
885  * composing MSI from the hypervisor. GIC will eventually set the right
886  * affinity for the irq and the 'unmask' will retarget the interrupt to that
887  * cpu.
888  */
889 static int hv_pci_vec_irq_domain_activate(struct irq_domain *domain,
890 					  struct irq_data *irqd, bool reserve)
891 {
892 	int cpu = cpumask_first(cpu_present_mask);
893 
894 	irq_data_update_effective_affinity(irqd, cpumask_of(cpu));
895 
896 	return 0;
897 }
898 
899 static const struct irq_domain_ops hv_pci_domain_ops = {
900 	.alloc	= hv_pci_vec_irq_domain_alloc,
901 	.free	= hv_pci_vec_irq_domain_free,
902 	.activate = hv_pci_vec_irq_domain_activate,
903 };
904 
905 static int hv_pci_irqchip_init(void)
906 {
907 	static struct hv_pci_chip_data *chip_data;
908 	struct fwnode_handle *fn = NULL;
909 	int ret = -ENOMEM;
910 
911 	chip_data = kzalloc(sizeof(*chip_data), GFP_KERNEL);
912 	if (!chip_data)
913 		return ret;
914 
915 	mutex_init(&chip_data->map_lock);
916 	fn = irq_domain_alloc_named_fwnode("hv_vpci_arm64");
917 	if (!fn)
918 		goto free_chip;
919 
920 	/*
921 	 * IRQ domain once enabled, should not be removed since there is no
922 	 * way to ensure that all the corresponding devices are also gone and
923 	 * no interrupts will be generated.
924 	 */
925 	hv_msi_gic_irq_domain = acpi_irq_create_hierarchy(0, HV_PCI_MSI_SPI_NR,
926 							  fn, &hv_pci_domain_ops,
927 							  chip_data);
928 
929 	if (!hv_msi_gic_irq_domain) {
930 		pr_err("Failed to create Hyper-V arm64 vPCI MSI IRQ domain\n");
931 		goto free_chip;
932 	}
933 
934 	return 0;
935 
936 free_chip:
937 	kfree(chip_data);
938 	if (fn)
939 		irq_domain_free_fwnode(fn);
940 
941 	return ret;
942 }
943 
944 static struct irq_domain *hv_pci_get_root_domain(void)
945 {
946 	return hv_msi_gic_irq_domain;
947 }
948 
949 /*
950  * SPIs are used for interrupts of PCI devices and SPIs is managed via GICD
951  * registers which Hyper-V already supports, so no hypercall needed.
952  */
953 static void hv_arch_irq_unmask(struct irq_data *data) { }
954 #endif /* CONFIG_ARM64 */
955 
956 /**
957  * hv_pci_generic_compl() - Invoked for a completion packet
958  * @context:		Set up by the sender of the packet.
959  * @resp:		The response packet
960  * @resp_packet_size:	Size in bytes of the packet
961  *
962  * This function is used to trigger an event and report status
963  * for any message for which the completion packet contains a
964  * status and nothing else.
965  */
966 static void hv_pci_generic_compl(void *context, struct pci_response *resp,
967 				 int resp_packet_size)
968 {
969 	struct hv_pci_compl *comp_pkt = context;
970 
971 	comp_pkt->completion_status = resp->status;
972 	complete(&comp_pkt->host_event);
973 }
974 
975 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
976 						u32 wslot);
977 
978 static void get_pcichild(struct hv_pci_dev *hpdev)
979 {
980 	refcount_inc(&hpdev->refs);
981 }
982 
983 static void put_pcichild(struct hv_pci_dev *hpdev)
984 {
985 	if (refcount_dec_and_test(&hpdev->refs))
986 		kfree(hpdev);
987 }
988 
989 /*
990  * There is no good way to get notified from vmbus_onoffer_rescind(),
991  * so let's use polling here, since this is not a hot path.
992  */
993 static int wait_for_response(struct hv_device *hdev,
994 			     struct completion *comp)
995 {
996 	while (true) {
997 		if (hdev->channel->rescind) {
998 			dev_warn_once(&hdev->device, "The device is gone.\n");
999 			return -ENODEV;
1000 		}
1001 
1002 		if (wait_for_completion_timeout(comp, HZ / 10))
1003 			break;
1004 	}
1005 
1006 	return 0;
1007 }
1008 
1009 /**
1010  * devfn_to_wslot() - Convert from Linux PCI slot to Windows
1011  * @devfn:	The Linux representation of PCI slot
1012  *
1013  * Windows uses a slightly different representation of PCI slot.
1014  *
1015  * Return: The Windows representation
1016  */
1017 static u32 devfn_to_wslot(int devfn)
1018 {
1019 	union win_slot_encoding wslot;
1020 
1021 	wslot.slot = 0;
1022 	wslot.bits.dev = PCI_SLOT(devfn);
1023 	wslot.bits.func = PCI_FUNC(devfn);
1024 
1025 	return wslot.slot;
1026 }
1027 
1028 /**
1029  * wslot_to_devfn() - Convert from Windows PCI slot to Linux
1030  * @wslot:	The Windows representation of PCI slot
1031  *
1032  * Windows uses a slightly different representation of PCI slot.
1033  *
1034  * Return: The Linux representation
1035  */
1036 static int wslot_to_devfn(u32 wslot)
1037 {
1038 	union win_slot_encoding slot_no;
1039 
1040 	slot_no.slot = wslot;
1041 	return PCI_DEVFN(slot_no.bits.dev, slot_no.bits.func);
1042 }
1043 
1044 /*
1045  * PCI Configuration Space for these root PCI buses is implemented as a pair
1046  * of pages in memory-mapped I/O space.  Writing to the first page chooses
1047  * the PCI function being written or read.  Once the first page has been
1048  * written to, the following page maps in the entire configuration space of
1049  * the function.
1050  */
1051 
1052 /**
1053  * _hv_pcifront_read_config() - Internal PCI config read
1054  * @hpdev:	The PCI driver's representation of the device
1055  * @where:	Offset within config space
1056  * @size:	Size of the transfer
1057  * @val:	Pointer to the buffer receiving the data
1058  */
1059 static void _hv_pcifront_read_config(struct hv_pci_dev *hpdev, int where,
1060 				     int size, u32 *val)
1061 {
1062 	unsigned long flags;
1063 	void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where;
1064 
1065 	/*
1066 	 * If the attempt is to read the IDs or the ROM BAR, simulate that.
1067 	 */
1068 	if (where + size <= PCI_COMMAND) {
1069 		memcpy(val, ((u8 *)&hpdev->desc.v_id) + where, size);
1070 	} else if (where >= PCI_CLASS_REVISION && where + size <=
1071 		   PCI_CACHE_LINE_SIZE) {
1072 		memcpy(val, ((u8 *)&hpdev->desc.rev) + where -
1073 		       PCI_CLASS_REVISION, size);
1074 	} else if (where >= PCI_SUBSYSTEM_VENDOR_ID && where + size <=
1075 		   PCI_ROM_ADDRESS) {
1076 		memcpy(val, (u8 *)&hpdev->desc.subsystem_id + where -
1077 		       PCI_SUBSYSTEM_VENDOR_ID, size);
1078 	} else if (where >= PCI_ROM_ADDRESS && where + size <=
1079 		   PCI_CAPABILITY_LIST) {
1080 		/* ROM BARs are unimplemented */
1081 		*val = 0;
1082 	} else if (where >= PCI_INTERRUPT_LINE && where + size <=
1083 		   PCI_INTERRUPT_PIN) {
1084 		/*
1085 		 * Interrupt Line and Interrupt PIN are hard-wired to zero
1086 		 * because this front-end only supports message-signaled
1087 		 * interrupts.
1088 		 */
1089 		*val = 0;
1090 	} else if (where + size <= CFG_PAGE_SIZE) {
1091 		spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
1092 		/* Choose the function to be read. (See comment above) */
1093 		writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
1094 		/* Make sure the function was chosen before we start reading. */
1095 		mb();
1096 		/* Read from that function's config space. */
1097 		switch (size) {
1098 		case 1:
1099 			*val = readb(addr);
1100 			break;
1101 		case 2:
1102 			*val = readw(addr);
1103 			break;
1104 		default:
1105 			*val = readl(addr);
1106 			break;
1107 		}
1108 		/*
1109 		 * Make sure the read was done before we release the spinlock
1110 		 * allowing consecutive reads/writes.
1111 		 */
1112 		mb();
1113 		spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
1114 	} else {
1115 		dev_err(&hpdev->hbus->hdev->device,
1116 			"Attempt to read beyond a function's config space.\n");
1117 	}
1118 }
1119 
1120 static u16 hv_pcifront_get_vendor_id(struct hv_pci_dev *hpdev)
1121 {
1122 	u16 ret;
1123 	unsigned long flags;
1124 	void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET +
1125 			     PCI_VENDOR_ID;
1126 
1127 	spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
1128 
1129 	/* Choose the function to be read. (See comment above) */
1130 	writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
1131 	/* Make sure the function was chosen before we start reading. */
1132 	mb();
1133 	/* Read from that function's config space. */
1134 	ret = readw(addr);
1135 	/*
1136 	 * mb() is not required here, because the spin_unlock_irqrestore()
1137 	 * is a barrier.
1138 	 */
1139 
1140 	spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
1141 
1142 	return ret;
1143 }
1144 
1145 /**
1146  * _hv_pcifront_write_config() - Internal PCI config write
1147  * @hpdev:	The PCI driver's representation of the device
1148  * @where:	Offset within config space
1149  * @size:	Size of the transfer
1150  * @val:	The data being transferred
1151  */
1152 static void _hv_pcifront_write_config(struct hv_pci_dev *hpdev, int where,
1153 				      int size, u32 val)
1154 {
1155 	unsigned long flags;
1156 	void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where;
1157 
1158 	if (where >= PCI_SUBSYSTEM_VENDOR_ID &&
1159 	    where + size <= PCI_CAPABILITY_LIST) {
1160 		/* SSIDs and ROM BARs are read-only */
1161 	} else if (where >= PCI_COMMAND && where + size <= CFG_PAGE_SIZE) {
1162 		spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
1163 		/* Choose the function to be written. (See comment above) */
1164 		writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
1165 		/* Make sure the function was chosen before we start writing. */
1166 		wmb();
1167 		/* Write to that function's config space. */
1168 		switch (size) {
1169 		case 1:
1170 			writeb(val, addr);
1171 			break;
1172 		case 2:
1173 			writew(val, addr);
1174 			break;
1175 		default:
1176 			writel(val, addr);
1177 			break;
1178 		}
1179 		/*
1180 		 * Make sure the write was done before we release the spinlock
1181 		 * allowing consecutive reads/writes.
1182 		 */
1183 		mb();
1184 		spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
1185 	} else {
1186 		dev_err(&hpdev->hbus->hdev->device,
1187 			"Attempt to write beyond a function's config space.\n");
1188 	}
1189 }
1190 
1191 /**
1192  * hv_pcifront_read_config() - Read configuration space
1193  * @bus: PCI Bus structure
1194  * @devfn: Device/function
1195  * @where: Offset from base
1196  * @size: Byte/word/dword
1197  * @val: Value to be read
1198  *
1199  * Return: PCIBIOS_SUCCESSFUL on success
1200  *	   PCIBIOS_DEVICE_NOT_FOUND on failure
1201  */
1202 static int hv_pcifront_read_config(struct pci_bus *bus, unsigned int devfn,
1203 				   int where, int size, u32 *val)
1204 {
1205 	struct hv_pcibus_device *hbus =
1206 		container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
1207 	struct hv_pci_dev *hpdev;
1208 
1209 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
1210 	if (!hpdev)
1211 		return PCIBIOS_DEVICE_NOT_FOUND;
1212 
1213 	_hv_pcifront_read_config(hpdev, where, size, val);
1214 
1215 	put_pcichild(hpdev);
1216 	return PCIBIOS_SUCCESSFUL;
1217 }
1218 
1219 /**
1220  * hv_pcifront_write_config() - Write configuration space
1221  * @bus: PCI Bus structure
1222  * @devfn: Device/function
1223  * @where: Offset from base
1224  * @size: Byte/word/dword
1225  * @val: Value to be written to device
1226  *
1227  * Return: PCIBIOS_SUCCESSFUL on success
1228  *	   PCIBIOS_DEVICE_NOT_FOUND on failure
1229  */
1230 static int hv_pcifront_write_config(struct pci_bus *bus, unsigned int devfn,
1231 				    int where, int size, u32 val)
1232 {
1233 	struct hv_pcibus_device *hbus =
1234 	    container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
1235 	struct hv_pci_dev *hpdev;
1236 
1237 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
1238 	if (!hpdev)
1239 		return PCIBIOS_DEVICE_NOT_FOUND;
1240 
1241 	_hv_pcifront_write_config(hpdev, where, size, val);
1242 
1243 	put_pcichild(hpdev);
1244 	return PCIBIOS_SUCCESSFUL;
1245 }
1246 
1247 /* PCIe operations */
1248 static struct pci_ops hv_pcifront_ops = {
1249 	.read  = hv_pcifront_read_config,
1250 	.write = hv_pcifront_write_config,
1251 };
1252 
1253 /*
1254  * Paravirtual backchannel
1255  *
1256  * Hyper-V SR-IOV provides a backchannel mechanism in software for
1257  * communication between a VF driver and a PF driver.  These
1258  * "configuration blocks" are similar in concept to PCI configuration space,
1259  * but instead of doing reads and writes in 32-bit chunks through a very slow
1260  * path, packets of up to 128 bytes can be sent or received asynchronously.
1261  *
1262  * Nearly every SR-IOV device contains just such a communications channel in
1263  * hardware, so using this one in software is usually optional.  Using the
1264  * software channel, however, allows driver implementers to leverage software
1265  * tools that fuzz the communications channel looking for vulnerabilities.
1266  *
1267  * The usage model for these packets puts the responsibility for reading or
1268  * writing on the VF driver.  The VF driver sends a read or a write packet,
1269  * indicating which "block" is being referred to by number.
1270  *
1271  * If the PF driver wishes to initiate communication, it can "invalidate" one or
1272  * more of the first 64 blocks.  This invalidation is delivered via a callback
1273  * supplied by the VF driver by this driver.
1274  *
1275  * No protocol is implied, except that supplied by the PF and VF drivers.
1276  */
1277 
1278 struct hv_read_config_compl {
1279 	struct hv_pci_compl comp_pkt;
1280 	void *buf;
1281 	unsigned int len;
1282 	unsigned int bytes_returned;
1283 };
1284 
1285 /**
1286  * hv_pci_read_config_compl() - Invoked when a response packet
1287  * for a read config block operation arrives.
1288  * @context:		Identifies the read config operation
1289  * @resp:		The response packet itself
1290  * @resp_packet_size:	Size in bytes of the response packet
1291  */
1292 static void hv_pci_read_config_compl(void *context, struct pci_response *resp,
1293 				     int resp_packet_size)
1294 {
1295 	struct hv_read_config_compl *comp = context;
1296 	struct pci_read_block_response *read_resp =
1297 		(struct pci_read_block_response *)resp;
1298 	unsigned int data_len, hdr_len;
1299 
1300 	hdr_len = offsetof(struct pci_read_block_response, bytes);
1301 	if (resp_packet_size < hdr_len) {
1302 		comp->comp_pkt.completion_status = -1;
1303 		goto out;
1304 	}
1305 
1306 	data_len = resp_packet_size - hdr_len;
1307 	if (data_len > 0 && read_resp->status == 0) {
1308 		comp->bytes_returned = min(comp->len, data_len);
1309 		memcpy(comp->buf, read_resp->bytes, comp->bytes_returned);
1310 	} else {
1311 		comp->bytes_returned = 0;
1312 	}
1313 
1314 	comp->comp_pkt.completion_status = read_resp->status;
1315 out:
1316 	complete(&comp->comp_pkt.host_event);
1317 }
1318 
1319 /**
1320  * hv_read_config_block() - Sends a read config block request to
1321  * the back-end driver running in the Hyper-V parent partition.
1322  * @pdev:		The PCI driver's representation for this device.
1323  * @buf:		Buffer into which the config block will be copied.
1324  * @len:		Size in bytes of buf.
1325  * @block_id:		Identifies the config block which has been requested.
1326  * @bytes_returned:	Size which came back from the back-end driver.
1327  *
1328  * Return: 0 on success, -errno on failure
1329  */
1330 static int hv_read_config_block(struct pci_dev *pdev, void *buf,
1331 				unsigned int len, unsigned int block_id,
1332 				unsigned int *bytes_returned)
1333 {
1334 	struct hv_pcibus_device *hbus =
1335 		container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1336 			     sysdata);
1337 	struct {
1338 		struct pci_packet pkt;
1339 		char buf[sizeof(struct pci_read_block)];
1340 	} pkt;
1341 	struct hv_read_config_compl comp_pkt;
1342 	struct pci_read_block *read_blk;
1343 	int ret;
1344 
1345 	if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX)
1346 		return -EINVAL;
1347 
1348 	init_completion(&comp_pkt.comp_pkt.host_event);
1349 	comp_pkt.buf = buf;
1350 	comp_pkt.len = len;
1351 
1352 	memset(&pkt, 0, sizeof(pkt));
1353 	pkt.pkt.completion_func = hv_pci_read_config_compl;
1354 	pkt.pkt.compl_ctxt = &comp_pkt;
1355 	read_blk = (struct pci_read_block *)&pkt.pkt.message;
1356 	read_blk->message_type.type = PCI_READ_BLOCK;
1357 	read_blk->wslot.slot = devfn_to_wslot(pdev->devfn);
1358 	read_blk->block_id = block_id;
1359 	read_blk->bytes_requested = len;
1360 
1361 	ret = vmbus_sendpacket(hbus->hdev->channel, read_blk,
1362 			       sizeof(*read_blk), (unsigned long)&pkt.pkt,
1363 			       VM_PKT_DATA_INBAND,
1364 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1365 	if (ret)
1366 		return ret;
1367 
1368 	ret = wait_for_response(hbus->hdev, &comp_pkt.comp_pkt.host_event);
1369 	if (ret)
1370 		return ret;
1371 
1372 	if (comp_pkt.comp_pkt.completion_status != 0 ||
1373 	    comp_pkt.bytes_returned == 0) {
1374 		dev_err(&hbus->hdev->device,
1375 			"Read Config Block failed: 0x%x, bytes_returned=%d\n",
1376 			comp_pkt.comp_pkt.completion_status,
1377 			comp_pkt.bytes_returned);
1378 		return -EIO;
1379 	}
1380 
1381 	*bytes_returned = comp_pkt.bytes_returned;
1382 	return 0;
1383 }
1384 
1385 /**
1386  * hv_pci_write_config_compl() - Invoked when a response packet for a write
1387  * config block operation arrives.
1388  * @context:		Identifies the write config operation
1389  * @resp:		The response packet itself
1390  * @resp_packet_size:	Size in bytes of the response packet
1391  */
1392 static void hv_pci_write_config_compl(void *context, struct pci_response *resp,
1393 				      int resp_packet_size)
1394 {
1395 	struct hv_pci_compl *comp_pkt = context;
1396 
1397 	comp_pkt->completion_status = resp->status;
1398 	complete(&comp_pkt->host_event);
1399 }
1400 
1401 /**
1402  * hv_write_config_block() - Sends a write config block request to the
1403  * back-end driver running in the Hyper-V parent partition.
1404  * @pdev:		The PCI driver's representation for this device.
1405  * @buf:		Buffer from which the config block will	be copied.
1406  * @len:		Size in bytes of buf.
1407  * @block_id:		Identifies the config block which is being written.
1408  *
1409  * Return: 0 on success, -errno on failure
1410  */
1411 static int hv_write_config_block(struct pci_dev *pdev, void *buf,
1412 				unsigned int len, unsigned int block_id)
1413 {
1414 	struct hv_pcibus_device *hbus =
1415 		container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1416 			     sysdata);
1417 	struct {
1418 		struct pci_packet pkt;
1419 		char buf[sizeof(struct pci_write_block)];
1420 		u32 reserved;
1421 	} pkt;
1422 	struct hv_pci_compl comp_pkt;
1423 	struct pci_write_block *write_blk;
1424 	u32 pkt_size;
1425 	int ret;
1426 
1427 	if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX)
1428 		return -EINVAL;
1429 
1430 	init_completion(&comp_pkt.host_event);
1431 
1432 	memset(&pkt, 0, sizeof(pkt));
1433 	pkt.pkt.completion_func = hv_pci_write_config_compl;
1434 	pkt.pkt.compl_ctxt = &comp_pkt;
1435 	write_blk = (struct pci_write_block *)&pkt.pkt.message;
1436 	write_blk->message_type.type = PCI_WRITE_BLOCK;
1437 	write_blk->wslot.slot = devfn_to_wslot(pdev->devfn);
1438 	write_blk->block_id = block_id;
1439 	write_blk->byte_count = len;
1440 	memcpy(write_blk->bytes, buf, len);
1441 	pkt_size = offsetof(struct pci_write_block, bytes) + len;
1442 	/*
1443 	 * This quirk is required on some hosts shipped around 2018, because
1444 	 * these hosts don't check the pkt_size correctly (new hosts have been
1445 	 * fixed since early 2019). The quirk is also safe on very old hosts
1446 	 * and new hosts, because, on them, what really matters is the length
1447 	 * specified in write_blk->byte_count.
1448 	 */
1449 	pkt_size += sizeof(pkt.reserved);
1450 
1451 	ret = vmbus_sendpacket(hbus->hdev->channel, write_blk, pkt_size,
1452 			       (unsigned long)&pkt.pkt, VM_PKT_DATA_INBAND,
1453 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1454 	if (ret)
1455 		return ret;
1456 
1457 	ret = wait_for_response(hbus->hdev, &comp_pkt.host_event);
1458 	if (ret)
1459 		return ret;
1460 
1461 	if (comp_pkt.completion_status != 0) {
1462 		dev_err(&hbus->hdev->device,
1463 			"Write Config Block failed: 0x%x\n",
1464 			comp_pkt.completion_status);
1465 		return -EIO;
1466 	}
1467 
1468 	return 0;
1469 }
1470 
1471 /**
1472  * hv_register_block_invalidate() - Invoked when a config block invalidation
1473  * arrives from the back-end driver.
1474  * @pdev:		The PCI driver's representation for this device.
1475  * @context:		Identifies the device.
1476  * @block_invalidate:	Identifies all of the blocks being invalidated.
1477  *
1478  * Return: 0 on success, -errno on failure
1479  */
1480 static int hv_register_block_invalidate(struct pci_dev *pdev, void *context,
1481 					void (*block_invalidate)(void *context,
1482 								 u64 block_mask))
1483 {
1484 	struct hv_pcibus_device *hbus =
1485 		container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1486 			     sysdata);
1487 	struct hv_pci_dev *hpdev;
1488 
1489 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1490 	if (!hpdev)
1491 		return -ENODEV;
1492 
1493 	hpdev->block_invalidate = block_invalidate;
1494 	hpdev->invalidate_context = context;
1495 
1496 	put_pcichild(hpdev);
1497 	return 0;
1498 
1499 }
1500 
1501 /* Interrupt management hooks */
1502 static void hv_int_desc_free(struct hv_pci_dev *hpdev,
1503 			     struct tran_int_desc *int_desc)
1504 {
1505 	struct pci_delete_interrupt *int_pkt;
1506 	struct {
1507 		struct pci_packet pkt;
1508 		u8 buffer[sizeof(struct pci_delete_interrupt)];
1509 	} ctxt;
1510 
1511 	if (!int_desc->vector_count) {
1512 		kfree(int_desc);
1513 		return;
1514 	}
1515 	memset(&ctxt, 0, sizeof(ctxt));
1516 	int_pkt = (struct pci_delete_interrupt *)&ctxt.pkt.message;
1517 	int_pkt->message_type.type =
1518 		PCI_DELETE_INTERRUPT_MESSAGE;
1519 	int_pkt->wslot.slot = hpdev->desc.win_slot.slot;
1520 	int_pkt->int_desc = *int_desc;
1521 	vmbus_sendpacket(hpdev->hbus->hdev->channel, int_pkt, sizeof(*int_pkt),
1522 			 0, VM_PKT_DATA_INBAND, 0);
1523 	kfree(int_desc);
1524 }
1525 
1526 /**
1527  * hv_msi_free() - Free the MSI.
1528  * @domain:	The interrupt domain pointer
1529  * @info:	Extra MSI-related context
1530  * @irq:	Identifies the IRQ.
1531  *
1532  * The Hyper-V parent partition and hypervisor are tracking the
1533  * messages that are in use, keeping the interrupt redirection
1534  * table up to date.  This callback sends a message that frees
1535  * the IRT entry and related tracking nonsense.
1536  */
1537 static void hv_msi_free(struct irq_domain *domain, struct msi_domain_info *info,
1538 			unsigned int irq)
1539 {
1540 	struct hv_pcibus_device *hbus;
1541 	struct hv_pci_dev *hpdev;
1542 	struct pci_dev *pdev;
1543 	struct tran_int_desc *int_desc;
1544 	struct irq_data *irq_data = irq_domain_get_irq_data(domain, irq);
1545 	struct msi_desc *msi = irq_data_get_msi_desc(irq_data);
1546 
1547 	pdev = msi_desc_to_pci_dev(msi);
1548 	hbus = info->data;
1549 	int_desc = irq_data_get_irq_chip_data(irq_data);
1550 	if (!int_desc)
1551 		return;
1552 
1553 	irq_data->chip_data = NULL;
1554 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1555 	if (!hpdev) {
1556 		kfree(int_desc);
1557 		return;
1558 	}
1559 
1560 	hv_int_desc_free(hpdev, int_desc);
1561 	put_pcichild(hpdev);
1562 }
1563 
1564 static void hv_irq_mask(struct irq_data *data)
1565 {
1566 	pci_msi_mask_irq(data);
1567 	if (data->parent_data->chip->irq_mask)
1568 		irq_chip_mask_parent(data);
1569 }
1570 
1571 static void hv_irq_unmask(struct irq_data *data)
1572 {
1573 	hv_arch_irq_unmask(data);
1574 
1575 	if (data->parent_data->chip->irq_unmask)
1576 		irq_chip_unmask_parent(data);
1577 	pci_msi_unmask_irq(data);
1578 }
1579 
1580 struct compose_comp_ctxt {
1581 	struct hv_pci_compl comp_pkt;
1582 	struct tran_int_desc int_desc;
1583 };
1584 
1585 static void hv_pci_compose_compl(void *context, struct pci_response *resp,
1586 				 int resp_packet_size)
1587 {
1588 	struct compose_comp_ctxt *comp_pkt = context;
1589 	struct pci_create_int_response *int_resp =
1590 		(struct pci_create_int_response *)resp;
1591 
1592 	if (resp_packet_size < sizeof(*int_resp)) {
1593 		comp_pkt->comp_pkt.completion_status = -1;
1594 		goto out;
1595 	}
1596 	comp_pkt->comp_pkt.completion_status = resp->status;
1597 	comp_pkt->int_desc = int_resp->int_desc;
1598 out:
1599 	complete(&comp_pkt->comp_pkt.host_event);
1600 }
1601 
1602 static u32 hv_compose_msi_req_v1(
1603 	struct pci_create_interrupt *int_pkt,
1604 	u32 slot, u8 vector, u16 vector_count)
1605 {
1606 	int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE;
1607 	int_pkt->wslot.slot = slot;
1608 	int_pkt->int_desc.vector = vector;
1609 	int_pkt->int_desc.vector_count = vector_count;
1610 	int_pkt->int_desc.delivery_mode = DELIVERY_MODE;
1611 
1612 	/*
1613 	 * Create MSI w/ dummy vCPU set, overwritten by subsequent retarget in
1614 	 * hv_irq_unmask().
1615 	 */
1616 	int_pkt->int_desc.cpu_mask = CPU_AFFINITY_ALL;
1617 
1618 	return sizeof(*int_pkt);
1619 }
1620 
1621 /*
1622  * The vCPU selected by hv_compose_multi_msi_req_get_cpu() and
1623  * hv_compose_msi_req_get_cpu() is a "dummy" vCPU because the final vCPU to be
1624  * interrupted is specified later in hv_irq_unmask() and communicated to Hyper-V
1625  * via the HVCALL_RETARGET_INTERRUPT hypercall. But the choice of dummy vCPU is
1626  * not irrelevant because Hyper-V chooses the physical CPU to handle the
1627  * interrupts based on the vCPU specified in message sent to the vPCI VSP in
1628  * hv_compose_msi_msg(). Hyper-V's choice of pCPU is not visible to the guest,
1629  * but assigning too many vPCI device interrupts to the same pCPU can cause a
1630  * performance bottleneck. So we spread out the dummy vCPUs to influence Hyper-V
1631  * to spread out the pCPUs that it selects.
1632  *
1633  * For the single-MSI and MSI-X cases, it's OK for hv_compose_msi_req_get_cpu()
1634  * to always return the same dummy vCPU, because a second call to
1635  * hv_compose_msi_msg() contains the "real" vCPU, causing Hyper-V to choose a
1636  * new pCPU for the interrupt. But for the multi-MSI case, the second call to
1637  * hv_compose_msi_msg() exits without sending a message to the vPCI VSP, so the
1638  * original dummy vCPU is used. This dummy vCPU must be round-robin'ed so that
1639  * the pCPUs are spread out. All interrupts for a multi-MSI device end up using
1640  * the same pCPU, even though the vCPUs will be spread out by later calls
1641  * to hv_irq_unmask(), but that is the best we can do now.
1642  *
1643  * With Hyper-V in Nov 2022, the HVCALL_RETARGET_INTERRUPT hypercall does *not*
1644  * cause Hyper-V to reselect the pCPU based on the specified vCPU. Such an
1645  * enhancement is planned for a future version. With that enhancement, the
1646  * dummy vCPU selection won't matter, and interrupts for the same multi-MSI
1647  * device will be spread across multiple pCPUs.
1648  */
1649 
1650 /*
1651  * Create MSI w/ dummy vCPU set targeting just one vCPU, overwritten
1652  * by subsequent retarget in hv_irq_unmask().
1653  */
1654 static int hv_compose_msi_req_get_cpu(const struct cpumask *affinity)
1655 {
1656 	return cpumask_first_and(affinity, cpu_online_mask);
1657 }
1658 
1659 /*
1660  * Make sure the dummy vCPU values for multi-MSI don't all point to vCPU0.
1661  */
1662 static int hv_compose_multi_msi_req_get_cpu(void)
1663 {
1664 	static DEFINE_SPINLOCK(multi_msi_cpu_lock);
1665 
1666 	/* -1 means starting with CPU 0 */
1667 	static int cpu_next = -1;
1668 
1669 	unsigned long flags;
1670 	int cpu;
1671 
1672 	spin_lock_irqsave(&multi_msi_cpu_lock, flags);
1673 
1674 	cpu_next = cpumask_next_wrap(cpu_next, cpu_online_mask, nr_cpu_ids,
1675 				     false);
1676 	cpu = cpu_next;
1677 
1678 	spin_unlock_irqrestore(&multi_msi_cpu_lock, flags);
1679 
1680 	return cpu;
1681 }
1682 
1683 static u32 hv_compose_msi_req_v2(
1684 	struct pci_create_interrupt2 *int_pkt, int cpu,
1685 	u32 slot, u8 vector, u16 vector_count)
1686 {
1687 	int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE2;
1688 	int_pkt->wslot.slot = slot;
1689 	int_pkt->int_desc.vector = vector;
1690 	int_pkt->int_desc.vector_count = vector_count;
1691 	int_pkt->int_desc.delivery_mode = DELIVERY_MODE;
1692 	int_pkt->int_desc.processor_array[0] =
1693 		hv_cpu_number_to_vp_number(cpu);
1694 	int_pkt->int_desc.processor_count = 1;
1695 
1696 	return sizeof(*int_pkt);
1697 }
1698 
1699 static u32 hv_compose_msi_req_v3(
1700 	struct pci_create_interrupt3 *int_pkt, int cpu,
1701 	u32 slot, u32 vector, u16 vector_count)
1702 {
1703 	int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE3;
1704 	int_pkt->wslot.slot = slot;
1705 	int_pkt->int_desc.vector = vector;
1706 	int_pkt->int_desc.reserved = 0;
1707 	int_pkt->int_desc.vector_count = vector_count;
1708 	int_pkt->int_desc.delivery_mode = DELIVERY_MODE;
1709 	int_pkt->int_desc.processor_array[0] =
1710 		hv_cpu_number_to_vp_number(cpu);
1711 	int_pkt->int_desc.processor_count = 1;
1712 
1713 	return sizeof(*int_pkt);
1714 }
1715 
1716 /**
1717  * hv_compose_msi_msg() - Supplies a valid MSI address/data
1718  * @data:	Everything about this MSI
1719  * @msg:	Buffer that is filled in by this function
1720  *
1721  * This function unpacks the IRQ looking for target CPU set, IDT
1722  * vector and mode and sends a message to the parent partition
1723  * asking for a mapping for that tuple in this partition.  The
1724  * response supplies a data value and address to which that data
1725  * should be written to trigger that interrupt.
1726  */
1727 static void hv_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
1728 {
1729 	struct hv_pcibus_device *hbus;
1730 	struct vmbus_channel *channel;
1731 	struct hv_pci_dev *hpdev;
1732 	struct pci_bus *pbus;
1733 	struct pci_dev *pdev;
1734 	const struct cpumask *dest;
1735 	struct compose_comp_ctxt comp;
1736 	struct tran_int_desc *int_desc;
1737 	struct msi_desc *msi_desc;
1738 	/*
1739 	 * vector_count should be u16: see hv_msi_desc, hv_msi_desc2
1740 	 * and hv_msi_desc3. vector must be u32: see hv_msi_desc3.
1741 	 */
1742 	u16 vector_count;
1743 	u32 vector;
1744 	struct {
1745 		struct pci_packet pci_pkt;
1746 		union {
1747 			struct pci_create_interrupt v1;
1748 			struct pci_create_interrupt2 v2;
1749 			struct pci_create_interrupt3 v3;
1750 		} int_pkts;
1751 	} __packed ctxt;
1752 	bool multi_msi;
1753 	u64 trans_id;
1754 	u32 size;
1755 	int ret;
1756 	int cpu;
1757 
1758 	msi_desc  = irq_data_get_msi_desc(data);
1759 	multi_msi = !msi_desc->pci.msi_attrib.is_msix &&
1760 		    msi_desc->nvec_used > 1;
1761 
1762 	/* Reuse the previous allocation */
1763 	if (data->chip_data && multi_msi) {
1764 		int_desc = data->chip_data;
1765 		msg->address_hi = int_desc->address >> 32;
1766 		msg->address_lo = int_desc->address & 0xffffffff;
1767 		msg->data = int_desc->data;
1768 		return;
1769 	}
1770 
1771 	pdev = msi_desc_to_pci_dev(msi_desc);
1772 	dest = irq_data_get_effective_affinity_mask(data);
1773 	pbus = pdev->bus;
1774 	hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
1775 	channel = hbus->hdev->channel;
1776 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1777 	if (!hpdev)
1778 		goto return_null_message;
1779 
1780 	/* Free any previous message that might have already been composed. */
1781 	if (data->chip_data && !multi_msi) {
1782 		int_desc = data->chip_data;
1783 		data->chip_data = NULL;
1784 		hv_int_desc_free(hpdev, int_desc);
1785 	}
1786 
1787 	int_desc = kzalloc(sizeof(*int_desc), GFP_ATOMIC);
1788 	if (!int_desc)
1789 		goto drop_reference;
1790 
1791 	if (multi_msi) {
1792 		/*
1793 		 * If this is not the first MSI of Multi MSI, we already have
1794 		 * a mapping.  Can exit early.
1795 		 */
1796 		if (msi_desc->irq != data->irq) {
1797 			data->chip_data = int_desc;
1798 			int_desc->address = msi_desc->msg.address_lo |
1799 					    (u64)msi_desc->msg.address_hi << 32;
1800 			int_desc->data = msi_desc->msg.data +
1801 					 (data->irq - msi_desc->irq);
1802 			msg->address_hi = msi_desc->msg.address_hi;
1803 			msg->address_lo = msi_desc->msg.address_lo;
1804 			msg->data = int_desc->data;
1805 			put_pcichild(hpdev);
1806 			return;
1807 		}
1808 		/*
1809 		 * The vector we select here is a dummy value.  The correct
1810 		 * value gets sent to the hypervisor in unmask().  This needs
1811 		 * to be aligned with the count, and also not zero.  Multi-msi
1812 		 * is powers of 2 up to 32, so 32 will always work here.
1813 		 */
1814 		vector = 32;
1815 		vector_count = msi_desc->nvec_used;
1816 		cpu = hv_compose_multi_msi_req_get_cpu();
1817 	} else {
1818 		vector = hv_msi_get_int_vector(data);
1819 		vector_count = 1;
1820 		cpu = hv_compose_msi_req_get_cpu(dest);
1821 	}
1822 
1823 	/*
1824 	 * hv_compose_msi_req_v1 and v2 are for x86 only, meaning 'vector'
1825 	 * can't exceed u8. Cast 'vector' down to u8 for v1/v2 explicitly
1826 	 * for better readability.
1827 	 */
1828 	memset(&ctxt, 0, sizeof(ctxt));
1829 	init_completion(&comp.comp_pkt.host_event);
1830 	ctxt.pci_pkt.completion_func = hv_pci_compose_compl;
1831 	ctxt.pci_pkt.compl_ctxt = &comp;
1832 
1833 	switch (hbus->protocol_version) {
1834 	case PCI_PROTOCOL_VERSION_1_1:
1835 		size = hv_compose_msi_req_v1(&ctxt.int_pkts.v1,
1836 					hpdev->desc.win_slot.slot,
1837 					(u8)vector,
1838 					vector_count);
1839 		break;
1840 
1841 	case PCI_PROTOCOL_VERSION_1_2:
1842 	case PCI_PROTOCOL_VERSION_1_3:
1843 		size = hv_compose_msi_req_v2(&ctxt.int_pkts.v2,
1844 					cpu,
1845 					hpdev->desc.win_slot.slot,
1846 					(u8)vector,
1847 					vector_count);
1848 		break;
1849 
1850 	case PCI_PROTOCOL_VERSION_1_4:
1851 		size = hv_compose_msi_req_v3(&ctxt.int_pkts.v3,
1852 					cpu,
1853 					hpdev->desc.win_slot.slot,
1854 					vector,
1855 					vector_count);
1856 		break;
1857 
1858 	default:
1859 		/* As we only negotiate protocol versions known to this driver,
1860 		 * this path should never hit. However, this is it not a hot
1861 		 * path so we print a message to aid future updates.
1862 		 */
1863 		dev_err(&hbus->hdev->device,
1864 			"Unexpected vPCI protocol, update driver.");
1865 		goto free_int_desc;
1866 	}
1867 
1868 	ret = vmbus_sendpacket_getid(hpdev->hbus->hdev->channel, &ctxt.int_pkts,
1869 				     size, (unsigned long)&ctxt.pci_pkt,
1870 				     &trans_id, VM_PKT_DATA_INBAND,
1871 				     VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1872 	if (ret) {
1873 		dev_err(&hbus->hdev->device,
1874 			"Sending request for interrupt failed: 0x%x",
1875 			comp.comp_pkt.completion_status);
1876 		goto free_int_desc;
1877 	}
1878 
1879 	/*
1880 	 * Prevents hv_pci_onchannelcallback() from running concurrently
1881 	 * in the tasklet.
1882 	 */
1883 	tasklet_disable_in_atomic(&channel->callback_event);
1884 
1885 	/*
1886 	 * Since this function is called with IRQ locks held, can't
1887 	 * do normal wait for completion; instead poll.
1888 	 */
1889 	while (!try_wait_for_completion(&comp.comp_pkt.host_event)) {
1890 		unsigned long flags;
1891 
1892 		/* 0xFFFF means an invalid PCI VENDOR ID. */
1893 		if (hv_pcifront_get_vendor_id(hpdev) == 0xFFFF) {
1894 			dev_err_once(&hbus->hdev->device,
1895 				     "the device has gone\n");
1896 			goto enable_tasklet;
1897 		}
1898 
1899 		/*
1900 		 * Make sure that the ring buffer data structure doesn't get
1901 		 * freed while we dereference the ring buffer pointer.  Test
1902 		 * for the channel's onchannel_callback being NULL within a
1903 		 * sched_lock critical section.  See also the inline comments
1904 		 * in vmbus_reset_channel_cb().
1905 		 */
1906 		spin_lock_irqsave(&channel->sched_lock, flags);
1907 		if (unlikely(channel->onchannel_callback == NULL)) {
1908 			spin_unlock_irqrestore(&channel->sched_lock, flags);
1909 			goto enable_tasklet;
1910 		}
1911 		hv_pci_onchannelcallback(hbus);
1912 		spin_unlock_irqrestore(&channel->sched_lock, flags);
1913 
1914 		if (hpdev->state == hv_pcichild_ejecting) {
1915 			dev_err_once(&hbus->hdev->device,
1916 				     "the device is being ejected\n");
1917 			goto enable_tasklet;
1918 		}
1919 
1920 		udelay(100);
1921 	}
1922 
1923 	tasklet_enable(&channel->callback_event);
1924 
1925 	if (comp.comp_pkt.completion_status < 0) {
1926 		dev_err(&hbus->hdev->device,
1927 			"Request for interrupt failed: 0x%x",
1928 			comp.comp_pkt.completion_status);
1929 		goto free_int_desc;
1930 	}
1931 
1932 	/*
1933 	 * Record the assignment so that this can be unwound later. Using
1934 	 * irq_set_chip_data() here would be appropriate, but the lock it takes
1935 	 * is already held.
1936 	 */
1937 	*int_desc = comp.int_desc;
1938 	data->chip_data = int_desc;
1939 
1940 	/* Pass up the result. */
1941 	msg->address_hi = comp.int_desc.address >> 32;
1942 	msg->address_lo = comp.int_desc.address & 0xffffffff;
1943 	msg->data = comp.int_desc.data;
1944 
1945 	put_pcichild(hpdev);
1946 	return;
1947 
1948 enable_tasklet:
1949 	tasklet_enable(&channel->callback_event);
1950 	/*
1951 	 * The completion packet on the stack becomes invalid after 'return';
1952 	 * remove the ID from the VMbus requestor if the identifier is still
1953 	 * mapped to/associated with the packet.  (The identifier could have
1954 	 * been 're-used', i.e., already removed and (re-)mapped.)
1955 	 *
1956 	 * Cf. hv_pci_onchannelcallback().
1957 	 */
1958 	vmbus_request_addr_match(channel, trans_id, (unsigned long)&ctxt.pci_pkt);
1959 free_int_desc:
1960 	kfree(int_desc);
1961 drop_reference:
1962 	put_pcichild(hpdev);
1963 return_null_message:
1964 	msg->address_hi = 0;
1965 	msg->address_lo = 0;
1966 	msg->data = 0;
1967 }
1968 
1969 /* HW Interrupt Chip Descriptor */
1970 static struct irq_chip hv_msi_irq_chip = {
1971 	.name			= "Hyper-V PCIe MSI",
1972 	.irq_compose_msi_msg	= hv_compose_msi_msg,
1973 	.irq_set_affinity	= irq_chip_set_affinity_parent,
1974 #ifdef CONFIG_X86
1975 	.irq_ack		= irq_chip_ack_parent,
1976 #elif defined(CONFIG_ARM64)
1977 	.irq_eoi		= irq_chip_eoi_parent,
1978 #endif
1979 	.irq_mask		= hv_irq_mask,
1980 	.irq_unmask		= hv_irq_unmask,
1981 };
1982 
1983 static struct msi_domain_ops hv_msi_ops = {
1984 	.msi_prepare	= hv_msi_prepare,
1985 	.msi_free	= hv_msi_free,
1986 };
1987 
1988 /**
1989  * hv_pcie_init_irq_domain() - Initialize IRQ domain
1990  * @hbus:	The root PCI bus
1991  *
1992  * This function creates an IRQ domain which will be used for
1993  * interrupts from devices that have been passed through.  These
1994  * devices only support MSI and MSI-X, not line-based interrupts
1995  * or simulations of line-based interrupts through PCIe's
1996  * fabric-layer messages.  Because interrupts are remapped, we
1997  * can support multi-message MSI here.
1998  *
1999  * Return: '0' on success and error value on failure
2000  */
2001 static int hv_pcie_init_irq_domain(struct hv_pcibus_device *hbus)
2002 {
2003 	hbus->msi_info.chip = &hv_msi_irq_chip;
2004 	hbus->msi_info.ops = &hv_msi_ops;
2005 	hbus->msi_info.flags = (MSI_FLAG_USE_DEF_DOM_OPS |
2006 		MSI_FLAG_USE_DEF_CHIP_OPS | MSI_FLAG_MULTI_PCI_MSI |
2007 		MSI_FLAG_PCI_MSIX);
2008 	hbus->msi_info.handler = FLOW_HANDLER;
2009 	hbus->msi_info.handler_name = FLOW_NAME;
2010 	hbus->msi_info.data = hbus;
2011 	hbus->irq_domain = pci_msi_create_irq_domain(hbus->fwnode,
2012 						     &hbus->msi_info,
2013 						     hv_pci_get_root_domain());
2014 	if (!hbus->irq_domain) {
2015 		dev_err(&hbus->hdev->device,
2016 			"Failed to build an MSI IRQ domain\n");
2017 		return -ENODEV;
2018 	}
2019 
2020 	dev_set_msi_domain(&hbus->bridge->dev, hbus->irq_domain);
2021 
2022 	return 0;
2023 }
2024 
2025 /**
2026  * get_bar_size() - Get the address space consumed by a BAR
2027  * @bar_val:	Value that a BAR returned after -1 was written
2028  *              to it.
2029  *
2030  * This function returns the size of the BAR, rounded up to 1
2031  * page.  It has to be rounded up because the hypervisor's page
2032  * table entry that maps the BAR into the VM can't specify an
2033  * offset within a page.  The invariant is that the hypervisor
2034  * must place any BARs of smaller than page length at the
2035  * beginning of a page.
2036  *
2037  * Return:	Size in bytes of the consumed MMIO space.
2038  */
2039 static u64 get_bar_size(u64 bar_val)
2040 {
2041 	return round_up((1 + ~(bar_val & PCI_BASE_ADDRESS_MEM_MASK)),
2042 			PAGE_SIZE);
2043 }
2044 
2045 /**
2046  * survey_child_resources() - Total all MMIO requirements
2047  * @hbus:	Root PCI bus, as understood by this driver
2048  */
2049 static void survey_child_resources(struct hv_pcibus_device *hbus)
2050 {
2051 	struct hv_pci_dev *hpdev;
2052 	resource_size_t bar_size = 0;
2053 	unsigned long flags;
2054 	struct completion *event;
2055 	u64 bar_val;
2056 	int i;
2057 
2058 	/* If nobody is waiting on the answer, don't compute it. */
2059 	event = xchg(&hbus->survey_event, NULL);
2060 	if (!event)
2061 		return;
2062 
2063 	/* If the answer has already been computed, go with it. */
2064 	if (hbus->low_mmio_space || hbus->high_mmio_space) {
2065 		complete(event);
2066 		return;
2067 	}
2068 
2069 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2070 
2071 	/*
2072 	 * Due to an interesting quirk of the PCI spec, all memory regions
2073 	 * for a child device are a power of 2 in size and aligned in memory,
2074 	 * so it's sufficient to just add them up without tracking alignment.
2075 	 */
2076 	list_for_each_entry(hpdev, &hbus->children, list_entry) {
2077 		for (i = 0; i < PCI_STD_NUM_BARS; i++) {
2078 			if (hpdev->probed_bar[i] & PCI_BASE_ADDRESS_SPACE_IO)
2079 				dev_err(&hbus->hdev->device,
2080 					"There's an I/O BAR in this list!\n");
2081 
2082 			if (hpdev->probed_bar[i] != 0) {
2083 				/*
2084 				 * A probed BAR has all the upper bits set that
2085 				 * can be changed.
2086 				 */
2087 
2088 				bar_val = hpdev->probed_bar[i];
2089 				if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
2090 					bar_val |=
2091 					((u64)hpdev->probed_bar[++i] << 32);
2092 				else
2093 					bar_val |= 0xffffffff00000000ULL;
2094 
2095 				bar_size = get_bar_size(bar_val);
2096 
2097 				if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
2098 					hbus->high_mmio_space += bar_size;
2099 				else
2100 					hbus->low_mmio_space += bar_size;
2101 			}
2102 		}
2103 	}
2104 
2105 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2106 	complete(event);
2107 }
2108 
2109 /**
2110  * prepopulate_bars() - Fill in BARs with defaults
2111  * @hbus:	Root PCI bus, as understood by this driver
2112  *
2113  * The core PCI driver code seems much, much happier if the BARs
2114  * for a device have values upon first scan. So fill them in.
2115  * The algorithm below works down from large sizes to small,
2116  * attempting to pack the assignments optimally. The assumption,
2117  * enforced in other parts of the code, is that the beginning of
2118  * the memory-mapped I/O space will be aligned on the largest
2119  * BAR size.
2120  */
2121 static void prepopulate_bars(struct hv_pcibus_device *hbus)
2122 {
2123 	resource_size_t high_size = 0;
2124 	resource_size_t low_size = 0;
2125 	resource_size_t high_base = 0;
2126 	resource_size_t low_base = 0;
2127 	resource_size_t bar_size;
2128 	struct hv_pci_dev *hpdev;
2129 	unsigned long flags;
2130 	u64 bar_val;
2131 	u32 command;
2132 	bool high;
2133 	int i;
2134 
2135 	if (hbus->low_mmio_space) {
2136 		low_size = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
2137 		low_base = hbus->low_mmio_res->start;
2138 	}
2139 
2140 	if (hbus->high_mmio_space) {
2141 		high_size = 1ULL <<
2142 			(63 - __builtin_clzll(hbus->high_mmio_space));
2143 		high_base = hbus->high_mmio_res->start;
2144 	}
2145 
2146 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2147 
2148 	/*
2149 	 * Clear the memory enable bit, in case it's already set. This occurs
2150 	 * in the suspend path of hibernation, where the device is suspended,
2151 	 * resumed and suspended again: see hibernation_snapshot() and
2152 	 * hibernation_platform_enter().
2153 	 *
2154 	 * If the memory enable bit is already set, Hyper-V silently ignores
2155 	 * the below BAR updates, and the related PCI device driver can not
2156 	 * work, because reading from the device register(s) always returns
2157 	 * 0xFFFFFFFF (PCI_ERROR_RESPONSE).
2158 	 */
2159 	list_for_each_entry(hpdev, &hbus->children, list_entry) {
2160 		_hv_pcifront_read_config(hpdev, PCI_COMMAND, 2, &command);
2161 		command &= ~PCI_COMMAND_MEMORY;
2162 		_hv_pcifront_write_config(hpdev, PCI_COMMAND, 2, command);
2163 	}
2164 
2165 	/* Pick addresses for the BARs. */
2166 	do {
2167 		list_for_each_entry(hpdev, &hbus->children, list_entry) {
2168 			for (i = 0; i < PCI_STD_NUM_BARS; i++) {
2169 				bar_val = hpdev->probed_bar[i];
2170 				if (bar_val == 0)
2171 					continue;
2172 				high = bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64;
2173 				if (high) {
2174 					bar_val |=
2175 						((u64)hpdev->probed_bar[i + 1]
2176 						 << 32);
2177 				} else {
2178 					bar_val |= 0xffffffffULL << 32;
2179 				}
2180 				bar_size = get_bar_size(bar_val);
2181 				if (high) {
2182 					if (high_size != bar_size) {
2183 						i++;
2184 						continue;
2185 					}
2186 					_hv_pcifront_write_config(hpdev,
2187 						PCI_BASE_ADDRESS_0 + (4 * i),
2188 						4,
2189 						(u32)(high_base & 0xffffff00));
2190 					i++;
2191 					_hv_pcifront_write_config(hpdev,
2192 						PCI_BASE_ADDRESS_0 + (4 * i),
2193 						4, (u32)(high_base >> 32));
2194 					high_base += bar_size;
2195 				} else {
2196 					if (low_size != bar_size)
2197 						continue;
2198 					_hv_pcifront_write_config(hpdev,
2199 						PCI_BASE_ADDRESS_0 + (4 * i),
2200 						4,
2201 						(u32)(low_base & 0xffffff00));
2202 					low_base += bar_size;
2203 				}
2204 			}
2205 			if (high_size <= 1 && low_size <= 1) {
2206 				/*
2207 				 * No need to set the PCI_COMMAND_MEMORY bit as
2208 				 * the core PCI driver doesn't require the bit
2209 				 * to be pre-set. Actually here we intentionally
2210 				 * keep the bit off so that the PCI BAR probing
2211 				 * in the core PCI driver doesn't cause Hyper-V
2212 				 * to unnecessarily unmap/map the virtual BARs
2213 				 * from/to the physical BARs multiple times.
2214 				 * This reduces the VM boot time significantly
2215 				 * if the BAR sizes are huge.
2216 				 */
2217 				break;
2218 			}
2219 		}
2220 
2221 		high_size >>= 1;
2222 		low_size >>= 1;
2223 	}  while (high_size || low_size);
2224 
2225 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2226 }
2227 
2228 /*
2229  * Assign entries in sysfs pci slot directory.
2230  *
2231  * Note that this function does not need to lock the children list
2232  * because it is called from pci_devices_present_work which
2233  * is serialized with hv_eject_device_work because they are on the
2234  * same ordered workqueue. Therefore hbus->children list will not change
2235  * even when pci_create_slot sleeps.
2236  */
2237 static void hv_pci_assign_slots(struct hv_pcibus_device *hbus)
2238 {
2239 	struct hv_pci_dev *hpdev;
2240 	char name[SLOT_NAME_SIZE];
2241 	int slot_nr;
2242 
2243 	list_for_each_entry(hpdev, &hbus->children, list_entry) {
2244 		if (hpdev->pci_slot)
2245 			continue;
2246 
2247 		slot_nr = PCI_SLOT(wslot_to_devfn(hpdev->desc.win_slot.slot));
2248 		snprintf(name, SLOT_NAME_SIZE, "%u", hpdev->desc.ser);
2249 		hpdev->pci_slot = pci_create_slot(hbus->bridge->bus, slot_nr,
2250 					  name, NULL);
2251 		if (IS_ERR(hpdev->pci_slot)) {
2252 			pr_warn("pci_create slot %s failed\n", name);
2253 			hpdev->pci_slot = NULL;
2254 		}
2255 	}
2256 }
2257 
2258 /*
2259  * Remove entries in sysfs pci slot directory.
2260  */
2261 static void hv_pci_remove_slots(struct hv_pcibus_device *hbus)
2262 {
2263 	struct hv_pci_dev *hpdev;
2264 
2265 	list_for_each_entry(hpdev, &hbus->children, list_entry) {
2266 		if (!hpdev->pci_slot)
2267 			continue;
2268 		pci_destroy_slot(hpdev->pci_slot);
2269 		hpdev->pci_slot = NULL;
2270 	}
2271 }
2272 
2273 /*
2274  * Set NUMA node for the devices on the bus
2275  */
2276 static void hv_pci_assign_numa_node(struct hv_pcibus_device *hbus)
2277 {
2278 	struct pci_dev *dev;
2279 	struct pci_bus *bus = hbus->bridge->bus;
2280 	struct hv_pci_dev *hv_dev;
2281 
2282 	list_for_each_entry(dev, &bus->devices, bus_list) {
2283 		hv_dev = get_pcichild_wslot(hbus, devfn_to_wslot(dev->devfn));
2284 		if (!hv_dev)
2285 			continue;
2286 
2287 		if (hv_dev->desc.flags & HV_PCI_DEVICE_FLAG_NUMA_AFFINITY &&
2288 		    hv_dev->desc.virtual_numa_node < num_possible_nodes())
2289 			/*
2290 			 * The kernel may boot with some NUMA nodes offline
2291 			 * (e.g. in a KDUMP kernel) or with NUMA disabled via
2292 			 * "numa=off". In those cases, adjust the host provided
2293 			 * NUMA node to a valid NUMA node used by the kernel.
2294 			 */
2295 			set_dev_node(&dev->dev,
2296 				     numa_map_to_online_node(
2297 					     hv_dev->desc.virtual_numa_node));
2298 
2299 		put_pcichild(hv_dev);
2300 	}
2301 }
2302 
2303 /**
2304  * create_root_hv_pci_bus() - Expose a new root PCI bus
2305  * @hbus:	Root PCI bus, as understood by this driver
2306  *
2307  * Return: 0 on success, -errno on failure
2308  */
2309 static int create_root_hv_pci_bus(struct hv_pcibus_device *hbus)
2310 {
2311 	int error;
2312 	struct pci_host_bridge *bridge = hbus->bridge;
2313 
2314 	bridge->dev.parent = &hbus->hdev->device;
2315 	bridge->sysdata = &hbus->sysdata;
2316 	bridge->ops = &hv_pcifront_ops;
2317 
2318 	error = pci_scan_root_bus_bridge(bridge);
2319 	if (error)
2320 		return error;
2321 
2322 	pci_lock_rescan_remove();
2323 	hv_pci_assign_numa_node(hbus);
2324 	pci_bus_assign_resources(bridge->bus);
2325 	hv_pci_assign_slots(hbus);
2326 	pci_bus_add_devices(bridge->bus);
2327 	pci_unlock_rescan_remove();
2328 	hbus->state = hv_pcibus_installed;
2329 	return 0;
2330 }
2331 
2332 struct q_res_req_compl {
2333 	struct completion host_event;
2334 	struct hv_pci_dev *hpdev;
2335 };
2336 
2337 /**
2338  * q_resource_requirements() - Query Resource Requirements
2339  * @context:		The completion context.
2340  * @resp:		The response that came from the host.
2341  * @resp_packet_size:	The size in bytes of resp.
2342  *
2343  * This function is invoked on completion of a Query Resource
2344  * Requirements packet.
2345  */
2346 static void q_resource_requirements(void *context, struct pci_response *resp,
2347 				    int resp_packet_size)
2348 {
2349 	struct q_res_req_compl *completion = context;
2350 	struct pci_q_res_req_response *q_res_req =
2351 		(struct pci_q_res_req_response *)resp;
2352 	s32 status;
2353 	int i;
2354 
2355 	status = (resp_packet_size < sizeof(*q_res_req)) ? -1 : resp->status;
2356 	if (status < 0) {
2357 		dev_err(&completion->hpdev->hbus->hdev->device,
2358 			"query resource requirements failed: %x\n",
2359 			status);
2360 	} else {
2361 		for (i = 0; i < PCI_STD_NUM_BARS; i++) {
2362 			completion->hpdev->probed_bar[i] =
2363 				q_res_req->probed_bar[i];
2364 		}
2365 	}
2366 
2367 	complete(&completion->host_event);
2368 }
2369 
2370 /**
2371  * new_pcichild_device() - Create a new child device
2372  * @hbus:	The internal struct tracking this root PCI bus.
2373  * @desc:	The information supplied so far from the host
2374  *              about the device.
2375  *
2376  * This function creates the tracking structure for a new child
2377  * device and kicks off the process of figuring out what it is.
2378  *
2379  * Return: Pointer to the new tracking struct
2380  */
2381 static struct hv_pci_dev *new_pcichild_device(struct hv_pcibus_device *hbus,
2382 		struct hv_pcidev_description *desc)
2383 {
2384 	struct hv_pci_dev *hpdev;
2385 	struct pci_child_message *res_req;
2386 	struct q_res_req_compl comp_pkt;
2387 	struct {
2388 		struct pci_packet init_packet;
2389 		u8 buffer[sizeof(struct pci_child_message)];
2390 	} pkt;
2391 	unsigned long flags;
2392 	int ret;
2393 
2394 	hpdev = kzalloc(sizeof(*hpdev), GFP_KERNEL);
2395 	if (!hpdev)
2396 		return NULL;
2397 
2398 	hpdev->hbus = hbus;
2399 
2400 	memset(&pkt, 0, sizeof(pkt));
2401 	init_completion(&comp_pkt.host_event);
2402 	comp_pkt.hpdev = hpdev;
2403 	pkt.init_packet.compl_ctxt = &comp_pkt;
2404 	pkt.init_packet.completion_func = q_resource_requirements;
2405 	res_req = (struct pci_child_message *)&pkt.init_packet.message;
2406 	res_req->message_type.type = PCI_QUERY_RESOURCE_REQUIREMENTS;
2407 	res_req->wslot.slot = desc->win_slot.slot;
2408 
2409 	ret = vmbus_sendpacket(hbus->hdev->channel, res_req,
2410 			       sizeof(struct pci_child_message),
2411 			       (unsigned long)&pkt.init_packet,
2412 			       VM_PKT_DATA_INBAND,
2413 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2414 	if (ret)
2415 		goto error;
2416 
2417 	if (wait_for_response(hbus->hdev, &comp_pkt.host_event))
2418 		goto error;
2419 
2420 	hpdev->desc = *desc;
2421 	refcount_set(&hpdev->refs, 1);
2422 	get_pcichild(hpdev);
2423 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2424 
2425 	list_add_tail(&hpdev->list_entry, &hbus->children);
2426 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2427 	return hpdev;
2428 
2429 error:
2430 	kfree(hpdev);
2431 	return NULL;
2432 }
2433 
2434 /**
2435  * get_pcichild_wslot() - Find device from slot
2436  * @hbus:	Root PCI bus, as understood by this driver
2437  * @wslot:	Location on the bus
2438  *
2439  * This function looks up a PCI device and returns the internal
2440  * representation of it.  It acquires a reference on it, so that
2441  * the device won't be deleted while somebody is using it.  The
2442  * caller is responsible for calling put_pcichild() to release
2443  * this reference.
2444  *
2445  * Return:	Internal representation of a PCI device
2446  */
2447 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
2448 					     u32 wslot)
2449 {
2450 	unsigned long flags;
2451 	struct hv_pci_dev *iter, *hpdev = NULL;
2452 
2453 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2454 	list_for_each_entry(iter, &hbus->children, list_entry) {
2455 		if (iter->desc.win_slot.slot == wslot) {
2456 			hpdev = iter;
2457 			get_pcichild(hpdev);
2458 			break;
2459 		}
2460 	}
2461 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2462 
2463 	return hpdev;
2464 }
2465 
2466 /**
2467  * pci_devices_present_work() - Handle new list of child devices
2468  * @work:	Work struct embedded in struct hv_dr_work
2469  *
2470  * "Bus Relations" is the Windows term for "children of this
2471  * bus."  The terminology is preserved here for people trying to
2472  * debug the interaction between Hyper-V and Linux.  This
2473  * function is called when the parent partition reports a list
2474  * of functions that should be observed under this PCI Express
2475  * port (bus).
2476  *
2477  * This function updates the list, and must tolerate being
2478  * called multiple times with the same information.  The typical
2479  * number of child devices is one, with very atypical cases
2480  * involving three or four, so the algorithms used here can be
2481  * simple and inefficient.
2482  *
2483  * It must also treat the omission of a previously observed device as
2484  * notification that the device no longer exists.
2485  *
2486  * Note that this function is serialized with hv_eject_device_work(),
2487  * because both are pushed to the ordered workqueue hbus->wq.
2488  */
2489 static void pci_devices_present_work(struct work_struct *work)
2490 {
2491 	u32 child_no;
2492 	bool found;
2493 	struct hv_pcidev_description *new_desc;
2494 	struct hv_pci_dev *hpdev;
2495 	struct hv_pcibus_device *hbus;
2496 	struct list_head removed;
2497 	struct hv_dr_work *dr_wrk;
2498 	struct hv_dr_state *dr = NULL;
2499 	unsigned long flags;
2500 
2501 	dr_wrk = container_of(work, struct hv_dr_work, wrk);
2502 	hbus = dr_wrk->bus;
2503 	kfree(dr_wrk);
2504 
2505 	INIT_LIST_HEAD(&removed);
2506 
2507 	/* Pull this off the queue and process it if it was the last one. */
2508 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2509 	while (!list_empty(&hbus->dr_list)) {
2510 		dr = list_first_entry(&hbus->dr_list, struct hv_dr_state,
2511 				      list_entry);
2512 		list_del(&dr->list_entry);
2513 
2514 		/* Throw this away if the list still has stuff in it. */
2515 		if (!list_empty(&hbus->dr_list)) {
2516 			kfree(dr);
2517 			continue;
2518 		}
2519 	}
2520 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2521 
2522 	if (!dr)
2523 		return;
2524 
2525 	/* First, mark all existing children as reported missing. */
2526 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2527 	list_for_each_entry(hpdev, &hbus->children, list_entry) {
2528 		hpdev->reported_missing = true;
2529 	}
2530 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2531 
2532 	/* Next, add back any reported devices. */
2533 	for (child_no = 0; child_no < dr->device_count; child_no++) {
2534 		found = false;
2535 		new_desc = &dr->func[child_no];
2536 
2537 		spin_lock_irqsave(&hbus->device_list_lock, flags);
2538 		list_for_each_entry(hpdev, &hbus->children, list_entry) {
2539 			if ((hpdev->desc.win_slot.slot == new_desc->win_slot.slot) &&
2540 			    (hpdev->desc.v_id == new_desc->v_id) &&
2541 			    (hpdev->desc.d_id == new_desc->d_id) &&
2542 			    (hpdev->desc.ser == new_desc->ser)) {
2543 				hpdev->reported_missing = false;
2544 				found = true;
2545 			}
2546 		}
2547 		spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2548 
2549 		if (!found) {
2550 			hpdev = new_pcichild_device(hbus, new_desc);
2551 			if (!hpdev)
2552 				dev_err(&hbus->hdev->device,
2553 					"couldn't record a child device.\n");
2554 		}
2555 	}
2556 
2557 	/* Move missing children to a list on the stack. */
2558 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2559 	do {
2560 		found = false;
2561 		list_for_each_entry(hpdev, &hbus->children, list_entry) {
2562 			if (hpdev->reported_missing) {
2563 				found = true;
2564 				put_pcichild(hpdev);
2565 				list_move_tail(&hpdev->list_entry, &removed);
2566 				break;
2567 			}
2568 		}
2569 	} while (found);
2570 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2571 
2572 	/* Delete everything that should no longer exist. */
2573 	while (!list_empty(&removed)) {
2574 		hpdev = list_first_entry(&removed, struct hv_pci_dev,
2575 					 list_entry);
2576 		list_del(&hpdev->list_entry);
2577 
2578 		if (hpdev->pci_slot)
2579 			pci_destroy_slot(hpdev->pci_slot);
2580 
2581 		put_pcichild(hpdev);
2582 	}
2583 
2584 	switch (hbus->state) {
2585 	case hv_pcibus_installed:
2586 		/*
2587 		 * Tell the core to rescan bus
2588 		 * because there may have been changes.
2589 		 */
2590 		pci_lock_rescan_remove();
2591 		pci_scan_child_bus(hbus->bridge->bus);
2592 		hv_pci_assign_numa_node(hbus);
2593 		hv_pci_assign_slots(hbus);
2594 		pci_unlock_rescan_remove();
2595 		break;
2596 
2597 	case hv_pcibus_init:
2598 	case hv_pcibus_probed:
2599 		survey_child_resources(hbus);
2600 		break;
2601 
2602 	default:
2603 		break;
2604 	}
2605 
2606 	kfree(dr);
2607 }
2608 
2609 /**
2610  * hv_pci_start_relations_work() - Queue work to start device discovery
2611  * @hbus:	Root PCI bus, as understood by this driver
2612  * @dr:		The list of children returned from host
2613  *
2614  * Return:  0 on success, -errno on failure
2615  */
2616 static int hv_pci_start_relations_work(struct hv_pcibus_device *hbus,
2617 				       struct hv_dr_state *dr)
2618 {
2619 	struct hv_dr_work *dr_wrk;
2620 	unsigned long flags;
2621 	bool pending_dr;
2622 
2623 	if (hbus->state == hv_pcibus_removing) {
2624 		dev_info(&hbus->hdev->device,
2625 			 "PCI VMBus BUS_RELATIONS: ignored\n");
2626 		return -ENOENT;
2627 	}
2628 
2629 	dr_wrk = kzalloc(sizeof(*dr_wrk), GFP_NOWAIT);
2630 	if (!dr_wrk)
2631 		return -ENOMEM;
2632 
2633 	INIT_WORK(&dr_wrk->wrk, pci_devices_present_work);
2634 	dr_wrk->bus = hbus;
2635 
2636 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2637 	/*
2638 	 * If pending_dr is true, we have already queued a work,
2639 	 * which will see the new dr. Otherwise, we need to
2640 	 * queue a new work.
2641 	 */
2642 	pending_dr = !list_empty(&hbus->dr_list);
2643 	list_add_tail(&dr->list_entry, &hbus->dr_list);
2644 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2645 
2646 	if (pending_dr)
2647 		kfree(dr_wrk);
2648 	else
2649 		queue_work(hbus->wq, &dr_wrk->wrk);
2650 
2651 	return 0;
2652 }
2653 
2654 /**
2655  * hv_pci_devices_present() - Handle list of new children
2656  * @hbus:      Root PCI bus, as understood by this driver
2657  * @relations: Packet from host listing children
2658  *
2659  * Process a new list of devices on the bus. The list of devices is
2660  * discovered by VSP and sent to us via VSP message PCI_BUS_RELATIONS,
2661  * whenever a new list of devices for this bus appears.
2662  */
2663 static void hv_pci_devices_present(struct hv_pcibus_device *hbus,
2664 				   struct pci_bus_relations *relations)
2665 {
2666 	struct hv_dr_state *dr;
2667 	int i;
2668 
2669 	dr = kzalloc(struct_size(dr, func, relations->device_count),
2670 		     GFP_NOWAIT);
2671 	if (!dr)
2672 		return;
2673 
2674 	dr->device_count = relations->device_count;
2675 	for (i = 0; i < dr->device_count; i++) {
2676 		dr->func[i].v_id = relations->func[i].v_id;
2677 		dr->func[i].d_id = relations->func[i].d_id;
2678 		dr->func[i].rev = relations->func[i].rev;
2679 		dr->func[i].prog_intf = relations->func[i].prog_intf;
2680 		dr->func[i].subclass = relations->func[i].subclass;
2681 		dr->func[i].base_class = relations->func[i].base_class;
2682 		dr->func[i].subsystem_id = relations->func[i].subsystem_id;
2683 		dr->func[i].win_slot = relations->func[i].win_slot;
2684 		dr->func[i].ser = relations->func[i].ser;
2685 	}
2686 
2687 	if (hv_pci_start_relations_work(hbus, dr))
2688 		kfree(dr);
2689 }
2690 
2691 /**
2692  * hv_pci_devices_present2() - Handle list of new children
2693  * @hbus:	Root PCI bus, as understood by this driver
2694  * @relations:	Packet from host listing children
2695  *
2696  * This function is the v2 version of hv_pci_devices_present()
2697  */
2698 static void hv_pci_devices_present2(struct hv_pcibus_device *hbus,
2699 				    struct pci_bus_relations2 *relations)
2700 {
2701 	struct hv_dr_state *dr;
2702 	int i;
2703 
2704 	dr = kzalloc(struct_size(dr, func, relations->device_count),
2705 		     GFP_NOWAIT);
2706 	if (!dr)
2707 		return;
2708 
2709 	dr->device_count = relations->device_count;
2710 	for (i = 0; i < dr->device_count; i++) {
2711 		dr->func[i].v_id = relations->func[i].v_id;
2712 		dr->func[i].d_id = relations->func[i].d_id;
2713 		dr->func[i].rev = relations->func[i].rev;
2714 		dr->func[i].prog_intf = relations->func[i].prog_intf;
2715 		dr->func[i].subclass = relations->func[i].subclass;
2716 		dr->func[i].base_class = relations->func[i].base_class;
2717 		dr->func[i].subsystem_id = relations->func[i].subsystem_id;
2718 		dr->func[i].win_slot = relations->func[i].win_slot;
2719 		dr->func[i].ser = relations->func[i].ser;
2720 		dr->func[i].flags = relations->func[i].flags;
2721 		dr->func[i].virtual_numa_node =
2722 			relations->func[i].virtual_numa_node;
2723 	}
2724 
2725 	if (hv_pci_start_relations_work(hbus, dr))
2726 		kfree(dr);
2727 }
2728 
2729 /**
2730  * hv_eject_device_work() - Asynchronously handles ejection
2731  * @work:	Work struct embedded in internal device struct
2732  *
2733  * This function handles ejecting a device.  Windows will
2734  * attempt to gracefully eject a device, waiting 60 seconds to
2735  * hear back from the guest OS that this completed successfully.
2736  * If this timer expires, the device will be forcibly removed.
2737  */
2738 static void hv_eject_device_work(struct work_struct *work)
2739 {
2740 	struct pci_eject_response *ejct_pkt;
2741 	struct hv_pcibus_device *hbus;
2742 	struct hv_pci_dev *hpdev;
2743 	struct pci_dev *pdev;
2744 	unsigned long flags;
2745 	int wslot;
2746 	struct {
2747 		struct pci_packet pkt;
2748 		u8 buffer[sizeof(struct pci_eject_response)];
2749 	} ctxt;
2750 
2751 	hpdev = container_of(work, struct hv_pci_dev, wrk);
2752 	hbus = hpdev->hbus;
2753 
2754 	WARN_ON(hpdev->state != hv_pcichild_ejecting);
2755 
2756 	/*
2757 	 * Ejection can come before or after the PCI bus has been set up, so
2758 	 * attempt to find it and tear down the bus state, if it exists.  This
2759 	 * must be done without constructs like pci_domain_nr(hbus->bridge->bus)
2760 	 * because hbus->bridge->bus may not exist yet.
2761 	 */
2762 	wslot = wslot_to_devfn(hpdev->desc.win_slot.slot);
2763 	pdev = pci_get_domain_bus_and_slot(hbus->bridge->domain_nr, 0, wslot);
2764 	if (pdev) {
2765 		pci_lock_rescan_remove();
2766 		pci_stop_and_remove_bus_device(pdev);
2767 		pci_dev_put(pdev);
2768 		pci_unlock_rescan_remove();
2769 	}
2770 
2771 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2772 	list_del(&hpdev->list_entry);
2773 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2774 
2775 	if (hpdev->pci_slot)
2776 		pci_destroy_slot(hpdev->pci_slot);
2777 
2778 	memset(&ctxt, 0, sizeof(ctxt));
2779 	ejct_pkt = (struct pci_eject_response *)&ctxt.pkt.message;
2780 	ejct_pkt->message_type.type = PCI_EJECTION_COMPLETE;
2781 	ejct_pkt->wslot.slot = hpdev->desc.win_slot.slot;
2782 	vmbus_sendpacket(hbus->hdev->channel, ejct_pkt,
2783 			 sizeof(*ejct_pkt), 0,
2784 			 VM_PKT_DATA_INBAND, 0);
2785 
2786 	/* For the get_pcichild() in hv_pci_eject_device() */
2787 	put_pcichild(hpdev);
2788 	/* For the two refs got in new_pcichild_device() */
2789 	put_pcichild(hpdev);
2790 	put_pcichild(hpdev);
2791 	/* hpdev has been freed. Do not use it any more. */
2792 }
2793 
2794 /**
2795  * hv_pci_eject_device() - Handles device ejection
2796  * @hpdev:	Internal device tracking struct
2797  *
2798  * This function is invoked when an ejection packet arrives.  It
2799  * just schedules work so that we don't re-enter the packet
2800  * delivery code handling the ejection.
2801  */
2802 static void hv_pci_eject_device(struct hv_pci_dev *hpdev)
2803 {
2804 	struct hv_pcibus_device *hbus = hpdev->hbus;
2805 	struct hv_device *hdev = hbus->hdev;
2806 
2807 	if (hbus->state == hv_pcibus_removing) {
2808 		dev_info(&hdev->device, "PCI VMBus EJECT: ignored\n");
2809 		return;
2810 	}
2811 
2812 	hpdev->state = hv_pcichild_ejecting;
2813 	get_pcichild(hpdev);
2814 	INIT_WORK(&hpdev->wrk, hv_eject_device_work);
2815 	queue_work(hbus->wq, &hpdev->wrk);
2816 }
2817 
2818 /**
2819  * hv_pci_onchannelcallback() - Handles incoming packets
2820  * @context:	Internal bus tracking struct
2821  *
2822  * This function is invoked whenever the host sends a packet to
2823  * this channel (which is private to this root PCI bus).
2824  */
2825 static void hv_pci_onchannelcallback(void *context)
2826 {
2827 	const int packet_size = 0x100;
2828 	int ret;
2829 	struct hv_pcibus_device *hbus = context;
2830 	struct vmbus_channel *chan = hbus->hdev->channel;
2831 	u32 bytes_recvd;
2832 	u64 req_id, req_addr;
2833 	struct vmpacket_descriptor *desc;
2834 	unsigned char *buffer;
2835 	int bufferlen = packet_size;
2836 	struct pci_packet *comp_packet;
2837 	struct pci_response *response;
2838 	struct pci_incoming_message *new_message;
2839 	struct pci_bus_relations *bus_rel;
2840 	struct pci_bus_relations2 *bus_rel2;
2841 	struct pci_dev_inval_block *inval;
2842 	struct pci_dev_incoming *dev_message;
2843 	struct hv_pci_dev *hpdev;
2844 	unsigned long flags;
2845 
2846 	buffer = kmalloc(bufferlen, GFP_ATOMIC);
2847 	if (!buffer)
2848 		return;
2849 
2850 	while (1) {
2851 		ret = vmbus_recvpacket_raw(chan, buffer, bufferlen,
2852 					   &bytes_recvd, &req_id);
2853 
2854 		if (ret == -ENOBUFS) {
2855 			kfree(buffer);
2856 			/* Handle large packet */
2857 			bufferlen = bytes_recvd;
2858 			buffer = kmalloc(bytes_recvd, GFP_ATOMIC);
2859 			if (!buffer)
2860 				return;
2861 			continue;
2862 		}
2863 
2864 		/* Zero length indicates there are no more packets. */
2865 		if (ret || !bytes_recvd)
2866 			break;
2867 
2868 		/*
2869 		 * All incoming packets must be at least as large as a
2870 		 * response.
2871 		 */
2872 		if (bytes_recvd <= sizeof(struct pci_response))
2873 			continue;
2874 		desc = (struct vmpacket_descriptor *)buffer;
2875 
2876 		switch (desc->type) {
2877 		case VM_PKT_COMP:
2878 
2879 			lock_requestor(chan, flags);
2880 			req_addr = __vmbus_request_addr_match(chan, req_id,
2881 							      VMBUS_RQST_ADDR_ANY);
2882 			if (req_addr == VMBUS_RQST_ERROR) {
2883 				unlock_requestor(chan, flags);
2884 				dev_err(&hbus->hdev->device,
2885 					"Invalid transaction ID %llx\n",
2886 					req_id);
2887 				break;
2888 			}
2889 			comp_packet = (struct pci_packet *)req_addr;
2890 			response = (struct pci_response *)buffer;
2891 			/*
2892 			 * Call ->completion_func() within the critical section to make
2893 			 * sure that the packet pointer is still valid during the call:
2894 			 * here 'valid' means that there's a task still waiting for the
2895 			 * completion, and that the packet data is still on the waiting
2896 			 * task's stack.  Cf. hv_compose_msi_msg().
2897 			 */
2898 			comp_packet->completion_func(comp_packet->compl_ctxt,
2899 						     response,
2900 						     bytes_recvd);
2901 			unlock_requestor(chan, flags);
2902 			break;
2903 
2904 		case VM_PKT_DATA_INBAND:
2905 
2906 			new_message = (struct pci_incoming_message *)buffer;
2907 			switch (new_message->message_type.type) {
2908 			case PCI_BUS_RELATIONS:
2909 
2910 				bus_rel = (struct pci_bus_relations *)buffer;
2911 				if (bytes_recvd < sizeof(*bus_rel) ||
2912 				    bytes_recvd <
2913 					struct_size(bus_rel, func,
2914 						    bus_rel->device_count)) {
2915 					dev_err(&hbus->hdev->device,
2916 						"bus relations too small\n");
2917 					break;
2918 				}
2919 
2920 				hv_pci_devices_present(hbus, bus_rel);
2921 				break;
2922 
2923 			case PCI_BUS_RELATIONS2:
2924 
2925 				bus_rel2 = (struct pci_bus_relations2 *)buffer;
2926 				if (bytes_recvd < sizeof(*bus_rel2) ||
2927 				    bytes_recvd <
2928 					struct_size(bus_rel2, func,
2929 						    bus_rel2->device_count)) {
2930 					dev_err(&hbus->hdev->device,
2931 						"bus relations v2 too small\n");
2932 					break;
2933 				}
2934 
2935 				hv_pci_devices_present2(hbus, bus_rel2);
2936 				break;
2937 
2938 			case PCI_EJECT:
2939 
2940 				dev_message = (struct pci_dev_incoming *)buffer;
2941 				if (bytes_recvd < sizeof(*dev_message)) {
2942 					dev_err(&hbus->hdev->device,
2943 						"eject message too small\n");
2944 					break;
2945 				}
2946 				hpdev = get_pcichild_wslot(hbus,
2947 						      dev_message->wslot.slot);
2948 				if (hpdev) {
2949 					hv_pci_eject_device(hpdev);
2950 					put_pcichild(hpdev);
2951 				}
2952 				break;
2953 
2954 			case PCI_INVALIDATE_BLOCK:
2955 
2956 				inval = (struct pci_dev_inval_block *)buffer;
2957 				if (bytes_recvd < sizeof(*inval)) {
2958 					dev_err(&hbus->hdev->device,
2959 						"invalidate message too small\n");
2960 					break;
2961 				}
2962 				hpdev = get_pcichild_wslot(hbus,
2963 							   inval->wslot.slot);
2964 				if (hpdev) {
2965 					if (hpdev->block_invalidate) {
2966 						hpdev->block_invalidate(
2967 						    hpdev->invalidate_context,
2968 						    inval->block_mask);
2969 					}
2970 					put_pcichild(hpdev);
2971 				}
2972 				break;
2973 
2974 			default:
2975 				dev_warn(&hbus->hdev->device,
2976 					"Unimplemented protocol message %x\n",
2977 					new_message->message_type.type);
2978 				break;
2979 			}
2980 			break;
2981 
2982 		default:
2983 			dev_err(&hbus->hdev->device,
2984 				"unhandled packet type %d, tid %llx len %d\n",
2985 				desc->type, req_id, bytes_recvd);
2986 			break;
2987 		}
2988 	}
2989 
2990 	kfree(buffer);
2991 }
2992 
2993 /**
2994  * hv_pci_protocol_negotiation() - Set up protocol
2995  * @hdev:		VMBus's tracking struct for this root PCI bus.
2996  * @version:		Array of supported channel protocol versions in
2997  *			the order of probing - highest go first.
2998  * @num_version:	Number of elements in the version array.
2999  *
3000  * This driver is intended to support running on Windows 10
3001  * (server) and later versions. It will not run on earlier
3002  * versions, as they assume that many of the operations which
3003  * Linux needs accomplished with a spinlock held were done via
3004  * asynchronous messaging via VMBus.  Windows 10 increases the
3005  * surface area of PCI emulation so that these actions can take
3006  * place by suspending a virtual processor for their duration.
3007  *
3008  * This function negotiates the channel protocol version,
3009  * failing if the host doesn't support the necessary protocol
3010  * level.
3011  */
3012 static int hv_pci_protocol_negotiation(struct hv_device *hdev,
3013 				       enum pci_protocol_version_t version[],
3014 				       int num_version)
3015 {
3016 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3017 	struct pci_version_request *version_req;
3018 	struct hv_pci_compl comp_pkt;
3019 	struct pci_packet *pkt;
3020 	int ret;
3021 	int i;
3022 
3023 	/*
3024 	 * Initiate the handshake with the host and negotiate
3025 	 * a version that the host can support. We start with the
3026 	 * highest version number and go down if the host cannot
3027 	 * support it.
3028 	 */
3029 	pkt = kzalloc(sizeof(*pkt) + sizeof(*version_req), GFP_KERNEL);
3030 	if (!pkt)
3031 		return -ENOMEM;
3032 
3033 	init_completion(&comp_pkt.host_event);
3034 	pkt->completion_func = hv_pci_generic_compl;
3035 	pkt->compl_ctxt = &comp_pkt;
3036 	version_req = (struct pci_version_request *)&pkt->message;
3037 	version_req->message_type.type = PCI_QUERY_PROTOCOL_VERSION;
3038 
3039 	for (i = 0; i < num_version; i++) {
3040 		version_req->protocol_version = version[i];
3041 		ret = vmbus_sendpacket(hdev->channel, version_req,
3042 				sizeof(struct pci_version_request),
3043 				(unsigned long)pkt, VM_PKT_DATA_INBAND,
3044 				VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3045 		if (!ret)
3046 			ret = wait_for_response(hdev, &comp_pkt.host_event);
3047 
3048 		if (ret) {
3049 			dev_err(&hdev->device,
3050 				"PCI Pass-through VSP failed to request version: %d",
3051 				ret);
3052 			goto exit;
3053 		}
3054 
3055 		if (comp_pkt.completion_status >= 0) {
3056 			hbus->protocol_version = version[i];
3057 			dev_info(&hdev->device,
3058 				"PCI VMBus probing: Using version %#x\n",
3059 				hbus->protocol_version);
3060 			goto exit;
3061 		}
3062 
3063 		if (comp_pkt.completion_status != STATUS_REVISION_MISMATCH) {
3064 			dev_err(&hdev->device,
3065 				"PCI Pass-through VSP failed version request: %#x",
3066 				comp_pkt.completion_status);
3067 			ret = -EPROTO;
3068 			goto exit;
3069 		}
3070 
3071 		reinit_completion(&comp_pkt.host_event);
3072 	}
3073 
3074 	dev_err(&hdev->device,
3075 		"PCI pass-through VSP failed to find supported version");
3076 	ret = -EPROTO;
3077 
3078 exit:
3079 	kfree(pkt);
3080 	return ret;
3081 }
3082 
3083 /**
3084  * hv_pci_free_bridge_windows() - Release memory regions for the
3085  * bus
3086  * @hbus:	Root PCI bus, as understood by this driver
3087  */
3088 static void hv_pci_free_bridge_windows(struct hv_pcibus_device *hbus)
3089 {
3090 	/*
3091 	 * Set the resources back to the way they looked when they
3092 	 * were allocated by setting IORESOURCE_BUSY again.
3093 	 */
3094 
3095 	if (hbus->low_mmio_space && hbus->low_mmio_res) {
3096 		hbus->low_mmio_res->flags |= IORESOURCE_BUSY;
3097 		vmbus_free_mmio(hbus->low_mmio_res->start,
3098 				resource_size(hbus->low_mmio_res));
3099 	}
3100 
3101 	if (hbus->high_mmio_space && hbus->high_mmio_res) {
3102 		hbus->high_mmio_res->flags |= IORESOURCE_BUSY;
3103 		vmbus_free_mmio(hbus->high_mmio_res->start,
3104 				resource_size(hbus->high_mmio_res));
3105 	}
3106 }
3107 
3108 /**
3109  * hv_pci_allocate_bridge_windows() - Allocate memory regions
3110  * for the bus
3111  * @hbus:	Root PCI bus, as understood by this driver
3112  *
3113  * This function calls vmbus_allocate_mmio(), which is itself a
3114  * bit of a compromise.  Ideally, we might change the pnp layer
3115  * in the kernel such that it comprehends either PCI devices
3116  * which are "grandchildren of ACPI," with some intermediate bus
3117  * node (in this case, VMBus) or change it such that it
3118  * understands VMBus.  The pnp layer, however, has been declared
3119  * deprecated, and not subject to change.
3120  *
3121  * The workaround, implemented here, is to ask VMBus to allocate
3122  * MMIO space for this bus.  VMBus itself knows which ranges are
3123  * appropriate by looking at its own ACPI objects.  Then, after
3124  * these ranges are claimed, they're modified to look like they
3125  * would have looked if the ACPI and pnp code had allocated
3126  * bridge windows.  These descriptors have to exist in this form
3127  * in order to satisfy the code which will get invoked when the
3128  * endpoint PCI function driver calls request_mem_region() or
3129  * request_mem_region_exclusive().
3130  *
3131  * Return: 0 on success, -errno on failure
3132  */
3133 static int hv_pci_allocate_bridge_windows(struct hv_pcibus_device *hbus)
3134 {
3135 	resource_size_t align;
3136 	int ret;
3137 
3138 	if (hbus->low_mmio_space) {
3139 		align = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
3140 		ret = vmbus_allocate_mmio(&hbus->low_mmio_res, hbus->hdev, 0,
3141 					  (u64)(u32)0xffffffff,
3142 					  hbus->low_mmio_space,
3143 					  align, false);
3144 		if (ret) {
3145 			dev_err(&hbus->hdev->device,
3146 				"Need %#llx of low MMIO space. Consider reconfiguring the VM.\n",
3147 				hbus->low_mmio_space);
3148 			return ret;
3149 		}
3150 
3151 		/* Modify this resource to become a bridge window. */
3152 		hbus->low_mmio_res->flags |= IORESOURCE_WINDOW;
3153 		hbus->low_mmio_res->flags &= ~IORESOURCE_BUSY;
3154 		pci_add_resource(&hbus->bridge->windows, hbus->low_mmio_res);
3155 	}
3156 
3157 	if (hbus->high_mmio_space) {
3158 		align = 1ULL << (63 - __builtin_clzll(hbus->high_mmio_space));
3159 		ret = vmbus_allocate_mmio(&hbus->high_mmio_res, hbus->hdev,
3160 					  0x100000000, -1,
3161 					  hbus->high_mmio_space, align,
3162 					  false);
3163 		if (ret) {
3164 			dev_err(&hbus->hdev->device,
3165 				"Need %#llx of high MMIO space. Consider reconfiguring the VM.\n",
3166 				hbus->high_mmio_space);
3167 			goto release_low_mmio;
3168 		}
3169 
3170 		/* Modify this resource to become a bridge window. */
3171 		hbus->high_mmio_res->flags |= IORESOURCE_WINDOW;
3172 		hbus->high_mmio_res->flags &= ~IORESOURCE_BUSY;
3173 		pci_add_resource(&hbus->bridge->windows, hbus->high_mmio_res);
3174 	}
3175 
3176 	return 0;
3177 
3178 release_low_mmio:
3179 	if (hbus->low_mmio_res) {
3180 		vmbus_free_mmio(hbus->low_mmio_res->start,
3181 				resource_size(hbus->low_mmio_res));
3182 	}
3183 
3184 	return ret;
3185 }
3186 
3187 /**
3188  * hv_allocate_config_window() - Find MMIO space for PCI Config
3189  * @hbus:	Root PCI bus, as understood by this driver
3190  *
3191  * This function claims memory-mapped I/O space for accessing
3192  * configuration space for the functions on this bus.
3193  *
3194  * Return: 0 on success, -errno on failure
3195  */
3196 static int hv_allocate_config_window(struct hv_pcibus_device *hbus)
3197 {
3198 	int ret;
3199 
3200 	/*
3201 	 * Set up a region of MMIO space to use for accessing configuration
3202 	 * space.
3203 	 */
3204 	ret = vmbus_allocate_mmio(&hbus->mem_config, hbus->hdev, 0, -1,
3205 				  PCI_CONFIG_MMIO_LENGTH, 0x1000, false);
3206 	if (ret)
3207 		return ret;
3208 
3209 	/*
3210 	 * vmbus_allocate_mmio() gets used for allocating both device endpoint
3211 	 * resource claims (those which cannot be overlapped) and the ranges
3212 	 * which are valid for the children of this bus, which are intended
3213 	 * to be overlapped by those children.  Set the flag on this claim
3214 	 * meaning that this region can't be overlapped.
3215 	 */
3216 
3217 	hbus->mem_config->flags |= IORESOURCE_BUSY;
3218 
3219 	return 0;
3220 }
3221 
3222 static void hv_free_config_window(struct hv_pcibus_device *hbus)
3223 {
3224 	vmbus_free_mmio(hbus->mem_config->start, PCI_CONFIG_MMIO_LENGTH);
3225 }
3226 
3227 static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs);
3228 
3229 /**
3230  * hv_pci_enter_d0() - Bring the "bus" into the D0 power state
3231  * @hdev:	VMBus's tracking struct for this root PCI bus
3232  *
3233  * Return: 0 on success, -errno on failure
3234  */
3235 static int hv_pci_enter_d0(struct hv_device *hdev)
3236 {
3237 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3238 	struct pci_bus_d0_entry *d0_entry;
3239 	struct hv_pci_compl comp_pkt;
3240 	struct pci_packet *pkt;
3241 	int ret;
3242 
3243 	/*
3244 	 * Tell the host that the bus is ready to use, and moved into the
3245 	 * powered-on state.  This includes telling the host which region
3246 	 * of memory-mapped I/O space has been chosen for configuration space
3247 	 * access.
3248 	 */
3249 	pkt = kzalloc(sizeof(*pkt) + sizeof(*d0_entry), GFP_KERNEL);
3250 	if (!pkt)
3251 		return -ENOMEM;
3252 
3253 	init_completion(&comp_pkt.host_event);
3254 	pkt->completion_func = hv_pci_generic_compl;
3255 	pkt->compl_ctxt = &comp_pkt;
3256 	d0_entry = (struct pci_bus_d0_entry *)&pkt->message;
3257 	d0_entry->message_type.type = PCI_BUS_D0ENTRY;
3258 	d0_entry->mmio_base = hbus->mem_config->start;
3259 
3260 	ret = vmbus_sendpacket(hdev->channel, d0_entry, sizeof(*d0_entry),
3261 			       (unsigned long)pkt, VM_PKT_DATA_INBAND,
3262 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3263 	if (!ret)
3264 		ret = wait_for_response(hdev, &comp_pkt.host_event);
3265 
3266 	if (ret)
3267 		goto exit;
3268 
3269 	if (comp_pkt.completion_status < 0) {
3270 		dev_err(&hdev->device,
3271 			"PCI Pass-through VSP failed D0 Entry with status %x\n",
3272 			comp_pkt.completion_status);
3273 		ret = -EPROTO;
3274 		goto exit;
3275 	}
3276 
3277 	ret = 0;
3278 
3279 exit:
3280 	kfree(pkt);
3281 	return ret;
3282 }
3283 
3284 /**
3285  * hv_pci_query_relations() - Ask host to send list of child
3286  * devices
3287  * @hdev:	VMBus's tracking struct for this root PCI bus
3288  *
3289  * Return: 0 on success, -errno on failure
3290  */
3291 static int hv_pci_query_relations(struct hv_device *hdev)
3292 {
3293 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3294 	struct pci_message message;
3295 	struct completion comp;
3296 	int ret;
3297 
3298 	/* Ask the host to send along the list of child devices */
3299 	init_completion(&comp);
3300 	if (cmpxchg(&hbus->survey_event, NULL, &comp))
3301 		return -ENOTEMPTY;
3302 
3303 	memset(&message, 0, sizeof(message));
3304 	message.type = PCI_QUERY_BUS_RELATIONS;
3305 
3306 	ret = vmbus_sendpacket(hdev->channel, &message, sizeof(message),
3307 			       0, VM_PKT_DATA_INBAND, 0);
3308 	if (!ret)
3309 		ret = wait_for_response(hdev, &comp);
3310 
3311 	return ret;
3312 }
3313 
3314 /**
3315  * hv_send_resources_allocated() - Report local resource choices
3316  * @hdev:	VMBus's tracking struct for this root PCI bus
3317  *
3318  * The host OS is expecting to be sent a request as a message
3319  * which contains all the resources that the device will use.
3320  * The response contains those same resources, "translated"
3321  * which is to say, the values which should be used by the
3322  * hardware, when it delivers an interrupt.  (MMIO resources are
3323  * used in local terms.)  This is nice for Windows, and lines up
3324  * with the FDO/PDO split, which doesn't exist in Linux.  Linux
3325  * is deeply expecting to scan an emulated PCI configuration
3326  * space.  So this message is sent here only to drive the state
3327  * machine on the host forward.
3328  *
3329  * Return: 0 on success, -errno on failure
3330  */
3331 static int hv_send_resources_allocated(struct hv_device *hdev)
3332 {
3333 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3334 	struct pci_resources_assigned *res_assigned;
3335 	struct pci_resources_assigned2 *res_assigned2;
3336 	struct hv_pci_compl comp_pkt;
3337 	struct hv_pci_dev *hpdev;
3338 	struct pci_packet *pkt;
3339 	size_t size_res;
3340 	int wslot;
3341 	int ret;
3342 
3343 	size_res = (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2)
3344 			? sizeof(*res_assigned) : sizeof(*res_assigned2);
3345 
3346 	pkt = kmalloc(sizeof(*pkt) + size_res, GFP_KERNEL);
3347 	if (!pkt)
3348 		return -ENOMEM;
3349 
3350 	ret = 0;
3351 
3352 	for (wslot = 0; wslot < 256; wslot++) {
3353 		hpdev = get_pcichild_wslot(hbus, wslot);
3354 		if (!hpdev)
3355 			continue;
3356 
3357 		memset(pkt, 0, sizeof(*pkt) + size_res);
3358 		init_completion(&comp_pkt.host_event);
3359 		pkt->completion_func = hv_pci_generic_compl;
3360 		pkt->compl_ctxt = &comp_pkt;
3361 
3362 		if (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2) {
3363 			res_assigned =
3364 				(struct pci_resources_assigned *)&pkt->message;
3365 			res_assigned->message_type.type =
3366 				PCI_RESOURCES_ASSIGNED;
3367 			res_assigned->wslot.slot = hpdev->desc.win_slot.slot;
3368 		} else {
3369 			res_assigned2 =
3370 				(struct pci_resources_assigned2 *)&pkt->message;
3371 			res_assigned2->message_type.type =
3372 				PCI_RESOURCES_ASSIGNED2;
3373 			res_assigned2->wslot.slot = hpdev->desc.win_slot.slot;
3374 		}
3375 		put_pcichild(hpdev);
3376 
3377 		ret = vmbus_sendpacket(hdev->channel, &pkt->message,
3378 				size_res, (unsigned long)pkt,
3379 				VM_PKT_DATA_INBAND,
3380 				VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3381 		if (!ret)
3382 			ret = wait_for_response(hdev, &comp_pkt.host_event);
3383 		if (ret)
3384 			break;
3385 
3386 		if (comp_pkt.completion_status < 0) {
3387 			ret = -EPROTO;
3388 			dev_err(&hdev->device,
3389 				"resource allocated returned 0x%x",
3390 				comp_pkt.completion_status);
3391 			break;
3392 		}
3393 
3394 		hbus->wslot_res_allocated = wslot;
3395 	}
3396 
3397 	kfree(pkt);
3398 	return ret;
3399 }
3400 
3401 /**
3402  * hv_send_resources_released() - Report local resources
3403  * released
3404  * @hdev:	VMBus's tracking struct for this root PCI bus
3405  *
3406  * Return: 0 on success, -errno on failure
3407  */
3408 static int hv_send_resources_released(struct hv_device *hdev)
3409 {
3410 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3411 	struct pci_child_message pkt;
3412 	struct hv_pci_dev *hpdev;
3413 	int wslot;
3414 	int ret;
3415 
3416 	for (wslot = hbus->wslot_res_allocated; wslot >= 0; wslot--) {
3417 		hpdev = get_pcichild_wslot(hbus, wslot);
3418 		if (!hpdev)
3419 			continue;
3420 
3421 		memset(&pkt, 0, sizeof(pkt));
3422 		pkt.message_type.type = PCI_RESOURCES_RELEASED;
3423 		pkt.wslot.slot = hpdev->desc.win_slot.slot;
3424 
3425 		put_pcichild(hpdev);
3426 
3427 		ret = vmbus_sendpacket(hdev->channel, &pkt, sizeof(pkt), 0,
3428 				       VM_PKT_DATA_INBAND, 0);
3429 		if (ret)
3430 			return ret;
3431 
3432 		hbus->wslot_res_allocated = wslot - 1;
3433 	}
3434 
3435 	hbus->wslot_res_allocated = -1;
3436 
3437 	return 0;
3438 }
3439 
3440 #define HVPCI_DOM_MAP_SIZE (64 * 1024)
3441 static DECLARE_BITMAP(hvpci_dom_map, HVPCI_DOM_MAP_SIZE);
3442 
3443 /*
3444  * PCI domain number 0 is used by emulated devices on Gen1 VMs, so define 0
3445  * as invalid for passthrough PCI devices of this driver.
3446  */
3447 #define HVPCI_DOM_INVALID 0
3448 
3449 /**
3450  * hv_get_dom_num() - Get a valid PCI domain number
3451  * Check if the PCI domain number is in use, and return another number if
3452  * it is in use.
3453  *
3454  * @dom: Requested domain number
3455  *
3456  * return: domain number on success, HVPCI_DOM_INVALID on failure
3457  */
3458 static u16 hv_get_dom_num(u16 dom)
3459 {
3460 	unsigned int i;
3461 
3462 	if (test_and_set_bit(dom, hvpci_dom_map) == 0)
3463 		return dom;
3464 
3465 	for_each_clear_bit(i, hvpci_dom_map, HVPCI_DOM_MAP_SIZE) {
3466 		if (test_and_set_bit(i, hvpci_dom_map) == 0)
3467 			return i;
3468 	}
3469 
3470 	return HVPCI_DOM_INVALID;
3471 }
3472 
3473 /**
3474  * hv_put_dom_num() - Mark the PCI domain number as free
3475  * @dom: Domain number to be freed
3476  */
3477 static void hv_put_dom_num(u16 dom)
3478 {
3479 	clear_bit(dom, hvpci_dom_map);
3480 }
3481 
3482 /**
3483  * hv_pci_probe() - New VMBus channel probe, for a root PCI bus
3484  * @hdev:	VMBus's tracking struct for this root PCI bus
3485  * @dev_id:	Identifies the device itself
3486  *
3487  * Return: 0 on success, -errno on failure
3488  */
3489 static int hv_pci_probe(struct hv_device *hdev,
3490 			const struct hv_vmbus_device_id *dev_id)
3491 {
3492 	struct pci_host_bridge *bridge;
3493 	struct hv_pcibus_device *hbus;
3494 	u16 dom_req, dom;
3495 	char *name;
3496 	bool enter_d0_retry = true;
3497 	int ret;
3498 
3499 	/*
3500 	 * hv_pcibus_device contains the hypercall arguments for retargeting in
3501 	 * hv_irq_unmask(). Those must not cross a page boundary.
3502 	 */
3503 	BUILD_BUG_ON(sizeof(*hbus) > HV_HYP_PAGE_SIZE);
3504 
3505 	bridge = devm_pci_alloc_host_bridge(&hdev->device, 0);
3506 	if (!bridge)
3507 		return -ENOMEM;
3508 
3509 	/*
3510 	 * With the recent 59bb47985c1d ("mm, sl[aou]b: guarantee natural
3511 	 * alignment for kmalloc(power-of-two)"), kzalloc() is able to allocate
3512 	 * a 4KB buffer that is guaranteed to be 4KB-aligned. Here the size and
3513 	 * alignment of hbus is important because hbus's field
3514 	 * retarget_msi_interrupt_params must not cross a 4KB page boundary.
3515 	 *
3516 	 * Here we prefer kzalloc to get_zeroed_page(), because a buffer
3517 	 * allocated by the latter is not tracked and scanned by kmemleak, and
3518 	 * hence kmemleak reports the pointer contained in the hbus buffer
3519 	 * (i.e. the hpdev struct, which is created in new_pcichild_device() and
3520 	 * is tracked by hbus->children) as memory leak (false positive).
3521 	 *
3522 	 * If the kernel doesn't have 59bb47985c1d, get_zeroed_page() *must* be
3523 	 * used to allocate the hbus buffer and we can avoid the kmemleak false
3524 	 * positive by using kmemleak_alloc() and kmemleak_free() to ask
3525 	 * kmemleak to track and scan the hbus buffer.
3526 	 */
3527 	hbus = kzalloc(HV_HYP_PAGE_SIZE, GFP_KERNEL);
3528 	if (!hbus)
3529 		return -ENOMEM;
3530 
3531 	hbus->bridge = bridge;
3532 	hbus->state = hv_pcibus_init;
3533 	hbus->wslot_res_allocated = -1;
3534 
3535 	/*
3536 	 * The PCI bus "domain" is what is called "segment" in ACPI and other
3537 	 * specs. Pull it from the instance ID, to get something usually
3538 	 * unique. In rare cases of collision, we will find out another number
3539 	 * not in use.
3540 	 *
3541 	 * Note that, since this code only runs in a Hyper-V VM, Hyper-V
3542 	 * together with this guest driver can guarantee that (1) The only
3543 	 * domain used by Gen1 VMs for something that looks like a physical
3544 	 * PCI bus (which is actually emulated by the hypervisor) is domain 0.
3545 	 * (2) There will be no overlap between domains (after fixing possible
3546 	 * collisions) in the same VM.
3547 	 */
3548 	dom_req = hdev->dev_instance.b[5] << 8 | hdev->dev_instance.b[4];
3549 	dom = hv_get_dom_num(dom_req);
3550 
3551 	if (dom == HVPCI_DOM_INVALID) {
3552 		dev_err(&hdev->device,
3553 			"Unable to use dom# 0x%x or other numbers", dom_req);
3554 		ret = -EINVAL;
3555 		goto free_bus;
3556 	}
3557 
3558 	if (dom != dom_req)
3559 		dev_info(&hdev->device,
3560 			 "PCI dom# 0x%x has collision, using 0x%x",
3561 			 dom_req, dom);
3562 
3563 	hbus->bridge->domain_nr = dom;
3564 #ifdef CONFIG_X86
3565 	hbus->sysdata.domain = dom;
3566 #elif defined(CONFIG_ARM64)
3567 	/*
3568 	 * Set the PCI bus parent to be the corresponding VMbus
3569 	 * device. Then the VMbus device will be assigned as the
3570 	 * ACPI companion in pcibios_root_bridge_prepare() and
3571 	 * pci_dma_configure() will propagate device coherence
3572 	 * information to devices created on the bus.
3573 	 */
3574 	hbus->sysdata.parent = hdev->device.parent;
3575 #endif
3576 
3577 	hbus->hdev = hdev;
3578 	INIT_LIST_HEAD(&hbus->children);
3579 	INIT_LIST_HEAD(&hbus->dr_list);
3580 	spin_lock_init(&hbus->config_lock);
3581 	spin_lock_init(&hbus->device_list_lock);
3582 	spin_lock_init(&hbus->retarget_msi_interrupt_lock);
3583 	hbus->wq = alloc_ordered_workqueue("hv_pci_%x", 0,
3584 					   hbus->bridge->domain_nr);
3585 	if (!hbus->wq) {
3586 		ret = -ENOMEM;
3587 		goto free_dom;
3588 	}
3589 
3590 	hdev->channel->next_request_id_callback = vmbus_next_request_id;
3591 	hdev->channel->request_addr_callback = vmbus_request_addr;
3592 	hdev->channel->rqstor_size = HV_PCI_RQSTOR_SIZE;
3593 
3594 	ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0,
3595 			 hv_pci_onchannelcallback, hbus);
3596 	if (ret)
3597 		goto destroy_wq;
3598 
3599 	hv_set_drvdata(hdev, hbus);
3600 
3601 	ret = hv_pci_protocol_negotiation(hdev, pci_protocol_versions,
3602 					  ARRAY_SIZE(pci_protocol_versions));
3603 	if (ret)
3604 		goto close;
3605 
3606 	ret = hv_allocate_config_window(hbus);
3607 	if (ret)
3608 		goto close;
3609 
3610 	hbus->cfg_addr = ioremap(hbus->mem_config->start,
3611 				 PCI_CONFIG_MMIO_LENGTH);
3612 	if (!hbus->cfg_addr) {
3613 		dev_err(&hdev->device,
3614 			"Unable to map a virtual address for config space\n");
3615 		ret = -ENOMEM;
3616 		goto free_config;
3617 	}
3618 
3619 	name = kasprintf(GFP_KERNEL, "%pUL", &hdev->dev_instance);
3620 	if (!name) {
3621 		ret = -ENOMEM;
3622 		goto unmap;
3623 	}
3624 
3625 	hbus->fwnode = irq_domain_alloc_named_fwnode(name);
3626 	kfree(name);
3627 	if (!hbus->fwnode) {
3628 		ret = -ENOMEM;
3629 		goto unmap;
3630 	}
3631 
3632 	ret = hv_pcie_init_irq_domain(hbus);
3633 	if (ret)
3634 		goto free_fwnode;
3635 
3636 retry:
3637 	ret = hv_pci_query_relations(hdev);
3638 	if (ret)
3639 		goto free_irq_domain;
3640 
3641 	ret = hv_pci_enter_d0(hdev);
3642 	/*
3643 	 * In certain case (Kdump) the pci device of interest was
3644 	 * not cleanly shut down and resource is still held on host
3645 	 * side, the host could return invalid device status.
3646 	 * We need to explicitly request host to release the resource
3647 	 * and try to enter D0 again.
3648 	 * Since the hv_pci_bus_exit() call releases structures
3649 	 * of all its child devices, we need to start the retry from
3650 	 * hv_pci_query_relations() call, requesting host to send
3651 	 * the synchronous child device relations message before this
3652 	 * information is needed in hv_send_resources_allocated()
3653 	 * call later.
3654 	 */
3655 	if (ret == -EPROTO && enter_d0_retry) {
3656 		enter_d0_retry = false;
3657 
3658 		dev_err(&hdev->device, "Retrying D0 Entry\n");
3659 
3660 		/*
3661 		 * Hv_pci_bus_exit() calls hv_send_resources_released()
3662 		 * to free up resources of its child devices.
3663 		 * In the kdump kernel we need to set the
3664 		 * wslot_res_allocated to 255 so it scans all child
3665 		 * devices to release resources allocated in the
3666 		 * normal kernel before panic happened.
3667 		 */
3668 		hbus->wslot_res_allocated = 255;
3669 		ret = hv_pci_bus_exit(hdev, true);
3670 
3671 		if (ret == 0)
3672 			goto retry;
3673 
3674 		dev_err(&hdev->device,
3675 			"Retrying D0 failed with ret %d\n", ret);
3676 	}
3677 	if (ret)
3678 		goto free_irq_domain;
3679 
3680 	ret = hv_pci_allocate_bridge_windows(hbus);
3681 	if (ret)
3682 		goto exit_d0;
3683 
3684 	ret = hv_send_resources_allocated(hdev);
3685 	if (ret)
3686 		goto free_windows;
3687 
3688 	prepopulate_bars(hbus);
3689 
3690 	hbus->state = hv_pcibus_probed;
3691 
3692 	ret = create_root_hv_pci_bus(hbus);
3693 	if (ret)
3694 		goto free_windows;
3695 
3696 	return 0;
3697 
3698 free_windows:
3699 	hv_pci_free_bridge_windows(hbus);
3700 exit_d0:
3701 	(void) hv_pci_bus_exit(hdev, true);
3702 free_irq_domain:
3703 	irq_domain_remove(hbus->irq_domain);
3704 free_fwnode:
3705 	irq_domain_free_fwnode(hbus->fwnode);
3706 unmap:
3707 	iounmap(hbus->cfg_addr);
3708 free_config:
3709 	hv_free_config_window(hbus);
3710 close:
3711 	vmbus_close(hdev->channel);
3712 destroy_wq:
3713 	destroy_workqueue(hbus->wq);
3714 free_dom:
3715 	hv_put_dom_num(hbus->bridge->domain_nr);
3716 free_bus:
3717 	kfree(hbus);
3718 	return ret;
3719 }
3720 
3721 static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs)
3722 {
3723 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3724 	struct vmbus_channel *chan = hdev->channel;
3725 	struct {
3726 		struct pci_packet teardown_packet;
3727 		u8 buffer[sizeof(struct pci_message)];
3728 	} pkt;
3729 	struct hv_pci_compl comp_pkt;
3730 	struct hv_pci_dev *hpdev, *tmp;
3731 	unsigned long flags;
3732 	u64 trans_id;
3733 	int ret;
3734 
3735 	/*
3736 	 * After the host sends the RESCIND_CHANNEL message, it doesn't
3737 	 * access the per-channel ringbuffer any longer.
3738 	 */
3739 	if (chan->rescind)
3740 		return 0;
3741 
3742 	if (!keep_devs) {
3743 		struct list_head removed;
3744 
3745 		/* Move all present children to the list on stack */
3746 		INIT_LIST_HEAD(&removed);
3747 		spin_lock_irqsave(&hbus->device_list_lock, flags);
3748 		list_for_each_entry_safe(hpdev, tmp, &hbus->children, list_entry)
3749 			list_move_tail(&hpdev->list_entry, &removed);
3750 		spin_unlock_irqrestore(&hbus->device_list_lock, flags);
3751 
3752 		/* Remove all children in the list */
3753 		list_for_each_entry_safe(hpdev, tmp, &removed, list_entry) {
3754 			list_del(&hpdev->list_entry);
3755 			if (hpdev->pci_slot)
3756 				pci_destroy_slot(hpdev->pci_slot);
3757 			/* For the two refs got in new_pcichild_device() */
3758 			put_pcichild(hpdev);
3759 			put_pcichild(hpdev);
3760 		}
3761 	}
3762 
3763 	ret = hv_send_resources_released(hdev);
3764 	if (ret) {
3765 		dev_err(&hdev->device,
3766 			"Couldn't send resources released packet(s)\n");
3767 		return ret;
3768 	}
3769 
3770 	memset(&pkt.teardown_packet, 0, sizeof(pkt.teardown_packet));
3771 	init_completion(&comp_pkt.host_event);
3772 	pkt.teardown_packet.completion_func = hv_pci_generic_compl;
3773 	pkt.teardown_packet.compl_ctxt = &comp_pkt;
3774 	pkt.teardown_packet.message[0].type = PCI_BUS_D0EXIT;
3775 
3776 	ret = vmbus_sendpacket_getid(chan, &pkt.teardown_packet.message,
3777 				     sizeof(struct pci_message),
3778 				     (unsigned long)&pkt.teardown_packet,
3779 				     &trans_id, VM_PKT_DATA_INBAND,
3780 				     VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3781 	if (ret)
3782 		return ret;
3783 
3784 	if (wait_for_completion_timeout(&comp_pkt.host_event, 10 * HZ) == 0) {
3785 		/*
3786 		 * The completion packet on the stack becomes invalid after
3787 		 * 'return'; remove the ID from the VMbus requestor if the
3788 		 * identifier is still mapped to/associated with the packet.
3789 		 *
3790 		 * Cf. hv_pci_onchannelcallback().
3791 		 */
3792 		vmbus_request_addr_match(chan, trans_id,
3793 					 (unsigned long)&pkt.teardown_packet);
3794 		return -ETIMEDOUT;
3795 	}
3796 
3797 	return 0;
3798 }
3799 
3800 /**
3801  * hv_pci_remove() - Remove routine for this VMBus channel
3802  * @hdev:	VMBus's tracking struct for this root PCI bus
3803  *
3804  * Return: 0 on success, -errno on failure
3805  */
3806 static int hv_pci_remove(struct hv_device *hdev)
3807 {
3808 	struct hv_pcibus_device *hbus;
3809 	int ret;
3810 
3811 	hbus = hv_get_drvdata(hdev);
3812 	if (hbus->state == hv_pcibus_installed) {
3813 		tasklet_disable(&hdev->channel->callback_event);
3814 		hbus->state = hv_pcibus_removing;
3815 		tasklet_enable(&hdev->channel->callback_event);
3816 		destroy_workqueue(hbus->wq);
3817 		hbus->wq = NULL;
3818 		/*
3819 		 * At this point, no work is running or can be scheduled
3820 		 * on hbus-wq. We can't race with hv_pci_devices_present()
3821 		 * or hv_pci_eject_device(), it's safe to proceed.
3822 		 */
3823 
3824 		/* Remove the bus from PCI's point of view. */
3825 		pci_lock_rescan_remove();
3826 		pci_stop_root_bus(hbus->bridge->bus);
3827 		hv_pci_remove_slots(hbus);
3828 		pci_remove_root_bus(hbus->bridge->bus);
3829 		pci_unlock_rescan_remove();
3830 	}
3831 
3832 	ret = hv_pci_bus_exit(hdev, false);
3833 
3834 	vmbus_close(hdev->channel);
3835 
3836 	iounmap(hbus->cfg_addr);
3837 	hv_free_config_window(hbus);
3838 	hv_pci_free_bridge_windows(hbus);
3839 	irq_domain_remove(hbus->irq_domain);
3840 	irq_domain_free_fwnode(hbus->fwnode);
3841 
3842 	hv_put_dom_num(hbus->bridge->domain_nr);
3843 
3844 	kfree(hbus);
3845 	return ret;
3846 }
3847 
3848 static int hv_pci_suspend(struct hv_device *hdev)
3849 {
3850 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3851 	enum hv_pcibus_state old_state;
3852 	int ret;
3853 
3854 	/*
3855 	 * hv_pci_suspend() must make sure there are no pending work items
3856 	 * before calling vmbus_close(), since it runs in a process context
3857 	 * as a callback in dpm_suspend().  When it starts to run, the channel
3858 	 * callback hv_pci_onchannelcallback(), which runs in a tasklet
3859 	 * context, can be still running concurrently and scheduling new work
3860 	 * items onto hbus->wq in hv_pci_devices_present() and
3861 	 * hv_pci_eject_device(), and the work item handlers can access the
3862 	 * vmbus channel, which can be being closed by hv_pci_suspend(), e.g.
3863 	 * the work item handler pci_devices_present_work() ->
3864 	 * new_pcichild_device() writes to the vmbus channel.
3865 	 *
3866 	 * To eliminate the race, hv_pci_suspend() disables the channel
3867 	 * callback tasklet, sets hbus->state to hv_pcibus_removing, and
3868 	 * re-enables the tasklet. This way, when hv_pci_suspend() proceeds,
3869 	 * it knows that no new work item can be scheduled, and then it flushes
3870 	 * hbus->wq and safely closes the vmbus channel.
3871 	 */
3872 	tasklet_disable(&hdev->channel->callback_event);
3873 
3874 	/* Change the hbus state to prevent new work items. */
3875 	old_state = hbus->state;
3876 	if (hbus->state == hv_pcibus_installed)
3877 		hbus->state = hv_pcibus_removing;
3878 
3879 	tasklet_enable(&hdev->channel->callback_event);
3880 
3881 	if (old_state != hv_pcibus_installed)
3882 		return -EINVAL;
3883 
3884 	flush_workqueue(hbus->wq);
3885 
3886 	ret = hv_pci_bus_exit(hdev, true);
3887 	if (ret)
3888 		return ret;
3889 
3890 	vmbus_close(hdev->channel);
3891 
3892 	return 0;
3893 }
3894 
3895 static int hv_pci_restore_msi_msg(struct pci_dev *pdev, void *arg)
3896 {
3897 	struct irq_data *irq_data;
3898 	struct msi_desc *entry;
3899 	int ret = 0;
3900 
3901 	msi_lock_descs(&pdev->dev);
3902 	msi_for_each_desc(entry, &pdev->dev, MSI_DESC_ASSOCIATED) {
3903 		irq_data = irq_get_irq_data(entry->irq);
3904 		if (WARN_ON_ONCE(!irq_data)) {
3905 			ret = -EINVAL;
3906 			break;
3907 		}
3908 
3909 		hv_compose_msi_msg(irq_data, &entry->msg);
3910 	}
3911 	msi_unlock_descs(&pdev->dev);
3912 
3913 	return ret;
3914 }
3915 
3916 /*
3917  * Upon resume, pci_restore_msi_state() -> ... ->  __pci_write_msi_msg()
3918  * directly writes the MSI/MSI-X registers via MMIO, but since Hyper-V
3919  * doesn't trap and emulate the MMIO accesses, here hv_compose_msi_msg()
3920  * must be used to ask Hyper-V to re-create the IOMMU Interrupt Remapping
3921  * Table entries.
3922  */
3923 static void hv_pci_restore_msi_state(struct hv_pcibus_device *hbus)
3924 {
3925 	pci_walk_bus(hbus->bridge->bus, hv_pci_restore_msi_msg, NULL);
3926 }
3927 
3928 static int hv_pci_resume(struct hv_device *hdev)
3929 {
3930 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3931 	enum pci_protocol_version_t version[1];
3932 	int ret;
3933 
3934 	hbus->state = hv_pcibus_init;
3935 
3936 	hdev->channel->next_request_id_callback = vmbus_next_request_id;
3937 	hdev->channel->request_addr_callback = vmbus_request_addr;
3938 	hdev->channel->rqstor_size = HV_PCI_RQSTOR_SIZE;
3939 
3940 	ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0,
3941 			 hv_pci_onchannelcallback, hbus);
3942 	if (ret)
3943 		return ret;
3944 
3945 	/* Only use the version that was in use before hibernation. */
3946 	version[0] = hbus->protocol_version;
3947 	ret = hv_pci_protocol_negotiation(hdev, version, 1);
3948 	if (ret)
3949 		goto out;
3950 
3951 	ret = hv_pci_query_relations(hdev);
3952 	if (ret)
3953 		goto out;
3954 
3955 	ret = hv_pci_enter_d0(hdev);
3956 	if (ret)
3957 		goto out;
3958 
3959 	ret = hv_send_resources_allocated(hdev);
3960 	if (ret)
3961 		goto out;
3962 
3963 	prepopulate_bars(hbus);
3964 
3965 	hv_pci_restore_msi_state(hbus);
3966 
3967 	hbus->state = hv_pcibus_installed;
3968 	return 0;
3969 out:
3970 	vmbus_close(hdev->channel);
3971 	return ret;
3972 }
3973 
3974 static const struct hv_vmbus_device_id hv_pci_id_table[] = {
3975 	/* PCI Pass-through Class ID */
3976 	/* 44C4F61D-4444-4400-9D52-802E27EDE19F */
3977 	{ HV_PCIE_GUID, },
3978 	{ },
3979 };
3980 
3981 MODULE_DEVICE_TABLE(vmbus, hv_pci_id_table);
3982 
3983 static struct hv_driver hv_pci_drv = {
3984 	.name		= "hv_pci",
3985 	.id_table	= hv_pci_id_table,
3986 	.probe		= hv_pci_probe,
3987 	.remove		= hv_pci_remove,
3988 	.suspend	= hv_pci_suspend,
3989 	.resume		= hv_pci_resume,
3990 };
3991 
3992 static void __exit exit_hv_pci_drv(void)
3993 {
3994 	vmbus_driver_unregister(&hv_pci_drv);
3995 
3996 	hvpci_block_ops.read_block = NULL;
3997 	hvpci_block_ops.write_block = NULL;
3998 	hvpci_block_ops.reg_blk_invalidate = NULL;
3999 }
4000 
4001 static int __init init_hv_pci_drv(void)
4002 {
4003 	int ret;
4004 
4005 	if (!hv_is_hyperv_initialized())
4006 		return -ENODEV;
4007 
4008 	ret = hv_pci_irqchip_init();
4009 	if (ret)
4010 		return ret;
4011 
4012 	/* Set the invalid domain number's bit, so it will not be used */
4013 	set_bit(HVPCI_DOM_INVALID, hvpci_dom_map);
4014 
4015 	/* Initialize PCI block r/w interface */
4016 	hvpci_block_ops.read_block = hv_read_config_block;
4017 	hvpci_block_ops.write_block = hv_write_config_block;
4018 	hvpci_block_ops.reg_blk_invalidate = hv_register_block_invalidate;
4019 
4020 	return vmbus_driver_register(&hv_pci_drv);
4021 }
4022 
4023 module_init(init_hv_pci_drv);
4024 module_exit(exit_hv_pci_drv);
4025 
4026 MODULE_DESCRIPTION("Hyper-V PCI");
4027 MODULE_LICENSE("GPL v2");
4028