1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) Microsoft Corporation. 4 * 5 * Author: 6 * Jake Oshins <jakeo@microsoft.com> 7 * 8 * This driver acts as a paravirtual front-end for PCI Express root buses. 9 * When a PCI Express function (either an entire device or an SR-IOV 10 * Virtual Function) is being passed through to the VM, this driver exposes 11 * a new bus to the guest VM. This is modeled as a root PCI bus because 12 * no bridges are being exposed to the VM. In fact, with a "Generation 2" 13 * VM within Hyper-V, there may seem to be no PCI bus at all in the VM 14 * until a device as been exposed using this driver. 15 * 16 * Each root PCI bus has its own PCI domain, which is called "Segment" in 17 * the PCI Firmware Specifications. Thus while each device passed through 18 * to the VM using this front-end will appear at "device 0", the domain will 19 * be unique. Typically, each bus will have one PCI function on it, though 20 * this driver does support more than one. 21 * 22 * In order to map the interrupts from the device through to the guest VM, 23 * this driver also implements an IRQ Domain, which handles interrupts (either 24 * MSI or MSI-X) associated with the functions on the bus. As interrupts are 25 * set up, torn down, or reaffined, this driver communicates with the 26 * underlying hypervisor to adjust the mappings in the I/O MMU so that each 27 * interrupt will be delivered to the correct virtual processor at the right 28 * vector. This driver does not support level-triggered (line-based) 29 * interrupts, and will report that the Interrupt Line register in the 30 * function's configuration space is zero. 31 * 32 * The rest of this driver mostly maps PCI concepts onto underlying Hyper-V 33 * facilities. For instance, the configuration space of a function exposed 34 * by Hyper-V is mapped into a single page of memory space, and the 35 * read and write handlers for config space must be aware of this mechanism. 36 * Similarly, device setup and teardown involves messages sent to and from 37 * the PCI back-end driver in Hyper-V. 38 */ 39 40 #include <linux/kernel.h> 41 #include <linux/module.h> 42 #include <linux/pci.h> 43 #include <linux/delay.h> 44 #include <linux/semaphore.h> 45 #include <linux/irqdomain.h> 46 #include <asm/irqdomain.h> 47 #include <asm/apic.h> 48 #include <linux/irq.h> 49 #include <linux/msi.h> 50 #include <linux/hyperv.h> 51 #include <linux/refcount.h> 52 #include <asm/mshyperv.h> 53 54 /* 55 * Protocol versions. The low word is the minor version, the high word the 56 * major version. 57 */ 58 59 #define PCI_MAKE_VERSION(major, minor) ((u32)(((major) << 16) | (minor))) 60 #define PCI_MAJOR_VERSION(version) ((u32)(version) >> 16) 61 #define PCI_MINOR_VERSION(version) ((u32)(version) & 0xff) 62 63 enum pci_protocol_version_t { 64 PCI_PROTOCOL_VERSION_1_1 = PCI_MAKE_VERSION(1, 1), /* Win10 */ 65 PCI_PROTOCOL_VERSION_1_2 = PCI_MAKE_VERSION(1, 2), /* RS1 */ 66 PCI_PROTOCOL_VERSION_1_3 = PCI_MAKE_VERSION(1, 3), /* Vibranium */ 67 }; 68 69 #define CPU_AFFINITY_ALL -1ULL 70 71 /* 72 * Supported protocol versions in the order of probing - highest go 73 * first. 74 */ 75 static enum pci_protocol_version_t pci_protocol_versions[] = { 76 PCI_PROTOCOL_VERSION_1_3, 77 PCI_PROTOCOL_VERSION_1_2, 78 PCI_PROTOCOL_VERSION_1_1, 79 }; 80 81 #define PCI_CONFIG_MMIO_LENGTH 0x2000 82 #define CFG_PAGE_OFFSET 0x1000 83 #define CFG_PAGE_SIZE (PCI_CONFIG_MMIO_LENGTH - CFG_PAGE_OFFSET) 84 85 #define MAX_SUPPORTED_MSI_MESSAGES 0x400 86 87 #define STATUS_REVISION_MISMATCH 0xC0000059 88 89 /* space for 32bit serial number as string */ 90 #define SLOT_NAME_SIZE 11 91 92 /* 93 * Message Types 94 */ 95 96 enum pci_message_type { 97 /* 98 * Version 1.1 99 */ 100 PCI_MESSAGE_BASE = 0x42490000, 101 PCI_BUS_RELATIONS = PCI_MESSAGE_BASE + 0, 102 PCI_QUERY_BUS_RELATIONS = PCI_MESSAGE_BASE + 1, 103 PCI_POWER_STATE_CHANGE = PCI_MESSAGE_BASE + 4, 104 PCI_QUERY_RESOURCE_REQUIREMENTS = PCI_MESSAGE_BASE + 5, 105 PCI_QUERY_RESOURCE_RESOURCES = PCI_MESSAGE_BASE + 6, 106 PCI_BUS_D0ENTRY = PCI_MESSAGE_BASE + 7, 107 PCI_BUS_D0EXIT = PCI_MESSAGE_BASE + 8, 108 PCI_READ_BLOCK = PCI_MESSAGE_BASE + 9, 109 PCI_WRITE_BLOCK = PCI_MESSAGE_BASE + 0xA, 110 PCI_EJECT = PCI_MESSAGE_BASE + 0xB, 111 PCI_QUERY_STOP = PCI_MESSAGE_BASE + 0xC, 112 PCI_REENABLE = PCI_MESSAGE_BASE + 0xD, 113 PCI_QUERY_STOP_FAILED = PCI_MESSAGE_BASE + 0xE, 114 PCI_EJECTION_COMPLETE = PCI_MESSAGE_BASE + 0xF, 115 PCI_RESOURCES_ASSIGNED = PCI_MESSAGE_BASE + 0x10, 116 PCI_RESOURCES_RELEASED = PCI_MESSAGE_BASE + 0x11, 117 PCI_INVALIDATE_BLOCK = PCI_MESSAGE_BASE + 0x12, 118 PCI_QUERY_PROTOCOL_VERSION = PCI_MESSAGE_BASE + 0x13, 119 PCI_CREATE_INTERRUPT_MESSAGE = PCI_MESSAGE_BASE + 0x14, 120 PCI_DELETE_INTERRUPT_MESSAGE = PCI_MESSAGE_BASE + 0x15, 121 PCI_RESOURCES_ASSIGNED2 = PCI_MESSAGE_BASE + 0x16, 122 PCI_CREATE_INTERRUPT_MESSAGE2 = PCI_MESSAGE_BASE + 0x17, 123 PCI_DELETE_INTERRUPT_MESSAGE2 = PCI_MESSAGE_BASE + 0x18, /* unused */ 124 PCI_BUS_RELATIONS2 = PCI_MESSAGE_BASE + 0x19, 125 PCI_MESSAGE_MAXIMUM 126 }; 127 128 /* 129 * Structures defining the virtual PCI Express protocol. 130 */ 131 132 union pci_version { 133 struct { 134 u16 minor_version; 135 u16 major_version; 136 } parts; 137 u32 version; 138 } __packed; 139 140 /* 141 * Function numbers are 8-bits wide on Express, as interpreted through ARI, 142 * which is all this driver does. This representation is the one used in 143 * Windows, which is what is expected when sending this back and forth with 144 * the Hyper-V parent partition. 145 */ 146 union win_slot_encoding { 147 struct { 148 u32 dev:5; 149 u32 func:3; 150 u32 reserved:24; 151 } bits; 152 u32 slot; 153 } __packed; 154 155 /* 156 * Pretty much as defined in the PCI Specifications. 157 */ 158 struct pci_function_description { 159 u16 v_id; /* vendor ID */ 160 u16 d_id; /* device ID */ 161 u8 rev; 162 u8 prog_intf; 163 u8 subclass; 164 u8 base_class; 165 u32 subsystem_id; 166 union win_slot_encoding win_slot; 167 u32 ser; /* serial number */ 168 } __packed; 169 170 enum pci_device_description_flags { 171 HV_PCI_DEVICE_FLAG_NONE = 0x0, 172 HV_PCI_DEVICE_FLAG_NUMA_AFFINITY = 0x1, 173 }; 174 175 struct pci_function_description2 { 176 u16 v_id; /* vendor ID */ 177 u16 d_id; /* device ID */ 178 u8 rev; 179 u8 prog_intf; 180 u8 subclass; 181 u8 base_class; 182 u32 subsystem_id; 183 union win_slot_encoding win_slot; 184 u32 ser; /* serial number */ 185 u32 flags; 186 u16 virtual_numa_node; 187 u16 reserved; 188 } __packed; 189 190 /** 191 * struct hv_msi_desc 192 * @vector: IDT entry 193 * @delivery_mode: As defined in Intel's Programmer's 194 * Reference Manual, Volume 3, Chapter 8. 195 * @vector_count: Number of contiguous entries in the 196 * Interrupt Descriptor Table that are 197 * occupied by this Message-Signaled 198 * Interrupt. For "MSI", as first defined 199 * in PCI 2.2, this can be between 1 and 200 * 32. For "MSI-X," as first defined in PCI 201 * 3.0, this must be 1, as each MSI-X table 202 * entry would have its own descriptor. 203 * @reserved: Empty space 204 * @cpu_mask: All the target virtual processors. 205 */ 206 struct hv_msi_desc { 207 u8 vector; 208 u8 delivery_mode; 209 u16 vector_count; 210 u32 reserved; 211 u64 cpu_mask; 212 } __packed; 213 214 /** 215 * struct hv_msi_desc2 - 1.2 version of hv_msi_desc 216 * @vector: IDT entry 217 * @delivery_mode: As defined in Intel's Programmer's 218 * Reference Manual, Volume 3, Chapter 8. 219 * @vector_count: Number of contiguous entries in the 220 * Interrupt Descriptor Table that are 221 * occupied by this Message-Signaled 222 * Interrupt. For "MSI", as first defined 223 * in PCI 2.2, this can be between 1 and 224 * 32. For "MSI-X," as first defined in PCI 225 * 3.0, this must be 1, as each MSI-X table 226 * entry would have its own descriptor. 227 * @processor_count: number of bits enabled in array. 228 * @processor_array: All the target virtual processors. 229 */ 230 struct hv_msi_desc2 { 231 u8 vector; 232 u8 delivery_mode; 233 u16 vector_count; 234 u16 processor_count; 235 u16 processor_array[32]; 236 } __packed; 237 238 /** 239 * struct tran_int_desc 240 * @reserved: unused, padding 241 * @vector_count: same as in hv_msi_desc 242 * @data: This is the "data payload" value that is 243 * written by the device when it generates 244 * a message-signaled interrupt, either MSI 245 * or MSI-X. 246 * @address: This is the address to which the data 247 * payload is written on interrupt 248 * generation. 249 */ 250 struct tran_int_desc { 251 u16 reserved; 252 u16 vector_count; 253 u32 data; 254 u64 address; 255 } __packed; 256 257 /* 258 * A generic message format for virtual PCI. 259 * Specific message formats are defined later in the file. 260 */ 261 262 struct pci_message { 263 u32 type; 264 } __packed; 265 266 struct pci_child_message { 267 struct pci_message message_type; 268 union win_slot_encoding wslot; 269 } __packed; 270 271 struct pci_incoming_message { 272 struct vmpacket_descriptor hdr; 273 struct pci_message message_type; 274 } __packed; 275 276 struct pci_response { 277 struct vmpacket_descriptor hdr; 278 s32 status; /* negative values are failures */ 279 } __packed; 280 281 struct pci_packet { 282 void (*completion_func)(void *context, struct pci_response *resp, 283 int resp_packet_size); 284 void *compl_ctxt; 285 286 struct pci_message message[]; 287 }; 288 289 /* 290 * Specific message types supporting the PCI protocol. 291 */ 292 293 /* 294 * Version negotiation message. Sent from the guest to the host. 295 * The guest is free to try different versions until the host 296 * accepts the version. 297 * 298 * pci_version: The protocol version requested. 299 * is_last_attempt: If TRUE, this is the last version guest will request. 300 * reservedz: Reserved field, set to zero. 301 */ 302 303 struct pci_version_request { 304 struct pci_message message_type; 305 u32 protocol_version; 306 } __packed; 307 308 /* 309 * Bus D0 Entry. This is sent from the guest to the host when the virtual 310 * bus (PCI Express port) is ready for action. 311 */ 312 313 struct pci_bus_d0_entry { 314 struct pci_message message_type; 315 u32 reserved; 316 u64 mmio_base; 317 } __packed; 318 319 struct pci_bus_relations { 320 struct pci_incoming_message incoming; 321 u32 device_count; 322 struct pci_function_description func[]; 323 } __packed; 324 325 struct pci_bus_relations2 { 326 struct pci_incoming_message incoming; 327 u32 device_count; 328 struct pci_function_description2 func[]; 329 } __packed; 330 331 struct pci_q_res_req_response { 332 struct vmpacket_descriptor hdr; 333 s32 status; /* negative values are failures */ 334 u32 probed_bar[PCI_STD_NUM_BARS]; 335 } __packed; 336 337 struct pci_set_power { 338 struct pci_message message_type; 339 union win_slot_encoding wslot; 340 u32 power_state; /* In Windows terms */ 341 u32 reserved; 342 } __packed; 343 344 struct pci_set_power_response { 345 struct vmpacket_descriptor hdr; 346 s32 status; /* negative values are failures */ 347 union win_slot_encoding wslot; 348 u32 resultant_state; /* In Windows terms */ 349 u32 reserved; 350 } __packed; 351 352 struct pci_resources_assigned { 353 struct pci_message message_type; 354 union win_slot_encoding wslot; 355 u8 memory_range[0x14][6]; /* not used here */ 356 u32 msi_descriptors; 357 u32 reserved[4]; 358 } __packed; 359 360 struct pci_resources_assigned2 { 361 struct pci_message message_type; 362 union win_slot_encoding wslot; 363 u8 memory_range[0x14][6]; /* not used here */ 364 u32 msi_descriptor_count; 365 u8 reserved[70]; 366 } __packed; 367 368 struct pci_create_interrupt { 369 struct pci_message message_type; 370 union win_slot_encoding wslot; 371 struct hv_msi_desc int_desc; 372 } __packed; 373 374 struct pci_create_int_response { 375 struct pci_response response; 376 u32 reserved; 377 struct tran_int_desc int_desc; 378 } __packed; 379 380 struct pci_create_interrupt2 { 381 struct pci_message message_type; 382 union win_slot_encoding wslot; 383 struct hv_msi_desc2 int_desc; 384 } __packed; 385 386 struct pci_delete_interrupt { 387 struct pci_message message_type; 388 union win_slot_encoding wslot; 389 struct tran_int_desc int_desc; 390 } __packed; 391 392 /* 393 * Note: the VM must pass a valid block id, wslot and bytes_requested. 394 */ 395 struct pci_read_block { 396 struct pci_message message_type; 397 u32 block_id; 398 union win_slot_encoding wslot; 399 u32 bytes_requested; 400 } __packed; 401 402 struct pci_read_block_response { 403 struct vmpacket_descriptor hdr; 404 u32 status; 405 u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX]; 406 } __packed; 407 408 /* 409 * Note: the VM must pass a valid block id, wslot and byte_count. 410 */ 411 struct pci_write_block { 412 struct pci_message message_type; 413 u32 block_id; 414 union win_slot_encoding wslot; 415 u32 byte_count; 416 u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX]; 417 } __packed; 418 419 struct pci_dev_inval_block { 420 struct pci_incoming_message incoming; 421 union win_slot_encoding wslot; 422 u64 block_mask; 423 } __packed; 424 425 struct pci_dev_incoming { 426 struct pci_incoming_message incoming; 427 union win_slot_encoding wslot; 428 } __packed; 429 430 struct pci_eject_response { 431 struct pci_message message_type; 432 union win_slot_encoding wslot; 433 u32 status; 434 } __packed; 435 436 static int pci_ring_size = (4 * PAGE_SIZE); 437 438 /* 439 * Driver specific state. 440 */ 441 442 enum hv_pcibus_state { 443 hv_pcibus_init = 0, 444 hv_pcibus_probed, 445 hv_pcibus_installed, 446 hv_pcibus_removing, 447 hv_pcibus_removed, 448 hv_pcibus_maximum 449 }; 450 451 struct hv_pcibus_device { 452 struct pci_sysdata sysdata; 453 /* Protocol version negotiated with the host */ 454 enum pci_protocol_version_t protocol_version; 455 enum hv_pcibus_state state; 456 refcount_t remove_lock; 457 struct hv_device *hdev; 458 resource_size_t low_mmio_space; 459 resource_size_t high_mmio_space; 460 struct resource *mem_config; 461 struct resource *low_mmio_res; 462 struct resource *high_mmio_res; 463 struct completion *survey_event; 464 struct completion remove_event; 465 struct pci_bus *pci_bus; 466 spinlock_t config_lock; /* Avoid two threads writing index page */ 467 spinlock_t device_list_lock; /* Protect lists below */ 468 void __iomem *cfg_addr; 469 470 struct list_head resources_for_children; 471 472 struct list_head children; 473 struct list_head dr_list; 474 475 struct msi_domain_info msi_info; 476 struct msi_controller msi_chip; 477 struct irq_domain *irq_domain; 478 479 spinlock_t retarget_msi_interrupt_lock; 480 481 struct workqueue_struct *wq; 482 483 /* Highest slot of child device with resources allocated */ 484 int wslot_res_allocated; 485 486 /* hypercall arg, must not cross page boundary */ 487 struct hv_retarget_device_interrupt retarget_msi_interrupt_params; 488 489 /* 490 * Don't put anything here: retarget_msi_interrupt_params must be last 491 */ 492 }; 493 494 /* 495 * Tracks "Device Relations" messages from the host, which must be both 496 * processed in order and deferred so that they don't run in the context 497 * of the incoming packet callback. 498 */ 499 struct hv_dr_work { 500 struct work_struct wrk; 501 struct hv_pcibus_device *bus; 502 }; 503 504 struct hv_pcidev_description { 505 u16 v_id; /* vendor ID */ 506 u16 d_id; /* device ID */ 507 u8 rev; 508 u8 prog_intf; 509 u8 subclass; 510 u8 base_class; 511 u32 subsystem_id; 512 union win_slot_encoding win_slot; 513 u32 ser; /* serial number */ 514 u32 flags; 515 u16 virtual_numa_node; 516 }; 517 518 struct hv_dr_state { 519 struct list_head list_entry; 520 u32 device_count; 521 struct hv_pcidev_description func[]; 522 }; 523 524 enum hv_pcichild_state { 525 hv_pcichild_init = 0, 526 hv_pcichild_requirements, 527 hv_pcichild_resourced, 528 hv_pcichild_ejecting, 529 hv_pcichild_maximum 530 }; 531 532 struct hv_pci_dev { 533 /* List protected by pci_rescan_remove_lock */ 534 struct list_head list_entry; 535 refcount_t refs; 536 enum hv_pcichild_state state; 537 struct pci_slot *pci_slot; 538 struct hv_pcidev_description desc; 539 bool reported_missing; 540 struct hv_pcibus_device *hbus; 541 struct work_struct wrk; 542 543 void (*block_invalidate)(void *context, u64 block_mask); 544 void *invalidate_context; 545 546 /* 547 * What would be observed if one wrote 0xFFFFFFFF to a BAR and then 548 * read it back, for each of the BAR offsets within config space. 549 */ 550 u32 probed_bar[PCI_STD_NUM_BARS]; 551 }; 552 553 struct hv_pci_compl { 554 struct completion host_event; 555 s32 completion_status; 556 }; 557 558 static void hv_pci_onchannelcallback(void *context); 559 560 /** 561 * hv_pci_generic_compl() - Invoked for a completion packet 562 * @context: Set up by the sender of the packet. 563 * @resp: The response packet 564 * @resp_packet_size: Size in bytes of the packet 565 * 566 * This function is used to trigger an event and report status 567 * for any message for which the completion packet contains a 568 * status and nothing else. 569 */ 570 static void hv_pci_generic_compl(void *context, struct pci_response *resp, 571 int resp_packet_size) 572 { 573 struct hv_pci_compl *comp_pkt = context; 574 575 if (resp_packet_size >= offsetofend(struct pci_response, status)) 576 comp_pkt->completion_status = resp->status; 577 else 578 comp_pkt->completion_status = -1; 579 580 complete(&comp_pkt->host_event); 581 } 582 583 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus, 584 u32 wslot); 585 586 static void get_pcichild(struct hv_pci_dev *hpdev) 587 { 588 refcount_inc(&hpdev->refs); 589 } 590 591 static void put_pcichild(struct hv_pci_dev *hpdev) 592 { 593 if (refcount_dec_and_test(&hpdev->refs)) 594 kfree(hpdev); 595 } 596 597 static void get_hvpcibus(struct hv_pcibus_device *hv_pcibus); 598 static void put_hvpcibus(struct hv_pcibus_device *hv_pcibus); 599 600 /* 601 * There is no good way to get notified from vmbus_onoffer_rescind(), 602 * so let's use polling here, since this is not a hot path. 603 */ 604 static int wait_for_response(struct hv_device *hdev, 605 struct completion *comp) 606 { 607 while (true) { 608 if (hdev->channel->rescind) { 609 dev_warn_once(&hdev->device, "The device is gone.\n"); 610 return -ENODEV; 611 } 612 613 if (wait_for_completion_timeout(comp, HZ / 10)) 614 break; 615 } 616 617 return 0; 618 } 619 620 /** 621 * devfn_to_wslot() - Convert from Linux PCI slot to Windows 622 * @devfn: The Linux representation of PCI slot 623 * 624 * Windows uses a slightly different representation of PCI slot. 625 * 626 * Return: The Windows representation 627 */ 628 static u32 devfn_to_wslot(int devfn) 629 { 630 union win_slot_encoding wslot; 631 632 wslot.slot = 0; 633 wslot.bits.dev = PCI_SLOT(devfn); 634 wslot.bits.func = PCI_FUNC(devfn); 635 636 return wslot.slot; 637 } 638 639 /** 640 * wslot_to_devfn() - Convert from Windows PCI slot to Linux 641 * @wslot: The Windows representation of PCI slot 642 * 643 * Windows uses a slightly different representation of PCI slot. 644 * 645 * Return: The Linux representation 646 */ 647 static int wslot_to_devfn(u32 wslot) 648 { 649 union win_slot_encoding slot_no; 650 651 slot_no.slot = wslot; 652 return PCI_DEVFN(slot_no.bits.dev, slot_no.bits.func); 653 } 654 655 /* 656 * PCI Configuration Space for these root PCI buses is implemented as a pair 657 * of pages in memory-mapped I/O space. Writing to the first page chooses 658 * the PCI function being written or read. Once the first page has been 659 * written to, the following page maps in the entire configuration space of 660 * the function. 661 */ 662 663 /** 664 * _hv_pcifront_read_config() - Internal PCI config read 665 * @hpdev: The PCI driver's representation of the device 666 * @where: Offset within config space 667 * @size: Size of the transfer 668 * @val: Pointer to the buffer receiving the data 669 */ 670 static void _hv_pcifront_read_config(struct hv_pci_dev *hpdev, int where, 671 int size, u32 *val) 672 { 673 unsigned long flags; 674 void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where; 675 676 /* 677 * If the attempt is to read the IDs or the ROM BAR, simulate that. 678 */ 679 if (where + size <= PCI_COMMAND) { 680 memcpy(val, ((u8 *)&hpdev->desc.v_id) + where, size); 681 } else if (where >= PCI_CLASS_REVISION && where + size <= 682 PCI_CACHE_LINE_SIZE) { 683 memcpy(val, ((u8 *)&hpdev->desc.rev) + where - 684 PCI_CLASS_REVISION, size); 685 } else if (where >= PCI_SUBSYSTEM_VENDOR_ID && where + size <= 686 PCI_ROM_ADDRESS) { 687 memcpy(val, (u8 *)&hpdev->desc.subsystem_id + where - 688 PCI_SUBSYSTEM_VENDOR_ID, size); 689 } else if (where >= PCI_ROM_ADDRESS && where + size <= 690 PCI_CAPABILITY_LIST) { 691 /* ROM BARs are unimplemented */ 692 *val = 0; 693 } else if (where >= PCI_INTERRUPT_LINE && where + size <= 694 PCI_INTERRUPT_PIN) { 695 /* 696 * Interrupt Line and Interrupt PIN are hard-wired to zero 697 * because this front-end only supports message-signaled 698 * interrupts. 699 */ 700 *val = 0; 701 } else if (where + size <= CFG_PAGE_SIZE) { 702 spin_lock_irqsave(&hpdev->hbus->config_lock, flags); 703 /* Choose the function to be read. (See comment above) */ 704 writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr); 705 /* Make sure the function was chosen before we start reading. */ 706 mb(); 707 /* Read from that function's config space. */ 708 switch (size) { 709 case 1: 710 *val = readb(addr); 711 break; 712 case 2: 713 *val = readw(addr); 714 break; 715 default: 716 *val = readl(addr); 717 break; 718 } 719 /* 720 * Make sure the read was done before we release the spinlock 721 * allowing consecutive reads/writes. 722 */ 723 mb(); 724 spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags); 725 } else { 726 dev_err(&hpdev->hbus->hdev->device, 727 "Attempt to read beyond a function's config space.\n"); 728 } 729 } 730 731 static u16 hv_pcifront_get_vendor_id(struct hv_pci_dev *hpdev) 732 { 733 u16 ret; 734 unsigned long flags; 735 void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + 736 PCI_VENDOR_ID; 737 738 spin_lock_irqsave(&hpdev->hbus->config_lock, flags); 739 740 /* Choose the function to be read. (See comment above) */ 741 writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr); 742 /* Make sure the function was chosen before we start reading. */ 743 mb(); 744 /* Read from that function's config space. */ 745 ret = readw(addr); 746 /* 747 * mb() is not required here, because the spin_unlock_irqrestore() 748 * is a barrier. 749 */ 750 751 spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags); 752 753 return ret; 754 } 755 756 /** 757 * _hv_pcifront_write_config() - Internal PCI config write 758 * @hpdev: The PCI driver's representation of the device 759 * @where: Offset within config space 760 * @size: Size of the transfer 761 * @val: The data being transferred 762 */ 763 static void _hv_pcifront_write_config(struct hv_pci_dev *hpdev, int where, 764 int size, u32 val) 765 { 766 unsigned long flags; 767 void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where; 768 769 if (where >= PCI_SUBSYSTEM_VENDOR_ID && 770 where + size <= PCI_CAPABILITY_LIST) { 771 /* SSIDs and ROM BARs are read-only */ 772 } else if (where >= PCI_COMMAND && where + size <= CFG_PAGE_SIZE) { 773 spin_lock_irqsave(&hpdev->hbus->config_lock, flags); 774 /* Choose the function to be written. (See comment above) */ 775 writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr); 776 /* Make sure the function was chosen before we start writing. */ 777 wmb(); 778 /* Write to that function's config space. */ 779 switch (size) { 780 case 1: 781 writeb(val, addr); 782 break; 783 case 2: 784 writew(val, addr); 785 break; 786 default: 787 writel(val, addr); 788 break; 789 } 790 /* 791 * Make sure the write was done before we release the spinlock 792 * allowing consecutive reads/writes. 793 */ 794 mb(); 795 spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags); 796 } else { 797 dev_err(&hpdev->hbus->hdev->device, 798 "Attempt to write beyond a function's config space.\n"); 799 } 800 } 801 802 /** 803 * hv_pcifront_read_config() - Read configuration space 804 * @bus: PCI Bus structure 805 * @devfn: Device/function 806 * @where: Offset from base 807 * @size: Byte/word/dword 808 * @val: Value to be read 809 * 810 * Return: PCIBIOS_SUCCESSFUL on success 811 * PCIBIOS_DEVICE_NOT_FOUND on failure 812 */ 813 static int hv_pcifront_read_config(struct pci_bus *bus, unsigned int devfn, 814 int where, int size, u32 *val) 815 { 816 struct hv_pcibus_device *hbus = 817 container_of(bus->sysdata, struct hv_pcibus_device, sysdata); 818 struct hv_pci_dev *hpdev; 819 820 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn)); 821 if (!hpdev) 822 return PCIBIOS_DEVICE_NOT_FOUND; 823 824 _hv_pcifront_read_config(hpdev, where, size, val); 825 826 put_pcichild(hpdev); 827 return PCIBIOS_SUCCESSFUL; 828 } 829 830 /** 831 * hv_pcifront_write_config() - Write configuration space 832 * @bus: PCI Bus structure 833 * @devfn: Device/function 834 * @where: Offset from base 835 * @size: Byte/word/dword 836 * @val: Value to be written to device 837 * 838 * Return: PCIBIOS_SUCCESSFUL on success 839 * PCIBIOS_DEVICE_NOT_FOUND on failure 840 */ 841 static int hv_pcifront_write_config(struct pci_bus *bus, unsigned int devfn, 842 int where, int size, u32 val) 843 { 844 struct hv_pcibus_device *hbus = 845 container_of(bus->sysdata, struct hv_pcibus_device, sysdata); 846 struct hv_pci_dev *hpdev; 847 848 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn)); 849 if (!hpdev) 850 return PCIBIOS_DEVICE_NOT_FOUND; 851 852 _hv_pcifront_write_config(hpdev, where, size, val); 853 854 put_pcichild(hpdev); 855 return PCIBIOS_SUCCESSFUL; 856 } 857 858 /* PCIe operations */ 859 static struct pci_ops hv_pcifront_ops = { 860 .read = hv_pcifront_read_config, 861 .write = hv_pcifront_write_config, 862 }; 863 864 /* 865 * Paravirtual backchannel 866 * 867 * Hyper-V SR-IOV provides a backchannel mechanism in software for 868 * communication between a VF driver and a PF driver. These 869 * "configuration blocks" are similar in concept to PCI configuration space, 870 * but instead of doing reads and writes in 32-bit chunks through a very slow 871 * path, packets of up to 128 bytes can be sent or received asynchronously. 872 * 873 * Nearly every SR-IOV device contains just such a communications channel in 874 * hardware, so using this one in software is usually optional. Using the 875 * software channel, however, allows driver implementers to leverage software 876 * tools that fuzz the communications channel looking for vulnerabilities. 877 * 878 * The usage model for these packets puts the responsibility for reading or 879 * writing on the VF driver. The VF driver sends a read or a write packet, 880 * indicating which "block" is being referred to by number. 881 * 882 * If the PF driver wishes to initiate communication, it can "invalidate" one or 883 * more of the first 64 blocks. This invalidation is delivered via a callback 884 * supplied by the VF driver by this driver. 885 * 886 * No protocol is implied, except that supplied by the PF and VF drivers. 887 */ 888 889 struct hv_read_config_compl { 890 struct hv_pci_compl comp_pkt; 891 void *buf; 892 unsigned int len; 893 unsigned int bytes_returned; 894 }; 895 896 /** 897 * hv_pci_read_config_compl() - Invoked when a response packet 898 * for a read config block operation arrives. 899 * @context: Identifies the read config operation 900 * @resp: The response packet itself 901 * @resp_packet_size: Size in bytes of the response packet 902 */ 903 static void hv_pci_read_config_compl(void *context, struct pci_response *resp, 904 int resp_packet_size) 905 { 906 struct hv_read_config_compl *comp = context; 907 struct pci_read_block_response *read_resp = 908 (struct pci_read_block_response *)resp; 909 unsigned int data_len, hdr_len; 910 911 hdr_len = offsetof(struct pci_read_block_response, bytes); 912 if (resp_packet_size < hdr_len) { 913 comp->comp_pkt.completion_status = -1; 914 goto out; 915 } 916 917 data_len = resp_packet_size - hdr_len; 918 if (data_len > 0 && read_resp->status == 0) { 919 comp->bytes_returned = min(comp->len, data_len); 920 memcpy(comp->buf, read_resp->bytes, comp->bytes_returned); 921 } else { 922 comp->bytes_returned = 0; 923 } 924 925 comp->comp_pkt.completion_status = read_resp->status; 926 out: 927 complete(&comp->comp_pkt.host_event); 928 } 929 930 /** 931 * hv_read_config_block() - Sends a read config block request to 932 * the back-end driver running in the Hyper-V parent partition. 933 * @pdev: The PCI driver's representation for this device. 934 * @buf: Buffer into which the config block will be copied. 935 * @len: Size in bytes of buf. 936 * @block_id: Identifies the config block which has been requested. 937 * @bytes_returned: Size which came back from the back-end driver. 938 * 939 * Return: 0 on success, -errno on failure 940 */ 941 static int hv_read_config_block(struct pci_dev *pdev, void *buf, 942 unsigned int len, unsigned int block_id, 943 unsigned int *bytes_returned) 944 { 945 struct hv_pcibus_device *hbus = 946 container_of(pdev->bus->sysdata, struct hv_pcibus_device, 947 sysdata); 948 struct { 949 struct pci_packet pkt; 950 char buf[sizeof(struct pci_read_block)]; 951 } pkt; 952 struct hv_read_config_compl comp_pkt; 953 struct pci_read_block *read_blk; 954 int ret; 955 956 if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX) 957 return -EINVAL; 958 959 init_completion(&comp_pkt.comp_pkt.host_event); 960 comp_pkt.buf = buf; 961 comp_pkt.len = len; 962 963 memset(&pkt, 0, sizeof(pkt)); 964 pkt.pkt.completion_func = hv_pci_read_config_compl; 965 pkt.pkt.compl_ctxt = &comp_pkt; 966 read_blk = (struct pci_read_block *)&pkt.pkt.message; 967 read_blk->message_type.type = PCI_READ_BLOCK; 968 read_blk->wslot.slot = devfn_to_wslot(pdev->devfn); 969 read_blk->block_id = block_id; 970 read_blk->bytes_requested = len; 971 972 ret = vmbus_sendpacket(hbus->hdev->channel, read_blk, 973 sizeof(*read_blk), (unsigned long)&pkt.pkt, 974 VM_PKT_DATA_INBAND, 975 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 976 if (ret) 977 return ret; 978 979 ret = wait_for_response(hbus->hdev, &comp_pkt.comp_pkt.host_event); 980 if (ret) 981 return ret; 982 983 if (comp_pkt.comp_pkt.completion_status != 0 || 984 comp_pkt.bytes_returned == 0) { 985 dev_err(&hbus->hdev->device, 986 "Read Config Block failed: 0x%x, bytes_returned=%d\n", 987 comp_pkt.comp_pkt.completion_status, 988 comp_pkt.bytes_returned); 989 return -EIO; 990 } 991 992 *bytes_returned = comp_pkt.bytes_returned; 993 return 0; 994 } 995 996 /** 997 * hv_pci_write_config_compl() - Invoked when a response packet for a write 998 * config block operation arrives. 999 * @context: Identifies the write config operation 1000 * @resp: The response packet itself 1001 * @resp_packet_size: Size in bytes of the response packet 1002 */ 1003 static void hv_pci_write_config_compl(void *context, struct pci_response *resp, 1004 int resp_packet_size) 1005 { 1006 struct hv_pci_compl *comp_pkt = context; 1007 1008 comp_pkt->completion_status = resp->status; 1009 complete(&comp_pkt->host_event); 1010 } 1011 1012 /** 1013 * hv_write_config_block() - Sends a write config block request to the 1014 * back-end driver running in the Hyper-V parent partition. 1015 * @pdev: The PCI driver's representation for this device. 1016 * @buf: Buffer from which the config block will be copied. 1017 * @len: Size in bytes of buf. 1018 * @block_id: Identifies the config block which is being written. 1019 * 1020 * Return: 0 on success, -errno on failure 1021 */ 1022 static int hv_write_config_block(struct pci_dev *pdev, void *buf, 1023 unsigned int len, unsigned int block_id) 1024 { 1025 struct hv_pcibus_device *hbus = 1026 container_of(pdev->bus->sysdata, struct hv_pcibus_device, 1027 sysdata); 1028 struct { 1029 struct pci_packet pkt; 1030 char buf[sizeof(struct pci_write_block)]; 1031 u32 reserved; 1032 } pkt; 1033 struct hv_pci_compl comp_pkt; 1034 struct pci_write_block *write_blk; 1035 u32 pkt_size; 1036 int ret; 1037 1038 if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX) 1039 return -EINVAL; 1040 1041 init_completion(&comp_pkt.host_event); 1042 1043 memset(&pkt, 0, sizeof(pkt)); 1044 pkt.pkt.completion_func = hv_pci_write_config_compl; 1045 pkt.pkt.compl_ctxt = &comp_pkt; 1046 write_blk = (struct pci_write_block *)&pkt.pkt.message; 1047 write_blk->message_type.type = PCI_WRITE_BLOCK; 1048 write_blk->wslot.slot = devfn_to_wslot(pdev->devfn); 1049 write_blk->block_id = block_id; 1050 write_blk->byte_count = len; 1051 memcpy(write_blk->bytes, buf, len); 1052 pkt_size = offsetof(struct pci_write_block, bytes) + len; 1053 /* 1054 * This quirk is required on some hosts shipped around 2018, because 1055 * these hosts don't check the pkt_size correctly (new hosts have been 1056 * fixed since early 2019). The quirk is also safe on very old hosts 1057 * and new hosts, because, on them, what really matters is the length 1058 * specified in write_blk->byte_count. 1059 */ 1060 pkt_size += sizeof(pkt.reserved); 1061 1062 ret = vmbus_sendpacket(hbus->hdev->channel, write_blk, pkt_size, 1063 (unsigned long)&pkt.pkt, VM_PKT_DATA_INBAND, 1064 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1065 if (ret) 1066 return ret; 1067 1068 ret = wait_for_response(hbus->hdev, &comp_pkt.host_event); 1069 if (ret) 1070 return ret; 1071 1072 if (comp_pkt.completion_status != 0) { 1073 dev_err(&hbus->hdev->device, 1074 "Write Config Block failed: 0x%x\n", 1075 comp_pkt.completion_status); 1076 return -EIO; 1077 } 1078 1079 return 0; 1080 } 1081 1082 /** 1083 * hv_register_block_invalidate() - Invoked when a config block invalidation 1084 * arrives from the back-end driver. 1085 * @pdev: The PCI driver's representation for this device. 1086 * @context: Identifies the device. 1087 * @block_invalidate: Identifies all of the blocks being invalidated. 1088 * 1089 * Return: 0 on success, -errno on failure 1090 */ 1091 static int hv_register_block_invalidate(struct pci_dev *pdev, void *context, 1092 void (*block_invalidate)(void *context, 1093 u64 block_mask)) 1094 { 1095 struct hv_pcibus_device *hbus = 1096 container_of(pdev->bus->sysdata, struct hv_pcibus_device, 1097 sysdata); 1098 struct hv_pci_dev *hpdev; 1099 1100 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn)); 1101 if (!hpdev) 1102 return -ENODEV; 1103 1104 hpdev->block_invalidate = block_invalidate; 1105 hpdev->invalidate_context = context; 1106 1107 put_pcichild(hpdev); 1108 return 0; 1109 1110 } 1111 1112 /* Interrupt management hooks */ 1113 static void hv_int_desc_free(struct hv_pci_dev *hpdev, 1114 struct tran_int_desc *int_desc) 1115 { 1116 struct pci_delete_interrupt *int_pkt; 1117 struct { 1118 struct pci_packet pkt; 1119 u8 buffer[sizeof(struct pci_delete_interrupt)]; 1120 } ctxt; 1121 1122 memset(&ctxt, 0, sizeof(ctxt)); 1123 int_pkt = (struct pci_delete_interrupt *)&ctxt.pkt.message; 1124 int_pkt->message_type.type = 1125 PCI_DELETE_INTERRUPT_MESSAGE; 1126 int_pkt->wslot.slot = hpdev->desc.win_slot.slot; 1127 int_pkt->int_desc = *int_desc; 1128 vmbus_sendpacket(hpdev->hbus->hdev->channel, int_pkt, sizeof(*int_pkt), 1129 (unsigned long)&ctxt.pkt, VM_PKT_DATA_INBAND, 0); 1130 kfree(int_desc); 1131 } 1132 1133 /** 1134 * hv_msi_free() - Free the MSI. 1135 * @domain: The interrupt domain pointer 1136 * @info: Extra MSI-related context 1137 * @irq: Identifies the IRQ. 1138 * 1139 * The Hyper-V parent partition and hypervisor are tracking the 1140 * messages that are in use, keeping the interrupt redirection 1141 * table up to date. This callback sends a message that frees 1142 * the IRT entry and related tracking nonsense. 1143 */ 1144 static void hv_msi_free(struct irq_domain *domain, struct msi_domain_info *info, 1145 unsigned int irq) 1146 { 1147 struct hv_pcibus_device *hbus; 1148 struct hv_pci_dev *hpdev; 1149 struct pci_dev *pdev; 1150 struct tran_int_desc *int_desc; 1151 struct irq_data *irq_data = irq_domain_get_irq_data(domain, irq); 1152 struct msi_desc *msi = irq_data_get_msi_desc(irq_data); 1153 1154 pdev = msi_desc_to_pci_dev(msi); 1155 hbus = info->data; 1156 int_desc = irq_data_get_irq_chip_data(irq_data); 1157 if (!int_desc) 1158 return; 1159 1160 irq_data->chip_data = NULL; 1161 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn)); 1162 if (!hpdev) { 1163 kfree(int_desc); 1164 return; 1165 } 1166 1167 hv_int_desc_free(hpdev, int_desc); 1168 put_pcichild(hpdev); 1169 } 1170 1171 static int hv_set_affinity(struct irq_data *data, const struct cpumask *dest, 1172 bool force) 1173 { 1174 struct irq_data *parent = data->parent_data; 1175 1176 return parent->chip->irq_set_affinity(parent, dest, force); 1177 } 1178 1179 static void hv_irq_mask(struct irq_data *data) 1180 { 1181 pci_msi_mask_irq(data); 1182 } 1183 1184 /** 1185 * hv_irq_unmask() - "Unmask" the IRQ by setting its current 1186 * affinity. 1187 * @data: Describes the IRQ 1188 * 1189 * Build new a destination for the MSI and make a hypercall to 1190 * update the Interrupt Redirection Table. "Device Logical ID" 1191 * is built out of this PCI bus's instance GUID and the function 1192 * number of the device. 1193 */ 1194 static void hv_irq_unmask(struct irq_data *data) 1195 { 1196 struct msi_desc *msi_desc = irq_data_get_msi_desc(data); 1197 struct irq_cfg *cfg = irqd_cfg(data); 1198 struct hv_retarget_device_interrupt *params; 1199 struct hv_pcibus_device *hbus; 1200 struct cpumask *dest; 1201 cpumask_var_t tmp; 1202 struct pci_bus *pbus; 1203 struct pci_dev *pdev; 1204 unsigned long flags; 1205 u32 var_size = 0; 1206 int cpu, nr_bank; 1207 u64 res; 1208 1209 dest = irq_data_get_effective_affinity_mask(data); 1210 pdev = msi_desc_to_pci_dev(msi_desc); 1211 pbus = pdev->bus; 1212 hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata); 1213 1214 spin_lock_irqsave(&hbus->retarget_msi_interrupt_lock, flags); 1215 1216 params = &hbus->retarget_msi_interrupt_params; 1217 memset(params, 0, sizeof(*params)); 1218 params->partition_id = HV_PARTITION_ID_SELF; 1219 params->int_entry.source = HV_INTERRUPT_SOURCE_MSI; 1220 hv_set_msi_entry_from_desc(¶ms->int_entry.msi_entry, msi_desc); 1221 params->device_id = (hbus->hdev->dev_instance.b[5] << 24) | 1222 (hbus->hdev->dev_instance.b[4] << 16) | 1223 (hbus->hdev->dev_instance.b[7] << 8) | 1224 (hbus->hdev->dev_instance.b[6] & 0xf8) | 1225 PCI_FUNC(pdev->devfn); 1226 params->int_target.vector = cfg->vector; 1227 1228 /* 1229 * Honoring apic->delivery_mode set to APIC_DELIVERY_MODE_FIXED by 1230 * setting the HV_DEVICE_INTERRUPT_TARGET_MULTICAST flag results in a 1231 * spurious interrupt storm. Not doing so does not seem to have a 1232 * negative effect (yet?). 1233 */ 1234 1235 if (hbus->protocol_version >= PCI_PROTOCOL_VERSION_1_2) { 1236 /* 1237 * PCI_PROTOCOL_VERSION_1_2 supports the VP_SET version of the 1238 * HVCALL_RETARGET_INTERRUPT hypercall, which also coincides 1239 * with >64 VP support. 1240 * ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED 1241 * is not sufficient for this hypercall. 1242 */ 1243 params->int_target.flags |= 1244 HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET; 1245 1246 if (!alloc_cpumask_var(&tmp, GFP_ATOMIC)) { 1247 res = 1; 1248 goto exit_unlock; 1249 } 1250 1251 cpumask_and(tmp, dest, cpu_online_mask); 1252 nr_bank = cpumask_to_vpset(¶ms->int_target.vp_set, tmp); 1253 free_cpumask_var(tmp); 1254 1255 if (nr_bank <= 0) { 1256 res = 1; 1257 goto exit_unlock; 1258 } 1259 1260 /* 1261 * var-sized hypercall, var-size starts after vp_mask (thus 1262 * vp_set.format does not count, but vp_set.valid_bank_mask 1263 * does). 1264 */ 1265 var_size = 1 + nr_bank; 1266 } else { 1267 for_each_cpu_and(cpu, dest, cpu_online_mask) { 1268 params->int_target.vp_mask |= 1269 (1ULL << hv_cpu_number_to_vp_number(cpu)); 1270 } 1271 } 1272 1273 res = hv_do_hypercall(HVCALL_RETARGET_INTERRUPT | (var_size << 17), 1274 params, NULL); 1275 1276 exit_unlock: 1277 spin_unlock_irqrestore(&hbus->retarget_msi_interrupt_lock, flags); 1278 1279 /* 1280 * During hibernation, when a CPU is offlined, the kernel tries 1281 * to move the interrupt to the remaining CPUs that haven't 1282 * been offlined yet. In this case, the below hv_do_hypercall() 1283 * always fails since the vmbus channel has been closed: 1284 * refer to cpu_disable_common() -> fixup_irqs() -> 1285 * irq_migrate_all_off_this_cpu() -> migrate_one_irq(). 1286 * 1287 * Suppress the error message for hibernation because the failure 1288 * during hibernation does not matter (at this time all the devices 1289 * have been frozen). Note: the correct affinity info is still updated 1290 * into the irqdata data structure in migrate_one_irq() -> 1291 * irq_do_set_affinity() -> hv_set_affinity(), so later when the VM 1292 * resumes, hv_pci_restore_msi_state() is able to correctly restore 1293 * the interrupt with the correct affinity. 1294 */ 1295 if (res && hbus->state != hv_pcibus_removing) 1296 dev_err(&hbus->hdev->device, 1297 "%s() failed: %#llx", __func__, res); 1298 1299 pci_msi_unmask_irq(data); 1300 } 1301 1302 struct compose_comp_ctxt { 1303 struct hv_pci_compl comp_pkt; 1304 struct tran_int_desc int_desc; 1305 }; 1306 1307 static void hv_pci_compose_compl(void *context, struct pci_response *resp, 1308 int resp_packet_size) 1309 { 1310 struct compose_comp_ctxt *comp_pkt = context; 1311 struct pci_create_int_response *int_resp = 1312 (struct pci_create_int_response *)resp; 1313 1314 comp_pkt->comp_pkt.completion_status = resp->status; 1315 comp_pkt->int_desc = int_resp->int_desc; 1316 complete(&comp_pkt->comp_pkt.host_event); 1317 } 1318 1319 static u32 hv_compose_msi_req_v1( 1320 struct pci_create_interrupt *int_pkt, struct cpumask *affinity, 1321 u32 slot, u8 vector) 1322 { 1323 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE; 1324 int_pkt->wslot.slot = slot; 1325 int_pkt->int_desc.vector = vector; 1326 int_pkt->int_desc.vector_count = 1; 1327 int_pkt->int_desc.delivery_mode = APIC_DELIVERY_MODE_FIXED; 1328 1329 /* 1330 * Create MSI w/ dummy vCPU set, overwritten by subsequent retarget in 1331 * hv_irq_unmask(). 1332 */ 1333 int_pkt->int_desc.cpu_mask = CPU_AFFINITY_ALL; 1334 1335 return sizeof(*int_pkt); 1336 } 1337 1338 static u32 hv_compose_msi_req_v2( 1339 struct pci_create_interrupt2 *int_pkt, struct cpumask *affinity, 1340 u32 slot, u8 vector) 1341 { 1342 int cpu; 1343 1344 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE2; 1345 int_pkt->wslot.slot = slot; 1346 int_pkt->int_desc.vector = vector; 1347 int_pkt->int_desc.vector_count = 1; 1348 int_pkt->int_desc.delivery_mode = APIC_DELIVERY_MODE_FIXED; 1349 1350 /* 1351 * Create MSI w/ dummy vCPU set targeting just one vCPU, overwritten 1352 * by subsequent retarget in hv_irq_unmask(). 1353 */ 1354 cpu = cpumask_first_and(affinity, cpu_online_mask); 1355 int_pkt->int_desc.processor_array[0] = 1356 hv_cpu_number_to_vp_number(cpu); 1357 int_pkt->int_desc.processor_count = 1; 1358 1359 return sizeof(*int_pkt); 1360 } 1361 1362 /** 1363 * hv_compose_msi_msg() - Supplies a valid MSI address/data 1364 * @data: Everything about this MSI 1365 * @msg: Buffer that is filled in by this function 1366 * 1367 * This function unpacks the IRQ looking for target CPU set, IDT 1368 * vector and mode and sends a message to the parent partition 1369 * asking for a mapping for that tuple in this partition. The 1370 * response supplies a data value and address to which that data 1371 * should be written to trigger that interrupt. 1372 */ 1373 static void hv_compose_msi_msg(struct irq_data *data, struct msi_msg *msg) 1374 { 1375 struct irq_cfg *cfg = irqd_cfg(data); 1376 struct hv_pcibus_device *hbus; 1377 struct vmbus_channel *channel; 1378 struct hv_pci_dev *hpdev; 1379 struct pci_bus *pbus; 1380 struct pci_dev *pdev; 1381 struct cpumask *dest; 1382 struct compose_comp_ctxt comp; 1383 struct tran_int_desc *int_desc; 1384 struct { 1385 struct pci_packet pci_pkt; 1386 union { 1387 struct pci_create_interrupt v1; 1388 struct pci_create_interrupt2 v2; 1389 } int_pkts; 1390 } __packed ctxt; 1391 1392 u32 size; 1393 int ret; 1394 1395 pdev = msi_desc_to_pci_dev(irq_data_get_msi_desc(data)); 1396 dest = irq_data_get_effective_affinity_mask(data); 1397 pbus = pdev->bus; 1398 hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata); 1399 channel = hbus->hdev->channel; 1400 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn)); 1401 if (!hpdev) 1402 goto return_null_message; 1403 1404 /* Free any previous message that might have already been composed. */ 1405 if (data->chip_data) { 1406 int_desc = data->chip_data; 1407 data->chip_data = NULL; 1408 hv_int_desc_free(hpdev, int_desc); 1409 } 1410 1411 int_desc = kzalloc(sizeof(*int_desc), GFP_ATOMIC); 1412 if (!int_desc) 1413 goto drop_reference; 1414 1415 memset(&ctxt, 0, sizeof(ctxt)); 1416 init_completion(&comp.comp_pkt.host_event); 1417 ctxt.pci_pkt.completion_func = hv_pci_compose_compl; 1418 ctxt.pci_pkt.compl_ctxt = ∁ 1419 1420 switch (hbus->protocol_version) { 1421 case PCI_PROTOCOL_VERSION_1_1: 1422 size = hv_compose_msi_req_v1(&ctxt.int_pkts.v1, 1423 dest, 1424 hpdev->desc.win_slot.slot, 1425 cfg->vector); 1426 break; 1427 1428 case PCI_PROTOCOL_VERSION_1_2: 1429 case PCI_PROTOCOL_VERSION_1_3: 1430 size = hv_compose_msi_req_v2(&ctxt.int_pkts.v2, 1431 dest, 1432 hpdev->desc.win_slot.slot, 1433 cfg->vector); 1434 break; 1435 1436 default: 1437 /* As we only negotiate protocol versions known to this driver, 1438 * this path should never hit. However, this is it not a hot 1439 * path so we print a message to aid future updates. 1440 */ 1441 dev_err(&hbus->hdev->device, 1442 "Unexpected vPCI protocol, update driver."); 1443 goto free_int_desc; 1444 } 1445 1446 ret = vmbus_sendpacket(hpdev->hbus->hdev->channel, &ctxt.int_pkts, 1447 size, (unsigned long)&ctxt.pci_pkt, 1448 VM_PKT_DATA_INBAND, 1449 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1450 if (ret) { 1451 dev_err(&hbus->hdev->device, 1452 "Sending request for interrupt failed: 0x%x", 1453 comp.comp_pkt.completion_status); 1454 goto free_int_desc; 1455 } 1456 1457 /* 1458 * Prevents hv_pci_onchannelcallback() from running concurrently 1459 * in the tasklet. 1460 */ 1461 tasklet_disable(&channel->callback_event); 1462 1463 /* 1464 * Since this function is called with IRQ locks held, can't 1465 * do normal wait for completion; instead poll. 1466 */ 1467 while (!try_wait_for_completion(&comp.comp_pkt.host_event)) { 1468 unsigned long flags; 1469 1470 /* 0xFFFF means an invalid PCI VENDOR ID. */ 1471 if (hv_pcifront_get_vendor_id(hpdev) == 0xFFFF) { 1472 dev_err_once(&hbus->hdev->device, 1473 "the device has gone\n"); 1474 goto enable_tasklet; 1475 } 1476 1477 /* 1478 * Make sure that the ring buffer data structure doesn't get 1479 * freed while we dereference the ring buffer pointer. Test 1480 * for the channel's onchannel_callback being NULL within a 1481 * sched_lock critical section. See also the inline comments 1482 * in vmbus_reset_channel_cb(). 1483 */ 1484 spin_lock_irqsave(&channel->sched_lock, flags); 1485 if (unlikely(channel->onchannel_callback == NULL)) { 1486 spin_unlock_irqrestore(&channel->sched_lock, flags); 1487 goto enable_tasklet; 1488 } 1489 hv_pci_onchannelcallback(hbus); 1490 spin_unlock_irqrestore(&channel->sched_lock, flags); 1491 1492 if (hpdev->state == hv_pcichild_ejecting) { 1493 dev_err_once(&hbus->hdev->device, 1494 "the device is being ejected\n"); 1495 goto enable_tasklet; 1496 } 1497 1498 udelay(100); 1499 } 1500 1501 tasklet_enable(&channel->callback_event); 1502 1503 if (comp.comp_pkt.completion_status < 0) { 1504 dev_err(&hbus->hdev->device, 1505 "Request for interrupt failed: 0x%x", 1506 comp.comp_pkt.completion_status); 1507 goto free_int_desc; 1508 } 1509 1510 /* 1511 * Record the assignment so that this can be unwound later. Using 1512 * irq_set_chip_data() here would be appropriate, but the lock it takes 1513 * is already held. 1514 */ 1515 *int_desc = comp.int_desc; 1516 data->chip_data = int_desc; 1517 1518 /* Pass up the result. */ 1519 msg->address_hi = comp.int_desc.address >> 32; 1520 msg->address_lo = comp.int_desc.address & 0xffffffff; 1521 msg->data = comp.int_desc.data; 1522 1523 put_pcichild(hpdev); 1524 return; 1525 1526 enable_tasklet: 1527 tasklet_enable(&channel->callback_event); 1528 free_int_desc: 1529 kfree(int_desc); 1530 drop_reference: 1531 put_pcichild(hpdev); 1532 return_null_message: 1533 msg->address_hi = 0; 1534 msg->address_lo = 0; 1535 msg->data = 0; 1536 } 1537 1538 /* HW Interrupt Chip Descriptor */ 1539 static struct irq_chip hv_msi_irq_chip = { 1540 .name = "Hyper-V PCIe MSI", 1541 .irq_compose_msi_msg = hv_compose_msi_msg, 1542 .irq_set_affinity = hv_set_affinity, 1543 .irq_ack = irq_chip_ack_parent, 1544 .irq_mask = hv_irq_mask, 1545 .irq_unmask = hv_irq_unmask, 1546 }; 1547 1548 static struct msi_domain_ops hv_msi_ops = { 1549 .msi_prepare = pci_msi_prepare, 1550 .msi_free = hv_msi_free, 1551 }; 1552 1553 /** 1554 * hv_pcie_init_irq_domain() - Initialize IRQ domain 1555 * @hbus: The root PCI bus 1556 * 1557 * This function creates an IRQ domain which will be used for 1558 * interrupts from devices that have been passed through. These 1559 * devices only support MSI and MSI-X, not line-based interrupts 1560 * or simulations of line-based interrupts through PCIe's 1561 * fabric-layer messages. Because interrupts are remapped, we 1562 * can support multi-message MSI here. 1563 * 1564 * Return: '0' on success and error value on failure 1565 */ 1566 static int hv_pcie_init_irq_domain(struct hv_pcibus_device *hbus) 1567 { 1568 hbus->msi_info.chip = &hv_msi_irq_chip; 1569 hbus->msi_info.ops = &hv_msi_ops; 1570 hbus->msi_info.flags = (MSI_FLAG_USE_DEF_DOM_OPS | 1571 MSI_FLAG_USE_DEF_CHIP_OPS | MSI_FLAG_MULTI_PCI_MSI | 1572 MSI_FLAG_PCI_MSIX); 1573 hbus->msi_info.handler = handle_edge_irq; 1574 hbus->msi_info.handler_name = "edge"; 1575 hbus->msi_info.data = hbus; 1576 hbus->irq_domain = pci_msi_create_irq_domain(hbus->sysdata.fwnode, 1577 &hbus->msi_info, 1578 x86_vector_domain); 1579 if (!hbus->irq_domain) { 1580 dev_err(&hbus->hdev->device, 1581 "Failed to build an MSI IRQ domain\n"); 1582 return -ENODEV; 1583 } 1584 1585 return 0; 1586 } 1587 1588 /** 1589 * get_bar_size() - Get the address space consumed by a BAR 1590 * @bar_val: Value that a BAR returned after -1 was written 1591 * to it. 1592 * 1593 * This function returns the size of the BAR, rounded up to 1 1594 * page. It has to be rounded up because the hypervisor's page 1595 * table entry that maps the BAR into the VM can't specify an 1596 * offset within a page. The invariant is that the hypervisor 1597 * must place any BARs of smaller than page length at the 1598 * beginning of a page. 1599 * 1600 * Return: Size in bytes of the consumed MMIO space. 1601 */ 1602 static u64 get_bar_size(u64 bar_val) 1603 { 1604 return round_up((1 + ~(bar_val & PCI_BASE_ADDRESS_MEM_MASK)), 1605 PAGE_SIZE); 1606 } 1607 1608 /** 1609 * survey_child_resources() - Total all MMIO requirements 1610 * @hbus: Root PCI bus, as understood by this driver 1611 */ 1612 static void survey_child_resources(struct hv_pcibus_device *hbus) 1613 { 1614 struct hv_pci_dev *hpdev; 1615 resource_size_t bar_size = 0; 1616 unsigned long flags; 1617 struct completion *event; 1618 u64 bar_val; 1619 int i; 1620 1621 /* If nobody is waiting on the answer, don't compute it. */ 1622 event = xchg(&hbus->survey_event, NULL); 1623 if (!event) 1624 return; 1625 1626 /* If the answer has already been computed, go with it. */ 1627 if (hbus->low_mmio_space || hbus->high_mmio_space) { 1628 complete(event); 1629 return; 1630 } 1631 1632 spin_lock_irqsave(&hbus->device_list_lock, flags); 1633 1634 /* 1635 * Due to an interesting quirk of the PCI spec, all memory regions 1636 * for a child device are a power of 2 in size and aligned in memory, 1637 * so it's sufficient to just add them up without tracking alignment. 1638 */ 1639 list_for_each_entry(hpdev, &hbus->children, list_entry) { 1640 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 1641 if (hpdev->probed_bar[i] & PCI_BASE_ADDRESS_SPACE_IO) 1642 dev_err(&hbus->hdev->device, 1643 "There's an I/O BAR in this list!\n"); 1644 1645 if (hpdev->probed_bar[i] != 0) { 1646 /* 1647 * A probed BAR has all the upper bits set that 1648 * can be changed. 1649 */ 1650 1651 bar_val = hpdev->probed_bar[i]; 1652 if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64) 1653 bar_val |= 1654 ((u64)hpdev->probed_bar[++i] << 32); 1655 else 1656 bar_val |= 0xffffffff00000000ULL; 1657 1658 bar_size = get_bar_size(bar_val); 1659 1660 if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64) 1661 hbus->high_mmio_space += bar_size; 1662 else 1663 hbus->low_mmio_space += bar_size; 1664 } 1665 } 1666 } 1667 1668 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 1669 complete(event); 1670 } 1671 1672 /** 1673 * prepopulate_bars() - Fill in BARs with defaults 1674 * @hbus: Root PCI bus, as understood by this driver 1675 * 1676 * The core PCI driver code seems much, much happier if the BARs 1677 * for a device have values upon first scan. So fill them in. 1678 * The algorithm below works down from large sizes to small, 1679 * attempting to pack the assignments optimally. The assumption, 1680 * enforced in other parts of the code, is that the beginning of 1681 * the memory-mapped I/O space will be aligned on the largest 1682 * BAR size. 1683 */ 1684 static void prepopulate_bars(struct hv_pcibus_device *hbus) 1685 { 1686 resource_size_t high_size = 0; 1687 resource_size_t low_size = 0; 1688 resource_size_t high_base = 0; 1689 resource_size_t low_base = 0; 1690 resource_size_t bar_size; 1691 struct hv_pci_dev *hpdev; 1692 unsigned long flags; 1693 u64 bar_val; 1694 u32 command; 1695 bool high; 1696 int i; 1697 1698 if (hbus->low_mmio_space) { 1699 low_size = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space)); 1700 low_base = hbus->low_mmio_res->start; 1701 } 1702 1703 if (hbus->high_mmio_space) { 1704 high_size = 1ULL << 1705 (63 - __builtin_clzll(hbus->high_mmio_space)); 1706 high_base = hbus->high_mmio_res->start; 1707 } 1708 1709 spin_lock_irqsave(&hbus->device_list_lock, flags); 1710 1711 /* 1712 * Clear the memory enable bit, in case it's already set. This occurs 1713 * in the suspend path of hibernation, where the device is suspended, 1714 * resumed and suspended again: see hibernation_snapshot() and 1715 * hibernation_platform_enter(). 1716 * 1717 * If the memory enable bit is already set, Hyper-V silently ignores 1718 * the below BAR updates, and the related PCI device driver can not 1719 * work, because reading from the device register(s) always returns 1720 * 0xFFFFFFFF. 1721 */ 1722 list_for_each_entry(hpdev, &hbus->children, list_entry) { 1723 _hv_pcifront_read_config(hpdev, PCI_COMMAND, 2, &command); 1724 command &= ~PCI_COMMAND_MEMORY; 1725 _hv_pcifront_write_config(hpdev, PCI_COMMAND, 2, command); 1726 } 1727 1728 /* Pick addresses for the BARs. */ 1729 do { 1730 list_for_each_entry(hpdev, &hbus->children, list_entry) { 1731 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 1732 bar_val = hpdev->probed_bar[i]; 1733 if (bar_val == 0) 1734 continue; 1735 high = bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64; 1736 if (high) { 1737 bar_val |= 1738 ((u64)hpdev->probed_bar[i + 1] 1739 << 32); 1740 } else { 1741 bar_val |= 0xffffffffULL << 32; 1742 } 1743 bar_size = get_bar_size(bar_val); 1744 if (high) { 1745 if (high_size != bar_size) { 1746 i++; 1747 continue; 1748 } 1749 _hv_pcifront_write_config(hpdev, 1750 PCI_BASE_ADDRESS_0 + (4 * i), 1751 4, 1752 (u32)(high_base & 0xffffff00)); 1753 i++; 1754 _hv_pcifront_write_config(hpdev, 1755 PCI_BASE_ADDRESS_0 + (4 * i), 1756 4, (u32)(high_base >> 32)); 1757 high_base += bar_size; 1758 } else { 1759 if (low_size != bar_size) 1760 continue; 1761 _hv_pcifront_write_config(hpdev, 1762 PCI_BASE_ADDRESS_0 + (4 * i), 1763 4, 1764 (u32)(low_base & 0xffffff00)); 1765 low_base += bar_size; 1766 } 1767 } 1768 if (high_size <= 1 && low_size <= 1) { 1769 /* Set the memory enable bit. */ 1770 _hv_pcifront_read_config(hpdev, PCI_COMMAND, 2, 1771 &command); 1772 command |= PCI_COMMAND_MEMORY; 1773 _hv_pcifront_write_config(hpdev, PCI_COMMAND, 2, 1774 command); 1775 break; 1776 } 1777 } 1778 1779 high_size >>= 1; 1780 low_size >>= 1; 1781 } while (high_size || low_size); 1782 1783 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 1784 } 1785 1786 /* 1787 * Assign entries in sysfs pci slot directory. 1788 * 1789 * Note that this function does not need to lock the children list 1790 * because it is called from pci_devices_present_work which 1791 * is serialized with hv_eject_device_work because they are on the 1792 * same ordered workqueue. Therefore hbus->children list will not change 1793 * even when pci_create_slot sleeps. 1794 */ 1795 static void hv_pci_assign_slots(struct hv_pcibus_device *hbus) 1796 { 1797 struct hv_pci_dev *hpdev; 1798 char name[SLOT_NAME_SIZE]; 1799 int slot_nr; 1800 1801 list_for_each_entry(hpdev, &hbus->children, list_entry) { 1802 if (hpdev->pci_slot) 1803 continue; 1804 1805 slot_nr = PCI_SLOT(wslot_to_devfn(hpdev->desc.win_slot.slot)); 1806 snprintf(name, SLOT_NAME_SIZE, "%u", hpdev->desc.ser); 1807 hpdev->pci_slot = pci_create_slot(hbus->pci_bus, slot_nr, 1808 name, NULL); 1809 if (IS_ERR(hpdev->pci_slot)) { 1810 pr_warn("pci_create slot %s failed\n", name); 1811 hpdev->pci_slot = NULL; 1812 } 1813 } 1814 } 1815 1816 /* 1817 * Remove entries in sysfs pci slot directory. 1818 */ 1819 static void hv_pci_remove_slots(struct hv_pcibus_device *hbus) 1820 { 1821 struct hv_pci_dev *hpdev; 1822 1823 list_for_each_entry(hpdev, &hbus->children, list_entry) { 1824 if (!hpdev->pci_slot) 1825 continue; 1826 pci_destroy_slot(hpdev->pci_slot); 1827 hpdev->pci_slot = NULL; 1828 } 1829 } 1830 1831 /* 1832 * Set NUMA node for the devices on the bus 1833 */ 1834 static void hv_pci_assign_numa_node(struct hv_pcibus_device *hbus) 1835 { 1836 struct pci_dev *dev; 1837 struct pci_bus *bus = hbus->pci_bus; 1838 struct hv_pci_dev *hv_dev; 1839 1840 list_for_each_entry(dev, &bus->devices, bus_list) { 1841 hv_dev = get_pcichild_wslot(hbus, devfn_to_wslot(dev->devfn)); 1842 if (!hv_dev) 1843 continue; 1844 1845 if (hv_dev->desc.flags & HV_PCI_DEVICE_FLAG_NUMA_AFFINITY) 1846 set_dev_node(&dev->dev, hv_dev->desc.virtual_numa_node); 1847 1848 put_pcichild(hv_dev); 1849 } 1850 } 1851 1852 /** 1853 * create_root_hv_pci_bus() - Expose a new root PCI bus 1854 * @hbus: Root PCI bus, as understood by this driver 1855 * 1856 * Return: 0 on success, -errno on failure 1857 */ 1858 static int create_root_hv_pci_bus(struct hv_pcibus_device *hbus) 1859 { 1860 /* Register the device */ 1861 hbus->pci_bus = pci_create_root_bus(&hbus->hdev->device, 1862 0, /* bus number is always zero */ 1863 &hv_pcifront_ops, 1864 &hbus->sysdata, 1865 &hbus->resources_for_children); 1866 if (!hbus->pci_bus) 1867 return -ENODEV; 1868 1869 hbus->pci_bus->msi = &hbus->msi_chip; 1870 hbus->pci_bus->msi->dev = &hbus->hdev->device; 1871 1872 pci_lock_rescan_remove(); 1873 pci_scan_child_bus(hbus->pci_bus); 1874 hv_pci_assign_numa_node(hbus); 1875 pci_bus_assign_resources(hbus->pci_bus); 1876 hv_pci_assign_slots(hbus); 1877 pci_bus_add_devices(hbus->pci_bus); 1878 pci_unlock_rescan_remove(); 1879 hbus->state = hv_pcibus_installed; 1880 return 0; 1881 } 1882 1883 struct q_res_req_compl { 1884 struct completion host_event; 1885 struct hv_pci_dev *hpdev; 1886 }; 1887 1888 /** 1889 * q_resource_requirements() - Query Resource Requirements 1890 * @context: The completion context. 1891 * @resp: The response that came from the host. 1892 * @resp_packet_size: The size in bytes of resp. 1893 * 1894 * This function is invoked on completion of a Query Resource 1895 * Requirements packet. 1896 */ 1897 static void q_resource_requirements(void *context, struct pci_response *resp, 1898 int resp_packet_size) 1899 { 1900 struct q_res_req_compl *completion = context; 1901 struct pci_q_res_req_response *q_res_req = 1902 (struct pci_q_res_req_response *)resp; 1903 int i; 1904 1905 if (resp->status < 0) { 1906 dev_err(&completion->hpdev->hbus->hdev->device, 1907 "query resource requirements failed: %x\n", 1908 resp->status); 1909 } else { 1910 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 1911 completion->hpdev->probed_bar[i] = 1912 q_res_req->probed_bar[i]; 1913 } 1914 } 1915 1916 complete(&completion->host_event); 1917 } 1918 1919 /** 1920 * new_pcichild_device() - Create a new child device 1921 * @hbus: The internal struct tracking this root PCI bus. 1922 * @desc: The information supplied so far from the host 1923 * about the device. 1924 * 1925 * This function creates the tracking structure for a new child 1926 * device and kicks off the process of figuring out what it is. 1927 * 1928 * Return: Pointer to the new tracking struct 1929 */ 1930 static struct hv_pci_dev *new_pcichild_device(struct hv_pcibus_device *hbus, 1931 struct hv_pcidev_description *desc) 1932 { 1933 struct hv_pci_dev *hpdev; 1934 struct pci_child_message *res_req; 1935 struct q_res_req_compl comp_pkt; 1936 struct { 1937 struct pci_packet init_packet; 1938 u8 buffer[sizeof(struct pci_child_message)]; 1939 } pkt; 1940 unsigned long flags; 1941 int ret; 1942 1943 hpdev = kzalloc(sizeof(*hpdev), GFP_KERNEL); 1944 if (!hpdev) 1945 return NULL; 1946 1947 hpdev->hbus = hbus; 1948 1949 memset(&pkt, 0, sizeof(pkt)); 1950 init_completion(&comp_pkt.host_event); 1951 comp_pkt.hpdev = hpdev; 1952 pkt.init_packet.compl_ctxt = &comp_pkt; 1953 pkt.init_packet.completion_func = q_resource_requirements; 1954 res_req = (struct pci_child_message *)&pkt.init_packet.message; 1955 res_req->message_type.type = PCI_QUERY_RESOURCE_REQUIREMENTS; 1956 res_req->wslot.slot = desc->win_slot.slot; 1957 1958 ret = vmbus_sendpacket(hbus->hdev->channel, res_req, 1959 sizeof(struct pci_child_message), 1960 (unsigned long)&pkt.init_packet, 1961 VM_PKT_DATA_INBAND, 1962 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1963 if (ret) 1964 goto error; 1965 1966 if (wait_for_response(hbus->hdev, &comp_pkt.host_event)) 1967 goto error; 1968 1969 hpdev->desc = *desc; 1970 refcount_set(&hpdev->refs, 1); 1971 get_pcichild(hpdev); 1972 spin_lock_irqsave(&hbus->device_list_lock, flags); 1973 1974 list_add_tail(&hpdev->list_entry, &hbus->children); 1975 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 1976 return hpdev; 1977 1978 error: 1979 kfree(hpdev); 1980 return NULL; 1981 } 1982 1983 /** 1984 * get_pcichild_wslot() - Find device from slot 1985 * @hbus: Root PCI bus, as understood by this driver 1986 * @wslot: Location on the bus 1987 * 1988 * This function looks up a PCI device and returns the internal 1989 * representation of it. It acquires a reference on it, so that 1990 * the device won't be deleted while somebody is using it. The 1991 * caller is responsible for calling put_pcichild() to release 1992 * this reference. 1993 * 1994 * Return: Internal representation of a PCI device 1995 */ 1996 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus, 1997 u32 wslot) 1998 { 1999 unsigned long flags; 2000 struct hv_pci_dev *iter, *hpdev = NULL; 2001 2002 spin_lock_irqsave(&hbus->device_list_lock, flags); 2003 list_for_each_entry(iter, &hbus->children, list_entry) { 2004 if (iter->desc.win_slot.slot == wslot) { 2005 hpdev = iter; 2006 get_pcichild(hpdev); 2007 break; 2008 } 2009 } 2010 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2011 2012 return hpdev; 2013 } 2014 2015 /** 2016 * pci_devices_present_work() - Handle new list of child devices 2017 * @work: Work struct embedded in struct hv_dr_work 2018 * 2019 * "Bus Relations" is the Windows term for "children of this 2020 * bus." The terminology is preserved here for people trying to 2021 * debug the interaction between Hyper-V and Linux. This 2022 * function is called when the parent partition reports a list 2023 * of functions that should be observed under this PCI Express 2024 * port (bus). 2025 * 2026 * This function updates the list, and must tolerate being 2027 * called multiple times with the same information. The typical 2028 * number of child devices is one, with very atypical cases 2029 * involving three or four, so the algorithms used here can be 2030 * simple and inefficient. 2031 * 2032 * It must also treat the omission of a previously observed device as 2033 * notification that the device no longer exists. 2034 * 2035 * Note that this function is serialized with hv_eject_device_work(), 2036 * because both are pushed to the ordered workqueue hbus->wq. 2037 */ 2038 static void pci_devices_present_work(struct work_struct *work) 2039 { 2040 u32 child_no; 2041 bool found; 2042 struct hv_pcidev_description *new_desc; 2043 struct hv_pci_dev *hpdev; 2044 struct hv_pcibus_device *hbus; 2045 struct list_head removed; 2046 struct hv_dr_work *dr_wrk; 2047 struct hv_dr_state *dr = NULL; 2048 unsigned long flags; 2049 2050 dr_wrk = container_of(work, struct hv_dr_work, wrk); 2051 hbus = dr_wrk->bus; 2052 kfree(dr_wrk); 2053 2054 INIT_LIST_HEAD(&removed); 2055 2056 /* Pull this off the queue and process it if it was the last one. */ 2057 spin_lock_irqsave(&hbus->device_list_lock, flags); 2058 while (!list_empty(&hbus->dr_list)) { 2059 dr = list_first_entry(&hbus->dr_list, struct hv_dr_state, 2060 list_entry); 2061 list_del(&dr->list_entry); 2062 2063 /* Throw this away if the list still has stuff in it. */ 2064 if (!list_empty(&hbus->dr_list)) { 2065 kfree(dr); 2066 continue; 2067 } 2068 } 2069 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2070 2071 if (!dr) { 2072 put_hvpcibus(hbus); 2073 return; 2074 } 2075 2076 /* First, mark all existing children as reported missing. */ 2077 spin_lock_irqsave(&hbus->device_list_lock, flags); 2078 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2079 hpdev->reported_missing = true; 2080 } 2081 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2082 2083 /* Next, add back any reported devices. */ 2084 for (child_no = 0; child_no < dr->device_count; child_no++) { 2085 found = false; 2086 new_desc = &dr->func[child_no]; 2087 2088 spin_lock_irqsave(&hbus->device_list_lock, flags); 2089 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2090 if ((hpdev->desc.win_slot.slot == new_desc->win_slot.slot) && 2091 (hpdev->desc.v_id == new_desc->v_id) && 2092 (hpdev->desc.d_id == new_desc->d_id) && 2093 (hpdev->desc.ser == new_desc->ser)) { 2094 hpdev->reported_missing = false; 2095 found = true; 2096 } 2097 } 2098 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2099 2100 if (!found) { 2101 hpdev = new_pcichild_device(hbus, new_desc); 2102 if (!hpdev) 2103 dev_err(&hbus->hdev->device, 2104 "couldn't record a child device.\n"); 2105 } 2106 } 2107 2108 /* Move missing children to a list on the stack. */ 2109 spin_lock_irqsave(&hbus->device_list_lock, flags); 2110 do { 2111 found = false; 2112 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2113 if (hpdev->reported_missing) { 2114 found = true; 2115 put_pcichild(hpdev); 2116 list_move_tail(&hpdev->list_entry, &removed); 2117 break; 2118 } 2119 } 2120 } while (found); 2121 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2122 2123 /* Delete everything that should no longer exist. */ 2124 while (!list_empty(&removed)) { 2125 hpdev = list_first_entry(&removed, struct hv_pci_dev, 2126 list_entry); 2127 list_del(&hpdev->list_entry); 2128 2129 if (hpdev->pci_slot) 2130 pci_destroy_slot(hpdev->pci_slot); 2131 2132 put_pcichild(hpdev); 2133 } 2134 2135 switch (hbus->state) { 2136 case hv_pcibus_installed: 2137 /* 2138 * Tell the core to rescan bus 2139 * because there may have been changes. 2140 */ 2141 pci_lock_rescan_remove(); 2142 pci_scan_child_bus(hbus->pci_bus); 2143 hv_pci_assign_numa_node(hbus); 2144 hv_pci_assign_slots(hbus); 2145 pci_unlock_rescan_remove(); 2146 break; 2147 2148 case hv_pcibus_init: 2149 case hv_pcibus_probed: 2150 survey_child_resources(hbus); 2151 break; 2152 2153 default: 2154 break; 2155 } 2156 2157 put_hvpcibus(hbus); 2158 kfree(dr); 2159 } 2160 2161 /** 2162 * hv_pci_start_relations_work() - Queue work to start device discovery 2163 * @hbus: Root PCI bus, as understood by this driver 2164 * @dr: The list of children returned from host 2165 * 2166 * Return: 0 on success, -errno on failure 2167 */ 2168 static int hv_pci_start_relations_work(struct hv_pcibus_device *hbus, 2169 struct hv_dr_state *dr) 2170 { 2171 struct hv_dr_work *dr_wrk; 2172 unsigned long flags; 2173 bool pending_dr; 2174 2175 if (hbus->state == hv_pcibus_removing) { 2176 dev_info(&hbus->hdev->device, 2177 "PCI VMBus BUS_RELATIONS: ignored\n"); 2178 return -ENOENT; 2179 } 2180 2181 dr_wrk = kzalloc(sizeof(*dr_wrk), GFP_NOWAIT); 2182 if (!dr_wrk) 2183 return -ENOMEM; 2184 2185 INIT_WORK(&dr_wrk->wrk, pci_devices_present_work); 2186 dr_wrk->bus = hbus; 2187 2188 spin_lock_irqsave(&hbus->device_list_lock, flags); 2189 /* 2190 * If pending_dr is true, we have already queued a work, 2191 * which will see the new dr. Otherwise, we need to 2192 * queue a new work. 2193 */ 2194 pending_dr = !list_empty(&hbus->dr_list); 2195 list_add_tail(&dr->list_entry, &hbus->dr_list); 2196 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2197 2198 if (pending_dr) { 2199 kfree(dr_wrk); 2200 } else { 2201 get_hvpcibus(hbus); 2202 queue_work(hbus->wq, &dr_wrk->wrk); 2203 } 2204 2205 return 0; 2206 } 2207 2208 /** 2209 * hv_pci_devices_present() - Handle list of new children 2210 * @hbus: Root PCI bus, as understood by this driver 2211 * @relations: Packet from host listing children 2212 * 2213 * Process a new list of devices on the bus. The list of devices is 2214 * discovered by VSP and sent to us via VSP message PCI_BUS_RELATIONS, 2215 * whenever a new list of devices for this bus appears. 2216 */ 2217 static void hv_pci_devices_present(struct hv_pcibus_device *hbus, 2218 struct pci_bus_relations *relations) 2219 { 2220 struct hv_dr_state *dr; 2221 int i; 2222 2223 dr = kzalloc(struct_size(dr, func, relations->device_count), 2224 GFP_NOWAIT); 2225 if (!dr) 2226 return; 2227 2228 dr->device_count = relations->device_count; 2229 for (i = 0; i < dr->device_count; i++) { 2230 dr->func[i].v_id = relations->func[i].v_id; 2231 dr->func[i].d_id = relations->func[i].d_id; 2232 dr->func[i].rev = relations->func[i].rev; 2233 dr->func[i].prog_intf = relations->func[i].prog_intf; 2234 dr->func[i].subclass = relations->func[i].subclass; 2235 dr->func[i].base_class = relations->func[i].base_class; 2236 dr->func[i].subsystem_id = relations->func[i].subsystem_id; 2237 dr->func[i].win_slot = relations->func[i].win_slot; 2238 dr->func[i].ser = relations->func[i].ser; 2239 } 2240 2241 if (hv_pci_start_relations_work(hbus, dr)) 2242 kfree(dr); 2243 } 2244 2245 /** 2246 * hv_pci_devices_present2() - Handle list of new children 2247 * @hbus: Root PCI bus, as understood by this driver 2248 * @relations: Packet from host listing children 2249 * 2250 * This function is the v2 version of hv_pci_devices_present() 2251 */ 2252 static void hv_pci_devices_present2(struct hv_pcibus_device *hbus, 2253 struct pci_bus_relations2 *relations) 2254 { 2255 struct hv_dr_state *dr; 2256 int i; 2257 2258 dr = kzalloc(struct_size(dr, func, relations->device_count), 2259 GFP_NOWAIT); 2260 if (!dr) 2261 return; 2262 2263 dr->device_count = relations->device_count; 2264 for (i = 0; i < dr->device_count; i++) { 2265 dr->func[i].v_id = relations->func[i].v_id; 2266 dr->func[i].d_id = relations->func[i].d_id; 2267 dr->func[i].rev = relations->func[i].rev; 2268 dr->func[i].prog_intf = relations->func[i].prog_intf; 2269 dr->func[i].subclass = relations->func[i].subclass; 2270 dr->func[i].base_class = relations->func[i].base_class; 2271 dr->func[i].subsystem_id = relations->func[i].subsystem_id; 2272 dr->func[i].win_slot = relations->func[i].win_slot; 2273 dr->func[i].ser = relations->func[i].ser; 2274 dr->func[i].flags = relations->func[i].flags; 2275 dr->func[i].virtual_numa_node = 2276 relations->func[i].virtual_numa_node; 2277 } 2278 2279 if (hv_pci_start_relations_work(hbus, dr)) 2280 kfree(dr); 2281 } 2282 2283 /** 2284 * hv_eject_device_work() - Asynchronously handles ejection 2285 * @work: Work struct embedded in internal device struct 2286 * 2287 * This function handles ejecting a device. Windows will 2288 * attempt to gracefully eject a device, waiting 60 seconds to 2289 * hear back from the guest OS that this completed successfully. 2290 * If this timer expires, the device will be forcibly removed. 2291 */ 2292 static void hv_eject_device_work(struct work_struct *work) 2293 { 2294 struct pci_eject_response *ejct_pkt; 2295 struct hv_pcibus_device *hbus; 2296 struct hv_pci_dev *hpdev; 2297 struct pci_dev *pdev; 2298 unsigned long flags; 2299 int wslot; 2300 struct { 2301 struct pci_packet pkt; 2302 u8 buffer[sizeof(struct pci_eject_response)]; 2303 } ctxt; 2304 2305 hpdev = container_of(work, struct hv_pci_dev, wrk); 2306 hbus = hpdev->hbus; 2307 2308 WARN_ON(hpdev->state != hv_pcichild_ejecting); 2309 2310 /* 2311 * Ejection can come before or after the PCI bus has been set up, so 2312 * attempt to find it and tear down the bus state, if it exists. This 2313 * must be done without constructs like pci_domain_nr(hbus->pci_bus) 2314 * because hbus->pci_bus may not exist yet. 2315 */ 2316 wslot = wslot_to_devfn(hpdev->desc.win_slot.slot); 2317 pdev = pci_get_domain_bus_and_slot(hbus->sysdata.domain, 0, wslot); 2318 if (pdev) { 2319 pci_lock_rescan_remove(); 2320 pci_stop_and_remove_bus_device(pdev); 2321 pci_dev_put(pdev); 2322 pci_unlock_rescan_remove(); 2323 } 2324 2325 spin_lock_irqsave(&hbus->device_list_lock, flags); 2326 list_del(&hpdev->list_entry); 2327 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2328 2329 if (hpdev->pci_slot) 2330 pci_destroy_slot(hpdev->pci_slot); 2331 2332 memset(&ctxt, 0, sizeof(ctxt)); 2333 ejct_pkt = (struct pci_eject_response *)&ctxt.pkt.message; 2334 ejct_pkt->message_type.type = PCI_EJECTION_COMPLETE; 2335 ejct_pkt->wslot.slot = hpdev->desc.win_slot.slot; 2336 vmbus_sendpacket(hbus->hdev->channel, ejct_pkt, 2337 sizeof(*ejct_pkt), (unsigned long)&ctxt.pkt, 2338 VM_PKT_DATA_INBAND, 0); 2339 2340 /* For the get_pcichild() in hv_pci_eject_device() */ 2341 put_pcichild(hpdev); 2342 /* For the two refs got in new_pcichild_device() */ 2343 put_pcichild(hpdev); 2344 put_pcichild(hpdev); 2345 /* hpdev has been freed. Do not use it any more. */ 2346 2347 put_hvpcibus(hbus); 2348 } 2349 2350 /** 2351 * hv_pci_eject_device() - Handles device ejection 2352 * @hpdev: Internal device tracking struct 2353 * 2354 * This function is invoked when an ejection packet arrives. It 2355 * just schedules work so that we don't re-enter the packet 2356 * delivery code handling the ejection. 2357 */ 2358 static void hv_pci_eject_device(struct hv_pci_dev *hpdev) 2359 { 2360 struct hv_pcibus_device *hbus = hpdev->hbus; 2361 struct hv_device *hdev = hbus->hdev; 2362 2363 if (hbus->state == hv_pcibus_removing) { 2364 dev_info(&hdev->device, "PCI VMBus EJECT: ignored\n"); 2365 return; 2366 } 2367 2368 hpdev->state = hv_pcichild_ejecting; 2369 get_pcichild(hpdev); 2370 INIT_WORK(&hpdev->wrk, hv_eject_device_work); 2371 get_hvpcibus(hbus); 2372 queue_work(hbus->wq, &hpdev->wrk); 2373 } 2374 2375 /** 2376 * hv_pci_onchannelcallback() - Handles incoming packets 2377 * @context: Internal bus tracking struct 2378 * 2379 * This function is invoked whenever the host sends a packet to 2380 * this channel (which is private to this root PCI bus). 2381 */ 2382 static void hv_pci_onchannelcallback(void *context) 2383 { 2384 const int packet_size = 0x100; 2385 int ret; 2386 struct hv_pcibus_device *hbus = context; 2387 u32 bytes_recvd; 2388 u64 req_id; 2389 struct vmpacket_descriptor *desc; 2390 unsigned char *buffer; 2391 int bufferlen = packet_size; 2392 struct pci_packet *comp_packet; 2393 struct pci_response *response; 2394 struct pci_incoming_message *new_message; 2395 struct pci_bus_relations *bus_rel; 2396 struct pci_bus_relations2 *bus_rel2; 2397 struct pci_dev_inval_block *inval; 2398 struct pci_dev_incoming *dev_message; 2399 struct hv_pci_dev *hpdev; 2400 2401 buffer = kmalloc(bufferlen, GFP_ATOMIC); 2402 if (!buffer) 2403 return; 2404 2405 while (1) { 2406 ret = vmbus_recvpacket_raw(hbus->hdev->channel, buffer, 2407 bufferlen, &bytes_recvd, &req_id); 2408 2409 if (ret == -ENOBUFS) { 2410 kfree(buffer); 2411 /* Handle large packet */ 2412 bufferlen = bytes_recvd; 2413 buffer = kmalloc(bytes_recvd, GFP_ATOMIC); 2414 if (!buffer) 2415 return; 2416 continue; 2417 } 2418 2419 /* Zero length indicates there are no more packets. */ 2420 if (ret || !bytes_recvd) 2421 break; 2422 2423 /* 2424 * All incoming packets must be at least as large as a 2425 * response. 2426 */ 2427 if (bytes_recvd <= sizeof(struct pci_response)) 2428 continue; 2429 desc = (struct vmpacket_descriptor *)buffer; 2430 2431 switch (desc->type) { 2432 case VM_PKT_COMP: 2433 2434 /* 2435 * The host is trusted, and thus it's safe to interpret 2436 * this transaction ID as a pointer. 2437 */ 2438 comp_packet = (struct pci_packet *)req_id; 2439 response = (struct pci_response *)buffer; 2440 comp_packet->completion_func(comp_packet->compl_ctxt, 2441 response, 2442 bytes_recvd); 2443 break; 2444 2445 case VM_PKT_DATA_INBAND: 2446 2447 new_message = (struct pci_incoming_message *)buffer; 2448 switch (new_message->message_type.type) { 2449 case PCI_BUS_RELATIONS: 2450 2451 bus_rel = (struct pci_bus_relations *)buffer; 2452 if (bytes_recvd < 2453 struct_size(bus_rel, func, 2454 bus_rel->device_count)) { 2455 dev_err(&hbus->hdev->device, 2456 "bus relations too small\n"); 2457 break; 2458 } 2459 2460 hv_pci_devices_present(hbus, bus_rel); 2461 break; 2462 2463 case PCI_BUS_RELATIONS2: 2464 2465 bus_rel2 = (struct pci_bus_relations2 *)buffer; 2466 if (bytes_recvd < 2467 struct_size(bus_rel2, func, 2468 bus_rel2->device_count)) { 2469 dev_err(&hbus->hdev->device, 2470 "bus relations v2 too small\n"); 2471 break; 2472 } 2473 2474 hv_pci_devices_present2(hbus, bus_rel2); 2475 break; 2476 2477 case PCI_EJECT: 2478 2479 dev_message = (struct pci_dev_incoming *)buffer; 2480 hpdev = get_pcichild_wslot(hbus, 2481 dev_message->wslot.slot); 2482 if (hpdev) { 2483 hv_pci_eject_device(hpdev); 2484 put_pcichild(hpdev); 2485 } 2486 break; 2487 2488 case PCI_INVALIDATE_BLOCK: 2489 2490 inval = (struct pci_dev_inval_block *)buffer; 2491 hpdev = get_pcichild_wslot(hbus, 2492 inval->wslot.slot); 2493 if (hpdev) { 2494 if (hpdev->block_invalidate) { 2495 hpdev->block_invalidate( 2496 hpdev->invalidate_context, 2497 inval->block_mask); 2498 } 2499 put_pcichild(hpdev); 2500 } 2501 break; 2502 2503 default: 2504 dev_warn(&hbus->hdev->device, 2505 "Unimplemented protocol message %x\n", 2506 new_message->message_type.type); 2507 break; 2508 } 2509 break; 2510 2511 default: 2512 dev_err(&hbus->hdev->device, 2513 "unhandled packet type %d, tid %llx len %d\n", 2514 desc->type, req_id, bytes_recvd); 2515 break; 2516 } 2517 } 2518 2519 kfree(buffer); 2520 } 2521 2522 /** 2523 * hv_pci_protocol_negotiation() - Set up protocol 2524 * @hdev: VMBus's tracking struct for this root PCI bus. 2525 * @version: Array of supported channel protocol versions in 2526 * the order of probing - highest go first. 2527 * @num_version: Number of elements in the version array. 2528 * 2529 * This driver is intended to support running on Windows 10 2530 * (server) and later versions. It will not run on earlier 2531 * versions, as they assume that many of the operations which 2532 * Linux needs accomplished with a spinlock held were done via 2533 * asynchronous messaging via VMBus. Windows 10 increases the 2534 * surface area of PCI emulation so that these actions can take 2535 * place by suspending a virtual processor for their duration. 2536 * 2537 * This function negotiates the channel protocol version, 2538 * failing if the host doesn't support the necessary protocol 2539 * level. 2540 */ 2541 static int hv_pci_protocol_negotiation(struct hv_device *hdev, 2542 enum pci_protocol_version_t version[], 2543 int num_version) 2544 { 2545 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 2546 struct pci_version_request *version_req; 2547 struct hv_pci_compl comp_pkt; 2548 struct pci_packet *pkt; 2549 int ret; 2550 int i; 2551 2552 /* 2553 * Initiate the handshake with the host and negotiate 2554 * a version that the host can support. We start with the 2555 * highest version number and go down if the host cannot 2556 * support it. 2557 */ 2558 pkt = kzalloc(sizeof(*pkt) + sizeof(*version_req), GFP_KERNEL); 2559 if (!pkt) 2560 return -ENOMEM; 2561 2562 init_completion(&comp_pkt.host_event); 2563 pkt->completion_func = hv_pci_generic_compl; 2564 pkt->compl_ctxt = &comp_pkt; 2565 version_req = (struct pci_version_request *)&pkt->message; 2566 version_req->message_type.type = PCI_QUERY_PROTOCOL_VERSION; 2567 2568 for (i = 0; i < num_version; i++) { 2569 version_req->protocol_version = version[i]; 2570 ret = vmbus_sendpacket(hdev->channel, version_req, 2571 sizeof(struct pci_version_request), 2572 (unsigned long)pkt, VM_PKT_DATA_INBAND, 2573 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 2574 if (!ret) 2575 ret = wait_for_response(hdev, &comp_pkt.host_event); 2576 2577 if (ret) { 2578 dev_err(&hdev->device, 2579 "PCI Pass-through VSP failed to request version: %d", 2580 ret); 2581 goto exit; 2582 } 2583 2584 if (comp_pkt.completion_status >= 0) { 2585 hbus->protocol_version = version[i]; 2586 dev_info(&hdev->device, 2587 "PCI VMBus probing: Using version %#x\n", 2588 hbus->protocol_version); 2589 goto exit; 2590 } 2591 2592 if (comp_pkt.completion_status != STATUS_REVISION_MISMATCH) { 2593 dev_err(&hdev->device, 2594 "PCI Pass-through VSP failed version request: %#x", 2595 comp_pkt.completion_status); 2596 ret = -EPROTO; 2597 goto exit; 2598 } 2599 2600 reinit_completion(&comp_pkt.host_event); 2601 } 2602 2603 dev_err(&hdev->device, 2604 "PCI pass-through VSP failed to find supported version"); 2605 ret = -EPROTO; 2606 2607 exit: 2608 kfree(pkt); 2609 return ret; 2610 } 2611 2612 /** 2613 * hv_pci_free_bridge_windows() - Release memory regions for the 2614 * bus 2615 * @hbus: Root PCI bus, as understood by this driver 2616 */ 2617 static void hv_pci_free_bridge_windows(struct hv_pcibus_device *hbus) 2618 { 2619 /* 2620 * Set the resources back to the way they looked when they 2621 * were allocated by setting IORESOURCE_BUSY again. 2622 */ 2623 2624 if (hbus->low_mmio_space && hbus->low_mmio_res) { 2625 hbus->low_mmio_res->flags |= IORESOURCE_BUSY; 2626 vmbus_free_mmio(hbus->low_mmio_res->start, 2627 resource_size(hbus->low_mmio_res)); 2628 } 2629 2630 if (hbus->high_mmio_space && hbus->high_mmio_res) { 2631 hbus->high_mmio_res->flags |= IORESOURCE_BUSY; 2632 vmbus_free_mmio(hbus->high_mmio_res->start, 2633 resource_size(hbus->high_mmio_res)); 2634 } 2635 } 2636 2637 /** 2638 * hv_pci_allocate_bridge_windows() - Allocate memory regions 2639 * for the bus 2640 * @hbus: Root PCI bus, as understood by this driver 2641 * 2642 * This function calls vmbus_allocate_mmio(), which is itself a 2643 * bit of a compromise. Ideally, we might change the pnp layer 2644 * in the kernel such that it comprehends either PCI devices 2645 * which are "grandchildren of ACPI," with some intermediate bus 2646 * node (in this case, VMBus) or change it such that it 2647 * understands VMBus. The pnp layer, however, has been declared 2648 * deprecated, and not subject to change. 2649 * 2650 * The workaround, implemented here, is to ask VMBus to allocate 2651 * MMIO space for this bus. VMBus itself knows which ranges are 2652 * appropriate by looking at its own ACPI objects. Then, after 2653 * these ranges are claimed, they're modified to look like they 2654 * would have looked if the ACPI and pnp code had allocated 2655 * bridge windows. These descriptors have to exist in this form 2656 * in order to satisfy the code which will get invoked when the 2657 * endpoint PCI function driver calls request_mem_region() or 2658 * request_mem_region_exclusive(). 2659 * 2660 * Return: 0 on success, -errno on failure 2661 */ 2662 static int hv_pci_allocate_bridge_windows(struct hv_pcibus_device *hbus) 2663 { 2664 resource_size_t align; 2665 int ret; 2666 2667 if (hbus->low_mmio_space) { 2668 align = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space)); 2669 ret = vmbus_allocate_mmio(&hbus->low_mmio_res, hbus->hdev, 0, 2670 (u64)(u32)0xffffffff, 2671 hbus->low_mmio_space, 2672 align, false); 2673 if (ret) { 2674 dev_err(&hbus->hdev->device, 2675 "Need %#llx of low MMIO space. Consider reconfiguring the VM.\n", 2676 hbus->low_mmio_space); 2677 return ret; 2678 } 2679 2680 /* Modify this resource to become a bridge window. */ 2681 hbus->low_mmio_res->flags |= IORESOURCE_WINDOW; 2682 hbus->low_mmio_res->flags &= ~IORESOURCE_BUSY; 2683 pci_add_resource(&hbus->resources_for_children, 2684 hbus->low_mmio_res); 2685 } 2686 2687 if (hbus->high_mmio_space) { 2688 align = 1ULL << (63 - __builtin_clzll(hbus->high_mmio_space)); 2689 ret = vmbus_allocate_mmio(&hbus->high_mmio_res, hbus->hdev, 2690 0x100000000, -1, 2691 hbus->high_mmio_space, align, 2692 false); 2693 if (ret) { 2694 dev_err(&hbus->hdev->device, 2695 "Need %#llx of high MMIO space. Consider reconfiguring the VM.\n", 2696 hbus->high_mmio_space); 2697 goto release_low_mmio; 2698 } 2699 2700 /* Modify this resource to become a bridge window. */ 2701 hbus->high_mmio_res->flags |= IORESOURCE_WINDOW; 2702 hbus->high_mmio_res->flags &= ~IORESOURCE_BUSY; 2703 pci_add_resource(&hbus->resources_for_children, 2704 hbus->high_mmio_res); 2705 } 2706 2707 return 0; 2708 2709 release_low_mmio: 2710 if (hbus->low_mmio_res) { 2711 vmbus_free_mmio(hbus->low_mmio_res->start, 2712 resource_size(hbus->low_mmio_res)); 2713 } 2714 2715 return ret; 2716 } 2717 2718 /** 2719 * hv_allocate_config_window() - Find MMIO space for PCI Config 2720 * @hbus: Root PCI bus, as understood by this driver 2721 * 2722 * This function claims memory-mapped I/O space for accessing 2723 * configuration space for the functions on this bus. 2724 * 2725 * Return: 0 on success, -errno on failure 2726 */ 2727 static int hv_allocate_config_window(struct hv_pcibus_device *hbus) 2728 { 2729 int ret; 2730 2731 /* 2732 * Set up a region of MMIO space to use for accessing configuration 2733 * space. 2734 */ 2735 ret = vmbus_allocate_mmio(&hbus->mem_config, hbus->hdev, 0, -1, 2736 PCI_CONFIG_MMIO_LENGTH, 0x1000, false); 2737 if (ret) 2738 return ret; 2739 2740 /* 2741 * vmbus_allocate_mmio() gets used for allocating both device endpoint 2742 * resource claims (those which cannot be overlapped) and the ranges 2743 * which are valid for the children of this bus, which are intended 2744 * to be overlapped by those children. Set the flag on this claim 2745 * meaning that this region can't be overlapped. 2746 */ 2747 2748 hbus->mem_config->flags |= IORESOURCE_BUSY; 2749 2750 return 0; 2751 } 2752 2753 static void hv_free_config_window(struct hv_pcibus_device *hbus) 2754 { 2755 vmbus_free_mmio(hbus->mem_config->start, PCI_CONFIG_MMIO_LENGTH); 2756 } 2757 2758 static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs); 2759 2760 /** 2761 * hv_pci_enter_d0() - Bring the "bus" into the D0 power state 2762 * @hdev: VMBus's tracking struct for this root PCI bus 2763 * 2764 * Return: 0 on success, -errno on failure 2765 */ 2766 static int hv_pci_enter_d0(struct hv_device *hdev) 2767 { 2768 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 2769 struct pci_bus_d0_entry *d0_entry; 2770 struct hv_pci_compl comp_pkt; 2771 struct pci_packet *pkt; 2772 int ret; 2773 2774 /* 2775 * Tell the host that the bus is ready to use, and moved into the 2776 * powered-on state. This includes telling the host which region 2777 * of memory-mapped I/O space has been chosen for configuration space 2778 * access. 2779 */ 2780 pkt = kzalloc(sizeof(*pkt) + sizeof(*d0_entry), GFP_KERNEL); 2781 if (!pkt) 2782 return -ENOMEM; 2783 2784 init_completion(&comp_pkt.host_event); 2785 pkt->completion_func = hv_pci_generic_compl; 2786 pkt->compl_ctxt = &comp_pkt; 2787 d0_entry = (struct pci_bus_d0_entry *)&pkt->message; 2788 d0_entry->message_type.type = PCI_BUS_D0ENTRY; 2789 d0_entry->mmio_base = hbus->mem_config->start; 2790 2791 ret = vmbus_sendpacket(hdev->channel, d0_entry, sizeof(*d0_entry), 2792 (unsigned long)pkt, VM_PKT_DATA_INBAND, 2793 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 2794 if (!ret) 2795 ret = wait_for_response(hdev, &comp_pkt.host_event); 2796 2797 if (ret) 2798 goto exit; 2799 2800 if (comp_pkt.completion_status < 0) { 2801 dev_err(&hdev->device, 2802 "PCI Pass-through VSP failed D0 Entry with status %x\n", 2803 comp_pkt.completion_status); 2804 ret = -EPROTO; 2805 goto exit; 2806 } 2807 2808 ret = 0; 2809 2810 exit: 2811 kfree(pkt); 2812 return ret; 2813 } 2814 2815 /** 2816 * hv_pci_query_relations() - Ask host to send list of child 2817 * devices 2818 * @hdev: VMBus's tracking struct for this root PCI bus 2819 * 2820 * Return: 0 on success, -errno on failure 2821 */ 2822 static int hv_pci_query_relations(struct hv_device *hdev) 2823 { 2824 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 2825 struct pci_message message; 2826 struct completion comp; 2827 int ret; 2828 2829 /* Ask the host to send along the list of child devices */ 2830 init_completion(&comp); 2831 if (cmpxchg(&hbus->survey_event, NULL, &comp)) 2832 return -ENOTEMPTY; 2833 2834 memset(&message, 0, sizeof(message)); 2835 message.type = PCI_QUERY_BUS_RELATIONS; 2836 2837 ret = vmbus_sendpacket(hdev->channel, &message, sizeof(message), 2838 0, VM_PKT_DATA_INBAND, 0); 2839 if (!ret) 2840 ret = wait_for_response(hdev, &comp); 2841 2842 return ret; 2843 } 2844 2845 /** 2846 * hv_send_resources_allocated() - Report local resource choices 2847 * @hdev: VMBus's tracking struct for this root PCI bus 2848 * 2849 * The host OS is expecting to be sent a request as a message 2850 * which contains all the resources that the device will use. 2851 * The response contains those same resources, "translated" 2852 * which is to say, the values which should be used by the 2853 * hardware, when it delivers an interrupt. (MMIO resources are 2854 * used in local terms.) This is nice for Windows, and lines up 2855 * with the FDO/PDO split, which doesn't exist in Linux. Linux 2856 * is deeply expecting to scan an emulated PCI configuration 2857 * space. So this message is sent here only to drive the state 2858 * machine on the host forward. 2859 * 2860 * Return: 0 on success, -errno on failure 2861 */ 2862 static int hv_send_resources_allocated(struct hv_device *hdev) 2863 { 2864 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 2865 struct pci_resources_assigned *res_assigned; 2866 struct pci_resources_assigned2 *res_assigned2; 2867 struct hv_pci_compl comp_pkt; 2868 struct hv_pci_dev *hpdev; 2869 struct pci_packet *pkt; 2870 size_t size_res; 2871 int wslot; 2872 int ret; 2873 2874 size_res = (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2) 2875 ? sizeof(*res_assigned) : sizeof(*res_assigned2); 2876 2877 pkt = kmalloc(sizeof(*pkt) + size_res, GFP_KERNEL); 2878 if (!pkt) 2879 return -ENOMEM; 2880 2881 ret = 0; 2882 2883 for (wslot = 0; wslot < 256; wslot++) { 2884 hpdev = get_pcichild_wslot(hbus, wslot); 2885 if (!hpdev) 2886 continue; 2887 2888 memset(pkt, 0, sizeof(*pkt) + size_res); 2889 init_completion(&comp_pkt.host_event); 2890 pkt->completion_func = hv_pci_generic_compl; 2891 pkt->compl_ctxt = &comp_pkt; 2892 2893 if (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2) { 2894 res_assigned = 2895 (struct pci_resources_assigned *)&pkt->message; 2896 res_assigned->message_type.type = 2897 PCI_RESOURCES_ASSIGNED; 2898 res_assigned->wslot.slot = hpdev->desc.win_slot.slot; 2899 } else { 2900 res_assigned2 = 2901 (struct pci_resources_assigned2 *)&pkt->message; 2902 res_assigned2->message_type.type = 2903 PCI_RESOURCES_ASSIGNED2; 2904 res_assigned2->wslot.slot = hpdev->desc.win_slot.slot; 2905 } 2906 put_pcichild(hpdev); 2907 2908 ret = vmbus_sendpacket(hdev->channel, &pkt->message, 2909 size_res, (unsigned long)pkt, 2910 VM_PKT_DATA_INBAND, 2911 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 2912 if (!ret) 2913 ret = wait_for_response(hdev, &comp_pkt.host_event); 2914 if (ret) 2915 break; 2916 2917 if (comp_pkt.completion_status < 0) { 2918 ret = -EPROTO; 2919 dev_err(&hdev->device, 2920 "resource allocated returned 0x%x", 2921 comp_pkt.completion_status); 2922 break; 2923 } 2924 2925 hbus->wslot_res_allocated = wslot; 2926 } 2927 2928 kfree(pkt); 2929 return ret; 2930 } 2931 2932 /** 2933 * hv_send_resources_released() - Report local resources 2934 * released 2935 * @hdev: VMBus's tracking struct for this root PCI bus 2936 * 2937 * Return: 0 on success, -errno on failure 2938 */ 2939 static int hv_send_resources_released(struct hv_device *hdev) 2940 { 2941 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 2942 struct pci_child_message pkt; 2943 struct hv_pci_dev *hpdev; 2944 int wslot; 2945 int ret; 2946 2947 for (wslot = hbus->wslot_res_allocated; wslot >= 0; wslot--) { 2948 hpdev = get_pcichild_wslot(hbus, wslot); 2949 if (!hpdev) 2950 continue; 2951 2952 memset(&pkt, 0, sizeof(pkt)); 2953 pkt.message_type.type = PCI_RESOURCES_RELEASED; 2954 pkt.wslot.slot = hpdev->desc.win_slot.slot; 2955 2956 put_pcichild(hpdev); 2957 2958 ret = vmbus_sendpacket(hdev->channel, &pkt, sizeof(pkt), 0, 2959 VM_PKT_DATA_INBAND, 0); 2960 if (ret) 2961 return ret; 2962 2963 hbus->wslot_res_allocated = wslot - 1; 2964 } 2965 2966 hbus->wslot_res_allocated = -1; 2967 2968 return 0; 2969 } 2970 2971 static void get_hvpcibus(struct hv_pcibus_device *hbus) 2972 { 2973 refcount_inc(&hbus->remove_lock); 2974 } 2975 2976 static void put_hvpcibus(struct hv_pcibus_device *hbus) 2977 { 2978 if (refcount_dec_and_test(&hbus->remove_lock)) 2979 complete(&hbus->remove_event); 2980 } 2981 2982 #define HVPCI_DOM_MAP_SIZE (64 * 1024) 2983 static DECLARE_BITMAP(hvpci_dom_map, HVPCI_DOM_MAP_SIZE); 2984 2985 /* 2986 * PCI domain number 0 is used by emulated devices on Gen1 VMs, so define 0 2987 * as invalid for passthrough PCI devices of this driver. 2988 */ 2989 #define HVPCI_DOM_INVALID 0 2990 2991 /** 2992 * hv_get_dom_num() - Get a valid PCI domain number 2993 * Check if the PCI domain number is in use, and return another number if 2994 * it is in use. 2995 * 2996 * @dom: Requested domain number 2997 * 2998 * return: domain number on success, HVPCI_DOM_INVALID on failure 2999 */ 3000 static u16 hv_get_dom_num(u16 dom) 3001 { 3002 unsigned int i; 3003 3004 if (test_and_set_bit(dom, hvpci_dom_map) == 0) 3005 return dom; 3006 3007 for_each_clear_bit(i, hvpci_dom_map, HVPCI_DOM_MAP_SIZE) { 3008 if (test_and_set_bit(i, hvpci_dom_map) == 0) 3009 return i; 3010 } 3011 3012 return HVPCI_DOM_INVALID; 3013 } 3014 3015 /** 3016 * hv_put_dom_num() - Mark the PCI domain number as free 3017 * @dom: Domain number to be freed 3018 */ 3019 static void hv_put_dom_num(u16 dom) 3020 { 3021 clear_bit(dom, hvpci_dom_map); 3022 } 3023 3024 /** 3025 * hv_pci_probe() - New VMBus channel probe, for a root PCI bus 3026 * @hdev: VMBus's tracking struct for this root PCI bus 3027 * @dev_id: Identifies the device itself 3028 * 3029 * Return: 0 on success, -errno on failure 3030 */ 3031 static int hv_pci_probe(struct hv_device *hdev, 3032 const struct hv_vmbus_device_id *dev_id) 3033 { 3034 struct hv_pcibus_device *hbus; 3035 u16 dom_req, dom; 3036 char *name; 3037 bool enter_d0_retry = true; 3038 int ret; 3039 3040 /* 3041 * hv_pcibus_device contains the hypercall arguments for retargeting in 3042 * hv_irq_unmask(). Those must not cross a page boundary. 3043 */ 3044 BUILD_BUG_ON(sizeof(*hbus) > HV_HYP_PAGE_SIZE); 3045 3046 /* 3047 * With the recent 59bb47985c1d ("mm, sl[aou]b: guarantee natural 3048 * alignment for kmalloc(power-of-two)"), kzalloc() is able to allocate 3049 * a 4KB buffer that is guaranteed to be 4KB-aligned. Here the size and 3050 * alignment of hbus is important because hbus's field 3051 * retarget_msi_interrupt_params must not cross a 4KB page boundary. 3052 * 3053 * Here we prefer kzalloc to get_zeroed_page(), because a buffer 3054 * allocated by the latter is not tracked and scanned by kmemleak, and 3055 * hence kmemleak reports the pointer contained in the hbus buffer 3056 * (i.e. the hpdev struct, which is created in new_pcichild_device() and 3057 * is tracked by hbus->children) as memory leak (false positive). 3058 * 3059 * If the kernel doesn't have 59bb47985c1d, get_zeroed_page() *must* be 3060 * used to allocate the hbus buffer and we can avoid the kmemleak false 3061 * positive by using kmemleak_alloc() and kmemleak_free() to ask 3062 * kmemleak to track and scan the hbus buffer. 3063 */ 3064 hbus = kzalloc(HV_HYP_PAGE_SIZE, GFP_KERNEL); 3065 if (!hbus) 3066 return -ENOMEM; 3067 hbus->state = hv_pcibus_init; 3068 hbus->wslot_res_allocated = -1; 3069 3070 /* 3071 * The PCI bus "domain" is what is called "segment" in ACPI and other 3072 * specs. Pull it from the instance ID, to get something usually 3073 * unique. In rare cases of collision, we will find out another number 3074 * not in use. 3075 * 3076 * Note that, since this code only runs in a Hyper-V VM, Hyper-V 3077 * together with this guest driver can guarantee that (1) The only 3078 * domain used by Gen1 VMs for something that looks like a physical 3079 * PCI bus (which is actually emulated by the hypervisor) is domain 0. 3080 * (2) There will be no overlap between domains (after fixing possible 3081 * collisions) in the same VM. 3082 */ 3083 dom_req = hdev->dev_instance.b[5] << 8 | hdev->dev_instance.b[4]; 3084 dom = hv_get_dom_num(dom_req); 3085 3086 if (dom == HVPCI_DOM_INVALID) { 3087 dev_err(&hdev->device, 3088 "Unable to use dom# 0x%hx or other numbers", dom_req); 3089 ret = -EINVAL; 3090 goto free_bus; 3091 } 3092 3093 if (dom != dom_req) 3094 dev_info(&hdev->device, 3095 "PCI dom# 0x%hx has collision, using 0x%hx", 3096 dom_req, dom); 3097 3098 hbus->sysdata.domain = dom; 3099 3100 hbus->hdev = hdev; 3101 refcount_set(&hbus->remove_lock, 1); 3102 INIT_LIST_HEAD(&hbus->children); 3103 INIT_LIST_HEAD(&hbus->dr_list); 3104 INIT_LIST_HEAD(&hbus->resources_for_children); 3105 spin_lock_init(&hbus->config_lock); 3106 spin_lock_init(&hbus->device_list_lock); 3107 spin_lock_init(&hbus->retarget_msi_interrupt_lock); 3108 init_completion(&hbus->remove_event); 3109 hbus->wq = alloc_ordered_workqueue("hv_pci_%x", 0, 3110 hbus->sysdata.domain); 3111 if (!hbus->wq) { 3112 ret = -ENOMEM; 3113 goto free_dom; 3114 } 3115 3116 ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0, 3117 hv_pci_onchannelcallback, hbus); 3118 if (ret) 3119 goto destroy_wq; 3120 3121 hv_set_drvdata(hdev, hbus); 3122 3123 ret = hv_pci_protocol_negotiation(hdev, pci_protocol_versions, 3124 ARRAY_SIZE(pci_protocol_versions)); 3125 if (ret) 3126 goto close; 3127 3128 ret = hv_allocate_config_window(hbus); 3129 if (ret) 3130 goto close; 3131 3132 hbus->cfg_addr = ioremap(hbus->mem_config->start, 3133 PCI_CONFIG_MMIO_LENGTH); 3134 if (!hbus->cfg_addr) { 3135 dev_err(&hdev->device, 3136 "Unable to map a virtual address for config space\n"); 3137 ret = -ENOMEM; 3138 goto free_config; 3139 } 3140 3141 name = kasprintf(GFP_KERNEL, "%pUL", &hdev->dev_instance); 3142 if (!name) { 3143 ret = -ENOMEM; 3144 goto unmap; 3145 } 3146 3147 hbus->sysdata.fwnode = irq_domain_alloc_named_fwnode(name); 3148 kfree(name); 3149 if (!hbus->sysdata.fwnode) { 3150 ret = -ENOMEM; 3151 goto unmap; 3152 } 3153 3154 ret = hv_pcie_init_irq_domain(hbus); 3155 if (ret) 3156 goto free_fwnode; 3157 3158 retry: 3159 ret = hv_pci_query_relations(hdev); 3160 if (ret) 3161 goto free_irq_domain; 3162 3163 ret = hv_pci_enter_d0(hdev); 3164 /* 3165 * In certain case (Kdump) the pci device of interest was 3166 * not cleanly shut down and resource is still held on host 3167 * side, the host could return invalid device status. 3168 * We need to explicitly request host to release the resource 3169 * and try to enter D0 again. 3170 * Since the hv_pci_bus_exit() call releases structures 3171 * of all its child devices, we need to start the retry from 3172 * hv_pci_query_relations() call, requesting host to send 3173 * the synchronous child device relations message before this 3174 * information is needed in hv_send_resources_allocated() 3175 * call later. 3176 */ 3177 if (ret == -EPROTO && enter_d0_retry) { 3178 enter_d0_retry = false; 3179 3180 dev_err(&hdev->device, "Retrying D0 Entry\n"); 3181 3182 /* 3183 * Hv_pci_bus_exit() calls hv_send_resources_released() 3184 * to free up resources of its child devices. 3185 * In the kdump kernel we need to set the 3186 * wslot_res_allocated to 255 so it scans all child 3187 * devices to release resources allocated in the 3188 * normal kernel before panic happened. 3189 */ 3190 hbus->wslot_res_allocated = 255; 3191 ret = hv_pci_bus_exit(hdev, true); 3192 3193 if (ret == 0) 3194 goto retry; 3195 3196 dev_err(&hdev->device, 3197 "Retrying D0 failed with ret %d\n", ret); 3198 } 3199 if (ret) 3200 goto free_irq_domain; 3201 3202 ret = hv_pci_allocate_bridge_windows(hbus); 3203 if (ret) 3204 goto exit_d0; 3205 3206 ret = hv_send_resources_allocated(hdev); 3207 if (ret) 3208 goto free_windows; 3209 3210 prepopulate_bars(hbus); 3211 3212 hbus->state = hv_pcibus_probed; 3213 3214 ret = create_root_hv_pci_bus(hbus); 3215 if (ret) 3216 goto free_windows; 3217 3218 return 0; 3219 3220 free_windows: 3221 hv_pci_free_bridge_windows(hbus); 3222 exit_d0: 3223 (void) hv_pci_bus_exit(hdev, true); 3224 free_irq_domain: 3225 irq_domain_remove(hbus->irq_domain); 3226 free_fwnode: 3227 irq_domain_free_fwnode(hbus->sysdata.fwnode); 3228 unmap: 3229 iounmap(hbus->cfg_addr); 3230 free_config: 3231 hv_free_config_window(hbus); 3232 close: 3233 vmbus_close(hdev->channel); 3234 destroy_wq: 3235 destroy_workqueue(hbus->wq); 3236 free_dom: 3237 hv_put_dom_num(hbus->sysdata.domain); 3238 free_bus: 3239 kfree(hbus); 3240 return ret; 3241 } 3242 3243 static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs) 3244 { 3245 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3246 struct { 3247 struct pci_packet teardown_packet; 3248 u8 buffer[sizeof(struct pci_message)]; 3249 } pkt; 3250 struct hv_dr_state *dr; 3251 struct hv_pci_compl comp_pkt; 3252 int ret; 3253 3254 /* 3255 * After the host sends the RESCIND_CHANNEL message, it doesn't 3256 * access the per-channel ringbuffer any longer. 3257 */ 3258 if (hdev->channel->rescind) 3259 return 0; 3260 3261 if (!keep_devs) { 3262 /* Delete any children which might still exist. */ 3263 dr = kzalloc(sizeof(*dr), GFP_KERNEL); 3264 if (dr && hv_pci_start_relations_work(hbus, dr)) 3265 kfree(dr); 3266 } 3267 3268 ret = hv_send_resources_released(hdev); 3269 if (ret) { 3270 dev_err(&hdev->device, 3271 "Couldn't send resources released packet(s)\n"); 3272 return ret; 3273 } 3274 3275 memset(&pkt.teardown_packet, 0, sizeof(pkt.teardown_packet)); 3276 init_completion(&comp_pkt.host_event); 3277 pkt.teardown_packet.completion_func = hv_pci_generic_compl; 3278 pkt.teardown_packet.compl_ctxt = &comp_pkt; 3279 pkt.teardown_packet.message[0].type = PCI_BUS_D0EXIT; 3280 3281 ret = vmbus_sendpacket(hdev->channel, &pkt.teardown_packet.message, 3282 sizeof(struct pci_message), 3283 (unsigned long)&pkt.teardown_packet, 3284 VM_PKT_DATA_INBAND, 3285 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 3286 if (ret) 3287 return ret; 3288 3289 if (wait_for_completion_timeout(&comp_pkt.host_event, 10 * HZ) == 0) 3290 return -ETIMEDOUT; 3291 3292 return 0; 3293 } 3294 3295 /** 3296 * hv_pci_remove() - Remove routine for this VMBus channel 3297 * @hdev: VMBus's tracking struct for this root PCI bus 3298 * 3299 * Return: 0 on success, -errno on failure 3300 */ 3301 static int hv_pci_remove(struct hv_device *hdev) 3302 { 3303 struct hv_pcibus_device *hbus; 3304 int ret; 3305 3306 hbus = hv_get_drvdata(hdev); 3307 if (hbus->state == hv_pcibus_installed) { 3308 /* Remove the bus from PCI's point of view. */ 3309 pci_lock_rescan_remove(); 3310 pci_stop_root_bus(hbus->pci_bus); 3311 hv_pci_remove_slots(hbus); 3312 pci_remove_root_bus(hbus->pci_bus); 3313 pci_unlock_rescan_remove(); 3314 hbus->state = hv_pcibus_removed; 3315 } 3316 3317 ret = hv_pci_bus_exit(hdev, false); 3318 3319 vmbus_close(hdev->channel); 3320 3321 iounmap(hbus->cfg_addr); 3322 hv_free_config_window(hbus); 3323 pci_free_resource_list(&hbus->resources_for_children); 3324 hv_pci_free_bridge_windows(hbus); 3325 irq_domain_remove(hbus->irq_domain); 3326 irq_domain_free_fwnode(hbus->sysdata.fwnode); 3327 put_hvpcibus(hbus); 3328 wait_for_completion(&hbus->remove_event); 3329 destroy_workqueue(hbus->wq); 3330 3331 hv_put_dom_num(hbus->sysdata.domain); 3332 3333 kfree(hbus); 3334 return ret; 3335 } 3336 3337 static int hv_pci_suspend(struct hv_device *hdev) 3338 { 3339 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3340 enum hv_pcibus_state old_state; 3341 int ret; 3342 3343 /* 3344 * hv_pci_suspend() must make sure there are no pending work items 3345 * before calling vmbus_close(), since it runs in a process context 3346 * as a callback in dpm_suspend(). When it starts to run, the channel 3347 * callback hv_pci_onchannelcallback(), which runs in a tasklet 3348 * context, can be still running concurrently and scheduling new work 3349 * items onto hbus->wq in hv_pci_devices_present() and 3350 * hv_pci_eject_device(), and the work item handlers can access the 3351 * vmbus channel, which can be being closed by hv_pci_suspend(), e.g. 3352 * the work item handler pci_devices_present_work() -> 3353 * new_pcichild_device() writes to the vmbus channel. 3354 * 3355 * To eliminate the race, hv_pci_suspend() disables the channel 3356 * callback tasklet, sets hbus->state to hv_pcibus_removing, and 3357 * re-enables the tasklet. This way, when hv_pci_suspend() proceeds, 3358 * it knows that no new work item can be scheduled, and then it flushes 3359 * hbus->wq and safely closes the vmbus channel. 3360 */ 3361 tasklet_disable(&hdev->channel->callback_event); 3362 3363 /* Change the hbus state to prevent new work items. */ 3364 old_state = hbus->state; 3365 if (hbus->state == hv_pcibus_installed) 3366 hbus->state = hv_pcibus_removing; 3367 3368 tasklet_enable(&hdev->channel->callback_event); 3369 3370 if (old_state != hv_pcibus_installed) 3371 return -EINVAL; 3372 3373 flush_workqueue(hbus->wq); 3374 3375 ret = hv_pci_bus_exit(hdev, true); 3376 if (ret) 3377 return ret; 3378 3379 vmbus_close(hdev->channel); 3380 3381 return 0; 3382 } 3383 3384 static int hv_pci_restore_msi_msg(struct pci_dev *pdev, void *arg) 3385 { 3386 struct msi_desc *entry; 3387 struct irq_data *irq_data; 3388 3389 for_each_pci_msi_entry(entry, pdev) { 3390 irq_data = irq_get_irq_data(entry->irq); 3391 if (WARN_ON_ONCE(!irq_data)) 3392 return -EINVAL; 3393 3394 hv_compose_msi_msg(irq_data, &entry->msg); 3395 } 3396 3397 return 0; 3398 } 3399 3400 /* 3401 * Upon resume, pci_restore_msi_state() -> ... -> __pci_write_msi_msg() 3402 * directly writes the MSI/MSI-X registers via MMIO, but since Hyper-V 3403 * doesn't trap and emulate the MMIO accesses, here hv_compose_msi_msg() 3404 * must be used to ask Hyper-V to re-create the IOMMU Interrupt Remapping 3405 * Table entries. 3406 */ 3407 static void hv_pci_restore_msi_state(struct hv_pcibus_device *hbus) 3408 { 3409 pci_walk_bus(hbus->pci_bus, hv_pci_restore_msi_msg, NULL); 3410 } 3411 3412 static int hv_pci_resume(struct hv_device *hdev) 3413 { 3414 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3415 enum pci_protocol_version_t version[1]; 3416 int ret; 3417 3418 hbus->state = hv_pcibus_init; 3419 3420 ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0, 3421 hv_pci_onchannelcallback, hbus); 3422 if (ret) 3423 return ret; 3424 3425 /* Only use the version that was in use before hibernation. */ 3426 version[0] = hbus->protocol_version; 3427 ret = hv_pci_protocol_negotiation(hdev, version, 1); 3428 if (ret) 3429 goto out; 3430 3431 ret = hv_pci_query_relations(hdev); 3432 if (ret) 3433 goto out; 3434 3435 ret = hv_pci_enter_d0(hdev); 3436 if (ret) 3437 goto out; 3438 3439 ret = hv_send_resources_allocated(hdev); 3440 if (ret) 3441 goto out; 3442 3443 prepopulate_bars(hbus); 3444 3445 hv_pci_restore_msi_state(hbus); 3446 3447 hbus->state = hv_pcibus_installed; 3448 return 0; 3449 out: 3450 vmbus_close(hdev->channel); 3451 return ret; 3452 } 3453 3454 static const struct hv_vmbus_device_id hv_pci_id_table[] = { 3455 /* PCI Pass-through Class ID */ 3456 /* 44C4F61D-4444-4400-9D52-802E27EDE19F */ 3457 { HV_PCIE_GUID, }, 3458 { }, 3459 }; 3460 3461 MODULE_DEVICE_TABLE(vmbus, hv_pci_id_table); 3462 3463 static struct hv_driver hv_pci_drv = { 3464 .name = "hv_pci", 3465 .id_table = hv_pci_id_table, 3466 .probe = hv_pci_probe, 3467 .remove = hv_pci_remove, 3468 .suspend = hv_pci_suspend, 3469 .resume = hv_pci_resume, 3470 }; 3471 3472 static void __exit exit_hv_pci_drv(void) 3473 { 3474 vmbus_driver_unregister(&hv_pci_drv); 3475 3476 hvpci_block_ops.read_block = NULL; 3477 hvpci_block_ops.write_block = NULL; 3478 hvpci_block_ops.reg_blk_invalidate = NULL; 3479 } 3480 3481 static int __init init_hv_pci_drv(void) 3482 { 3483 /* Set the invalid domain number's bit, so it will not be used */ 3484 set_bit(HVPCI_DOM_INVALID, hvpci_dom_map); 3485 3486 /* Initialize PCI block r/w interface */ 3487 hvpci_block_ops.read_block = hv_read_config_block; 3488 hvpci_block_ops.write_block = hv_write_config_block; 3489 hvpci_block_ops.reg_blk_invalidate = hv_register_block_invalidate; 3490 3491 return vmbus_driver_register(&hv_pci_drv); 3492 } 3493 3494 module_init(init_hv_pci_drv); 3495 module_exit(exit_hv_pci_drv); 3496 3497 MODULE_DESCRIPTION("Hyper-V PCI"); 3498 MODULE_LICENSE("GPL v2"); 3499