1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) Microsoft Corporation.
4  *
5  * Author:
6  *   Jake Oshins <jakeo@microsoft.com>
7  *
8  * This driver acts as a paravirtual front-end for PCI Express root buses.
9  * When a PCI Express function (either an entire device or an SR-IOV
10  * Virtual Function) is being passed through to the VM, this driver exposes
11  * a new bus to the guest VM.  This is modeled as a root PCI bus because
12  * no bridges are being exposed to the VM.  In fact, with a "Generation 2"
13  * VM within Hyper-V, there may seem to be no PCI bus at all in the VM
14  * until a device as been exposed using this driver.
15  *
16  * Each root PCI bus has its own PCI domain, which is called "Segment" in
17  * the PCI Firmware Specifications.  Thus while each device passed through
18  * to the VM using this front-end will appear at "device 0", the domain will
19  * be unique.  Typically, each bus will have one PCI function on it, though
20  * this driver does support more than one.
21  *
22  * In order to map the interrupts from the device through to the guest VM,
23  * this driver also implements an IRQ Domain, which handles interrupts (either
24  * MSI or MSI-X) associated with the functions on the bus.  As interrupts are
25  * set up, torn down, or reaffined, this driver communicates with the
26  * underlying hypervisor to adjust the mappings in the I/O MMU so that each
27  * interrupt will be delivered to the correct virtual processor at the right
28  * vector.  This driver does not support level-triggered (line-based)
29  * interrupts, and will report that the Interrupt Line register in the
30  * function's configuration space is zero.
31  *
32  * The rest of this driver mostly maps PCI concepts onto underlying Hyper-V
33  * facilities.  For instance, the configuration space of a function exposed
34  * by Hyper-V is mapped into a single page of memory space, and the
35  * read and write handlers for config space must be aware of this mechanism.
36  * Similarly, device setup and teardown involves messages sent to and from
37  * the PCI back-end driver in Hyper-V.
38  */
39 
40 #include <linux/kernel.h>
41 #include <linux/module.h>
42 #include <linux/pci.h>
43 #include <linux/delay.h>
44 #include <linux/semaphore.h>
45 #include <linux/irqdomain.h>
46 #include <asm/irqdomain.h>
47 #include <asm/apic.h>
48 #include <linux/irq.h>
49 #include <linux/msi.h>
50 #include <linux/hyperv.h>
51 #include <linux/refcount.h>
52 #include <asm/mshyperv.h>
53 
54 /*
55  * Protocol versions. The low word is the minor version, the high word the
56  * major version.
57  */
58 
59 #define PCI_MAKE_VERSION(major, minor) ((u32)(((major) << 16) | (minor)))
60 #define PCI_MAJOR_VERSION(version) ((u32)(version) >> 16)
61 #define PCI_MINOR_VERSION(version) ((u32)(version) & 0xff)
62 
63 enum pci_protocol_version_t {
64 	PCI_PROTOCOL_VERSION_1_1 = PCI_MAKE_VERSION(1, 1),	/* Win10 */
65 	PCI_PROTOCOL_VERSION_1_2 = PCI_MAKE_VERSION(1, 2),	/* RS1 */
66 	PCI_PROTOCOL_VERSION_1_3 = PCI_MAKE_VERSION(1, 3),	/* Vibranium */
67 };
68 
69 #define CPU_AFFINITY_ALL	-1ULL
70 
71 /*
72  * Supported protocol versions in the order of probing - highest go
73  * first.
74  */
75 static enum pci_protocol_version_t pci_protocol_versions[] = {
76 	PCI_PROTOCOL_VERSION_1_3,
77 	PCI_PROTOCOL_VERSION_1_2,
78 	PCI_PROTOCOL_VERSION_1_1,
79 };
80 
81 #define PCI_CONFIG_MMIO_LENGTH	0x2000
82 #define CFG_PAGE_OFFSET 0x1000
83 #define CFG_PAGE_SIZE (PCI_CONFIG_MMIO_LENGTH - CFG_PAGE_OFFSET)
84 
85 #define MAX_SUPPORTED_MSI_MESSAGES 0x400
86 
87 #define STATUS_REVISION_MISMATCH 0xC0000059
88 
89 /* space for 32bit serial number as string */
90 #define SLOT_NAME_SIZE 11
91 
92 /*
93  * Message Types
94  */
95 
96 enum pci_message_type {
97 	/*
98 	 * Version 1.1
99 	 */
100 	PCI_MESSAGE_BASE                = 0x42490000,
101 	PCI_BUS_RELATIONS               = PCI_MESSAGE_BASE + 0,
102 	PCI_QUERY_BUS_RELATIONS         = PCI_MESSAGE_BASE + 1,
103 	PCI_POWER_STATE_CHANGE          = PCI_MESSAGE_BASE + 4,
104 	PCI_QUERY_RESOURCE_REQUIREMENTS = PCI_MESSAGE_BASE + 5,
105 	PCI_QUERY_RESOURCE_RESOURCES    = PCI_MESSAGE_BASE + 6,
106 	PCI_BUS_D0ENTRY                 = PCI_MESSAGE_BASE + 7,
107 	PCI_BUS_D0EXIT                  = PCI_MESSAGE_BASE + 8,
108 	PCI_READ_BLOCK                  = PCI_MESSAGE_BASE + 9,
109 	PCI_WRITE_BLOCK                 = PCI_MESSAGE_BASE + 0xA,
110 	PCI_EJECT                       = PCI_MESSAGE_BASE + 0xB,
111 	PCI_QUERY_STOP                  = PCI_MESSAGE_BASE + 0xC,
112 	PCI_REENABLE                    = PCI_MESSAGE_BASE + 0xD,
113 	PCI_QUERY_STOP_FAILED           = PCI_MESSAGE_BASE + 0xE,
114 	PCI_EJECTION_COMPLETE           = PCI_MESSAGE_BASE + 0xF,
115 	PCI_RESOURCES_ASSIGNED          = PCI_MESSAGE_BASE + 0x10,
116 	PCI_RESOURCES_RELEASED          = PCI_MESSAGE_BASE + 0x11,
117 	PCI_INVALIDATE_BLOCK            = PCI_MESSAGE_BASE + 0x12,
118 	PCI_QUERY_PROTOCOL_VERSION      = PCI_MESSAGE_BASE + 0x13,
119 	PCI_CREATE_INTERRUPT_MESSAGE    = PCI_MESSAGE_BASE + 0x14,
120 	PCI_DELETE_INTERRUPT_MESSAGE    = PCI_MESSAGE_BASE + 0x15,
121 	PCI_RESOURCES_ASSIGNED2		= PCI_MESSAGE_BASE + 0x16,
122 	PCI_CREATE_INTERRUPT_MESSAGE2	= PCI_MESSAGE_BASE + 0x17,
123 	PCI_DELETE_INTERRUPT_MESSAGE2	= PCI_MESSAGE_BASE + 0x18, /* unused */
124 	PCI_BUS_RELATIONS2		= PCI_MESSAGE_BASE + 0x19,
125 	PCI_MESSAGE_MAXIMUM
126 };
127 
128 /*
129  * Structures defining the virtual PCI Express protocol.
130  */
131 
132 union pci_version {
133 	struct {
134 		u16 minor_version;
135 		u16 major_version;
136 	} parts;
137 	u32 version;
138 } __packed;
139 
140 /*
141  * Function numbers are 8-bits wide on Express, as interpreted through ARI,
142  * which is all this driver does.  This representation is the one used in
143  * Windows, which is what is expected when sending this back and forth with
144  * the Hyper-V parent partition.
145  */
146 union win_slot_encoding {
147 	struct {
148 		u32	dev:5;
149 		u32	func:3;
150 		u32	reserved:24;
151 	} bits;
152 	u32 slot;
153 } __packed;
154 
155 /*
156  * Pretty much as defined in the PCI Specifications.
157  */
158 struct pci_function_description {
159 	u16	v_id;	/* vendor ID */
160 	u16	d_id;	/* device ID */
161 	u8	rev;
162 	u8	prog_intf;
163 	u8	subclass;
164 	u8	base_class;
165 	u32	subsystem_id;
166 	union win_slot_encoding win_slot;
167 	u32	ser;	/* serial number */
168 } __packed;
169 
170 enum pci_device_description_flags {
171 	HV_PCI_DEVICE_FLAG_NONE			= 0x0,
172 	HV_PCI_DEVICE_FLAG_NUMA_AFFINITY	= 0x1,
173 };
174 
175 struct pci_function_description2 {
176 	u16	v_id;	/* vendor ID */
177 	u16	d_id;	/* device ID */
178 	u8	rev;
179 	u8	prog_intf;
180 	u8	subclass;
181 	u8	base_class;
182 	u32	subsystem_id;
183 	union	win_slot_encoding win_slot;
184 	u32	ser;	/* serial number */
185 	u32	flags;
186 	u16	virtual_numa_node;
187 	u16	reserved;
188 } __packed;
189 
190 /**
191  * struct hv_msi_desc
192  * @vector:		IDT entry
193  * @delivery_mode:	As defined in Intel's Programmer's
194  *			Reference Manual, Volume 3, Chapter 8.
195  * @vector_count:	Number of contiguous entries in the
196  *			Interrupt Descriptor Table that are
197  *			occupied by this Message-Signaled
198  *			Interrupt. For "MSI", as first defined
199  *			in PCI 2.2, this can be between 1 and
200  *			32. For "MSI-X," as first defined in PCI
201  *			3.0, this must be 1, as each MSI-X table
202  *			entry would have its own descriptor.
203  * @reserved:		Empty space
204  * @cpu_mask:		All the target virtual processors.
205  */
206 struct hv_msi_desc {
207 	u8	vector;
208 	u8	delivery_mode;
209 	u16	vector_count;
210 	u32	reserved;
211 	u64	cpu_mask;
212 } __packed;
213 
214 /**
215  * struct hv_msi_desc2 - 1.2 version of hv_msi_desc
216  * @vector:		IDT entry
217  * @delivery_mode:	As defined in Intel's Programmer's
218  *			Reference Manual, Volume 3, Chapter 8.
219  * @vector_count:	Number of contiguous entries in the
220  *			Interrupt Descriptor Table that are
221  *			occupied by this Message-Signaled
222  *			Interrupt. For "MSI", as first defined
223  *			in PCI 2.2, this can be between 1 and
224  *			32. For "MSI-X," as first defined in PCI
225  *			3.0, this must be 1, as each MSI-X table
226  *			entry would have its own descriptor.
227  * @processor_count:	number of bits enabled in array.
228  * @processor_array:	All the target virtual processors.
229  */
230 struct hv_msi_desc2 {
231 	u8	vector;
232 	u8	delivery_mode;
233 	u16	vector_count;
234 	u16	processor_count;
235 	u16	processor_array[32];
236 } __packed;
237 
238 /**
239  * struct tran_int_desc
240  * @reserved:		unused, padding
241  * @vector_count:	same as in hv_msi_desc
242  * @data:		This is the "data payload" value that is
243  *			written by the device when it generates
244  *			a message-signaled interrupt, either MSI
245  *			or MSI-X.
246  * @address:		This is the address to which the data
247  *			payload is written on interrupt
248  *			generation.
249  */
250 struct tran_int_desc {
251 	u16	reserved;
252 	u16	vector_count;
253 	u32	data;
254 	u64	address;
255 } __packed;
256 
257 /*
258  * A generic message format for virtual PCI.
259  * Specific message formats are defined later in the file.
260  */
261 
262 struct pci_message {
263 	u32 type;
264 } __packed;
265 
266 struct pci_child_message {
267 	struct pci_message message_type;
268 	union win_slot_encoding wslot;
269 } __packed;
270 
271 struct pci_incoming_message {
272 	struct vmpacket_descriptor hdr;
273 	struct pci_message message_type;
274 } __packed;
275 
276 struct pci_response {
277 	struct vmpacket_descriptor hdr;
278 	s32 status;			/* negative values are failures */
279 } __packed;
280 
281 struct pci_packet {
282 	void (*completion_func)(void *context, struct pci_response *resp,
283 				int resp_packet_size);
284 	void *compl_ctxt;
285 
286 	struct pci_message message[];
287 };
288 
289 /*
290  * Specific message types supporting the PCI protocol.
291  */
292 
293 /*
294  * Version negotiation message. Sent from the guest to the host.
295  * The guest is free to try different versions until the host
296  * accepts the version.
297  *
298  * pci_version: The protocol version requested.
299  * is_last_attempt: If TRUE, this is the last version guest will request.
300  * reservedz: Reserved field, set to zero.
301  */
302 
303 struct pci_version_request {
304 	struct pci_message message_type;
305 	u32 protocol_version;
306 } __packed;
307 
308 /*
309  * Bus D0 Entry.  This is sent from the guest to the host when the virtual
310  * bus (PCI Express port) is ready for action.
311  */
312 
313 struct pci_bus_d0_entry {
314 	struct pci_message message_type;
315 	u32 reserved;
316 	u64 mmio_base;
317 } __packed;
318 
319 struct pci_bus_relations {
320 	struct pci_incoming_message incoming;
321 	u32 device_count;
322 	struct pci_function_description func[];
323 } __packed;
324 
325 struct pci_bus_relations2 {
326 	struct pci_incoming_message incoming;
327 	u32 device_count;
328 	struct pci_function_description2 func[];
329 } __packed;
330 
331 struct pci_q_res_req_response {
332 	struct vmpacket_descriptor hdr;
333 	s32 status;			/* negative values are failures */
334 	u32 probed_bar[PCI_STD_NUM_BARS];
335 } __packed;
336 
337 struct pci_set_power {
338 	struct pci_message message_type;
339 	union win_slot_encoding wslot;
340 	u32 power_state;		/* In Windows terms */
341 	u32 reserved;
342 } __packed;
343 
344 struct pci_set_power_response {
345 	struct vmpacket_descriptor hdr;
346 	s32 status;			/* negative values are failures */
347 	union win_slot_encoding wslot;
348 	u32 resultant_state;		/* In Windows terms */
349 	u32 reserved;
350 } __packed;
351 
352 struct pci_resources_assigned {
353 	struct pci_message message_type;
354 	union win_slot_encoding wslot;
355 	u8 memory_range[0x14][6];	/* not used here */
356 	u32 msi_descriptors;
357 	u32 reserved[4];
358 } __packed;
359 
360 struct pci_resources_assigned2 {
361 	struct pci_message message_type;
362 	union win_slot_encoding wslot;
363 	u8 memory_range[0x14][6];	/* not used here */
364 	u32 msi_descriptor_count;
365 	u8 reserved[70];
366 } __packed;
367 
368 struct pci_create_interrupt {
369 	struct pci_message message_type;
370 	union win_slot_encoding wslot;
371 	struct hv_msi_desc int_desc;
372 } __packed;
373 
374 struct pci_create_int_response {
375 	struct pci_response response;
376 	u32 reserved;
377 	struct tran_int_desc int_desc;
378 } __packed;
379 
380 struct pci_create_interrupt2 {
381 	struct pci_message message_type;
382 	union win_slot_encoding wslot;
383 	struct hv_msi_desc2 int_desc;
384 } __packed;
385 
386 struct pci_delete_interrupt {
387 	struct pci_message message_type;
388 	union win_slot_encoding wslot;
389 	struct tran_int_desc int_desc;
390 } __packed;
391 
392 /*
393  * Note: the VM must pass a valid block id, wslot and bytes_requested.
394  */
395 struct pci_read_block {
396 	struct pci_message message_type;
397 	u32 block_id;
398 	union win_slot_encoding wslot;
399 	u32 bytes_requested;
400 } __packed;
401 
402 struct pci_read_block_response {
403 	struct vmpacket_descriptor hdr;
404 	u32 status;
405 	u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX];
406 } __packed;
407 
408 /*
409  * Note: the VM must pass a valid block id, wslot and byte_count.
410  */
411 struct pci_write_block {
412 	struct pci_message message_type;
413 	u32 block_id;
414 	union win_slot_encoding wslot;
415 	u32 byte_count;
416 	u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX];
417 } __packed;
418 
419 struct pci_dev_inval_block {
420 	struct pci_incoming_message incoming;
421 	union win_slot_encoding wslot;
422 	u64 block_mask;
423 } __packed;
424 
425 struct pci_dev_incoming {
426 	struct pci_incoming_message incoming;
427 	union win_slot_encoding wslot;
428 } __packed;
429 
430 struct pci_eject_response {
431 	struct pci_message message_type;
432 	union win_slot_encoding wslot;
433 	u32 status;
434 } __packed;
435 
436 static int pci_ring_size = (4 * PAGE_SIZE);
437 
438 /*
439  * Driver specific state.
440  */
441 
442 enum hv_pcibus_state {
443 	hv_pcibus_init = 0,
444 	hv_pcibus_probed,
445 	hv_pcibus_installed,
446 	hv_pcibus_removing,
447 	hv_pcibus_removed,
448 	hv_pcibus_maximum
449 };
450 
451 struct hv_pcibus_device {
452 	struct pci_sysdata sysdata;
453 	/* Protocol version negotiated with the host */
454 	enum pci_protocol_version_t protocol_version;
455 	enum hv_pcibus_state state;
456 	refcount_t remove_lock;
457 	struct hv_device *hdev;
458 	resource_size_t low_mmio_space;
459 	resource_size_t high_mmio_space;
460 	struct resource *mem_config;
461 	struct resource *low_mmio_res;
462 	struct resource *high_mmio_res;
463 	struct completion *survey_event;
464 	struct completion remove_event;
465 	struct pci_bus *pci_bus;
466 	spinlock_t config_lock;	/* Avoid two threads writing index page */
467 	spinlock_t device_list_lock;	/* Protect lists below */
468 	void __iomem *cfg_addr;
469 
470 	struct list_head resources_for_children;
471 
472 	struct list_head children;
473 	struct list_head dr_list;
474 
475 	struct msi_domain_info msi_info;
476 	struct msi_controller msi_chip;
477 	struct irq_domain *irq_domain;
478 
479 	spinlock_t retarget_msi_interrupt_lock;
480 
481 	struct workqueue_struct *wq;
482 
483 	/* hypercall arg, must not cross page boundary */
484 	struct hv_retarget_device_interrupt retarget_msi_interrupt_params;
485 
486 	/*
487 	 * Don't put anything here: retarget_msi_interrupt_params must be last
488 	 */
489 };
490 
491 /*
492  * Tracks "Device Relations" messages from the host, which must be both
493  * processed in order and deferred so that they don't run in the context
494  * of the incoming packet callback.
495  */
496 struct hv_dr_work {
497 	struct work_struct wrk;
498 	struct hv_pcibus_device *bus;
499 };
500 
501 struct hv_pcidev_description {
502 	u16	v_id;	/* vendor ID */
503 	u16	d_id;	/* device ID */
504 	u8	rev;
505 	u8	prog_intf;
506 	u8	subclass;
507 	u8	base_class;
508 	u32	subsystem_id;
509 	union	win_slot_encoding win_slot;
510 	u32	ser;	/* serial number */
511 	u32	flags;
512 	u16	virtual_numa_node;
513 };
514 
515 struct hv_dr_state {
516 	struct list_head list_entry;
517 	u32 device_count;
518 	struct hv_pcidev_description func[];
519 };
520 
521 enum hv_pcichild_state {
522 	hv_pcichild_init = 0,
523 	hv_pcichild_requirements,
524 	hv_pcichild_resourced,
525 	hv_pcichild_ejecting,
526 	hv_pcichild_maximum
527 };
528 
529 struct hv_pci_dev {
530 	/* List protected by pci_rescan_remove_lock */
531 	struct list_head list_entry;
532 	refcount_t refs;
533 	enum hv_pcichild_state state;
534 	struct pci_slot *pci_slot;
535 	struct hv_pcidev_description desc;
536 	bool reported_missing;
537 	struct hv_pcibus_device *hbus;
538 	struct work_struct wrk;
539 
540 	void (*block_invalidate)(void *context, u64 block_mask);
541 	void *invalidate_context;
542 
543 	/*
544 	 * What would be observed if one wrote 0xFFFFFFFF to a BAR and then
545 	 * read it back, for each of the BAR offsets within config space.
546 	 */
547 	u32 probed_bar[PCI_STD_NUM_BARS];
548 };
549 
550 struct hv_pci_compl {
551 	struct completion host_event;
552 	s32 completion_status;
553 };
554 
555 static void hv_pci_onchannelcallback(void *context);
556 
557 /**
558  * hv_pci_generic_compl() - Invoked for a completion packet
559  * @context:		Set up by the sender of the packet.
560  * @resp:		The response packet
561  * @resp_packet_size:	Size in bytes of the packet
562  *
563  * This function is used to trigger an event and report status
564  * for any message for which the completion packet contains a
565  * status and nothing else.
566  */
567 static void hv_pci_generic_compl(void *context, struct pci_response *resp,
568 				 int resp_packet_size)
569 {
570 	struct hv_pci_compl *comp_pkt = context;
571 
572 	if (resp_packet_size >= offsetofend(struct pci_response, status))
573 		comp_pkt->completion_status = resp->status;
574 	else
575 		comp_pkt->completion_status = -1;
576 
577 	complete(&comp_pkt->host_event);
578 }
579 
580 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
581 						u32 wslot);
582 
583 static void get_pcichild(struct hv_pci_dev *hpdev)
584 {
585 	refcount_inc(&hpdev->refs);
586 }
587 
588 static void put_pcichild(struct hv_pci_dev *hpdev)
589 {
590 	if (refcount_dec_and_test(&hpdev->refs))
591 		kfree(hpdev);
592 }
593 
594 static void get_hvpcibus(struct hv_pcibus_device *hv_pcibus);
595 static void put_hvpcibus(struct hv_pcibus_device *hv_pcibus);
596 
597 /*
598  * There is no good way to get notified from vmbus_onoffer_rescind(),
599  * so let's use polling here, since this is not a hot path.
600  */
601 static int wait_for_response(struct hv_device *hdev,
602 			     struct completion *comp)
603 {
604 	while (true) {
605 		if (hdev->channel->rescind) {
606 			dev_warn_once(&hdev->device, "The device is gone.\n");
607 			return -ENODEV;
608 		}
609 
610 		if (wait_for_completion_timeout(comp, HZ / 10))
611 			break;
612 	}
613 
614 	return 0;
615 }
616 
617 /**
618  * devfn_to_wslot() - Convert from Linux PCI slot to Windows
619  * @devfn:	The Linux representation of PCI slot
620  *
621  * Windows uses a slightly different representation of PCI slot.
622  *
623  * Return: The Windows representation
624  */
625 static u32 devfn_to_wslot(int devfn)
626 {
627 	union win_slot_encoding wslot;
628 
629 	wslot.slot = 0;
630 	wslot.bits.dev = PCI_SLOT(devfn);
631 	wslot.bits.func = PCI_FUNC(devfn);
632 
633 	return wslot.slot;
634 }
635 
636 /**
637  * wslot_to_devfn() - Convert from Windows PCI slot to Linux
638  * @wslot:	The Windows representation of PCI slot
639  *
640  * Windows uses a slightly different representation of PCI slot.
641  *
642  * Return: The Linux representation
643  */
644 static int wslot_to_devfn(u32 wslot)
645 {
646 	union win_slot_encoding slot_no;
647 
648 	slot_no.slot = wslot;
649 	return PCI_DEVFN(slot_no.bits.dev, slot_no.bits.func);
650 }
651 
652 /*
653  * PCI Configuration Space for these root PCI buses is implemented as a pair
654  * of pages in memory-mapped I/O space.  Writing to the first page chooses
655  * the PCI function being written or read.  Once the first page has been
656  * written to, the following page maps in the entire configuration space of
657  * the function.
658  */
659 
660 /**
661  * _hv_pcifront_read_config() - Internal PCI config read
662  * @hpdev:	The PCI driver's representation of the device
663  * @where:	Offset within config space
664  * @size:	Size of the transfer
665  * @val:	Pointer to the buffer receiving the data
666  */
667 static void _hv_pcifront_read_config(struct hv_pci_dev *hpdev, int where,
668 				     int size, u32 *val)
669 {
670 	unsigned long flags;
671 	void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where;
672 
673 	/*
674 	 * If the attempt is to read the IDs or the ROM BAR, simulate that.
675 	 */
676 	if (where + size <= PCI_COMMAND) {
677 		memcpy(val, ((u8 *)&hpdev->desc.v_id) + where, size);
678 	} else if (where >= PCI_CLASS_REVISION && where + size <=
679 		   PCI_CACHE_LINE_SIZE) {
680 		memcpy(val, ((u8 *)&hpdev->desc.rev) + where -
681 		       PCI_CLASS_REVISION, size);
682 	} else if (where >= PCI_SUBSYSTEM_VENDOR_ID && where + size <=
683 		   PCI_ROM_ADDRESS) {
684 		memcpy(val, (u8 *)&hpdev->desc.subsystem_id + where -
685 		       PCI_SUBSYSTEM_VENDOR_ID, size);
686 	} else if (where >= PCI_ROM_ADDRESS && where + size <=
687 		   PCI_CAPABILITY_LIST) {
688 		/* ROM BARs are unimplemented */
689 		*val = 0;
690 	} else if (where >= PCI_INTERRUPT_LINE && where + size <=
691 		   PCI_INTERRUPT_PIN) {
692 		/*
693 		 * Interrupt Line and Interrupt PIN are hard-wired to zero
694 		 * because this front-end only supports message-signaled
695 		 * interrupts.
696 		 */
697 		*val = 0;
698 	} else if (where + size <= CFG_PAGE_SIZE) {
699 		spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
700 		/* Choose the function to be read. (See comment above) */
701 		writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
702 		/* Make sure the function was chosen before we start reading. */
703 		mb();
704 		/* Read from that function's config space. */
705 		switch (size) {
706 		case 1:
707 			*val = readb(addr);
708 			break;
709 		case 2:
710 			*val = readw(addr);
711 			break;
712 		default:
713 			*val = readl(addr);
714 			break;
715 		}
716 		/*
717 		 * Make sure the read was done before we release the spinlock
718 		 * allowing consecutive reads/writes.
719 		 */
720 		mb();
721 		spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
722 	} else {
723 		dev_err(&hpdev->hbus->hdev->device,
724 			"Attempt to read beyond a function's config space.\n");
725 	}
726 }
727 
728 static u16 hv_pcifront_get_vendor_id(struct hv_pci_dev *hpdev)
729 {
730 	u16 ret;
731 	unsigned long flags;
732 	void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET +
733 			     PCI_VENDOR_ID;
734 
735 	spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
736 
737 	/* Choose the function to be read. (See comment above) */
738 	writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
739 	/* Make sure the function was chosen before we start reading. */
740 	mb();
741 	/* Read from that function's config space. */
742 	ret = readw(addr);
743 	/*
744 	 * mb() is not required here, because the spin_unlock_irqrestore()
745 	 * is a barrier.
746 	 */
747 
748 	spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
749 
750 	return ret;
751 }
752 
753 /**
754  * _hv_pcifront_write_config() - Internal PCI config write
755  * @hpdev:	The PCI driver's representation of the device
756  * @where:	Offset within config space
757  * @size:	Size of the transfer
758  * @val:	The data being transferred
759  */
760 static void _hv_pcifront_write_config(struct hv_pci_dev *hpdev, int where,
761 				      int size, u32 val)
762 {
763 	unsigned long flags;
764 	void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where;
765 
766 	if (where >= PCI_SUBSYSTEM_VENDOR_ID &&
767 	    where + size <= PCI_CAPABILITY_LIST) {
768 		/* SSIDs and ROM BARs are read-only */
769 	} else if (where >= PCI_COMMAND && where + size <= CFG_PAGE_SIZE) {
770 		spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
771 		/* Choose the function to be written. (See comment above) */
772 		writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
773 		/* Make sure the function was chosen before we start writing. */
774 		wmb();
775 		/* Write to that function's config space. */
776 		switch (size) {
777 		case 1:
778 			writeb(val, addr);
779 			break;
780 		case 2:
781 			writew(val, addr);
782 			break;
783 		default:
784 			writel(val, addr);
785 			break;
786 		}
787 		/*
788 		 * Make sure the write was done before we release the spinlock
789 		 * allowing consecutive reads/writes.
790 		 */
791 		mb();
792 		spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
793 	} else {
794 		dev_err(&hpdev->hbus->hdev->device,
795 			"Attempt to write beyond a function's config space.\n");
796 	}
797 }
798 
799 /**
800  * hv_pcifront_read_config() - Read configuration space
801  * @bus: PCI Bus structure
802  * @devfn: Device/function
803  * @where: Offset from base
804  * @size: Byte/word/dword
805  * @val: Value to be read
806  *
807  * Return: PCIBIOS_SUCCESSFUL on success
808  *	   PCIBIOS_DEVICE_NOT_FOUND on failure
809  */
810 static int hv_pcifront_read_config(struct pci_bus *bus, unsigned int devfn,
811 				   int where, int size, u32 *val)
812 {
813 	struct hv_pcibus_device *hbus =
814 		container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
815 	struct hv_pci_dev *hpdev;
816 
817 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
818 	if (!hpdev)
819 		return PCIBIOS_DEVICE_NOT_FOUND;
820 
821 	_hv_pcifront_read_config(hpdev, where, size, val);
822 
823 	put_pcichild(hpdev);
824 	return PCIBIOS_SUCCESSFUL;
825 }
826 
827 /**
828  * hv_pcifront_write_config() - Write configuration space
829  * @bus: PCI Bus structure
830  * @devfn: Device/function
831  * @where: Offset from base
832  * @size: Byte/word/dword
833  * @val: Value to be written to device
834  *
835  * Return: PCIBIOS_SUCCESSFUL on success
836  *	   PCIBIOS_DEVICE_NOT_FOUND on failure
837  */
838 static int hv_pcifront_write_config(struct pci_bus *bus, unsigned int devfn,
839 				    int where, int size, u32 val)
840 {
841 	struct hv_pcibus_device *hbus =
842 	    container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
843 	struct hv_pci_dev *hpdev;
844 
845 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
846 	if (!hpdev)
847 		return PCIBIOS_DEVICE_NOT_FOUND;
848 
849 	_hv_pcifront_write_config(hpdev, where, size, val);
850 
851 	put_pcichild(hpdev);
852 	return PCIBIOS_SUCCESSFUL;
853 }
854 
855 /* PCIe operations */
856 static struct pci_ops hv_pcifront_ops = {
857 	.read  = hv_pcifront_read_config,
858 	.write = hv_pcifront_write_config,
859 };
860 
861 /*
862  * Paravirtual backchannel
863  *
864  * Hyper-V SR-IOV provides a backchannel mechanism in software for
865  * communication between a VF driver and a PF driver.  These
866  * "configuration blocks" are similar in concept to PCI configuration space,
867  * but instead of doing reads and writes in 32-bit chunks through a very slow
868  * path, packets of up to 128 bytes can be sent or received asynchronously.
869  *
870  * Nearly every SR-IOV device contains just such a communications channel in
871  * hardware, so using this one in software is usually optional.  Using the
872  * software channel, however, allows driver implementers to leverage software
873  * tools that fuzz the communications channel looking for vulnerabilities.
874  *
875  * The usage model for these packets puts the responsibility for reading or
876  * writing on the VF driver.  The VF driver sends a read or a write packet,
877  * indicating which "block" is being referred to by number.
878  *
879  * If the PF driver wishes to initiate communication, it can "invalidate" one or
880  * more of the first 64 blocks.  This invalidation is delivered via a callback
881  * supplied by the VF driver by this driver.
882  *
883  * No protocol is implied, except that supplied by the PF and VF drivers.
884  */
885 
886 struct hv_read_config_compl {
887 	struct hv_pci_compl comp_pkt;
888 	void *buf;
889 	unsigned int len;
890 	unsigned int bytes_returned;
891 };
892 
893 /**
894  * hv_pci_read_config_compl() - Invoked when a response packet
895  * for a read config block operation arrives.
896  * @context:		Identifies the read config operation
897  * @resp:		The response packet itself
898  * @resp_packet_size:	Size in bytes of the response packet
899  */
900 static void hv_pci_read_config_compl(void *context, struct pci_response *resp,
901 				     int resp_packet_size)
902 {
903 	struct hv_read_config_compl *comp = context;
904 	struct pci_read_block_response *read_resp =
905 		(struct pci_read_block_response *)resp;
906 	unsigned int data_len, hdr_len;
907 
908 	hdr_len = offsetof(struct pci_read_block_response, bytes);
909 	if (resp_packet_size < hdr_len) {
910 		comp->comp_pkt.completion_status = -1;
911 		goto out;
912 	}
913 
914 	data_len = resp_packet_size - hdr_len;
915 	if (data_len > 0 && read_resp->status == 0) {
916 		comp->bytes_returned = min(comp->len, data_len);
917 		memcpy(comp->buf, read_resp->bytes, comp->bytes_returned);
918 	} else {
919 		comp->bytes_returned = 0;
920 	}
921 
922 	comp->comp_pkt.completion_status = read_resp->status;
923 out:
924 	complete(&comp->comp_pkt.host_event);
925 }
926 
927 /**
928  * hv_read_config_block() - Sends a read config block request to
929  * the back-end driver running in the Hyper-V parent partition.
930  * @pdev:		The PCI driver's representation for this device.
931  * @buf:		Buffer into which the config block will be copied.
932  * @len:		Size in bytes of buf.
933  * @block_id:		Identifies the config block which has been requested.
934  * @bytes_returned:	Size which came back from the back-end driver.
935  *
936  * Return: 0 on success, -errno on failure
937  */
938 int hv_read_config_block(struct pci_dev *pdev, void *buf, unsigned int len,
939 			 unsigned int block_id, unsigned int *bytes_returned)
940 {
941 	struct hv_pcibus_device *hbus =
942 		container_of(pdev->bus->sysdata, struct hv_pcibus_device,
943 			     sysdata);
944 	struct {
945 		struct pci_packet pkt;
946 		char buf[sizeof(struct pci_read_block)];
947 	} pkt;
948 	struct hv_read_config_compl comp_pkt;
949 	struct pci_read_block *read_blk;
950 	int ret;
951 
952 	if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX)
953 		return -EINVAL;
954 
955 	init_completion(&comp_pkt.comp_pkt.host_event);
956 	comp_pkt.buf = buf;
957 	comp_pkt.len = len;
958 
959 	memset(&pkt, 0, sizeof(pkt));
960 	pkt.pkt.completion_func = hv_pci_read_config_compl;
961 	pkt.pkt.compl_ctxt = &comp_pkt;
962 	read_blk = (struct pci_read_block *)&pkt.pkt.message;
963 	read_blk->message_type.type = PCI_READ_BLOCK;
964 	read_blk->wslot.slot = devfn_to_wslot(pdev->devfn);
965 	read_blk->block_id = block_id;
966 	read_blk->bytes_requested = len;
967 
968 	ret = vmbus_sendpacket(hbus->hdev->channel, read_blk,
969 			       sizeof(*read_blk), (unsigned long)&pkt.pkt,
970 			       VM_PKT_DATA_INBAND,
971 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
972 	if (ret)
973 		return ret;
974 
975 	ret = wait_for_response(hbus->hdev, &comp_pkt.comp_pkt.host_event);
976 	if (ret)
977 		return ret;
978 
979 	if (comp_pkt.comp_pkt.completion_status != 0 ||
980 	    comp_pkt.bytes_returned == 0) {
981 		dev_err(&hbus->hdev->device,
982 			"Read Config Block failed: 0x%x, bytes_returned=%d\n",
983 			comp_pkt.comp_pkt.completion_status,
984 			comp_pkt.bytes_returned);
985 		return -EIO;
986 	}
987 
988 	*bytes_returned = comp_pkt.bytes_returned;
989 	return 0;
990 }
991 
992 /**
993  * hv_pci_write_config_compl() - Invoked when a response packet for a write
994  * config block operation arrives.
995  * @context:		Identifies the write config operation
996  * @resp:		The response packet itself
997  * @resp_packet_size:	Size in bytes of the response packet
998  */
999 static void hv_pci_write_config_compl(void *context, struct pci_response *resp,
1000 				      int resp_packet_size)
1001 {
1002 	struct hv_pci_compl *comp_pkt = context;
1003 
1004 	comp_pkt->completion_status = resp->status;
1005 	complete(&comp_pkt->host_event);
1006 }
1007 
1008 /**
1009  * hv_write_config_block() - Sends a write config block request to the
1010  * back-end driver running in the Hyper-V parent partition.
1011  * @pdev:		The PCI driver's representation for this device.
1012  * @buf:		Buffer from which the config block will	be copied.
1013  * @len:		Size in bytes of buf.
1014  * @block_id:		Identifies the config block which is being written.
1015  *
1016  * Return: 0 on success, -errno on failure
1017  */
1018 int hv_write_config_block(struct pci_dev *pdev, void *buf, unsigned int len,
1019 			  unsigned int block_id)
1020 {
1021 	struct hv_pcibus_device *hbus =
1022 		container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1023 			     sysdata);
1024 	struct {
1025 		struct pci_packet pkt;
1026 		char buf[sizeof(struct pci_write_block)];
1027 		u32 reserved;
1028 	} pkt;
1029 	struct hv_pci_compl comp_pkt;
1030 	struct pci_write_block *write_blk;
1031 	u32 pkt_size;
1032 	int ret;
1033 
1034 	if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX)
1035 		return -EINVAL;
1036 
1037 	init_completion(&comp_pkt.host_event);
1038 
1039 	memset(&pkt, 0, sizeof(pkt));
1040 	pkt.pkt.completion_func = hv_pci_write_config_compl;
1041 	pkt.pkt.compl_ctxt = &comp_pkt;
1042 	write_blk = (struct pci_write_block *)&pkt.pkt.message;
1043 	write_blk->message_type.type = PCI_WRITE_BLOCK;
1044 	write_blk->wslot.slot = devfn_to_wslot(pdev->devfn);
1045 	write_blk->block_id = block_id;
1046 	write_blk->byte_count = len;
1047 	memcpy(write_blk->bytes, buf, len);
1048 	pkt_size = offsetof(struct pci_write_block, bytes) + len;
1049 	/*
1050 	 * This quirk is required on some hosts shipped around 2018, because
1051 	 * these hosts don't check the pkt_size correctly (new hosts have been
1052 	 * fixed since early 2019). The quirk is also safe on very old hosts
1053 	 * and new hosts, because, on them, what really matters is the length
1054 	 * specified in write_blk->byte_count.
1055 	 */
1056 	pkt_size += sizeof(pkt.reserved);
1057 
1058 	ret = vmbus_sendpacket(hbus->hdev->channel, write_blk, pkt_size,
1059 			       (unsigned long)&pkt.pkt, VM_PKT_DATA_INBAND,
1060 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1061 	if (ret)
1062 		return ret;
1063 
1064 	ret = wait_for_response(hbus->hdev, &comp_pkt.host_event);
1065 	if (ret)
1066 		return ret;
1067 
1068 	if (comp_pkt.completion_status != 0) {
1069 		dev_err(&hbus->hdev->device,
1070 			"Write Config Block failed: 0x%x\n",
1071 			comp_pkt.completion_status);
1072 		return -EIO;
1073 	}
1074 
1075 	return 0;
1076 }
1077 
1078 /**
1079  * hv_register_block_invalidate() - Invoked when a config block invalidation
1080  * arrives from the back-end driver.
1081  * @pdev:		The PCI driver's representation for this device.
1082  * @context:		Identifies the device.
1083  * @block_invalidate:	Identifies all of the blocks being invalidated.
1084  *
1085  * Return: 0 on success, -errno on failure
1086  */
1087 int hv_register_block_invalidate(struct pci_dev *pdev, void *context,
1088 				 void (*block_invalidate)(void *context,
1089 							  u64 block_mask))
1090 {
1091 	struct hv_pcibus_device *hbus =
1092 		container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1093 			     sysdata);
1094 	struct hv_pci_dev *hpdev;
1095 
1096 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1097 	if (!hpdev)
1098 		return -ENODEV;
1099 
1100 	hpdev->block_invalidate = block_invalidate;
1101 	hpdev->invalidate_context = context;
1102 
1103 	put_pcichild(hpdev);
1104 	return 0;
1105 
1106 }
1107 
1108 /* Interrupt management hooks */
1109 static void hv_int_desc_free(struct hv_pci_dev *hpdev,
1110 			     struct tran_int_desc *int_desc)
1111 {
1112 	struct pci_delete_interrupt *int_pkt;
1113 	struct {
1114 		struct pci_packet pkt;
1115 		u8 buffer[sizeof(struct pci_delete_interrupt)];
1116 	} ctxt;
1117 
1118 	memset(&ctxt, 0, sizeof(ctxt));
1119 	int_pkt = (struct pci_delete_interrupt *)&ctxt.pkt.message;
1120 	int_pkt->message_type.type =
1121 		PCI_DELETE_INTERRUPT_MESSAGE;
1122 	int_pkt->wslot.slot = hpdev->desc.win_slot.slot;
1123 	int_pkt->int_desc = *int_desc;
1124 	vmbus_sendpacket(hpdev->hbus->hdev->channel, int_pkt, sizeof(*int_pkt),
1125 			 (unsigned long)&ctxt.pkt, VM_PKT_DATA_INBAND, 0);
1126 	kfree(int_desc);
1127 }
1128 
1129 /**
1130  * hv_msi_free() - Free the MSI.
1131  * @domain:	The interrupt domain pointer
1132  * @info:	Extra MSI-related context
1133  * @irq:	Identifies the IRQ.
1134  *
1135  * The Hyper-V parent partition and hypervisor are tracking the
1136  * messages that are in use, keeping the interrupt redirection
1137  * table up to date.  This callback sends a message that frees
1138  * the IRT entry and related tracking nonsense.
1139  */
1140 static void hv_msi_free(struct irq_domain *domain, struct msi_domain_info *info,
1141 			unsigned int irq)
1142 {
1143 	struct hv_pcibus_device *hbus;
1144 	struct hv_pci_dev *hpdev;
1145 	struct pci_dev *pdev;
1146 	struct tran_int_desc *int_desc;
1147 	struct irq_data *irq_data = irq_domain_get_irq_data(domain, irq);
1148 	struct msi_desc *msi = irq_data_get_msi_desc(irq_data);
1149 
1150 	pdev = msi_desc_to_pci_dev(msi);
1151 	hbus = info->data;
1152 	int_desc = irq_data_get_irq_chip_data(irq_data);
1153 	if (!int_desc)
1154 		return;
1155 
1156 	irq_data->chip_data = NULL;
1157 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1158 	if (!hpdev) {
1159 		kfree(int_desc);
1160 		return;
1161 	}
1162 
1163 	hv_int_desc_free(hpdev, int_desc);
1164 	put_pcichild(hpdev);
1165 }
1166 
1167 static int hv_set_affinity(struct irq_data *data, const struct cpumask *dest,
1168 			   bool force)
1169 {
1170 	struct irq_data *parent = data->parent_data;
1171 
1172 	return parent->chip->irq_set_affinity(parent, dest, force);
1173 }
1174 
1175 static void hv_irq_mask(struct irq_data *data)
1176 {
1177 	pci_msi_mask_irq(data);
1178 }
1179 
1180 /**
1181  * hv_irq_unmask() - "Unmask" the IRQ by setting its current
1182  * affinity.
1183  * @data:	Describes the IRQ
1184  *
1185  * Build new a destination for the MSI and make a hypercall to
1186  * update the Interrupt Redirection Table. "Device Logical ID"
1187  * is built out of this PCI bus's instance GUID and the function
1188  * number of the device.
1189  */
1190 static void hv_irq_unmask(struct irq_data *data)
1191 {
1192 	struct msi_desc *msi_desc = irq_data_get_msi_desc(data);
1193 	struct irq_cfg *cfg = irqd_cfg(data);
1194 	struct hv_retarget_device_interrupt *params;
1195 	struct hv_pcibus_device *hbus;
1196 	struct cpumask *dest;
1197 	cpumask_var_t tmp;
1198 	struct pci_bus *pbus;
1199 	struct pci_dev *pdev;
1200 	unsigned long flags;
1201 	u32 var_size = 0;
1202 	int cpu, nr_bank;
1203 	u64 res;
1204 
1205 	dest = irq_data_get_effective_affinity_mask(data);
1206 	pdev = msi_desc_to_pci_dev(msi_desc);
1207 	pbus = pdev->bus;
1208 	hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
1209 
1210 	spin_lock_irqsave(&hbus->retarget_msi_interrupt_lock, flags);
1211 
1212 	params = &hbus->retarget_msi_interrupt_params;
1213 	memset(params, 0, sizeof(*params));
1214 	params->partition_id = HV_PARTITION_ID_SELF;
1215 	params->int_entry.source = 1; /* MSI(-X) */
1216 	hv_set_msi_entry_from_desc(&params->int_entry.msi_entry, msi_desc);
1217 	params->device_id = (hbus->hdev->dev_instance.b[5] << 24) |
1218 			   (hbus->hdev->dev_instance.b[4] << 16) |
1219 			   (hbus->hdev->dev_instance.b[7] << 8) |
1220 			   (hbus->hdev->dev_instance.b[6] & 0xf8) |
1221 			   PCI_FUNC(pdev->devfn);
1222 	params->int_target.vector = cfg->vector;
1223 
1224 	/*
1225 	 * Honoring apic->irq_delivery_mode set to dest_Fixed by
1226 	 * setting the HV_DEVICE_INTERRUPT_TARGET_MULTICAST flag results in a
1227 	 * spurious interrupt storm. Not doing so does not seem to have a
1228 	 * negative effect (yet?).
1229 	 */
1230 
1231 	if (hbus->protocol_version >= PCI_PROTOCOL_VERSION_1_2) {
1232 		/*
1233 		 * PCI_PROTOCOL_VERSION_1_2 supports the VP_SET version of the
1234 		 * HVCALL_RETARGET_INTERRUPT hypercall, which also coincides
1235 		 * with >64 VP support.
1236 		 * ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED
1237 		 * is not sufficient for this hypercall.
1238 		 */
1239 		params->int_target.flags |=
1240 			HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET;
1241 
1242 		if (!alloc_cpumask_var(&tmp, GFP_ATOMIC)) {
1243 			res = 1;
1244 			goto exit_unlock;
1245 		}
1246 
1247 		cpumask_and(tmp, dest, cpu_online_mask);
1248 		nr_bank = cpumask_to_vpset(&params->int_target.vp_set, tmp);
1249 		free_cpumask_var(tmp);
1250 
1251 		if (nr_bank <= 0) {
1252 			res = 1;
1253 			goto exit_unlock;
1254 		}
1255 
1256 		/*
1257 		 * var-sized hypercall, var-size starts after vp_mask (thus
1258 		 * vp_set.format does not count, but vp_set.valid_bank_mask
1259 		 * does).
1260 		 */
1261 		var_size = 1 + nr_bank;
1262 	} else {
1263 		for_each_cpu_and(cpu, dest, cpu_online_mask) {
1264 			params->int_target.vp_mask |=
1265 				(1ULL << hv_cpu_number_to_vp_number(cpu));
1266 		}
1267 	}
1268 
1269 	res = hv_do_hypercall(HVCALL_RETARGET_INTERRUPT | (var_size << 17),
1270 			      params, NULL);
1271 
1272 exit_unlock:
1273 	spin_unlock_irqrestore(&hbus->retarget_msi_interrupt_lock, flags);
1274 
1275 	if (res) {
1276 		dev_err(&hbus->hdev->device,
1277 			"%s() failed: %#llx", __func__, res);
1278 		return;
1279 	}
1280 
1281 	pci_msi_unmask_irq(data);
1282 }
1283 
1284 struct compose_comp_ctxt {
1285 	struct hv_pci_compl comp_pkt;
1286 	struct tran_int_desc int_desc;
1287 };
1288 
1289 static void hv_pci_compose_compl(void *context, struct pci_response *resp,
1290 				 int resp_packet_size)
1291 {
1292 	struct compose_comp_ctxt *comp_pkt = context;
1293 	struct pci_create_int_response *int_resp =
1294 		(struct pci_create_int_response *)resp;
1295 
1296 	comp_pkt->comp_pkt.completion_status = resp->status;
1297 	comp_pkt->int_desc = int_resp->int_desc;
1298 	complete(&comp_pkt->comp_pkt.host_event);
1299 }
1300 
1301 static u32 hv_compose_msi_req_v1(
1302 	struct pci_create_interrupt *int_pkt, struct cpumask *affinity,
1303 	u32 slot, u8 vector)
1304 {
1305 	int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE;
1306 	int_pkt->wslot.slot = slot;
1307 	int_pkt->int_desc.vector = vector;
1308 	int_pkt->int_desc.vector_count = 1;
1309 	int_pkt->int_desc.delivery_mode = dest_Fixed;
1310 
1311 	/*
1312 	 * Create MSI w/ dummy vCPU set, overwritten by subsequent retarget in
1313 	 * hv_irq_unmask().
1314 	 */
1315 	int_pkt->int_desc.cpu_mask = CPU_AFFINITY_ALL;
1316 
1317 	return sizeof(*int_pkt);
1318 }
1319 
1320 static u32 hv_compose_msi_req_v2(
1321 	struct pci_create_interrupt2 *int_pkt, struct cpumask *affinity,
1322 	u32 slot, u8 vector)
1323 {
1324 	int cpu;
1325 
1326 	int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE2;
1327 	int_pkt->wslot.slot = slot;
1328 	int_pkt->int_desc.vector = vector;
1329 	int_pkt->int_desc.vector_count = 1;
1330 	int_pkt->int_desc.delivery_mode = dest_Fixed;
1331 
1332 	/*
1333 	 * Create MSI w/ dummy vCPU set targeting just one vCPU, overwritten
1334 	 * by subsequent retarget in hv_irq_unmask().
1335 	 */
1336 	cpu = cpumask_first_and(affinity, cpu_online_mask);
1337 	int_pkt->int_desc.processor_array[0] =
1338 		hv_cpu_number_to_vp_number(cpu);
1339 	int_pkt->int_desc.processor_count = 1;
1340 
1341 	return sizeof(*int_pkt);
1342 }
1343 
1344 /**
1345  * hv_compose_msi_msg() - Supplies a valid MSI address/data
1346  * @data:	Everything about this MSI
1347  * @msg:	Buffer that is filled in by this function
1348  *
1349  * This function unpacks the IRQ looking for target CPU set, IDT
1350  * vector and mode and sends a message to the parent partition
1351  * asking for a mapping for that tuple in this partition.  The
1352  * response supplies a data value and address to which that data
1353  * should be written to trigger that interrupt.
1354  */
1355 static void hv_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
1356 {
1357 	struct irq_cfg *cfg = irqd_cfg(data);
1358 	struct hv_pcibus_device *hbus;
1359 	struct vmbus_channel *channel;
1360 	struct hv_pci_dev *hpdev;
1361 	struct pci_bus *pbus;
1362 	struct pci_dev *pdev;
1363 	struct cpumask *dest;
1364 	struct compose_comp_ctxt comp;
1365 	struct tran_int_desc *int_desc;
1366 	struct {
1367 		struct pci_packet pci_pkt;
1368 		union {
1369 			struct pci_create_interrupt v1;
1370 			struct pci_create_interrupt2 v2;
1371 		} int_pkts;
1372 	} __packed ctxt;
1373 
1374 	u32 size;
1375 	int ret;
1376 
1377 	pdev = msi_desc_to_pci_dev(irq_data_get_msi_desc(data));
1378 	dest = irq_data_get_effective_affinity_mask(data);
1379 	pbus = pdev->bus;
1380 	hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
1381 	channel = hbus->hdev->channel;
1382 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1383 	if (!hpdev)
1384 		goto return_null_message;
1385 
1386 	/* Free any previous message that might have already been composed. */
1387 	if (data->chip_data) {
1388 		int_desc = data->chip_data;
1389 		data->chip_data = NULL;
1390 		hv_int_desc_free(hpdev, int_desc);
1391 	}
1392 
1393 	int_desc = kzalloc(sizeof(*int_desc), GFP_ATOMIC);
1394 	if (!int_desc)
1395 		goto drop_reference;
1396 
1397 	memset(&ctxt, 0, sizeof(ctxt));
1398 	init_completion(&comp.comp_pkt.host_event);
1399 	ctxt.pci_pkt.completion_func = hv_pci_compose_compl;
1400 	ctxt.pci_pkt.compl_ctxt = &comp;
1401 
1402 	switch (hbus->protocol_version) {
1403 	case PCI_PROTOCOL_VERSION_1_1:
1404 		size = hv_compose_msi_req_v1(&ctxt.int_pkts.v1,
1405 					dest,
1406 					hpdev->desc.win_slot.slot,
1407 					cfg->vector);
1408 		break;
1409 
1410 	case PCI_PROTOCOL_VERSION_1_2:
1411 	case PCI_PROTOCOL_VERSION_1_3:
1412 		size = hv_compose_msi_req_v2(&ctxt.int_pkts.v2,
1413 					dest,
1414 					hpdev->desc.win_slot.slot,
1415 					cfg->vector);
1416 		break;
1417 
1418 	default:
1419 		/* As we only negotiate protocol versions known to this driver,
1420 		 * this path should never hit. However, this is it not a hot
1421 		 * path so we print a message to aid future updates.
1422 		 */
1423 		dev_err(&hbus->hdev->device,
1424 			"Unexpected vPCI protocol, update driver.");
1425 		goto free_int_desc;
1426 	}
1427 
1428 	ret = vmbus_sendpacket(hpdev->hbus->hdev->channel, &ctxt.int_pkts,
1429 			       size, (unsigned long)&ctxt.pci_pkt,
1430 			       VM_PKT_DATA_INBAND,
1431 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1432 	if (ret) {
1433 		dev_err(&hbus->hdev->device,
1434 			"Sending request for interrupt failed: 0x%x",
1435 			comp.comp_pkt.completion_status);
1436 		goto free_int_desc;
1437 	}
1438 
1439 	/*
1440 	 * Prevents hv_pci_onchannelcallback() from running concurrently
1441 	 * in the tasklet.
1442 	 */
1443 	tasklet_disable(&channel->callback_event);
1444 
1445 	/*
1446 	 * Since this function is called with IRQ locks held, can't
1447 	 * do normal wait for completion; instead poll.
1448 	 */
1449 	while (!try_wait_for_completion(&comp.comp_pkt.host_event)) {
1450 		unsigned long flags;
1451 
1452 		/* 0xFFFF means an invalid PCI VENDOR ID. */
1453 		if (hv_pcifront_get_vendor_id(hpdev) == 0xFFFF) {
1454 			dev_err_once(&hbus->hdev->device,
1455 				     "the device has gone\n");
1456 			goto enable_tasklet;
1457 		}
1458 
1459 		/*
1460 		 * Make sure that the ring buffer data structure doesn't get
1461 		 * freed while we dereference the ring buffer pointer.  Test
1462 		 * for the channel's onchannel_callback being NULL within a
1463 		 * sched_lock critical section.  See also the inline comments
1464 		 * in vmbus_reset_channel_cb().
1465 		 */
1466 		spin_lock_irqsave(&channel->sched_lock, flags);
1467 		if (unlikely(channel->onchannel_callback == NULL)) {
1468 			spin_unlock_irqrestore(&channel->sched_lock, flags);
1469 			goto enable_tasklet;
1470 		}
1471 		hv_pci_onchannelcallback(hbus);
1472 		spin_unlock_irqrestore(&channel->sched_lock, flags);
1473 
1474 		if (hpdev->state == hv_pcichild_ejecting) {
1475 			dev_err_once(&hbus->hdev->device,
1476 				     "the device is being ejected\n");
1477 			goto enable_tasklet;
1478 		}
1479 
1480 		udelay(100);
1481 	}
1482 
1483 	tasklet_enable(&channel->callback_event);
1484 
1485 	if (comp.comp_pkt.completion_status < 0) {
1486 		dev_err(&hbus->hdev->device,
1487 			"Request for interrupt failed: 0x%x",
1488 			comp.comp_pkt.completion_status);
1489 		goto free_int_desc;
1490 	}
1491 
1492 	/*
1493 	 * Record the assignment so that this can be unwound later. Using
1494 	 * irq_set_chip_data() here would be appropriate, but the lock it takes
1495 	 * is already held.
1496 	 */
1497 	*int_desc = comp.int_desc;
1498 	data->chip_data = int_desc;
1499 
1500 	/* Pass up the result. */
1501 	msg->address_hi = comp.int_desc.address >> 32;
1502 	msg->address_lo = comp.int_desc.address & 0xffffffff;
1503 	msg->data = comp.int_desc.data;
1504 
1505 	put_pcichild(hpdev);
1506 	return;
1507 
1508 enable_tasklet:
1509 	tasklet_enable(&channel->callback_event);
1510 free_int_desc:
1511 	kfree(int_desc);
1512 drop_reference:
1513 	put_pcichild(hpdev);
1514 return_null_message:
1515 	msg->address_hi = 0;
1516 	msg->address_lo = 0;
1517 	msg->data = 0;
1518 }
1519 
1520 /* HW Interrupt Chip Descriptor */
1521 static struct irq_chip hv_msi_irq_chip = {
1522 	.name			= "Hyper-V PCIe MSI",
1523 	.irq_compose_msi_msg	= hv_compose_msi_msg,
1524 	.irq_set_affinity	= hv_set_affinity,
1525 	.irq_ack		= irq_chip_ack_parent,
1526 	.irq_mask		= hv_irq_mask,
1527 	.irq_unmask		= hv_irq_unmask,
1528 };
1529 
1530 static irq_hw_number_t hv_msi_domain_ops_get_hwirq(struct msi_domain_info *info,
1531 						   msi_alloc_info_t *arg)
1532 {
1533 	return arg->msi_hwirq;
1534 }
1535 
1536 static struct msi_domain_ops hv_msi_ops = {
1537 	.get_hwirq	= hv_msi_domain_ops_get_hwirq,
1538 	.msi_prepare	= pci_msi_prepare,
1539 	.set_desc	= pci_msi_set_desc,
1540 	.msi_free	= hv_msi_free,
1541 };
1542 
1543 /**
1544  * hv_pcie_init_irq_domain() - Initialize IRQ domain
1545  * @hbus:	The root PCI bus
1546  *
1547  * This function creates an IRQ domain which will be used for
1548  * interrupts from devices that have been passed through.  These
1549  * devices only support MSI and MSI-X, not line-based interrupts
1550  * or simulations of line-based interrupts through PCIe's
1551  * fabric-layer messages.  Because interrupts are remapped, we
1552  * can support multi-message MSI here.
1553  *
1554  * Return: '0' on success and error value on failure
1555  */
1556 static int hv_pcie_init_irq_domain(struct hv_pcibus_device *hbus)
1557 {
1558 	hbus->msi_info.chip = &hv_msi_irq_chip;
1559 	hbus->msi_info.ops = &hv_msi_ops;
1560 	hbus->msi_info.flags = (MSI_FLAG_USE_DEF_DOM_OPS |
1561 		MSI_FLAG_USE_DEF_CHIP_OPS | MSI_FLAG_MULTI_PCI_MSI |
1562 		MSI_FLAG_PCI_MSIX);
1563 	hbus->msi_info.handler = handle_edge_irq;
1564 	hbus->msi_info.handler_name = "edge";
1565 	hbus->msi_info.data = hbus;
1566 	hbus->irq_domain = pci_msi_create_irq_domain(hbus->sysdata.fwnode,
1567 						     &hbus->msi_info,
1568 						     x86_vector_domain);
1569 	if (!hbus->irq_domain) {
1570 		dev_err(&hbus->hdev->device,
1571 			"Failed to build an MSI IRQ domain\n");
1572 		return -ENODEV;
1573 	}
1574 
1575 	return 0;
1576 }
1577 
1578 /**
1579  * get_bar_size() - Get the address space consumed by a BAR
1580  * @bar_val:	Value that a BAR returned after -1 was written
1581  *              to it.
1582  *
1583  * This function returns the size of the BAR, rounded up to 1
1584  * page.  It has to be rounded up because the hypervisor's page
1585  * table entry that maps the BAR into the VM can't specify an
1586  * offset within a page.  The invariant is that the hypervisor
1587  * must place any BARs of smaller than page length at the
1588  * beginning of a page.
1589  *
1590  * Return:	Size in bytes of the consumed MMIO space.
1591  */
1592 static u64 get_bar_size(u64 bar_val)
1593 {
1594 	return round_up((1 + ~(bar_val & PCI_BASE_ADDRESS_MEM_MASK)),
1595 			PAGE_SIZE);
1596 }
1597 
1598 /**
1599  * survey_child_resources() - Total all MMIO requirements
1600  * @hbus:	Root PCI bus, as understood by this driver
1601  */
1602 static void survey_child_resources(struct hv_pcibus_device *hbus)
1603 {
1604 	struct hv_pci_dev *hpdev;
1605 	resource_size_t bar_size = 0;
1606 	unsigned long flags;
1607 	struct completion *event;
1608 	u64 bar_val;
1609 	int i;
1610 
1611 	/* If nobody is waiting on the answer, don't compute it. */
1612 	event = xchg(&hbus->survey_event, NULL);
1613 	if (!event)
1614 		return;
1615 
1616 	/* If the answer has already been computed, go with it. */
1617 	if (hbus->low_mmio_space || hbus->high_mmio_space) {
1618 		complete(event);
1619 		return;
1620 	}
1621 
1622 	spin_lock_irqsave(&hbus->device_list_lock, flags);
1623 
1624 	/*
1625 	 * Due to an interesting quirk of the PCI spec, all memory regions
1626 	 * for a child device are a power of 2 in size and aligned in memory,
1627 	 * so it's sufficient to just add them up without tracking alignment.
1628 	 */
1629 	list_for_each_entry(hpdev, &hbus->children, list_entry) {
1630 		for (i = 0; i < PCI_STD_NUM_BARS; i++) {
1631 			if (hpdev->probed_bar[i] & PCI_BASE_ADDRESS_SPACE_IO)
1632 				dev_err(&hbus->hdev->device,
1633 					"There's an I/O BAR in this list!\n");
1634 
1635 			if (hpdev->probed_bar[i] != 0) {
1636 				/*
1637 				 * A probed BAR has all the upper bits set that
1638 				 * can be changed.
1639 				 */
1640 
1641 				bar_val = hpdev->probed_bar[i];
1642 				if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
1643 					bar_val |=
1644 					((u64)hpdev->probed_bar[++i] << 32);
1645 				else
1646 					bar_val |= 0xffffffff00000000ULL;
1647 
1648 				bar_size = get_bar_size(bar_val);
1649 
1650 				if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
1651 					hbus->high_mmio_space += bar_size;
1652 				else
1653 					hbus->low_mmio_space += bar_size;
1654 			}
1655 		}
1656 	}
1657 
1658 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1659 	complete(event);
1660 }
1661 
1662 /**
1663  * prepopulate_bars() - Fill in BARs with defaults
1664  * @hbus:	Root PCI bus, as understood by this driver
1665  *
1666  * The core PCI driver code seems much, much happier if the BARs
1667  * for a device have values upon first scan. So fill them in.
1668  * The algorithm below works down from large sizes to small,
1669  * attempting to pack the assignments optimally. The assumption,
1670  * enforced in other parts of the code, is that the beginning of
1671  * the memory-mapped I/O space will be aligned on the largest
1672  * BAR size.
1673  */
1674 static void prepopulate_bars(struct hv_pcibus_device *hbus)
1675 {
1676 	resource_size_t high_size = 0;
1677 	resource_size_t low_size = 0;
1678 	resource_size_t high_base = 0;
1679 	resource_size_t low_base = 0;
1680 	resource_size_t bar_size;
1681 	struct hv_pci_dev *hpdev;
1682 	unsigned long flags;
1683 	u64 bar_val;
1684 	u32 command;
1685 	bool high;
1686 	int i;
1687 
1688 	if (hbus->low_mmio_space) {
1689 		low_size = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
1690 		low_base = hbus->low_mmio_res->start;
1691 	}
1692 
1693 	if (hbus->high_mmio_space) {
1694 		high_size = 1ULL <<
1695 			(63 - __builtin_clzll(hbus->high_mmio_space));
1696 		high_base = hbus->high_mmio_res->start;
1697 	}
1698 
1699 	spin_lock_irqsave(&hbus->device_list_lock, flags);
1700 
1701 	/*
1702 	 * Clear the memory enable bit, in case it's already set. This occurs
1703 	 * in the suspend path of hibernation, where the device is suspended,
1704 	 * resumed and suspended again: see hibernation_snapshot() and
1705 	 * hibernation_platform_enter().
1706 	 *
1707 	 * If the memory enable bit is already set, Hyper-V sliently ignores
1708 	 * the below BAR updates, and the related PCI device driver can not
1709 	 * work, because reading from the device register(s) always returns
1710 	 * 0xFFFFFFFF.
1711 	 */
1712 	list_for_each_entry(hpdev, &hbus->children, list_entry) {
1713 		_hv_pcifront_read_config(hpdev, PCI_COMMAND, 2, &command);
1714 		command &= ~PCI_COMMAND_MEMORY;
1715 		_hv_pcifront_write_config(hpdev, PCI_COMMAND, 2, command);
1716 	}
1717 
1718 	/* Pick addresses for the BARs. */
1719 	do {
1720 		list_for_each_entry(hpdev, &hbus->children, list_entry) {
1721 			for (i = 0; i < PCI_STD_NUM_BARS; i++) {
1722 				bar_val = hpdev->probed_bar[i];
1723 				if (bar_val == 0)
1724 					continue;
1725 				high = bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64;
1726 				if (high) {
1727 					bar_val |=
1728 						((u64)hpdev->probed_bar[i + 1]
1729 						 << 32);
1730 				} else {
1731 					bar_val |= 0xffffffffULL << 32;
1732 				}
1733 				bar_size = get_bar_size(bar_val);
1734 				if (high) {
1735 					if (high_size != bar_size) {
1736 						i++;
1737 						continue;
1738 					}
1739 					_hv_pcifront_write_config(hpdev,
1740 						PCI_BASE_ADDRESS_0 + (4 * i),
1741 						4,
1742 						(u32)(high_base & 0xffffff00));
1743 					i++;
1744 					_hv_pcifront_write_config(hpdev,
1745 						PCI_BASE_ADDRESS_0 + (4 * i),
1746 						4, (u32)(high_base >> 32));
1747 					high_base += bar_size;
1748 				} else {
1749 					if (low_size != bar_size)
1750 						continue;
1751 					_hv_pcifront_write_config(hpdev,
1752 						PCI_BASE_ADDRESS_0 + (4 * i),
1753 						4,
1754 						(u32)(low_base & 0xffffff00));
1755 					low_base += bar_size;
1756 				}
1757 			}
1758 			if (high_size <= 1 && low_size <= 1) {
1759 				/* Set the memory enable bit. */
1760 				_hv_pcifront_read_config(hpdev, PCI_COMMAND, 2,
1761 							 &command);
1762 				command |= PCI_COMMAND_MEMORY;
1763 				_hv_pcifront_write_config(hpdev, PCI_COMMAND, 2,
1764 							  command);
1765 				break;
1766 			}
1767 		}
1768 
1769 		high_size >>= 1;
1770 		low_size >>= 1;
1771 	}  while (high_size || low_size);
1772 
1773 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1774 }
1775 
1776 /*
1777  * Assign entries in sysfs pci slot directory.
1778  *
1779  * Note that this function does not need to lock the children list
1780  * because it is called from pci_devices_present_work which
1781  * is serialized with hv_eject_device_work because they are on the
1782  * same ordered workqueue. Therefore hbus->children list will not change
1783  * even when pci_create_slot sleeps.
1784  */
1785 static void hv_pci_assign_slots(struct hv_pcibus_device *hbus)
1786 {
1787 	struct hv_pci_dev *hpdev;
1788 	char name[SLOT_NAME_SIZE];
1789 	int slot_nr;
1790 
1791 	list_for_each_entry(hpdev, &hbus->children, list_entry) {
1792 		if (hpdev->pci_slot)
1793 			continue;
1794 
1795 		slot_nr = PCI_SLOT(wslot_to_devfn(hpdev->desc.win_slot.slot));
1796 		snprintf(name, SLOT_NAME_SIZE, "%u", hpdev->desc.ser);
1797 		hpdev->pci_slot = pci_create_slot(hbus->pci_bus, slot_nr,
1798 					  name, NULL);
1799 		if (IS_ERR(hpdev->pci_slot)) {
1800 			pr_warn("pci_create slot %s failed\n", name);
1801 			hpdev->pci_slot = NULL;
1802 		}
1803 	}
1804 }
1805 
1806 /*
1807  * Remove entries in sysfs pci slot directory.
1808  */
1809 static void hv_pci_remove_slots(struct hv_pcibus_device *hbus)
1810 {
1811 	struct hv_pci_dev *hpdev;
1812 
1813 	list_for_each_entry(hpdev, &hbus->children, list_entry) {
1814 		if (!hpdev->pci_slot)
1815 			continue;
1816 		pci_destroy_slot(hpdev->pci_slot);
1817 		hpdev->pci_slot = NULL;
1818 	}
1819 }
1820 
1821 /*
1822  * Set NUMA node for the devices on the bus
1823  */
1824 static void hv_pci_assign_numa_node(struct hv_pcibus_device *hbus)
1825 {
1826 	struct pci_dev *dev;
1827 	struct pci_bus *bus = hbus->pci_bus;
1828 	struct hv_pci_dev *hv_dev;
1829 
1830 	list_for_each_entry(dev, &bus->devices, bus_list) {
1831 		hv_dev = get_pcichild_wslot(hbus, devfn_to_wslot(dev->devfn));
1832 		if (!hv_dev)
1833 			continue;
1834 
1835 		if (hv_dev->desc.flags & HV_PCI_DEVICE_FLAG_NUMA_AFFINITY)
1836 			set_dev_node(&dev->dev, hv_dev->desc.virtual_numa_node);
1837 
1838 		put_pcichild(hv_dev);
1839 	}
1840 }
1841 
1842 /**
1843  * create_root_hv_pci_bus() - Expose a new root PCI bus
1844  * @hbus:	Root PCI bus, as understood by this driver
1845  *
1846  * Return: 0 on success, -errno on failure
1847  */
1848 static int create_root_hv_pci_bus(struct hv_pcibus_device *hbus)
1849 {
1850 	/* Register the device */
1851 	hbus->pci_bus = pci_create_root_bus(&hbus->hdev->device,
1852 					    0, /* bus number is always zero */
1853 					    &hv_pcifront_ops,
1854 					    &hbus->sysdata,
1855 					    &hbus->resources_for_children);
1856 	if (!hbus->pci_bus)
1857 		return -ENODEV;
1858 
1859 	hbus->pci_bus->msi = &hbus->msi_chip;
1860 	hbus->pci_bus->msi->dev = &hbus->hdev->device;
1861 
1862 	pci_lock_rescan_remove();
1863 	pci_scan_child_bus(hbus->pci_bus);
1864 	hv_pci_assign_numa_node(hbus);
1865 	pci_bus_assign_resources(hbus->pci_bus);
1866 	hv_pci_assign_slots(hbus);
1867 	pci_bus_add_devices(hbus->pci_bus);
1868 	pci_unlock_rescan_remove();
1869 	hbus->state = hv_pcibus_installed;
1870 	return 0;
1871 }
1872 
1873 struct q_res_req_compl {
1874 	struct completion host_event;
1875 	struct hv_pci_dev *hpdev;
1876 };
1877 
1878 /**
1879  * q_resource_requirements() - Query Resource Requirements
1880  * @context:		The completion context.
1881  * @resp:		The response that came from the host.
1882  * @resp_packet_size:	The size in bytes of resp.
1883  *
1884  * This function is invoked on completion of a Query Resource
1885  * Requirements packet.
1886  */
1887 static void q_resource_requirements(void *context, struct pci_response *resp,
1888 				    int resp_packet_size)
1889 {
1890 	struct q_res_req_compl *completion = context;
1891 	struct pci_q_res_req_response *q_res_req =
1892 		(struct pci_q_res_req_response *)resp;
1893 	int i;
1894 
1895 	if (resp->status < 0) {
1896 		dev_err(&completion->hpdev->hbus->hdev->device,
1897 			"query resource requirements failed: %x\n",
1898 			resp->status);
1899 	} else {
1900 		for (i = 0; i < PCI_STD_NUM_BARS; i++) {
1901 			completion->hpdev->probed_bar[i] =
1902 				q_res_req->probed_bar[i];
1903 		}
1904 	}
1905 
1906 	complete(&completion->host_event);
1907 }
1908 
1909 /**
1910  * new_pcichild_device() - Create a new child device
1911  * @hbus:	The internal struct tracking this root PCI bus.
1912  * @desc:	The information supplied so far from the host
1913  *              about the device.
1914  *
1915  * This function creates the tracking structure for a new child
1916  * device and kicks off the process of figuring out what it is.
1917  *
1918  * Return: Pointer to the new tracking struct
1919  */
1920 static struct hv_pci_dev *new_pcichild_device(struct hv_pcibus_device *hbus,
1921 		struct hv_pcidev_description *desc)
1922 {
1923 	struct hv_pci_dev *hpdev;
1924 	struct pci_child_message *res_req;
1925 	struct q_res_req_compl comp_pkt;
1926 	struct {
1927 		struct pci_packet init_packet;
1928 		u8 buffer[sizeof(struct pci_child_message)];
1929 	} pkt;
1930 	unsigned long flags;
1931 	int ret;
1932 
1933 	hpdev = kzalloc(sizeof(*hpdev), GFP_KERNEL);
1934 	if (!hpdev)
1935 		return NULL;
1936 
1937 	hpdev->hbus = hbus;
1938 
1939 	memset(&pkt, 0, sizeof(pkt));
1940 	init_completion(&comp_pkt.host_event);
1941 	comp_pkt.hpdev = hpdev;
1942 	pkt.init_packet.compl_ctxt = &comp_pkt;
1943 	pkt.init_packet.completion_func = q_resource_requirements;
1944 	res_req = (struct pci_child_message *)&pkt.init_packet.message;
1945 	res_req->message_type.type = PCI_QUERY_RESOURCE_REQUIREMENTS;
1946 	res_req->wslot.slot = desc->win_slot.slot;
1947 
1948 	ret = vmbus_sendpacket(hbus->hdev->channel, res_req,
1949 			       sizeof(struct pci_child_message),
1950 			       (unsigned long)&pkt.init_packet,
1951 			       VM_PKT_DATA_INBAND,
1952 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1953 	if (ret)
1954 		goto error;
1955 
1956 	if (wait_for_response(hbus->hdev, &comp_pkt.host_event))
1957 		goto error;
1958 
1959 	hpdev->desc = *desc;
1960 	refcount_set(&hpdev->refs, 1);
1961 	get_pcichild(hpdev);
1962 	spin_lock_irqsave(&hbus->device_list_lock, flags);
1963 
1964 	list_add_tail(&hpdev->list_entry, &hbus->children);
1965 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1966 	return hpdev;
1967 
1968 error:
1969 	kfree(hpdev);
1970 	return NULL;
1971 }
1972 
1973 /**
1974  * get_pcichild_wslot() - Find device from slot
1975  * @hbus:	Root PCI bus, as understood by this driver
1976  * @wslot:	Location on the bus
1977  *
1978  * This function looks up a PCI device and returns the internal
1979  * representation of it.  It acquires a reference on it, so that
1980  * the device won't be deleted while somebody is using it.  The
1981  * caller is responsible for calling put_pcichild() to release
1982  * this reference.
1983  *
1984  * Return:	Internal representation of a PCI device
1985  */
1986 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
1987 					     u32 wslot)
1988 {
1989 	unsigned long flags;
1990 	struct hv_pci_dev *iter, *hpdev = NULL;
1991 
1992 	spin_lock_irqsave(&hbus->device_list_lock, flags);
1993 	list_for_each_entry(iter, &hbus->children, list_entry) {
1994 		if (iter->desc.win_slot.slot == wslot) {
1995 			hpdev = iter;
1996 			get_pcichild(hpdev);
1997 			break;
1998 		}
1999 	}
2000 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2001 
2002 	return hpdev;
2003 }
2004 
2005 /**
2006  * pci_devices_present_work() - Handle new list of child devices
2007  * @work:	Work struct embedded in struct hv_dr_work
2008  *
2009  * "Bus Relations" is the Windows term for "children of this
2010  * bus."  The terminology is preserved here for people trying to
2011  * debug the interaction between Hyper-V and Linux.  This
2012  * function is called when the parent partition reports a list
2013  * of functions that should be observed under this PCI Express
2014  * port (bus).
2015  *
2016  * This function updates the list, and must tolerate being
2017  * called multiple times with the same information.  The typical
2018  * number of child devices is one, with very atypical cases
2019  * involving three or four, so the algorithms used here can be
2020  * simple and inefficient.
2021  *
2022  * It must also treat the omission of a previously observed device as
2023  * notification that the device no longer exists.
2024  *
2025  * Note that this function is serialized with hv_eject_device_work(),
2026  * because both are pushed to the ordered workqueue hbus->wq.
2027  */
2028 static void pci_devices_present_work(struct work_struct *work)
2029 {
2030 	u32 child_no;
2031 	bool found;
2032 	struct hv_pcidev_description *new_desc;
2033 	struct hv_pci_dev *hpdev;
2034 	struct hv_pcibus_device *hbus;
2035 	struct list_head removed;
2036 	struct hv_dr_work *dr_wrk;
2037 	struct hv_dr_state *dr = NULL;
2038 	unsigned long flags;
2039 
2040 	dr_wrk = container_of(work, struct hv_dr_work, wrk);
2041 	hbus = dr_wrk->bus;
2042 	kfree(dr_wrk);
2043 
2044 	INIT_LIST_HEAD(&removed);
2045 
2046 	/* Pull this off the queue and process it if it was the last one. */
2047 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2048 	while (!list_empty(&hbus->dr_list)) {
2049 		dr = list_first_entry(&hbus->dr_list, struct hv_dr_state,
2050 				      list_entry);
2051 		list_del(&dr->list_entry);
2052 
2053 		/* Throw this away if the list still has stuff in it. */
2054 		if (!list_empty(&hbus->dr_list)) {
2055 			kfree(dr);
2056 			continue;
2057 		}
2058 	}
2059 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2060 
2061 	if (!dr) {
2062 		put_hvpcibus(hbus);
2063 		return;
2064 	}
2065 
2066 	/* First, mark all existing children as reported missing. */
2067 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2068 	list_for_each_entry(hpdev, &hbus->children, list_entry) {
2069 		hpdev->reported_missing = true;
2070 	}
2071 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2072 
2073 	/* Next, add back any reported devices. */
2074 	for (child_no = 0; child_no < dr->device_count; child_no++) {
2075 		found = false;
2076 		new_desc = &dr->func[child_no];
2077 
2078 		spin_lock_irqsave(&hbus->device_list_lock, flags);
2079 		list_for_each_entry(hpdev, &hbus->children, list_entry) {
2080 			if ((hpdev->desc.win_slot.slot == new_desc->win_slot.slot) &&
2081 			    (hpdev->desc.v_id == new_desc->v_id) &&
2082 			    (hpdev->desc.d_id == new_desc->d_id) &&
2083 			    (hpdev->desc.ser == new_desc->ser)) {
2084 				hpdev->reported_missing = false;
2085 				found = true;
2086 			}
2087 		}
2088 		spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2089 
2090 		if (!found) {
2091 			hpdev = new_pcichild_device(hbus, new_desc);
2092 			if (!hpdev)
2093 				dev_err(&hbus->hdev->device,
2094 					"couldn't record a child device.\n");
2095 		}
2096 	}
2097 
2098 	/* Move missing children to a list on the stack. */
2099 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2100 	do {
2101 		found = false;
2102 		list_for_each_entry(hpdev, &hbus->children, list_entry) {
2103 			if (hpdev->reported_missing) {
2104 				found = true;
2105 				put_pcichild(hpdev);
2106 				list_move_tail(&hpdev->list_entry, &removed);
2107 				break;
2108 			}
2109 		}
2110 	} while (found);
2111 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2112 
2113 	/* Delete everything that should no longer exist. */
2114 	while (!list_empty(&removed)) {
2115 		hpdev = list_first_entry(&removed, struct hv_pci_dev,
2116 					 list_entry);
2117 		list_del(&hpdev->list_entry);
2118 
2119 		if (hpdev->pci_slot)
2120 			pci_destroy_slot(hpdev->pci_slot);
2121 
2122 		put_pcichild(hpdev);
2123 	}
2124 
2125 	switch (hbus->state) {
2126 	case hv_pcibus_installed:
2127 		/*
2128 		 * Tell the core to rescan bus
2129 		 * because there may have been changes.
2130 		 */
2131 		pci_lock_rescan_remove();
2132 		pci_scan_child_bus(hbus->pci_bus);
2133 		hv_pci_assign_numa_node(hbus);
2134 		hv_pci_assign_slots(hbus);
2135 		pci_unlock_rescan_remove();
2136 		break;
2137 
2138 	case hv_pcibus_init:
2139 	case hv_pcibus_probed:
2140 		survey_child_resources(hbus);
2141 		break;
2142 
2143 	default:
2144 		break;
2145 	}
2146 
2147 	put_hvpcibus(hbus);
2148 	kfree(dr);
2149 }
2150 
2151 /**
2152  * hv_pci_start_relations_work() - Queue work to start device discovery
2153  * @hbus:	Root PCI bus, as understood by this driver
2154  * @dr:		The list of children returned from host
2155  *
2156  * Return:  0 on success, -errno on failure
2157  */
2158 static int hv_pci_start_relations_work(struct hv_pcibus_device *hbus,
2159 				       struct hv_dr_state *dr)
2160 {
2161 	struct hv_dr_work *dr_wrk;
2162 	unsigned long flags;
2163 	bool pending_dr;
2164 
2165 	if (hbus->state == hv_pcibus_removing) {
2166 		dev_info(&hbus->hdev->device,
2167 			 "PCI VMBus BUS_RELATIONS: ignored\n");
2168 		return -ENOENT;
2169 	}
2170 
2171 	dr_wrk = kzalloc(sizeof(*dr_wrk), GFP_NOWAIT);
2172 	if (!dr_wrk)
2173 		return -ENOMEM;
2174 
2175 	INIT_WORK(&dr_wrk->wrk, pci_devices_present_work);
2176 	dr_wrk->bus = hbus;
2177 
2178 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2179 	/*
2180 	 * If pending_dr is true, we have already queued a work,
2181 	 * which will see the new dr. Otherwise, we need to
2182 	 * queue a new work.
2183 	 */
2184 	pending_dr = !list_empty(&hbus->dr_list);
2185 	list_add_tail(&dr->list_entry, &hbus->dr_list);
2186 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2187 
2188 	if (pending_dr) {
2189 		kfree(dr_wrk);
2190 	} else {
2191 		get_hvpcibus(hbus);
2192 		queue_work(hbus->wq, &dr_wrk->wrk);
2193 	}
2194 
2195 	return 0;
2196 }
2197 
2198 /**
2199  * hv_pci_devices_present() - Handle list of new children
2200  * @hbus:      Root PCI bus, as understood by this driver
2201  * @relations: Packet from host listing children
2202  *
2203  * Process a new list of devices on the bus. The list of devices is
2204  * discovered by VSP and sent to us via VSP message PCI_BUS_RELATIONS,
2205  * whenever a new list of devices for this bus appears.
2206  */
2207 static void hv_pci_devices_present(struct hv_pcibus_device *hbus,
2208 				   struct pci_bus_relations *relations)
2209 {
2210 	struct hv_dr_state *dr;
2211 	int i;
2212 
2213 	dr = kzalloc(offsetof(struct hv_dr_state, func) +
2214 		     (sizeof(struct hv_pcidev_description) *
2215 		      (relations->device_count)), GFP_NOWAIT);
2216 
2217 	if (!dr)
2218 		return;
2219 
2220 	dr->device_count = relations->device_count;
2221 	for (i = 0; i < dr->device_count; i++) {
2222 		dr->func[i].v_id = relations->func[i].v_id;
2223 		dr->func[i].d_id = relations->func[i].d_id;
2224 		dr->func[i].rev = relations->func[i].rev;
2225 		dr->func[i].prog_intf = relations->func[i].prog_intf;
2226 		dr->func[i].subclass = relations->func[i].subclass;
2227 		dr->func[i].base_class = relations->func[i].base_class;
2228 		dr->func[i].subsystem_id = relations->func[i].subsystem_id;
2229 		dr->func[i].win_slot = relations->func[i].win_slot;
2230 		dr->func[i].ser = relations->func[i].ser;
2231 	}
2232 
2233 	if (hv_pci_start_relations_work(hbus, dr))
2234 		kfree(dr);
2235 }
2236 
2237 /**
2238  * hv_pci_devices_present2() - Handle list of new children
2239  * @hbus:	Root PCI bus, as understood by this driver
2240  * @relations:	Packet from host listing children
2241  *
2242  * This function is the v2 version of hv_pci_devices_present()
2243  */
2244 static void hv_pci_devices_present2(struct hv_pcibus_device *hbus,
2245 				    struct pci_bus_relations2 *relations)
2246 {
2247 	struct hv_dr_state *dr;
2248 	int i;
2249 
2250 	dr = kzalloc(offsetof(struct hv_dr_state, func) +
2251 		     (sizeof(struct hv_pcidev_description) *
2252 		      (relations->device_count)), GFP_NOWAIT);
2253 
2254 	if (!dr)
2255 		return;
2256 
2257 	dr->device_count = relations->device_count;
2258 	for (i = 0; i < dr->device_count; i++) {
2259 		dr->func[i].v_id = relations->func[i].v_id;
2260 		dr->func[i].d_id = relations->func[i].d_id;
2261 		dr->func[i].rev = relations->func[i].rev;
2262 		dr->func[i].prog_intf = relations->func[i].prog_intf;
2263 		dr->func[i].subclass = relations->func[i].subclass;
2264 		dr->func[i].base_class = relations->func[i].base_class;
2265 		dr->func[i].subsystem_id = relations->func[i].subsystem_id;
2266 		dr->func[i].win_slot = relations->func[i].win_slot;
2267 		dr->func[i].ser = relations->func[i].ser;
2268 		dr->func[i].flags = relations->func[i].flags;
2269 		dr->func[i].virtual_numa_node =
2270 			relations->func[i].virtual_numa_node;
2271 	}
2272 
2273 	if (hv_pci_start_relations_work(hbus, dr))
2274 		kfree(dr);
2275 }
2276 
2277 /**
2278  * hv_eject_device_work() - Asynchronously handles ejection
2279  * @work:	Work struct embedded in internal device struct
2280  *
2281  * This function handles ejecting a device.  Windows will
2282  * attempt to gracefully eject a device, waiting 60 seconds to
2283  * hear back from the guest OS that this completed successfully.
2284  * If this timer expires, the device will be forcibly removed.
2285  */
2286 static void hv_eject_device_work(struct work_struct *work)
2287 {
2288 	struct pci_eject_response *ejct_pkt;
2289 	struct hv_pcibus_device *hbus;
2290 	struct hv_pci_dev *hpdev;
2291 	struct pci_dev *pdev;
2292 	unsigned long flags;
2293 	int wslot;
2294 	struct {
2295 		struct pci_packet pkt;
2296 		u8 buffer[sizeof(struct pci_eject_response)];
2297 	} ctxt;
2298 
2299 	hpdev = container_of(work, struct hv_pci_dev, wrk);
2300 	hbus = hpdev->hbus;
2301 
2302 	WARN_ON(hpdev->state != hv_pcichild_ejecting);
2303 
2304 	/*
2305 	 * Ejection can come before or after the PCI bus has been set up, so
2306 	 * attempt to find it and tear down the bus state, if it exists.  This
2307 	 * must be done without constructs like pci_domain_nr(hbus->pci_bus)
2308 	 * because hbus->pci_bus may not exist yet.
2309 	 */
2310 	wslot = wslot_to_devfn(hpdev->desc.win_slot.slot);
2311 	pdev = pci_get_domain_bus_and_slot(hbus->sysdata.domain, 0, wslot);
2312 	if (pdev) {
2313 		pci_lock_rescan_remove();
2314 		pci_stop_and_remove_bus_device(pdev);
2315 		pci_dev_put(pdev);
2316 		pci_unlock_rescan_remove();
2317 	}
2318 
2319 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2320 	list_del(&hpdev->list_entry);
2321 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2322 
2323 	if (hpdev->pci_slot)
2324 		pci_destroy_slot(hpdev->pci_slot);
2325 
2326 	memset(&ctxt, 0, sizeof(ctxt));
2327 	ejct_pkt = (struct pci_eject_response *)&ctxt.pkt.message;
2328 	ejct_pkt->message_type.type = PCI_EJECTION_COMPLETE;
2329 	ejct_pkt->wslot.slot = hpdev->desc.win_slot.slot;
2330 	vmbus_sendpacket(hbus->hdev->channel, ejct_pkt,
2331 			 sizeof(*ejct_pkt), (unsigned long)&ctxt.pkt,
2332 			 VM_PKT_DATA_INBAND, 0);
2333 
2334 	/* For the get_pcichild() in hv_pci_eject_device() */
2335 	put_pcichild(hpdev);
2336 	/* For the two refs got in new_pcichild_device() */
2337 	put_pcichild(hpdev);
2338 	put_pcichild(hpdev);
2339 	/* hpdev has been freed. Do not use it any more. */
2340 
2341 	put_hvpcibus(hbus);
2342 }
2343 
2344 /**
2345  * hv_pci_eject_device() - Handles device ejection
2346  * @hpdev:	Internal device tracking struct
2347  *
2348  * This function is invoked when an ejection packet arrives.  It
2349  * just schedules work so that we don't re-enter the packet
2350  * delivery code handling the ejection.
2351  */
2352 static void hv_pci_eject_device(struct hv_pci_dev *hpdev)
2353 {
2354 	struct hv_pcibus_device *hbus = hpdev->hbus;
2355 	struct hv_device *hdev = hbus->hdev;
2356 
2357 	if (hbus->state == hv_pcibus_removing) {
2358 		dev_info(&hdev->device, "PCI VMBus EJECT: ignored\n");
2359 		return;
2360 	}
2361 
2362 	hpdev->state = hv_pcichild_ejecting;
2363 	get_pcichild(hpdev);
2364 	INIT_WORK(&hpdev->wrk, hv_eject_device_work);
2365 	get_hvpcibus(hbus);
2366 	queue_work(hbus->wq, &hpdev->wrk);
2367 }
2368 
2369 /**
2370  * hv_pci_onchannelcallback() - Handles incoming packets
2371  * @context:	Internal bus tracking struct
2372  *
2373  * This function is invoked whenever the host sends a packet to
2374  * this channel (which is private to this root PCI bus).
2375  */
2376 static void hv_pci_onchannelcallback(void *context)
2377 {
2378 	const int packet_size = 0x100;
2379 	int ret;
2380 	struct hv_pcibus_device *hbus = context;
2381 	u32 bytes_recvd;
2382 	u64 req_id;
2383 	struct vmpacket_descriptor *desc;
2384 	unsigned char *buffer;
2385 	int bufferlen = packet_size;
2386 	struct pci_packet *comp_packet;
2387 	struct pci_response *response;
2388 	struct pci_incoming_message *new_message;
2389 	struct pci_bus_relations *bus_rel;
2390 	struct pci_bus_relations2 *bus_rel2;
2391 	struct pci_dev_inval_block *inval;
2392 	struct pci_dev_incoming *dev_message;
2393 	struct hv_pci_dev *hpdev;
2394 
2395 	buffer = kmalloc(bufferlen, GFP_ATOMIC);
2396 	if (!buffer)
2397 		return;
2398 
2399 	while (1) {
2400 		ret = vmbus_recvpacket_raw(hbus->hdev->channel, buffer,
2401 					   bufferlen, &bytes_recvd, &req_id);
2402 
2403 		if (ret == -ENOBUFS) {
2404 			kfree(buffer);
2405 			/* Handle large packet */
2406 			bufferlen = bytes_recvd;
2407 			buffer = kmalloc(bytes_recvd, GFP_ATOMIC);
2408 			if (!buffer)
2409 				return;
2410 			continue;
2411 		}
2412 
2413 		/* Zero length indicates there are no more packets. */
2414 		if (ret || !bytes_recvd)
2415 			break;
2416 
2417 		/*
2418 		 * All incoming packets must be at least as large as a
2419 		 * response.
2420 		 */
2421 		if (bytes_recvd <= sizeof(struct pci_response))
2422 			continue;
2423 		desc = (struct vmpacket_descriptor *)buffer;
2424 
2425 		switch (desc->type) {
2426 		case VM_PKT_COMP:
2427 
2428 			/*
2429 			 * The host is trusted, and thus it's safe to interpret
2430 			 * this transaction ID as a pointer.
2431 			 */
2432 			comp_packet = (struct pci_packet *)req_id;
2433 			response = (struct pci_response *)buffer;
2434 			comp_packet->completion_func(comp_packet->compl_ctxt,
2435 						     response,
2436 						     bytes_recvd);
2437 			break;
2438 
2439 		case VM_PKT_DATA_INBAND:
2440 
2441 			new_message = (struct pci_incoming_message *)buffer;
2442 			switch (new_message->message_type.type) {
2443 			case PCI_BUS_RELATIONS:
2444 
2445 				bus_rel = (struct pci_bus_relations *)buffer;
2446 				if (bytes_recvd <
2447 				    offsetof(struct pci_bus_relations, func) +
2448 				    (sizeof(struct pci_function_description) *
2449 				     (bus_rel->device_count))) {
2450 					dev_err(&hbus->hdev->device,
2451 						"bus relations too small\n");
2452 					break;
2453 				}
2454 
2455 				hv_pci_devices_present(hbus, bus_rel);
2456 				break;
2457 
2458 			case PCI_BUS_RELATIONS2:
2459 
2460 				bus_rel2 = (struct pci_bus_relations2 *)buffer;
2461 				if (bytes_recvd <
2462 				    offsetof(struct pci_bus_relations2, func) +
2463 				    (sizeof(struct pci_function_description2) *
2464 				     (bus_rel2->device_count))) {
2465 					dev_err(&hbus->hdev->device,
2466 						"bus relations v2 too small\n");
2467 					break;
2468 				}
2469 
2470 				hv_pci_devices_present2(hbus, bus_rel2);
2471 				break;
2472 
2473 			case PCI_EJECT:
2474 
2475 				dev_message = (struct pci_dev_incoming *)buffer;
2476 				hpdev = get_pcichild_wslot(hbus,
2477 						      dev_message->wslot.slot);
2478 				if (hpdev) {
2479 					hv_pci_eject_device(hpdev);
2480 					put_pcichild(hpdev);
2481 				}
2482 				break;
2483 
2484 			case PCI_INVALIDATE_BLOCK:
2485 
2486 				inval = (struct pci_dev_inval_block *)buffer;
2487 				hpdev = get_pcichild_wslot(hbus,
2488 							   inval->wslot.slot);
2489 				if (hpdev) {
2490 					if (hpdev->block_invalidate) {
2491 						hpdev->block_invalidate(
2492 						    hpdev->invalidate_context,
2493 						    inval->block_mask);
2494 					}
2495 					put_pcichild(hpdev);
2496 				}
2497 				break;
2498 
2499 			default:
2500 				dev_warn(&hbus->hdev->device,
2501 					"Unimplemented protocol message %x\n",
2502 					new_message->message_type.type);
2503 				break;
2504 			}
2505 			break;
2506 
2507 		default:
2508 			dev_err(&hbus->hdev->device,
2509 				"unhandled packet type %d, tid %llx len %d\n",
2510 				desc->type, req_id, bytes_recvd);
2511 			break;
2512 		}
2513 	}
2514 
2515 	kfree(buffer);
2516 }
2517 
2518 /**
2519  * hv_pci_protocol_negotiation() - Set up protocol
2520  * @hdev:	VMBus's tracking struct for this root PCI bus
2521  *
2522  * This driver is intended to support running on Windows 10
2523  * (server) and later versions. It will not run on earlier
2524  * versions, as they assume that many of the operations which
2525  * Linux needs accomplished with a spinlock held were done via
2526  * asynchronous messaging via VMBus.  Windows 10 increases the
2527  * surface area of PCI emulation so that these actions can take
2528  * place by suspending a virtual processor for their duration.
2529  *
2530  * This function negotiates the channel protocol version,
2531  * failing if the host doesn't support the necessary protocol
2532  * level.
2533  */
2534 static int hv_pci_protocol_negotiation(struct hv_device *hdev,
2535 				       enum pci_protocol_version_t version[],
2536 				       int num_version)
2537 {
2538 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2539 	struct pci_version_request *version_req;
2540 	struct hv_pci_compl comp_pkt;
2541 	struct pci_packet *pkt;
2542 	int ret;
2543 	int i;
2544 
2545 	/*
2546 	 * Initiate the handshake with the host and negotiate
2547 	 * a version that the host can support. We start with the
2548 	 * highest version number and go down if the host cannot
2549 	 * support it.
2550 	 */
2551 	pkt = kzalloc(sizeof(*pkt) + sizeof(*version_req), GFP_KERNEL);
2552 	if (!pkt)
2553 		return -ENOMEM;
2554 
2555 	init_completion(&comp_pkt.host_event);
2556 	pkt->completion_func = hv_pci_generic_compl;
2557 	pkt->compl_ctxt = &comp_pkt;
2558 	version_req = (struct pci_version_request *)&pkt->message;
2559 	version_req->message_type.type = PCI_QUERY_PROTOCOL_VERSION;
2560 
2561 	for (i = 0; i < num_version; i++) {
2562 		version_req->protocol_version = version[i];
2563 		ret = vmbus_sendpacket(hdev->channel, version_req,
2564 				sizeof(struct pci_version_request),
2565 				(unsigned long)pkt, VM_PKT_DATA_INBAND,
2566 				VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2567 		if (!ret)
2568 			ret = wait_for_response(hdev, &comp_pkt.host_event);
2569 
2570 		if (ret) {
2571 			dev_err(&hdev->device,
2572 				"PCI Pass-through VSP failed to request version: %d",
2573 				ret);
2574 			goto exit;
2575 		}
2576 
2577 		if (comp_pkt.completion_status >= 0) {
2578 			hbus->protocol_version = version[i];
2579 			dev_info(&hdev->device,
2580 				"PCI VMBus probing: Using version %#x\n",
2581 				hbus->protocol_version);
2582 			goto exit;
2583 		}
2584 
2585 		if (comp_pkt.completion_status != STATUS_REVISION_MISMATCH) {
2586 			dev_err(&hdev->device,
2587 				"PCI Pass-through VSP failed version request: %#x",
2588 				comp_pkt.completion_status);
2589 			ret = -EPROTO;
2590 			goto exit;
2591 		}
2592 
2593 		reinit_completion(&comp_pkt.host_event);
2594 	}
2595 
2596 	dev_err(&hdev->device,
2597 		"PCI pass-through VSP failed to find supported version");
2598 	ret = -EPROTO;
2599 
2600 exit:
2601 	kfree(pkt);
2602 	return ret;
2603 }
2604 
2605 /**
2606  * hv_pci_free_bridge_windows() - Release memory regions for the
2607  * bus
2608  * @hbus:	Root PCI bus, as understood by this driver
2609  */
2610 static void hv_pci_free_bridge_windows(struct hv_pcibus_device *hbus)
2611 {
2612 	/*
2613 	 * Set the resources back to the way they looked when they
2614 	 * were allocated by setting IORESOURCE_BUSY again.
2615 	 */
2616 
2617 	if (hbus->low_mmio_space && hbus->low_mmio_res) {
2618 		hbus->low_mmio_res->flags |= IORESOURCE_BUSY;
2619 		vmbus_free_mmio(hbus->low_mmio_res->start,
2620 				resource_size(hbus->low_mmio_res));
2621 	}
2622 
2623 	if (hbus->high_mmio_space && hbus->high_mmio_res) {
2624 		hbus->high_mmio_res->flags |= IORESOURCE_BUSY;
2625 		vmbus_free_mmio(hbus->high_mmio_res->start,
2626 				resource_size(hbus->high_mmio_res));
2627 	}
2628 }
2629 
2630 /**
2631  * hv_pci_allocate_bridge_windows() - Allocate memory regions
2632  * for the bus
2633  * @hbus:	Root PCI bus, as understood by this driver
2634  *
2635  * This function calls vmbus_allocate_mmio(), which is itself a
2636  * bit of a compromise.  Ideally, we might change the pnp layer
2637  * in the kernel such that it comprehends either PCI devices
2638  * which are "grandchildren of ACPI," with some intermediate bus
2639  * node (in this case, VMBus) or change it such that it
2640  * understands VMBus.  The pnp layer, however, has been declared
2641  * deprecated, and not subject to change.
2642  *
2643  * The workaround, implemented here, is to ask VMBus to allocate
2644  * MMIO space for this bus.  VMBus itself knows which ranges are
2645  * appropriate by looking at its own ACPI objects.  Then, after
2646  * these ranges are claimed, they're modified to look like they
2647  * would have looked if the ACPI and pnp code had allocated
2648  * bridge windows.  These descriptors have to exist in this form
2649  * in order to satisfy the code which will get invoked when the
2650  * endpoint PCI function driver calls request_mem_region() or
2651  * request_mem_region_exclusive().
2652  *
2653  * Return: 0 on success, -errno on failure
2654  */
2655 static int hv_pci_allocate_bridge_windows(struct hv_pcibus_device *hbus)
2656 {
2657 	resource_size_t align;
2658 	int ret;
2659 
2660 	if (hbus->low_mmio_space) {
2661 		align = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
2662 		ret = vmbus_allocate_mmio(&hbus->low_mmio_res, hbus->hdev, 0,
2663 					  (u64)(u32)0xffffffff,
2664 					  hbus->low_mmio_space,
2665 					  align, false);
2666 		if (ret) {
2667 			dev_err(&hbus->hdev->device,
2668 				"Need %#llx of low MMIO space. Consider reconfiguring the VM.\n",
2669 				hbus->low_mmio_space);
2670 			return ret;
2671 		}
2672 
2673 		/* Modify this resource to become a bridge window. */
2674 		hbus->low_mmio_res->flags |= IORESOURCE_WINDOW;
2675 		hbus->low_mmio_res->flags &= ~IORESOURCE_BUSY;
2676 		pci_add_resource(&hbus->resources_for_children,
2677 				 hbus->low_mmio_res);
2678 	}
2679 
2680 	if (hbus->high_mmio_space) {
2681 		align = 1ULL << (63 - __builtin_clzll(hbus->high_mmio_space));
2682 		ret = vmbus_allocate_mmio(&hbus->high_mmio_res, hbus->hdev,
2683 					  0x100000000, -1,
2684 					  hbus->high_mmio_space, align,
2685 					  false);
2686 		if (ret) {
2687 			dev_err(&hbus->hdev->device,
2688 				"Need %#llx of high MMIO space. Consider reconfiguring the VM.\n",
2689 				hbus->high_mmio_space);
2690 			goto release_low_mmio;
2691 		}
2692 
2693 		/* Modify this resource to become a bridge window. */
2694 		hbus->high_mmio_res->flags |= IORESOURCE_WINDOW;
2695 		hbus->high_mmio_res->flags &= ~IORESOURCE_BUSY;
2696 		pci_add_resource(&hbus->resources_for_children,
2697 				 hbus->high_mmio_res);
2698 	}
2699 
2700 	return 0;
2701 
2702 release_low_mmio:
2703 	if (hbus->low_mmio_res) {
2704 		vmbus_free_mmio(hbus->low_mmio_res->start,
2705 				resource_size(hbus->low_mmio_res));
2706 	}
2707 
2708 	return ret;
2709 }
2710 
2711 /**
2712  * hv_allocate_config_window() - Find MMIO space for PCI Config
2713  * @hbus:	Root PCI bus, as understood by this driver
2714  *
2715  * This function claims memory-mapped I/O space for accessing
2716  * configuration space for the functions on this bus.
2717  *
2718  * Return: 0 on success, -errno on failure
2719  */
2720 static int hv_allocate_config_window(struct hv_pcibus_device *hbus)
2721 {
2722 	int ret;
2723 
2724 	/*
2725 	 * Set up a region of MMIO space to use for accessing configuration
2726 	 * space.
2727 	 */
2728 	ret = vmbus_allocate_mmio(&hbus->mem_config, hbus->hdev, 0, -1,
2729 				  PCI_CONFIG_MMIO_LENGTH, 0x1000, false);
2730 	if (ret)
2731 		return ret;
2732 
2733 	/*
2734 	 * vmbus_allocate_mmio() gets used for allocating both device endpoint
2735 	 * resource claims (those which cannot be overlapped) and the ranges
2736 	 * which are valid for the children of this bus, which are intended
2737 	 * to be overlapped by those children.  Set the flag on this claim
2738 	 * meaning that this region can't be overlapped.
2739 	 */
2740 
2741 	hbus->mem_config->flags |= IORESOURCE_BUSY;
2742 
2743 	return 0;
2744 }
2745 
2746 static void hv_free_config_window(struct hv_pcibus_device *hbus)
2747 {
2748 	vmbus_free_mmio(hbus->mem_config->start, PCI_CONFIG_MMIO_LENGTH);
2749 }
2750 
2751 /**
2752  * hv_pci_enter_d0() - Bring the "bus" into the D0 power state
2753  * @hdev:	VMBus's tracking struct for this root PCI bus
2754  *
2755  * Return: 0 on success, -errno on failure
2756  */
2757 static int hv_pci_enter_d0(struct hv_device *hdev)
2758 {
2759 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2760 	struct pci_bus_d0_entry *d0_entry;
2761 	struct hv_pci_compl comp_pkt;
2762 	struct pci_packet *pkt;
2763 	int ret;
2764 
2765 	/*
2766 	 * Tell the host that the bus is ready to use, and moved into the
2767 	 * powered-on state.  This includes telling the host which region
2768 	 * of memory-mapped I/O space has been chosen for configuration space
2769 	 * access.
2770 	 */
2771 	pkt = kzalloc(sizeof(*pkt) + sizeof(*d0_entry), GFP_KERNEL);
2772 	if (!pkt)
2773 		return -ENOMEM;
2774 
2775 	init_completion(&comp_pkt.host_event);
2776 	pkt->completion_func = hv_pci_generic_compl;
2777 	pkt->compl_ctxt = &comp_pkt;
2778 	d0_entry = (struct pci_bus_d0_entry *)&pkt->message;
2779 	d0_entry->message_type.type = PCI_BUS_D0ENTRY;
2780 	d0_entry->mmio_base = hbus->mem_config->start;
2781 
2782 	ret = vmbus_sendpacket(hdev->channel, d0_entry, sizeof(*d0_entry),
2783 			       (unsigned long)pkt, VM_PKT_DATA_INBAND,
2784 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2785 	if (!ret)
2786 		ret = wait_for_response(hdev, &comp_pkt.host_event);
2787 
2788 	if (ret)
2789 		goto exit;
2790 
2791 	if (comp_pkt.completion_status < 0) {
2792 		dev_err(&hdev->device,
2793 			"PCI Pass-through VSP failed D0 Entry with status %x\n",
2794 			comp_pkt.completion_status);
2795 		ret = -EPROTO;
2796 		goto exit;
2797 	}
2798 
2799 	ret = 0;
2800 
2801 exit:
2802 	kfree(pkt);
2803 	return ret;
2804 }
2805 
2806 /**
2807  * hv_pci_query_relations() - Ask host to send list of child
2808  * devices
2809  * @hdev:	VMBus's tracking struct for this root PCI bus
2810  *
2811  * Return: 0 on success, -errno on failure
2812  */
2813 static int hv_pci_query_relations(struct hv_device *hdev)
2814 {
2815 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2816 	struct pci_message message;
2817 	struct completion comp;
2818 	int ret;
2819 
2820 	/* Ask the host to send along the list of child devices */
2821 	init_completion(&comp);
2822 	if (cmpxchg(&hbus->survey_event, NULL, &comp))
2823 		return -ENOTEMPTY;
2824 
2825 	memset(&message, 0, sizeof(message));
2826 	message.type = PCI_QUERY_BUS_RELATIONS;
2827 
2828 	ret = vmbus_sendpacket(hdev->channel, &message, sizeof(message),
2829 			       0, VM_PKT_DATA_INBAND, 0);
2830 	if (!ret)
2831 		ret = wait_for_response(hdev, &comp);
2832 
2833 	return ret;
2834 }
2835 
2836 /**
2837  * hv_send_resources_allocated() - Report local resource choices
2838  * @hdev:	VMBus's tracking struct for this root PCI bus
2839  *
2840  * The host OS is expecting to be sent a request as a message
2841  * which contains all the resources that the device will use.
2842  * The response contains those same resources, "translated"
2843  * which is to say, the values which should be used by the
2844  * hardware, when it delivers an interrupt.  (MMIO resources are
2845  * used in local terms.)  This is nice for Windows, and lines up
2846  * with the FDO/PDO split, which doesn't exist in Linux.  Linux
2847  * is deeply expecting to scan an emulated PCI configuration
2848  * space.  So this message is sent here only to drive the state
2849  * machine on the host forward.
2850  *
2851  * Return: 0 on success, -errno on failure
2852  */
2853 static int hv_send_resources_allocated(struct hv_device *hdev)
2854 {
2855 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2856 	struct pci_resources_assigned *res_assigned;
2857 	struct pci_resources_assigned2 *res_assigned2;
2858 	struct hv_pci_compl comp_pkt;
2859 	struct hv_pci_dev *hpdev;
2860 	struct pci_packet *pkt;
2861 	size_t size_res;
2862 	u32 wslot;
2863 	int ret;
2864 
2865 	size_res = (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2)
2866 			? sizeof(*res_assigned) : sizeof(*res_assigned2);
2867 
2868 	pkt = kmalloc(sizeof(*pkt) + size_res, GFP_KERNEL);
2869 	if (!pkt)
2870 		return -ENOMEM;
2871 
2872 	ret = 0;
2873 
2874 	for (wslot = 0; wslot < 256; wslot++) {
2875 		hpdev = get_pcichild_wslot(hbus, wslot);
2876 		if (!hpdev)
2877 			continue;
2878 
2879 		memset(pkt, 0, sizeof(*pkt) + size_res);
2880 		init_completion(&comp_pkt.host_event);
2881 		pkt->completion_func = hv_pci_generic_compl;
2882 		pkt->compl_ctxt = &comp_pkt;
2883 
2884 		if (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2) {
2885 			res_assigned =
2886 				(struct pci_resources_assigned *)&pkt->message;
2887 			res_assigned->message_type.type =
2888 				PCI_RESOURCES_ASSIGNED;
2889 			res_assigned->wslot.slot = hpdev->desc.win_slot.slot;
2890 		} else {
2891 			res_assigned2 =
2892 				(struct pci_resources_assigned2 *)&pkt->message;
2893 			res_assigned2->message_type.type =
2894 				PCI_RESOURCES_ASSIGNED2;
2895 			res_assigned2->wslot.slot = hpdev->desc.win_slot.slot;
2896 		}
2897 		put_pcichild(hpdev);
2898 
2899 		ret = vmbus_sendpacket(hdev->channel, &pkt->message,
2900 				size_res, (unsigned long)pkt,
2901 				VM_PKT_DATA_INBAND,
2902 				VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2903 		if (!ret)
2904 			ret = wait_for_response(hdev, &comp_pkt.host_event);
2905 		if (ret)
2906 			break;
2907 
2908 		if (comp_pkt.completion_status < 0) {
2909 			ret = -EPROTO;
2910 			dev_err(&hdev->device,
2911 				"resource allocated returned 0x%x",
2912 				comp_pkt.completion_status);
2913 			break;
2914 		}
2915 	}
2916 
2917 	kfree(pkt);
2918 	return ret;
2919 }
2920 
2921 /**
2922  * hv_send_resources_released() - Report local resources
2923  * released
2924  * @hdev:	VMBus's tracking struct for this root PCI bus
2925  *
2926  * Return: 0 on success, -errno on failure
2927  */
2928 static int hv_send_resources_released(struct hv_device *hdev)
2929 {
2930 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2931 	struct pci_child_message pkt;
2932 	struct hv_pci_dev *hpdev;
2933 	u32 wslot;
2934 	int ret;
2935 
2936 	for (wslot = 0; wslot < 256; wslot++) {
2937 		hpdev = get_pcichild_wslot(hbus, wslot);
2938 		if (!hpdev)
2939 			continue;
2940 
2941 		memset(&pkt, 0, sizeof(pkt));
2942 		pkt.message_type.type = PCI_RESOURCES_RELEASED;
2943 		pkt.wslot.slot = hpdev->desc.win_slot.slot;
2944 
2945 		put_pcichild(hpdev);
2946 
2947 		ret = vmbus_sendpacket(hdev->channel, &pkt, sizeof(pkt), 0,
2948 				       VM_PKT_DATA_INBAND, 0);
2949 		if (ret)
2950 			return ret;
2951 	}
2952 
2953 	return 0;
2954 }
2955 
2956 static void get_hvpcibus(struct hv_pcibus_device *hbus)
2957 {
2958 	refcount_inc(&hbus->remove_lock);
2959 }
2960 
2961 static void put_hvpcibus(struct hv_pcibus_device *hbus)
2962 {
2963 	if (refcount_dec_and_test(&hbus->remove_lock))
2964 		complete(&hbus->remove_event);
2965 }
2966 
2967 #define HVPCI_DOM_MAP_SIZE (64 * 1024)
2968 static DECLARE_BITMAP(hvpci_dom_map, HVPCI_DOM_MAP_SIZE);
2969 
2970 /*
2971  * PCI domain number 0 is used by emulated devices on Gen1 VMs, so define 0
2972  * as invalid for passthrough PCI devices of this driver.
2973  */
2974 #define HVPCI_DOM_INVALID 0
2975 
2976 /**
2977  * hv_get_dom_num() - Get a valid PCI domain number
2978  * Check if the PCI domain number is in use, and return another number if
2979  * it is in use.
2980  *
2981  * @dom: Requested domain number
2982  *
2983  * return: domain number on success, HVPCI_DOM_INVALID on failure
2984  */
2985 static u16 hv_get_dom_num(u16 dom)
2986 {
2987 	unsigned int i;
2988 
2989 	if (test_and_set_bit(dom, hvpci_dom_map) == 0)
2990 		return dom;
2991 
2992 	for_each_clear_bit(i, hvpci_dom_map, HVPCI_DOM_MAP_SIZE) {
2993 		if (test_and_set_bit(i, hvpci_dom_map) == 0)
2994 			return i;
2995 	}
2996 
2997 	return HVPCI_DOM_INVALID;
2998 }
2999 
3000 /**
3001  * hv_put_dom_num() - Mark the PCI domain number as free
3002  * @dom: Domain number to be freed
3003  */
3004 static void hv_put_dom_num(u16 dom)
3005 {
3006 	clear_bit(dom, hvpci_dom_map);
3007 }
3008 
3009 /**
3010  * hv_pci_probe() - New VMBus channel probe, for a root PCI bus
3011  * @hdev:	VMBus's tracking struct for this root PCI bus
3012  * @dev_id:	Identifies the device itself
3013  *
3014  * Return: 0 on success, -errno on failure
3015  */
3016 static int hv_pci_probe(struct hv_device *hdev,
3017 			const struct hv_vmbus_device_id *dev_id)
3018 {
3019 	struct hv_pcibus_device *hbus;
3020 	u16 dom_req, dom;
3021 	char *name;
3022 	int ret;
3023 
3024 	/*
3025 	 * hv_pcibus_device contains the hypercall arguments for retargeting in
3026 	 * hv_irq_unmask(). Those must not cross a page boundary.
3027 	 */
3028 	BUILD_BUG_ON(sizeof(*hbus) > HV_HYP_PAGE_SIZE);
3029 
3030 	/*
3031 	 * With the recent 59bb47985c1d ("mm, sl[aou]b: guarantee natural
3032 	 * alignment for kmalloc(power-of-two)"), kzalloc() is able to allocate
3033 	 * a 4KB buffer that is guaranteed to be 4KB-aligned. Here the size and
3034 	 * alignment of hbus is important because hbus's field
3035 	 * retarget_msi_interrupt_params must not cross a 4KB page boundary.
3036 	 *
3037 	 * Here we prefer kzalloc to get_zeroed_page(), because a buffer
3038 	 * allocated by the latter is not tracked and scanned by kmemleak, and
3039 	 * hence kmemleak reports the pointer contained in the hbus buffer
3040 	 * (i.e. the hpdev struct, which is created in new_pcichild_device() and
3041 	 * is tracked by hbus->children) as memory leak (false positive).
3042 	 *
3043 	 * If the kernel doesn't have 59bb47985c1d, get_zeroed_page() *must* be
3044 	 * used to allocate the hbus buffer and we can avoid the kmemleak false
3045 	 * positive by using kmemleak_alloc() and kmemleak_free() to ask
3046 	 * kmemleak to track and scan the hbus buffer.
3047 	 */
3048 	hbus = kzalloc(HV_HYP_PAGE_SIZE, GFP_KERNEL);
3049 	if (!hbus)
3050 		return -ENOMEM;
3051 	hbus->state = hv_pcibus_init;
3052 
3053 	/*
3054 	 * The PCI bus "domain" is what is called "segment" in ACPI and other
3055 	 * specs. Pull it from the instance ID, to get something usually
3056 	 * unique. In rare cases of collision, we will find out another number
3057 	 * not in use.
3058 	 *
3059 	 * Note that, since this code only runs in a Hyper-V VM, Hyper-V
3060 	 * together with this guest driver can guarantee that (1) The only
3061 	 * domain used by Gen1 VMs for something that looks like a physical
3062 	 * PCI bus (which is actually emulated by the hypervisor) is domain 0.
3063 	 * (2) There will be no overlap between domains (after fixing possible
3064 	 * collisions) in the same VM.
3065 	 */
3066 	dom_req = hdev->dev_instance.b[5] << 8 | hdev->dev_instance.b[4];
3067 	dom = hv_get_dom_num(dom_req);
3068 
3069 	if (dom == HVPCI_DOM_INVALID) {
3070 		dev_err(&hdev->device,
3071 			"Unable to use dom# 0x%hx or other numbers", dom_req);
3072 		ret = -EINVAL;
3073 		goto free_bus;
3074 	}
3075 
3076 	if (dom != dom_req)
3077 		dev_info(&hdev->device,
3078 			 "PCI dom# 0x%hx has collision, using 0x%hx",
3079 			 dom_req, dom);
3080 
3081 	hbus->sysdata.domain = dom;
3082 
3083 	hbus->hdev = hdev;
3084 	refcount_set(&hbus->remove_lock, 1);
3085 	INIT_LIST_HEAD(&hbus->children);
3086 	INIT_LIST_HEAD(&hbus->dr_list);
3087 	INIT_LIST_HEAD(&hbus->resources_for_children);
3088 	spin_lock_init(&hbus->config_lock);
3089 	spin_lock_init(&hbus->device_list_lock);
3090 	spin_lock_init(&hbus->retarget_msi_interrupt_lock);
3091 	init_completion(&hbus->remove_event);
3092 	hbus->wq = alloc_ordered_workqueue("hv_pci_%x", 0,
3093 					   hbus->sysdata.domain);
3094 	if (!hbus->wq) {
3095 		ret = -ENOMEM;
3096 		goto free_dom;
3097 	}
3098 
3099 	ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0,
3100 			 hv_pci_onchannelcallback, hbus);
3101 	if (ret)
3102 		goto destroy_wq;
3103 
3104 	hv_set_drvdata(hdev, hbus);
3105 
3106 	ret = hv_pci_protocol_negotiation(hdev, pci_protocol_versions,
3107 					  ARRAY_SIZE(pci_protocol_versions));
3108 	if (ret)
3109 		goto close;
3110 
3111 	ret = hv_allocate_config_window(hbus);
3112 	if (ret)
3113 		goto close;
3114 
3115 	hbus->cfg_addr = ioremap(hbus->mem_config->start,
3116 				 PCI_CONFIG_MMIO_LENGTH);
3117 	if (!hbus->cfg_addr) {
3118 		dev_err(&hdev->device,
3119 			"Unable to map a virtual address for config space\n");
3120 		ret = -ENOMEM;
3121 		goto free_config;
3122 	}
3123 
3124 	name = kasprintf(GFP_KERNEL, "%pUL", &hdev->dev_instance);
3125 	if (!name) {
3126 		ret = -ENOMEM;
3127 		goto unmap;
3128 	}
3129 
3130 	hbus->sysdata.fwnode = irq_domain_alloc_named_fwnode(name);
3131 	kfree(name);
3132 	if (!hbus->sysdata.fwnode) {
3133 		ret = -ENOMEM;
3134 		goto unmap;
3135 	}
3136 
3137 	ret = hv_pcie_init_irq_domain(hbus);
3138 	if (ret)
3139 		goto free_fwnode;
3140 
3141 	ret = hv_pci_query_relations(hdev);
3142 	if (ret)
3143 		goto free_irq_domain;
3144 
3145 	ret = hv_pci_enter_d0(hdev);
3146 	if (ret)
3147 		goto free_irq_domain;
3148 
3149 	ret = hv_pci_allocate_bridge_windows(hbus);
3150 	if (ret)
3151 		goto free_irq_domain;
3152 
3153 	ret = hv_send_resources_allocated(hdev);
3154 	if (ret)
3155 		goto free_windows;
3156 
3157 	prepopulate_bars(hbus);
3158 
3159 	hbus->state = hv_pcibus_probed;
3160 
3161 	ret = create_root_hv_pci_bus(hbus);
3162 	if (ret)
3163 		goto free_windows;
3164 
3165 	return 0;
3166 
3167 free_windows:
3168 	hv_pci_free_bridge_windows(hbus);
3169 free_irq_domain:
3170 	irq_domain_remove(hbus->irq_domain);
3171 free_fwnode:
3172 	irq_domain_free_fwnode(hbus->sysdata.fwnode);
3173 unmap:
3174 	iounmap(hbus->cfg_addr);
3175 free_config:
3176 	hv_free_config_window(hbus);
3177 close:
3178 	vmbus_close(hdev->channel);
3179 destroy_wq:
3180 	destroy_workqueue(hbus->wq);
3181 free_dom:
3182 	hv_put_dom_num(hbus->sysdata.domain);
3183 free_bus:
3184 	kfree(hbus);
3185 	return ret;
3186 }
3187 
3188 static int hv_pci_bus_exit(struct hv_device *hdev, bool hibernating)
3189 {
3190 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3191 	struct {
3192 		struct pci_packet teardown_packet;
3193 		u8 buffer[sizeof(struct pci_message)];
3194 	} pkt;
3195 	struct hv_dr_state *dr;
3196 	struct hv_pci_compl comp_pkt;
3197 	int ret;
3198 
3199 	/*
3200 	 * After the host sends the RESCIND_CHANNEL message, it doesn't
3201 	 * access the per-channel ringbuffer any longer.
3202 	 */
3203 	if (hdev->channel->rescind)
3204 		return 0;
3205 
3206 	if (!hibernating) {
3207 		/* Delete any children which might still exist. */
3208 		dr = kzalloc(sizeof(*dr), GFP_KERNEL);
3209 		if (dr && hv_pci_start_relations_work(hbus, dr))
3210 			kfree(dr);
3211 	}
3212 
3213 	ret = hv_send_resources_released(hdev);
3214 	if (ret) {
3215 		dev_err(&hdev->device,
3216 			"Couldn't send resources released packet(s)\n");
3217 		return ret;
3218 	}
3219 
3220 	memset(&pkt.teardown_packet, 0, sizeof(pkt.teardown_packet));
3221 	init_completion(&comp_pkt.host_event);
3222 	pkt.teardown_packet.completion_func = hv_pci_generic_compl;
3223 	pkt.teardown_packet.compl_ctxt = &comp_pkt;
3224 	pkt.teardown_packet.message[0].type = PCI_BUS_D0EXIT;
3225 
3226 	ret = vmbus_sendpacket(hdev->channel, &pkt.teardown_packet.message,
3227 			       sizeof(struct pci_message),
3228 			       (unsigned long)&pkt.teardown_packet,
3229 			       VM_PKT_DATA_INBAND,
3230 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3231 	if (ret)
3232 		return ret;
3233 
3234 	if (wait_for_completion_timeout(&comp_pkt.host_event, 10 * HZ) == 0)
3235 		return -ETIMEDOUT;
3236 
3237 	return 0;
3238 }
3239 
3240 /**
3241  * hv_pci_remove() - Remove routine for this VMBus channel
3242  * @hdev:	VMBus's tracking struct for this root PCI bus
3243  *
3244  * Return: 0 on success, -errno on failure
3245  */
3246 static int hv_pci_remove(struct hv_device *hdev)
3247 {
3248 	struct hv_pcibus_device *hbus;
3249 	int ret;
3250 
3251 	hbus = hv_get_drvdata(hdev);
3252 	if (hbus->state == hv_pcibus_installed) {
3253 		/* Remove the bus from PCI's point of view. */
3254 		pci_lock_rescan_remove();
3255 		pci_stop_root_bus(hbus->pci_bus);
3256 		hv_pci_remove_slots(hbus);
3257 		pci_remove_root_bus(hbus->pci_bus);
3258 		pci_unlock_rescan_remove();
3259 		hbus->state = hv_pcibus_removed;
3260 	}
3261 
3262 	ret = hv_pci_bus_exit(hdev, false);
3263 
3264 	vmbus_close(hdev->channel);
3265 
3266 	iounmap(hbus->cfg_addr);
3267 	hv_free_config_window(hbus);
3268 	pci_free_resource_list(&hbus->resources_for_children);
3269 	hv_pci_free_bridge_windows(hbus);
3270 	irq_domain_remove(hbus->irq_domain);
3271 	irq_domain_free_fwnode(hbus->sysdata.fwnode);
3272 	put_hvpcibus(hbus);
3273 	wait_for_completion(&hbus->remove_event);
3274 	destroy_workqueue(hbus->wq);
3275 
3276 	hv_put_dom_num(hbus->sysdata.domain);
3277 
3278 	kfree(hbus);
3279 	return ret;
3280 }
3281 
3282 static int hv_pci_suspend(struct hv_device *hdev)
3283 {
3284 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3285 	enum hv_pcibus_state old_state;
3286 	int ret;
3287 
3288 	/*
3289 	 * hv_pci_suspend() must make sure there are no pending work items
3290 	 * before calling vmbus_close(), since it runs in a process context
3291 	 * as a callback in dpm_suspend().  When it starts to run, the channel
3292 	 * callback hv_pci_onchannelcallback(), which runs in a tasklet
3293 	 * context, can be still running concurrently and scheduling new work
3294 	 * items onto hbus->wq in hv_pci_devices_present() and
3295 	 * hv_pci_eject_device(), and the work item handlers can access the
3296 	 * vmbus channel, which can be being closed by hv_pci_suspend(), e.g.
3297 	 * the work item handler pci_devices_present_work() ->
3298 	 * new_pcichild_device() writes to the vmbus channel.
3299 	 *
3300 	 * To eliminate the race, hv_pci_suspend() disables the channel
3301 	 * callback tasklet, sets hbus->state to hv_pcibus_removing, and
3302 	 * re-enables the tasklet. This way, when hv_pci_suspend() proceeds,
3303 	 * it knows that no new work item can be scheduled, and then it flushes
3304 	 * hbus->wq and safely closes the vmbus channel.
3305 	 */
3306 	tasklet_disable(&hdev->channel->callback_event);
3307 
3308 	/* Change the hbus state to prevent new work items. */
3309 	old_state = hbus->state;
3310 	if (hbus->state == hv_pcibus_installed)
3311 		hbus->state = hv_pcibus_removing;
3312 
3313 	tasklet_enable(&hdev->channel->callback_event);
3314 
3315 	if (old_state != hv_pcibus_installed)
3316 		return -EINVAL;
3317 
3318 	flush_workqueue(hbus->wq);
3319 
3320 	ret = hv_pci_bus_exit(hdev, true);
3321 	if (ret)
3322 		return ret;
3323 
3324 	vmbus_close(hdev->channel);
3325 
3326 	return 0;
3327 }
3328 
3329 static int hv_pci_resume(struct hv_device *hdev)
3330 {
3331 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3332 	enum pci_protocol_version_t version[1];
3333 	int ret;
3334 
3335 	hbus->state = hv_pcibus_init;
3336 
3337 	ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0,
3338 			 hv_pci_onchannelcallback, hbus);
3339 	if (ret)
3340 		return ret;
3341 
3342 	/* Only use the version that was in use before hibernation. */
3343 	version[0] = hbus->protocol_version;
3344 	ret = hv_pci_protocol_negotiation(hdev, version, 1);
3345 	if (ret)
3346 		goto out;
3347 
3348 	ret = hv_pci_query_relations(hdev);
3349 	if (ret)
3350 		goto out;
3351 
3352 	ret = hv_pci_enter_d0(hdev);
3353 	if (ret)
3354 		goto out;
3355 
3356 	ret = hv_send_resources_allocated(hdev);
3357 	if (ret)
3358 		goto out;
3359 
3360 	prepopulate_bars(hbus);
3361 
3362 	hbus->state = hv_pcibus_installed;
3363 	return 0;
3364 out:
3365 	vmbus_close(hdev->channel);
3366 	return ret;
3367 }
3368 
3369 static const struct hv_vmbus_device_id hv_pci_id_table[] = {
3370 	/* PCI Pass-through Class ID */
3371 	/* 44C4F61D-4444-4400-9D52-802E27EDE19F */
3372 	{ HV_PCIE_GUID, },
3373 	{ },
3374 };
3375 
3376 MODULE_DEVICE_TABLE(vmbus, hv_pci_id_table);
3377 
3378 static struct hv_driver hv_pci_drv = {
3379 	.name		= "hv_pci",
3380 	.id_table	= hv_pci_id_table,
3381 	.probe		= hv_pci_probe,
3382 	.remove		= hv_pci_remove,
3383 	.suspend	= hv_pci_suspend,
3384 	.resume		= hv_pci_resume,
3385 };
3386 
3387 static void __exit exit_hv_pci_drv(void)
3388 {
3389 	vmbus_driver_unregister(&hv_pci_drv);
3390 
3391 	hvpci_block_ops.read_block = NULL;
3392 	hvpci_block_ops.write_block = NULL;
3393 	hvpci_block_ops.reg_blk_invalidate = NULL;
3394 }
3395 
3396 static int __init init_hv_pci_drv(void)
3397 {
3398 	/* Set the invalid domain number's bit, so it will not be used */
3399 	set_bit(HVPCI_DOM_INVALID, hvpci_dom_map);
3400 
3401 	/* Initialize PCI block r/w interface */
3402 	hvpci_block_ops.read_block = hv_read_config_block;
3403 	hvpci_block_ops.write_block = hv_write_config_block;
3404 	hvpci_block_ops.reg_blk_invalidate = hv_register_block_invalidate;
3405 
3406 	return vmbus_driver_register(&hv_pci_drv);
3407 }
3408 
3409 module_init(init_hv_pci_drv);
3410 module_exit(exit_hv_pci_drv);
3411 
3412 MODULE_DESCRIPTION("Hyper-V PCI");
3413 MODULE_LICENSE("GPL v2");
3414