1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) Microsoft Corporation.
4  *
5  * Author:
6  *   Jake Oshins <jakeo@microsoft.com>
7  *
8  * This driver acts as a paravirtual front-end for PCI Express root buses.
9  * When a PCI Express function (either an entire device or an SR-IOV
10  * Virtual Function) is being passed through to the VM, this driver exposes
11  * a new bus to the guest VM.  This is modeled as a root PCI bus because
12  * no bridges are being exposed to the VM.  In fact, with a "Generation 2"
13  * VM within Hyper-V, there may seem to be no PCI bus at all in the VM
14  * until a device as been exposed using this driver.
15  *
16  * Each root PCI bus has its own PCI domain, which is called "Segment" in
17  * the PCI Firmware Specifications.  Thus while each device passed through
18  * to the VM using this front-end will appear at "device 0", the domain will
19  * be unique.  Typically, each bus will have one PCI function on it, though
20  * this driver does support more than one.
21  *
22  * In order to map the interrupts from the device through to the guest VM,
23  * this driver also implements an IRQ Domain, which handles interrupts (either
24  * MSI or MSI-X) associated with the functions on the bus.  As interrupts are
25  * set up, torn down, or reaffined, this driver communicates with the
26  * underlying hypervisor to adjust the mappings in the I/O MMU so that each
27  * interrupt will be delivered to the correct virtual processor at the right
28  * vector.  This driver does not support level-triggered (line-based)
29  * interrupts, and will report that the Interrupt Line register in the
30  * function's configuration space is zero.
31  *
32  * The rest of this driver mostly maps PCI concepts onto underlying Hyper-V
33  * facilities.  For instance, the configuration space of a function exposed
34  * by Hyper-V is mapped into a single page of memory space, and the
35  * read and write handlers for config space must be aware of this mechanism.
36  * Similarly, device setup and teardown involves messages sent to and from
37  * the PCI back-end driver in Hyper-V.
38  */
39 
40 #include <linux/kernel.h>
41 #include <linux/module.h>
42 #include <linux/pci.h>
43 #include <linux/delay.h>
44 #include <linux/semaphore.h>
45 #include <linux/irqdomain.h>
46 #include <asm/irqdomain.h>
47 #include <asm/apic.h>
48 #include <linux/irq.h>
49 #include <linux/msi.h>
50 #include <linux/hyperv.h>
51 #include <linux/refcount.h>
52 #include <asm/mshyperv.h>
53 
54 /*
55  * Protocol versions. The low word is the minor version, the high word the
56  * major version.
57  */
58 
59 #define PCI_MAKE_VERSION(major, minor) ((u32)(((major) << 16) | (minor)))
60 #define PCI_MAJOR_VERSION(version) ((u32)(version) >> 16)
61 #define PCI_MINOR_VERSION(version) ((u32)(version) & 0xff)
62 
63 enum pci_protocol_version_t {
64 	PCI_PROTOCOL_VERSION_1_1 = PCI_MAKE_VERSION(1, 1),	/* Win10 */
65 	PCI_PROTOCOL_VERSION_1_2 = PCI_MAKE_VERSION(1, 2),	/* RS1 */
66 	PCI_PROTOCOL_VERSION_1_3 = PCI_MAKE_VERSION(1, 3),	/* Vibranium */
67 };
68 
69 #define CPU_AFFINITY_ALL	-1ULL
70 
71 /*
72  * Supported protocol versions in the order of probing - highest go
73  * first.
74  */
75 static enum pci_protocol_version_t pci_protocol_versions[] = {
76 	PCI_PROTOCOL_VERSION_1_3,
77 	PCI_PROTOCOL_VERSION_1_2,
78 	PCI_PROTOCOL_VERSION_1_1,
79 };
80 
81 #define PCI_CONFIG_MMIO_LENGTH	0x2000
82 #define CFG_PAGE_OFFSET 0x1000
83 #define CFG_PAGE_SIZE (PCI_CONFIG_MMIO_LENGTH - CFG_PAGE_OFFSET)
84 
85 #define MAX_SUPPORTED_MSI_MESSAGES 0x400
86 
87 #define STATUS_REVISION_MISMATCH 0xC0000059
88 
89 /* space for 32bit serial number as string */
90 #define SLOT_NAME_SIZE 11
91 
92 /*
93  * Message Types
94  */
95 
96 enum pci_message_type {
97 	/*
98 	 * Version 1.1
99 	 */
100 	PCI_MESSAGE_BASE                = 0x42490000,
101 	PCI_BUS_RELATIONS               = PCI_MESSAGE_BASE + 0,
102 	PCI_QUERY_BUS_RELATIONS         = PCI_MESSAGE_BASE + 1,
103 	PCI_POWER_STATE_CHANGE          = PCI_MESSAGE_BASE + 4,
104 	PCI_QUERY_RESOURCE_REQUIREMENTS = PCI_MESSAGE_BASE + 5,
105 	PCI_QUERY_RESOURCE_RESOURCES    = PCI_MESSAGE_BASE + 6,
106 	PCI_BUS_D0ENTRY                 = PCI_MESSAGE_BASE + 7,
107 	PCI_BUS_D0EXIT                  = PCI_MESSAGE_BASE + 8,
108 	PCI_READ_BLOCK                  = PCI_MESSAGE_BASE + 9,
109 	PCI_WRITE_BLOCK                 = PCI_MESSAGE_BASE + 0xA,
110 	PCI_EJECT                       = PCI_MESSAGE_BASE + 0xB,
111 	PCI_QUERY_STOP                  = PCI_MESSAGE_BASE + 0xC,
112 	PCI_REENABLE                    = PCI_MESSAGE_BASE + 0xD,
113 	PCI_QUERY_STOP_FAILED           = PCI_MESSAGE_BASE + 0xE,
114 	PCI_EJECTION_COMPLETE           = PCI_MESSAGE_BASE + 0xF,
115 	PCI_RESOURCES_ASSIGNED          = PCI_MESSAGE_BASE + 0x10,
116 	PCI_RESOURCES_RELEASED          = PCI_MESSAGE_BASE + 0x11,
117 	PCI_INVALIDATE_BLOCK            = PCI_MESSAGE_BASE + 0x12,
118 	PCI_QUERY_PROTOCOL_VERSION      = PCI_MESSAGE_BASE + 0x13,
119 	PCI_CREATE_INTERRUPT_MESSAGE    = PCI_MESSAGE_BASE + 0x14,
120 	PCI_DELETE_INTERRUPT_MESSAGE    = PCI_MESSAGE_BASE + 0x15,
121 	PCI_RESOURCES_ASSIGNED2		= PCI_MESSAGE_BASE + 0x16,
122 	PCI_CREATE_INTERRUPT_MESSAGE2	= PCI_MESSAGE_BASE + 0x17,
123 	PCI_DELETE_INTERRUPT_MESSAGE2	= PCI_MESSAGE_BASE + 0x18, /* unused */
124 	PCI_BUS_RELATIONS2		= PCI_MESSAGE_BASE + 0x19,
125 	PCI_MESSAGE_MAXIMUM
126 };
127 
128 /*
129  * Structures defining the virtual PCI Express protocol.
130  */
131 
132 union pci_version {
133 	struct {
134 		u16 minor_version;
135 		u16 major_version;
136 	} parts;
137 	u32 version;
138 } __packed;
139 
140 /*
141  * Function numbers are 8-bits wide on Express, as interpreted through ARI,
142  * which is all this driver does.  This representation is the one used in
143  * Windows, which is what is expected when sending this back and forth with
144  * the Hyper-V parent partition.
145  */
146 union win_slot_encoding {
147 	struct {
148 		u32	dev:5;
149 		u32	func:3;
150 		u32	reserved:24;
151 	} bits;
152 	u32 slot;
153 } __packed;
154 
155 /*
156  * Pretty much as defined in the PCI Specifications.
157  */
158 struct pci_function_description {
159 	u16	v_id;	/* vendor ID */
160 	u16	d_id;	/* device ID */
161 	u8	rev;
162 	u8	prog_intf;
163 	u8	subclass;
164 	u8	base_class;
165 	u32	subsystem_id;
166 	union win_slot_encoding win_slot;
167 	u32	ser;	/* serial number */
168 } __packed;
169 
170 enum pci_device_description_flags {
171 	HV_PCI_DEVICE_FLAG_NONE			= 0x0,
172 	HV_PCI_DEVICE_FLAG_NUMA_AFFINITY	= 0x1,
173 };
174 
175 struct pci_function_description2 {
176 	u16	v_id;	/* vendor ID */
177 	u16	d_id;	/* device ID */
178 	u8	rev;
179 	u8	prog_intf;
180 	u8	subclass;
181 	u8	base_class;
182 	u32	subsystem_id;
183 	union	win_slot_encoding win_slot;
184 	u32	ser;	/* serial number */
185 	u32	flags;
186 	u16	virtual_numa_node;
187 	u16	reserved;
188 } __packed;
189 
190 /**
191  * struct hv_msi_desc
192  * @vector:		IDT entry
193  * @delivery_mode:	As defined in Intel's Programmer's
194  *			Reference Manual, Volume 3, Chapter 8.
195  * @vector_count:	Number of contiguous entries in the
196  *			Interrupt Descriptor Table that are
197  *			occupied by this Message-Signaled
198  *			Interrupt. For "MSI", as first defined
199  *			in PCI 2.2, this can be between 1 and
200  *			32. For "MSI-X," as first defined in PCI
201  *			3.0, this must be 1, as each MSI-X table
202  *			entry would have its own descriptor.
203  * @reserved:		Empty space
204  * @cpu_mask:		All the target virtual processors.
205  */
206 struct hv_msi_desc {
207 	u8	vector;
208 	u8	delivery_mode;
209 	u16	vector_count;
210 	u32	reserved;
211 	u64	cpu_mask;
212 } __packed;
213 
214 /**
215  * struct hv_msi_desc2 - 1.2 version of hv_msi_desc
216  * @vector:		IDT entry
217  * @delivery_mode:	As defined in Intel's Programmer's
218  *			Reference Manual, Volume 3, Chapter 8.
219  * @vector_count:	Number of contiguous entries in the
220  *			Interrupt Descriptor Table that are
221  *			occupied by this Message-Signaled
222  *			Interrupt. For "MSI", as first defined
223  *			in PCI 2.2, this can be between 1 and
224  *			32. For "MSI-X," as first defined in PCI
225  *			3.0, this must be 1, as each MSI-X table
226  *			entry would have its own descriptor.
227  * @processor_count:	number of bits enabled in array.
228  * @processor_array:	All the target virtual processors.
229  */
230 struct hv_msi_desc2 {
231 	u8	vector;
232 	u8	delivery_mode;
233 	u16	vector_count;
234 	u16	processor_count;
235 	u16	processor_array[32];
236 } __packed;
237 
238 /**
239  * struct tran_int_desc
240  * @reserved:		unused, padding
241  * @vector_count:	same as in hv_msi_desc
242  * @data:		This is the "data payload" value that is
243  *			written by the device when it generates
244  *			a message-signaled interrupt, either MSI
245  *			or MSI-X.
246  * @address:		This is the address to which the data
247  *			payload is written on interrupt
248  *			generation.
249  */
250 struct tran_int_desc {
251 	u16	reserved;
252 	u16	vector_count;
253 	u32	data;
254 	u64	address;
255 } __packed;
256 
257 /*
258  * A generic message format for virtual PCI.
259  * Specific message formats are defined later in the file.
260  */
261 
262 struct pci_message {
263 	u32 type;
264 } __packed;
265 
266 struct pci_child_message {
267 	struct pci_message message_type;
268 	union win_slot_encoding wslot;
269 } __packed;
270 
271 struct pci_incoming_message {
272 	struct vmpacket_descriptor hdr;
273 	struct pci_message message_type;
274 } __packed;
275 
276 struct pci_response {
277 	struct vmpacket_descriptor hdr;
278 	s32 status;			/* negative values are failures */
279 } __packed;
280 
281 struct pci_packet {
282 	void (*completion_func)(void *context, struct pci_response *resp,
283 				int resp_packet_size);
284 	void *compl_ctxt;
285 
286 	struct pci_message message[];
287 };
288 
289 /*
290  * Specific message types supporting the PCI protocol.
291  */
292 
293 /*
294  * Version negotiation message. Sent from the guest to the host.
295  * The guest is free to try different versions until the host
296  * accepts the version.
297  *
298  * pci_version: The protocol version requested.
299  * is_last_attempt: If TRUE, this is the last version guest will request.
300  * reservedz: Reserved field, set to zero.
301  */
302 
303 struct pci_version_request {
304 	struct pci_message message_type;
305 	u32 protocol_version;
306 } __packed;
307 
308 /*
309  * Bus D0 Entry.  This is sent from the guest to the host when the virtual
310  * bus (PCI Express port) is ready for action.
311  */
312 
313 struct pci_bus_d0_entry {
314 	struct pci_message message_type;
315 	u32 reserved;
316 	u64 mmio_base;
317 } __packed;
318 
319 struct pci_bus_relations {
320 	struct pci_incoming_message incoming;
321 	u32 device_count;
322 	struct pci_function_description func[];
323 } __packed;
324 
325 struct pci_bus_relations2 {
326 	struct pci_incoming_message incoming;
327 	u32 device_count;
328 	struct pci_function_description2 func[];
329 } __packed;
330 
331 struct pci_q_res_req_response {
332 	struct vmpacket_descriptor hdr;
333 	s32 status;			/* negative values are failures */
334 	u32 probed_bar[PCI_STD_NUM_BARS];
335 } __packed;
336 
337 struct pci_set_power {
338 	struct pci_message message_type;
339 	union win_slot_encoding wslot;
340 	u32 power_state;		/* In Windows terms */
341 	u32 reserved;
342 } __packed;
343 
344 struct pci_set_power_response {
345 	struct vmpacket_descriptor hdr;
346 	s32 status;			/* negative values are failures */
347 	union win_slot_encoding wslot;
348 	u32 resultant_state;		/* In Windows terms */
349 	u32 reserved;
350 } __packed;
351 
352 struct pci_resources_assigned {
353 	struct pci_message message_type;
354 	union win_slot_encoding wslot;
355 	u8 memory_range[0x14][6];	/* not used here */
356 	u32 msi_descriptors;
357 	u32 reserved[4];
358 } __packed;
359 
360 struct pci_resources_assigned2 {
361 	struct pci_message message_type;
362 	union win_slot_encoding wslot;
363 	u8 memory_range[0x14][6];	/* not used here */
364 	u32 msi_descriptor_count;
365 	u8 reserved[70];
366 } __packed;
367 
368 struct pci_create_interrupt {
369 	struct pci_message message_type;
370 	union win_slot_encoding wslot;
371 	struct hv_msi_desc int_desc;
372 } __packed;
373 
374 struct pci_create_int_response {
375 	struct pci_response response;
376 	u32 reserved;
377 	struct tran_int_desc int_desc;
378 } __packed;
379 
380 struct pci_create_interrupt2 {
381 	struct pci_message message_type;
382 	union win_slot_encoding wslot;
383 	struct hv_msi_desc2 int_desc;
384 } __packed;
385 
386 struct pci_delete_interrupt {
387 	struct pci_message message_type;
388 	union win_slot_encoding wslot;
389 	struct tran_int_desc int_desc;
390 } __packed;
391 
392 /*
393  * Note: the VM must pass a valid block id, wslot and bytes_requested.
394  */
395 struct pci_read_block {
396 	struct pci_message message_type;
397 	u32 block_id;
398 	union win_slot_encoding wslot;
399 	u32 bytes_requested;
400 } __packed;
401 
402 struct pci_read_block_response {
403 	struct vmpacket_descriptor hdr;
404 	u32 status;
405 	u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX];
406 } __packed;
407 
408 /*
409  * Note: the VM must pass a valid block id, wslot and byte_count.
410  */
411 struct pci_write_block {
412 	struct pci_message message_type;
413 	u32 block_id;
414 	union win_slot_encoding wslot;
415 	u32 byte_count;
416 	u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX];
417 } __packed;
418 
419 struct pci_dev_inval_block {
420 	struct pci_incoming_message incoming;
421 	union win_slot_encoding wslot;
422 	u64 block_mask;
423 } __packed;
424 
425 struct pci_dev_incoming {
426 	struct pci_incoming_message incoming;
427 	union win_slot_encoding wslot;
428 } __packed;
429 
430 struct pci_eject_response {
431 	struct pci_message message_type;
432 	union win_slot_encoding wslot;
433 	u32 status;
434 } __packed;
435 
436 static int pci_ring_size = (4 * PAGE_SIZE);
437 
438 /*
439  * Driver specific state.
440  */
441 
442 enum hv_pcibus_state {
443 	hv_pcibus_init = 0,
444 	hv_pcibus_probed,
445 	hv_pcibus_installed,
446 	hv_pcibus_removing,
447 	hv_pcibus_removed,
448 	hv_pcibus_maximum
449 };
450 
451 struct hv_pcibus_device {
452 	struct pci_sysdata sysdata;
453 	/* Protocol version negotiated with the host */
454 	enum pci_protocol_version_t protocol_version;
455 	enum hv_pcibus_state state;
456 	refcount_t remove_lock;
457 	struct hv_device *hdev;
458 	resource_size_t low_mmio_space;
459 	resource_size_t high_mmio_space;
460 	struct resource *mem_config;
461 	struct resource *low_mmio_res;
462 	struct resource *high_mmio_res;
463 	struct completion *survey_event;
464 	struct completion remove_event;
465 	struct pci_bus *pci_bus;
466 	spinlock_t config_lock;	/* Avoid two threads writing index page */
467 	spinlock_t device_list_lock;	/* Protect lists below */
468 	void __iomem *cfg_addr;
469 
470 	struct list_head resources_for_children;
471 
472 	struct list_head children;
473 	struct list_head dr_list;
474 
475 	struct msi_domain_info msi_info;
476 	struct msi_controller msi_chip;
477 	struct irq_domain *irq_domain;
478 
479 	spinlock_t retarget_msi_interrupt_lock;
480 
481 	struct workqueue_struct *wq;
482 
483 	/* Highest slot of child device with resources allocated */
484 	int wslot_res_allocated;
485 
486 	/* hypercall arg, must not cross page boundary */
487 	struct hv_retarget_device_interrupt retarget_msi_interrupt_params;
488 
489 	/*
490 	 * Don't put anything here: retarget_msi_interrupt_params must be last
491 	 */
492 };
493 
494 /*
495  * Tracks "Device Relations" messages from the host, which must be both
496  * processed in order and deferred so that they don't run in the context
497  * of the incoming packet callback.
498  */
499 struct hv_dr_work {
500 	struct work_struct wrk;
501 	struct hv_pcibus_device *bus;
502 };
503 
504 struct hv_pcidev_description {
505 	u16	v_id;	/* vendor ID */
506 	u16	d_id;	/* device ID */
507 	u8	rev;
508 	u8	prog_intf;
509 	u8	subclass;
510 	u8	base_class;
511 	u32	subsystem_id;
512 	union	win_slot_encoding win_slot;
513 	u32	ser;	/* serial number */
514 	u32	flags;
515 	u16	virtual_numa_node;
516 };
517 
518 struct hv_dr_state {
519 	struct list_head list_entry;
520 	u32 device_count;
521 	struct hv_pcidev_description func[];
522 };
523 
524 enum hv_pcichild_state {
525 	hv_pcichild_init = 0,
526 	hv_pcichild_requirements,
527 	hv_pcichild_resourced,
528 	hv_pcichild_ejecting,
529 	hv_pcichild_maximum
530 };
531 
532 struct hv_pci_dev {
533 	/* List protected by pci_rescan_remove_lock */
534 	struct list_head list_entry;
535 	refcount_t refs;
536 	enum hv_pcichild_state state;
537 	struct pci_slot *pci_slot;
538 	struct hv_pcidev_description desc;
539 	bool reported_missing;
540 	struct hv_pcibus_device *hbus;
541 	struct work_struct wrk;
542 
543 	void (*block_invalidate)(void *context, u64 block_mask);
544 	void *invalidate_context;
545 
546 	/*
547 	 * What would be observed if one wrote 0xFFFFFFFF to a BAR and then
548 	 * read it back, for each of the BAR offsets within config space.
549 	 */
550 	u32 probed_bar[PCI_STD_NUM_BARS];
551 };
552 
553 struct hv_pci_compl {
554 	struct completion host_event;
555 	s32 completion_status;
556 };
557 
558 static void hv_pci_onchannelcallback(void *context);
559 
560 /**
561  * hv_pci_generic_compl() - Invoked for a completion packet
562  * @context:		Set up by the sender of the packet.
563  * @resp:		The response packet
564  * @resp_packet_size:	Size in bytes of the packet
565  *
566  * This function is used to trigger an event and report status
567  * for any message for which the completion packet contains a
568  * status and nothing else.
569  */
570 static void hv_pci_generic_compl(void *context, struct pci_response *resp,
571 				 int resp_packet_size)
572 {
573 	struct hv_pci_compl *comp_pkt = context;
574 
575 	if (resp_packet_size >= offsetofend(struct pci_response, status))
576 		comp_pkt->completion_status = resp->status;
577 	else
578 		comp_pkt->completion_status = -1;
579 
580 	complete(&comp_pkt->host_event);
581 }
582 
583 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
584 						u32 wslot);
585 
586 static void get_pcichild(struct hv_pci_dev *hpdev)
587 {
588 	refcount_inc(&hpdev->refs);
589 }
590 
591 static void put_pcichild(struct hv_pci_dev *hpdev)
592 {
593 	if (refcount_dec_and_test(&hpdev->refs))
594 		kfree(hpdev);
595 }
596 
597 static void get_hvpcibus(struct hv_pcibus_device *hv_pcibus);
598 static void put_hvpcibus(struct hv_pcibus_device *hv_pcibus);
599 
600 /*
601  * There is no good way to get notified from vmbus_onoffer_rescind(),
602  * so let's use polling here, since this is not a hot path.
603  */
604 static int wait_for_response(struct hv_device *hdev,
605 			     struct completion *comp)
606 {
607 	while (true) {
608 		if (hdev->channel->rescind) {
609 			dev_warn_once(&hdev->device, "The device is gone.\n");
610 			return -ENODEV;
611 		}
612 
613 		if (wait_for_completion_timeout(comp, HZ / 10))
614 			break;
615 	}
616 
617 	return 0;
618 }
619 
620 /**
621  * devfn_to_wslot() - Convert from Linux PCI slot to Windows
622  * @devfn:	The Linux representation of PCI slot
623  *
624  * Windows uses a slightly different representation of PCI slot.
625  *
626  * Return: The Windows representation
627  */
628 static u32 devfn_to_wslot(int devfn)
629 {
630 	union win_slot_encoding wslot;
631 
632 	wslot.slot = 0;
633 	wslot.bits.dev = PCI_SLOT(devfn);
634 	wslot.bits.func = PCI_FUNC(devfn);
635 
636 	return wslot.slot;
637 }
638 
639 /**
640  * wslot_to_devfn() - Convert from Windows PCI slot to Linux
641  * @wslot:	The Windows representation of PCI slot
642  *
643  * Windows uses a slightly different representation of PCI slot.
644  *
645  * Return: The Linux representation
646  */
647 static int wslot_to_devfn(u32 wslot)
648 {
649 	union win_slot_encoding slot_no;
650 
651 	slot_no.slot = wslot;
652 	return PCI_DEVFN(slot_no.bits.dev, slot_no.bits.func);
653 }
654 
655 /*
656  * PCI Configuration Space for these root PCI buses is implemented as a pair
657  * of pages in memory-mapped I/O space.  Writing to the first page chooses
658  * the PCI function being written or read.  Once the first page has been
659  * written to, the following page maps in the entire configuration space of
660  * the function.
661  */
662 
663 /**
664  * _hv_pcifront_read_config() - Internal PCI config read
665  * @hpdev:	The PCI driver's representation of the device
666  * @where:	Offset within config space
667  * @size:	Size of the transfer
668  * @val:	Pointer to the buffer receiving the data
669  */
670 static void _hv_pcifront_read_config(struct hv_pci_dev *hpdev, int where,
671 				     int size, u32 *val)
672 {
673 	unsigned long flags;
674 	void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where;
675 
676 	/*
677 	 * If the attempt is to read the IDs or the ROM BAR, simulate that.
678 	 */
679 	if (where + size <= PCI_COMMAND) {
680 		memcpy(val, ((u8 *)&hpdev->desc.v_id) + where, size);
681 	} else if (where >= PCI_CLASS_REVISION && where + size <=
682 		   PCI_CACHE_LINE_SIZE) {
683 		memcpy(val, ((u8 *)&hpdev->desc.rev) + where -
684 		       PCI_CLASS_REVISION, size);
685 	} else if (where >= PCI_SUBSYSTEM_VENDOR_ID && where + size <=
686 		   PCI_ROM_ADDRESS) {
687 		memcpy(val, (u8 *)&hpdev->desc.subsystem_id + where -
688 		       PCI_SUBSYSTEM_VENDOR_ID, size);
689 	} else if (where >= PCI_ROM_ADDRESS && where + size <=
690 		   PCI_CAPABILITY_LIST) {
691 		/* ROM BARs are unimplemented */
692 		*val = 0;
693 	} else if (where >= PCI_INTERRUPT_LINE && where + size <=
694 		   PCI_INTERRUPT_PIN) {
695 		/*
696 		 * Interrupt Line and Interrupt PIN are hard-wired to zero
697 		 * because this front-end only supports message-signaled
698 		 * interrupts.
699 		 */
700 		*val = 0;
701 	} else if (where + size <= CFG_PAGE_SIZE) {
702 		spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
703 		/* Choose the function to be read. (See comment above) */
704 		writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
705 		/* Make sure the function was chosen before we start reading. */
706 		mb();
707 		/* Read from that function's config space. */
708 		switch (size) {
709 		case 1:
710 			*val = readb(addr);
711 			break;
712 		case 2:
713 			*val = readw(addr);
714 			break;
715 		default:
716 			*val = readl(addr);
717 			break;
718 		}
719 		/*
720 		 * Make sure the read was done before we release the spinlock
721 		 * allowing consecutive reads/writes.
722 		 */
723 		mb();
724 		spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
725 	} else {
726 		dev_err(&hpdev->hbus->hdev->device,
727 			"Attempt to read beyond a function's config space.\n");
728 	}
729 }
730 
731 static u16 hv_pcifront_get_vendor_id(struct hv_pci_dev *hpdev)
732 {
733 	u16 ret;
734 	unsigned long flags;
735 	void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET +
736 			     PCI_VENDOR_ID;
737 
738 	spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
739 
740 	/* Choose the function to be read. (See comment above) */
741 	writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
742 	/* Make sure the function was chosen before we start reading. */
743 	mb();
744 	/* Read from that function's config space. */
745 	ret = readw(addr);
746 	/*
747 	 * mb() is not required here, because the spin_unlock_irqrestore()
748 	 * is a barrier.
749 	 */
750 
751 	spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
752 
753 	return ret;
754 }
755 
756 /**
757  * _hv_pcifront_write_config() - Internal PCI config write
758  * @hpdev:	The PCI driver's representation of the device
759  * @where:	Offset within config space
760  * @size:	Size of the transfer
761  * @val:	The data being transferred
762  */
763 static void _hv_pcifront_write_config(struct hv_pci_dev *hpdev, int where,
764 				      int size, u32 val)
765 {
766 	unsigned long flags;
767 	void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where;
768 
769 	if (where >= PCI_SUBSYSTEM_VENDOR_ID &&
770 	    where + size <= PCI_CAPABILITY_LIST) {
771 		/* SSIDs and ROM BARs are read-only */
772 	} else if (where >= PCI_COMMAND && where + size <= CFG_PAGE_SIZE) {
773 		spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
774 		/* Choose the function to be written. (See comment above) */
775 		writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
776 		/* Make sure the function was chosen before we start writing. */
777 		wmb();
778 		/* Write to that function's config space. */
779 		switch (size) {
780 		case 1:
781 			writeb(val, addr);
782 			break;
783 		case 2:
784 			writew(val, addr);
785 			break;
786 		default:
787 			writel(val, addr);
788 			break;
789 		}
790 		/*
791 		 * Make sure the write was done before we release the spinlock
792 		 * allowing consecutive reads/writes.
793 		 */
794 		mb();
795 		spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
796 	} else {
797 		dev_err(&hpdev->hbus->hdev->device,
798 			"Attempt to write beyond a function's config space.\n");
799 	}
800 }
801 
802 /**
803  * hv_pcifront_read_config() - Read configuration space
804  * @bus: PCI Bus structure
805  * @devfn: Device/function
806  * @where: Offset from base
807  * @size: Byte/word/dword
808  * @val: Value to be read
809  *
810  * Return: PCIBIOS_SUCCESSFUL on success
811  *	   PCIBIOS_DEVICE_NOT_FOUND on failure
812  */
813 static int hv_pcifront_read_config(struct pci_bus *bus, unsigned int devfn,
814 				   int where, int size, u32 *val)
815 {
816 	struct hv_pcibus_device *hbus =
817 		container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
818 	struct hv_pci_dev *hpdev;
819 
820 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
821 	if (!hpdev)
822 		return PCIBIOS_DEVICE_NOT_FOUND;
823 
824 	_hv_pcifront_read_config(hpdev, where, size, val);
825 
826 	put_pcichild(hpdev);
827 	return PCIBIOS_SUCCESSFUL;
828 }
829 
830 /**
831  * hv_pcifront_write_config() - Write configuration space
832  * @bus: PCI Bus structure
833  * @devfn: Device/function
834  * @where: Offset from base
835  * @size: Byte/word/dword
836  * @val: Value to be written to device
837  *
838  * Return: PCIBIOS_SUCCESSFUL on success
839  *	   PCIBIOS_DEVICE_NOT_FOUND on failure
840  */
841 static int hv_pcifront_write_config(struct pci_bus *bus, unsigned int devfn,
842 				    int where, int size, u32 val)
843 {
844 	struct hv_pcibus_device *hbus =
845 	    container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
846 	struct hv_pci_dev *hpdev;
847 
848 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
849 	if (!hpdev)
850 		return PCIBIOS_DEVICE_NOT_FOUND;
851 
852 	_hv_pcifront_write_config(hpdev, where, size, val);
853 
854 	put_pcichild(hpdev);
855 	return PCIBIOS_SUCCESSFUL;
856 }
857 
858 /* PCIe operations */
859 static struct pci_ops hv_pcifront_ops = {
860 	.read  = hv_pcifront_read_config,
861 	.write = hv_pcifront_write_config,
862 };
863 
864 /*
865  * Paravirtual backchannel
866  *
867  * Hyper-V SR-IOV provides a backchannel mechanism in software for
868  * communication between a VF driver and a PF driver.  These
869  * "configuration blocks" are similar in concept to PCI configuration space,
870  * but instead of doing reads and writes in 32-bit chunks through a very slow
871  * path, packets of up to 128 bytes can be sent or received asynchronously.
872  *
873  * Nearly every SR-IOV device contains just such a communications channel in
874  * hardware, so using this one in software is usually optional.  Using the
875  * software channel, however, allows driver implementers to leverage software
876  * tools that fuzz the communications channel looking for vulnerabilities.
877  *
878  * The usage model for these packets puts the responsibility for reading or
879  * writing on the VF driver.  The VF driver sends a read or a write packet,
880  * indicating which "block" is being referred to by number.
881  *
882  * If the PF driver wishes to initiate communication, it can "invalidate" one or
883  * more of the first 64 blocks.  This invalidation is delivered via a callback
884  * supplied by the VF driver by this driver.
885  *
886  * No protocol is implied, except that supplied by the PF and VF drivers.
887  */
888 
889 struct hv_read_config_compl {
890 	struct hv_pci_compl comp_pkt;
891 	void *buf;
892 	unsigned int len;
893 	unsigned int bytes_returned;
894 };
895 
896 /**
897  * hv_pci_read_config_compl() - Invoked when a response packet
898  * for a read config block operation arrives.
899  * @context:		Identifies the read config operation
900  * @resp:		The response packet itself
901  * @resp_packet_size:	Size in bytes of the response packet
902  */
903 static void hv_pci_read_config_compl(void *context, struct pci_response *resp,
904 				     int resp_packet_size)
905 {
906 	struct hv_read_config_compl *comp = context;
907 	struct pci_read_block_response *read_resp =
908 		(struct pci_read_block_response *)resp;
909 	unsigned int data_len, hdr_len;
910 
911 	hdr_len = offsetof(struct pci_read_block_response, bytes);
912 	if (resp_packet_size < hdr_len) {
913 		comp->comp_pkt.completion_status = -1;
914 		goto out;
915 	}
916 
917 	data_len = resp_packet_size - hdr_len;
918 	if (data_len > 0 && read_resp->status == 0) {
919 		comp->bytes_returned = min(comp->len, data_len);
920 		memcpy(comp->buf, read_resp->bytes, comp->bytes_returned);
921 	} else {
922 		comp->bytes_returned = 0;
923 	}
924 
925 	comp->comp_pkt.completion_status = read_resp->status;
926 out:
927 	complete(&comp->comp_pkt.host_event);
928 }
929 
930 /**
931  * hv_read_config_block() - Sends a read config block request to
932  * the back-end driver running in the Hyper-V parent partition.
933  * @pdev:		The PCI driver's representation for this device.
934  * @buf:		Buffer into which the config block will be copied.
935  * @len:		Size in bytes of buf.
936  * @block_id:		Identifies the config block which has been requested.
937  * @bytes_returned:	Size which came back from the back-end driver.
938  *
939  * Return: 0 on success, -errno on failure
940  */
941 static int hv_read_config_block(struct pci_dev *pdev, void *buf,
942 				unsigned int len, unsigned int block_id,
943 				unsigned int *bytes_returned)
944 {
945 	struct hv_pcibus_device *hbus =
946 		container_of(pdev->bus->sysdata, struct hv_pcibus_device,
947 			     sysdata);
948 	struct {
949 		struct pci_packet pkt;
950 		char buf[sizeof(struct pci_read_block)];
951 	} pkt;
952 	struct hv_read_config_compl comp_pkt;
953 	struct pci_read_block *read_blk;
954 	int ret;
955 
956 	if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX)
957 		return -EINVAL;
958 
959 	init_completion(&comp_pkt.comp_pkt.host_event);
960 	comp_pkt.buf = buf;
961 	comp_pkt.len = len;
962 
963 	memset(&pkt, 0, sizeof(pkt));
964 	pkt.pkt.completion_func = hv_pci_read_config_compl;
965 	pkt.pkt.compl_ctxt = &comp_pkt;
966 	read_blk = (struct pci_read_block *)&pkt.pkt.message;
967 	read_blk->message_type.type = PCI_READ_BLOCK;
968 	read_blk->wslot.slot = devfn_to_wslot(pdev->devfn);
969 	read_blk->block_id = block_id;
970 	read_blk->bytes_requested = len;
971 
972 	ret = vmbus_sendpacket(hbus->hdev->channel, read_blk,
973 			       sizeof(*read_blk), (unsigned long)&pkt.pkt,
974 			       VM_PKT_DATA_INBAND,
975 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
976 	if (ret)
977 		return ret;
978 
979 	ret = wait_for_response(hbus->hdev, &comp_pkt.comp_pkt.host_event);
980 	if (ret)
981 		return ret;
982 
983 	if (comp_pkt.comp_pkt.completion_status != 0 ||
984 	    comp_pkt.bytes_returned == 0) {
985 		dev_err(&hbus->hdev->device,
986 			"Read Config Block failed: 0x%x, bytes_returned=%d\n",
987 			comp_pkt.comp_pkt.completion_status,
988 			comp_pkt.bytes_returned);
989 		return -EIO;
990 	}
991 
992 	*bytes_returned = comp_pkt.bytes_returned;
993 	return 0;
994 }
995 
996 /**
997  * hv_pci_write_config_compl() - Invoked when a response packet for a write
998  * config block operation arrives.
999  * @context:		Identifies the write config operation
1000  * @resp:		The response packet itself
1001  * @resp_packet_size:	Size in bytes of the response packet
1002  */
1003 static void hv_pci_write_config_compl(void *context, struct pci_response *resp,
1004 				      int resp_packet_size)
1005 {
1006 	struct hv_pci_compl *comp_pkt = context;
1007 
1008 	comp_pkt->completion_status = resp->status;
1009 	complete(&comp_pkt->host_event);
1010 }
1011 
1012 /**
1013  * hv_write_config_block() - Sends a write config block request to the
1014  * back-end driver running in the Hyper-V parent partition.
1015  * @pdev:		The PCI driver's representation for this device.
1016  * @buf:		Buffer from which the config block will	be copied.
1017  * @len:		Size in bytes of buf.
1018  * @block_id:		Identifies the config block which is being written.
1019  *
1020  * Return: 0 on success, -errno on failure
1021  */
1022 static int hv_write_config_block(struct pci_dev *pdev, void *buf,
1023 				unsigned int len, unsigned int block_id)
1024 {
1025 	struct hv_pcibus_device *hbus =
1026 		container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1027 			     sysdata);
1028 	struct {
1029 		struct pci_packet pkt;
1030 		char buf[sizeof(struct pci_write_block)];
1031 		u32 reserved;
1032 	} pkt;
1033 	struct hv_pci_compl comp_pkt;
1034 	struct pci_write_block *write_blk;
1035 	u32 pkt_size;
1036 	int ret;
1037 
1038 	if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX)
1039 		return -EINVAL;
1040 
1041 	init_completion(&comp_pkt.host_event);
1042 
1043 	memset(&pkt, 0, sizeof(pkt));
1044 	pkt.pkt.completion_func = hv_pci_write_config_compl;
1045 	pkt.pkt.compl_ctxt = &comp_pkt;
1046 	write_blk = (struct pci_write_block *)&pkt.pkt.message;
1047 	write_blk->message_type.type = PCI_WRITE_BLOCK;
1048 	write_blk->wslot.slot = devfn_to_wslot(pdev->devfn);
1049 	write_blk->block_id = block_id;
1050 	write_blk->byte_count = len;
1051 	memcpy(write_blk->bytes, buf, len);
1052 	pkt_size = offsetof(struct pci_write_block, bytes) + len;
1053 	/*
1054 	 * This quirk is required on some hosts shipped around 2018, because
1055 	 * these hosts don't check the pkt_size correctly (new hosts have been
1056 	 * fixed since early 2019). The quirk is also safe on very old hosts
1057 	 * and new hosts, because, on them, what really matters is the length
1058 	 * specified in write_blk->byte_count.
1059 	 */
1060 	pkt_size += sizeof(pkt.reserved);
1061 
1062 	ret = vmbus_sendpacket(hbus->hdev->channel, write_blk, pkt_size,
1063 			       (unsigned long)&pkt.pkt, VM_PKT_DATA_INBAND,
1064 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1065 	if (ret)
1066 		return ret;
1067 
1068 	ret = wait_for_response(hbus->hdev, &comp_pkt.host_event);
1069 	if (ret)
1070 		return ret;
1071 
1072 	if (comp_pkt.completion_status != 0) {
1073 		dev_err(&hbus->hdev->device,
1074 			"Write Config Block failed: 0x%x\n",
1075 			comp_pkt.completion_status);
1076 		return -EIO;
1077 	}
1078 
1079 	return 0;
1080 }
1081 
1082 /**
1083  * hv_register_block_invalidate() - Invoked when a config block invalidation
1084  * arrives from the back-end driver.
1085  * @pdev:		The PCI driver's representation for this device.
1086  * @context:		Identifies the device.
1087  * @block_invalidate:	Identifies all of the blocks being invalidated.
1088  *
1089  * Return: 0 on success, -errno on failure
1090  */
1091 static int hv_register_block_invalidate(struct pci_dev *pdev, void *context,
1092 					void (*block_invalidate)(void *context,
1093 								 u64 block_mask))
1094 {
1095 	struct hv_pcibus_device *hbus =
1096 		container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1097 			     sysdata);
1098 	struct hv_pci_dev *hpdev;
1099 
1100 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1101 	if (!hpdev)
1102 		return -ENODEV;
1103 
1104 	hpdev->block_invalidate = block_invalidate;
1105 	hpdev->invalidate_context = context;
1106 
1107 	put_pcichild(hpdev);
1108 	return 0;
1109 
1110 }
1111 
1112 /* Interrupt management hooks */
1113 static void hv_int_desc_free(struct hv_pci_dev *hpdev,
1114 			     struct tran_int_desc *int_desc)
1115 {
1116 	struct pci_delete_interrupt *int_pkt;
1117 	struct {
1118 		struct pci_packet pkt;
1119 		u8 buffer[sizeof(struct pci_delete_interrupt)];
1120 	} ctxt;
1121 
1122 	memset(&ctxt, 0, sizeof(ctxt));
1123 	int_pkt = (struct pci_delete_interrupt *)&ctxt.pkt.message;
1124 	int_pkt->message_type.type =
1125 		PCI_DELETE_INTERRUPT_MESSAGE;
1126 	int_pkt->wslot.slot = hpdev->desc.win_slot.slot;
1127 	int_pkt->int_desc = *int_desc;
1128 	vmbus_sendpacket(hpdev->hbus->hdev->channel, int_pkt, sizeof(*int_pkt),
1129 			 (unsigned long)&ctxt.pkt, VM_PKT_DATA_INBAND, 0);
1130 	kfree(int_desc);
1131 }
1132 
1133 /**
1134  * hv_msi_free() - Free the MSI.
1135  * @domain:	The interrupt domain pointer
1136  * @info:	Extra MSI-related context
1137  * @irq:	Identifies the IRQ.
1138  *
1139  * The Hyper-V parent partition and hypervisor are tracking the
1140  * messages that are in use, keeping the interrupt redirection
1141  * table up to date.  This callback sends a message that frees
1142  * the IRT entry and related tracking nonsense.
1143  */
1144 static void hv_msi_free(struct irq_domain *domain, struct msi_domain_info *info,
1145 			unsigned int irq)
1146 {
1147 	struct hv_pcibus_device *hbus;
1148 	struct hv_pci_dev *hpdev;
1149 	struct pci_dev *pdev;
1150 	struct tran_int_desc *int_desc;
1151 	struct irq_data *irq_data = irq_domain_get_irq_data(domain, irq);
1152 	struct msi_desc *msi = irq_data_get_msi_desc(irq_data);
1153 
1154 	pdev = msi_desc_to_pci_dev(msi);
1155 	hbus = info->data;
1156 	int_desc = irq_data_get_irq_chip_data(irq_data);
1157 	if (!int_desc)
1158 		return;
1159 
1160 	irq_data->chip_data = NULL;
1161 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1162 	if (!hpdev) {
1163 		kfree(int_desc);
1164 		return;
1165 	}
1166 
1167 	hv_int_desc_free(hpdev, int_desc);
1168 	put_pcichild(hpdev);
1169 }
1170 
1171 static int hv_set_affinity(struct irq_data *data, const struct cpumask *dest,
1172 			   bool force)
1173 {
1174 	struct irq_data *parent = data->parent_data;
1175 
1176 	return parent->chip->irq_set_affinity(parent, dest, force);
1177 }
1178 
1179 static void hv_irq_mask(struct irq_data *data)
1180 {
1181 	pci_msi_mask_irq(data);
1182 }
1183 
1184 /**
1185  * hv_irq_unmask() - "Unmask" the IRQ by setting its current
1186  * affinity.
1187  * @data:	Describes the IRQ
1188  *
1189  * Build new a destination for the MSI and make a hypercall to
1190  * update the Interrupt Redirection Table. "Device Logical ID"
1191  * is built out of this PCI bus's instance GUID and the function
1192  * number of the device.
1193  */
1194 static void hv_irq_unmask(struct irq_data *data)
1195 {
1196 	struct msi_desc *msi_desc = irq_data_get_msi_desc(data);
1197 	struct irq_cfg *cfg = irqd_cfg(data);
1198 	struct hv_retarget_device_interrupt *params;
1199 	struct hv_pcibus_device *hbus;
1200 	struct cpumask *dest;
1201 	cpumask_var_t tmp;
1202 	struct pci_bus *pbus;
1203 	struct pci_dev *pdev;
1204 	unsigned long flags;
1205 	u32 var_size = 0;
1206 	int cpu, nr_bank;
1207 	u64 res;
1208 
1209 	dest = irq_data_get_effective_affinity_mask(data);
1210 	pdev = msi_desc_to_pci_dev(msi_desc);
1211 	pbus = pdev->bus;
1212 	hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
1213 
1214 	spin_lock_irqsave(&hbus->retarget_msi_interrupt_lock, flags);
1215 
1216 	params = &hbus->retarget_msi_interrupt_params;
1217 	memset(params, 0, sizeof(*params));
1218 	params->partition_id = HV_PARTITION_ID_SELF;
1219 	params->int_entry.source = HV_INTERRUPT_SOURCE_MSI;
1220 	hv_set_msi_entry_from_desc(&params->int_entry.msi_entry, msi_desc);
1221 	params->device_id = (hbus->hdev->dev_instance.b[5] << 24) |
1222 			   (hbus->hdev->dev_instance.b[4] << 16) |
1223 			   (hbus->hdev->dev_instance.b[7] << 8) |
1224 			   (hbus->hdev->dev_instance.b[6] & 0xf8) |
1225 			   PCI_FUNC(pdev->devfn);
1226 	params->int_target.vector = cfg->vector;
1227 
1228 	/*
1229 	 * Honoring apic->delivery_mode set to APIC_DELIVERY_MODE_FIXED by
1230 	 * setting the HV_DEVICE_INTERRUPT_TARGET_MULTICAST flag results in a
1231 	 * spurious interrupt storm. Not doing so does not seem to have a
1232 	 * negative effect (yet?).
1233 	 */
1234 
1235 	if (hbus->protocol_version >= PCI_PROTOCOL_VERSION_1_2) {
1236 		/*
1237 		 * PCI_PROTOCOL_VERSION_1_2 supports the VP_SET version of the
1238 		 * HVCALL_RETARGET_INTERRUPT hypercall, which also coincides
1239 		 * with >64 VP support.
1240 		 * ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED
1241 		 * is not sufficient for this hypercall.
1242 		 */
1243 		params->int_target.flags |=
1244 			HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET;
1245 
1246 		if (!alloc_cpumask_var(&tmp, GFP_ATOMIC)) {
1247 			res = 1;
1248 			goto exit_unlock;
1249 		}
1250 
1251 		cpumask_and(tmp, dest, cpu_online_mask);
1252 		nr_bank = cpumask_to_vpset(&params->int_target.vp_set, tmp);
1253 		free_cpumask_var(tmp);
1254 
1255 		if (nr_bank <= 0) {
1256 			res = 1;
1257 			goto exit_unlock;
1258 		}
1259 
1260 		/*
1261 		 * var-sized hypercall, var-size starts after vp_mask (thus
1262 		 * vp_set.format does not count, but vp_set.valid_bank_mask
1263 		 * does).
1264 		 */
1265 		var_size = 1 + nr_bank;
1266 	} else {
1267 		for_each_cpu_and(cpu, dest, cpu_online_mask) {
1268 			params->int_target.vp_mask |=
1269 				(1ULL << hv_cpu_number_to_vp_number(cpu));
1270 		}
1271 	}
1272 
1273 	res = hv_do_hypercall(HVCALL_RETARGET_INTERRUPT | (var_size << 17),
1274 			      params, NULL);
1275 
1276 exit_unlock:
1277 	spin_unlock_irqrestore(&hbus->retarget_msi_interrupt_lock, flags);
1278 
1279 	/*
1280 	 * During hibernation, when a CPU is offlined, the kernel tries
1281 	 * to move the interrupt to the remaining CPUs that haven't
1282 	 * been offlined yet. In this case, the below hv_do_hypercall()
1283 	 * always fails since the vmbus channel has been closed:
1284 	 * refer to cpu_disable_common() -> fixup_irqs() ->
1285 	 * irq_migrate_all_off_this_cpu() -> migrate_one_irq().
1286 	 *
1287 	 * Suppress the error message for hibernation because the failure
1288 	 * during hibernation does not matter (at this time all the devices
1289 	 * have been frozen). Note: the correct affinity info is still updated
1290 	 * into the irqdata data structure in migrate_one_irq() ->
1291 	 * irq_do_set_affinity() -> hv_set_affinity(), so later when the VM
1292 	 * resumes, hv_pci_restore_msi_state() is able to correctly restore
1293 	 * the interrupt with the correct affinity.
1294 	 */
1295 	if (res && hbus->state != hv_pcibus_removing)
1296 		dev_err(&hbus->hdev->device,
1297 			"%s() failed: %#llx", __func__, res);
1298 
1299 	pci_msi_unmask_irq(data);
1300 }
1301 
1302 struct compose_comp_ctxt {
1303 	struct hv_pci_compl comp_pkt;
1304 	struct tran_int_desc int_desc;
1305 };
1306 
1307 static void hv_pci_compose_compl(void *context, struct pci_response *resp,
1308 				 int resp_packet_size)
1309 {
1310 	struct compose_comp_ctxt *comp_pkt = context;
1311 	struct pci_create_int_response *int_resp =
1312 		(struct pci_create_int_response *)resp;
1313 
1314 	comp_pkt->comp_pkt.completion_status = resp->status;
1315 	comp_pkt->int_desc = int_resp->int_desc;
1316 	complete(&comp_pkt->comp_pkt.host_event);
1317 }
1318 
1319 static u32 hv_compose_msi_req_v1(
1320 	struct pci_create_interrupt *int_pkt, struct cpumask *affinity,
1321 	u32 slot, u8 vector)
1322 {
1323 	int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE;
1324 	int_pkt->wslot.slot = slot;
1325 	int_pkt->int_desc.vector = vector;
1326 	int_pkt->int_desc.vector_count = 1;
1327 	int_pkt->int_desc.delivery_mode = APIC_DELIVERY_MODE_FIXED;
1328 
1329 	/*
1330 	 * Create MSI w/ dummy vCPU set, overwritten by subsequent retarget in
1331 	 * hv_irq_unmask().
1332 	 */
1333 	int_pkt->int_desc.cpu_mask = CPU_AFFINITY_ALL;
1334 
1335 	return sizeof(*int_pkt);
1336 }
1337 
1338 static u32 hv_compose_msi_req_v2(
1339 	struct pci_create_interrupt2 *int_pkt, struct cpumask *affinity,
1340 	u32 slot, u8 vector)
1341 {
1342 	int cpu;
1343 
1344 	int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE2;
1345 	int_pkt->wslot.slot = slot;
1346 	int_pkt->int_desc.vector = vector;
1347 	int_pkt->int_desc.vector_count = 1;
1348 	int_pkt->int_desc.delivery_mode = APIC_DELIVERY_MODE_FIXED;
1349 
1350 	/*
1351 	 * Create MSI w/ dummy vCPU set targeting just one vCPU, overwritten
1352 	 * by subsequent retarget in hv_irq_unmask().
1353 	 */
1354 	cpu = cpumask_first_and(affinity, cpu_online_mask);
1355 	int_pkt->int_desc.processor_array[0] =
1356 		hv_cpu_number_to_vp_number(cpu);
1357 	int_pkt->int_desc.processor_count = 1;
1358 
1359 	return sizeof(*int_pkt);
1360 }
1361 
1362 /**
1363  * hv_compose_msi_msg() - Supplies a valid MSI address/data
1364  * @data:	Everything about this MSI
1365  * @msg:	Buffer that is filled in by this function
1366  *
1367  * This function unpacks the IRQ looking for target CPU set, IDT
1368  * vector and mode and sends a message to the parent partition
1369  * asking for a mapping for that tuple in this partition.  The
1370  * response supplies a data value and address to which that data
1371  * should be written to trigger that interrupt.
1372  */
1373 static void hv_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
1374 {
1375 	struct irq_cfg *cfg = irqd_cfg(data);
1376 	struct hv_pcibus_device *hbus;
1377 	struct vmbus_channel *channel;
1378 	struct hv_pci_dev *hpdev;
1379 	struct pci_bus *pbus;
1380 	struct pci_dev *pdev;
1381 	struct cpumask *dest;
1382 	struct compose_comp_ctxt comp;
1383 	struct tran_int_desc *int_desc;
1384 	struct {
1385 		struct pci_packet pci_pkt;
1386 		union {
1387 			struct pci_create_interrupt v1;
1388 			struct pci_create_interrupt2 v2;
1389 		} int_pkts;
1390 	} __packed ctxt;
1391 
1392 	u32 size;
1393 	int ret;
1394 
1395 	pdev = msi_desc_to_pci_dev(irq_data_get_msi_desc(data));
1396 	dest = irq_data_get_effective_affinity_mask(data);
1397 	pbus = pdev->bus;
1398 	hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
1399 	channel = hbus->hdev->channel;
1400 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1401 	if (!hpdev)
1402 		goto return_null_message;
1403 
1404 	/* Free any previous message that might have already been composed. */
1405 	if (data->chip_data) {
1406 		int_desc = data->chip_data;
1407 		data->chip_data = NULL;
1408 		hv_int_desc_free(hpdev, int_desc);
1409 	}
1410 
1411 	int_desc = kzalloc(sizeof(*int_desc), GFP_ATOMIC);
1412 	if (!int_desc)
1413 		goto drop_reference;
1414 
1415 	memset(&ctxt, 0, sizeof(ctxt));
1416 	init_completion(&comp.comp_pkt.host_event);
1417 	ctxt.pci_pkt.completion_func = hv_pci_compose_compl;
1418 	ctxt.pci_pkt.compl_ctxt = &comp;
1419 
1420 	switch (hbus->protocol_version) {
1421 	case PCI_PROTOCOL_VERSION_1_1:
1422 		size = hv_compose_msi_req_v1(&ctxt.int_pkts.v1,
1423 					dest,
1424 					hpdev->desc.win_slot.slot,
1425 					cfg->vector);
1426 		break;
1427 
1428 	case PCI_PROTOCOL_VERSION_1_2:
1429 	case PCI_PROTOCOL_VERSION_1_3:
1430 		size = hv_compose_msi_req_v2(&ctxt.int_pkts.v2,
1431 					dest,
1432 					hpdev->desc.win_slot.slot,
1433 					cfg->vector);
1434 		break;
1435 
1436 	default:
1437 		/* As we only negotiate protocol versions known to this driver,
1438 		 * this path should never hit. However, this is it not a hot
1439 		 * path so we print a message to aid future updates.
1440 		 */
1441 		dev_err(&hbus->hdev->device,
1442 			"Unexpected vPCI protocol, update driver.");
1443 		goto free_int_desc;
1444 	}
1445 
1446 	ret = vmbus_sendpacket(hpdev->hbus->hdev->channel, &ctxt.int_pkts,
1447 			       size, (unsigned long)&ctxt.pci_pkt,
1448 			       VM_PKT_DATA_INBAND,
1449 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1450 	if (ret) {
1451 		dev_err(&hbus->hdev->device,
1452 			"Sending request for interrupt failed: 0x%x",
1453 			comp.comp_pkt.completion_status);
1454 		goto free_int_desc;
1455 	}
1456 
1457 	/*
1458 	 * Prevents hv_pci_onchannelcallback() from running concurrently
1459 	 * in the tasklet.
1460 	 */
1461 	tasklet_disable(&channel->callback_event);
1462 
1463 	/*
1464 	 * Since this function is called with IRQ locks held, can't
1465 	 * do normal wait for completion; instead poll.
1466 	 */
1467 	while (!try_wait_for_completion(&comp.comp_pkt.host_event)) {
1468 		unsigned long flags;
1469 
1470 		/* 0xFFFF means an invalid PCI VENDOR ID. */
1471 		if (hv_pcifront_get_vendor_id(hpdev) == 0xFFFF) {
1472 			dev_err_once(&hbus->hdev->device,
1473 				     "the device has gone\n");
1474 			goto enable_tasklet;
1475 		}
1476 
1477 		/*
1478 		 * Make sure that the ring buffer data structure doesn't get
1479 		 * freed while we dereference the ring buffer pointer.  Test
1480 		 * for the channel's onchannel_callback being NULL within a
1481 		 * sched_lock critical section.  See also the inline comments
1482 		 * in vmbus_reset_channel_cb().
1483 		 */
1484 		spin_lock_irqsave(&channel->sched_lock, flags);
1485 		if (unlikely(channel->onchannel_callback == NULL)) {
1486 			spin_unlock_irqrestore(&channel->sched_lock, flags);
1487 			goto enable_tasklet;
1488 		}
1489 		hv_pci_onchannelcallback(hbus);
1490 		spin_unlock_irqrestore(&channel->sched_lock, flags);
1491 
1492 		if (hpdev->state == hv_pcichild_ejecting) {
1493 			dev_err_once(&hbus->hdev->device,
1494 				     "the device is being ejected\n");
1495 			goto enable_tasklet;
1496 		}
1497 
1498 		udelay(100);
1499 	}
1500 
1501 	tasklet_enable(&channel->callback_event);
1502 
1503 	if (comp.comp_pkt.completion_status < 0) {
1504 		dev_err(&hbus->hdev->device,
1505 			"Request for interrupt failed: 0x%x",
1506 			comp.comp_pkt.completion_status);
1507 		goto free_int_desc;
1508 	}
1509 
1510 	/*
1511 	 * Record the assignment so that this can be unwound later. Using
1512 	 * irq_set_chip_data() here would be appropriate, but the lock it takes
1513 	 * is already held.
1514 	 */
1515 	*int_desc = comp.int_desc;
1516 	data->chip_data = int_desc;
1517 
1518 	/* Pass up the result. */
1519 	msg->address_hi = comp.int_desc.address >> 32;
1520 	msg->address_lo = comp.int_desc.address & 0xffffffff;
1521 	msg->data = comp.int_desc.data;
1522 
1523 	put_pcichild(hpdev);
1524 	return;
1525 
1526 enable_tasklet:
1527 	tasklet_enable(&channel->callback_event);
1528 free_int_desc:
1529 	kfree(int_desc);
1530 drop_reference:
1531 	put_pcichild(hpdev);
1532 return_null_message:
1533 	msg->address_hi = 0;
1534 	msg->address_lo = 0;
1535 	msg->data = 0;
1536 }
1537 
1538 /* HW Interrupt Chip Descriptor */
1539 static struct irq_chip hv_msi_irq_chip = {
1540 	.name			= "Hyper-V PCIe MSI",
1541 	.irq_compose_msi_msg	= hv_compose_msi_msg,
1542 	.irq_set_affinity	= hv_set_affinity,
1543 	.irq_ack		= irq_chip_ack_parent,
1544 	.irq_mask		= hv_irq_mask,
1545 	.irq_unmask		= hv_irq_unmask,
1546 };
1547 
1548 static struct msi_domain_ops hv_msi_ops = {
1549 	.msi_prepare	= pci_msi_prepare,
1550 	.msi_free	= hv_msi_free,
1551 };
1552 
1553 /**
1554  * hv_pcie_init_irq_domain() - Initialize IRQ domain
1555  * @hbus:	The root PCI bus
1556  *
1557  * This function creates an IRQ domain which will be used for
1558  * interrupts from devices that have been passed through.  These
1559  * devices only support MSI and MSI-X, not line-based interrupts
1560  * or simulations of line-based interrupts through PCIe's
1561  * fabric-layer messages.  Because interrupts are remapped, we
1562  * can support multi-message MSI here.
1563  *
1564  * Return: '0' on success and error value on failure
1565  */
1566 static int hv_pcie_init_irq_domain(struct hv_pcibus_device *hbus)
1567 {
1568 	hbus->msi_info.chip = &hv_msi_irq_chip;
1569 	hbus->msi_info.ops = &hv_msi_ops;
1570 	hbus->msi_info.flags = (MSI_FLAG_USE_DEF_DOM_OPS |
1571 		MSI_FLAG_USE_DEF_CHIP_OPS | MSI_FLAG_MULTI_PCI_MSI |
1572 		MSI_FLAG_PCI_MSIX);
1573 	hbus->msi_info.handler = handle_edge_irq;
1574 	hbus->msi_info.handler_name = "edge";
1575 	hbus->msi_info.data = hbus;
1576 	hbus->irq_domain = pci_msi_create_irq_domain(hbus->sysdata.fwnode,
1577 						     &hbus->msi_info,
1578 						     x86_vector_domain);
1579 	if (!hbus->irq_domain) {
1580 		dev_err(&hbus->hdev->device,
1581 			"Failed to build an MSI IRQ domain\n");
1582 		return -ENODEV;
1583 	}
1584 
1585 	return 0;
1586 }
1587 
1588 /**
1589  * get_bar_size() - Get the address space consumed by a BAR
1590  * @bar_val:	Value that a BAR returned after -1 was written
1591  *              to it.
1592  *
1593  * This function returns the size of the BAR, rounded up to 1
1594  * page.  It has to be rounded up because the hypervisor's page
1595  * table entry that maps the BAR into the VM can't specify an
1596  * offset within a page.  The invariant is that the hypervisor
1597  * must place any BARs of smaller than page length at the
1598  * beginning of a page.
1599  *
1600  * Return:	Size in bytes of the consumed MMIO space.
1601  */
1602 static u64 get_bar_size(u64 bar_val)
1603 {
1604 	return round_up((1 + ~(bar_val & PCI_BASE_ADDRESS_MEM_MASK)),
1605 			PAGE_SIZE);
1606 }
1607 
1608 /**
1609  * survey_child_resources() - Total all MMIO requirements
1610  * @hbus:	Root PCI bus, as understood by this driver
1611  */
1612 static void survey_child_resources(struct hv_pcibus_device *hbus)
1613 {
1614 	struct hv_pci_dev *hpdev;
1615 	resource_size_t bar_size = 0;
1616 	unsigned long flags;
1617 	struct completion *event;
1618 	u64 bar_val;
1619 	int i;
1620 
1621 	/* If nobody is waiting on the answer, don't compute it. */
1622 	event = xchg(&hbus->survey_event, NULL);
1623 	if (!event)
1624 		return;
1625 
1626 	/* If the answer has already been computed, go with it. */
1627 	if (hbus->low_mmio_space || hbus->high_mmio_space) {
1628 		complete(event);
1629 		return;
1630 	}
1631 
1632 	spin_lock_irqsave(&hbus->device_list_lock, flags);
1633 
1634 	/*
1635 	 * Due to an interesting quirk of the PCI spec, all memory regions
1636 	 * for a child device are a power of 2 in size and aligned in memory,
1637 	 * so it's sufficient to just add them up without tracking alignment.
1638 	 */
1639 	list_for_each_entry(hpdev, &hbus->children, list_entry) {
1640 		for (i = 0; i < PCI_STD_NUM_BARS; i++) {
1641 			if (hpdev->probed_bar[i] & PCI_BASE_ADDRESS_SPACE_IO)
1642 				dev_err(&hbus->hdev->device,
1643 					"There's an I/O BAR in this list!\n");
1644 
1645 			if (hpdev->probed_bar[i] != 0) {
1646 				/*
1647 				 * A probed BAR has all the upper bits set that
1648 				 * can be changed.
1649 				 */
1650 
1651 				bar_val = hpdev->probed_bar[i];
1652 				if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
1653 					bar_val |=
1654 					((u64)hpdev->probed_bar[++i] << 32);
1655 				else
1656 					bar_val |= 0xffffffff00000000ULL;
1657 
1658 				bar_size = get_bar_size(bar_val);
1659 
1660 				if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
1661 					hbus->high_mmio_space += bar_size;
1662 				else
1663 					hbus->low_mmio_space += bar_size;
1664 			}
1665 		}
1666 	}
1667 
1668 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1669 	complete(event);
1670 }
1671 
1672 /**
1673  * prepopulate_bars() - Fill in BARs with defaults
1674  * @hbus:	Root PCI bus, as understood by this driver
1675  *
1676  * The core PCI driver code seems much, much happier if the BARs
1677  * for a device have values upon first scan. So fill them in.
1678  * The algorithm below works down from large sizes to small,
1679  * attempting to pack the assignments optimally. The assumption,
1680  * enforced in other parts of the code, is that the beginning of
1681  * the memory-mapped I/O space will be aligned on the largest
1682  * BAR size.
1683  */
1684 static void prepopulate_bars(struct hv_pcibus_device *hbus)
1685 {
1686 	resource_size_t high_size = 0;
1687 	resource_size_t low_size = 0;
1688 	resource_size_t high_base = 0;
1689 	resource_size_t low_base = 0;
1690 	resource_size_t bar_size;
1691 	struct hv_pci_dev *hpdev;
1692 	unsigned long flags;
1693 	u64 bar_val;
1694 	u32 command;
1695 	bool high;
1696 	int i;
1697 
1698 	if (hbus->low_mmio_space) {
1699 		low_size = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
1700 		low_base = hbus->low_mmio_res->start;
1701 	}
1702 
1703 	if (hbus->high_mmio_space) {
1704 		high_size = 1ULL <<
1705 			(63 - __builtin_clzll(hbus->high_mmio_space));
1706 		high_base = hbus->high_mmio_res->start;
1707 	}
1708 
1709 	spin_lock_irqsave(&hbus->device_list_lock, flags);
1710 
1711 	/*
1712 	 * Clear the memory enable bit, in case it's already set. This occurs
1713 	 * in the suspend path of hibernation, where the device is suspended,
1714 	 * resumed and suspended again: see hibernation_snapshot() and
1715 	 * hibernation_platform_enter().
1716 	 *
1717 	 * If the memory enable bit is already set, Hyper-V sliently ignores
1718 	 * the below BAR updates, and the related PCI device driver can not
1719 	 * work, because reading from the device register(s) always returns
1720 	 * 0xFFFFFFFF.
1721 	 */
1722 	list_for_each_entry(hpdev, &hbus->children, list_entry) {
1723 		_hv_pcifront_read_config(hpdev, PCI_COMMAND, 2, &command);
1724 		command &= ~PCI_COMMAND_MEMORY;
1725 		_hv_pcifront_write_config(hpdev, PCI_COMMAND, 2, command);
1726 	}
1727 
1728 	/* Pick addresses for the BARs. */
1729 	do {
1730 		list_for_each_entry(hpdev, &hbus->children, list_entry) {
1731 			for (i = 0; i < PCI_STD_NUM_BARS; i++) {
1732 				bar_val = hpdev->probed_bar[i];
1733 				if (bar_val == 0)
1734 					continue;
1735 				high = bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64;
1736 				if (high) {
1737 					bar_val |=
1738 						((u64)hpdev->probed_bar[i + 1]
1739 						 << 32);
1740 				} else {
1741 					bar_val |= 0xffffffffULL << 32;
1742 				}
1743 				bar_size = get_bar_size(bar_val);
1744 				if (high) {
1745 					if (high_size != bar_size) {
1746 						i++;
1747 						continue;
1748 					}
1749 					_hv_pcifront_write_config(hpdev,
1750 						PCI_BASE_ADDRESS_0 + (4 * i),
1751 						4,
1752 						(u32)(high_base & 0xffffff00));
1753 					i++;
1754 					_hv_pcifront_write_config(hpdev,
1755 						PCI_BASE_ADDRESS_0 + (4 * i),
1756 						4, (u32)(high_base >> 32));
1757 					high_base += bar_size;
1758 				} else {
1759 					if (low_size != bar_size)
1760 						continue;
1761 					_hv_pcifront_write_config(hpdev,
1762 						PCI_BASE_ADDRESS_0 + (4 * i),
1763 						4,
1764 						(u32)(low_base & 0xffffff00));
1765 					low_base += bar_size;
1766 				}
1767 			}
1768 			if (high_size <= 1 && low_size <= 1) {
1769 				/* Set the memory enable bit. */
1770 				_hv_pcifront_read_config(hpdev, PCI_COMMAND, 2,
1771 							 &command);
1772 				command |= PCI_COMMAND_MEMORY;
1773 				_hv_pcifront_write_config(hpdev, PCI_COMMAND, 2,
1774 							  command);
1775 				break;
1776 			}
1777 		}
1778 
1779 		high_size >>= 1;
1780 		low_size >>= 1;
1781 	}  while (high_size || low_size);
1782 
1783 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1784 }
1785 
1786 /*
1787  * Assign entries in sysfs pci slot directory.
1788  *
1789  * Note that this function does not need to lock the children list
1790  * because it is called from pci_devices_present_work which
1791  * is serialized with hv_eject_device_work because they are on the
1792  * same ordered workqueue. Therefore hbus->children list will not change
1793  * even when pci_create_slot sleeps.
1794  */
1795 static void hv_pci_assign_slots(struct hv_pcibus_device *hbus)
1796 {
1797 	struct hv_pci_dev *hpdev;
1798 	char name[SLOT_NAME_SIZE];
1799 	int slot_nr;
1800 
1801 	list_for_each_entry(hpdev, &hbus->children, list_entry) {
1802 		if (hpdev->pci_slot)
1803 			continue;
1804 
1805 		slot_nr = PCI_SLOT(wslot_to_devfn(hpdev->desc.win_slot.slot));
1806 		snprintf(name, SLOT_NAME_SIZE, "%u", hpdev->desc.ser);
1807 		hpdev->pci_slot = pci_create_slot(hbus->pci_bus, slot_nr,
1808 					  name, NULL);
1809 		if (IS_ERR(hpdev->pci_slot)) {
1810 			pr_warn("pci_create slot %s failed\n", name);
1811 			hpdev->pci_slot = NULL;
1812 		}
1813 	}
1814 }
1815 
1816 /*
1817  * Remove entries in sysfs pci slot directory.
1818  */
1819 static void hv_pci_remove_slots(struct hv_pcibus_device *hbus)
1820 {
1821 	struct hv_pci_dev *hpdev;
1822 
1823 	list_for_each_entry(hpdev, &hbus->children, list_entry) {
1824 		if (!hpdev->pci_slot)
1825 			continue;
1826 		pci_destroy_slot(hpdev->pci_slot);
1827 		hpdev->pci_slot = NULL;
1828 	}
1829 }
1830 
1831 /*
1832  * Set NUMA node for the devices on the bus
1833  */
1834 static void hv_pci_assign_numa_node(struct hv_pcibus_device *hbus)
1835 {
1836 	struct pci_dev *dev;
1837 	struct pci_bus *bus = hbus->pci_bus;
1838 	struct hv_pci_dev *hv_dev;
1839 
1840 	list_for_each_entry(dev, &bus->devices, bus_list) {
1841 		hv_dev = get_pcichild_wslot(hbus, devfn_to_wslot(dev->devfn));
1842 		if (!hv_dev)
1843 			continue;
1844 
1845 		if (hv_dev->desc.flags & HV_PCI_DEVICE_FLAG_NUMA_AFFINITY)
1846 			set_dev_node(&dev->dev, hv_dev->desc.virtual_numa_node);
1847 
1848 		put_pcichild(hv_dev);
1849 	}
1850 }
1851 
1852 /**
1853  * create_root_hv_pci_bus() - Expose a new root PCI bus
1854  * @hbus:	Root PCI bus, as understood by this driver
1855  *
1856  * Return: 0 on success, -errno on failure
1857  */
1858 static int create_root_hv_pci_bus(struct hv_pcibus_device *hbus)
1859 {
1860 	/* Register the device */
1861 	hbus->pci_bus = pci_create_root_bus(&hbus->hdev->device,
1862 					    0, /* bus number is always zero */
1863 					    &hv_pcifront_ops,
1864 					    &hbus->sysdata,
1865 					    &hbus->resources_for_children);
1866 	if (!hbus->pci_bus)
1867 		return -ENODEV;
1868 
1869 	hbus->pci_bus->msi = &hbus->msi_chip;
1870 	hbus->pci_bus->msi->dev = &hbus->hdev->device;
1871 
1872 	pci_lock_rescan_remove();
1873 	pci_scan_child_bus(hbus->pci_bus);
1874 	hv_pci_assign_numa_node(hbus);
1875 	pci_bus_assign_resources(hbus->pci_bus);
1876 	hv_pci_assign_slots(hbus);
1877 	pci_bus_add_devices(hbus->pci_bus);
1878 	pci_unlock_rescan_remove();
1879 	hbus->state = hv_pcibus_installed;
1880 	return 0;
1881 }
1882 
1883 struct q_res_req_compl {
1884 	struct completion host_event;
1885 	struct hv_pci_dev *hpdev;
1886 };
1887 
1888 /**
1889  * q_resource_requirements() - Query Resource Requirements
1890  * @context:		The completion context.
1891  * @resp:		The response that came from the host.
1892  * @resp_packet_size:	The size in bytes of resp.
1893  *
1894  * This function is invoked on completion of a Query Resource
1895  * Requirements packet.
1896  */
1897 static void q_resource_requirements(void *context, struct pci_response *resp,
1898 				    int resp_packet_size)
1899 {
1900 	struct q_res_req_compl *completion = context;
1901 	struct pci_q_res_req_response *q_res_req =
1902 		(struct pci_q_res_req_response *)resp;
1903 	int i;
1904 
1905 	if (resp->status < 0) {
1906 		dev_err(&completion->hpdev->hbus->hdev->device,
1907 			"query resource requirements failed: %x\n",
1908 			resp->status);
1909 	} else {
1910 		for (i = 0; i < PCI_STD_NUM_BARS; i++) {
1911 			completion->hpdev->probed_bar[i] =
1912 				q_res_req->probed_bar[i];
1913 		}
1914 	}
1915 
1916 	complete(&completion->host_event);
1917 }
1918 
1919 /**
1920  * new_pcichild_device() - Create a new child device
1921  * @hbus:	The internal struct tracking this root PCI bus.
1922  * @desc:	The information supplied so far from the host
1923  *              about the device.
1924  *
1925  * This function creates the tracking structure for a new child
1926  * device and kicks off the process of figuring out what it is.
1927  *
1928  * Return: Pointer to the new tracking struct
1929  */
1930 static struct hv_pci_dev *new_pcichild_device(struct hv_pcibus_device *hbus,
1931 		struct hv_pcidev_description *desc)
1932 {
1933 	struct hv_pci_dev *hpdev;
1934 	struct pci_child_message *res_req;
1935 	struct q_res_req_compl comp_pkt;
1936 	struct {
1937 		struct pci_packet init_packet;
1938 		u8 buffer[sizeof(struct pci_child_message)];
1939 	} pkt;
1940 	unsigned long flags;
1941 	int ret;
1942 
1943 	hpdev = kzalloc(sizeof(*hpdev), GFP_KERNEL);
1944 	if (!hpdev)
1945 		return NULL;
1946 
1947 	hpdev->hbus = hbus;
1948 
1949 	memset(&pkt, 0, sizeof(pkt));
1950 	init_completion(&comp_pkt.host_event);
1951 	comp_pkt.hpdev = hpdev;
1952 	pkt.init_packet.compl_ctxt = &comp_pkt;
1953 	pkt.init_packet.completion_func = q_resource_requirements;
1954 	res_req = (struct pci_child_message *)&pkt.init_packet.message;
1955 	res_req->message_type.type = PCI_QUERY_RESOURCE_REQUIREMENTS;
1956 	res_req->wslot.slot = desc->win_slot.slot;
1957 
1958 	ret = vmbus_sendpacket(hbus->hdev->channel, res_req,
1959 			       sizeof(struct pci_child_message),
1960 			       (unsigned long)&pkt.init_packet,
1961 			       VM_PKT_DATA_INBAND,
1962 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1963 	if (ret)
1964 		goto error;
1965 
1966 	if (wait_for_response(hbus->hdev, &comp_pkt.host_event))
1967 		goto error;
1968 
1969 	hpdev->desc = *desc;
1970 	refcount_set(&hpdev->refs, 1);
1971 	get_pcichild(hpdev);
1972 	spin_lock_irqsave(&hbus->device_list_lock, flags);
1973 
1974 	list_add_tail(&hpdev->list_entry, &hbus->children);
1975 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1976 	return hpdev;
1977 
1978 error:
1979 	kfree(hpdev);
1980 	return NULL;
1981 }
1982 
1983 /**
1984  * get_pcichild_wslot() - Find device from slot
1985  * @hbus:	Root PCI bus, as understood by this driver
1986  * @wslot:	Location on the bus
1987  *
1988  * This function looks up a PCI device and returns the internal
1989  * representation of it.  It acquires a reference on it, so that
1990  * the device won't be deleted while somebody is using it.  The
1991  * caller is responsible for calling put_pcichild() to release
1992  * this reference.
1993  *
1994  * Return:	Internal representation of a PCI device
1995  */
1996 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
1997 					     u32 wslot)
1998 {
1999 	unsigned long flags;
2000 	struct hv_pci_dev *iter, *hpdev = NULL;
2001 
2002 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2003 	list_for_each_entry(iter, &hbus->children, list_entry) {
2004 		if (iter->desc.win_slot.slot == wslot) {
2005 			hpdev = iter;
2006 			get_pcichild(hpdev);
2007 			break;
2008 		}
2009 	}
2010 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2011 
2012 	return hpdev;
2013 }
2014 
2015 /**
2016  * pci_devices_present_work() - Handle new list of child devices
2017  * @work:	Work struct embedded in struct hv_dr_work
2018  *
2019  * "Bus Relations" is the Windows term for "children of this
2020  * bus."  The terminology is preserved here for people trying to
2021  * debug the interaction between Hyper-V and Linux.  This
2022  * function is called when the parent partition reports a list
2023  * of functions that should be observed under this PCI Express
2024  * port (bus).
2025  *
2026  * This function updates the list, and must tolerate being
2027  * called multiple times with the same information.  The typical
2028  * number of child devices is one, with very atypical cases
2029  * involving three or four, so the algorithms used here can be
2030  * simple and inefficient.
2031  *
2032  * It must also treat the omission of a previously observed device as
2033  * notification that the device no longer exists.
2034  *
2035  * Note that this function is serialized with hv_eject_device_work(),
2036  * because both are pushed to the ordered workqueue hbus->wq.
2037  */
2038 static void pci_devices_present_work(struct work_struct *work)
2039 {
2040 	u32 child_no;
2041 	bool found;
2042 	struct hv_pcidev_description *new_desc;
2043 	struct hv_pci_dev *hpdev;
2044 	struct hv_pcibus_device *hbus;
2045 	struct list_head removed;
2046 	struct hv_dr_work *dr_wrk;
2047 	struct hv_dr_state *dr = NULL;
2048 	unsigned long flags;
2049 
2050 	dr_wrk = container_of(work, struct hv_dr_work, wrk);
2051 	hbus = dr_wrk->bus;
2052 	kfree(dr_wrk);
2053 
2054 	INIT_LIST_HEAD(&removed);
2055 
2056 	/* Pull this off the queue and process it if it was the last one. */
2057 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2058 	while (!list_empty(&hbus->dr_list)) {
2059 		dr = list_first_entry(&hbus->dr_list, struct hv_dr_state,
2060 				      list_entry);
2061 		list_del(&dr->list_entry);
2062 
2063 		/* Throw this away if the list still has stuff in it. */
2064 		if (!list_empty(&hbus->dr_list)) {
2065 			kfree(dr);
2066 			continue;
2067 		}
2068 	}
2069 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2070 
2071 	if (!dr) {
2072 		put_hvpcibus(hbus);
2073 		return;
2074 	}
2075 
2076 	/* First, mark all existing children as reported missing. */
2077 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2078 	list_for_each_entry(hpdev, &hbus->children, list_entry) {
2079 		hpdev->reported_missing = true;
2080 	}
2081 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2082 
2083 	/* Next, add back any reported devices. */
2084 	for (child_no = 0; child_no < dr->device_count; child_no++) {
2085 		found = false;
2086 		new_desc = &dr->func[child_no];
2087 
2088 		spin_lock_irqsave(&hbus->device_list_lock, flags);
2089 		list_for_each_entry(hpdev, &hbus->children, list_entry) {
2090 			if ((hpdev->desc.win_slot.slot == new_desc->win_slot.slot) &&
2091 			    (hpdev->desc.v_id == new_desc->v_id) &&
2092 			    (hpdev->desc.d_id == new_desc->d_id) &&
2093 			    (hpdev->desc.ser == new_desc->ser)) {
2094 				hpdev->reported_missing = false;
2095 				found = true;
2096 			}
2097 		}
2098 		spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2099 
2100 		if (!found) {
2101 			hpdev = new_pcichild_device(hbus, new_desc);
2102 			if (!hpdev)
2103 				dev_err(&hbus->hdev->device,
2104 					"couldn't record a child device.\n");
2105 		}
2106 	}
2107 
2108 	/* Move missing children to a list on the stack. */
2109 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2110 	do {
2111 		found = false;
2112 		list_for_each_entry(hpdev, &hbus->children, list_entry) {
2113 			if (hpdev->reported_missing) {
2114 				found = true;
2115 				put_pcichild(hpdev);
2116 				list_move_tail(&hpdev->list_entry, &removed);
2117 				break;
2118 			}
2119 		}
2120 	} while (found);
2121 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2122 
2123 	/* Delete everything that should no longer exist. */
2124 	while (!list_empty(&removed)) {
2125 		hpdev = list_first_entry(&removed, struct hv_pci_dev,
2126 					 list_entry);
2127 		list_del(&hpdev->list_entry);
2128 
2129 		if (hpdev->pci_slot)
2130 			pci_destroy_slot(hpdev->pci_slot);
2131 
2132 		put_pcichild(hpdev);
2133 	}
2134 
2135 	switch (hbus->state) {
2136 	case hv_pcibus_installed:
2137 		/*
2138 		 * Tell the core to rescan bus
2139 		 * because there may have been changes.
2140 		 */
2141 		pci_lock_rescan_remove();
2142 		pci_scan_child_bus(hbus->pci_bus);
2143 		hv_pci_assign_numa_node(hbus);
2144 		hv_pci_assign_slots(hbus);
2145 		pci_unlock_rescan_remove();
2146 		break;
2147 
2148 	case hv_pcibus_init:
2149 	case hv_pcibus_probed:
2150 		survey_child_resources(hbus);
2151 		break;
2152 
2153 	default:
2154 		break;
2155 	}
2156 
2157 	put_hvpcibus(hbus);
2158 	kfree(dr);
2159 }
2160 
2161 /**
2162  * hv_pci_start_relations_work() - Queue work to start device discovery
2163  * @hbus:	Root PCI bus, as understood by this driver
2164  * @dr:		The list of children returned from host
2165  *
2166  * Return:  0 on success, -errno on failure
2167  */
2168 static int hv_pci_start_relations_work(struct hv_pcibus_device *hbus,
2169 				       struct hv_dr_state *dr)
2170 {
2171 	struct hv_dr_work *dr_wrk;
2172 	unsigned long flags;
2173 	bool pending_dr;
2174 
2175 	if (hbus->state == hv_pcibus_removing) {
2176 		dev_info(&hbus->hdev->device,
2177 			 "PCI VMBus BUS_RELATIONS: ignored\n");
2178 		return -ENOENT;
2179 	}
2180 
2181 	dr_wrk = kzalloc(sizeof(*dr_wrk), GFP_NOWAIT);
2182 	if (!dr_wrk)
2183 		return -ENOMEM;
2184 
2185 	INIT_WORK(&dr_wrk->wrk, pci_devices_present_work);
2186 	dr_wrk->bus = hbus;
2187 
2188 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2189 	/*
2190 	 * If pending_dr is true, we have already queued a work,
2191 	 * which will see the new dr. Otherwise, we need to
2192 	 * queue a new work.
2193 	 */
2194 	pending_dr = !list_empty(&hbus->dr_list);
2195 	list_add_tail(&dr->list_entry, &hbus->dr_list);
2196 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2197 
2198 	if (pending_dr) {
2199 		kfree(dr_wrk);
2200 	} else {
2201 		get_hvpcibus(hbus);
2202 		queue_work(hbus->wq, &dr_wrk->wrk);
2203 	}
2204 
2205 	return 0;
2206 }
2207 
2208 /**
2209  * hv_pci_devices_present() - Handle list of new children
2210  * @hbus:      Root PCI bus, as understood by this driver
2211  * @relations: Packet from host listing children
2212  *
2213  * Process a new list of devices on the bus. The list of devices is
2214  * discovered by VSP and sent to us via VSP message PCI_BUS_RELATIONS,
2215  * whenever a new list of devices for this bus appears.
2216  */
2217 static void hv_pci_devices_present(struct hv_pcibus_device *hbus,
2218 				   struct pci_bus_relations *relations)
2219 {
2220 	struct hv_dr_state *dr;
2221 	int i;
2222 
2223 	dr = kzalloc(struct_size(dr, func, relations->device_count),
2224 		     GFP_NOWAIT);
2225 	if (!dr)
2226 		return;
2227 
2228 	dr->device_count = relations->device_count;
2229 	for (i = 0; i < dr->device_count; i++) {
2230 		dr->func[i].v_id = relations->func[i].v_id;
2231 		dr->func[i].d_id = relations->func[i].d_id;
2232 		dr->func[i].rev = relations->func[i].rev;
2233 		dr->func[i].prog_intf = relations->func[i].prog_intf;
2234 		dr->func[i].subclass = relations->func[i].subclass;
2235 		dr->func[i].base_class = relations->func[i].base_class;
2236 		dr->func[i].subsystem_id = relations->func[i].subsystem_id;
2237 		dr->func[i].win_slot = relations->func[i].win_slot;
2238 		dr->func[i].ser = relations->func[i].ser;
2239 	}
2240 
2241 	if (hv_pci_start_relations_work(hbus, dr))
2242 		kfree(dr);
2243 }
2244 
2245 /**
2246  * hv_pci_devices_present2() - Handle list of new children
2247  * @hbus:	Root PCI bus, as understood by this driver
2248  * @relations:	Packet from host listing children
2249  *
2250  * This function is the v2 version of hv_pci_devices_present()
2251  */
2252 static void hv_pci_devices_present2(struct hv_pcibus_device *hbus,
2253 				    struct pci_bus_relations2 *relations)
2254 {
2255 	struct hv_dr_state *dr;
2256 	int i;
2257 
2258 	dr = kzalloc(struct_size(dr, func, relations->device_count),
2259 		     GFP_NOWAIT);
2260 	if (!dr)
2261 		return;
2262 
2263 	dr->device_count = relations->device_count;
2264 	for (i = 0; i < dr->device_count; i++) {
2265 		dr->func[i].v_id = relations->func[i].v_id;
2266 		dr->func[i].d_id = relations->func[i].d_id;
2267 		dr->func[i].rev = relations->func[i].rev;
2268 		dr->func[i].prog_intf = relations->func[i].prog_intf;
2269 		dr->func[i].subclass = relations->func[i].subclass;
2270 		dr->func[i].base_class = relations->func[i].base_class;
2271 		dr->func[i].subsystem_id = relations->func[i].subsystem_id;
2272 		dr->func[i].win_slot = relations->func[i].win_slot;
2273 		dr->func[i].ser = relations->func[i].ser;
2274 		dr->func[i].flags = relations->func[i].flags;
2275 		dr->func[i].virtual_numa_node =
2276 			relations->func[i].virtual_numa_node;
2277 	}
2278 
2279 	if (hv_pci_start_relations_work(hbus, dr))
2280 		kfree(dr);
2281 }
2282 
2283 /**
2284  * hv_eject_device_work() - Asynchronously handles ejection
2285  * @work:	Work struct embedded in internal device struct
2286  *
2287  * This function handles ejecting a device.  Windows will
2288  * attempt to gracefully eject a device, waiting 60 seconds to
2289  * hear back from the guest OS that this completed successfully.
2290  * If this timer expires, the device will be forcibly removed.
2291  */
2292 static void hv_eject_device_work(struct work_struct *work)
2293 {
2294 	struct pci_eject_response *ejct_pkt;
2295 	struct hv_pcibus_device *hbus;
2296 	struct hv_pci_dev *hpdev;
2297 	struct pci_dev *pdev;
2298 	unsigned long flags;
2299 	int wslot;
2300 	struct {
2301 		struct pci_packet pkt;
2302 		u8 buffer[sizeof(struct pci_eject_response)];
2303 	} ctxt;
2304 
2305 	hpdev = container_of(work, struct hv_pci_dev, wrk);
2306 	hbus = hpdev->hbus;
2307 
2308 	WARN_ON(hpdev->state != hv_pcichild_ejecting);
2309 
2310 	/*
2311 	 * Ejection can come before or after the PCI bus has been set up, so
2312 	 * attempt to find it and tear down the bus state, if it exists.  This
2313 	 * must be done without constructs like pci_domain_nr(hbus->pci_bus)
2314 	 * because hbus->pci_bus may not exist yet.
2315 	 */
2316 	wslot = wslot_to_devfn(hpdev->desc.win_slot.slot);
2317 	pdev = pci_get_domain_bus_and_slot(hbus->sysdata.domain, 0, wslot);
2318 	if (pdev) {
2319 		pci_lock_rescan_remove();
2320 		pci_stop_and_remove_bus_device(pdev);
2321 		pci_dev_put(pdev);
2322 		pci_unlock_rescan_remove();
2323 	}
2324 
2325 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2326 	list_del(&hpdev->list_entry);
2327 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2328 
2329 	if (hpdev->pci_slot)
2330 		pci_destroy_slot(hpdev->pci_slot);
2331 
2332 	memset(&ctxt, 0, sizeof(ctxt));
2333 	ejct_pkt = (struct pci_eject_response *)&ctxt.pkt.message;
2334 	ejct_pkt->message_type.type = PCI_EJECTION_COMPLETE;
2335 	ejct_pkt->wslot.slot = hpdev->desc.win_slot.slot;
2336 	vmbus_sendpacket(hbus->hdev->channel, ejct_pkt,
2337 			 sizeof(*ejct_pkt), (unsigned long)&ctxt.pkt,
2338 			 VM_PKT_DATA_INBAND, 0);
2339 
2340 	/* For the get_pcichild() in hv_pci_eject_device() */
2341 	put_pcichild(hpdev);
2342 	/* For the two refs got in new_pcichild_device() */
2343 	put_pcichild(hpdev);
2344 	put_pcichild(hpdev);
2345 	/* hpdev has been freed. Do not use it any more. */
2346 
2347 	put_hvpcibus(hbus);
2348 }
2349 
2350 /**
2351  * hv_pci_eject_device() - Handles device ejection
2352  * @hpdev:	Internal device tracking struct
2353  *
2354  * This function is invoked when an ejection packet arrives.  It
2355  * just schedules work so that we don't re-enter the packet
2356  * delivery code handling the ejection.
2357  */
2358 static void hv_pci_eject_device(struct hv_pci_dev *hpdev)
2359 {
2360 	struct hv_pcibus_device *hbus = hpdev->hbus;
2361 	struct hv_device *hdev = hbus->hdev;
2362 
2363 	if (hbus->state == hv_pcibus_removing) {
2364 		dev_info(&hdev->device, "PCI VMBus EJECT: ignored\n");
2365 		return;
2366 	}
2367 
2368 	hpdev->state = hv_pcichild_ejecting;
2369 	get_pcichild(hpdev);
2370 	INIT_WORK(&hpdev->wrk, hv_eject_device_work);
2371 	get_hvpcibus(hbus);
2372 	queue_work(hbus->wq, &hpdev->wrk);
2373 }
2374 
2375 /**
2376  * hv_pci_onchannelcallback() - Handles incoming packets
2377  * @context:	Internal bus tracking struct
2378  *
2379  * This function is invoked whenever the host sends a packet to
2380  * this channel (which is private to this root PCI bus).
2381  */
2382 static void hv_pci_onchannelcallback(void *context)
2383 {
2384 	const int packet_size = 0x100;
2385 	int ret;
2386 	struct hv_pcibus_device *hbus = context;
2387 	u32 bytes_recvd;
2388 	u64 req_id;
2389 	struct vmpacket_descriptor *desc;
2390 	unsigned char *buffer;
2391 	int bufferlen = packet_size;
2392 	struct pci_packet *comp_packet;
2393 	struct pci_response *response;
2394 	struct pci_incoming_message *new_message;
2395 	struct pci_bus_relations *bus_rel;
2396 	struct pci_bus_relations2 *bus_rel2;
2397 	struct pci_dev_inval_block *inval;
2398 	struct pci_dev_incoming *dev_message;
2399 	struct hv_pci_dev *hpdev;
2400 
2401 	buffer = kmalloc(bufferlen, GFP_ATOMIC);
2402 	if (!buffer)
2403 		return;
2404 
2405 	while (1) {
2406 		ret = vmbus_recvpacket_raw(hbus->hdev->channel, buffer,
2407 					   bufferlen, &bytes_recvd, &req_id);
2408 
2409 		if (ret == -ENOBUFS) {
2410 			kfree(buffer);
2411 			/* Handle large packet */
2412 			bufferlen = bytes_recvd;
2413 			buffer = kmalloc(bytes_recvd, GFP_ATOMIC);
2414 			if (!buffer)
2415 				return;
2416 			continue;
2417 		}
2418 
2419 		/* Zero length indicates there are no more packets. */
2420 		if (ret || !bytes_recvd)
2421 			break;
2422 
2423 		/*
2424 		 * All incoming packets must be at least as large as a
2425 		 * response.
2426 		 */
2427 		if (bytes_recvd <= sizeof(struct pci_response))
2428 			continue;
2429 		desc = (struct vmpacket_descriptor *)buffer;
2430 
2431 		switch (desc->type) {
2432 		case VM_PKT_COMP:
2433 
2434 			/*
2435 			 * The host is trusted, and thus it's safe to interpret
2436 			 * this transaction ID as a pointer.
2437 			 */
2438 			comp_packet = (struct pci_packet *)req_id;
2439 			response = (struct pci_response *)buffer;
2440 			comp_packet->completion_func(comp_packet->compl_ctxt,
2441 						     response,
2442 						     bytes_recvd);
2443 			break;
2444 
2445 		case VM_PKT_DATA_INBAND:
2446 
2447 			new_message = (struct pci_incoming_message *)buffer;
2448 			switch (new_message->message_type.type) {
2449 			case PCI_BUS_RELATIONS:
2450 
2451 				bus_rel = (struct pci_bus_relations *)buffer;
2452 				if (bytes_recvd <
2453 					struct_size(bus_rel, func,
2454 						    bus_rel->device_count)) {
2455 					dev_err(&hbus->hdev->device,
2456 						"bus relations too small\n");
2457 					break;
2458 				}
2459 
2460 				hv_pci_devices_present(hbus, bus_rel);
2461 				break;
2462 
2463 			case PCI_BUS_RELATIONS2:
2464 
2465 				bus_rel2 = (struct pci_bus_relations2 *)buffer;
2466 				if (bytes_recvd <
2467 					struct_size(bus_rel2, func,
2468 						    bus_rel2->device_count)) {
2469 					dev_err(&hbus->hdev->device,
2470 						"bus relations v2 too small\n");
2471 					break;
2472 				}
2473 
2474 				hv_pci_devices_present2(hbus, bus_rel2);
2475 				break;
2476 
2477 			case PCI_EJECT:
2478 
2479 				dev_message = (struct pci_dev_incoming *)buffer;
2480 				hpdev = get_pcichild_wslot(hbus,
2481 						      dev_message->wslot.slot);
2482 				if (hpdev) {
2483 					hv_pci_eject_device(hpdev);
2484 					put_pcichild(hpdev);
2485 				}
2486 				break;
2487 
2488 			case PCI_INVALIDATE_BLOCK:
2489 
2490 				inval = (struct pci_dev_inval_block *)buffer;
2491 				hpdev = get_pcichild_wslot(hbus,
2492 							   inval->wslot.slot);
2493 				if (hpdev) {
2494 					if (hpdev->block_invalidate) {
2495 						hpdev->block_invalidate(
2496 						    hpdev->invalidate_context,
2497 						    inval->block_mask);
2498 					}
2499 					put_pcichild(hpdev);
2500 				}
2501 				break;
2502 
2503 			default:
2504 				dev_warn(&hbus->hdev->device,
2505 					"Unimplemented protocol message %x\n",
2506 					new_message->message_type.type);
2507 				break;
2508 			}
2509 			break;
2510 
2511 		default:
2512 			dev_err(&hbus->hdev->device,
2513 				"unhandled packet type %d, tid %llx len %d\n",
2514 				desc->type, req_id, bytes_recvd);
2515 			break;
2516 		}
2517 	}
2518 
2519 	kfree(buffer);
2520 }
2521 
2522 /**
2523  * hv_pci_protocol_negotiation() - Set up protocol
2524  * @hdev:		VMBus's tracking struct for this root PCI bus.
2525  * @version:		Array of supported channel protocol versions in
2526  *			the order of probing - highest go first.
2527  * @num_version:	Number of elements in the version array.
2528  *
2529  * This driver is intended to support running on Windows 10
2530  * (server) and later versions. It will not run on earlier
2531  * versions, as they assume that many of the operations which
2532  * Linux needs accomplished with a spinlock held were done via
2533  * asynchronous messaging via VMBus.  Windows 10 increases the
2534  * surface area of PCI emulation so that these actions can take
2535  * place by suspending a virtual processor for their duration.
2536  *
2537  * This function negotiates the channel protocol version,
2538  * failing if the host doesn't support the necessary protocol
2539  * level.
2540  */
2541 static int hv_pci_protocol_negotiation(struct hv_device *hdev,
2542 				       enum pci_protocol_version_t version[],
2543 				       int num_version)
2544 {
2545 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2546 	struct pci_version_request *version_req;
2547 	struct hv_pci_compl comp_pkt;
2548 	struct pci_packet *pkt;
2549 	int ret;
2550 	int i;
2551 
2552 	/*
2553 	 * Initiate the handshake with the host and negotiate
2554 	 * a version that the host can support. We start with the
2555 	 * highest version number and go down if the host cannot
2556 	 * support it.
2557 	 */
2558 	pkt = kzalloc(sizeof(*pkt) + sizeof(*version_req), GFP_KERNEL);
2559 	if (!pkt)
2560 		return -ENOMEM;
2561 
2562 	init_completion(&comp_pkt.host_event);
2563 	pkt->completion_func = hv_pci_generic_compl;
2564 	pkt->compl_ctxt = &comp_pkt;
2565 	version_req = (struct pci_version_request *)&pkt->message;
2566 	version_req->message_type.type = PCI_QUERY_PROTOCOL_VERSION;
2567 
2568 	for (i = 0; i < num_version; i++) {
2569 		version_req->protocol_version = version[i];
2570 		ret = vmbus_sendpacket(hdev->channel, version_req,
2571 				sizeof(struct pci_version_request),
2572 				(unsigned long)pkt, VM_PKT_DATA_INBAND,
2573 				VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2574 		if (!ret)
2575 			ret = wait_for_response(hdev, &comp_pkt.host_event);
2576 
2577 		if (ret) {
2578 			dev_err(&hdev->device,
2579 				"PCI Pass-through VSP failed to request version: %d",
2580 				ret);
2581 			goto exit;
2582 		}
2583 
2584 		if (comp_pkt.completion_status >= 0) {
2585 			hbus->protocol_version = version[i];
2586 			dev_info(&hdev->device,
2587 				"PCI VMBus probing: Using version %#x\n",
2588 				hbus->protocol_version);
2589 			goto exit;
2590 		}
2591 
2592 		if (comp_pkt.completion_status != STATUS_REVISION_MISMATCH) {
2593 			dev_err(&hdev->device,
2594 				"PCI Pass-through VSP failed version request: %#x",
2595 				comp_pkt.completion_status);
2596 			ret = -EPROTO;
2597 			goto exit;
2598 		}
2599 
2600 		reinit_completion(&comp_pkt.host_event);
2601 	}
2602 
2603 	dev_err(&hdev->device,
2604 		"PCI pass-through VSP failed to find supported version");
2605 	ret = -EPROTO;
2606 
2607 exit:
2608 	kfree(pkt);
2609 	return ret;
2610 }
2611 
2612 /**
2613  * hv_pci_free_bridge_windows() - Release memory regions for the
2614  * bus
2615  * @hbus:	Root PCI bus, as understood by this driver
2616  */
2617 static void hv_pci_free_bridge_windows(struct hv_pcibus_device *hbus)
2618 {
2619 	/*
2620 	 * Set the resources back to the way they looked when they
2621 	 * were allocated by setting IORESOURCE_BUSY again.
2622 	 */
2623 
2624 	if (hbus->low_mmio_space && hbus->low_mmio_res) {
2625 		hbus->low_mmio_res->flags |= IORESOURCE_BUSY;
2626 		vmbus_free_mmio(hbus->low_mmio_res->start,
2627 				resource_size(hbus->low_mmio_res));
2628 	}
2629 
2630 	if (hbus->high_mmio_space && hbus->high_mmio_res) {
2631 		hbus->high_mmio_res->flags |= IORESOURCE_BUSY;
2632 		vmbus_free_mmio(hbus->high_mmio_res->start,
2633 				resource_size(hbus->high_mmio_res));
2634 	}
2635 }
2636 
2637 /**
2638  * hv_pci_allocate_bridge_windows() - Allocate memory regions
2639  * for the bus
2640  * @hbus:	Root PCI bus, as understood by this driver
2641  *
2642  * This function calls vmbus_allocate_mmio(), which is itself a
2643  * bit of a compromise.  Ideally, we might change the pnp layer
2644  * in the kernel such that it comprehends either PCI devices
2645  * which are "grandchildren of ACPI," with some intermediate bus
2646  * node (in this case, VMBus) or change it such that it
2647  * understands VMBus.  The pnp layer, however, has been declared
2648  * deprecated, and not subject to change.
2649  *
2650  * The workaround, implemented here, is to ask VMBus to allocate
2651  * MMIO space for this bus.  VMBus itself knows which ranges are
2652  * appropriate by looking at its own ACPI objects.  Then, after
2653  * these ranges are claimed, they're modified to look like they
2654  * would have looked if the ACPI and pnp code had allocated
2655  * bridge windows.  These descriptors have to exist in this form
2656  * in order to satisfy the code which will get invoked when the
2657  * endpoint PCI function driver calls request_mem_region() or
2658  * request_mem_region_exclusive().
2659  *
2660  * Return: 0 on success, -errno on failure
2661  */
2662 static int hv_pci_allocate_bridge_windows(struct hv_pcibus_device *hbus)
2663 {
2664 	resource_size_t align;
2665 	int ret;
2666 
2667 	if (hbus->low_mmio_space) {
2668 		align = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
2669 		ret = vmbus_allocate_mmio(&hbus->low_mmio_res, hbus->hdev, 0,
2670 					  (u64)(u32)0xffffffff,
2671 					  hbus->low_mmio_space,
2672 					  align, false);
2673 		if (ret) {
2674 			dev_err(&hbus->hdev->device,
2675 				"Need %#llx of low MMIO space. Consider reconfiguring the VM.\n",
2676 				hbus->low_mmio_space);
2677 			return ret;
2678 		}
2679 
2680 		/* Modify this resource to become a bridge window. */
2681 		hbus->low_mmio_res->flags |= IORESOURCE_WINDOW;
2682 		hbus->low_mmio_res->flags &= ~IORESOURCE_BUSY;
2683 		pci_add_resource(&hbus->resources_for_children,
2684 				 hbus->low_mmio_res);
2685 	}
2686 
2687 	if (hbus->high_mmio_space) {
2688 		align = 1ULL << (63 - __builtin_clzll(hbus->high_mmio_space));
2689 		ret = vmbus_allocate_mmio(&hbus->high_mmio_res, hbus->hdev,
2690 					  0x100000000, -1,
2691 					  hbus->high_mmio_space, align,
2692 					  false);
2693 		if (ret) {
2694 			dev_err(&hbus->hdev->device,
2695 				"Need %#llx of high MMIO space. Consider reconfiguring the VM.\n",
2696 				hbus->high_mmio_space);
2697 			goto release_low_mmio;
2698 		}
2699 
2700 		/* Modify this resource to become a bridge window. */
2701 		hbus->high_mmio_res->flags |= IORESOURCE_WINDOW;
2702 		hbus->high_mmio_res->flags &= ~IORESOURCE_BUSY;
2703 		pci_add_resource(&hbus->resources_for_children,
2704 				 hbus->high_mmio_res);
2705 	}
2706 
2707 	return 0;
2708 
2709 release_low_mmio:
2710 	if (hbus->low_mmio_res) {
2711 		vmbus_free_mmio(hbus->low_mmio_res->start,
2712 				resource_size(hbus->low_mmio_res));
2713 	}
2714 
2715 	return ret;
2716 }
2717 
2718 /**
2719  * hv_allocate_config_window() - Find MMIO space for PCI Config
2720  * @hbus:	Root PCI bus, as understood by this driver
2721  *
2722  * This function claims memory-mapped I/O space for accessing
2723  * configuration space for the functions on this bus.
2724  *
2725  * Return: 0 on success, -errno on failure
2726  */
2727 static int hv_allocate_config_window(struct hv_pcibus_device *hbus)
2728 {
2729 	int ret;
2730 
2731 	/*
2732 	 * Set up a region of MMIO space to use for accessing configuration
2733 	 * space.
2734 	 */
2735 	ret = vmbus_allocate_mmio(&hbus->mem_config, hbus->hdev, 0, -1,
2736 				  PCI_CONFIG_MMIO_LENGTH, 0x1000, false);
2737 	if (ret)
2738 		return ret;
2739 
2740 	/*
2741 	 * vmbus_allocate_mmio() gets used for allocating both device endpoint
2742 	 * resource claims (those which cannot be overlapped) and the ranges
2743 	 * which are valid for the children of this bus, which are intended
2744 	 * to be overlapped by those children.  Set the flag on this claim
2745 	 * meaning that this region can't be overlapped.
2746 	 */
2747 
2748 	hbus->mem_config->flags |= IORESOURCE_BUSY;
2749 
2750 	return 0;
2751 }
2752 
2753 static void hv_free_config_window(struct hv_pcibus_device *hbus)
2754 {
2755 	vmbus_free_mmio(hbus->mem_config->start, PCI_CONFIG_MMIO_LENGTH);
2756 }
2757 
2758 static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs);
2759 
2760 /**
2761  * hv_pci_enter_d0() - Bring the "bus" into the D0 power state
2762  * @hdev:	VMBus's tracking struct for this root PCI bus
2763  *
2764  * Return: 0 on success, -errno on failure
2765  */
2766 static int hv_pci_enter_d0(struct hv_device *hdev)
2767 {
2768 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2769 	struct pci_bus_d0_entry *d0_entry;
2770 	struct hv_pci_compl comp_pkt;
2771 	struct pci_packet *pkt;
2772 	int ret;
2773 
2774 	/*
2775 	 * Tell the host that the bus is ready to use, and moved into the
2776 	 * powered-on state.  This includes telling the host which region
2777 	 * of memory-mapped I/O space has been chosen for configuration space
2778 	 * access.
2779 	 */
2780 	pkt = kzalloc(sizeof(*pkt) + sizeof(*d0_entry), GFP_KERNEL);
2781 	if (!pkt)
2782 		return -ENOMEM;
2783 
2784 	init_completion(&comp_pkt.host_event);
2785 	pkt->completion_func = hv_pci_generic_compl;
2786 	pkt->compl_ctxt = &comp_pkt;
2787 	d0_entry = (struct pci_bus_d0_entry *)&pkt->message;
2788 	d0_entry->message_type.type = PCI_BUS_D0ENTRY;
2789 	d0_entry->mmio_base = hbus->mem_config->start;
2790 
2791 	ret = vmbus_sendpacket(hdev->channel, d0_entry, sizeof(*d0_entry),
2792 			       (unsigned long)pkt, VM_PKT_DATA_INBAND,
2793 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2794 	if (!ret)
2795 		ret = wait_for_response(hdev, &comp_pkt.host_event);
2796 
2797 	if (ret)
2798 		goto exit;
2799 
2800 	if (comp_pkt.completion_status < 0) {
2801 		dev_err(&hdev->device,
2802 			"PCI Pass-through VSP failed D0 Entry with status %x\n",
2803 			comp_pkt.completion_status);
2804 		ret = -EPROTO;
2805 		goto exit;
2806 	}
2807 
2808 	ret = 0;
2809 
2810 exit:
2811 	kfree(pkt);
2812 	return ret;
2813 }
2814 
2815 /**
2816  * hv_pci_query_relations() - Ask host to send list of child
2817  * devices
2818  * @hdev:	VMBus's tracking struct for this root PCI bus
2819  *
2820  * Return: 0 on success, -errno on failure
2821  */
2822 static int hv_pci_query_relations(struct hv_device *hdev)
2823 {
2824 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2825 	struct pci_message message;
2826 	struct completion comp;
2827 	int ret;
2828 
2829 	/* Ask the host to send along the list of child devices */
2830 	init_completion(&comp);
2831 	if (cmpxchg(&hbus->survey_event, NULL, &comp))
2832 		return -ENOTEMPTY;
2833 
2834 	memset(&message, 0, sizeof(message));
2835 	message.type = PCI_QUERY_BUS_RELATIONS;
2836 
2837 	ret = vmbus_sendpacket(hdev->channel, &message, sizeof(message),
2838 			       0, VM_PKT_DATA_INBAND, 0);
2839 	if (!ret)
2840 		ret = wait_for_response(hdev, &comp);
2841 
2842 	return ret;
2843 }
2844 
2845 /**
2846  * hv_send_resources_allocated() - Report local resource choices
2847  * @hdev:	VMBus's tracking struct for this root PCI bus
2848  *
2849  * The host OS is expecting to be sent a request as a message
2850  * which contains all the resources that the device will use.
2851  * The response contains those same resources, "translated"
2852  * which is to say, the values which should be used by the
2853  * hardware, when it delivers an interrupt.  (MMIO resources are
2854  * used in local terms.)  This is nice for Windows, and lines up
2855  * with the FDO/PDO split, which doesn't exist in Linux.  Linux
2856  * is deeply expecting to scan an emulated PCI configuration
2857  * space.  So this message is sent here only to drive the state
2858  * machine on the host forward.
2859  *
2860  * Return: 0 on success, -errno on failure
2861  */
2862 static int hv_send_resources_allocated(struct hv_device *hdev)
2863 {
2864 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2865 	struct pci_resources_assigned *res_assigned;
2866 	struct pci_resources_assigned2 *res_assigned2;
2867 	struct hv_pci_compl comp_pkt;
2868 	struct hv_pci_dev *hpdev;
2869 	struct pci_packet *pkt;
2870 	size_t size_res;
2871 	int wslot;
2872 	int ret;
2873 
2874 	size_res = (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2)
2875 			? sizeof(*res_assigned) : sizeof(*res_assigned2);
2876 
2877 	pkt = kmalloc(sizeof(*pkt) + size_res, GFP_KERNEL);
2878 	if (!pkt)
2879 		return -ENOMEM;
2880 
2881 	ret = 0;
2882 
2883 	for (wslot = 0; wslot < 256; wslot++) {
2884 		hpdev = get_pcichild_wslot(hbus, wslot);
2885 		if (!hpdev)
2886 			continue;
2887 
2888 		memset(pkt, 0, sizeof(*pkt) + size_res);
2889 		init_completion(&comp_pkt.host_event);
2890 		pkt->completion_func = hv_pci_generic_compl;
2891 		pkt->compl_ctxt = &comp_pkt;
2892 
2893 		if (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2) {
2894 			res_assigned =
2895 				(struct pci_resources_assigned *)&pkt->message;
2896 			res_assigned->message_type.type =
2897 				PCI_RESOURCES_ASSIGNED;
2898 			res_assigned->wslot.slot = hpdev->desc.win_slot.slot;
2899 		} else {
2900 			res_assigned2 =
2901 				(struct pci_resources_assigned2 *)&pkt->message;
2902 			res_assigned2->message_type.type =
2903 				PCI_RESOURCES_ASSIGNED2;
2904 			res_assigned2->wslot.slot = hpdev->desc.win_slot.slot;
2905 		}
2906 		put_pcichild(hpdev);
2907 
2908 		ret = vmbus_sendpacket(hdev->channel, &pkt->message,
2909 				size_res, (unsigned long)pkt,
2910 				VM_PKT_DATA_INBAND,
2911 				VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2912 		if (!ret)
2913 			ret = wait_for_response(hdev, &comp_pkt.host_event);
2914 		if (ret)
2915 			break;
2916 
2917 		if (comp_pkt.completion_status < 0) {
2918 			ret = -EPROTO;
2919 			dev_err(&hdev->device,
2920 				"resource allocated returned 0x%x",
2921 				comp_pkt.completion_status);
2922 			break;
2923 		}
2924 
2925 		hbus->wslot_res_allocated = wslot;
2926 	}
2927 
2928 	kfree(pkt);
2929 	return ret;
2930 }
2931 
2932 /**
2933  * hv_send_resources_released() - Report local resources
2934  * released
2935  * @hdev:	VMBus's tracking struct for this root PCI bus
2936  *
2937  * Return: 0 on success, -errno on failure
2938  */
2939 static int hv_send_resources_released(struct hv_device *hdev)
2940 {
2941 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2942 	struct pci_child_message pkt;
2943 	struct hv_pci_dev *hpdev;
2944 	int wslot;
2945 	int ret;
2946 
2947 	for (wslot = hbus->wslot_res_allocated; wslot >= 0; wslot--) {
2948 		hpdev = get_pcichild_wslot(hbus, wslot);
2949 		if (!hpdev)
2950 			continue;
2951 
2952 		memset(&pkt, 0, sizeof(pkt));
2953 		pkt.message_type.type = PCI_RESOURCES_RELEASED;
2954 		pkt.wslot.slot = hpdev->desc.win_slot.slot;
2955 
2956 		put_pcichild(hpdev);
2957 
2958 		ret = vmbus_sendpacket(hdev->channel, &pkt, sizeof(pkt), 0,
2959 				       VM_PKT_DATA_INBAND, 0);
2960 		if (ret)
2961 			return ret;
2962 
2963 		hbus->wslot_res_allocated = wslot - 1;
2964 	}
2965 
2966 	hbus->wslot_res_allocated = -1;
2967 
2968 	return 0;
2969 }
2970 
2971 static void get_hvpcibus(struct hv_pcibus_device *hbus)
2972 {
2973 	refcount_inc(&hbus->remove_lock);
2974 }
2975 
2976 static void put_hvpcibus(struct hv_pcibus_device *hbus)
2977 {
2978 	if (refcount_dec_and_test(&hbus->remove_lock))
2979 		complete(&hbus->remove_event);
2980 }
2981 
2982 #define HVPCI_DOM_MAP_SIZE (64 * 1024)
2983 static DECLARE_BITMAP(hvpci_dom_map, HVPCI_DOM_MAP_SIZE);
2984 
2985 /*
2986  * PCI domain number 0 is used by emulated devices on Gen1 VMs, so define 0
2987  * as invalid for passthrough PCI devices of this driver.
2988  */
2989 #define HVPCI_DOM_INVALID 0
2990 
2991 /**
2992  * hv_get_dom_num() - Get a valid PCI domain number
2993  * Check if the PCI domain number is in use, and return another number if
2994  * it is in use.
2995  *
2996  * @dom: Requested domain number
2997  *
2998  * return: domain number on success, HVPCI_DOM_INVALID on failure
2999  */
3000 static u16 hv_get_dom_num(u16 dom)
3001 {
3002 	unsigned int i;
3003 
3004 	if (test_and_set_bit(dom, hvpci_dom_map) == 0)
3005 		return dom;
3006 
3007 	for_each_clear_bit(i, hvpci_dom_map, HVPCI_DOM_MAP_SIZE) {
3008 		if (test_and_set_bit(i, hvpci_dom_map) == 0)
3009 			return i;
3010 	}
3011 
3012 	return HVPCI_DOM_INVALID;
3013 }
3014 
3015 /**
3016  * hv_put_dom_num() - Mark the PCI domain number as free
3017  * @dom: Domain number to be freed
3018  */
3019 static void hv_put_dom_num(u16 dom)
3020 {
3021 	clear_bit(dom, hvpci_dom_map);
3022 }
3023 
3024 /**
3025  * hv_pci_probe() - New VMBus channel probe, for a root PCI bus
3026  * @hdev:	VMBus's tracking struct for this root PCI bus
3027  * @dev_id:	Identifies the device itself
3028  *
3029  * Return: 0 on success, -errno on failure
3030  */
3031 static int hv_pci_probe(struct hv_device *hdev,
3032 			const struct hv_vmbus_device_id *dev_id)
3033 {
3034 	struct hv_pcibus_device *hbus;
3035 	u16 dom_req, dom;
3036 	char *name;
3037 	bool enter_d0_retry = true;
3038 	int ret;
3039 
3040 	/*
3041 	 * hv_pcibus_device contains the hypercall arguments for retargeting in
3042 	 * hv_irq_unmask(). Those must not cross a page boundary.
3043 	 */
3044 	BUILD_BUG_ON(sizeof(*hbus) > HV_HYP_PAGE_SIZE);
3045 
3046 	/*
3047 	 * With the recent 59bb47985c1d ("mm, sl[aou]b: guarantee natural
3048 	 * alignment for kmalloc(power-of-two)"), kzalloc() is able to allocate
3049 	 * a 4KB buffer that is guaranteed to be 4KB-aligned. Here the size and
3050 	 * alignment of hbus is important because hbus's field
3051 	 * retarget_msi_interrupt_params must not cross a 4KB page boundary.
3052 	 *
3053 	 * Here we prefer kzalloc to get_zeroed_page(), because a buffer
3054 	 * allocated by the latter is not tracked and scanned by kmemleak, and
3055 	 * hence kmemleak reports the pointer contained in the hbus buffer
3056 	 * (i.e. the hpdev struct, which is created in new_pcichild_device() and
3057 	 * is tracked by hbus->children) as memory leak (false positive).
3058 	 *
3059 	 * If the kernel doesn't have 59bb47985c1d, get_zeroed_page() *must* be
3060 	 * used to allocate the hbus buffer and we can avoid the kmemleak false
3061 	 * positive by using kmemleak_alloc() and kmemleak_free() to ask
3062 	 * kmemleak to track and scan the hbus buffer.
3063 	 */
3064 	hbus = kzalloc(HV_HYP_PAGE_SIZE, GFP_KERNEL);
3065 	if (!hbus)
3066 		return -ENOMEM;
3067 	hbus->state = hv_pcibus_init;
3068 	hbus->wslot_res_allocated = -1;
3069 
3070 	/*
3071 	 * The PCI bus "domain" is what is called "segment" in ACPI and other
3072 	 * specs. Pull it from the instance ID, to get something usually
3073 	 * unique. In rare cases of collision, we will find out another number
3074 	 * not in use.
3075 	 *
3076 	 * Note that, since this code only runs in a Hyper-V VM, Hyper-V
3077 	 * together with this guest driver can guarantee that (1) The only
3078 	 * domain used by Gen1 VMs for something that looks like a physical
3079 	 * PCI bus (which is actually emulated by the hypervisor) is domain 0.
3080 	 * (2) There will be no overlap between domains (after fixing possible
3081 	 * collisions) in the same VM.
3082 	 */
3083 	dom_req = hdev->dev_instance.b[5] << 8 | hdev->dev_instance.b[4];
3084 	dom = hv_get_dom_num(dom_req);
3085 
3086 	if (dom == HVPCI_DOM_INVALID) {
3087 		dev_err(&hdev->device,
3088 			"Unable to use dom# 0x%hx or other numbers", dom_req);
3089 		ret = -EINVAL;
3090 		goto free_bus;
3091 	}
3092 
3093 	if (dom != dom_req)
3094 		dev_info(&hdev->device,
3095 			 "PCI dom# 0x%hx has collision, using 0x%hx",
3096 			 dom_req, dom);
3097 
3098 	hbus->sysdata.domain = dom;
3099 
3100 	hbus->hdev = hdev;
3101 	refcount_set(&hbus->remove_lock, 1);
3102 	INIT_LIST_HEAD(&hbus->children);
3103 	INIT_LIST_HEAD(&hbus->dr_list);
3104 	INIT_LIST_HEAD(&hbus->resources_for_children);
3105 	spin_lock_init(&hbus->config_lock);
3106 	spin_lock_init(&hbus->device_list_lock);
3107 	spin_lock_init(&hbus->retarget_msi_interrupt_lock);
3108 	init_completion(&hbus->remove_event);
3109 	hbus->wq = alloc_ordered_workqueue("hv_pci_%x", 0,
3110 					   hbus->sysdata.domain);
3111 	if (!hbus->wq) {
3112 		ret = -ENOMEM;
3113 		goto free_dom;
3114 	}
3115 
3116 	ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0,
3117 			 hv_pci_onchannelcallback, hbus);
3118 	if (ret)
3119 		goto destroy_wq;
3120 
3121 	hv_set_drvdata(hdev, hbus);
3122 
3123 	ret = hv_pci_protocol_negotiation(hdev, pci_protocol_versions,
3124 					  ARRAY_SIZE(pci_protocol_versions));
3125 	if (ret)
3126 		goto close;
3127 
3128 	ret = hv_allocate_config_window(hbus);
3129 	if (ret)
3130 		goto close;
3131 
3132 	hbus->cfg_addr = ioremap(hbus->mem_config->start,
3133 				 PCI_CONFIG_MMIO_LENGTH);
3134 	if (!hbus->cfg_addr) {
3135 		dev_err(&hdev->device,
3136 			"Unable to map a virtual address for config space\n");
3137 		ret = -ENOMEM;
3138 		goto free_config;
3139 	}
3140 
3141 	name = kasprintf(GFP_KERNEL, "%pUL", &hdev->dev_instance);
3142 	if (!name) {
3143 		ret = -ENOMEM;
3144 		goto unmap;
3145 	}
3146 
3147 	hbus->sysdata.fwnode = irq_domain_alloc_named_fwnode(name);
3148 	kfree(name);
3149 	if (!hbus->sysdata.fwnode) {
3150 		ret = -ENOMEM;
3151 		goto unmap;
3152 	}
3153 
3154 	ret = hv_pcie_init_irq_domain(hbus);
3155 	if (ret)
3156 		goto free_fwnode;
3157 
3158 retry:
3159 	ret = hv_pci_query_relations(hdev);
3160 	if (ret)
3161 		goto free_irq_domain;
3162 
3163 	ret = hv_pci_enter_d0(hdev);
3164 	/*
3165 	 * In certain case (Kdump) the pci device of interest was
3166 	 * not cleanly shut down and resource is still held on host
3167 	 * side, the host could return invalid device status.
3168 	 * We need to explicitly request host to release the resource
3169 	 * and try to enter D0 again.
3170 	 * Since the hv_pci_bus_exit() call releases structures
3171 	 * of all its child devices, we need to start the retry from
3172 	 * hv_pci_query_relations() call, requesting host to send
3173 	 * the synchronous child device relations message before this
3174 	 * information is needed in hv_send_resources_allocated()
3175 	 * call later.
3176 	 */
3177 	if (ret == -EPROTO && enter_d0_retry) {
3178 		enter_d0_retry = false;
3179 
3180 		dev_err(&hdev->device, "Retrying D0 Entry\n");
3181 
3182 		/*
3183 		 * Hv_pci_bus_exit() calls hv_send_resources_released()
3184 		 * to free up resources of its child devices.
3185 		 * In the kdump kernel we need to set the
3186 		 * wslot_res_allocated to 255 so it scans all child
3187 		 * devices to release resources allocated in the
3188 		 * normal kernel before panic happened.
3189 		 */
3190 		hbus->wslot_res_allocated = 255;
3191 		ret = hv_pci_bus_exit(hdev, true);
3192 
3193 		if (ret == 0)
3194 			goto retry;
3195 
3196 		dev_err(&hdev->device,
3197 			"Retrying D0 failed with ret %d\n", ret);
3198 	}
3199 	if (ret)
3200 		goto free_irq_domain;
3201 
3202 	ret = hv_pci_allocate_bridge_windows(hbus);
3203 	if (ret)
3204 		goto exit_d0;
3205 
3206 	ret = hv_send_resources_allocated(hdev);
3207 	if (ret)
3208 		goto free_windows;
3209 
3210 	prepopulate_bars(hbus);
3211 
3212 	hbus->state = hv_pcibus_probed;
3213 
3214 	ret = create_root_hv_pci_bus(hbus);
3215 	if (ret)
3216 		goto free_windows;
3217 
3218 	return 0;
3219 
3220 free_windows:
3221 	hv_pci_free_bridge_windows(hbus);
3222 exit_d0:
3223 	(void) hv_pci_bus_exit(hdev, true);
3224 free_irq_domain:
3225 	irq_domain_remove(hbus->irq_domain);
3226 free_fwnode:
3227 	irq_domain_free_fwnode(hbus->sysdata.fwnode);
3228 unmap:
3229 	iounmap(hbus->cfg_addr);
3230 free_config:
3231 	hv_free_config_window(hbus);
3232 close:
3233 	vmbus_close(hdev->channel);
3234 destroy_wq:
3235 	destroy_workqueue(hbus->wq);
3236 free_dom:
3237 	hv_put_dom_num(hbus->sysdata.domain);
3238 free_bus:
3239 	kfree(hbus);
3240 	return ret;
3241 }
3242 
3243 static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs)
3244 {
3245 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3246 	struct {
3247 		struct pci_packet teardown_packet;
3248 		u8 buffer[sizeof(struct pci_message)];
3249 	} pkt;
3250 	struct hv_dr_state *dr;
3251 	struct hv_pci_compl comp_pkt;
3252 	int ret;
3253 
3254 	/*
3255 	 * After the host sends the RESCIND_CHANNEL message, it doesn't
3256 	 * access the per-channel ringbuffer any longer.
3257 	 */
3258 	if (hdev->channel->rescind)
3259 		return 0;
3260 
3261 	if (!keep_devs) {
3262 		/* Delete any children which might still exist. */
3263 		dr = kzalloc(sizeof(*dr), GFP_KERNEL);
3264 		if (dr && hv_pci_start_relations_work(hbus, dr))
3265 			kfree(dr);
3266 	}
3267 
3268 	ret = hv_send_resources_released(hdev);
3269 	if (ret) {
3270 		dev_err(&hdev->device,
3271 			"Couldn't send resources released packet(s)\n");
3272 		return ret;
3273 	}
3274 
3275 	memset(&pkt.teardown_packet, 0, sizeof(pkt.teardown_packet));
3276 	init_completion(&comp_pkt.host_event);
3277 	pkt.teardown_packet.completion_func = hv_pci_generic_compl;
3278 	pkt.teardown_packet.compl_ctxt = &comp_pkt;
3279 	pkt.teardown_packet.message[0].type = PCI_BUS_D0EXIT;
3280 
3281 	ret = vmbus_sendpacket(hdev->channel, &pkt.teardown_packet.message,
3282 			       sizeof(struct pci_message),
3283 			       (unsigned long)&pkt.teardown_packet,
3284 			       VM_PKT_DATA_INBAND,
3285 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3286 	if (ret)
3287 		return ret;
3288 
3289 	if (wait_for_completion_timeout(&comp_pkt.host_event, 10 * HZ) == 0)
3290 		return -ETIMEDOUT;
3291 
3292 	return 0;
3293 }
3294 
3295 /**
3296  * hv_pci_remove() - Remove routine for this VMBus channel
3297  * @hdev:	VMBus's tracking struct for this root PCI bus
3298  *
3299  * Return: 0 on success, -errno on failure
3300  */
3301 static int hv_pci_remove(struct hv_device *hdev)
3302 {
3303 	struct hv_pcibus_device *hbus;
3304 	int ret;
3305 
3306 	hbus = hv_get_drvdata(hdev);
3307 	if (hbus->state == hv_pcibus_installed) {
3308 		/* Remove the bus from PCI's point of view. */
3309 		pci_lock_rescan_remove();
3310 		pci_stop_root_bus(hbus->pci_bus);
3311 		hv_pci_remove_slots(hbus);
3312 		pci_remove_root_bus(hbus->pci_bus);
3313 		pci_unlock_rescan_remove();
3314 		hbus->state = hv_pcibus_removed;
3315 	}
3316 
3317 	ret = hv_pci_bus_exit(hdev, false);
3318 
3319 	vmbus_close(hdev->channel);
3320 
3321 	iounmap(hbus->cfg_addr);
3322 	hv_free_config_window(hbus);
3323 	pci_free_resource_list(&hbus->resources_for_children);
3324 	hv_pci_free_bridge_windows(hbus);
3325 	irq_domain_remove(hbus->irq_domain);
3326 	irq_domain_free_fwnode(hbus->sysdata.fwnode);
3327 	put_hvpcibus(hbus);
3328 	wait_for_completion(&hbus->remove_event);
3329 	destroy_workqueue(hbus->wq);
3330 
3331 	hv_put_dom_num(hbus->sysdata.domain);
3332 
3333 	kfree(hbus);
3334 	return ret;
3335 }
3336 
3337 static int hv_pci_suspend(struct hv_device *hdev)
3338 {
3339 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3340 	enum hv_pcibus_state old_state;
3341 	int ret;
3342 
3343 	/*
3344 	 * hv_pci_suspend() must make sure there are no pending work items
3345 	 * before calling vmbus_close(), since it runs in a process context
3346 	 * as a callback in dpm_suspend().  When it starts to run, the channel
3347 	 * callback hv_pci_onchannelcallback(), which runs in a tasklet
3348 	 * context, can be still running concurrently and scheduling new work
3349 	 * items onto hbus->wq in hv_pci_devices_present() and
3350 	 * hv_pci_eject_device(), and the work item handlers can access the
3351 	 * vmbus channel, which can be being closed by hv_pci_suspend(), e.g.
3352 	 * the work item handler pci_devices_present_work() ->
3353 	 * new_pcichild_device() writes to the vmbus channel.
3354 	 *
3355 	 * To eliminate the race, hv_pci_suspend() disables the channel
3356 	 * callback tasklet, sets hbus->state to hv_pcibus_removing, and
3357 	 * re-enables the tasklet. This way, when hv_pci_suspend() proceeds,
3358 	 * it knows that no new work item can be scheduled, and then it flushes
3359 	 * hbus->wq and safely closes the vmbus channel.
3360 	 */
3361 	tasklet_disable(&hdev->channel->callback_event);
3362 
3363 	/* Change the hbus state to prevent new work items. */
3364 	old_state = hbus->state;
3365 	if (hbus->state == hv_pcibus_installed)
3366 		hbus->state = hv_pcibus_removing;
3367 
3368 	tasklet_enable(&hdev->channel->callback_event);
3369 
3370 	if (old_state != hv_pcibus_installed)
3371 		return -EINVAL;
3372 
3373 	flush_workqueue(hbus->wq);
3374 
3375 	ret = hv_pci_bus_exit(hdev, true);
3376 	if (ret)
3377 		return ret;
3378 
3379 	vmbus_close(hdev->channel);
3380 
3381 	return 0;
3382 }
3383 
3384 static int hv_pci_restore_msi_msg(struct pci_dev *pdev, void *arg)
3385 {
3386 	struct msi_desc *entry;
3387 	struct irq_data *irq_data;
3388 
3389 	for_each_pci_msi_entry(entry, pdev) {
3390 		irq_data = irq_get_irq_data(entry->irq);
3391 		if (WARN_ON_ONCE(!irq_data))
3392 			return -EINVAL;
3393 
3394 		hv_compose_msi_msg(irq_data, &entry->msg);
3395 	}
3396 
3397 	return 0;
3398 }
3399 
3400 /*
3401  * Upon resume, pci_restore_msi_state() -> ... ->  __pci_write_msi_msg()
3402  * directly writes the MSI/MSI-X registers via MMIO, but since Hyper-V
3403  * doesn't trap and emulate the MMIO accesses, here hv_compose_msi_msg()
3404  * must be used to ask Hyper-V to re-create the IOMMU Interrupt Remapping
3405  * Table entries.
3406  */
3407 static void hv_pci_restore_msi_state(struct hv_pcibus_device *hbus)
3408 {
3409 	pci_walk_bus(hbus->pci_bus, hv_pci_restore_msi_msg, NULL);
3410 }
3411 
3412 static int hv_pci_resume(struct hv_device *hdev)
3413 {
3414 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3415 	enum pci_protocol_version_t version[1];
3416 	int ret;
3417 
3418 	hbus->state = hv_pcibus_init;
3419 
3420 	ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0,
3421 			 hv_pci_onchannelcallback, hbus);
3422 	if (ret)
3423 		return ret;
3424 
3425 	/* Only use the version that was in use before hibernation. */
3426 	version[0] = hbus->protocol_version;
3427 	ret = hv_pci_protocol_negotiation(hdev, version, 1);
3428 	if (ret)
3429 		goto out;
3430 
3431 	ret = hv_pci_query_relations(hdev);
3432 	if (ret)
3433 		goto out;
3434 
3435 	ret = hv_pci_enter_d0(hdev);
3436 	if (ret)
3437 		goto out;
3438 
3439 	ret = hv_send_resources_allocated(hdev);
3440 	if (ret)
3441 		goto out;
3442 
3443 	prepopulate_bars(hbus);
3444 
3445 	hv_pci_restore_msi_state(hbus);
3446 
3447 	hbus->state = hv_pcibus_installed;
3448 	return 0;
3449 out:
3450 	vmbus_close(hdev->channel);
3451 	return ret;
3452 }
3453 
3454 static const struct hv_vmbus_device_id hv_pci_id_table[] = {
3455 	/* PCI Pass-through Class ID */
3456 	/* 44C4F61D-4444-4400-9D52-802E27EDE19F */
3457 	{ HV_PCIE_GUID, },
3458 	{ },
3459 };
3460 
3461 MODULE_DEVICE_TABLE(vmbus, hv_pci_id_table);
3462 
3463 static struct hv_driver hv_pci_drv = {
3464 	.name		= "hv_pci",
3465 	.id_table	= hv_pci_id_table,
3466 	.probe		= hv_pci_probe,
3467 	.remove		= hv_pci_remove,
3468 	.suspend	= hv_pci_suspend,
3469 	.resume		= hv_pci_resume,
3470 };
3471 
3472 static void __exit exit_hv_pci_drv(void)
3473 {
3474 	vmbus_driver_unregister(&hv_pci_drv);
3475 
3476 	hvpci_block_ops.read_block = NULL;
3477 	hvpci_block_ops.write_block = NULL;
3478 	hvpci_block_ops.reg_blk_invalidate = NULL;
3479 }
3480 
3481 static int __init init_hv_pci_drv(void)
3482 {
3483 	/* Set the invalid domain number's bit, so it will not be used */
3484 	set_bit(HVPCI_DOM_INVALID, hvpci_dom_map);
3485 
3486 	/* Initialize PCI block r/w interface */
3487 	hvpci_block_ops.read_block = hv_read_config_block;
3488 	hvpci_block_ops.write_block = hv_write_config_block;
3489 	hvpci_block_ops.reg_blk_invalidate = hv_register_block_invalidate;
3490 
3491 	return vmbus_driver_register(&hv_pci_drv);
3492 }
3493 
3494 module_init(init_hv_pci_drv);
3495 module_exit(exit_hv_pci_drv);
3496 
3497 MODULE_DESCRIPTION("Hyper-V PCI");
3498 MODULE_LICENSE("GPL v2");
3499