1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) Microsoft Corporation.
4  *
5  * Author:
6  *   Jake Oshins <jakeo@microsoft.com>
7  *
8  * This driver acts as a paravirtual front-end for PCI Express root buses.
9  * When a PCI Express function (either an entire device or an SR-IOV
10  * Virtual Function) is being passed through to the VM, this driver exposes
11  * a new bus to the guest VM.  This is modeled as a root PCI bus because
12  * no bridges are being exposed to the VM.  In fact, with a "Generation 2"
13  * VM within Hyper-V, there may seem to be no PCI bus at all in the VM
14  * until a device as been exposed using this driver.
15  *
16  * Each root PCI bus has its own PCI domain, which is called "Segment" in
17  * the PCI Firmware Specifications.  Thus while each device passed through
18  * to the VM using this front-end will appear at "device 0", the domain will
19  * be unique.  Typically, each bus will have one PCI function on it, though
20  * this driver does support more than one.
21  *
22  * In order to map the interrupts from the device through to the guest VM,
23  * this driver also implements an IRQ Domain, which handles interrupts (either
24  * MSI or MSI-X) associated with the functions on the bus.  As interrupts are
25  * set up, torn down, or reaffined, this driver communicates with the
26  * underlying hypervisor to adjust the mappings in the I/O MMU so that each
27  * interrupt will be delivered to the correct virtual processor at the right
28  * vector.  This driver does not support level-triggered (line-based)
29  * interrupts, and will report that the Interrupt Line register in the
30  * function's configuration space is zero.
31  *
32  * The rest of this driver mostly maps PCI concepts onto underlying Hyper-V
33  * facilities.  For instance, the configuration space of a function exposed
34  * by Hyper-V is mapped into a single page of memory space, and the
35  * read and write handlers for config space must be aware of this mechanism.
36  * Similarly, device setup and teardown involves messages sent to and from
37  * the PCI back-end driver in Hyper-V.
38  */
39 
40 #include <linux/kernel.h>
41 #include <linux/module.h>
42 #include <linux/pci.h>
43 #include <linux/pci-ecam.h>
44 #include <linux/delay.h>
45 #include <linux/semaphore.h>
46 #include <linux/irq.h>
47 #include <linux/msi.h>
48 #include <linux/hyperv.h>
49 #include <linux/refcount.h>
50 #include <linux/irqdomain.h>
51 #include <linux/acpi.h>
52 #include <asm/mshyperv.h>
53 
54 /*
55  * Protocol versions. The low word is the minor version, the high word the
56  * major version.
57  */
58 
59 #define PCI_MAKE_VERSION(major, minor) ((u32)(((major) << 16) | (minor)))
60 #define PCI_MAJOR_VERSION(version) ((u32)(version) >> 16)
61 #define PCI_MINOR_VERSION(version) ((u32)(version) & 0xff)
62 
63 enum pci_protocol_version_t {
64 	PCI_PROTOCOL_VERSION_1_1 = PCI_MAKE_VERSION(1, 1),	/* Win10 */
65 	PCI_PROTOCOL_VERSION_1_2 = PCI_MAKE_VERSION(1, 2),	/* RS1 */
66 	PCI_PROTOCOL_VERSION_1_3 = PCI_MAKE_VERSION(1, 3),	/* Vibranium */
67 	PCI_PROTOCOL_VERSION_1_4 = PCI_MAKE_VERSION(1, 4),	/* WS2022 */
68 };
69 
70 #define CPU_AFFINITY_ALL	-1ULL
71 
72 /*
73  * Supported protocol versions in the order of probing - highest go
74  * first.
75  */
76 static enum pci_protocol_version_t pci_protocol_versions[] = {
77 	PCI_PROTOCOL_VERSION_1_4,
78 	PCI_PROTOCOL_VERSION_1_3,
79 	PCI_PROTOCOL_VERSION_1_2,
80 	PCI_PROTOCOL_VERSION_1_1,
81 };
82 
83 #define PCI_CONFIG_MMIO_LENGTH	0x2000
84 #define CFG_PAGE_OFFSET 0x1000
85 #define CFG_PAGE_SIZE (PCI_CONFIG_MMIO_LENGTH - CFG_PAGE_OFFSET)
86 
87 #define MAX_SUPPORTED_MSI_MESSAGES 0x400
88 
89 #define STATUS_REVISION_MISMATCH 0xC0000059
90 
91 /* space for 32bit serial number as string */
92 #define SLOT_NAME_SIZE 11
93 
94 /*
95  * Message Types
96  */
97 
98 enum pci_message_type {
99 	/*
100 	 * Version 1.1
101 	 */
102 	PCI_MESSAGE_BASE                = 0x42490000,
103 	PCI_BUS_RELATIONS               = PCI_MESSAGE_BASE + 0,
104 	PCI_QUERY_BUS_RELATIONS         = PCI_MESSAGE_BASE + 1,
105 	PCI_POWER_STATE_CHANGE          = PCI_MESSAGE_BASE + 4,
106 	PCI_QUERY_RESOURCE_REQUIREMENTS = PCI_MESSAGE_BASE + 5,
107 	PCI_QUERY_RESOURCE_RESOURCES    = PCI_MESSAGE_BASE + 6,
108 	PCI_BUS_D0ENTRY                 = PCI_MESSAGE_BASE + 7,
109 	PCI_BUS_D0EXIT                  = PCI_MESSAGE_BASE + 8,
110 	PCI_READ_BLOCK                  = PCI_MESSAGE_BASE + 9,
111 	PCI_WRITE_BLOCK                 = PCI_MESSAGE_BASE + 0xA,
112 	PCI_EJECT                       = PCI_MESSAGE_BASE + 0xB,
113 	PCI_QUERY_STOP                  = PCI_MESSAGE_BASE + 0xC,
114 	PCI_REENABLE                    = PCI_MESSAGE_BASE + 0xD,
115 	PCI_QUERY_STOP_FAILED           = PCI_MESSAGE_BASE + 0xE,
116 	PCI_EJECTION_COMPLETE           = PCI_MESSAGE_BASE + 0xF,
117 	PCI_RESOURCES_ASSIGNED          = PCI_MESSAGE_BASE + 0x10,
118 	PCI_RESOURCES_RELEASED          = PCI_MESSAGE_BASE + 0x11,
119 	PCI_INVALIDATE_BLOCK            = PCI_MESSAGE_BASE + 0x12,
120 	PCI_QUERY_PROTOCOL_VERSION      = PCI_MESSAGE_BASE + 0x13,
121 	PCI_CREATE_INTERRUPT_MESSAGE    = PCI_MESSAGE_BASE + 0x14,
122 	PCI_DELETE_INTERRUPT_MESSAGE    = PCI_MESSAGE_BASE + 0x15,
123 	PCI_RESOURCES_ASSIGNED2		= PCI_MESSAGE_BASE + 0x16,
124 	PCI_CREATE_INTERRUPT_MESSAGE2	= PCI_MESSAGE_BASE + 0x17,
125 	PCI_DELETE_INTERRUPT_MESSAGE2	= PCI_MESSAGE_BASE + 0x18, /* unused */
126 	PCI_BUS_RELATIONS2		= PCI_MESSAGE_BASE + 0x19,
127 	PCI_RESOURCES_ASSIGNED3         = PCI_MESSAGE_BASE + 0x1A,
128 	PCI_CREATE_INTERRUPT_MESSAGE3   = PCI_MESSAGE_BASE + 0x1B,
129 	PCI_MESSAGE_MAXIMUM
130 };
131 
132 /*
133  * Structures defining the virtual PCI Express protocol.
134  */
135 
136 union pci_version {
137 	struct {
138 		u16 minor_version;
139 		u16 major_version;
140 	} parts;
141 	u32 version;
142 } __packed;
143 
144 /*
145  * Function numbers are 8-bits wide on Express, as interpreted through ARI,
146  * which is all this driver does.  This representation is the one used in
147  * Windows, which is what is expected when sending this back and forth with
148  * the Hyper-V parent partition.
149  */
150 union win_slot_encoding {
151 	struct {
152 		u32	dev:5;
153 		u32	func:3;
154 		u32	reserved:24;
155 	} bits;
156 	u32 slot;
157 } __packed;
158 
159 /*
160  * Pretty much as defined in the PCI Specifications.
161  */
162 struct pci_function_description {
163 	u16	v_id;	/* vendor ID */
164 	u16	d_id;	/* device ID */
165 	u8	rev;
166 	u8	prog_intf;
167 	u8	subclass;
168 	u8	base_class;
169 	u32	subsystem_id;
170 	union win_slot_encoding win_slot;
171 	u32	ser;	/* serial number */
172 } __packed;
173 
174 enum pci_device_description_flags {
175 	HV_PCI_DEVICE_FLAG_NONE			= 0x0,
176 	HV_PCI_DEVICE_FLAG_NUMA_AFFINITY	= 0x1,
177 };
178 
179 struct pci_function_description2 {
180 	u16	v_id;	/* vendor ID */
181 	u16	d_id;	/* device ID */
182 	u8	rev;
183 	u8	prog_intf;
184 	u8	subclass;
185 	u8	base_class;
186 	u32	subsystem_id;
187 	union	win_slot_encoding win_slot;
188 	u32	ser;	/* serial number */
189 	u32	flags;
190 	u16	virtual_numa_node;
191 	u16	reserved;
192 } __packed;
193 
194 /**
195  * struct hv_msi_desc
196  * @vector:		IDT entry
197  * @delivery_mode:	As defined in Intel's Programmer's
198  *			Reference Manual, Volume 3, Chapter 8.
199  * @vector_count:	Number of contiguous entries in the
200  *			Interrupt Descriptor Table that are
201  *			occupied by this Message-Signaled
202  *			Interrupt. For "MSI", as first defined
203  *			in PCI 2.2, this can be between 1 and
204  *			32. For "MSI-X," as first defined in PCI
205  *			3.0, this must be 1, as each MSI-X table
206  *			entry would have its own descriptor.
207  * @reserved:		Empty space
208  * @cpu_mask:		All the target virtual processors.
209  */
210 struct hv_msi_desc {
211 	u8	vector;
212 	u8	delivery_mode;
213 	u16	vector_count;
214 	u32	reserved;
215 	u64	cpu_mask;
216 } __packed;
217 
218 /**
219  * struct hv_msi_desc2 - 1.2 version of hv_msi_desc
220  * @vector:		IDT entry
221  * @delivery_mode:	As defined in Intel's Programmer's
222  *			Reference Manual, Volume 3, Chapter 8.
223  * @vector_count:	Number of contiguous entries in the
224  *			Interrupt Descriptor Table that are
225  *			occupied by this Message-Signaled
226  *			Interrupt. For "MSI", as first defined
227  *			in PCI 2.2, this can be between 1 and
228  *			32. For "MSI-X," as first defined in PCI
229  *			3.0, this must be 1, as each MSI-X table
230  *			entry would have its own descriptor.
231  * @processor_count:	number of bits enabled in array.
232  * @processor_array:	All the target virtual processors.
233  */
234 struct hv_msi_desc2 {
235 	u8	vector;
236 	u8	delivery_mode;
237 	u16	vector_count;
238 	u16	processor_count;
239 	u16	processor_array[32];
240 } __packed;
241 
242 /*
243  * struct hv_msi_desc3 - 1.3 version of hv_msi_desc
244  *	Everything is the same as in 'hv_msi_desc2' except that the size of the
245  *	'vector' field is larger to support bigger vector values. For ex: LPI
246  *	vectors on ARM.
247  */
248 struct hv_msi_desc3 {
249 	u32	vector;
250 	u8	delivery_mode;
251 	u8	reserved;
252 	u16	vector_count;
253 	u16	processor_count;
254 	u16	processor_array[32];
255 } __packed;
256 
257 /**
258  * struct tran_int_desc
259  * @reserved:		unused, padding
260  * @vector_count:	same as in hv_msi_desc
261  * @data:		This is the "data payload" value that is
262  *			written by the device when it generates
263  *			a message-signaled interrupt, either MSI
264  *			or MSI-X.
265  * @address:		This is the address to which the data
266  *			payload is written on interrupt
267  *			generation.
268  */
269 struct tran_int_desc {
270 	u16	reserved;
271 	u16	vector_count;
272 	u32	data;
273 	u64	address;
274 } __packed;
275 
276 /*
277  * A generic message format for virtual PCI.
278  * Specific message formats are defined later in the file.
279  */
280 
281 struct pci_message {
282 	u32 type;
283 } __packed;
284 
285 struct pci_child_message {
286 	struct pci_message message_type;
287 	union win_slot_encoding wslot;
288 } __packed;
289 
290 struct pci_incoming_message {
291 	struct vmpacket_descriptor hdr;
292 	struct pci_message message_type;
293 } __packed;
294 
295 struct pci_response {
296 	struct vmpacket_descriptor hdr;
297 	s32 status;			/* negative values are failures */
298 } __packed;
299 
300 struct pci_packet {
301 	void (*completion_func)(void *context, struct pci_response *resp,
302 				int resp_packet_size);
303 	void *compl_ctxt;
304 
305 	struct pci_message message[];
306 };
307 
308 /*
309  * Specific message types supporting the PCI protocol.
310  */
311 
312 /*
313  * Version negotiation message. Sent from the guest to the host.
314  * The guest is free to try different versions until the host
315  * accepts the version.
316  *
317  * pci_version: The protocol version requested.
318  * is_last_attempt: If TRUE, this is the last version guest will request.
319  * reservedz: Reserved field, set to zero.
320  */
321 
322 struct pci_version_request {
323 	struct pci_message message_type;
324 	u32 protocol_version;
325 } __packed;
326 
327 /*
328  * Bus D0 Entry.  This is sent from the guest to the host when the virtual
329  * bus (PCI Express port) is ready for action.
330  */
331 
332 struct pci_bus_d0_entry {
333 	struct pci_message message_type;
334 	u32 reserved;
335 	u64 mmio_base;
336 } __packed;
337 
338 struct pci_bus_relations {
339 	struct pci_incoming_message incoming;
340 	u32 device_count;
341 	struct pci_function_description func[];
342 } __packed;
343 
344 struct pci_bus_relations2 {
345 	struct pci_incoming_message incoming;
346 	u32 device_count;
347 	struct pci_function_description2 func[];
348 } __packed;
349 
350 struct pci_q_res_req_response {
351 	struct vmpacket_descriptor hdr;
352 	s32 status;			/* negative values are failures */
353 	u32 probed_bar[PCI_STD_NUM_BARS];
354 } __packed;
355 
356 struct pci_set_power {
357 	struct pci_message message_type;
358 	union win_slot_encoding wslot;
359 	u32 power_state;		/* In Windows terms */
360 	u32 reserved;
361 } __packed;
362 
363 struct pci_set_power_response {
364 	struct vmpacket_descriptor hdr;
365 	s32 status;			/* negative values are failures */
366 	union win_slot_encoding wslot;
367 	u32 resultant_state;		/* In Windows terms */
368 	u32 reserved;
369 } __packed;
370 
371 struct pci_resources_assigned {
372 	struct pci_message message_type;
373 	union win_slot_encoding wslot;
374 	u8 memory_range[0x14][6];	/* not used here */
375 	u32 msi_descriptors;
376 	u32 reserved[4];
377 } __packed;
378 
379 struct pci_resources_assigned2 {
380 	struct pci_message message_type;
381 	union win_slot_encoding wslot;
382 	u8 memory_range[0x14][6];	/* not used here */
383 	u32 msi_descriptor_count;
384 	u8 reserved[70];
385 } __packed;
386 
387 struct pci_create_interrupt {
388 	struct pci_message message_type;
389 	union win_slot_encoding wslot;
390 	struct hv_msi_desc int_desc;
391 } __packed;
392 
393 struct pci_create_int_response {
394 	struct pci_response response;
395 	u32 reserved;
396 	struct tran_int_desc int_desc;
397 } __packed;
398 
399 struct pci_create_interrupt2 {
400 	struct pci_message message_type;
401 	union win_slot_encoding wslot;
402 	struct hv_msi_desc2 int_desc;
403 } __packed;
404 
405 struct pci_create_interrupt3 {
406 	struct pci_message message_type;
407 	union win_slot_encoding wslot;
408 	struct hv_msi_desc3 int_desc;
409 } __packed;
410 
411 struct pci_delete_interrupt {
412 	struct pci_message message_type;
413 	union win_slot_encoding wslot;
414 	struct tran_int_desc int_desc;
415 } __packed;
416 
417 /*
418  * Note: the VM must pass a valid block id, wslot and bytes_requested.
419  */
420 struct pci_read_block {
421 	struct pci_message message_type;
422 	u32 block_id;
423 	union win_slot_encoding wslot;
424 	u32 bytes_requested;
425 } __packed;
426 
427 struct pci_read_block_response {
428 	struct vmpacket_descriptor hdr;
429 	u32 status;
430 	u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX];
431 } __packed;
432 
433 /*
434  * Note: the VM must pass a valid block id, wslot and byte_count.
435  */
436 struct pci_write_block {
437 	struct pci_message message_type;
438 	u32 block_id;
439 	union win_slot_encoding wslot;
440 	u32 byte_count;
441 	u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX];
442 } __packed;
443 
444 struct pci_dev_inval_block {
445 	struct pci_incoming_message incoming;
446 	union win_slot_encoding wslot;
447 	u64 block_mask;
448 } __packed;
449 
450 struct pci_dev_incoming {
451 	struct pci_incoming_message incoming;
452 	union win_slot_encoding wslot;
453 } __packed;
454 
455 struct pci_eject_response {
456 	struct pci_message message_type;
457 	union win_slot_encoding wslot;
458 	u32 status;
459 } __packed;
460 
461 static int pci_ring_size = (4 * PAGE_SIZE);
462 
463 /*
464  * Driver specific state.
465  */
466 
467 enum hv_pcibus_state {
468 	hv_pcibus_init = 0,
469 	hv_pcibus_probed,
470 	hv_pcibus_installed,
471 	hv_pcibus_removing,
472 	hv_pcibus_maximum
473 };
474 
475 struct hv_pcibus_device {
476 #ifdef CONFIG_X86
477 	struct pci_sysdata sysdata;
478 #elif defined(CONFIG_ARM64)
479 	struct pci_config_window sysdata;
480 #endif
481 	struct pci_host_bridge *bridge;
482 	struct fwnode_handle *fwnode;
483 	/* Protocol version negotiated with the host */
484 	enum pci_protocol_version_t protocol_version;
485 	enum hv_pcibus_state state;
486 	struct hv_device *hdev;
487 	resource_size_t low_mmio_space;
488 	resource_size_t high_mmio_space;
489 	struct resource *mem_config;
490 	struct resource *low_mmio_res;
491 	struct resource *high_mmio_res;
492 	struct completion *survey_event;
493 	struct pci_bus *pci_bus;
494 	spinlock_t config_lock;	/* Avoid two threads writing index page */
495 	spinlock_t device_list_lock;	/* Protect lists below */
496 	void __iomem *cfg_addr;
497 
498 	struct list_head children;
499 	struct list_head dr_list;
500 
501 	struct msi_domain_info msi_info;
502 	struct irq_domain *irq_domain;
503 
504 	spinlock_t retarget_msi_interrupt_lock;
505 
506 	struct workqueue_struct *wq;
507 
508 	/* Highest slot of child device with resources allocated */
509 	int wslot_res_allocated;
510 
511 	/* hypercall arg, must not cross page boundary */
512 	struct hv_retarget_device_interrupt retarget_msi_interrupt_params;
513 
514 	/*
515 	 * Don't put anything here: retarget_msi_interrupt_params must be last
516 	 */
517 };
518 
519 /*
520  * Tracks "Device Relations" messages from the host, which must be both
521  * processed in order and deferred so that they don't run in the context
522  * of the incoming packet callback.
523  */
524 struct hv_dr_work {
525 	struct work_struct wrk;
526 	struct hv_pcibus_device *bus;
527 };
528 
529 struct hv_pcidev_description {
530 	u16	v_id;	/* vendor ID */
531 	u16	d_id;	/* device ID */
532 	u8	rev;
533 	u8	prog_intf;
534 	u8	subclass;
535 	u8	base_class;
536 	u32	subsystem_id;
537 	union	win_slot_encoding win_slot;
538 	u32	ser;	/* serial number */
539 	u32	flags;
540 	u16	virtual_numa_node;
541 };
542 
543 struct hv_dr_state {
544 	struct list_head list_entry;
545 	u32 device_count;
546 	struct hv_pcidev_description func[];
547 };
548 
549 enum hv_pcichild_state {
550 	hv_pcichild_init = 0,
551 	hv_pcichild_requirements,
552 	hv_pcichild_resourced,
553 	hv_pcichild_ejecting,
554 	hv_pcichild_maximum
555 };
556 
557 struct hv_pci_dev {
558 	/* List protected by pci_rescan_remove_lock */
559 	struct list_head list_entry;
560 	refcount_t refs;
561 	enum hv_pcichild_state state;
562 	struct pci_slot *pci_slot;
563 	struct hv_pcidev_description desc;
564 	bool reported_missing;
565 	struct hv_pcibus_device *hbus;
566 	struct work_struct wrk;
567 
568 	void (*block_invalidate)(void *context, u64 block_mask);
569 	void *invalidate_context;
570 
571 	/*
572 	 * What would be observed if one wrote 0xFFFFFFFF to a BAR and then
573 	 * read it back, for each of the BAR offsets within config space.
574 	 */
575 	u32 probed_bar[PCI_STD_NUM_BARS];
576 };
577 
578 struct hv_pci_compl {
579 	struct completion host_event;
580 	s32 completion_status;
581 };
582 
583 static void hv_pci_onchannelcallback(void *context);
584 
585 #ifdef CONFIG_X86
586 #define DELIVERY_MODE	APIC_DELIVERY_MODE_FIXED
587 #define FLOW_HANDLER	handle_edge_irq
588 #define FLOW_NAME	"edge"
589 
590 static int hv_pci_irqchip_init(void)
591 {
592 	return 0;
593 }
594 
595 static struct irq_domain *hv_pci_get_root_domain(void)
596 {
597 	return x86_vector_domain;
598 }
599 
600 static unsigned int hv_msi_get_int_vector(struct irq_data *data)
601 {
602 	struct irq_cfg *cfg = irqd_cfg(data);
603 
604 	return cfg->vector;
605 }
606 
607 static void hv_set_msi_entry_from_desc(union hv_msi_entry *msi_entry,
608 				       struct msi_desc *msi_desc)
609 {
610 	msi_entry->address.as_uint32 = msi_desc->msg.address_lo;
611 	msi_entry->data.as_uint32 = msi_desc->msg.data;
612 }
613 
614 static int hv_msi_prepare(struct irq_domain *domain, struct device *dev,
615 			  int nvec, msi_alloc_info_t *info)
616 {
617 	return pci_msi_prepare(domain, dev, nvec, info);
618 }
619 
620 /**
621  * hv_arch_irq_unmask() - "Unmask" the IRQ by setting its current
622  * affinity.
623  * @data:	Describes the IRQ
624  *
625  * Build new a destination for the MSI and make a hypercall to
626  * update the Interrupt Redirection Table. "Device Logical ID"
627  * is built out of this PCI bus's instance GUID and the function
628  * number of the device.
629  */
630 static void hv_arch_irq_unmask(struct irq_data *data)
631 {
632 	struct msi_desc *msi_desc = irq_data_get_msi_desc(data);
633 	struct hv_retarget_device_interrupt *params;
634 	struct hv_pcibus_device *hbus;
635 	struct cpumask *dest;
636 	cpumask_var_t tmp;
637 	struct pci_bus *pbus;
638 	struct pci_dev *pdev;
639 	unsigned long flags;
640 	u32 var_size = 0;
641 	int cpu, nr_bank;
642 	u64 res;
643 
644 	dest = irq_data_get_effective_affinity_mask(data);
645 	pdev = msi_desc_to_pci_dev(msi_desc);
646 	pbus = pdev->bus;
647 	hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
648 
649 	spin_lock_irqsave(&hbus->retarget_msi_interrupt_lock, flags);
650 
651 	params = &hbus->retarget_msi_interrupt_params;
652 	memset(params, 0, sizeof(*params));
653 	params->partition_id = HV_PARTITION_ID_SELF;
654 	params->int_entry.source = HV_INTERRUPT_SOURCE_MSI;
655 	hv_set_msi_entry_from_desc(&params->int_entry.msi_entry, msi_desc);
656 	params->device_id = (hbus->hdev->dev_instance.b[5] << 24) |
657 			   (hbus->hdev->dev_instance.b[4] << 16) |
658 			   (hbus->hdev->dev_instance.b[7] << 8) |
659 			   (hbus->hdev->dev_instance.b[6] & 0xf8) |
660 			   PCI_FUNC(pdev->devfn);
661 	params->int_target.vector = hv_msi_get_int_vector(data);
662 
663 	/*
664 	 * Honoring apic->delivery_mode set to APIC_DELIVERY_MODE_FIXED by
665 	 * setting the HV_DEVICE_INTERRUPT_TARGET_MULTICAST flag results in a
666 	 * spurious interrupt storm. Not doing so does not seem to have a
667 	 * negative effect (yet?).
668 	 */
669 
670 	if (hbus->protocol_version >= PCI_PROTOCOL_VERSION_1_2) {
671 		/*
672 		 * PCI_PROTOCOL_VERSION_1_2 supports the VP_SET version of the
673 		 * HVCALL_RETARGET_INTERRUPT hypercall, which also coincides
674 		 * with >64 VP support.
675 		 * ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED
676 		 * is not sufficient for this hypercall.
677 		 */
678 		params->int_target.flags |=
679 			HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET;
680 
681 		if (!alloc_cpumask_var(&tmp, GFP_ATOMIC)) {
682 			res = 1;
683 			goto exit_unlock;
684 		}
685 
686 		cpumask_and(tmp, dest, cpu_online_mask);
687 		nr_bank = cpumask_to_vpset(&params->int_target.vp_set, tmp);
688 		free_cpumask_var(tmp);
689 
690 		if (nr_bank <= 0) {
691 			res = 1;
692 			goto exit_unlock;
693 		}
694 
695 		/*
696 		 * var-sized hypercall, var-size starts after vp_mask (thus
697 		 * vp_set.format does not count, but vp_set.valid_bank_mask
698 		 * does).
699 		 */
700 		var_size = 1 + nr_bank;
701 	} else {
702 		for_each_cpu_and(cpu, dest, cpu_online_mask) {
703 			params->int_target.vp_mask |=
704 				(1ULL << hv_cpu_number_to_vp_number(cpu));
705 		}
706 	}
707 
708 	res = hv_do_hypercall(HVCALL_RETARGET_INTERRUPT | (var_size << 17),
709 			      params, NULL);
710 
711 exit_unlock:
712 	spin_unlock_irqrestore(&hbus->retarget_msi_interrupt_lock, flags);
713 
714 	/*
715 	 * During hibernation, when a CPU is offlined, the kernel tries
716 	 * to move the interrupt to the remaining CPUs that haven't
717 	 * been offlined yet. In this case, the below hv_do_hypercall()
718 	 * always fails since the vmbus channel has been closed:
719 	 * refer to cpu_disable_common() -> fixup_irqs() ->
720 	 * irq_migrate_all_off_this_cpu() -> migrate_one_irq().
721 	 *
722 	 * Suppress the error message for hibernation because the failure
723 	 * during hibernation does not matter (at this time all the devices
724 	 * have been frozen). Note: the correct affinity info is still updated
725 	 * into the irqdata data structure in migrate_one_irq() ->
726 	 * irq_do_set_affinity() -> hv_set_affinity(), so later when the VM
727 	 * resumes, hv_pci_restore_msi_state() is able to correctly restore
728 	 * the interrupt with the correct affinity.
729 	 */
730 	if (!hv_result_success(res) && hbus->state != hv_pcibus_removing)
731 		dev_err(&hbus->hdev->device,
732 			"%s() failed: %#llx", __func__, res);
733 }
734 #elif defined(CONFIG_ARM64)
735 /*
736  * SPI vectors to use for vPCI; arch SPIs range is [32, 1019], but leaving a bit
737  * of room at the start to allow for SPIs to be specified through ACPI and
738  * starting with a power of two to satisfy power of 2 multi-MSI requirement.
739  */
740 #define HV_PCI_MSI_SPI_START	64
741 #define HV_PCI_MSI_SPI_NR	(1020 - HV_PCI_MSI_SPI_START)
742 #define DELIVERY_MODE		0
743 #define FLOW_HANDLER		NULL
744 #define FLOW_NAME		NULL
745 #define hv_msi_prepare		NULL
746 
747 struct hv_pci_chip_data {
748 	DECLARE_BITMAP(spi_map, HV_PCI_MSI_SPI_NR);
749 	struct mutex	map_lock;
750 };
751 
752 /* Hyper-V vPCI MSI GIC IRQ domain */
753 static struct irq_domain *hv_msi_gic_irq_domain;
754 
755 /* Hyper-V PCI MSI IRQ chip */
756 static struct irq_chip hv_arm64_msi_irq_chip = {
757 	.name = "MSI",
758 	.irq_set_affinity = irq_chip_set_affinity_parent,
759 	.irq_eoi = irq_chip_eoi_parent,
760 	.irq_mask = irq_chip_mask_parent,
761 	.irq_unmask = irq_chip_unmask_parent
762 };
763 
764 static unsigned int hv_msi_get_int_vector(struct irq_data *irqd)
765 {
766 	return irqd->parent_data->hwirq;
767 }
768 
769 /*
770  * @nr_bm_irqs:		Indicates the number of IRQs that were allocated from
771  *			the bitmap.
772  * @nr_dom_irqs:	Indicates the number of IRQs that were allocated from
773  *			the parent domain.
774  */
775 static void hv_pci_vec_irq_free(struct irq_domain *domain,
776 				unsigned int virq,
777 				unsigned int nr_bm_irqs,
778 				unsigned int nr_dom_irqs)
779 {
780 	struct hv_pci_chip_data *chip_data = domain->host_data;
781 	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
782 	int first = d->hwirq - HV_PCI_MSI_SPI_START;
783 	int i;
784 
785 	mutex_lock(&chip_data->map_lock);
786 	bitmap_release_region(chip_data->spi_map,
787 			      first,
788 			      get_count_order(nr_bm_irqs));
789 	mutex_unlock(&chip_data->map_lock);
790 	for (i = 0; i < nr_dom_irqs; i++) {
791 		if (i)
792 			d = irq_domain_get_irq_data(domain, virq + i);
793 		irq_domain_reset_irq_data(d);
794 	}
795 
796 	irq_domain_free_irqs_parent(domain, virq, nr_dom_irqs);
797 }
798 
799 static void hv_pci_vec_irq_domain_free(struct irq_domain *domain,
800 				       unsigned int virq,
801 				       unsigned int nr_irqs)
802 {
803 	hv_pci_vec_irq_free(domain, virq, nr_irqs, nr_irqs);
804 }
805 
806 static int hv_pci_vec_alloc_device_irq(struct irq_domain *domain,
807 				       unsigned int nr_irqs,
808 				       irq_hw_number_t *hwirq)
809 {
810 	struct hv_pci_chip_data *chip_data = domain->host_data;
811 	int index;
812 
813 	/* Find and allocate region from the SPI bitmap */
814 	mutex_lock(&chip_data->map_lock);
815 	index = bitmap_find_free_region(chip_data->spi_map,
816 					HV_PCI_MSI_SPI_NR,
817 					get_count_order(nr_irqs));
818 	mutex_unlock(&chip_data->map_lock);
819 	if (index < 0)
820 		return -ENOSPC;
821 
822 	*hwirq = index + HV_PCI_MSI_SPI_START;
823 
824 	return 0;
825 }
826 
827 static int hv_pci_vec_irq_gic_domain_alloc(struct irq_domain *domain,
828 					   unsigned int virq,
829 					   irq_hw_number_t hwirq)
830 {
831 	struct irq_fwspec fwspec;
832 	struct irq_data *d;
833 	int ret;
834 
835 	fwspec.fwnode = domain->parent->fwnode;
836 	fwspec.param_count = 2;
837 	fwspec.param[0] = hwirq;
838 	fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
839 
840 	ret = irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
841 	if (ret)
842 		return ret;
843 
844 	/*
845 	 * Since the interrupt specifier is not coming from ACPI or DT, the
846 	 * trigger type will need to be set explicitly. Otherwise, it will be
847 	 * set to whatever is in the GIC configuration.
848 	 */
849 	d = irq_domain_get_irq_data(domain->parent, virq);
850 
851 	return d->chip->irq_set_type(d, IRQ_TYPE_EDGE_RISING);
852 }
853 
854 static int hv_pci_vec_irq_domain_alloc(struct irq_domain *domain,
855 				       unsigned int virq, unsigned int nr_irqs,
856 				       void *args)
857 {
858 	irq_hw_number_t hwirq;
859 	unsigned int i;
860 	int ret;
861 
862 	ret = hv_pci_vec_alloc_device_irq(domain, nr_irqs, &hwirq);
863 	if (ret)
864 		return ret;
865 
866 	for (i = 0; i < nr_irqs; i++) {
867 		ret = hv_pci_vec_irq_gic_domain_alloc(domain, virq + i,
868 						      hwirq + i);
869 		if (ret) {
870 			hv_pci_vec_irq_free(domain, virq, nr_irqs, i);
871 			return ret;
872 		}
873 
874 		irq_domain_set_hwirq_and_chip(domain, virq + i,
875 					      hwirq + i,
876 					      &hv_arm64_msi_irq_chip,
877 					      domain->host_data);
878 		pr_debug("pID:%d vID:%u\n", (int)(hwirq + i), virq + i);
879 	}
880 
881 	return 0;
882 }
883 
884 /*
885  * Pick the first cpu as the irq affinity that can be temporarily used for
886  * composing MSI from the hypervisor. GIC will eventually set the right
887  * affinity for the irq and the 'unmask' will retarget the interrupt to that
888  * cpu.
889  */
890 static int hv_pci_vec_irq_domain_activate(struct irq_domain *domain,
891 					  struct irq_data *irqd, bool reserve)
892 {
893 	int cpu = cpumask_first(cpu_present_mask);
894 
895 	irq_data_update_effective_affinity(irqd, cpumask_of(cpu));
896 
897 	return 0;
898 }
899 
900 static const struct irq_domain_ops hv_pci_domain_ops = {
901 	.alloc	= hv_pci_vec_irq_domain_alloc,
902 	.free	= hv_pci_vec_irq_domain_free,
903 	.activate = hv_pci_vec_irq_domain_activate,
904 };
905 
906 static int hv_pci_irqchip_init(void)
907 {
908 	static struct hv_pci_chip_data *chip_data;
909 	struct fwnode_handle *fn = NULL;
910 	int ret = -ENOMEM;
911 
912 	chip_data = kzalloc(sizeof(*chip_data), GFP_KERNEL);
913 	if (!chip_data)
914 		return ret;
915 
916 	mutex_init(&chip_data->map_lock);
917 	fn = irq_domain_alloc_named_fwnode("hv_vpci_arm64");
918 	if (!fn)
919 		goto free_chip;
920 
921 	/*
922 	 * IRQ domain once enabled, should not be removed since there is no
923 	 * way to ensure that all the corresponding devices are also gone and
924 	 * no interrupts will be generated.
925 	 */
926 	hv_msi_gic_irq_domain = acpi_irq_create_hierarchy(0, HV_PCI_MSI_SPI_NR,
927 							  fn, &hv_pci_domain_ops,
928 							  chip_data);
929 
930 	if (!hv_msi_gic_irq_domain) {
931 		pr_err("Failed to create Hyper-V arm64 vPCI MSI IRQ domain\n");
932 		goto free_chip;
933 	}
934 
935 	return 0;
936 
937 free_chip:
938 	kfree(chip_data);
939 	if (fn)
940 		irq_domain_free_fwnode(fn);
941 
942 	return ret;
943 }
944 
945 static struct irq_domain *hv_pci_get_root_domain(void)
946 {
947 	return hv_msi_gic_irq_domain;
948 }
949 
950 /*
951  * SPIs are used for interrupts of PCI devices and SPIs is managed via GICD
952  * registers which Hyper-V already supports, so no hypercall needed.
953  */
954 static void hv_arch_irq_unmask(struct irq_data *data) { }
955 #endif /* CONFIG_ARM64 */
956 
957 /**
958  * hv_pci_generic_compl() - Invoked for a completion packet
959  * @context:		Set up by the sender of the packet.
960  * @resp:		The response packet
961  * @resp_packet_size:	Size in bytes of the packet
962  *
963  * This function is used to trigger an event and report status
964  * for any message for which the completion packet contains a
965  * status and nothing else.
966  */
967 static void hv_pci_generic_compl(void *context, struct pci_response *resp,
968 				 int resp_packet_size)
969 {
970 	struct hv_pci_compl *comp_pkt = context;
971 
972 	if (resp_packet_size >= offsetofend(struct pci_response, status))
973 		comp_pkt->completion_status = resp->status;
974 	else
975 		comp_pkt->completion_status = -1;
976 
977 	complete(&comp_pkt->host_event);
978 }
979 
980 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
981 						u32 wslot);
982 
983 static void get_pcichild(struct hv_pci_dev *hpdev)
984 {
985 	refcount_inc(&hpdev->refs);
986 }
987 
988 static void put_pcichild(struct hv_pci_dev *hpdev)
989 {
990 	if (refcount_dec_and_test(&hpdev->refs))
991 		kfree(hpdev);
992 }
993 
994 /*
995  * There is no good way to get notified from vmbus_onoffer_rescind(),
996  * so let's use polling here, since this is not a hot path.
997  */
998 static int wait_for_response(struct hv_device *hdev,
999 			     struct completion *comp)
1000 {
1001 	while (true) {
1002 		if (hdev->channel->rescind) {
1003 			dev_warn_once(&hdev->device, "The device is gone.\n");
1004 			return -ENODEV;
1005 		}
1006 
1007 		if (wait_for_completion_timeout(comp, HZ / 10))
1008 			break;
1009 	}
1010 
1011 	return 0;
1012 }
1013 
1014 /**
1015  * devfn_to_wslot() - Convert from Linux PCI slot to Windows
1016  * @devfn:	The Linux representation of PCI slot
1017  *
1018  * Windows uses a slightly different representation of PCI slot.
1019  *
1020  * Return: The Windows representation
1021  */
1022 static u32 devfn_to_wslot(int devfn)
1023 {
1024 	union win_slot_encoding wslot;
1025 
1026 	wslot.slot = 0;
1027 	wslot.bits.dev = PCI_SLOT(devfn);
1028 	wslot.bits.func = PCI_FUNC(devfn);
1029 
1030 	return wslot.slot;
1031 }
1032 
1033 /**
1034  * wslot_to_devfn() - Convert from Windows PCI slot to Linux
1035  * @wslot:	The Windows representation of PCI slot
1036  *
1037  * Windows uses a slightly different representation of PCI slot.
1038  *
1039  * Return: The Linux representation
1040  */
1041 static int wslot_to_devfn(u32 wslot)
1042 {
1043 	union win_slot_encoding slot_no;
1044 
1045 	slot_no.slot = wslot;
1046 	return PCI_DEVFN(slot_no.bits.dev, slot_no.bits.func);
1047 }
1048 
1049 /*
1050  * PCI Configuration Space for these root PCI buses is implemented as a pair
1051  * of pages in memory-mapped I/O space.  Writing to the first page chooses
1052  * the PCI function being written or read.  Once the first page has been
1053  * written to, the following page maps in the entire configuration space of
1054  * the function.
1055  */
1056 
1057 /**
1058  * _hv_pcifront_read_config() - Internal PCI config read
1059  * @hpdev:	The PCI driver's representation of the device
1060  * @where:	Offset within config space
1061  * @size:	Size of the transfer
1062  * @val:	Pointer to the buffer receiving the data
1063  */
1064 static void _hv_pcifront_read_config(struct hv_pci_dev *hpdev, int where,
1065 				     int size, u32 *val)
1066 {
1067 	unsigned long flags;
1068 	void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where;
1069 
1070 	/*
1071 	 * If the attempt is to read the IDs or the ROM BAR, simulate that.
1072 	 */
1073 	if (where + size <= PCI_COMMAND) {
1074 		memcpy(val, ((u8 *)&hpdev->desc.v_id) + where, size);
1075 	} else if (where >= PCI_CLASS_REVISION && where + size <=
1076 		   PCI_CACHE_LINE_SIZE) {
1077 		memcpy(val, ((u8 *)&hpdev->desc.rev) + where -
1078 		       PCI_CLASS_REVISION, size);
1079 	} else if (where >= PCI_SUBSYSTEM_VENDOR_ID && where + size <=
1080 		   PCI_ROM_ADDRESS) {
1081 		memcpy(val, (u8 *)&hpdev->desc.subsystem_id + where -
1082 		       PCI_SUBSYSTEM_VENDOR_ID, size);
1083 	} else if (where >= PCI_ROM_ADDRESS && where + size <=
1084 		   PCI_CAPABILITY_LIST) {
1085 		/* ROM BARs are unimplemented */
1086 		*val = 0;
1087 	} else if (where >= PCI_INTERRUPT_LINE && where + size <=
1088 		   PCI_INTERRUPT_PIN) {
1089 		/*
1090 		 * Interrupt Line and Interrupt PIN are hard-wired to zero
1091 		 * because this front-end only supports message-signaled
1092 		 * interrupts.
1093 		 */
1094 		*val = 0;
1095 	} else if (where + size <= CFG_PAGE_SIZE) {
1096 		spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
1097 		/* Choose the function to be read. (See comment above) */
1098 		writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
1099 		/* Make sure the function was chosen before we start reading. */
1100 		mb();
1101 		/* Read from that function's config space. */
1102 		switch (size) {
1103 		case 1:
1104 			*val = readb(addr);
1105 			break;
1106 		case 2:
1107 			*val = readw(addr);
1108 			break;
1109 		default:
1110 			*val = readl(addr);
1111 			break;
1112 		}
1113 		/*
1114 		 * Make sure the read was done before we release the spinlock
1115 		 * allowing consecutive reads/writes.
1116 		 */
1117 		mb();
1118 		spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
1119 	} else {
1120 		dev_err(&hpdev->hbus->hdev->device,
1121 			"Attempt to read beyond a function's config space.\n");
1122 	}
1123 }
1124 
1125 static u16 hv_pcifront_get_vendor_id(struct hv_pci_dev *hpdev)
1126 {
1127 	u16 ret;
1128 	unsigned long flags;
1129 	void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET +
1130 			     PCI_VENDOR_ID;
1131 
1132 	spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
1133 
1134 	/* Choose the function to be read. (See comment above) */
1135 	writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
1136 	/* Make sure the function was chosen before we start reading. */
1137 	mb();
1138 	/* Read from that function's config space. */
1139 	ret = readw(addr);
1140 	/*
1141 	 * mb() is not required here, because the spin_unlock_irqrestore()
1142 	 * is a barrier.
1143 	 */
1144 
1145 	spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
1146 
1147 	return ret;
1148 }
1149 
1150 /**
1151  * _hv_pcifront_write_config() - Internal PCI config write
1152  * @hpdev:	The PCI driver's representation of the device
1153  * @where:	Offset within config space
1154  * @size:	Size of the transfer
1155  * @val:	The data being transferred
1156  */
1157 static void _hv_pcifront_write_config(struct hv_pci_dev *hpdev, int where,
1158 				      int size, u32 val)
1159 {
1160 	unsigned long flags;
1161 	void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where;
1162 
1163 	if (where >= PCI_SUBSYSTEM_VENDOR_ID &&
1164 	    where + size <= PCI_CAPABILITY_LIST) {
1165 		/* SSIDs and ROM BARs are read-only */
1166 	} else if (where >= PCI_COMMAND && where + size <= CFG_PAGE_SIZE) {
1167 		spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
1168 		/* Choose the function to be written. (See comment above) */
1169 		writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
1170 		/* Make sure the function was chosen before we start writing. */
1171 		wmb();
1172 		/* Write to that function's config space. */
1173 		switch (size) {
1174 		case 1:
1175 			writeb(val, addr);
1176 			break;
1177 		case 2:
1178 			writew(val, addr);
1179 			break;
1180 		default:
1181 			writel(val, addr);
1182 			break;
1183 		}
1184 		/*
1185 		 * Make sure the write was done before we release the spinlock
1186 		 * allowing consecutive reads/writes.
1187 		 */
1188 		mb();
1189 		spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
1190 	} else {
1191 		dev_err(&hpdev->hbus->hdev->device,
1192 			"Attempt to write beyond a function's config space.\n");
1193 	}
1194 }
1195 
1196 /**
1197  * hv_pcifront_read_config() - Read configuration space
1198  * @bus: PCI Bus structure
1199  * @devfn: Device/function
1200  * @where: Offset from base
1201  * @size: Byte/word/dword
1202  * @val: Value to be read
1203  *
1204  * Return: PCIBIOS_SUCCESSFUL on success
1205  *	   PCIBIOS_DEVICE_NOT_FOUND on failure
1206  */
1207 static int hv_pcifront_read_config(struct pci_bus *bus, unsigned int devfn,
1208 				   int where, int size, u32 *val)
1209 {
1210 	struct hv_pcibus_device *hbus =
1211 		container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
1212 	struct hv_pci_dev *hpdev;
1213 
1214 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
1215 	if (!hpdev)
1216 		return PCIBIOS_DEVICE_NOT_FOUND;
1217 
1218 	_hv_pcifront_read_config(hpdev, where, size, val);
1219 
1220 	put_pcichild(hpdev);
1221 	return PCIBIOS_SUCCESSFUL;
1222 }
1223 
1224 /**
1225  * hv_pcifront_write_config() - Write configuration space
1226  * @bus: PCI Bus structure
1227  * @devfn: Device/function
1228  * @where: Offset from base
1229  * @size: Byte/word/dword
1230  * @val: Value to be written to device
1231  *
1232  * Return: PCIBIOS_SUCCESSFUL on success
1233  *	   PCIBIOS_DEVICE_NOT_FOUND on failure
1234  */
1235 static int hv_pcifront_write_config(struct pci_bus *bus, unsigned int devfn,
1236 				    int where, int size, u32 val)
1237 {
1238 	struct hv_pcibus_device *hbus =
1239 	    container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
1240 	struct hv_pci_dev *hpdev;
1241 
1242 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
1243 	if (!hpdev)
1244 		return PCIBIOS_DEVICE_NOT_FOUND;
1245 
1246 	_hv_pcifront_write_config(hpdev, where, size, val);
1247 
1248 	put_pcichild(hpdev);
1249 	return PCIBIOS_SUCCESSFUL;
1250 }
1251 
1252 /* PCIe operations */
1253 static struct pci_ops hv_pcifront_ops = {
1254 	.read  = hv_pcifront_read_config,
1255 	.write = hv_pcifront_write_config,
1256 };
1257 
1258 /*
1259  * Paravirtual backchannel
1260  *
1261  * Hyper-V SR-IOV provides a backchannel mechanism in software for
1262  * communication between a VF driver and a PF driver.  These
1263  * "configuration blocks" are similar in concept to PCI configuration space,
1264  * but instead of doing reads and writes in 32-bit chunks through a very slow
1265  * path, packets of up to 128 bytes can be sent or received asynchronously.
1266  *
1267  * Nearly every SR-IOV device contains just such a communications channel in
1268  * hardware, so using this one in software is usually optional.  Using the
1269  * software channel, however, allows driver implementers to leverage software
1270  * tools that fuzz the communications channel looking for vulnerabilities.
1271  *
1272  * The usage model for these packets puts the responsibility for reading or
1273  * writing on the VF driver.  The VF driver sends a read or a write packet,
1274  * indicating which "block" is being referred to by number.
1275  *
1276  * If the PF driver wishes to initiate communication, it can "invalidate" one or
1277  * more of the first 64 blocks.  This invalidation is delivered via a callback
1278  * supplied by the VF driver by this driver.
1279  *
1280  * No protocol is implied, except that supplied by the PF and VF drivers.
1281  */
1282 
1283 struct hv_read_config_compl {
1284 	struct hv_pci_compl comp_pkt;
1285 	void *buf;
1286 	unsigned int len;
1287 	unsigned int bytes_returned;
1288 };
1289 
1290 /**
1291  * hv_pci_read_config_compl() - Invoked when a response packet
1292  * for a read config block operation arrives.
1293  * @context:		Identifies the read config operation
1294  * @resp:		The response packet itself
1295  * @resp_packet_size:	Size in bytes of the response packet
1296  */
1297 static void hv_pci_read_config_compl(void *context, struct pci_response *resp,
1298 				     int resp_packet_size)
1299 {
1300 	struct hv_read_config_compl *comp = context;
1301 	struct pci_read_block_response *read_resp =
1302 		(struct pci_read_block_response *)resp;
1303 	unsigned int data_len, hdr_len;
1304 
1305 	hdr_len = offsetof(struct pci_read_block_response, bytes);
1306 	if (resp_packet_size < hdr_len) {
1307 		comp->comp_pkt.completion_status = -1;
1308 		goto out;
1309 	}
1310 
1311 	data_len = resp_packet_size - hdr_len;
1312 	if (data_len > 0 && read_resp->status == 0) {
1313 		comp->bytes_returned = min(comp->len, data_len);
1314 		memcpy(comp->buf, read_resp->bytes, comp->bytes_returned);
1315 	} else {
1316 		comp->bytes_returned = 0;
1317 	}
1318 
1319 	comp->comp_pkt.completion_status = read_resp->status;
1320 out:
1321 	complete(&comp->comp_pkt.host_event);
1322 }
1323 
1324 /**
1325  * hv_read_config_block() - Sends a read config block request to
1326  * the back-end driver running in the Hyper-V parent partition.
1327  * @pdev:		The PCI driver's representation for this device.
1328  * @buf:		Buffer into which the config block will be copied.
1329  * @len:		Size in bytes of buf.
1330  * @block_id:		Identifies the config block which has been requested.
1331  * @bytes_returned:	Size which came back from the back-end driver.
1332  *
1333  * Return: 0 on success, -errno on failure
1334  */
1335 static int hv_read_config_block(struct pci_dev *pdev, void *buf,
1336 				unsigned int len, unsigned int block_id,
1337 				unsigned int *bytes_returned)
1338 {
1339 	struct hv_pcibus_device *hbus =
1340 		container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1341 			     sysdata);
1342 	struct {
1343 		struct pci_packet pkt;
1344 		char buf[sizeof(struct pci_read_block)];
1345 	} pkt;
1346 	struct hv_read_config_compl comp_pkt;
1347 	struct pci_read_block *read_blk;
1348 	int ret;
1349 
1350 	if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX)
1351 		return -EINVAL;
1352 
1353 	init_completion(&comp_pkt.comp_pkt.host_event);
1354 	comp_pkt.buf = buf;
1355 	comp_pkt.len = len;
1356 
1357 	memset(&pkt, 0, sizeof(pkt));
1358 	pkt.pkt.completion_func = hv_pci_read_config_compl;
1359 	pkt.pkt.compl_ctxt = &comp_pkt;
1360 	read_blk = (struct pci_read_block *)&pkt.pkt.message;
1361 	read_blk->message_type.type = PCI_READ_BLOCK;
1362 	read_blk->wslot.slot = devfn_to_wslot(pdev->devfn);
1363 	read_blk->block_id = block_id;
1364 	read_blk->bytes_requested = len;
1365 
1366 	ret = vmbus_sendpacket(hbus->hdev->channel, read_blk,
1367 			       sizeof(*read_blk), (unsigned long)&pkt.pkt,
1368 			       VM_PKT_DATA_INBAND,
1369 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1370 	if (ret)
1371 		return ret;
1372 
1373 	ret = wait_for_response(hbus->hdev, &comp_pkt.comp_pkt.host_event);
1374 	if (ret)
1375 		return ret;
1376 
1377 	if (comp_pkt.comp_pkt.completion_status != 0 ||
1378 	    comp_pkt.bytes_returned == 0) {
1379 		dev_err(&hbus->hdev->device,
1380 			"Read Config Block failed: 0x%x, bytes_returned=%d\n",
1381 			comp_pkt.comp_pkt.completion_status,
1382 			comp_pkt.bytes_returned);
1383 		return -EIO;
1384 	}
1385 
1386 	*bytes_returned = comp_pkt.bytes_returned;
1387 	return 0;
1388 }
1389 
1390 /**
1391  * hv_pci_write_config_compl() - Invoked when a response packet for a write
1392  * config block operation arrives.
1393  * @context:		Identifies the write config operation
1394  * @resp:		The response packet itself
1395  * @resp_packet_size:	Size in bytes of the response packet
1396  */
1397 static void hv_pci_write_config_compl(void *context, struct pci_response *resp,
1398 				      int resp_packet_size)
1399 {
1400 	struct hv_pci_compl *comp_pkt = context;
1401 
1402 	comp_pkt->completion_status = resp->status;
1403 	complete(&comp_pkt->host_event);
1404 }
1405 
1406 /**
1407  * hv_write_config_block() - Sends a write config block request to the
1408  * back-end driver running in the Hyper-V parent partition.
1409  * @pdev:		The PCI driver's representation for this device.
1410  * @buf:		Buffer from which the config block will	be copied.
1411  * @len:		Size in bytes of buf.
1412  * @block_id:		Identifies the config block which is being written.
1413  *
1414  * Return: 0 on success, -errno on failure
1415  */
1416 static int hv_write_config_block(struct pci_dev *pdev, void *buf,
1417 				unsigned int len, unsigned int block_id)
1418 {
1419 	struct hv_pcibus_device *hbus =
1420 		container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1421 			     sysdata);
1422 	struct {
1423 		struct pci_packet pkt;
1424 		char buf[sizeof(struct pci_write_block)];
1425 		u32 reserved;
1426 	} pkt;
1427 	struct hv_pci_compl comp_pkt;
1428 	struct pci_write_block *write_blk;
1429 	u32 pkt_size;
1430 	int ret;
1431 
1432 	if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX)
1433 		return -EINVAL;
1434 
1435 	init_completion(&comp_pkt.host_event);
1436 
1437 	memset(&pkt, 0, sizeof(pkt));
1438 	pkt.pkt.completion_func = hv_pci_write_config_compl;
1439 	pkt.pkt.compl_ctxt = &comp_pkt;
1440 	write_blk = (struct pci_write_block *)&pkt.pkt.message;
1441 	write_blk->message_type.type = PCI_WRITE_BLOCK;
1442 	write_blk->wslot.slot = devfn_to_wslot(pdev->devfn);
1443 	write_blk->block_id = block_id;
1444 	write_blk->byte_count = len;
1445 	memcpy(write_blk->bytes, buf, len);
1446 	pkt_size = offsetof(struct pci_write_block, bytes) + len;
1447 	/*
1448 	 * This quirk is required on some hosts shipped around 2018, because
1449 	 * these hosts don't check the pkt_size correctly (new hosts have been
1450 	 * fixed since early 2019). The quirk is also safe on very old hosts
1451 	 * and new hosts, because, on them, what really matters is the length
1452 	 * specified in write_blk->byte_count.
1453 	 */
1454 	pkt_size += sizeof(pkt.reserved);
1455 
1456 	ret = vmbus_sendpacket(hbus->hdev->channel, write_blk, pkt_size,
1457 			       (unsigned long)&pkt.pkt, VM_PKT_DATA_INBAND,
1458 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1459 	if (ret)
1460 		return ret;
1461 
1462 	ret = wait_for_response(hbus->hdev, &comp_pkt.host_event);
1463 	if (ret)
1464 		return ret;
1465 
1466 	if (comp_pkt.completion_status != 0) {
1467 		dev_err(&hbus->hdev->device,
1468 			"Write Config Block failed: 0x%x\n",
1469 			comp_pkt.completion_status);
1470 		return -EIO;
1471 	}
1472 
1473 	return 0;
1474 }
1475 
1476 /**
1477  * hv_register_block_invalidate() - Invoked when a config block invalidation
1478  * arrives from the back-end driver.
1479  * @pdev:		The PCI driver's representation for this device.
1480  * @context:		Identifies the device.
1481  * @block_invalidate:	Identifies all of the blocks being invalidated.
1482  *
1483  * Return: 0 on success, -errno on failure
1484  */
1485 static int hv_register_block_invalidate(struct pci_dev *pdev, void *context,
1486 					void (*block_invalidate)(void *context,
1487 								 u64 block_mask))
1488 {
1489 	struct hv_pcibus_device *hbus =
1490 		container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1491 			     sysdata);
1492 	struct hv_pci_dev *hpdev;
1493 
1494 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1495 	if (!hpdev)
1496 		return -ENODEV;
1497 
1498 	hpdev->block_invalidate = block_invalidate;
1499 	hpdev->invalidate_context = context;
1500 
1501 	put_pcichild(hpdev);
1502 	return 0;
1503 
1504 }
1505 
1506 /* Interrupt management hooks */
1507 static void hv_int_desc_free(struct hv_pci_dev *hpdev,
1508 			     struct tran_int_desc *int_desc)
1509 {
1510 	struct pci_delete_interrupt *int_pkt;
1511 	struct {
1512 		struct pci_packet pkt;
1513 		u8 buffer[sizeof(struct pci_delete_interrupt)];
1514 	} ctxt;
1515 
1516 	memset(&ctxt, 0, sizeof(ctxt));
1517 	int_pkt = (struct pci_delete_interrupt *)&ctxt.pkt.message;
1518 	int_pkt->message_type.type =
1519 		PCI_DELETE_INTERRUPT_MESSAGE;
1520 	int_pkt->wslot.slot = hpdev->desc.win_slot.slot;
1521 	int_pkt->int_desc = *int_desc;
1522 	vmbus_sendpacket(hpdev->hbus->hdev->channel, int_pkt, sizeof(*int_pkt),
1523 			 (unsigned long)&ctxt.pkt, VM_PKT_DATA_INBAND, 0);
1524 	kfree(int_desc);
1525 }
1526 
1527 /**
1528  * hv_msi_free() - Free the MSI.
1529  * @domain:	The interrupt domain pointer
1530  * @info:	Extra MSI-related context
1531  * @irq:	Identifies the IRQ.
1532  *
1533  * The Hyper-V parent partition and hypervisor are tracking the
1534  * messages that are in use, keeping the interrupt redirection
1535  * table up to date.  This callback sends a message that frees
1536  * the IRT entry and related tracking nonsense.
1537  */
1538 static void hv_msi_free(struct irq_domain *domain, struct msi_domain_info *info,
1539 			unsigned int irq)
1540 {
1541 	struct hv_pcibus_device *hbus;
1542 	struct hv_pci_dev *hpdev;
1543 	struct pci_dev *pdev;
1544 	struct tran_int_desc *int_desc;
1545 	struct irq_data *irq_data = irq_domain_get_irq_data(domain, irq);
1546 	struct msi_desc *msi = irq_data_get_msi_desc(irq_data);
1547 
1548 	pdev = msi_desc_to_pci_dev(msi);
1549 	hbus = info->data;
1550 	int_desc = irq_data_get_irq_chip_data(irq_data);
1551 	if (!int_desc)
1552 		return;
1553 
1554 	irq_data->chip_data = NULL;
1555 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1556 	if (!hpdev) {
1557 		kfree(int_desc);
1558 		return;
1559 	}
1560 
1561 	hv_int_desc_free(hpdev, int_desc);
1562 	put_pcichild(hpdev);
1563 }
1564 
1565 static void hv_irq_mask(struct irq_data *data)
1566 {
1567 	pci_msi_mask_irq(data);
1568 	if (data->parent_data->chip->irq_mask)
1569 		irq_chip_mask_parent(data);
1570 }
1571 
1572 static void hv_irq_unmask(struct irq_data *data)
1573 {
1574 	hv_arch_irq_unmask(data);
1575 
1576 	if (data->parent_data->chip->irq_unmask)
1577 		irq_chip_unmask_parent(data);
1578 	pci_msi_unmask_irq(data);
1579 }
1580 
1581 struct compose_comp_ctxt {
1582 	struct hv_pci_compl comp_pkt;
1583 	struct tran_int_desc int_desc;
1584 };
1585 
1586 static void hv_pci_compose_compl(void *context, struct pci_response *resp,
1587 				 int resp_packet_size)
1588 {
1589 	struct compose_comp_ctxt *comp_pkt = context;
1590 	struct pci_create_int_response *int_resp =
1591 		(struct pci_create_int_response *)resp;
1592 
1593 	comp_pkt->comp_pkt.completion_status = resp->status;
1594 	comp_pkt->int_desc = int_resp->int_desc;
1595 	complete(&comp_pkt->comp_pkt.host_event);
1596 }
1597 
1598 static u32 hv_compose_msi_req_v1(
1599 	struct pci_create_interrupt *int_pkt, struct cpumask *affinity,
1600 	u32 slot, u8 vector)
1601 {
1602 	int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE;
1603 	int_pkt->wslot.slot = slot;
1604 	int_pkt->int_desc.vector = vector;
1605 	int_pkt->int_desc.vector_count = 1;
1606 	int_pkt->int_desc.delivery_mode = DELIVERY_MODE;
1607 
1608 	/*
1609 	 * Create MSI w/ dummy vCPU set, overwritten by subsequent retarget in
1610 	 * hv_irq_unmask().
1611 	 */
1612 	int_pkt->int_desc.cpu_mask = CPU_AFFINITY_ALL;
1613 
1614 	return sizeof(*int_pkt);
1615 }
1616 
1617 /*
1618  * Create MSI w/ dummy vCPU set targeting just one vCPU, overwritten
1619  * by subsequent retarget in hv_irq_unmask().
1620  */
1621 static int hv_compose_msi_req_get_cpu(struct cpumask *affinity)
1622 {
1623 	return cpumask_first_and(affinity, cpu_online_mask);
1624 }
1625 
1626 static u32 hv_compose_msi_req_v2(
1627 	struct pci_create_interrupt2 *int_pkt, struct cpumask *affinity,
1628 	u32 slot, u8 vector)
1629 {
1630 	int cpu;
1631 
1632 	int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE2;
1633 	int_pkt->wslot.slot = slot;
1634 	int_pkt->int_desc.vector = vector;
1635 	int_pkt->int_desc.vector_count = 1;
1636 	int_pkt->int_desc.delivery_mode = DELIVERY_MODE;
1637 	cpu = hv_compose_msi_req_get_cpu(affinity);
1638 	int_pkt->int_desc.processor_array[0] =
1639 		hv_cpu_number_to_vp_number(cpu);
1640 	int_pkt->int_desc.processor_count = 1;
1641 
1642 	return sizeof(*int_pkt);
1643 }
1644 
1645 static u32 hv_compose_msi_req_v3(
1646 	struct pci_create_interrupt3 *int_pkt, struct cpumask *affinity,
1647 	u32 slot, u32 vector)
1648 {
1649 	int cpu;
1650 
1651 	int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE3;
1652 	int_pkt->wslot.slot = slot;
1653 	int_pkt->int_desc.vector = vector;
1654 	int_pkt->int_desc.reserved = 0;
1655 	int_pkt->int_desc.vector_count = 1;
1656 	int_pkt->int_desc.delivery_mode = DELIVERY_MODE;
1657 	cpu = hv_compose_msi_req_get_cpu(affinity);
1658 	int_pkt->int_desc.processor_array[0] =
1659 		hv_cpu_number_to_vp_number(cpu);
1660 	int_pkt->int_desc.processor_count = 1;
1661 
1662 	return sizeof(*int_pkt);
1663 }
1664 
1665 /**
1666  * hv_compose_msi_msg() - Supplies a valid MSI address/data
1667  * @data:	Everything about this MSI
1668  * @msg:	Buffer that is filled in by this function
1669  *
1670  * This function unpacks the IRQ looking for target CPU set, IDT
1671  * vector and mode and sends a message to the parent partition
1672  * asking for a mapping for that tuple in this partition.  The
1673  * response supplies a data value and address to which that data
1674  * should be written to trigger that interrupt.
1675  */
1676 static void hv_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
1677 {
1678 	struct hv_pcibus_device *hbus;
1679 	struct vmbus_channel *channel;
1680 	struct hv_pci_dev *hpdev;
1681 	struct pci_bus *pbus;
1682 	struct pci_dev *pdev;
1683 	struct cpumask *dest;
1684 	struct compose_comp_ctxt comp;
1685 	struct tran_int_desc *int_desc;
1686 	struct {
1687 		struct pci_packet pci_pkt;
1688 		union {
1689 			struct pci_create_interrupt v1;
1690 			struct pci_create_interrupt2 v2;
1691 			struct pci_create_interrupt3 v3;
1692 		} int_pkts;
1693 	} __packed ctxt;
1694 
1695 	u32 size;
1696 	int ret;
1697 
1698 	pdev = msi_desc_to_pci_dev(irq_data_get_msi_desc(data));
1699 	dest = irq_data_get_effective_affinity_mask(data);
1700 	pbus = pdev->bus;
1701 	hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
1702 	channel = hbus->hdev->channel;
1703 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1704 	if (!hpdev)
1705 		goto return_null_message;
1706 
1707 	/* Free any previous message that might have already been composed. */
1708 	if (data->chip_data) {
1709 		int_desc = data->chip_data;
1710 		data->chip_data = NULL;
1711 		hv_int_desc_free(hpdev, int_desc);
1712 	}
1713 
1714 	int_desc = kzalloc(sizeof(*int_desc), GFP_ATOMIC);
1715 	if (!int_desc)
1716 		goto drop_reference;
1717 
1718 	memset(&ctxt, 0, sizeof(ctxt));
1719 	init_completion(&comp.comp_pkt.host_event);
1720 	ctxt.pci_pkt.completion_func = hv_pci_compose_compl;
1721 	ctxt.pci_pkt.compl_ctxt = &comp;
1722 
1723 	switch (hbus->protocol_version) {
1724 	case PCI_PROTOCOL_VERSION_1_1:
1725 		size = hv_compose_msi_req_v1(&ctxt.int_pkts.v1,
1726 					dest,
1727 					hpdev->desc.win_slot.slot,
1728 					hv_msi_get_int_vector(data));
1729 		break;
1730 
1731 	case PCI_PROTOCOL_VERSION_1_2:
1732 	case PCI_PROTOCOL_VERSION_1_3:
1733 		size = hv_compose_msi_req_v2(&ctxt.int_pkts.v2,
1734 					dest,
1735 					hpdev->desc.win_slot.slot,
1736 					hv_msi_get_int_vector(data));
1737 		break;
1738 
1739 	case PCI_PROTOCOL_VERSION_1_4:
1740 		size = hv_compose_msi_req_v3(&ctxt.int_pkts.v3,
1741 					dest,
1742 					hpdev->desc.win_slot.slot,
1743 					hv_msi_get_int_vector(data));
1744 		break;
1745 
1746 	default:
1747 		/* As we only negotiate protocol versions known to this driver,
1748 		 * this path should never hit. However, this is it not a hot
1749 		 * path so we print a message to aid future updates.
1750 		 */
1751 		dev_err(&hbus->hdev->device,
1752 			"Unexpected vPCI protocol, update driver.");
1753 		goto free_int_desc;
1754 	}
1755 
1756 	ret = vmbus_sendpacket(hpdev->hbus->hdev->channel, &ctxt.int_pkts,
1757 			       size, (unsigned long)&ctxt.pci_pkt,
1758 			       VM_PKT_DATA_INBAND,
1759 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1760 	if (ret) {
1761 		dev_err(&hbus->hdev->device,
1762 			"Sending request for interrupt failed: 0x%x",
1763 			comp.comp_pkt.completion_status);
1764 		goto free_int_desc;
1765 	}
1766 
1767 	/*
1768 	 * Prevents hv_pci_onchannelcallback() from running concurrently
1769 	 * in the tasklet.
1770 	 */
1771 	tasklet_disable_in_atomic(&channel->callback_event);
1772 
1773 	/*
1774 	 * Since this function is called with IRQ locks held, can't
1775 	 * do normal wait for completion; instead poll.
1776 	 */
1777 	while (!try_wait_for_completion(&comp.comp_pkt.host_event)) {
1778 		unsigned long flags;
1779 
1780 		/* 0xFFFF means an invalid PCI VENDOR ID. */
1781 		if (hv_pcifront_get_vendor_id(hpdev) == 0xFFFF) {
1782 			dev_err_once(&hbus->hdev->device,
1783 				     "the device has gone\n");
1784 			goto enable_tasklet;
1785 		}
1786 
1787 		/*
1788 		 * Make sure that the ring buffer data structure doesn't get
1789 		 * freed while we dereference the ring buffer pointer.  Test
1790 		 * for the channel's onchannel_callback being NULL within a
1791 		 * sched_lock critical section.  See also the inline comments
1792 		 * in vmbus_reset_channel_cb().
1793 		 */
1794 		spin_lock_irqsave(&channel->sched_lock, flags);
1795 		if (unlikely(channel->onchannel_callback == NULL)) {
1796 			spin_unlock_irqrestore(&channel->sched_lock, flags);
1797 			goto enable_tasklet;
1798 		}
1799 		hv_pci_onchannelcallback(hbus);
1800 		spin_unlock_irqrestore(&channel->sched_lock, flags);
1801 
1802 		if (hpdev->state == hv_pcichild_ejecting) {
1803 			dev_err_once(&hbus->hdev->device,
1804 				     "the device is being ejected\n");
1805 			goto enable_tasklet;
1806 		}
1807 
1808 		udelay(100);
1809 	}
1810 
1811 	tasklet_enable(&channel->callback_event);
1812 
1813 	if (comp.comp_pkt.completion_status < 0) {
1814 		dev_err(&hbus->hdev->device,
1815 			"Request for interrupt failed: 0x%x",
1816 			comp.comp_pkt.completion_status);
1817 		goto free_int_desc;
1818 	}
1819 
1820 	/*
1821 	 * Record the assignment so that this can be unwound later. Using
1822 	 * irq_set_chip_data() here would be appropriate, but the lock it takes
1823 	 * is already held.
1824 	 */
1825 	*int_desc = comp.int_desc;
1826 	data->chip_data = int_desc;
1827 
1828 	/* Pass up the result. */
1829 	msg->address_hi = comp.int_desc.address >> 32;
1830 	msg->address_lo = comp.int_desc.address & 0xffffffff;
1831 	msg->data = comp.int_desc.data;
1832 
1833 	put_pcichild(hpdev);
1834 	return;
1835 
1836 enable_tasklet:
1837 	tasklet_enable(&channel->callback_event);
1838 free_int_desc:
1839 	kfree(int_desc);
1840 drop_reference:
1841 	put_pcichild(hpdev);
1842 return_null_message:
1843 	msg->address_hi = 0;
1844 	msg->address_lo = 0;
1845 	msg->data = 0;
1846 }
1847 
1848 /* HW Interrupt Chip Descriptor */
1849 static struct irq_chip hv_msi_irq_chip = {
1850 	.name			= "Hyper-V PCIe MSI",
1851 	.irq_compose_msi_msg	= hv_compose_msi_msg,
1852 	.irq_set_affinity	= irq_chip_set_affinity_parent,
1853 #ifdef CONFIG_X86
1854 	.irq_ack		= irq_chip_ack_parent,
1855 #elif defined(CONFIG_ARM64)
1856 	.irq_eoi		= irq_chip_eoi_parent,
1857 #endif
1858 	.irq_mask		= hv_irq_mask,
1859 	.irq_unmask		= hv_irq_unmask,
1860 };
1861 
1862 static struct msi_domain_ops hv_msi_ops = {
1863 	.msi_prepare	= hv_msi_prepare,
1864 	.msi_free	= hv_msi_free,
1865 };
1866 
1867 /**
1868  * hv_pcie_init_irq_domain() - Initialize IRQ domain
1869  * @hbus:	The root PCI bus
1870  *
1871  * This function creates an IRQ domain which will be used for
1872  * interrupts from devices that have been passed through.  These
1873  * devices only support MSI and MSI-X, not line-based interrupts
1874  * or simulations of line-based interrupts through PCIe's
1875  * fabric-layer messages.  Because interrupts are remapped, we
1876  * can support multi-message MSI here.
1877  *
1878  * Return: '0' on success and error value on failure
1879  */
1880 static int hv_pcie_init_irq_domain(struct hv_pcibus_device *hbus)
1881 {
1882 	hbus->msi_info.chip = &hv_msi_irq_chip;
1883 	hbus->msi_info.ops = &hv_msi_ops;
1884 	hbus->msi_info.flags = (MSI_FLAG_USE_DEF_DOM_OPS |
1885 		MSI_FLAG_USE_DEF_CHIP_OPS | MSI_FLAG_MULTI_PCI_MSI |
1886 		MSI_FLAG_PCI_MSIX);
1887 	hbus->msi_info.handler = FLOW_HANDLER;
1888 	hbus->msi_info.handler_name = FLOW_NAME;
1889 	hbus->msi_info.data = hbus;
1890 	hbus->irq_domain = pci_msi_create_irq_domain(hbus->fwnode,
1891 						     &hbus->msi_info,
1892 						     hv_pci_get_root_domain());
1893 	if (!hbus->irq_domain) {
1894 		dev_err(&hbus->hdev->device,
1895 			"Failed to build an MSI IRQ domain\n");
1896 		return -ENODEV;
1897 	}
1898 
1899 	dev_set_msi_domain(&hbus->bridge->dev, hbus->irq_domain);
1900 
1901 	return 0;
1902 }
1903 
1904 /**
1905  * get_bar_size() - Get the address space consumed by a BAR
1906  * @bar_val:	Value that a BAR returned after -1 was written
1907  *              to it.
1908  *
1909  * This function returns the size of the BAR, rounded up to 1
1910  * page.  It has to be rounded up because the hypervisor's page
1911  * table entry that maps the BAR into the VM can't specify an
1912  * offset within a page.  The invariant is that the hypervisor
1913  * must place any BARs of smaller than page length at the
1914  * beginning of a page.
1915  *
1916  * Return:	Size in bytes of the consumed MMIO space.
1917  */
1918 static u64 get_bar_size(u64 bar_val)
1919 {
1920 	return round_up((1 + ~(bar_val & PCI_BASE_ADDRESS_MEM_MASK)),
1921 			PAGE_SIZE);
1922 }
1923 
1924 /**
1925  * survey_child_resources() - Total all MMIO requirements
1926  * @hbus:	Root PCI bus, as understood by this driver
1927  */
1928 static void survey_child_resources(struct hv_pcibus_device *hbus)
1929 {
1930 	struct hv_pci_dev *hpdev;
1931 	resource_size_t bar_size = 0;
1932 	unsigned long flags;
1933 	struct completion *event;
1934 	u64 bar_val;
1935 	int i;
1936 
1937 	/* If nobody is waiting on the answer, don't compute it. */
1938 	event = xchg(&hbus->survey_event, NULL);
1939 	if (!event)
1940 		return;
1941 
1942 	/* If the answer has already been computed, go with it. */
1943 	if (hbus->low_mmio_space || hbus->high_mmio_space) {
1944 		complete(event);
1945 		return;
1946 	}
1947 
1948 	spin_lock_irqsave(&hbus->device_list_lock, flags);
1949 
1950 	/*
1951 	 * Due to an interesting quirk of the PCI spec, all memory regions
1952 	 * for a child device are a power of 2 in size and aligned in memory,
1953 	 * so it's sufficient to just add them up without tracking alignment.
1954 	 */
1955 	list_for_each_entry(hpdev, &hbus->children, list_entry) {
1956 		for (i = 0; i < PCI_STD_NUM_BARS; i++) {
1957 			if (hpdev->probed_bar[i] & PCI_BASE_ADDRESS_SPACE_IO)
1958 				dev_err(&hbus->hdev->device,
1959 					"There's an I/O BAR in this list!\n");
1960 
1961 			if (hpdev->probed_bar[i] != 0) {
1962 				/*
1963 				 * A probed BAR has all the upper bits set that
1964 				 * can be changed.
1965 				 */
1966 
1967 				bar_val = hpdev->probed_bar[i];
1968 				if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
1969 					bar_val |=
1970 					((u64)hpdev->probed_bar[++i] << 32);
1971 				else
1972 					bar_val |= 0xffffffff00000000ULL;
1973 
1974 				bar_size = get_bar_size(bar_val);
1975 
1976 				if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
1977 					hbus->high_mmio_space += bar_size;
1978 				else
1979 					hbus->low_mmio_space += bar_size;
1980 			}
1981 		}
1982 	}
1983 
1984 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1985 	complete(event);
1986 }
1987 
1988 /**
1989  * prepopulate_bars() - Fill in BARs with defaults
1990  * @hbus:	Root PCI bus, as understood by this driver
1991  *
1992  * The core PCI driver code seems much, much happier if the BARs
1993  * for a device have values upon first scan. So fill them in.
1994  * The algorithm below works down from large sizes to small,
1995  * attempting to pack the assignments optimally. The assumption,
1996  * enforced in other parts of the code, is that the beginning of
1997  * the memory-mapped I/O space will be aligned on the largest
1998  * BAR size.
1999  */
2000 static void prepopulate_bars(struct hv_pcibus_device *hbus)
2001 {
2002 	resource_size_t high_size = 0;
2003 	resource_size_t low_size = 0;
2004 	resource_size_t high_base = 0;
2005 	resource_size_t low_base = 0;
2006 	resource_size_t bar_size;
2007 	struct hv_pci_dev *hpdev;
2008 	unsigned long flags;
2009 	u64 bar_val;
2010 	u32 command;
2011 	bool high;
2012 	int i;
2013 
2014 	if (hbus->low_mmio_space) {
2015 		low_size = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
2016 		low_base = hbus->low_mmio_res->start;
2017 	}
2018 
2019 	if (hbus->high_mmio_space) {
2020 		high_size = 1ULL <<
2021 			(63 - __builtin_clzll(hbus->high_mmio_space));
2022 		high_base = hbus->high_mmio_res->start;
2023 	}
2024 
2025 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2026 
2027 	/*
2028 	 * Clear the memory enable bit, in case it's already set. This occurs
2029 	 * in the suspend path of hibernation, where the device is suspended,
2030 	 * resumed and suspended again: see hibernation_snapshot() and
2031 	 * hibernation_platform_enter().
2032 	 *
2033 	 * If the memory enable bit is already set, Hyper-V silently ignores
2034 	 * the below BAR updates, and the related PCI device driver can not
2035 	 * work, because reading from the device register(s) always returns
2036 	 * 0xFFFFFFFF (PCI_ERROR_RESPONSE).
2037 	 */
2038 	list_for_each_entry(hpdev, &hbus->children, list_entry) {
2039 		_hv_pcifront_read_config(hpdev, PCI_COMMAND, 2, &command);
2040 		command &= ~PCI_COMMAND_MEMORY;
2041 		_hv_pcifront_write_config(hpdev, PCI_COMMAND, 2, command);
2042 	}
2043 
2044 	/* Pick addresses for the BARs. */
2045 	do {
2046 		list_for_each_entry(hpdev, &hbus->children, list_entry) {
2047 			for (i = 0; i < PCI_STD_NUM_BARS; i++) {
2048 				bar_val = hpdev->probed_bar[i];
2049 				if (bar_val == 0)
2050 					continue;
2051 				high = bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64;
2052 				if (high) {
2053 					bar_val |=
2054 						((u64)hpdev->probed_bar[i + 1]
2055 						 << 32);
2056 				} else {
2057 					bar_val |= 0xffffffffULL << 32;
2058 				}
2059 				bar_size = get_bar_size(bar_val);
2060 				if (high) {
2061 					if (high_size != bar_size) {
2062 						i++;
2063 						continue;
2064 					}
2065 					_hv_pcifront_write_config(hpdev,
2066 						PCI_BASE_ADDRESS_0 + (4 * i),
2067 						4,
2068 						(u32)(high_base & 0xffffff00));
2069 					i++;
2070 					_hv_pcifront_write_config(hpdev,
2071 						PCI_BASE_ADDRESS_0 + (4 * i),
2072 						4, (u32)(high_base >> 32));
2073 					high_base += bar_size;
2074 				} else {
2075 					if (low_size != bar_size)
2076 						continue;
2077 					_hv_pcifront_write_config(hpdev,
2078 						PCI_BASE_ADDRESS_0 + (4 * i),
2079 						4,
2080 						(u32)(low_base & 0xffffff00));
2081 					low_base += bar_size;
2082 				}
2083 			}
2084 			if (high_size <= 1 && low_size <= 1) {
2085 				/* Set the memory enable bit. */
2086 				_hv_pcifront_read_config(hpdev, PCI_COMMAND, 2,
2087 							 &command);
2088 				command |= PCI_COMMAND_MEMORY;
2089 				_hv_pcifront_write_config(hpdev, PCI_COMMAND, 2,
2090 							  command);
2091 				break;
2092 			}
2093 		}
2094 
2095 		high_size >>= 1;
2096 		low_size >>= 1;
2097 	}  while (high_size || low_size);
2098 
2099 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2100 }
2101 
2102 /*
2103  * Assign entries in sysfs pci slot directory.
2104  *
2105  * Note that this function does not need to lock the children list
2106  * because it is called from pci_devices_present_work which
2107  * is serialized with hv_eject_device_work because they are on the
2108  * same ordered workqueue. Therefore hbus->children list will not change
2109  * even when pci_create_slot sleeps.
2110  */
2111 static void hv_pci_assign_slots(struct hv_pcibus_device *hbus)
2112 {
2113 	struct hv_pci_dev *hpdev;
2114 	char name[SLOT_NAME_SIZE];
2115 	int slot_nr;
2116 
2117 	list_for_each_entry(hpdev, &hbus->children, list_entry) {
2118 		if (hpdev->pci_slot)
2119 			continue;
2120 
2121 		slot_nr = PCI_SLOT(wslot_to_devfn(hpdev->desc.win_slot.slot));
2122 		snprintf(name, SLOT_NAME_SIZE, "%u", hpdev->desc.ser);
2123 		hpdev->pci_slot = pci_create_slot(hbus->bridge->bus, slot_nr,
2124 					  name, NULL);
2125 		if (IS_ERR(hpdev->pci_slot)) {
2126 			pr_warn("pci_create slot %s failed\n", name);
2127 			hpdev->pci_slot = NULL;
2128 		}
2129 	}
2130 }
2131 
2132 /*
2133  * Remove entries in sysfs pci slot directory.
2134  */
2135 static void hv_pci_remove_slots(struct hv_pcibus_device *hbus)
2136 {
2137 	struct hv_pci_dev *hpdev;
2138 
2139 	list_for_each_entry(hpdev, &hbus->children, list_entry) {
2140 		if (!hpdev->pci_slot)
2141 			continue;
2142 		pci_destroy_slot(hpdev->pci_slot);
2143 		hpdev->pci_slot = NULL;
2144 	}
2145 }
2146 
2147 /*
2148  * Set NUMA node for the devices on the bus
2149  */
2150 static void hv_pci_assign_numa_node(struct hv_pcibus_device *hbus)
2151 {
2152 	struct pci_dev *dev;
2153 	struct pci_bus *bus = hbus->bridge->bus;
2154 	struct hv_pci_dev *hv_dev;
2155 
2156 	list_for_each_entry(dev, &bus->devices, bus_list) {
2157 		hv_dev = get_pcichild_wslot(hbus, devfn_to_wslot(dev->devfn));
2158 		if (!hv_dev)
2159 			continue;
2160 
2161 		if (hv_dev->desc.flags & HV_PCI_DEVICE_FLAG_NUMA_AFFINITY &&
2162 		    hv_dev->desc.virtual_numa_node < num_possible_nodes())
2163 			/*
2164 			 * The kernel may boot with some NUMA nodes offline
2165 			 * (e.g. in a KDUMP kernel) or with NUMA disabled via
2166 			 * "numa=off". In those cases, adjust the host provided
2167 			 * NUMA node to a valid NUMA node used by the kernel.
2168 			 */
2169 			set_dev_node(&dev->dev,
2170 				     numa_map_to_online_node(
2171 					     hv_dev->desc.virtual_numa_node));
2172 
2173 		put_pcichild(hv_dev);
2174 	}
2175 }
2176 
2177 /**
2178  * create_root_hv_pci_bus() - Expose a new root PCI bus
2179  * @hbus:	Root PCI bus, as understood by this driver
2180  *
2181  * Return: 0 on success, -errno on failure
2182  */
2183 static int create_root_hv_pci_bus(struct hv_pcibus_device *hbus)
2184 {
2185 	int error;
2186 	struct pci_host_bridge *bridge = hbus->bridge;
2187 
2188 	bridge->dev.parent = &hbus->hdev->device;
2189 	bridge->sysdata = &hbus->sysdata;
2190 	bridge->ops = &hv_pcifront_ops;
2191 
2192 	error = pci_scan_root_bus_bridge(bridge);
2193 	if (error)
2194 		return error;
2195 
2196 	pci_lock_rescan_remove();
2197 	hv_pci_assign_numa_node(hbus);
2198 	pci_bus_assign_resources(bridge->bus);
2199 	hv_pci_assign_slots(hbus);
2200 	pci_bus_add_devices(bridge->bus);
2201 	pci_unlock_rescan_remove();
2202 	hbus->state = hv_pcibus_installed;
2203 	return 0;
2204 }
2205 
2206 struct q_res_req_compl {
2207 	struct completion host_event;
2208 	struct hv_pci_dev *hpdev;
2209 };
2210 
2211 /**
2212  * q_resource_requirements() - Query Resource Requirements
2213  * @context:		The completion context.
2214  * @resp:		The response that came from the host.
2215  * @resp_packet_size:	The size in bytes of resp.
2216  *
2217  * This function is invoked on completion of a Query Resource
2218  * Requirements packet.
2219  */
2220 static void q_resource_requirements(void *context, struct pci_response *resp,
2221 				    int resp_packet_size)
2222 {
2223 	struct q_res_req_compl *completion = context;
2224 	struct pci_q_res_req_response *q_res_req =
2225 		(struct pci_q_res_req_response *)resp;
2226 	int i;
2227 
2228 	if (resp->status < 0) {
2229 		dev_err(&completion->hpdev->hbus->hdev->device,
2230 			"query resource requirements failed: %x\n",
2231 			resp->status);
2232 	} else {
2233 		for (i = 0; i < PCI_STD_NUM_BARS; i++) {
2234 			completion->hpdev->probed_bar[i] =
2235 				q_res_req->probed_bar[i];
2236 		}
2237 	}
2238 
2239 	complete(&completion->host_event);
2240 }
2241 
2242 /**
2243  * new_pcichild_device() - Create a new child device
2244  * @hbus:	The internal struct tracking this root PCI bus.
2245  * @desc:	The information supplied so far from the host
2246  *              about the device.
2247  *
2248  * This function creates the tracking structure for a new child
2249  * device and kicks off the process of figuring out what it is.
2250  *
2251  * Return: Pointer to the new tracking struct
2252  */
2253 static struct hv_pci_dev *new_pcichild_device(struct hv_pcibus_device *hbus,
2254 		struct hv_pcidev_description *desc)
2255 {
2256 	struct hv_pci_dev *hpdev;
2257 	struct pci_child_message *res_req;
2258 	struct q_res_req_compl comp_pkt;
2259 	struct {
2260 		struct pci_packet init_packet;
2261 		u8 buffer[sizeof(struct pci_child_message)];
2262 	} pkt;
2263 	unsigned long flags;
2264 	int ret;
2265 
2266 	hpdev = kzalloc(sizeof(*hpdev), GFP_KERNEL);
2267 	if (!hpdev)
2268 		return NULL;
2269 
2270 	hpdev->hbus = hbus;
2271 
2272 	memset(&pkt, 0, sizeof(pkt));
2273 	init_completion(&comp_pkt.host_event);
2274 	comp_pkt.hpdev = hpdev;
2275 	pkt.init_packet.compl_ctxt = &comp_pkt;
2276 	pkt.init_packet.completion_func = q_resource_requirements;
2277 	res_req = (struct pci_child_message *)&pkt.init_packet.message;
2278 	res_req->message_type.type = PCI_QUERY_RESOURCE_REQUIREMENTS;
2279 	res_req->wslot.slot = desc->win_slot.slot;
2280 
2281 	ret = vmbus_sendpacket(hbus->hdev->channel, res_req,
2282 			       sizeof(struct pci_child_message),
2283 			       (unsigned long)&pkt.init_packet,
2284 			       VM_PKT_DATA_INBAND,
2285 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2286 	if (ret)
2287 		goto error;
2288 
2289 	if (wait_for_response(hbus->hdev, &comp_pkt.host_event))
2290 		goto error;
2291 
2292 	hpdev->desc = *desc;
2293 	refcount_set(&hpdev->refs, 1);
2294 	get_pcichild(hpdev);
2295 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2296 
2297 	list_add_tail(&hpdev->list_entry, &hbus->children);
2298 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2299 	return hpdev;
2300 
2301 error:
2302 	kfree(hpdev);
2303 	return NULL;
2304 }
2305 
2306 /**
2307  * get_pcichild_wslot() - Find device from slot
2308  * @hbus:	Root PCI bus, as understood by this driver
2309  * @wslot:	Location on the bus
2310  *
2311  * This function looks up a PCI device and returns the internal
2312  * representation of it.  It acquires a reference on it, so that
2313  * the device won't be deleted while somebody is using it.  The
2314  * caller is responsible for calling put_pcichild() to release
2315  * this reference.
2316  *
2317  * Return:	Internal representation of a PCI device
2318  */
2319 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
2320 					     u32 wslot)
2321 {
2322 	unsigned long flags;
2323 	struct hv_pci_dev *iter, *hpdev = NULL;
2324 
2325 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2326 	list_for_each_entry(iter, &hbus->children, list_entry) {
2327 		if (iter->desc.win_slot.slot == wslot) {
2328 			hpdev = iter;
2329 			get_pcichild(hpdev);
2330 			break;
2331 		}
2332 	}
2333 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2334 
2335 	return hpdev;
2336 }
2337 
2338 /**
2339  * pci_devices_present_work() - Handle new list of child devices
2340  * @work:	Work struct embedded in struct hv_dr_work
2341  *
2342  * "Bus Relations" is the Windows term for "children of this
2343  * bus."  The terminology is preserved here for people trying to
2344  * debug the interaction between Hyper-V and Linux.  This
2345  * function is called when the parent partition reports a list
2346  * of functions that should be observed under this PCI Express
2347  * port (bus).
2348  *
2349  * This function updates the list, and must tolerate being
2350  * called multiple times with the same information.  The typical
2351  * number of child devices is one, with very atypical cases
2352  * involving three or four, so the algorithms used here can be
2353  * simple and inefficient.
2354  *
2355  * It must also treat the omission of a previously observed device as
2356  * notification that the device no longer exists.
2357  *
2358  * Note that this function is serialized with hv_eject_device_work(),
2359  * because both are pushed to the ordered workqueue hbus->wq.
2360  */
2361 static void pci_devices_present_work(struct work_struct *work)
2362 {
2363 	u32 child_no;
2364 	bool found;
2365 	struct hv_pcidev_description *new_desc;
2366 	struct hv_pci_dev *hpdev;
2367 	struct hv_pcibus_device *hbus;
2368 	struct list_head removed;
2369 	struct hv_dr_work *dr_wrk;
2370 	struct hv_dr_state *dr = NULL;
2371 	unsigned long flags;
2372 
2373 	dr_wrk = container_of(work, struct hv_dr_work, wrk);
2374 	hbus = dr_wrk->bus;
2375 	kfree(dr_wrk);
2376 
2377 	INIT_LIST_HEAD(&removed);
2378 
2379 	/* Pull this off the queue and process it if it was the last one. */
2380 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2381 	while (!list_empty(&hbus->dr_list)) {
2382 		dr = list_first_entry(&hbus->dr_list, struct hv_dr_state,
2383 				      list_entry);
2384 		list_del(&dr->list_entry);
2385 
2386 		/* Throw this away if the list still has stuff in it. */
2387 		if (!list_empty(&hbus->dr_list)) {
2388 			kfree(dr);
2389 			continue;
2390 		}
2391 	}
2392 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2393 
2394 	if (!dr)
2395 		return;
2396 
2397 	/* First, mark all existing children as reported missing. */
2398 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2399 	list_for_each_entry(hpdev, &hbus->children, list_entry) {
2400 		hpdev->reported_missing = true;
2401 	}
2402 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2403 
2404 	/* Next, add back any reported devices. */
2405 	for (child_no = 0; child_no < dr->device_count; child_no++) {
2406 		found = false;
2407 		new_desc = &dr->func[child_no];
2408 
2409 		spin_lock_irqsave(&hbus->device_list_lock, flags);
2410 		list_for_each_entry(hpdev, &hbus->children, list_entry) {
2411 			if ((hpdev->desc.win_slot.slot == new_desc->win_slot.slot) &&
2412 			    (hpdev->desc.v_id == new_desc->v_id) &&
2413 			    (hpdev->desc.d_id == new_desc->d_id) &&
2414 			    (hpdev->desc.ser == new_desc->ser)) {
2415 				hpdev->reported_missing = false;
2416 				found = true;
2417 			}
2418 		}
2419 		spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2420 
2421 		if (!found) {
2422 			hpdev = new_pcichild_device(hbus, new_desc);
2423 			if (!hpdev)
2424 				dev_err(&hbus->hdev->device,
2425 					"couldn't record a child device.\n");
2426 		}
2427 	}
2428 
2429 	/* Move missing children to a list on the stack. */
2430 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2431 	do {
2432 		found = false;
2433 		list_for_each_entry(hpdev, &hbus->children, list_entry) {
2434 			if (hpdev->reported_missing) {
2435 				found = true;
2436 				put_pcichild(hpdev);
2437 				list_move_tail(&hpdev->list_entry, &removed);
2438 				break;
2439 			}
2440 		}
2441 	} while (found);
2442 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2443 
2444 	/* Delete everything that should no longer exist. */
2445 	while (!list_empty(&removed)) {
2446 		hpdev = list_first_entry(&removed, struct hv_pci_dev,
2447 					 list_entry);
2448 		list_del(&hpdev->list_entry);
2449 
2450 		if (hpdev->pci_slot)
2451 			pci_destroy_slot(hpdev->pci_slot);
2452 
2453 		put_pcichild(hpdev);
2454 	}
2455 
2456 	switch (hbus->state) {
2457 	case hv_pcibus_installed:
2458 		/*
2459 		 * Tell the core to rescan bus
2460 		 * because there may have been changes.
2461 		 */
2462 		pci_lock_rescan_remove();
2463 		pci_scan_child_bus(hbus->bridge->bus);
2464 		hv_pci_assign_numa_node(hbus);
2465 		hv_pci_assign_slots(hbus);
2466 		pci_unlock_rescan_remove();
2467 		break;
2468 
2469 	case hv_pcibus_init:
2470 	case hv_pcibus_probed:
2471 		survey_child_resources(hbus);
2472 		break;
2473 
2474 	default:
2475 		break;
2476 	}
2477 
2478 	kfree(dr);
2479 }
2480 
2481 /**
2482  * hv_pci_start_relations_work() - Queue work to start device discovery
2483  * @hbus:	Root PCI bus, as understood by this driver
2484  * @dr:		The list of children returned from host
2485  *
2486  * Return:  0 on success, -errno on failure
2487  */
2488 static int hv_pci_start_relations_work(struct hv_pcibus_device *hbus,
2489 				       struct hv_dr_state *dr)
2490 {
2491 	struct hv_dr_work *dr_wrk;
2492 	unsigned long flags;
2493 	bool pending_dr;
2494 
2495 	if (hbus->state == hv_pcibus_removing) {
2496 		dev_info(&hbus->hdev->device,
2497 			 "PCI VMBus BUS_RELATIONS: ignored\n");
2498 		return -ENOENT;
2499 	}
2500 
2501 	dr_wrk = kzalloc(sizeof(*dr_wrk), GFP_NOWAIT);
2502 	if (!dr_wrk)
2503 		return -ENOMEM;
2504 
2505 	INIT_WORK(&dr_wrk->wrk, pci_devices_present_work);
2506 	dr_wrk->bus = hbus;
2507 
2508 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2509 	/*
2510 	 * If pending_dr is true, we have already queued a work,
2511 	 * which will see the new dr. Otherwise, we need to
2512 	 * queue a new work.
2513 	 */
2514 	pending_dr = !list_empty(&hbus->dr_list);
2515 	list_add_tail(&dr->list_entry, &hbus->dr_list);
2516 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2517 
2518 	if (pending_dr)
2519 		kfree(dr_wrk);
2520 	else
2521 		queue_work(hbus->wq, &dr_wrk->wrk);
2522 
2523 	return 0;
2524 }
2525 
2526 /**
2527  * hv_pci_devices_present() - Handle list of new children
2528  * @hbus:      Root PCI bus, as understood by this driver
2529  * @relations: Packet from host listing children
2530  *
2531  * Process a new list of devices on the bus. The list of devices is
2532  * discovered by VSP and sent to us via VSP message PCI_BUS_RELATIONS,
2533  * whenever a new list of devices for this bus appears.
2534  */
2535 static void hv_pci_devices_present(struct hv_pcibus_device *hbus,
2536 				   struct pci_bus_relations *relations)
2537 {
2538 	struct hv_dr_state *dr;
2539 	int i;
2540 
2541 	dr = kzalloc(struct_size(dr, func, relations->device_count),
2542 		     GFP_NOWAIT);
2543 	if (!dr)
2544 		return;
2545 
2546 	dr->device_count = relations->device_count;
2547 	for (i = 0; i < dr->device_count; i++) {
2548 		dr->func[i].v_id = relations->func[i].v_id;
2549 		dr->func[i].d_id = relations->func[i].d_id;
2550 		dr->func[i].rev = relations->func[i].rev;
2551 		dr->func[i].prog_intf = relations->func[i].prog_intf;
2552 		dr->func[i].subclass = relations->func[i].subclass;
2553 		dr->func[i].base_class = relations->func[i].base_class;
2554 		dr->func[i].subsystem_id = relations->func[i].subsystem_id;
2555 		dr->func[i].win_slot = relations->func[i].win_slot;
2556 		dr->func[i].ser = relations->func[i].ser;
2557 	}
2558 
2559 	if (hv_pci_start_relations_work(hbus, dr))
2560 		kfree(dr);
2561 }
2562 
2563 /**
2564  * hv_pci_devices_present2() - Handle list of new children
2565  * @hbus:	Root PCI bus, as understood by this driver
2566  * @relations:	Packet from host listing children
2567  *
2568  * This function is the v2 version of hv_pci_devices_present()
2569  */
2570 static void hv_pci_devices_present2(struct hv_pcibus_device *hbus,
2571 				    struct pci_bus_relations2 *relations)
2572 {
2573 	struct hv_dr_state *dr;
2574 	int i;
2575 
2576 	dr = kzalloc(struct_size(dr, func, relations->device_count),
2577 		     GFP_NOWAIT);
2578 	if (!dr)
2579 		return;
2580 
2581 	dr->device_count = relations->device_count;
2582 	for (i = 0; i < dr->device_count; i++) {
2583 		dr->func[i].v_id = relations->func[i].v_id;
2584 		dr->func[i].d_id = relations->func[i].d_id;
2585 		dr->func[i].rev = relations->func[i].rev;
2586 		dr->func[i].prog_intf = relations->func[i].prog_intf;
2587 		dr->func[i].subclass = relations->func[i].subclass;
2588 		dr->func[i].base_class = relations->func[i].base_class;
2589 		dr->func[i].subsystem_id = relations->func[i].subsystem_id;
2590 		dr->func[i].win_slot = relations->func[i].win_slot;
2591 		dr->func[i].ser = relations->func[i].ser;
2592 		dr->func[i].flags = relations->func[i].flags;
2593 		dr->func[i].virtual_numa_node =
2594 			relations->func[i].virtual_numa_node;
2595 	}
2596 
2597 	if (hv_pci_start_relations_work(hbus, dr))
2598 		kfree(dr);
2599 }
2600 
2601 /**
2602  * hv_eject_device_work() - Asynchronously handles ejection
2603  * @work:	Work struct embedded in internal device struct
2604  *
2605  * This function handles ejecting a device.  Windows will
2606  * attempt to gracefully eject a device, waiting 60 seconds to
2607  * hear back from the guest OS that this completed successfully.
2608  * If this timer expires, the device will be forcibly removed.
2609  */
2610 static void hv_eject_device_work(struct work_struct *work)
2611 {
2612 	struct pci_eject_response *ejct_pkt;
2613 	struct hv_pcibus_device *hbus;
2614 	struct hv_pci_dev *hpdev;
2615 	struct pci_dev *pdev;
2616 	unsigned long flags;
2617 	int wslot;
2618 	struct {
2619 		struct pci_packet pkt;
2620 		u8 buffer[sizeof(struct pci_eject_response)];
2621 	} ctxt;
2622 
2623 	hpdev = container_of(work, struct hv_pci_dev, wrk);
2624 	hbus = hpdev->hbus;
2625 
2626 	WARN_ON(hpdev->state != hv_pcichild_ejecting);
2627 
2628 	/*
2629 	 * Ejection can come before or after the PCI bus has been set up, so
2630 	 * attempt to find it and tear down the bus state, if it exists.  This
2631 	 * must be done without constructs like pci_domain_nr(hbus->bridge->bus)
2632 	 * because hbus->bridge->bus may not exist yet.
2633 	 */
2634 	wslot = wslot_to_devfn(hpdev->desc.win_slot.slot);
2635 	pdev = pci_get_domain_bus_and_slot(hbus->bridge->domain_nr, 0, wslot);
2636 	if (pdev) {
2637 		pci_lock_rescan_remove();
2638 		pci_stop_and_remove_bus_device(pdev);
2639 		pci_dev_put(pdev);
2640 		pci_unlock_rescan_remove();
2641 	}
2642 
2643 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2644 	list_del(&hpdev->list_entry);
2645 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2646 
2647 	if (hpdev->pci_slot)
2648 		pci_destroy_slot(hpdev->pci_slot);
2649 
2650 	memset(&ctxt, 0, sizeof(ctxt));
2651 	ejct_pkt = (struct pci_eject_response *)&ctxt.pkt.message;
2652 	ejct_pkt->message_type.type = PCI_EJECTION_COMPLETE;
2653 	ejct_pkt->wslot.slot = hpdev->desc.win_slot.slot;
2654 	vmbus_sendpacket(hbus->hdev->channel, ejct_pkt,
2655 			 sizeof(*ejct_pkt), (unsigned long)&ctxt.pkt,
2656 			 VM_PKT_DATA_INBAND, 0);
2657 
2658 	/* For the get_pcichild() in hv_pci_eject_device() */
2659 	put_pcichild(hpdev);
2660 	/* For the two refs got in new_pcichild_device() */
2661 	put_pcichild(hpdev);
2662 	put_pcichild(hpdev);
2663 	/* hpdev has been freed. Do not use it any more. */
2664 }
2665 
2666 /**
2667  * hv_pci_eject_device() - Handles device ejection
2668  * @hpdev:	Internal device tracking struct
2669  *
2670  * This function is invoked when an ejection packet arrives.  It
2671  * just schedules work so that we don't re-enter the packet
2672  * delivery code handling the ejection.
2673  */
2674 static void hv_pci_eject_device(struct hv_pci_dev *hpdev)
2675 {
2676 	struct hv_pcibus_device *hbus = hpdev->hbus;
2677 	struct hv_device *hdev = hbus->hdev;
2678 
2679 	if (hbus->state == hv_pcibus_removing) {
2680 		dev_info(&hdev->device, "PCI VMBus EJECT: ignored\n");
2681 		return;
2682 	}
2683 
2684 	hpdev->state = hv_pcichild_ejecting;
2685 	get_pcichild(hpdev);
2686 	INIT_WORK(&hpdev->wrk, hv_eject_device_work);
2687 	queue_work(hbus->wq, &hpdev->wrk);
2688 }
2689 
2690 /**
2691  * hv_pci_onchannelcallback() - Handles incoming packets
2692  * @context:	Internal bus tracking struct
2693  *
2694  * This function is invoked whenever the host sends a packet to
2695  * this channel (which is private to this root PCI bus).
2696  */
2697 static void hv_pci_onchannelcallback(void *context)
2698 {
2699 	const int packet_size = 0x100;
2700 	int ret;
2701 	struct hv_pcibus_device *hbus = context;
2702 	u32 bytes_recvd;
2703 	u64 req_id;
2704 	struct vmpacket_descriptor *desc;
2705 	unsigned char *buffer;
2706 	int bufferlen = packet_size;
2707 	struct pci_packet *comp_packet;
2708 	struct pci_response *response;
2709 	struct pci_incoming_message *new_message;
2710 	struct pci_bus_relations *bus_rel;
2711 	struct pci_bus_relations2 *bus_rel2;
2712 	struct pci_dev_inval_block *inval;
2713 	struct pci_dev_incoming *dev_message;
2714 	struct hv_pci_dev *hpdev;
2715 
2716 	buffer = kmalloc(bufferlen, GFP_ATOMIC);
2717 	if (!buffer)
2718 		return;
2719 
2720 	while (1) {
2721 		ret = vmbus_recvpacket_raw(hbus->hdev->channel, buffer,
2722 					   bufferlen, &bytes_recvd, &req_id);
2723 
2724 		if (ret == -ENOBUFS) {
2725 			kfree(buffer);
2726 			/* Handle large packet */
2727 			bufferlen = bytes_recvd;
2728 			buffer = kmalloc(bytes_recvd, GFP_ATOMIC);
2729 			if (!buffer)
2730 				return;
2731 			continue;
2732 		}
2733 
2734 		/* Zero length indicates there are no more packets. */
2735 		if (ret || !bytes_recvd)
2736 			break;
2737 
2738 		/*
2739 		 * All incoming packets must be at least as large as a
2740 		 * response.
2741 		 */
2742 		if (bytes_recvd <= sizeof(struct pci_response))
2743 			continue;
2744 		desc = (struct vmpacket_descriptor *)buffer;
2745 
2746 		switch (desc->type) {
2747 		case VM_PKT_COMP:
2748 
2749 			/*
2750 			 * The host is trusted, and thus it's safe to interpret
2751 			 * this transaction ID as a pointer.
2752 			 */
2753 			comp_packet = (struct pci_packet *)req_id;
2754 			response = (struct pci_response *)buffer;
2755 			comp_packet->completion_func(comp_packet->compl_ctxt,
2756 						     response,
2757 						     bytes_recvd);
2758 			break;
2759 
2760 		case VM_PKT_DATA_INBAND:
2761 
2762 			new_message = (struct pci_incoming_message *)buffer;
2763 			switch (new_message->message_type.type) {
2764 			case PCI_BUS_RELATIONS:
2765 
2766 				bus_rel = (struct pci_bus_relations *)buffer;
2767 				if (bytes_recvd <
2768 					struct_size(bus_rel, func,
2769 						    bus_rel->device_count)) {
2770 					dev_err(&hbus->hdev->device,
2771 						"bus relations too small\n");
2772 					break;
2773 				}
2774 
2775 				hv_pci_devices_present(hbus, bus_rel);
2776 				break;
2777 
2778 			case PCI_BUS_RELATIONS2:
2779 
2780 				bus_rel2 = (struct pci_bus_relations2 *)buffer;
2781 				if (bytes_recvd <
2782 					struct_size(bus_rel2, func,
2783 						    bus_rel2->device_count)) {
2784 					dev_err(&hbus->hdev->device,
2785 						"bus relations v2 too small\n");
2786 					break;
2787 				}
2788 
2789 				hv_pci_devices_present2(hbus, bus_rel2);
2790 				break;
2791 
2792 			case PCI_EJECT:
2793 
2794 				dev_message = (struct pci_dev_incoming *)buffer;
2795 				hpdev = get_pcichild_wslot(hbus,
2796 						      dev_message->wslot.slot);
2797 				if (hpdev) {
2798 					hv_pci_eject_device(hpdev);
2799 					put_pcichild(hpdev);
2800 				}
2801 				break;
2802 
2803 			case PCI_INVALIDATE_BLOCK:
2804 
2805 				inval = (struct pci_dev_inval_block *)buffer;
2806 				hpdev = get_pcichild_wslot(hbus,
2807 							   inval->wslot.slot);
2808 				if (hpdev) {
2809 					if (hpdev->block_invalidate) {
2810 						hpdev->block_invalidate(
2811 						    hpdev->invalidate_context,
2812 						    inval->block_mask);
2813 					}
2814 					put_pcichild(hpdev);
2815 				}
2816 				break;
2817 
2818 			default:
2819 				dev_warn(&hbus->hdev->device,
2820 					"Unimplemented protocol message %x\n",
2821 					new_message->message_type.type);
2822 				break;
2823 			}
2824 			break;
2825 
2826 		default:
2827 			dev_err(&hbus->hdev->device,
2828 				"unhandled packet type %d, tid %llx len %d\n",
2829 				desc->type, req_id, bytes_recvd);
2830 			break;
2831 		}
2832 	}
2833 
2834 	kfree(buffer);
2835 }
2836 
2837 /**
2838  * hv_pci_protocol_negotiation() - Set up protocol
2839  * @hdev:		VMBus's tracking struct for this root PCI bus.
2840  * @version:		Array of supported channel protocol versions in
2841  *			the order of probing - highest go first.
2842  * @num_version:	Number of elements in the version array.
2843  *
2844  * This driver is intended to support running on Windows 10
2845  * (server) and later versions. It will not run on earlier
2846  * versions, as they assume that many of the operations which
2847  * Linux needs accomplished with a spinlock held were done via
2848  * asynchronous messaging via VMBus.  Windows 10 increases the
2849  * surface area of PCI emulation so that these actions can take
2850  * place by suspending a virtual processor for their duration.
2851  *
2852  * This function negotiates the channel protocol version,
2853  * failing if the host doesn't support the necessary protocol
2854  * level.
2855  */
2856 static int hv_pci_protocol_negotiation(struct hv_device *hdev,
2857 				       enum pci_protocol_version_t version[],
2858 				       int num_version)
2859 {
2860 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2861 	struct pci_version_request *version_req;
2862 	struct hv_pci_compl comp_pkt;
2863 	struct pci_packet *pkt;
2864 	int ret;
2865 	int i;
2866 
2867 	/*
2868 	 * Initiate the handshake with the host and negotiate
2869 	 * a version that the host can support. We start with the
2870 	 * highest version number and go down if the host cannot
2871 	 * support it.
2872 	 */
2873 	pkt = kzalloc(sizeof(*pkt) + sizeof(*version_req), GFP_KERNEL);
2874 	if (!pkt)
2875 		return -ENOMEM;
2876 
2877 	init_completion(&comp_pkt.host_event);
2878 	pkt->completion_func = hv_pci_generic_compl;
2879 	pkt->compl_ctxt = &comp_pkt;
2880 	version_req = (struct pci_version_request *)&pkt->message;
2881 	version_req->message_type.type = PCI_QUERY_PROTOCOL_VERSION;
2882 
2883 	for (i = 0; i < num_version; i++) {
2884 		version_req->protocol_version = version[i];
2885 		ret = vmbus_sendpacket(hdev->channel, version_req,
2886 				sizeof(struct pci_version_request),
2887 				(unsigned long)pkt, VM_PKT_DATA_INBAND,
2888 				VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2889 		if (!ret)
2890 			ret = wait_for_response(hdev, &comp_pkt.host_event);
2891 
2892 		if (ret) {
2893 			dev_err(&hdev->device,
2894 				"PCI Pass-through VSP failed to request version: %d",
2895 				ret);
2896 			goto exit;
2897 		}
2898 
2899 		if (comp_pkt.completion_status >= 0) {
2900 			hbus->protocol_version = version[i];
2901 			dev_info(&hdev->device,
2902 				"PCI VMBus probing: Using version %#x\n",
2903 				hbus->protocol_version);
2904 			goto exit;
2905 		}
2906 
2907 		if (comp_pkt.completion_status != STATUS_REVISION_MISMATCH) {
2908 			dev_err(&hdev->device,
2909 				"PCI Pass-through VSP failed version request: %#x",
2910 				comp_pkt.completion_status);
2911 			ret = -EPROTO;
2912 			goto exit;
2913 		}
2914 
2915 		reinit_completion(&comp_pkt.host_event);
2916 	}
2917 
2918 	dev_err(&hdev->device,
2919 		"PCI pass-through VSP failed to find supported version");
2920 	ret = -EPROTO;
2921 
2922 exit:
2923 	kfree(pkt);
2924 	return ret;
2925 }
2926 
2927 /**
2928  * hv_pci_free_bridge_windows() - Release memory regions for the
2929  * bus
2930  * @hbus:	Root PCI bus, as understood by this driver
2931  */
2932 static void hv_pci_free_bridge_windows(struct hv_pcibus_device *hbus)
2933 {
2934 	/*
2935 	 * Set the resources back to the way they looked when they
2936 	 * were allocated by setting IORESOURCE_BUSY again.
2937 	 */
2938 
2939 	if (hbus->low_mmio_space && hbus->low_mmio_res) {
2940 		hbus->low_mmio_res->flags |= IORESOURCE_BUSY;
2941 		vmbus_free_mmio(hbus->low_mmio_res->start,
2942 				resource_size(hbus->low_mmio_res));
2943 	}
2944 
2945 	if (hbus->high_mmio_space && hbus->high_mmio_res) {
2946 		hbus->high_mmio_res->flags |= IORESOURCE_BUSY;
2947 		vmbus_free_mmio(hbus->high_mmio_res->start,
2948 				resource_size(hbus->high_mmio_res));
2949 	}
2950 }
2951 
2952 /**
2953  * hv_pci_allocate_bridge_windows() - Allocate memory regions
2954  * for the bus
2955  * @hbus:	Root PCI bus, as understood by this driver
2956  *
2957  * This function calls vmbus_allocate_mmio(), which is itself a
2958  * bit of a compromise.  Ideally, we might change the pnp layer
2959  * in the kernel such that it comprehends either PCI devices
2960  * which are "grandchildren of ACPI," with some intermediate bus
2961  * node (in this case, VMBus) or change it such that it
2962  * understands VMBus.  The pnp layer, however, has been declared
2963  * deprecated, and not subject to change.
2964  *
2965  * The workaround, implemented here, is to ask VMBus to allocate
2966  * MMIO space for this bus.  VMBus itself knows which ranges are
2967  * appropriate by looking at its own ACPI objects.  Then, after
2968  * these ranges are claimed, they're modified to look like they
2969  * would have looked if the ACPI and pnp code had allocated
2970  * bridge windows.  These descriptors have to exist in this form
2971  * in order to satisfy the code which will get invoked when the
2972  * endpoint PCI function driver calls request_mem_region() or
2973  * request_mem_region_exclusive().
2974  *
2975  * Return: 0 on success, -errno on failure
2976  */
2977 static int hv_pci_allocate_bridge_windows(struct hv_pcibus_device *hbus)
2978 {
2979 	resource_size_t align;
2980 	int ret;
2981 
2982 	if (hbus->low_mmio_space) {
2983 		align = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
2984 		ret = vmbus_allocate_mmio(&hbus->low_mmio_res, hbus->hdev, 0,
2985 					  (u64)(u32)0xffffffff,
2986 					  hbus->low_mmio_space,
2987 					  align, false);
2988 		if (ret) {
2989 			dev_err(&hbus->hdev->device,
2990 				"Need %#llx of low MMIO space. Consider reconfiguring the VM.\n",
2991 				hbus->low_mmio_space);
2992 			return ret;
2993 		}
2994 
2995 		/* Modify this resource to become a bridge window. */
2996 		hbus->low_mmio_res->flags |= IORESOURCE_WINDOW;
2997 		hbus->low_mmio_res->flags &= ~IORESOURCE_BUSY;
2998 		pci_add_resource(&hbus->bridge->windows, hbus->low_mmio_res);
2999 	}
3000 
3001 	if (hbus->high_mmio_space) {
3002 		align = 1ULL << (63 - __builtin_clzll(hbus->high_mmio_space));
3003 		ret = vmbus_allocate_mmio(&hbus->high_mmio_res, hbus->hdev,
3004 					  0x100000000, -1,
3005 					  hbus->high_mmio_space, align,
3006 					  false);
3007 		if (ret) {
3008 			dev_err(&hbus->hdev->device,
3009 				"Need %#llx of high MMIO space. Consider reconfiguring the VM.\n",
3010 				hbus->high_mmio_space);
3011 			goto release_low_mmio;
3012 		}
3013 
3014 		/* Modify this resource to become a bridge window. */
3015 		hbus->high_mmio_res->flags |= IORESOURCE_WINDOW;
3016 		hbus->high_mmio_res->flags &= ~IORESOURCE_BUSY;
3017 		pci_add_resource(&hbus->bridge->windows, hbus->high_mmio_res);
3018 	}
3019 
3020 	return 0;
3021 
3022 release_low_mmio:
3023 	if (hbus->low_mmio_res) {
3024 		vmbus_free_mmio(hbus->low_mmio_res->start,
3025 				resource_size(hbus->low_mmio_res));
3026 	}
3027 
3028 	return ret;
3029 }
3030 
3031 /**
3032  * hv_allocate_config_window() - Find MMIO space for PCI Config
3033  * @hbus:	Root PCI bus, as understood by this driver
3034  *
3035  * This function claims memory-mapped I/O space for accessing
3036  * configuration space for the functions on this bus.
3037  *
3038  * Return: 0 on success, -errno on failure
3039  */
3040 static int hv_allocate_config_window(struct hv_pcibus_device *hbus)
3041 {
3042 	int ret;
3043 
3044 	/*
3045 	 * Set up a region of MMIO space to use for accessing configuration
3046 	 * space.
3047 	 */
3048 	ret = vmbus_allocate_mmio(&hbus->mem_config, hbus->hdev, 0, -1,
3049 				  PCI_CONFIG_MMIO_LENGTH, 0x1000, false);
3050 	if (ret)
3051 		return ret;
3052 
3053 	/*
3054 	 * vmbus_allocate_mmio() gets used for allocating both device endpoint
3055 	 * resource claims (those which cannot be overlapped) and the ranges
3056 	 * which are valid for the children of this bus, which are intended
3057 	 * to be overlapped by those children.  Set the flag on this claim
3058 	 * meaning that this region can't be overlapped.
3059 	 */
3060 
3061 	hbus->mem_config->flags |= IORESOURCE_BUSY;
3062 
3063 	return 0;
3064 }
3065 
3066 static void hv_free_config_window(struct hv_pcibus_device *hbus)
3067 {
3068 	vmbus_free_mmio(hbus->mem_config->start, PCI_CONFIG_MMIO_LENGTH);
3069 }
3070 
3071 static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs);
3072 
3073 /**
3074  * hv_pci_enter_d0() - Bring the "bus" into the D0 power state
3075  * @hdev:	VMBus's tracking struct for this root PCI bus
3076  *
3077  * Return: 0 on success, -errno on failure
3078  */
3079 static int hv_pci_enter_d0(struct hv_device *hdev)
3080 {
3081 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3082 	struct pci_bus_d0_entry *d0_entry;
3083 	struct hv_pci_compl comp_pkt;
3084 	struct pci_packet *pkt;
3085 	int ret;
3086 
3087 	/*
3088 	 * Tell the host that the bus is ready to use, and moved into the
3089 	 * powered-on state.  This includes telling the host which region
3090 	 * of memory-mapped I/O space has been chosen for configuration space
3091 	 * access.
3092 	 */
3093 	pkt = kzalloc(sizeof(*pkt) + sizeof(*d0_entry), GFP_KERNEL);
3094 	if (!pkt)
3095 		return -ENOMEM;
3096 
3097 	init_completion(&comp_pkt.host_event);
3098 	pkt->completion_func = hv_pci_generic_compl;
3099 	pkt->compl_ctxt = &comp_pkt;
3100 	d0_entry = (struct pci_bus_d0_entry *)&pkt->message;
3101 	d0_entry->message_type.type = PCI_BUS_D0ENTRY;
3102 	d0_entry->mmio_base = hbus->mem_config->start;
3103 
3104 	ret = vmbus_sendpacket(hdev->channel, d0_entry, sizeof(*d0_entry),
3105 			       (unsigned long)pkt, VM_PKT_DATA_INBAND,
3106 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3107 	if (!ret)
3108 		ret = wait_for_response(hdev, &comp_pkt.host_event);
3109 
3110 	if (ret)
3111 		goto exit;
3112 
3113 	if (comp_pkt.completion_status < 0) {
3114 		dev_err(&hdev->device,
3115 			"PCI Pass-through VSP failed D0 Entry with status %x\n",
3116 			comp_pkt.completion_status);
3117 		ret = -EPROTO;
3118 		goto exit;
3119 	}
3120 
3121 	ret = 0;
3122 
3123 exit:
3124 	kfree(pkt);
3125 	return ret;
3126 }
3127 
3128 /**
3129  * hv_pci_query_relations() - Ask host to send list of child
3130  * devices
3131  * @hdev:	VMBus's tracking struct for this root PCI bus
3132  *
3133  * Return: 0 on success, -errno on failure
3134  */
3135 static int hv_pci_query_relations(struct hv_device *hdev)
3136 {
3137 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3138 	struct pci_message message;
3139 	struct completion comp;
3140 	int ret;
3141 
3142 	/* Ask the host to send along the list of child devices */
3143 	init_completion(&comp);
3144 	if (cmpxchg(&hbus->survey_event, NULL, &comp))
3145 		return -ENOTEMPTY;
3146 
3147 	memset(&message, 0, sizeof(message));
3148 	message.type = PCI_QUERY_BUS_RELATIONS;
3149 
3150 	ret = vmbus_sendpacket(hdev->channel, &message, sizeof(message),
3151 			       0, VM_PKT_DATA_INBAND, 0);
3152 	if (!ret)
3153 		ret = wait_for_response(hdev, &comp);
3154 
3155 	return ret;
3156 }
3157 
3158 /**
3159  * hv_send_resources_allocated() - Report local resource choices
3160  * @hdev:	VMBus's tracking struct for this root PCI bus
3161  *
3162  * The host OS is expecting to be sent a request as a message
3163  * which contains all the resources that the device will use.
3164  * The response contains those same resources, "translated"
3165  * which is to say, the values which should be used by the
3166  * hardware, when it delivers an interrupt.  (MMIO resources are
3167  * used in local terms.)  This is nice for Windows, and lines up
3168  * with the FDO/PDO split, which doesn't exist in Linux.  Linux
3169  * is deeply expecting to scan an emulated PCI configuration
3170  * space.  So this message is sent here only to drive the state
3171  * machine on the host forward.
3172  *
3173  * Return: 0 on success, -errno on failure
3174  */
3175 static int hv_send_resources_allocated(struct hv_device *hdev)
3176 {
3177 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3178 	struct pci_resources_assigned *res_assigned;
3179 	struct pci_resources_assigned2 *res_assigned2;
3180 	struct hv_pci_compl comp_pkt;
3181 	struct hv_pci_dev *hpdev;
3182 	struct pci_packet *pkt;
3183 	size_t size_res;
3184 	int wslot;
3185 	int ret;
3186 
3187 	size_res = (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2)
3188 			? sizeof(*res_assigned) : sizeof(*res_assigned2);
3189 
3190 	pkt = kmalloc(sizeof(*pkt) + size_res, GFP_KERNEL);
3191 	if (!pkt)
3192 		return -ENOMEM;
3193 
3194 	ret = 0;
3195 
3196 	for (wslot = 0; wslot < 256; wslot++) {
3197 		hpdev = get_pcichild_wslot(hbus, wslot);
3198 		if (!hpdev)
3199 			continue;
3200 
3201 		memset(pkt, 0, sizeof(*pkt) + size_res);
3202 		init_completion(&comp_pkt.host_event);
3203 		pkt->completion_func = hv_pci_generic_compl;
3204 		pkt->compl_ctxt = &comp_pkt;
3205 
3206 		if (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2) {
3207 			res_assigned =
3208 				(struct pci_resources_assigned *)&pkt->message;
3209 			res_assigned->message_type.type =
3210 				PCI_RESOURCES_ASSIGNED;
3211 			res_assigned->wslot.slot = hpdev->desc.win_slot.slot;
3212 		} else {
3213 			res_assigned2 =
3214 				(struct pci_resources_assigned2 *)&pkt->message;
3215 			res_assigned2->message_type.type =
3216 				PCI_RESOURCES_ASSIGNED2;
3217 			res_assigned2->wslot.slot = hpdev->desc.win_slot.slot;
3218 		}
3219 		put_pcichild(hpdev);
3220 
3221 		ret = vmbus_sendpacket(hdev->channel, &pkt->message,
3222 				size_res, (unsigned long)pkt,
3223 				VM_PKT_DATA_INBAND,
3224 				VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3225 		if (!ret)
3226 			ret = wait_for_response(hdev, &comp_pkt.host_event);
3227 		if (ret)
3228 			break;
3229 
3230 		if (comp_pkt.completion_status < 0) {
3231 			ret = -EPROTO;
3232 			dev_err(&hdev->device,
3233 				"resource allocated returned 0x%x",
3234 				comp_pkt.completion_status);
3235 			break;
3236 		}
3237 
3238 		hbus->wslot_res_allocated = wslot;
3239 	}
3240 
3241 	kfree(pkt);
3242 	return ret;
3243 }
3244 
3245 /**
3246  * hv_send_resources_released() - Report local resources
3247  * released
3248  * @hdev:	VMBus's tracking struct for this root PCI bus
3249  *
3250  * Return: 0 on success, -errno on failure
3251  */
3252 static int hv_send_resources_released(struct hv_device *hdev)
3253 {
3254 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3255 	struct pci_child_message pkt;
3256 	struct hv_pci_dev *hpdev;
3257 	int wslot;
3258 	int ret;
3259 
3260 	for (wslot = hbus->wslot_res_allocated; wslot >= 0; wslot--) {
3261 		hpdev = get_pcichild_wslot(hbus, wslot);
3262 		if (!hpdev)
3263 			continue;
3264 
3265 		memset(&pkt, 0, sizeof(pkt));
3266 		pkt.message_type.type = PCI_RESOURCES_RELEASED;
3267 		pkt.wslot.slot = hpdev->desc.win_slot.slot;
3268 
3269 		put_pcichild(hpdev);
3270 
3271 		ret = vmbus_sendpacket(hdev->channel, &pkt, sizeof(pkt), 0,
3272 				       VM_PKT_DATA_INBAND, 0);
3273 		if (ret)
3274 			return ret;
3275 
3276 		hbus->wslot_res_allocated = wslot - 1;
3277 	}
3278 
3279 	hbus->wslot_res_allocated = -1;
3280 
3281 	return 0;
3282 }
3283 
3284 #define HVPCI_DOM_MAP_SIZE (64 * 1024)
3285 static DECLARE_BITMAP(hvpci_dom_map, HVPCI_DOM_MAP_SIZE);
3286 
3287 /*
3288  * PCI domain number 0 is used by emulated devices on Gen1 VMs, so define 0
3289  * as invalid for passthrough PCI devices of this driver.
3290  */
3291 #define HVPCI_DOM_INVALID 0
3292 
3293 /**
3294  * hv_get_dom_num() - Get a valid PCI domain number
3295  * Check if the PCI domain number is in use, and return another number if
3296  * it is in use.
3297  *
3298  * @dom: Requested domain number
3299  *
3300  * return: domain number on success, HVPCI_DOM_INVALID on failure
3301  */
3302 static u16 hv_get_dom_num(u16 dom)
3303 {
3304 	unsigned int i;
3305 
3306 	if (test_and_set_bit(dom, hvpci_dom_map) == 0)
3307 		return dom;
3308 
3309 	for_each_clear_bit(i, hvpci_dom_map, HVPCI_DOM_MAP_SIZE) {
3310 		if (test_and_set_bit(i, hvpci_dom_map) == 0)
3311 			return i;
3312 	}
3313 
3314 	return HVPCI_DOM_INVALID;
3315 }
3316 
3317 /**
3318  * hv_put_dom_num() - Mark the PCI domain number as free
3319  * @dom: Domain number to be freed
3320  */
3321 static void hv_put_dom_num(u16 dom)
3322 {
3323 	clear_bit(dom, hvpci_dom_map);
3324 }
3325 
3326 /**
3327  * hv_pci_probe() - New VMBus channel probe, for a root PCI bus
3328  * @hdev:	VMBus's tracking struct for this root PCI bus
3329  * @dev_id:	Identifies the device itself
3330  *
3331  * Return: 0 on success, -errno on failure
3332  */
3333 static int hv_pci_probe(struct hv_device *hdev,
3334 			const struct hv_vmbus_device_id *dev_id)
3335 {
3336 	struct pci_host_bridge *bridge;
3337 	struct hv_pcibus_device *hbus;
3338 	u16 dom_req, dom;
3339 	char *name;
3340 	bool enter_d0_retry = true;
3341 	int ret;
3342 
3343 	/*
3344 	 * hv_pcibus_device contains the hypercall arguments for retargeting in
3345 	 * hv_irq_unmask(). Those must not cross a page boundary.
3346 	 */
3347 	BUILD_BUG_ON(sizeof(*hbus) > HV_HYP_PAGE_SIZE);
3348 
3349 	bridge = devm_pci_alloc_host_bridge(&hdev->device, 0);
3350 	if (!bridge)
3351 		return -ENOMEM;
3352 
3353 	/*
3354 	 * With the recent 59bb47985c1d ("mm, sl[aou]b: guarantee natural
3355 	 * alignment for kmalloc(power-of-two)"), kzalloc() is able to allocate
3356 	 * a 4KB buffer that is guaranteed to be 4KB-aligned. Here the size and
3357 	 * alignment of hbus is important because hbus's field
3358 	 * retarget_msi_interrupt_params must not cross a 4KB page boundary.
3359 	 *
3360 	 * Here we prefer kzalloc to get_zeroed_page(), because a buffer
3361 	 * allocated by the latter is not tracked and scanned by kmemleak, and
3362 	 * hence kmemleak reports the pointer contained in the hbus buffer
3363 	 * (i.e. the hpdev struct, which is created in new_pcichild_device() and
3364 	 * is tracked by hbus->children) as memory leak (false positive).
3365 	 *
3366 	 * If the kernel doesn't have 59bb47985c1d, get_zeroed_page() *must* be
3367 	 * used to allocate the hbus buffer and we can avoid the kmemleak false
3368 	 * positive by using kmemleak_alloc() and kmemleak_free() to ask
3369 	 * kmemleak to track and scan the hbus buffer.
3370 	 */
3371 	hbus = kzalloc(HV_HYP_PAGE_SIZE, GFP_KERNEL);
3372 	if (!hbus)
3373 		return -ENOMEM;
3374 
3375 	hbus->bridge = bridge;
3376 	hbus->state = hv_pcibus_init;
3377 	hbus->wslot_res_allocated = -1;
3378 
3379 	/*
3380 	 * The PCI bus "domain" is what is called "segment" in ACPI and other
3381 	 * specs. Pull it from the instance ID, to get something usually
3382 	 * unique. In rare cases of collision, we will find out another number
3383 	 * not in use.
3384 	 *
3385 	 * Note that, since this code only runs in a Hyper-V VM, Hyper-V
3386 	 * together with this guest driver can guarantee that (1) The only
3387 	 * domain used by Gen1 VMs for something that looks like a physical
3388 	 * PCI bus (which is actually emulated by the hypervisor) is domain 0.
3389 	 * (2) There will be no overlap between domains (after fixing possible
3390 	 * collisions) in the same VM.
3391 	 */
3392 	dom_req = hdev->dev_instance.b[5] << 8 | hdev->dev_instance.b[4];
3393 	dom = hv_get_dom_num(dom_req);
3394 
3395 	if (dom == HVPCI_DOM_INVALID) {
3396 		dev_err(&hdev->device,
3397 			"Unable to use dom# 0x%x or other numbers", dom_req);
3398 		ret = -EINVAL;
3399 		goto free_bus;
3400 	}
3401 
3402 	if (dom != dom_req)
3403 		dev_info(&hdev->device,
3404 			 "PCI dom# 0x%x has collision, using 0x%x",
3405 			 dom_req, dom);
3406 
3407 	hbus->bridge->domain_nr = dom;
3408 #ifdef CONFIG_X86
3409 	hbus->sysdata.domain = dom;
3410 #endif
3411 
3412 	hbus->hdev = hdev;
3413 	INIT_LIST_HEAD(&hbus->children);
3414 	INIT_LIST_HEAD(&hbus->dr_list);
3415 	spin_lock_init(&hbus->config_lock);
3416 	spin_lock_init(&hbus->device_list_lock);
3417 	spin_lock_init(&hbus->retarget_msi_interrupt_lock);
3418 	hbus->wq = alloc_ordered_workqueue("hv_pci_%x", 0,
3419 					   hbus->bridge->domain_nr);
3420 	if (!hbus->wq) {
3421 		ret = -ENOMEM;
3422 		goto free_dom;
3423 	}
3424 
3425 	ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0,
3426 			 hv_pci_onchannelcallback, hbus);
3427 	if (ret)
3428 		goto destroy_wq;
3429 
3430 	hv_set_drvdata(hdev, hbus);
3431 
3432 	ret = hv_pci_protocol_negotiation(hdev, pci_protocol_versions,
3433 					  ARRAY_SIZE(pci_protocol_versions));
3434 	if (ret)
3435 		goto close;
3436 
3437 	ret = hv_allocate_config_window(hbus);
3438 	if (ret)
3439 		goto close;
3440 
3441 	hbus->cfg_addr = ioremap(hbus->mem_config->start,
3442 				 PCI_CONFIG_MMIO_LENGTH);
3443 	if (!hbus->cfg_addr) {
3444 		dev_err(&hdev->device,
3445 			"Unable to map a virtual address for config space\n");
3446 		ret = -ENOMEM;
3447 		goto free_config;
3448 	}
3449 
3450 	name = kasprintf(GFP_KERNEL, "%pUL", &hdev->dev_instance);
3451 	if (!name) {
3452 		ret = -ENOMEM;
3453 		goto unmap;
3454 	}
3455 
3456 	hbus->fwnode = irq_domain_alloc_named_fwnode(name);
3457 	kfree(name);
3458 	if (!hbus->fwnode) {
3459 		ret = -ENOMEM;
3460 		goto unmap;
3461 	}
3462 
3463 	ret = hv_pcie_init_irq_domain(hbus);
3464 	if (ret)
3465 		goto free_fwnode;
3466 
3467 retry:
3468 	ret = hv_pci_query_relations(hdev);
3469 	if (ret)
3470 		goto free_irq_domain;
3471 
3472 	ret = hv_pci_enter_d0(hdev);
3473 	/*
3474 	 * In certain case (Kdump) the pci device of interest was
3475 	 * not cleanly shut down and resource is still held on host
3476 	 * side, the host could return invalid device status.
3477 	 * We need to explicitly request host to release the resource
3478 	 * and try to enter D0 again.
3479 	 * Since the hv_pci_bus_exit() call releases structures
3480 	 * of all its child devices, we need to start the retry from
3481 	 * hv_pci_query_relations() call, requesting host to send
3482 	 * the synchronous child device relations message before this
3483 	 * information is needed in hv_send_resources_allocated()
3484 	 * call later.
3485 	 */
3486 	if (ret == -EPROTO && enter_d0_retry) {
3487 		enter_d0_retry = false;
3488 
3489 		dev_err(&hdev->device, "Retrying D0 Entry\n");
3490 
3491 		/*
3492 		 * Hv_pci_bus_exit() calls hv_send_resources_released()
3493 		 * to free up resources of its child devices.
3494 		 * In the kdump kernel we need to set the
3495 		 * wslot_res_allocated to 255 so it scans all child
3496 		 * devices to release resources allocated in the
3497 		 * normal kernel before panic happened.
3498 		 */
3499 		hbus->wslot_res_allocated = 255;
3500 		ret = hv_pci_bus_exit(hdev, true);
3501 
3502 		if (ret == 0)
3503 			goto retry;
3504 
3505 		dev_err(&hdev->device,
3506 			"Retrying D0 failed with ret %d\n", ret);
3507 	}
3508 	if (ret)
3509 		goto free_irq_domain;
3510 
3511 	ret = hv_pci_allocate_bridge_windows(hbus);
3512 	if (ret)
3513 		goto exit_d0;
3514 
3515 	ret = hv_send_resources_allocated(hdev);
3516 	if (ret)
3517 		goto free_windows;
3518 
3519 	prepopulate_bars(hbus);
3520 
3521 	hbus->state = hv_pcibus_probed;
3522 
3523 	ret = create_root_hv_pci_bus(hbus);
3524 	if (ret)
3525 		goto free_windows;
3526 
3527 	return 0;
3528 
3529 free_windows:
3530 	hv_pci_free_bridge_windows(hbus);
3531 exit_d0:
3532 	(void) hv_pci_bus_exit(hdev, true);
3533 free_irq_domain:
3534 	irq_domain_remove(hbus->irq_domain);
3535 free_fwnode:
3536 	irq_domain_free_fwnode(hbus->fwnode);
3537 unmap:
3538 	iounmap(hbus->cfg_addr);
3539 free_config:
3540 	hv_free_config_window(hbus);
3541 close:
3542 	vmbus_close(hdev->channel);
3543 destroy_wq:
3544 	destroy_workqueue(hbus->wq);
3545 free_dom:
3546 	hv_put_dom_num(hbus->bridge->domain_nr);
3547 free_bus:
3548 	kfree(hbus);
3549 	return ret;
3550 }
3551 
3552 static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs)
3553 {
3554 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3555 	struct {
3556 		struct pci_packet teardown_packet;
3557 		u8 buffer[sizeof(struct pci_message)];
3558 	} pkt;
3559 	struct hv_pci_compl comp_pkt;
3560 	struct hv_pci_dev *hpdev, *tmp;
3561 	unsigned long flags;
3562 	int ret;
3563 
3564 	/*
3565 	 * After the host sends the RESCIND_CHANNEL message, it doesn't
3566 	 * access the per-channel ringbuffer any longer.
3567 	 */
3568 	if (hdev->channel->rescind)
3569 		return 0;
3570 
3571 	if (!keep_devs) {
3572 		struct list_head removed;
3573 
3574 		/* Move all present children to the list on stack */
3575 		INIT_LIST_HEAD(&removed);
3576 		spin_lock_irqsave(&hbus->device_list_lock, flags);
3577 		list_for_each_entry_safe(hpdev, tmp, &hbus->children, list_entry)
3578 			list_move_tail(&hpdev->list_entry, &removed);
3579 		spin_unlock_irqrestore(&hbus->device_list_lock, flags);
3580 
3581 		/* Remove all children in the list */
3582 		list_for_each_entry_safe(hpdev, tmp, &removed, list_entry) {
3583 			list_del(&hpdev->list_entry);
3584 			if (hpdev->pci_slot)
3585 				pci_destroy_slot(hpdev->pci_slot);
3586 			/* For the two refs got in new_pcichild_device() */
3587 			put_pcichild(hpdev);
3588 			put_pcichild(hpdev);
3589 		}
3590 	}
3591 
3592 	ret = hv_send_resources_released(hdev);
3593 	if (ret) {
3594 		dev_err(&hdev->device,
3595 			"Couldn't send resources released packet(s)\n");
3596 		return ret;
3597 	}
3598 
3599 	memset(&pkt.teardown_packet, 0, sizeof(pkt.teardown_packet));
3600 	init_completion(&comp_pkt.host_event);
3601 	pkt.teardown_packet.completion_func = hv_pci_generic_compl;
3602 	pkt.teardown_packet.compl_ctxt = &comp_pkt;
3603 	pkt.teardown_packet.message[0].type = PCI_BUS_D0EXIT;
3604 
3605 	ret = vmbus_sendpacket(hdev->channel, &pkt.teardown_packet.message,
3606 			       sizeof(struct pci_message),
3607 			       (unsigned long)&pkt.teardown_packet,
3608 			       VM_PKT_DATA_INBAND,
3609 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3610 	if (ret)
3611 		return ret;
3612 
3613 	if (wait_for_completion_timeout(&comp_pkt.host_event, 10 * HZ) == 0)
3614 		return -ETIMEDOUT;
3615 
3616 	return 0;
3617 }
3618 
3619 /**
3620  * hv_pci_remove() - Remove routine for this VMBus channel
3621  * @hdev:	VMBus's tracking struct for this root PCI bus
3622  *
3623  * Return: 0 on success, -errno on failure
3624  */
3625 static int hv_pci_remove(struct hv_device *hdev)
3626 {
3627 	struct hv_pcibus_device *hbus;
3628 	int ret;
3629 
3630 	hbus = hv_get_drvdata(hdev);
3631 	if (hbus->state == hv_pcibus_installed) {
3632 		tasklet_disable(&hdev->channel->callback_event);
3633 		hbus->state = hv_pcibus_removing;
3634 		tasklet_enable(&hdev->channel->callback_event);
3635 		destroy_workqueue(hbus->wq);
3636 		hbus->wq = NULL;
3637 		/*
3638 		 * At this point, no work is running or can be scheduled
3639 		 * on hbus-wq. We can't race with hv_pci_devices_present()
3640 		 * or hv_pci_eject_device(), it's safe to proceed.
3641 		 */
3642 
3643 		/* Remove the bus from PCI's point of view. */
3644 		pci_lock_rescan_remove();
3645 		pci_stop_root_bus(hbus->bridge->bus);
3646 		hv_pci_remove_slots(hbus);
3647 		pci_remove_root_bus(hbus->bridge->bus);
3648 		pci_unlock_rescan_remove();
3649 	}
3650 
3651 	ret = hv_pci_bus_exit(hdev, false);
3652 
3653 	vmbus_close(hdev->channel);
3654 
3655 	iounmap(hbus->cfg_addr);
3656 	hv_free_config_window(hbus);
3657 	hv_pci_free_bridge_windows(hbus);
3658 	irq_domain_remove(hbus->irq_domain);
3659 	irq_domain_free_fwnode(hbus->fwnode);
3660 
3661 	hv_put_dom_num(hbus->bridge->domain_nr);
3662 
3663 	kfree(hbus);
3664 	return ret;
3665 }
3666 
3667 static int hv_pci_suspend(struct hv_device *hdev)
3668 {
3669 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3670 	enum hv_pcibus_state old_state;
3671 	int ret;
3672 
3673 	/*
3674 	 * hv_pci_suspend() must make sure there are no pending work items
3675 	 * before calling vmbus_close(), since it runs in a process context
3676 	 * as a callback in dpm_suspend().  When it starts to run, the channel
3677 	 * callback hv_pci_onchannelcallback(), which runs in a tasklet
3678 	 * context, can be still running concurrently and scheduling new work
3679 	 * items onto hbus->wq in hv_pci_devices_present() and
3680 	 * hv_pci_eject_device(), and the work item handlers can access the
3681 	 * vmbus channel, which can be being closed by hv_pci_suspend(), e.g.
3682 	 * the work item handler pci_devices_present_work() ->
3683 	 * new_pcichild_device() writes to the vmbus channel.
3684 	 *
3685 	 * To eliminate the race, hv_pci_suspend() disables the channel
3686 	 * callback tasklet, sets hbus->state to hv_pcibus_removing, and
3687 	 * re-enables the tasklet. This way, when hv_pci_suspend() proceeds,
3688 	 * it knows that no new work item can be scheduled, and then it flushes
3689 	 * hbus->wq and safely closes the vmbus channel.
3690 	 */
3691 	tasklet_disable(&hdev->channel->callback_event);
3692 
3693 	/* Change the hbus state to prevent new work items. */
3694 	old_state = hbus->state;
3695 	if (hbus->state == hv_pcibus_installed)
3696 		hbus->state = hv_pcibus_removing;
3697 
3698 	tasklet_enable(&hdev->channel->callback_event);
3699 
3700 	if (old_state != hv_pcibus_installed)
3701 		return -EINVAL;
3702 
3703 	flush_workqueue(hbus->wq);
3704 
3705 	ret = hv_pci_bus_exit(hdev, true);
3706 	if (ret)
3707 		return ret;
3708 
3709 	vmbus_close(hdev->channel);
3710 
3711 	return 0;
3712 }
3713 
3714 static int hv_pci_restore_msi_msg(struct pci_dev *pdev, void *arg)
3715 {
3716 	struct irq_data *irq_data;
3717 	struct msi_desc *entry;
3718 	int ret = 0;
3719 
3720 	msi_lock_descs(&pdev->dev);
3721 	msi_for_each_desc(entry, &pdev->dev, MSI_DESC_ASSOCIATED) {
3722 		irq_data = irq_get_irq_data(entry->irq);
3723 		if (WARN_ON_ONCE(!irq_data)) {
3724 			ret = -EINVAL;
3725 			break;
3726 		}
3727 
3728 		hv_compose_msi_msg(irq_data, &entry->msg);
3729 	}
3730 	msi_unlock_descs(&pdev->dev);
3731 
3732 	return ret;
3733 }
3734 
3735 /*
3736  * Upon resume, pci_restore_msi_state() -> ... ->  __pci_write_msi_msg()
3737  * directly writes the MSI/MSI-X registers via MMIO, but since Hyper-V
3738  * doesn't trap and emulate the MMIO accesses, here hv_compose_msi_msg()
3739  * must be used to ask Hyper-V to re-create the IOMMU Interrupt Remapping
3740  * Table entries.
3741  */
3742 static void hv_pci_restore_msi_state(struct hv_pcibus_device *hbus)
3743 {
3744 	pci_walk_bus(hbus->bridge->bus, hv_pci_restore_msi_msg, NULL);
3745 }
3746 
3747 static int hv_pci_resume(struct hv_device *hdev)
3748 {
3749 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3750 	enum pci_protocol_version_t version[1];
3751 	int ret;
3752 
3753 	hbus->state = hv_pcibus_init;
3754 
3755 	ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0,
3756 			 hv_pci_onchannelcallback, hbus);
3757 	if (ret)
3758 		return ret;
3759 
3760 	/* Only use the version that was in use before hibernation. */
3761 	version[0] = hbus->protocol_version;
3762 	ret = hv_pci_protocol_negotiation(hdev, version, 1);
3763 	if (ret)
3764 		goto out;
3765 
3766 	ret = hv_pci_query_relations(hdev);
3767 	if (ret)
3768 		goto out;
3769 
3770 	ret = hv_pci_enter_d0(hdev);
3771 	if (ret)
3772 		goto out;
3773 
3774 	ret = hv_send_resources_allocated(hdev);
3775 	if (ret)
3776 		goto out;
3777 
3778 	prepopulate_bars(hbus);
3779 
3780 	hv_pci_restore_msi_state(hbus);
3781 
3782 	hbus->state = hv_pcibus_installed;
3783 	return 0;
3784 out:
3785 	vmbus_close(hdev->channel);
3786 	return ret;
3787 }
3788 
3789 static const struct hv_vmbus_device_id hv_pci_id_table[] = {
3790 	/* PCI Pass-through Class ID */
3791 	/* 44C4F61D-4444-4400-9D52-802E27EDE19F */
3792 	{ HV_PCIE_GUID, },
3793 	{ },
3794 };
3795 
3796 MODULE_DEVICE_TABLE(vmbus, hv_pci_id_table);
3797 
3798 static struct hv_driver hv_pci_drv = {
3799 	.name		= "hv_pci",
3800 	.id_table	= hv_pci_id_table,
3801 	.probe		= hv_pci_probe,
3802 	.remove		= hv_pci_remove,
3803 	.suspend	= hv_pci_suspend,
3804 	.resume		= hv_pci_resume,
3805 };
3806 
3807 static void __exit exit_hv_pci_drv(void)
3808 {
3809 	vmbus_driver_unregister(&hv_pci_drv);
3810 
3811 	hvpci_block_ops.read_block = NULL;
3812 	hvpci_block_ops.write_block = NULL;
3813 	hvpci_block_ops.reg_blk_invalidate = NULL;
3814 }
3815 
3816 static int __init init_hv_pci_drv(void)
3817 {
3818 	int ret;
3819 
3820 	if (!hv_is_hyperv_initialized())
3821 		return -ENODEV;
3822 
3823 	ret = hv_pci_irqchip_init();
3824 	if (ret)
3825 		return ret;
3826 
3827 	/* Set the invalid domain number's bit, so it will not be used */
3828 	set_bit(HVPCI_DOM_INVALID, hvpci_dom_map);
3829 
3830 	/* Initialize PCI block r/w interface */
3831 	hvpci_block_ops.read_block = hv_read_config_block;
3832 	hvpci_block_ops.write_block = hv_write_config_block;
3833 	hvpci_block_ops.reg_blk_invalidate = hv_register_block_invalidate;
3834 
3835 	return vmbus_driver_register(&hv_pci_drv);
3836 }
3837 
3838 module_init(init_hv_pci_drv);
3839 module_exit(exit_hv_pci_drv);
3840 
3841 MODULE_DESCRIPTION("Hyper-V PCI");
3842 MODULE_LICENSE("GPL v2");
3843