1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) Microsoft Corporation. 4 * 5 * Author: 6 * Jake Oshins <jakeo@microsoft.com> 7 * 8 * This driver acts as a paravirtual front-end for PCI Express root buses. 9 * When a PCI Express function (either an entire device or an SR-IOV 10 * Virtual Function) is being passed through to the VM, this driver exposes 11 * a new bus to the guest VM. This is modeled as a root PCI bus because 12 * no bridges are being exposed to the VM. In fact, with a "Generation 2" 13 * VM within Hyper-V, there may seem to be no PCI bus at all in the VM 14 * until a device as been exposed using this driver. 15 * 16 * Each root PCI bus has its own PCI domain, which is called "Segment" in 17 * the PCI Firmware Specifications. Thus while each device passed through 18 * to the VM using this front-end will appear at "device 0", the domain will 19 * be unique. Typically, each bus will have one PCI function on it, though 20 * this driver does support more than one. 21 * 22 * In order to map the interrupts from the device through to the guest VM, 23 * this driver also implements an IRQ Domain, which handles interrupts (either 24 * MSI or MSI-X) associated with the functions on the bus. As interrupts are 25 * set up, torn down, or reaffined, this driver communicates with the 26 * underlying hypervisor to adjust the mappings in the I/O MMU so that each 27 * interrupt will be delivered to the correct virtual processor at the right 28 * vector. This driver does not support level-triggered (line-based) 29 * interrupts, and will report that the Interrupt Line register in the 30 * function's configuration space is zero. 31 * 32 * The rest of this driver mostly maps PCI concepts onto underlying Hyper-V 33 * facilities. For instance, the configuration space of a function exposed 34 * by Hyper-V is mapped into a single page of memory space, and the 35 * read and write handlers for config space must be aware of this mechanism. 36 * Similarly, device setup and teardown involves messages sent to and from 37 * the PCI back-end driver in Hyper-V. 38 */ 39 40 #include <linux/kernel.h> 41 #include <linux/module.h> 42 #include <linux/pci.h> 43 #include <linux/delay.h> 44 #include <linux/semaphore.h> 45 #include <linux/irqdomain.h> 46 #include <asm/irqdomain.h> 47 #include <asm/apic.h> 48 #include <linux/irq.h> 49 #include <linux/msi.h> 50 #include <linux/hyperv.h> 51 #include <linux/refcount.h> 52 #include <asm/mshyperv.h> 53 54 /* 55 * Protocol versions. The low word is the minor version, the high word the 56 * major version. 57 */ 58 59 #define PCI_MAKE_VERSION(major, minor) ((u32)(((major) << 16) | (minor))) 60 #define PCI_MAJOR_VERSION(version) ((u32)(version) >> 16) 61 #define PCI_MINOR_VERSION(version) ((u32)(version) & 0xff) 62 63 enum pci_protocol_version_t { 64 PCI_PROTOCOL_VERSION_1_1 = PCI_MAKE_VERSION(1, 1), /* Win10 */ 65 PCI_PROTOCOL_VERSION_1_2 = PCI_MAKE_VERSION(1, 2), /* RS1 */ 66 PCI_PROTOCOL_VERSION_1_3 = PCI_MAKE_VERSION(1, 3), /* Vibranium */ 67 }; 68 69 #define CPU_AFFINITY_ALL -1ULL 70 71 /* 72 * Supported protocol versions in the order of probing - highest go 73 * first. 74 */ 75 static enum pci_protocol_version_t pci_protocol_versions[] = { 76 PCI_PROTOCOL_VERSION_1_3, 77 PCI_PROTOCOL_VERSION_1_2, 78 PCI_PROTOCOL_VERSION_1_1, 79 }; 80 81 #define PCI_CONFIG_MMIO_LENGTH 0x2000 82 #define CFG_PAGE_OFFSET 0x1000 83 #define CFG_PAGE_SIZE (PCI_CONFIG_MMIO_LENGTH - CFG_PAGE_OFFSET) 84 85 #define MAX_SUPPORTED_MSI_MESSAGES 0x400 86 87 #define STATUS_REVISION_MISMATCH 0xC0000059 88 89 /* space for 32bit serial number as string */ 90 #define SLOT_NAME_SIZE 11 91 92 /* 93 * Message Types 94 */ 95 96 enum pci_message_type { 97 /* 98 * Version 1.1 99 */ 100 PCI_MESSAGE_BASE = 0x42490000, 101 PCI_BUS_RELATIONS = PCI_MESSAGE_BASE + 0, 102 PCI_QUERY_BUS_RELATIONS = PCI_MESSAGE_BASE + 1, 103 PCI_POWER_STATE_CHANGE = PCI_MESSAGE_BASE + 4, 104 PCI_QUERY_RESOURCE_REQUIREMENTS = PCI_MESSAGE_BASE + 5, 105 PCI_QUERY_RESOURCE_RESOURCES = PCI_MESSAGE_BASE + 6, 106 PCI_BUS_D0ENTRY = PCI_MESSAGE_BASE + 7, 107 PCI_BUS_D0EXIT = PCI_MESSAGE_BASE + 8, 108 PCI_READ_BLOCK = PCI_MESSAGE_BASE + 9, 109 PCI_WRITE_BLOCK = PCI_MESSAGE_BASE + 0xA, 110 PCI_EJECT = PCI_MESSAGE_BASE + 0xB, 111 PCI_QUERY_STOP = PCI_MESSAGE_BASE + 0xC, 112 PCI_REENABLE = PCI_MESSAGE_BASE + 0xD, 113 PCI_QUERY_STOP_FAILED = PCI_MESSAGE_BASE + 0xE, 114 PCI_EJECTION_COMPLETE = PCI_MESSAGE_BASE + 0xF, 115 PCI_RESOURCES_ASSIGNED = PCI_MESSAGE_BASE + 0x10, 116 PCI_RESOURCES_RELEASED = PCI_MESSAGE_BASE + 0x11, 117 PCI_INVALIDATE_BLOCK = PCI_MESSAGE_BASE + 0x12, 118 PCI_QUERY_PROTOCOL_VERSION = PCI_MESSAGE_BASE + 0x13, 119 PCI_CREATE_INTERRUPT_MESSAGE = PCI_MESSAGE_BASE + 0x14, 120 PCI_DELETE_INTERRUPT_MESSAGE = PCI_MESSAGE_BASE + 0x15, 121 PCI_RESOURCES_ASSIGNED2 = PCI_MESSAGE_BASE + 0x16, 122 PCI_CREATE_INTERRUPT_MESSAGE2 = PCI_MESSAGE_BASE + 0x17, 123 PCI_DELETE_INTERRUPT_MESSAGE2 = PCI_MESSAGE_BASE + 0x18, /* unused */ 124 PCI_BUS_RELATIONS2 = PCI_MESSAGE_BASE + 0x19, 125 PCI_MESSAGE_MAXIMUM 126 }; 127 128 /* 129 * Structures defining the virtual PCI Express protocol. 130 */ 131 132 union pci_version { 133 struct { 134 u16 minor_version; 135 u16 major_version; 136 } parts; 137 u32 version; 138 } __packed; 139 140 /* 141 * Function numbers are 8-bits wide on Express, as interpreted through ARI, 142 * which is all this driver does. This representation is the one used in 143 * Windows, which is what is expected when sending this back and forth with 144 * the Hyper-V parent partition. 145 */ 146 union win_slot_encoding { 147 struct { 148 u32 dev:5; 149 u32 func:3; 150 u32 reserved:24; 151 } bits; 152 u32 slot; 153 } __packed; 154 155 /* 156 * Pretty much as defined in the PCI Specifications. 157 */ 158 struct pci_function_description { 159 u16 v_id; /* vendor ID */ 160 u16 d_id; /* device ID */ 161 u8 rev; 162 u8 prog_intf; 163 u8 subclass; 164 u8 base_class; 165 u32 subsystem_id; 166 union win_slot_encoding win_slot; 167 u32 ser; /* serial number */ 168 } __packed; 169 170 enum pci_device_description_flags { 171 HV_PCI_DEVICE_FLAG_NONE = 0x0, 172 HV_PCI_DEVICE_FLAG_NUMA_AFFINITY = 0x1, 173 }; 174 175 struct pci_function_description2 { 176 u16 v_id; /* vendor ID */ 177 u16 d_id; /* device ID */ 178 u8 rev; 179 u8 prog_intf; 180 u8 subclass; 181 u8 base_class; 182 u32 subsystem_id; 183 union win_slot_encoding win_slot; 184 u32 ser; /* serial number */ 185 u32 flags; 186 u16 virtual_numa_node; 187 u16 reserved; 188 } __packed; 189 190 /** 191 * struct hv_msi_desc 192 * @vector: IDT entry 193 * @delivery_mode: As defined in Intel's Programmer's 194 * Reference Manual, Volume 3, Chapter 8. 195 * @vector_count: Number of contiguous entries in the 196 * Interrupt Descriptor Table that are 197 * occupied by this Message-Signaled 198 * Interrupt. For "MSI", as first defined 199 * in PCI 2.2, this can be between 1 and 200 * 32. For "MSI-X," as first defined in PCI 201 * 3.0, this must be 1, as each MSI-X table 202 * entry would have its own descriptor. 203 * @reserved: Empty space 204 * @cpu_mask: All the target virtual processors. 205 */ 206 struct hv_msi_desc { 207 u8 vector; 208 u8 delivery_mode; 209 u16 vector_count; 210 u32 reserved; 211 u64 cpu_mask; 212 } __packed; 213 214 /** 215 * struct hv_msi_desc2 - 1.2 version of hv_msi_desc 216 * @vector: IDT entry 217 * @delivery_mode: As defined in Intel's Programmer's 218 * Reference Manual, Volume 3, Chapter 8. 219 * @vector_count: Number of contiguous entries in the 220 * Interrupt Descriptor Table that are 221 * occupied by this Message-Signaled 222 * Interrupt. For "MSI", as first defined 223 * in PCI 2.2, this can be between 1 and 224 * 32. For "MSI-X," as first defined in PCI 225 * 3.0, this must be 1, as each MSI-X table 226 * entry would have its own descriptor. 227 * @processor_count: number of bits enabled in array. 228 * @processor_array: All the target virtual processors. 229 */ 230 struct hv_msi_desc2 { 231 u8 vector; 232 u8 delivery_mode; 233 u16 vector_count; 234 u16 processor_count; 235 u16 processor_array[32]; 236 } __packed; 237 238 /** 239 * struct tran_int_desc 240 * @reserved: unused, padding 241 * @vector_count: same as in hv_msi_desc 242 * @data: This is the "data payload" value that is 243 * written by the device when it generates 244 * a message-signaled interrupt, either MSI 245 * or MSI-X. 246 * @address: This is the address to which the data 247 * payload is written on interrupt 248 * generation. 249 */ 250 struct tran_int_desc { 251 u16 reserved; 252 u16 vector_count; 253 u32 data; 254 u64 address; 255 } __packed; 256 257 /* 258 * A generic message format for virtual PCI. 259 * Specific message formats are defined later in the file. 260 */ 261 262 struct pci_message { 263 u32 type; 264 } __packed; 265 266 struct pci_child_message { 267 struct pci_message message_type; 268 union win_slot_encoding wslot; 269 } __packed; 270 271 struct pci_incoming_message { 272 struct vmpacket_descriptor hdr; 273 struct pci_message message_type; 274 } __packed; 275 276 struct pci_response { 277 struct vmpacket_descriptor hdr; 278 s32 status; /* negative values are failures */ 279 } __packed; 280 281 struct pci_packet { 282 void (*completion_func)(void *context, struct pci_response *resp, 283 int resp_packet_size); 284 void *compl_ctxt; 285 286 struct pci_message message[]; 287 }; 288 289 /* 290 * Specific message types supporting the PCI protocol. 291 */ 292 293 /* 294 * Version negotiation message. Sent from the guest to the host. 295 * The guest is free to try different versions until the host 296 * accepts the version. 297 * 298 * pci_version: The protocol version requested. 299 * is_last_attempt: If TRUE, this is the last version guest will request. 300 * reservedz: Reserved field, set to zero. 301 */ 302 303 struct pci_version_request { 304 struct pci_message message_type; 305 u32 protocol_version; 306 } __packed; 307 308 /* 309 * Bus D0 Entry. This is sent from the guest to the host when the virtual 310 * bus (PCI Express port) is ready for action. 311 */ 312 313 struct pci_bus_d0_entry { 314 struct pci_message message_type; 315 u32 reserved; 316 u64 mmio_base; 317 } __packed; 318 319 struct pci_bus_relations { 320 struct pci_incoming_message incoming; 321 u32 device_count; 322 struct pci_function_description func[]; 323 } __packed; 324 325 struct pci_bus_relations2 { 326 struct pci_incoming_message incoming; 327 u32 device_count; 328 struct pci_function_description2 func[]; 329 } __packed; 330 331 struct pci_q_res_req_response { 332 struct vmpacket_descriptor hdr; 333 s32 status; /* negative values are failures */ 334 u32 probed_bar[PCI_STD_NUM_BARS]; 335 } __packed; 336 337 struct pci_set_power { 338 struct pci_message message_type; 339 union win_slot_encoding wslot; 340 u32 power_state; /* In Windows terms */ 341 u32 reserved; 342 } __packed; 343 344 struct pci_set_power_response { 345 struct vmpacket_descriptor hdr; 346 s32 status; /* negative values are failures */ 347 union win_slot_encoding wslot; 348 u32 resultant_state; /* In Windows terms */ 349 u32 reserved; 350 } __packed; 351 352 struct pci_resources_assigned { 353 struct pci_message message_type; 354 union win_slot_encoding wslot; 355 u8 memory_range[0x14][6]; /* not used here */ 356 u32 msi_descriptors; 357 u32 reserved[4]; 358 } __packed; 359 360 struct pci_resources_assigned2 { 361 struct pci_message message_type; 362 union win_slot_encoding wslot; 363 u8 memory_range[0x14][6]; /* not used here */ 364 u32 msi_descriptor_count; 365 u8 reserved[70]; 366 } __packed; 367 368 struct pci_create_interrupt { 369 struct pci_message message_type; 370 union win_slot_encoding wslot; 371 struct hv_msi_desc int_desc; 372 } __packed; 373 374 struct pci_create_int_response { 375 struct pci_response response; 376 u32 reserved; 377 struct tran_int_desc int_desc; 378 } __packed; 379 380 struct pci_create_interrupt2 { 381 struct pci_message message_type; 382 union win_slot_encoding wslot; 383 struct hv_msi_desc2 int_desc; 384 } __packed; 385 386 struct pci_delete_interrupt { 387 struct pci_message message_type; 388 union win_slot_encoding wslot; 389 struct tran_int_desc int_desc; 390 } __packed; 391 392 /* 393 * Note: the VM must pass a valid block id, wslot and bytes_requested. 394 */ 395 struct pci_read_block { 396 struct pci_message message_type; 397 u32 block_id; 398 union win_slot_encoding wslot; 399 u32 bytes_requested; 400 } __packed; 401 402 struct pci_read_block_response { 403 struct vmpacket_descriptor hdr; 404 u32 status; 405 u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX]; 406 } __packed; 407 408 /* 409 * Note: the VM must pass a valid block id, wslot and byte_count. 410 */ 411 struct pci_write_block { 412 struct pci_message message_type; 413 u32 block_id; 414 union win_slot_encoding wslot; 415 u32 byte_count; 416 u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX]; 417 } __packed; 418 419 struct pci_dev_inval_block { 420 struct pci_incoming_message incoming; 421 union win_slot_encoding wslot; 422 u64 block_mask; 423 } __packed; 424 425 struct pci_dev_incoming { 426 struct pci_incoming_message incoming; 427 union win_slot_encoding wslot; 428 } __packed; 429 430 struct pci_eject_response { 431 struct pci_message message_type; 432 union win_slot_encoding wslot; 433 u32 status; 434 } __packed; 435 436 static int pci_ring_size = (4 * PAGE_SIZE); 437 438 /* 439 * Driver specific state. 440 */ 441 442 enum hv_pcibus_state { 443 hv_pcibus_init = 0, 444 hv_pcibus_probed, 445 hv_pcibus_installed, 446 hv_pcibus_removing, 447 hv_pcibus_removed, 448 hv_pcibus_maximum 449 }; 450 451 struct hv_pcibus_device { 452 struct pci_sysdata sysdata; 453 /* Protocol version negotiated with the host */ 454 enum pci_protocol_version_t protocol_version; 455 enum hv_pcibus_state state; 456 refcount_t remove_lock; 457 struct hv_device *hdev; 458 resource_size_t low_mmio_space; 459 resource_size_t high_mmio_space; 460 struct resource *mem_config; 461 struct resource *low_mmio_res; 462 struct resource *high_mmio_res; 463 struct completion *survey_event; 464 struct completion remove_event; 465 struct pci_bus *pci_bus; 466 spinlock_t config_lock; /* Avoid two threads writing index page */ 467 spinlock_t device_list_lock; /* Protect lists below */ 468 void __iomem *cfg_addr; 469 470 struct list_head resources_for_children; 471 472 struct list_head children; 473 struct list_head dr_list; 474 475 struct msi_domain_info msi_info; 476 struct msi_controller msi_chip; 477 struct irq_domain *irq_domain; 478 479 spinlock_t retarget_msi_interrupt_lock; 480 481 struct workqueue_struct *wq; 482 483 /* hypercall arg, must not cross page boundary */ 484 struct hv_retarget_device_interrupt retarget_msi_interrupt_params; 485 486 /* 487 * Don't put anything here: retarget_msi_interrupt_params must be last 488 */ 489 }; 490 491 /* 492 * Tracks "Device Relations" messages from the host, which must be both 493 * processed in order and deferred so that they don't run in the context 494 * of the incoming packet callback. 495 */ 496 struct hv_dr_work { 497 struct work_struct wrk; 498 struct hv_pcibus_device *bus; 499 }; 500 501 struct hv_pcidev_description { 502 u16 v_id; /* vendor ID */ 503 u16 d_id; /* device ID */ 504 u8 rev; 505 u8 prog_intf; 506 u8 subclass; 507 u8 base_class; 508 u32 subsystem_id; 509 union win_slot_encoding win_slot; 510 u32 ser; /* serial number */ 511 u32 flags; 512 u16 virtual_numa_node; 513 }; 514 515 struct hv_dr_state { 516 struct list_head list_entry; 517 u32 device_count; 518 struct hv_pcidev_description func[]; 519 }; 520 521 enum hv_pcichild_state { 522 hv_pcichild_init = 0, 523 hv_pcichild_requirements, 524 hv_pcichild_resourced, 525 hv_pcichild_ejecting, 526 hv_pcichild_maximum 527 }; 528 529 struct hv_pci_dev { 530 /* List protected by pci_rescan_remove_lock */ 531 struct list_head list_entry; 532 refcount_t refs; 533 enum hv_pcichild_state state; 534 struct pci_slot *pci_slot; 535 struct hv_pcidev_description desc; 536 bool reported_missing; 537 struct hv_pcibus_device *hbus; 538 struct work_struct wrk; 539 540 void (*block_invalidate)(void *context, u64 block_mask); 541 void *invalidate_context; 542 543 /* 544 * What would be observed if one wrote 0xFFFFFFFF to a BAR and then 545 * read it back, for each of the BAR offsets within config space. 546 */ 547 u32 probed_bar[PCI_STD_NUM_BARS]; 548 }; 549 550 struct hv_pci_compl { 551 struct completion host_event; 552 s32 completion_status; 553 }; 554 555 static void hv_pci_onchannelcallback(void *context); 556 557 /** 558 * hv_pci_generic_compl() - Invoked for a completion packet 559 * @context: Set up by the sender of the packet. 560 * @resp: The response packet 561 * @resp_packet_size: Size in bytes of the packet 562 * 563 * This function is used to trigger an event and report status 564 * for any message for which the completion packet contains a 565 * status and nothing else. 566 */ 567 static void hv_pci_generic_compl(void *context, struct pci_response *resp, 568 int resp_packet_size) 569 { 570 struct hv_pci_compl *comp_pkt = context; 571 572 if (resp_packet_size >= offsetofend(struct pci_response, status)) 573 comp_pkt->completion_status = resp->status; 574 else 575 comp_pkt->completion_status = -1; 576 577 complete(&comp_pkt->host_event); 578 } 579 580 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus, 581 u32 wslot); 582 583 static void get_pcichild(struct hv_pci_dev *hpdev) 584 { 585 refcount_inc(&hpdev->refs); 586 } 587 588 static void put_pcichild(struct hv_pci_dev *hpdev) 589 { 590 if (refcount_dec_and_test(&hpdev->refs)) 591 kfree(hpdev); 592 } 593 594 static void get_hvpcibus(struct hv_pcibus_device *hv_pcibus); 595 static void put_hvpcibus(struct hv_pcibus_device *hv_pcibus); 596 597 /* 598 * There is no good way to get notified from vmbus_onoffer_rescind(), 599 * so let's use polling here, since this is not a hot path. 600 */ 601 static int wait_for_response(struct hv_device *hdev, 602 struct completion *comp) 603 { 604 while (true) { 605 if (hdev->channel->rescind) { 606 dev_warn_once(&hdev->device, "The device is gone.\n"); 607 return -ENODEV; 608 } 609 610 if (wait_for_completion_timeout(comp, HZ / 10)) 611 break; 612 } 613 614 return 0; 615 } 616 617 /** 618 * devfn_to_wslot() - Convert from Linux PCI slot to Windows 619 * @devfn: The Linux representation of PCI slot 620 * 621 * Windows uses a slightly different representation of PCI slot. 622 * 623 * Return: The Windows representation 624 */ 625 static u32 devfn_to_wslot(int devfn) 626 { 627 union win_slot_encoding wslot; 628 629 wslot.slot = 0; 630 wslot.bits.dev = PCI_SLOT(devfn); 631 wslot.bits.func = PCI_FUNC(devfn); 632 633 return wslot.slot; 634 } 635 636 /** 637 * wslot_to_devfn() - Convert from Windows PCI slot to Linux 638 * @wslot: The Windows representation of PCI slot 639 * 640 * Windows uses a slightly different representation of PCI slot. 641 * 642 * Return: The Linux representation 643 */ 644 static int wslot_to_devfn(u32 wslot) 645 { 646 union win_slot_encoding slot_no; 647 648 slot_no.slot = wslot; 649 return PCI_DEVFN(slot_no.bits.dev, slot_no.bits.func); 650 } 651 652 /* 653 * PCI Configuration Space for these root PCI buses is implemented as a pair 654 * of pages in memory-mapped I/O space. Writing to the first page chooses 655 * the PCI function being written or read. Once the first page has been 656 * written to, the following page maps in the entire configuration space of 657 * the function. 658 */ 659 660 /** 661 * _hv_pcifront_read_config() - Internal PCI config read 662 * @hpdev: The PCI driver's representation of the device 663 * @where: Offset within config space 664 * @size: Size of the transfer 665 * @val: Pointer to the buffer receiving the data 666 */ 667 static void _hv_pcifront_read_config(struct hv_pci_dev *hpdev, int where, 668 int size, u32 *val) 669 { 670 unsigned long flags; 671 void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where; 672 673 /* 674 * If the attempt is to read the IDs or the ROM BAR, simulate that. 675 */ 676 if (where + size <= PCI_COMMAND) { 677 memcpy(val, ((u8 *)&hpdev->desc.v_id) + where, size); 678 } else if (where >= PCI_CLASS_REVISION && where + size <= 679 PCI_CACHE_LINE_SIZE) { 680 memcpy(val, ((u8 *)&hpdev->desc.rev) + where - 681 PCI_CLASS_REVISION, size); 682 } else if (where >= PCI_SUBSYSTEM_VENDOR_ID && where + size <= 683 PCI_ROM_ADDRESS) { 684 memcpy(val, (u8 *)&hpdev->desc.subsystem_id + where - 685 PCI_SUBSYSTEM_VENDOR_ID, size); 686 } else if (where >= PCI_ROM_ADDRESS && where + size <= 687 PCI_CAPABILITY_LIST) { 688 /* ROM BARs are unimplemented */ 689 *val = 0; 690 } else if (where >= PCI_INTERRUPT_LINE && where + size <= 691 PCI_INTERRUPT_PIN) { 692 /* 693 * Interrupt Line and Interrupt PIN are hard-wired to zero 694 * because this front-end only supports message-signaled 695 * interrupts. 696 */ 697 *val = 0; 698 } else if (where + size <= CFG_PAGE_SIZE) { 699 spin_lock_irqsave(&hpdev->hbus->config_lock, flags); 700 /* Choose the function to be read. (See comment above) */ 701 writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr); 702 /* Make sure the function was chosen before we start reading. */ 703 mb(); 704 /* Read from that function's config space. */ 705 switch (size) { 706 case 1: 707 *val = readb(addr); 708 break; 709 case 2: 710 *val = readw(addr); 711 break; 712 default: 713 *val = readl(addr); 714 break; 715 } 716 /* 717 * Make sure the read was done before we release the spinlock 718 * allowing consecutive reads/writes. 719 */ 720 mb(); 721 spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags); 722 } else { 723 dev_err(&hpdev->hbus->hdev->device, 724 "Attempt to read beyond a function's config space.\n"); 725 } 726 } 727 728 static u16 hv_pcifront_get_vendor_id(struct hv_pci_dev *hpdev) 729 { 730 u16 ret; 731 unsigned long flags; 732 void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + 733 PCI_VENDOR_ID; 734 735 spin_lock_irqsave(&hpdev->hbus->config_lock, flags); 736 737 /* Choose the function to be read. (See comment above) */ 738 writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr); 739 /* Make sure the function was chosen before we start reading. */ 740 mb(); 741 /* Read from that function's config space. */ 742 ret = readw(addr); 743 /* 744 * mb() is not required here, because the spin_unlock_irqrestore() 745 * is a barrier. 746 */ 747 748 spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags); 749 750 return ret; 751 } 752 753 /** 754 * _hv_pcifront_write_config() - Internal PCI config write 755 * @hpdev: The PCI driver's representation of the device 756 * @where: Offset within config space 757 * @size: Size of the transfer 758 * @val: The data being transferred 759 */ 760 static void _hv_pcifront_write_config(struct hv_pci_dev *hpdev, int where, 761 int size, u32 val) 762 { 763 unsigned long flags; 764 void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where; 765 766 if (where >= PCI_SUBSYSTEM_VENDOR_ID && 767 where + size <= PCI_CAPABILITY_LIST) { 768 /* SSIDs and ROM BARs are read-only */ 769 } else if (where >= PCI_COMMAND && where + size <= CFG_PAGE_SIZE) { 770 spin_lock_irqsave(&hpdev->hbus->config_lock, flags); 771 /* Choose the function to be written. (See comment above) */ 772 writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr); 773 /* Make sure the function was chosen before we start writing. */ 774 wmb(); 775 /* Write to that function's config space. */ 776 switch (size) { 777 case 1: 778 writeb(val, addr); 779 break; 780 case 2: 781 writew(val, addr); 782 break; 783 default: 784 writel(val, addr); 785 break; 786 } 787 /* 788 * Make sure the write was done before we release the spinlock 789 * allowing consecutive reads/writes. 790 */ 791 mb(); 792 spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags); 793 } else { 794 dev_err(&hpdev->hbus->hdev->device, 795 "Attempt to write beyond a function's config space.\n"); 796 } 797 } 798 799 /** 800 * hv_pcifront_read_config() - Read configuration space 801 * @bus: PCI Bus structure 802 * @devfn: Device/function 803 * @where: Offset from base 804 * @size: Byte/word/dword 805 * @val: Value to be read 806 * 807 * Return: PCIBIOS_SUCCESSFUL on success 808 * PCIBIOS_DEVICE_NOT_FOUND on failure 809 */ 810 static int hv_pcifront_read_config(struct pci_bus *bus, unsigned int devfn, 811 int where, int size, u32 *val) 812 { 813 struct hv_pcibus_device *hbus = 814 container_of(bus->sysdata, struct hv_pcibus_device, sysdata); 815 struct hv_pci_dev *hpdev; 816 817 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn)); 818 if (!hpdev) 819 return PCIBIOS_DEVICE_NOT_FOUND; 820 821 _hv_pcifront_read_config(hpdev, where, size, val); 822 823 put_pcichild(hpdev); 824 return PCIBIOS_SUCCESSFUL; 825 } 826 827 /** 828 * hv_pcifront_write_config() - Write configuration space 829 * @bus: PCI Bus structure 830 * @devfn: Device/function 831 * @where: Offset from base 832 * @size: Byte/word/dword 833 * @val: Value to be written to device 834 * 835 * Return: PCIBIOS_SUCCESSFUL on success 836 * PCIBIOS_DEVICE_NOT_FOUND on failure 837 */ 838 static int hv_pcifront_write_config(struct pci_bus *bus, unsigned int devfn, 839 int where, int size, u32 val) 840 { 841 struct hv_pcibus_device *hbus = 842 container_of(bus->sysdata, struct hv_pcibus_device, sysdata); 843 struct hv_pci_dev *hpdev; 844 845 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn)); 846 if (!hpdev) 847 return PCIBIOS_DEVICE_NOT_FOUND; 848 849 _hv_pcifront_write_config(hpdev, where, size, val); 850 851 put_pcichild(hpdev); 852 return PCIBIOS_SUCCESSFUL; 853 } 854 855 /* PCIe operations */ 856 static struct pci_ops hv_pcifront_ops = { 857 .read = hv_pcifront_read_config, 858 .write = hv_pcifront_write_config, 859 }; 860 861 /* 862 * Paravirtual backchannel 863 * 864 * Hyper-V SR-IOV provides a backchannel mechanism in software for 865 * communication between a VF driver and a PF driver. These 866 * "configuration blocks" are similar in concept to PCI configuration space, 867 * but instead of doing reads and writes in 32-bit chunks through a very slow 868 * path, packets of up to 128 bytes can be sent or received asynchronously. 869 * 870 * Nearly every SR-IOV device contains just such a communications channel in 871 * hardware, so using this one in software is usually optional. Using the 872 * software channel, however, allows driver implementers to leverage software 873 * tools that fuzz the communications channel looking for vulnerabilities. 874 * 875 * The usage model for these packets puts the responsibility for reading or 876 * writing on the VF driver. The VF driver sends a read or a write packet, 877 * indicating which "block" is being referred to by number. 878 * 879 * If the PF driver wishes to initiate communication, it can "invalidate" one or 880 * more of the first 64 blocks. This invalidation is delivered via a callback 881 * supplied by the VF driver by this driver. 882 * 883 * No protocol is implied, except that supplied by the PF and VF drivers. 884 */ 885 886 struct hv_read_config_compl { 887 struct hv_pci_compl comp_pkt; 888 void *buf; 889 unsigned int len; 890 unsigned int bytes_returned; 891 }; 892 893 /** 894 * hv_pci_read_config_compl() - Invoked when a response packet 895 * for a read config block operation arrives. 896 * @context: Identifies the read config operation 897 * @resp: The response packet itself 898 * @resp_packet_size: Size in bytes of the response packet 899 */ 900 static void hv_pci_read_config_compl(void *context, struct pci_response *resp, 901 int resp_packet_size) 902 { 903 struct hv_read_config_compl *comp = context; 904 struct pci_read_block_response *read_resp = 905 (struct pci_read_block_response *)resp; 906 unsigned int data_len, hdr_len; 907 908 hdr_len = offsetof(struct pci_read_block_response, bytes); 909 if (resp_packet_size < hdr_len) { 910 comp->comp_pkt.completion_status = -1; 911 goto out; 912 } 913 914 data_len = resp_packet_size - hdr_len; 915 if (data_len > 0 && read_resp->status == 0) { 916 comp->bytes_returned = min(comp->len, data_len); 917 memcpy(comp->buf, read_resp->bytes, comp->bytes_returned); 918 } else { 919 comp->bytes_returned = 0; 920 } 921 922 comp->comp_pkt.completion_status = read_resp->status; 923 out: 924 complete(&comp->comp_pkt.host_event); 925 } 926 927 /** 928 * hv_read_config_block() - Sends a read config block request to 929 * the back-end driver running in the Hyper-V parent partition. 930 * @pdev: The PCI driver's representation for this device. 931 * @buf: Buffer into which the config block will be copied. 932 * @len: Size in bytes of buf. 933 * @block_id: Identifies the config block which has been requested. 934 * @bytes_returned: Size which came back from the back-end driver. 935 * 936 * Return: 0 on success, -errno on failure 937 */ 938 int hv_read_config_block(struct pci_dev *pdev, void *buf, unsigned int len, 939 unsigned int block_id, unsigned int *bytes_returned) 940 { 941 struct hv_pcibus_device *hbus = 942 container_of(pdev->bus->sysdata, struct hv_pcibus_device, 943 sysdata); 944 struct { 945 struct pci_packet pkt; 946 char buf[sizeof(struct pci_read_block)]; 947 } pkt; 948 struct hv_read_config_compl comp_pkt; 949 struct pci_read_block *read_blk; 950 int ret; 951 952 if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX) 953 return -EINVAL; 954 955 init_completion(&comp_pkt.comp_pkt.host_event); 956 comp_pkt.buf = buf; 957 comp_pkt.len = len; 958 959 memset(&pkt, 0, sizeof(pkt)); 960 pkt.pkt.completion_func = hv_pci_read_config_compl; 961 pkt.pkt.compl_ctxt = &comp_pkt; 962 read_blk = (struct pci_read_block *)&pkt.pkt.message; 963 read_blk->message_type.type = PCI_READ_BLOCK; 964 read_blk->wslot.slot = devfn_to_wslot(pdev->devfn); 965 read_blk->block_id = block_id; 966 read_blk->bytes_requested = len; 967 968 ret = vmbus_sendpacket(hbus->hdev->channel, read_blk, 969 sizeof(*read_blk), (unsigned long)&pkt.pkt, 970 VM_PKT_DATA_INBAND, 971 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 972 if (ret) 973 return ret; 974 975 ret = wait_for_response(hbus->hdev, &comp_pkt.comp_pkt.host_event); 976 if (ret) 977 return ret; 978 979 if (comp_pkt.comp_pkt.completion_status != 0 || 980 comp_pkt.bytes_returned == 0) { 981 dev_err(&hbus->hdev->device, 982 "Read Config Block failed: 0x%x, bytes_returned=%d\n", 983 comp_pkt.comp_pkt.completion_status, 984 comp_pkt.bytes_returned); 985 return -EIO; 986 } 987 988 *bytes_returned = comp_pkt.bytes_returned; 989 return 0; 990 } 991 992 /** 993 * hv_pci_write_config_compl() - Invoked when a response packet for a write 994 * config block operation arrives. 995 * @context: Identifies the write config operation 996 * @resp: The response packet itself 997 * @resp_packet_size: Size in bytes of the response packet 998 */ 999 static void hv_pci_write_config_compl(void *context, struct pci_response *resp, 1000 int resp_packet_size) 1001 { 1002 struct hv_pci_compl *comp_pkt = context; 1003 1004 comp_pkt->completion_status = resp->status; 1005 complete(&comp_pkt->host_event); 1006 } 1007 1008 /** 1009 * hv_write_config_block() - Sends a write config block request to the 1010 * back-end driver running in the Hyper-V parent partition. 1011 * @pdev: The PCI driver's representation for this device. 1012 * @buf: Buffer from which the config block will be copied. 1013 * @len: Size in bytes of buf. 1014 * @block_id: Identifies the config block which is being written. 1015 * 1016 * Return: 0 on success, -errno on failure 1017 */ 1018 int hv_write_config_block(struct pci_dev *pdev, void *buf, unsigned int len, 1019 unsigned int block_id) 1020 { 1021 struct hv_pcibus_device *hbus = 1022 container_of(pdev->bus->sysdata, struct hv_pcibus_device, 1023 sysdata); 1024 struct { 1025 struct pci_packet pkt; 1026 char buf[sizeof(struct pci_write_block)]; 1027 u32 reserved; 1028 } pkt; 1029 struct hv_pci_compl comp_pkt; 1030 struct pci_write_block *write_blk; 1031 u32 pkt_size; 1032 int ret; 1033 1034 if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX) 1035 return -EINVAL; 1036 1037 init_completion(&comp_pkt.host_event); 1038 1039 memset(&pkt, 0, sizeof(pkt)); 1040 pkt.pkt.completion_func = hv_pci_write_config_compl; 1041 pkt.pkt.compl_ctxt = &comp_pkt; 1042 write_blk = (struct pci_write_block *)&pkt.pkt.message; 1043 write_blk->message_type.type = PCI_WRITE_BLOCK; 1044 write_blk->wslot.slot = devfn_to_wslot(pdev->devfn); 1045 write_blk->block_id = block_id; 1046 write_blk->byte_count = len; 1047 memcpy(write_blk->bytes, buf, len); 1048 pkt_size = offsetof(struct pci_write_block, bytes) + len; 1049 /* 1050 * This quirk is required on some hosts shipped around 2018, because 1051 * these hosts don't check the pkt_size correctly (new hosts have been 1052 * fixed since early 2019). The quirk is also safe on very old hosts 1053 * and new hosts, because, on them, what really matters is the length 1054 * specified in write_blk->byte_count. 1055 */ 1056 pkt_size += sizeof(pkt.reserved); 1057 1058 ret = vmbus_sendpacket(hbus->hdev->channel, write_blk, pkt_size, 1059 (unsigned long)&pkt.pkt, VM_PKT_DATA_INBAND, 1060 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1061 if (ret) 1062 return ret; 1063 1064 ret = wait_for_response(hbus->hdev, &comp_pkt.host_event); 1065 if (ret) 1066 return ret; 1067 1068 if (comp_pkt.completion_status != 0) { 1069 dev_err(&hbus->hdev->device, 1070 "Write Config Block failed: 0x%x\n", 1071 comp_pkt.completion_status); 1072 return -EIO; 1073 } 1074 1075 return 0; 1076 } 1077 1078 /** 1079 * hv_register_block_invalidate() - Invoked when a config block invalidation 1080 * arrives from the back-end driver. 1081 * @pdev: The PCI driver's representation for this device. 1082 * @context: Identifies the device. 1083 * @block_invalidate: Identifies all of the blocks being invalidated. 1084 * 1085 * Return: 0 on success, -errno on failure 1086 */ 1087 int hv_register_block_invalidate(struct pci_dev *pdev, void *context, 1088 void (*block_invalidate)(void *context, 1089 u64 block_mask)) 1090 { 1091 struct hv_pcibus_device *hbus = 1092 container_of(pdev->bus->sysdata, struct hv_pcibus_device, 1093 sysdata); 1094 struct hv_pci_dev *hpdev; 1095 1096 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn)); 1097 if (!hpdev) 1098 return -ENODEV; 1099 1100 hpdev->block_invalidate = block_invalidate; 1101 hpdev->invalidate_context = context; 1102 1103 put_pcichild(hpdev); 1104 return 0; 1105 1106 } 1107 1108 /* Interrupt management hooks */ 1109 static void hv_int_desc_free(struct hv_pci_dev *hpdev, 1110 struct tran_int_desc *int_desc) 1111 { 1112 struct pci_delete_interrupt *int_pkt; 1113 struct { 1114 struct pci_packet pkt; 1115 u8 buffer[sizeof(struct pci_delete_interrupt)]; 1116 } ctxt; 1117 1118 memset(&ctxt, 0, sizeof(ctxt)); 1119 int_pkt = (struct pci_delete_interrupt *)&ctxt.pkt.message; 1120 int_pkt->message_type.type = 1121 PCI_DELETE_INTERRUPT_MESSAGE; 1122 int_pkt->wslot.slot = hpdev->desc.win_slot.slot; 1123 int_pkt->int_desc = *int_desc; 1124 vmbus_sendpacket(hpdev->hbus->hdev->channel, int_pkt, sizeof(*int_pkt), 1125 (unsigned long)&ctxt.pkt, VM_PKT_DATA_INBAND, 0); 1126 kfree(int_desc); 1127 } 1128 1129 /** 1130 * hv_msi_free() - Free the MSI. 1131 * @domain: The interrupt domain pointer 1132 * @info: Extra MSI-related context 1133 * @irq: Identifies the IRQ. 1134 * 1135 * The Hyper-V parent partition and hypervisor are tracking the 1136 * messages that are in use, keeping the interrupt redirection 1137 * table up to date. This callback sends a message that frees 1138 * the IRT entry and related tracking nonsense. 1139 */ 1140 static void hv_msi_free(struct irq_domain *domain, struct msi_domain_info *info, 1141 unsigned int irq) 1142 { 1143 struct hv_pcibus_device *hbus; 1144 struct hv_pci_dev *hpdev; 1145 struct pci_dev *pdev; 1146 struct tran_int_desc *int_desc; 1147 struct irq_data *irq_data = irq_domain_get_irq_data(domain, irq); 1148 struct msi_desc *msi = irq_data_get_msi_desc(irq_data); 1149 1150 pdev = msi_desc_to_pci_dev(msi); 1151 hbus = info->data; 1152 int_desc = irq_data_get_irq_chip_data(irq_data); 1153 if (!int_desc) 1154 return; 1155 1156 irq_data->chip_data = NULL; 1157 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn)); 1158 if (!hpdev) { 1159 kfree(int_desc); 1160 return; 1161 } 1162 1163 hv_int_desc_free(hpdev, int_desc); 1164 put_pcichild(hpdev); 1165 } 1166 1167 static int hv_set_affinity(struct irq_data *data, const struct cpumask *dest, 1168 bool force) 1169 { 1170 struct irq_data *parent = data->parent_data; 1171 1172 return parent->chip->irq_set_affinity(parent, dest, force); 1173 } 1174 1175 static void hv_irq_mask(struct irq_data *data) 1176 { 1177 pci_msi_mask_irq(data); 1178 } 1179 1180 /** 1181 * hv_irq_unmask() - "Unmask" the IRQ by setting its current 1182 * affinity. 1183 * @data: Describes the IRQ 1184 * 1185 * Build new a destination for the MSI and make a hypercall to 1186 * update the Interrupt Redirection Table. "Device Logical ID" 1187 * is built out of this PCI bus's instance GUID and the function 1188 * number of the device. 1189 */ 1190 static void hv_irq_unmask(struct irq_data *data) 1191 { 1192 struct msi_desc *msi_desc = irq_data_get_msi_desc(data); 1193 struct irq_cfg *cfg = irqd_cfg(data); 1194 struct hv_retarget_device_interrupt *params; 1195 struct hv_pcibus_device *hbus; 1196 struct cpumask *dest; 1197 cpumask_var_t tmp; 1198 struct pci_bus *pbus; 1199 struct pci_dev *pdev; 1200 unsigned long flags; 1201 u32 var_size = 0; 1202 int cpu, nr_bank; 1203 u64 res; 1204 1205 dest = irq_data_get_effective_affinity_mask(data); 1206 pdev = msi_desc_to_pci_dev(msi_desc); 1207 pbus = pdev->bus; 1208 hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata); 1209 1210 spin_lock_irqsave(&hbus->retarget_msi_interrupt_lock, flags); 1211 1212 params = &hbus->retarget_msi_interrupt_params; 1213 memset(params, 0, sizeof(*params)); 1214 params->partition_id = HV_PARTITION_ID_SELF; 1215 params->int_entry.source = 1; /* MSI(-X) */ 1216 hv_set_msi_entry_from_desc(¶ms->int_entry.msi_entry, msi_desc); 1217 params->device_id = (hbus->hdev->dev_instance.b[5] << 24) | 1218 (hbus->hdev->dev_instance.b[4] << 16) | 1219 (hbus->hdev->dev_instance.b[7] << 8) | 1220 (hbus->hdev->dev_instance.b[6] & 0xf8) | 1221 PCI_FUNC(pdev->devfn); 1222 params->int_target.vector = cfg->vector; 1223 1224 /* 1225 * Honoring apic->irq_delivery_mode set to dest_Fixed by 1226 * setting the HV_DEVICE_INTERRUPT_TARGET_MULTICAST flag results in a 1227 * spurious interrupt storm. Not doing so does not seem to have a 1228 * negative effect (yet?). 1229 */ 1230 1231 if (hbus->protocol_version >= PCI_PROTOCOL_VERSION_1_2) { 1232 /* 1233 * PCI_PROTOCOL_VERSION_1_2 supports the VP_SET version of the 1234 * HVCALL_RETARGET_INTERRUPT hypercall, which also coincides 1235 * with >64 VP support. 1236 * ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED 1237 * is not sufficient for this hypercall. 1238 */ 1239 params->int_target.flags |= 1240 HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET; 1241 1242 if (!alloc_cpumask_var(&tmp, GFP_ATOMIC)) { 1243 res = 1; 1244 goto exit_unlock; 1245 } 1246 1247 cpumask_and(tmp, dest, cpu_online_mask); 1248 nr_bank = cpumask_to_vpset(¶ms->int_target.vp_set, tmp); 1249 free_cpumask_var(tmp); 1250 1251 if (nr_bank <= 0) { 1252 res = 1; 1253 goto exit_unlock; 1254 } 1255 1256 /* 1257 * var-sized hypercall, var-size starts after vp_mask (thus 1258 * vp_set.format does not count, but vp_set.valid_bank_mask 1259 * does). 1260 */ 1261 var_size = 1 + nr_bank; 1262 } else { 1263 for_each_cpu_and(cpu, dest, cpu_online_mask) { 1264 params->int_target.vp_mask |= 1265 (1ULL << hv_cpu_number_to_vp_number(cpu)); 1266 } 1267 } 1268 1269 res = hv_do_hypercall(HVCALL_RETARGET_INTERRUPT | (var_size << 17), 1270 params, NULL); 1271 1272 exit_unlock: 1273 spin_unlock_irqrestore(&hbus->retarget_msi_interrupt_lock, flags); 1274 1275 if (res) { 1276 dev_err(&hbus->hdev->device, 1277 "%s() failed: %#llx", __func__, res); 1278 return; 1279 } 1280 1281 pci_msi_unmask_irq(data); 1282 } 1283 1284 struct compose_comp_ctxt { 1285 struct hv_pci_compl comp_pkt; 1286 struct tran_int_desc int_desc; 1287 }; 1288 1289 static void hv_pci_compose_compl(void *context, struct pci_response *resp, 1290 int resp_packet_size) 1291 { 1292 struct compose_comp_ctxt *comp_pkt = context; 1293 struct pci_create_int_response *int_resp = 1294 (struct pci_create_int_response *)resp; 1295 1296 comp_pkt->comp_pkt.completion_status = resp->status; 1297 comp_pkt->int_desc = int_resp->int_desc; 1298 complete(&comp_pkt->comp_pkt.host_event); 1299 } 1300 1301 static u32 hv_compose_msi_req_v1( 1302 struct pci_create_interrupt *int_pkt, struct cpumask *affinity, 1303 u32 slot, u8 vector) 1304 { 1305 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE; 1306 int_pkt->wslot.slot = slot; 1307 int_pkt->int_desc.vector = vector; 1308 int_pkt->int_desc.vector_count = 1; 1309 int_pkt->int_desc.delivery_mode = dest_Fixed; 1310 1311 /* 1312 * Create MSI w/ dummy vCPU set, overwritten by subsequent retarget in 1313 * hv_irq_unmask(). 1314 */ 1315 int_pkt->int_desc.cpu_mask = CPU_AFFINITY_ALL; 1316 1317 return sizeof(*int_pkt); 1318 } 1319 1320 static u32 hv_compose_msi_req_v2( 1321 struct pci_create_interrupt2 *int_pkt, struct cpumask *affinity, 1322 u32 slot, u8 vector) 1323 { 1324 int cpu; 1325 1326 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE2; 1327 int_pkt->wslot.slot = slot; 1328 int_pkt->int_desc.vector = vector; 1329 int_pkt->int_desc.vector_count = 1; 1330 int_pkt->int_desc.delivery_mode = dest_Fixed; 1331 1332 /* 1333 * Create MSI w/ dummy vCPU set targeting just one vCPU, overwritten 1334 * by subsequent retarget in hv_irq_unmask(). 1335 */ 1336 cpu = cpumask_first_and(affinity, cpu_online_mask); 1337 int_pkt->int_desc.processor_array[0] = 1338 hv_cpu_number_to_vp_number(cpu); 1339 int_pkt->int_desc.processor_count = 1; 1340 1341 return sizeof(*int_pkt); 1342 } 1343 1344 /** 1345 * hv_compose_msi_msg() - Supplies a valid MSI address/data 1346 * @data: Everything about this MSI 1347 * @msg: Buffer that is filled in by this function 1348 * 1349 * This function unpacks the IRQ looking for target CPU set, IDT 1350 * vector and mode and sends a message to the parent partition 1351 * asking for a mapping for that tuple in this partition. The 1352 * response supplies a data value and address to which that data 1353 * should be written to trigger that interrupt. 1354 */ 1355 static void hv_compose_msi_msg(struct irq_data *data, struct msi_msg *msg) 1356 { 1357 struct irq_cfg *cfg = irqd_cfg(data); 1358 struct hv_pcibus_device *hbus; 1359 struct vmbus_channel *channel; 1360 struct hv_pci_dev *hpdev; 1361 struct pci_bus *pbus; 1362 struct pci_dev *pdev; 1363 struct cpumask *dest; 1364 struct compose_comp_ctxt comp; 1365 struct tran_int_desc *int_desc; 1366 struct { 1367 struct pci_packet pci_pkt; 1368 union { 1369 struct pci_create_interrupt v1; 1370 struct pci_create_interrupt2 v2; 1371 } int_pkts; 1372 } __packed ctxt; 1373 1374 u32 size; 1375 int ret; 1376 1377 pdev = msi_desc_to_pci_dev(irq_data_get_msi_desc(data)); 1378 dest = irq_data_get_effective_affinity_mask(data); 1379 pbus = pdev->bus; 1380 hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata); 1381 channel = hbus->hdev->channel; 1382 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn)); 1383 if (!hpdev) 1384 goto return_null_message; 1385 1386 /* Free any previous message that might have already been composed. */ 1387 if (data->chip_data) { 1388 int_desc = data->chip_data; 1389 data->chip_data = NULL; 1390 hv_int_desc_free(hpdev, int_desc); 1391 } 1392 1393 int_desc = kzalloc(sizeof(*int_desc), GFP_ATOMIC); 1394 if (!int_desc) 1395 goto drop_reference; 1396 1397 memset(&ctxt, 0, sizeof(ctxt)); 1398 init_completion(&comp.comp_pkt.host_event); 1399 ctxt.pci_pkt.completion_func = hv_pci_compose_compl; 1400 ctxt.pci_pkt.compl_ctxt = ∁ 1401 1402 switch (hbus->protocol_version) { 1403 case PCI_PROTOCOL_VERSION_1_1: 1404 size = hv_compose_msi_req_v1(&ctxt.int_pkts.v1, 1405 dest, 1406 hpdev->desc.win_slot.slot, 1407 cfg->vector); 1408 break; 1409 1410 case PCI_PROTOCOL_VERSION_1_2: 1411 case PCI_PROTOCOL_VERSION_1_3: 1412 size = hv_compose_msi_req_v2(&ctxt.int_pkts.v2, 1413 dest, 1414 hpdev->desc.win_slot.slot, 1415 cfg->vector); 1416 break; 1417 1418 default: 1419 /* As we only negotiate protocol versions known to this driver, 1420 * this path should never hit. However, this is it not a hot 1421 * path so we print a message to aid future updates. 1422 */ 1423 dev_err(&hbus->hdev->device, 1424 "Unexpected vPCI protocol, update driver."); 1425 goto free_int_desc; 1426 } 1427 1428 ret = vmbus_sendpacket(hpdev->hbus->hdev->channel, &ctxt.int_pkts, 1429 size, (unsigned long)&ctxt.pci_pkt, 1430 VM_PKT_DATA_INBAND, 1431 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1432 if (ret) { 1433 dev_err(&hbus->hdev->device, 1434 "Sending request for interrupt failed: 0x%x", 1435 comp.comp_pkt.completion_status); 1436 goto free_int_desc; 1437 } 1438 1439 /* 1440 * Prevents hv_pci_onchannelcallback() from running concurrently 1441 * in the tasklet. 1442 */ 1443 tasklet_disable(&channel->callback_event); 1444 1445 /* 1446 * Since this function is called with IRQ locks held, can't 1447 * do normal wait for completion; instead poll. 1448 */ 1449 while (!try_wait_for_completion(&comp.comp_pkt.host_event)) { 1450 unsigned long flags; 1451 1452 /* 0xFFFF means an invalid PCI VENDOR ID. */ 1453 if (hv_pcifront_get_vendor_id(hpdev) == 0xFFFF) { 1454 dev_err_once(&hbus->hdev->device, 1455 "the device has gone\n"); 1456 goto enable_tasklet; 1457 } 1458 1459 /* 1460 * Make sure that the ring buffer data structure doesn't get 1461 * freed while we dereference the ring buffer pointer. Test 1462 * for the channel's onchannel_callback being NULL within a 1463 * sched_lock critical section. See also the inline comments 1464 * in vmbus_reset_channel_cb(). 1465 */ 1466 spin_lock_irqsave(&channel->sched_lock, flags); 1467 if (unlikely(channel->onchannel_callback == NULL)) { 1468 spin_unlock_irqrestore(&channel->sched_lock, flags); 1469 goto enable_tasklet; 1470 } 1471 hv_pci_onchannelcallback(hbus); 1472 spin_unlock_irqrestore(&channel->sched_lock, flags); 1473 1474 if (hpdev->state == hv_pcichild_ejecting) { 1475 dev_err_once(&hbus->hdev->device, 1476 "the device is being ejected\n"); 1477 goto enable_tasklet; 1478 } 1479 1480 udelay(100); 1481 } 1482 1483 tasklet_enable(&channel->callback_event); 1484 1485 if (comp.comp_pkt.completion_status < 0) { 1486 dev_err(&hbus->hdev->device, 1487 "Request for interrupt failed: 0x%x", 1488 comp.comp_pkt.completion_status); 1489 goto free_int_desc; 1490 } 1491 1492 /* 1493 * Record the assignment so that this can be unwound later. Using 1494 * irq_set_chip_data() here would be appropriate, but the lock it takes 1495 * is already held. 1496 */ 1497 *int_desc = comp.int_desc; 1498 data->chip_data = int_desc; 1499 1500 /* Pass up the result. */ 1501 msg->address_hi = comp.int_desc.address >> 32; 1502 msg->address_lo = comp.int_desc.address & 0xffffffff; 1503 msg->data = comp.int_desc.data; 1504 1505 put_pcichild(hpdev); 1506 return; 1507 1508 enable_tasklet: 1509 tasklet_enable(&channel->callback_event); 1510 free_int_desc: 1511 kfree(int_desc); 1512 drop_reference: 1513 put_pcichild(hpdev); 1514 return_null_message: 1515 msg->address_hi = 0; 1516 msg->address_lo = 0; 1517 msg->data = 0; 1518 } 1519 1520 /* HW Interrupt Chip Descriptor */ 1521 static struct irq_chip hv_msi_irq_chip = { 1522 .name = "Hyper-V PCIe MSI", 1523 .irq_compose_msi_msg = hv_compose_msi_msg, 1524 .irq_set_affinity = hv_set_affinity, 1525 .irq_ack = irq_chip_ack_parent, 1526 .irq_mask = hv_irq_mask, 1527 .irq_unmask = hv_irq_unmask, 1528 }; 1529 1530 static irq_hw_number_t hv_msi_domain_ops_get_hwirq(struct msi_domain_info *info, 1531 msi_alloc_info_t *arg) 1532 { 1533 return arg->msi_hwirq; 1534 } 1535 1536 static struct msi_domain_ops hv_msi_ops = { 1537 .get_hwirq = hv_msi_domain_ops_get_hwirq, 1538 .msi_prepare = pci_msi_prepare, 1539 .set_desc = pci_msi_set_desc, 1540 .msi_free = hv_msi_free, 1541 }; 1542 1543 /** 1544 * hv_pcie_init_irq_domain() - Initialize IRQ domain 1545 * @hbus: The root PCI bus 1546 * 1547 * This function creates an IRQ domain which will be used for 1548 * interrupts from devices that have been passed through. These 1549 * devices only support MSI and MSI-X, not line-based interrupts 1550 * or simulations of line-based interrupts through PCIe's 1551 * fabric-layer messages. Because interrupts are remapped, we 1552 * can support multi-message MSI here. 1553 * 1554 * Return: '0' on success and error value on failure 1555 */ 1556 static int hv_pcie_init_irq_domain(struct hv_pcibus_device *hbus) 1557 { 1558 hbus->msi_info.chip = &hv_msi_irq_chip; 1559 hbus->msi_info.ops = &hv_msi_ops; 1560 hbus->msi_info.flags = (MSI_FLAG_USE_DEF_DOM_OPS | 1561 MSI_FLAG_USE_DEF_CHIP_OPS | MSI_FLAG_MULTI_PCI_MSI | 1562 MSI_FLAG_PCI_MSIX); 1563 hbus->msi_info.handler = handle_edge_irq; 1564 hbus->msi_info.handler_name = "edge"; 1565 hbus->msi_info.data = hbus; 1566 hbus->irq_domain = pci_msi_create_irq_domain(hbus->sysdata.fwnode, 1567 &hbus->msi_info, 1568 x86_vector_domain); 1569 if (!hbus->irq_domain) { 1570 dev_err(&hbus->hdev->device, 1571 "Failed to build an MSI IRQ domain\n"); 1572 return -ENODEV; 1573 } 1574 1575 return 0; 1576 } 1577 1578 /** 1579 * get_bar_size() - Get the address space consumed by a BAR 1580 * @bar_val: Value that a BAR returned after -1 was written 1581 * to it. 1582 * 1583 * This function returns the size of the BAR, rounded up to 1 1584 * page. It has to be rounded up because the hypervisor's page 1585 * table entry that maps the BAR into the VM can't specify an 1586 * offset within a page. The invariant is that the hypervisor 1587 * must place any BARs of smaller than page length at the 1588 * beginning of a page. 1589 * 1590 * Return: Size in bytes of the consumed MMIO space. 1591 */ 1592 static u64 get_bar_size(u64 bar_val) 1593 { 1594 return round_up((1 + ~(bar_val & PCI_BASE_ADDRESS_MEM_MASK)), 1595 PAGE_SIZE); 1596 } 1597 1598 /** 1599 * survey_child_resources() - Total all MMIO requirements 1600 * @hbus: Root PCI bus, as understood by this driver 1601 */ 1602 static void survey_child_resources(struct hv_pcibus_device *hbus) 1603 { 1604 struct hv_pci_dev *hpdev; 1605 resource_size_t bar_size = 0; 1606 unsigned long flags; 1607 struct completion *event; 1608 u64 bar_val; 1609 int i; 1610 1611 /* If nobody is waiting on the answer, don't compute it. */ 1612 event = xchg(&hbus->survey_event, NULL); 1613 if (!event) 1614 return; 1615 1616 /* If the answer has already been computed, go with it. */ 1617 if (hbus->low_mmio_space || hbus->high_mmio_space) { 1618 complete(event); 1619 return; 1620 } 1621 1622 spin_lock_irqsave(&hbus->device_list_lock, flags); 1623 1624 /* 1625 * Due to an interesting quirk of the PCI spec, all memory regions 1626 * for a child device are a power of 2 in size and aligned in memory, 1627 * so it's sufficient to just add them up without tracking alignment. 1628 */ 1629 list_for_each_entry(hpdev, &hbus->children, list_entry) { 1630 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 1631 if (hpdev->probed_bar[i] & PCI_BASE_ADDRESS_SPACE_IO) 1632 dev_err(&hbus->hdev->device, 1633 "There's an I/O BAR in this list!\n"); 1634 1635 if (hpdev->probed_bar[i] != 0) { 1636 /* 1637 * A probed BAR has all the upper bits set that 1638 * can be changed. 1639 */ 1640 1641 bar_val = hpdev->probed_bar[i]; 1642 if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64) 1643 bar_val |= 1644 ((u64)hpdev->probed_bar[++i] << 32); 1645 else 1646 bar_val |= 0xffffffff00000000ULL; 1647 1648 bar_size = get_bar_size(bar_val); 1649 1650 if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64) 1651 hbus->high_mmio_space += bar_size; 1652 else 1653 hbus->low_mmio_space += bar_size; 1654 } 1655 } 1656 } 1657 1658 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 1659 complete(event); 1660 } 1661 1662 /** 1663 * prepopulate_bars() - Fill in BARs with defaults 1664 * @hbus: Root PCI bus, as understood by this driver 1665 * 1666 * The core PCI driver code seems much, much happier if the BARs 1667 * for a device have values upon first scan. So fill them in. 1668 * The algorithm below works down from large sizes to small, 1669 * attempting to pack the assignments optimally. The assumption, 1670 * enforced in other parts of the code, is that the beginning of 1671 * the memory-mapped I/O space will be aligned on the largest 1672 * BAR size. 1673 */ 1674 static void prepopulate_bars(struct hv_pcibus_device *hbus) 1675 { 1676 resource_size_t high_size = 0; 1677 resource_size_t low_size = 0; 1678 resource_size_t high_base = 0; 1679 resource_size_t low_base = 0; 1680 resource_size_t bar_size; 1681 struct hv_pci_dev *hpdev; 1682 unsigned long flags; 1683 u64 bar_val; 1684 u32 command; 1685 bool high; 1686 int i; 1687 1688 if (hbus->low_mmio_space) { 1689 low_size = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space)); 1690 low_base = hbus->low_mmio_res->start; 1691 } 1692 1693 if (hbus->high_mmio_space) { 1694 high_size = 1ULL << 1695 (63 - __builtin_clzll(hbus->high_mmio_space)); 1696 high_base = hbus->high_mmio_res->start; 1697 } 1698 1699 spin_lock_irqsave(&hbus->device_list_lock, flags); 1700 1701 /* 1702 * Clear the memory enable bit, in case it's already set. This occurs 1703 * in the suspend path of hibernation, where the device is suspended, 1704 * resumed and suspended again: see hibernation_snapshot() and 1705 * hibernation_platform_enter(). 1706 * 1707 * If the memory enable bit is already set, Hyper-V sliently ignores 1708 * the below BAR updates, and the related PCI device driver can not 1709 * work, because reading from the device register(s) always returns 1710 * 0xFFFFFFFF. 1711 */ 1712 list_for_each_entry(hpdev, &hbus->children, list_entry) { 1713 _hv_pcifront_read_config(hpdev, PCI_COMMAND, 2, &command); 1714 command &= ~PCI_COMMAND_MEMORY; 1715 _hv_pcifront_write_config(hpdev, PCI_COMMAND, 2, command); 1716 } 1717 1718 /* Pick addresses for the BARs. */ 1719 do { 1720 list_for_each_entry(hpdev, &hbus->children, list_entry) { 1721 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 1722 bar_val = hpdev->probed_bar[i]; 1723 if (bar_val == 0) 1724 continue; 1725 high = bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64; 1726 if (high) { 1727 bar_val |= 1728 ((u64)hpdev->probed_bar[i + 1] 1729 << 32); 1730 } else { 1731 bar_val |= 0xffffffffULL << 32; 1732 } 1733 bar_size = get_bar_size(bar_val); 1734 if (high) { 1735 if (high_size != bar_size) { 1736 i++; 1737 continue; 1738 } 1739 _hv_pcifront_write_config(hpdev, 1740 PCI_BASE_ADDRESS_0 + (4 * i), 1741 4, 1742 (u32)(high_base & 0xffffff00)); 1743 i++; 1744 _hv_pcifront_write_config(hpdev, 1745 PCI_BASE_ADDRESS_0 + (4 * i), 1746 4, (u32)(high_base >> 32)); 1747 high_base += bar_size; 1748 } else { 1749 if (low_size != bar_size) 1750 continue; 1751 _hv_pcifront_write_config(hpdev, 1752 PCI_BASE_ADDRESS_0 + (4 * i), 1753 4, 1754 (u32)(low_base & 0xffffff00)); 1755 low_base += bar_size; 1756 } 1757 } 1758 if (high_size <= 1 && low_size <= 1) { 1759 /* Set the memory enable bit. */ 1760 _hv_pcifront_read_config(hpdev, PCI_COMMAND, 2, 1761 &command); 1762 command |= PCI_COMMAND_MEMORY; 1763 _hv_pcifront_write_config(hpdev, PCI_COMMAND, 2, 1764 command); 1765 break; 1766 } 1767 } 1768 1769 high_size >>= 1; 1770 low_size >>= 1; 1771 } while (high_size || low_size); 1772 1773 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 1774 } 1775 1776 /* 1777 * Assign entries in sysfs pci slot directory. 1778 * 1779 * Note that this function does not need to lock the children list 1780 * because it is called from pci_devices_present_work which 1781 * is serialized with hv_eject_device_work because they are on the 1782 * same ordered workqueue. Therefore hbus->children list will not change 1783 * even when pci_create_slot sleeps. 1784 */ 1785 static void hv_pci_assign_slots(struct hv_pcibus_device *hbus) 1786 { 1787 struct hv_pci_dev *hpdev; 1788 char name[SLOT_NAME_SIZE]; 1789 int slot_nr; 1790 1791 list_for_each_entry(hpdev, &hbus->children, list_entry) { 1792 if (hpdev->pci_slot) 1793 continue; 1794 1795 slot_nr = PCI_SLOT(wslot_to_devfn(hpdev->desc.win_slot.slot)); 1796 snprintf(name, SLOT_NAME_SIZE, "%u", hpdev->desc.ser); 1797 hpdev->pci_slot = pci_create_slot(hbus->pci_bus, slot_nr, 1798 name, NULL); 1799 if (IS_ERR(hpdev->pci_slot)) { 1800 pr_warn("pci_create slot %s failed\n", name); 1801 hpdev->pci_slot = NULL; 1802 } 1803 } 1804 } 1805 1806 /* 1807 * Remove entries in sysfs pci slot directory. 1808 */ 1809 static void hv_pci_remove_slots(struct hv_pcibus_device *hbus) 1810 { 1811 struct hv_pci_dev *hpdev; 1812 1813 list_for_each_entry(hpdev, &hbus->children, list_entry) { 1814 if (!hpdev->pci_slot) 1815 continue; 1816 pci_destroy_slot(hpdev->pci_slot); 1817 hpdev->pci_slot = NULL; 1818 } 1819 } 1820 1821 /* 1822 * Set NUMA node for the devices on the bus 1823 */ 1824 static void hv_pci_assign_numa_node(struct hv_pcibus_device *hbus) 1825 { 1826 struct pci_dev *dev; 1827 struct pci_bus *bus = hbus->pci_bus; 1828 struct hv_pci_dev *hv_dev; 1829 1830 list_for_each_entry(dev, &bus->devices, bus_list) { 1831 hv_dev = get_pcichild_wslot(hbus, devfn_to_wslot(dev->devfn)); 1832 if (!hv_dev) 1833 continue; 1834 1835 if (hv_dev->desc.flags & HV_PCI_DEVICE_FLAG_NUMA_AFFINITY) 1836 set_dev_node(&dev->dev, hv_dev->desc.virtual_numa_node); 1837 1838 put_pcichild(hv_dev); 1839 } 1840 } 1841 1842 /** 1843 * create_root_hv_pci_bus() - Expose a new root PCI bus 1844 * @hbus: Root PCI bus, as understood by this driver 1845 * 1846 * Return: 0 on success, -errno on failure 1847 */ 1848 static int create_root_hv_pci_bus(struct hv_pcibus_device *hbus) 1849 { 1850 /* Register the device */ 1851 hbus->pci_bus = pci_create_root_bus(&hbus->hdev->device, 1852 0, /* bus number is always zero */ 1853 &hv_pcifront_ops, 1854 &hbus->sysdata, 1855 &hbus->resources_for_children); 1856 if (!hbus->pci_bus) 1857 return -ENODEV; 1858 1859 hbus->pci_bus->msi = &hbus->msi_chip; 1860 hbus->pci_bus->msi->dev = &hbus->hdev->device; 1861 1862 pci_lock_rescan_remove(); 1863 pci_scan_child_bus(hbus->pci_bus); 1864 hv_pci_assign_numa_node(hbus); 1865 pci_bus_assign_resources(hbus->pci_bus); 1866 hv_pci_assign_slots(hbus); 1867 pci_bus_add_devices(hbus->pci_bus); 1868 pci_unlock_rescan_remove(); 1869 hbus->state = hv_pcibus_installed; 1870 return 0; 1871 } 1872 1873 struct q_res_req_compl { 1874 struct completion host_event; 1875 struct hv_pci_dev *hpdev; 1876 }; 1877 1878 /** 1879 * q_resource_requirements() - Query Resource Requirements 1880 * @context: The completion context. 1881 * @resp: The response that came from the host. 1882 * @resp_packet_size: The size in bytes of resp. 1883 * 1884 * This function is invoked on completion of a Query Resource 1885 * Requirements packet. 1886 */ 1887 static void q_resource_requirements(void *context, struct pci_response *resp, 1888 int resp_packet_size) 1889 { 1890 struct q_res_req_compl *completion = context; 1891 struct pci_q_res_req_response *q_res_req = 1892 (struct pci_q_res_req_response *)resp; 1893 int i; 1894 1895 if (resp->status < 0) { 1896 dev_err(&completion->hpdev->hbus->hdev->device, 1897 "query resource requirements failed: %x\n", 1898 resp->status); 1899 } else { 1900 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 1901 completion->hpdev->probed_bar[i] = 1902 q_res_req->probed_bar[i]; 1903 } 1904 } 1905 1906 complete(&completion->host_event); 1907 } 1908 1909 /** 1910 * new_pcichild_device() - Create a new child device 1911 * @hbus: The internal struct tracking this root PCI bus. 1912 * @desc: The information supplied so far from the host 1913 * about the device. 1914 * 1915 * This function creates the tracking structure for a new child 1916 * device and kicks off the process of figuring out what it is. 1917 * 1918 * Return: Pointer to the new tracking struct 1919 */ 1920 static struct hv_pci_dev *new_pcichild_device(struct hv_pcibus_device *hbus, 1921 struct hv_pcidev_description *desc) 1922 { 1923 struct hv_pci_dev *hpdev; 1924 struct pci_child_message *res_req; 1925 struct q_res_req_compl comp_pkt; 1926 struct { 1927 struct pci_packet init_packet; 1928 u8 buffer[sizeof(struct pci_child_message)]; 1929 } pkt; 1930 unsigned long flags; 1931 int ret; 1932 1933 hpdev = kzalloc(sizeof(*hpdev), GFP_KERNEL); 1934 if (!hpdev) 1935 return NULL; 1936 1937 hpdev->hbus = hbus; 1938 1939 memset(&pkt, 0, sizeof(pkt)); 1940 init_completion(&comp_pkt.host_event); 1941 comp_pkt.hpdev = hpdev; 1942 pkt.init_packet.compl_ctxt = &comp_pkt; 1943 pkt.init_packet.completion_func = q_resource_requirements; 1944 res_req = (struct pci_child_message *)&pkt.init_packet.message; 1945 res_req->message_type.type = PCI_QUERY_RESOURCE_REQUIREMENTS; 1946 res_req->wslot.slot = desc->win_slot.slot; 1947 1948 ret = vmbus_sendpacket(hbus->hdev->channel, res_req, 1949 sizeof(struct pci_child_message), 1950 (unsigned long)&pkt.init_packet, 1951 VM_PKT_DATA_INBAND, 1952 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1953 if (ret) 1954 goto error; 1955 1956 if (wait_for_response(hbus->hdev, &comp_pkt.host_event)) 1957 goto error; 1958 1959 hpdev->desc = *desc; 1960 refcount_set(&hpdev->refs, 1); 1961 get_pcichild(hpdev); 1962 spin_lock_irqsave(&hbus->device_list_lock, flags); 1963 1964 list_add_tail(&hpdev->list_entry, &hbus->children); 1965 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 1966 return hpdev; 1967 1968 error: 1969 kfree(hpdev); 1970 return NULL; 1971 } 1972 1973 /** 1974 * get_pcichild_wslot() - Find device from slot 1975 * @hbus: Root PCI bus, as understood by this driver 1976 * @wslot: Location on the bus 1977 * 1978 * This function looks up a PCI device and returns the internal 1979 * representation of it. It acquires a reference on it, so that 1980 * the device won't be deleted while somebody is using it. The 1981 * caller is responsible for calling put_pcichild() to release 1982 * this reference. 1983 * 1984 * Return: Internal representation of a PCI device 1985 */ 1986 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus, 1987 u32 wslot) 1988 { 1989 unsigned long flags; 1990 struct hv_pci_dev *iter, *hpdev = NULL; 1991 1992 spin_lock_irqsave(&hbus->device_list_lock, flags); 1993 list_for_each_entry(iter, &hbus->children, list_entry) { 1994 if (iter->desc.win_slot.slot == wslot) { 1995 hpdev = iter; 1996 get_pcichild(hpdev); 1997 break; 1998 } 1999 } 2000 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2001 2002 return hpdev; 2003 } 2004 2005 /** 2006 * pci_devices_present_work() - Handle new list of child devices 2007 * @work: Work struct embedded in struct hv_dr_work 2008 * 2009 * "Bus Relations" is the Windows term for "children of this 2010 * bus." The terminology is preserved here for people trying to 2011 * debug the interaction between Hyper-V and Linux. This 2012 * function is called when the parent partition reports a list 2013 * of functions that should be observed under this PCI Express 2014 * port (bus). 2015 * 2016 * This function updates the list, and must tolerate being 2017 * called multiple times with the same information. The typical 2018 * number of child devices is one, with very atypical cases 2019 * involving three or four, so the algorithms used here can be 2020 * simple and inefficient. 2021 * 2022 * It must also treat the omission of a previously observed device as 2023 * notification that the device no longer exists. 2024 * 2025 * Note that this function is serialized with hv_eject_device_work(), 2026 * because both are pushed to the ordered workqueue hbus->wq. 2027 */ 2028 static void pci_devices_present_work(struct work_struct *work) 2029 { 2030 u32 child_no; 2031 bool found; 2032 struct hv_pcidev_description *new_desc; 2033 struct hv_pci_dev *hpdev; 2034 struct hv_pcibus_device *hbus; 2035 struct list_head removed; 2036 struct hv_dr_work *dr_wrk; 2037 struct hv_dr_state *dr = NULL; 2038 unsigned long flags; 2039 2040 dr_wrk = container_of(work, struct hv_dr_work, wrk); 2041 hbus = dr_wrk->bus; 2042 kfree(dr_wrk); 2043 2044 INIT_LIST_HEAD(&removed); 2045 2046 /* Pull this off the queue and process it if it was the last one. */ 2047 spin_lock_irqsave(&hbus->device_list_lock, flags); 2048 while (!list_empty(&hbus->dr_list)) { 2049 dr = list_first_entry(&hbus->dr_list, struct hv_dr_state, 2050 list_entry); 2051 list_del(&dr->list_entry); 2052 2053 /* Throw this away if the list still has stuff in it. */ 2054 if (!list_empty(&hbus->dr_list)) { 2055 kfree(dr); 2056 continue; 2057 } 2058 } 2059 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2060 2061 if (!dr) { 2062 put_hvpcibus(hbus); 2063 return; 2064 } 2065 2066 /* First, mark all existing children as reported missing. */ 2067 spin_lock_irqsave(&hbus->device_list_lock, flags); 2068 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2069 hpdev->reported_missing = true; 2070 } 2071 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2072 2073 /* Next, add back any reported devices. */ 2074 for (child_no = 0; child_no < dr->device_count; child_no++) { 2075 found = false; 2076 new_desc = &dr->func[child_no]; 2077 2078 spin_lock_irqsave(&hbus->device_list_lock, flags); 2079 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2080 if ((hpdev->desc.win_slot.slot == new_desc->win_slot.slot) && 2081 (hpdev->desc.v_id == new_desc->v_id) && 2082 (hpdev->desc.d_id == new_desc->d_id) && 2083 (hpdev->desc.ser == new_desc->ser)) { 2084 hpdev->reported_missing = false; 2085 found = true; 2086 } 2087 } 2088 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2089 2090 if (!found) { 2091 hpdev = new_pcichild_device(hbus, new_desc); 2092 if (!hpdev) 2093 dev_err(&hbus->hdev->device, 2094 "couldn't record a child device.\n"); 2095 } 2096 } 2097 2098 /* Move missing children to a list on the stack. */ 2099 spin_lock_irqsave(&hbus->device_list_lock, flags); 2100 do { 2101 found = false; 2102 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2103 if (hpdev->reported_missing) { 2104 found = true; 2105 put_pcichild(hpdev); 2106 list_move_tail(&hpdev->list_entry, &removed); 2107 break; 2108 } 2109 } 2110 } while (found); 2111 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2112 2113 /* Delete everything that should no longer exist. */ 2114 while (!list_empty(&removed)) { 2115 hpdev = list_first_entry(&removed, struct hv_pci_dev, 2116 list_entry); 2117 list_del(&hpdev->list_entry); 2118 2119 if (hpdev->pci_slot) 2120 pci_destroy_slot(hpdev->pci_slot); 2121 2122 put_pcichild(hpdev); 2123 } 2124 2125 switch (hbus->state) { 2126 case hv_pcibus_installed: 2127 /* 2128 * Tell the core to rescan bus 2129 * because there may have been changes. 2130 */ 2131 pci_lock_rescan_remove(); 2132 pci_scan_child_bus(hbus->pci_bus); 2133 hv_pci_assign_numa_node(hbus); 2134 hv_pci_assign_slots(hbus); 2135 pci_unlock_rescan_remove(); 2136 break; 2137 2138 case hv_pcibus_init: 2139 case hv_pcibus_probed: 2140 survey_child_resources(hbus); 2141 break; 2142 2143 default: 2144 break; 2145 } 2146 2147 put_hvpcibus(hbus); 2148 kfree(dr); 2149 } 2150 2151 /** 2152 * hv_pci_start_relations_work() - Queue work to start device discovery 2153 * @hbus: Root PCI bus, as understood by this driver 2154 * @dr: The list of children returned from host 2155 * 2156 * Return: 0 on success, -errno on failure 2157 */ 2158 static int hv_pci_start_relations_work(struct hv_pcibus_device *hbus, 2159 struct hv_dr_state *dr) 2160 { 2161 struct hv_dr_work *dr_wrk; 2162 unsigned long flags; 2163 bool pending_dr; 2164 2165 if (hbus->state == hv_pcibus_removing) { 2166 dev_info(&hbus->hdev->device, 2167 "PCI VMBus BUS_RELATIONS: ignored\n"); 2168 return -ENOENT; 2169 } 2170 2171 dr_wrk = kzalloc(sizeof(*dr_wrk), GFP_NOWAIT); 2172 if (!dr_wrk) 2173 return -ENOMEM; 2174 2175 INIT_WORK(&dr_wrk->wrk, pci_devices_present_work); 2176 dr_wrk->bus = hbus; 2177 2178 spin_lock_irqsave(&hbus->device_list_lock, flags); 2179 /* 2180 * If pending_dr is true, we have already queued a work, 2181 * which will see the new dr. Otherwise, we need to 2182 * queue a new work. 2183 */ 2184 pending_dr = !list_empty(&hbus->dr_list); 2185 list_add_tail(&dr->list_entry, &hbus->dr_list); 2186 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2187 2188 if (pending_dr) { 2189 kfree(dr_wrk); 2190 } else { 2191 get_hvpcibus(hbus); 2192 queue_work(hbus->wq, &dr_wrk->wrk); 2193 } 2194 2195 return 0; 2196 } 2197 2198 /** 2199 * hv_pci_devices_present() - Handle list of new children 2200 * @hbus: Root PCI bus, as understood by this driver 2201 * @relations: Packet from host listing children 2202 * 2203 * Process a new list of devices on the bus. The list of devices is 2204 * discovered by VSP and sent to us via VSP message PCI_BUS_RELATIONS, 2205 * whenever a new list of devices for this bus appears. 2206 */ 2207 static void hv_pci_devices_present(struct hv_pcibus_device *hbus, 2208 struct pci_bus_relations *relations) 2209 { 2210 struct hv_dr_state *dr; 2211 int i; 2212 2213 dr = kzalloc(offsetof(struct hv_dr_state, func) + 2214 (sizeof(struct hv_pcidev_description) * 2215 (relations->device_count)), GFP_NOWAIT); 2216 2217 if (!dr) 2218 return; 2219 2220 dr->device_count = relations->device_count; 2221 for (i = 0; i < dr->device_count; i++) { 2222 dr->func[i].v_id = relations->func[i].v_id; 2223 dr->func[i].d_id = relations->func[i].d_id; 2224 dr->func[i].rev = relations->func[i].rev; 2225 dr->func[i].prog_intf = relations->func[i].prog_intf; 2226 dr->func[i].subclass = relations->func[i].subclass; 2227 dr->func[i].base_class = relations->func[i].base_class; 2228 dr->func[i].subsystem_id = relations->func[i].subsystem_id; 2229 dr->func[i].win_slot = relations->func[i].win_slot; 2230 dr->func[i].ser = relations->func[i].ser; 2231 } 2232 2233 if (hv_pci_start_relations_work(hbus, dr)) 2234 kfree(dr); 2235 } 2236 2237 /** 2238 * hv_pci_devices_present2() - Handle list of new children 2239 * @hbus: Root PCI bus, as understood by this driver 2240 * @relations: Packet from host listing children 2241 * 2242 * This function is the v2 version of hv_pci_devices_present() 2243 */ 2244 static void hv_pci_devices_present2(struct hv_pcibus_device *hbus, 2245 struct pci_bus_relations2 *relations) 2246 { 2247 struct hv_dr_state *dr; 2248 int i; 2249 2250 dr = kzalloc(offsetof(struct hv_dr_state, func) + 2251 (sizeof(struct hv_pcidev_description) * 2252 (relations->device_count)), GFP_NOWAIT); 2253 2254 if (!dr) 2255 return; 2256 2257 dr->device_count = relations->device_count; 2258 for (i = 0; i < dr->device_count; i++) { 2259 dr->func[i].v_id = relations->func[i].v_id; 2260 dr->func[i].d_id = relations->func[i].d_id; 2261 dr->func[i].rev = relations->func[i].rev; 2262 dr->func[i].prog_intf = relations->func[i].prog_intf; 2263 dr->func[i].subclass = relations->func[i].subclass; 2264 dr->func[i].base_class = relations->func[i].base_class; 2265 dr->func[i].subsystem_id = relations->func[i].subsystem_id; 2266 dr->func[i].win_slot = relations->func[i].win_slot; 2267 dr->func[i].ser = relations->func[i].ser; 2268 dr->func[i].flags = relations->func[i].flags; 2269 dr->func[i].virtual_numa_node = 2270 relations->func[i].virtual_numa_node; 2271 } 2272 2273 if (hv_pci_start_relations_work(hbus, dr)) 2274 kfree(dr); 2275 } 2276 2277 /** 2278 * hv_eject_device_work() - Asynchronously handles ejection 2279 * @work: Work struct embedded in internal device struct 2280 * 2281 * This function handles ejecting a device. Windows will 2282 * attempt to gracefully eject a device, waiting 60 seconds to 2283 * hear back from the guest OS that this completed successfully. 2284 * If this timer expires, the device will be forcibly removed. 2285 */ 2286 static void hv_eject_device_work(struct work_struct *work) 2287 { 2288 struct pci_eject_response *ejct_pkt; 2289 struct hv_pcibus_device *hbus; 2290 struct hv_pci_dev *hpdev; 2291 struct pci_dev *pdev; 2292 unsigned long flags; 2293 int wslot; 2294 struct { 2295 struct pci_packet pkt; 2296 u8 buffer[sizeof(struct pci_eject_response)]; 2297 } ctxt; 2298 2299 hpdev = container_of(work, struct hv_pci_dev, wrk); 2300 hbus = hpdev->hbus; 2301 2302 WARN_ON(hpdev->state != hv_pcichild_ejecting); 2303 2304 /* 2305 * Ejection can come before or after the PCI bus has been set up, so 2306 * attempt to find it and tear down the bus state, if it exists. This 2307 * must be done without constructs like pci_domain_nr(hbus->pci_bus) 2308 * because hbus->pci_bus may not exist yet. 2309 */ 2310 wslot = wslot_to_devfn(hpdev->desc.win_slot.slot); 2311 pdev = pci_get_domain_bus_and_slot(hbus->sysdata.domain, 0, wslot); 2312 if (pdev) { 2313 pci_lock_rescan_remove(); 2314 pci_stop_and_remove_bus_device(pdev); 2315 pci_dev_put(pdev); 2316 pci_unlock_rescan_remove(); 2317 } 2318 2319 spin_lock_irqsave(&hbus->device_list_lock, flags); 2320 list_del(&hpdev->list_entry); 2321 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2322 2323 if (hpdev->pci_slot) 2324 pci_destroy_slot(hpdev->pci_slot); 2325 2326 memset(&ctxt, 0, sizeof(ctxt)); 2327 ejct_pkt = (struct pci_eject_response *)&ctxt.pkt.message; 2328 ejct_pkt->message_type.type = PCI_EJECTION_COMPLETE; 2329 ejct_pkt->wslot.slot = hpdev->desc.win_slot.slot; 2330 vmbus_sendpacket(hbus->hdev->channel, ejct_pkt, 2331 sizeof(*ejct_pkt), (unsigned long)&ctxt.pkt, 2332 VM_PKT_DATA_INBAND, 0); 2333 2334 /* For the get_pcichild() in hv_pci_eject_device() */ 2335 put_pcichild(hpdev); 2336 /* For the two refs got in new_pcichild_device() */ 2337 put_pcichild(hpdev); 2338 put_pcichild(hpdev); 2339 /* hpdev has been freed. Do not use it any more. */ 2340 2341 put_hvpcibus(hbus); 2342 } 2343 2344 /** 2345 * hv_pci_eject_device() - Handles device ejection 2346 * @hpdev: Internal device tracking struct 2347 * 2348 * This function is invoked when an ejection packet arrives. It 2349 * just schedules work so that we don't re-enter the packet 2350 * delivery code handling the ejection. 2351 */ 2352 static void hv_pci_eject_device(struct hv_pci_dev *hpdev) 2353 { 2354 struct hv_pcibus_device *hbus = hpdev->hbus; 2355 struct hv_device *hdev = hbus->hdev; 2356 2357 if (hbus->state == hv_pcibus_removing) { 2358 dev_info(&hdev->device, "PCI VMBus EJECT: ignored\n"); 2359 return; 2360 } 2361 2362 hpdev->state = hv_pcichild_ejecting; 2363 get_pcichild(hpdev); 2364 INIT_WORK(&hpdev->wrk, hv_eject_device_work); 2365 get_hvpcibus(hbus); 2366 queue_work(hbus->wq, &hpdev->wrk); 2367 } 2368 2369 /** 2370 * hv_pci_onchannelcallback() - Handles incoming packets 2371 * @context: Internal bus tracking struct 2372 * 2373 * This function is invoked whenever the host sends a packet to 2374 * this channel (which is private to this root PCI bus). 2375 */ 2376 static void hv_pci_onchannelcallback(void *context) 2377 { 2378 const int packet_size = 0x100; 2379 int ret; 2380 struct hv_pcibus_device *hbus = context; 2381 u32 bytes_recvd; 2382 u64 req_id; 2383 struct vmpacket_descriptor *desc; 2384 unsigned char *buffer; 2385 int bufferlen = packet_size; 2386 struct pci_packet *comp_packet; 2387 struct pci_response *response; 2388 struct pci_incoming_message *new_message; 2389 struct pci_bus_relations *bus_rel; 2390 struct pci_bus_relations2 *bus_rel2; 2391 struct pci_dev_inval_block *inval; 2392 struct pci_dev_incoming *dev_message; 2393 struct hv_pci_dev *hpdev; 2394 2395 buffer = kmalloc(bufferlen, GFP_ATOMIC); 2396 if (!buffer) 2397 return; 2398 2399 while (1) { 2400 ret = vmbus_recvpacket_raw(hbus->hdev->channel, buffer, 2401 bufferlen, &bytes_recvd, &req_id); 2402 2403 if (ret == -ENOBUFS) { 2404 kfree(buffer); 2405 /* Handle large packet */ 2406 bufferlen = bytes_recvd; 2407 buffer = kmalloc(bytes_recvd, GFP_ATOMIC); 2408 if (!buffer) 2409 return; 2410 continue; 2411 } 2412 2413 /* Zero length indicates there are no more packets. */ 2414 if (ret || !bytes_recvd) 2415 break; 2416 2417 /* 2418 * All incoming packets must be at least as large as a 2419 * response. 2420 */ 2421 if (bytes_recvd <= sizeof(struct pci_response)) 2422 continue; 2423 desc = (struct vmpacket_descriptor *)buffer; 2424 2425 switch (desc->type) { 2426 case VM_PKT_COMP: 2427 2428 /* 2429 * The host is trusted, and thus it's safe to interpret 2430 * this transaction ID as a pointer. 2431 */ 2432 comp_packet = (struct pci_packet *)req_id; 2433 response = (struct pci_response *)buffer; 2434 comp_packet->completion_func(comp_packet->compl_ctxt, 2435 response, 2436 bytes_recvd); 2437 break; 2438 2439 case VM_PKT_DATA_INBAND: 2440 2441 new_message = (struct pci_incoming_message *)buffer; 2442 switch (new_message->message_type.type) { 2443 case PCI_BUS_RELATIONS: 2444 2445 bus_rel = (struct pci_bus_relations *)buffer; 2446 if (bytes_recvd < 2447 offsetof(struct pci_bus_relations, func) + 2448 (sizeof(struct pci_function_description) * 2449 (bus_rel->device_count))) { 2450 dev_err(&hbus->hdev->device, 2451 "bus relations too small\n"); 2452 break; 2453 } 2454 2455 hv_pci_devices_present(hbus, bus_rel); 2456 break; 2457 2458 case PCI_BUS_RELATIONS2: 2459 2460 bus_rel2 = (struct pci_bus_relations2 *)buffer; 2461 if (bytes_recvd < 2462 offsetof(struct pci_bus_relations2, func) + 2463 (sizeof(struct pci_function_description2) * 2464 (bus_rel2->device_count))) { 2465 dev_err(&hbus->hdev->device, 2466 "bus relations v2 too small\n"); 2467 break; 2468 } 2469 2470 hv_pci_devices_present2(hbus, bus_rel2); 2471 break; 2472 2473 case PCI_EJECT: 2474 2475 dev_message = (struct pci_dev_incoming *)buffer; 2476 hpdev = get_pcichild_wslot(hbus, 2477 dev_message->wslot.slot); 2478 if (hpdev) { 2479 hv_pci_eject_device(hpdev); 2480 put_pcichild(hpdev); 2481 } 2482 break; 2483 2484 case PCI_INVALIDATE_BLOCK: 2485 2486 inval = (struct pci_dev_inval_block *)buffer; 2487 hpdev = get_pcichild_wslot(hbus, 2488 inval->wslot.slot); 2489 if (hpdev) { 2490 if (hpdev->block_invalidate) { 2491 hpdev->block_invalidate( 2492 hpdev->invalidate_context, 2493 inval->block_mask); 2494 } 2495 put_pcichild(hpdev); 2496 } 2497 break; 2498 2499 default: 2500 dev_warn(&hbus->hdev->device, 2501 "Unimplemented protocol message %x\n", 2502 new_message->message_type.type); 2503 break; 2504 } 2505 break; 2506 2507 default: 2508 dev_err(&hbus->hdev->device, 2509 "unhandled packet type %d, tid %llx len %d\n", 2510 desc->type, req_id, bytes_recvd); 2511 break; 2512 } 2513 } 2514 2515 kfree(buffer); 2516 } 2517 2518 /** 2519 * hv_pci_protocol_negotiation() - Set up protocol 2520 * @hdev: VMBus's tracking struct for this root PCI bus 2521 * 2522 * This driver is intended to support running on Windows 10 2523 * (server) and later versions. It will not run on earlier 2524 * versions, as they assume that many of the operations which 2525 * Linux needs accomplished with a spinlock held were done via 2526 * asynchronous messaging via VMBus. Windows 10 increases the 2527 * surface area of PCI emulation so that these actions can take 2528 * place by suspending a virtual processor for their duration. 2529 * 2530 * This function negotiates the channel protocol version, 2531 * failing if the host doesn't support the necessary protocol 2532 * level. 2533 */ 2534 static int hv_pci_protocol_negotiation(struct hv_device *hdev, 2535 enum pci_protocol_version_t version[], 2536 int num_version) 2537 { 2538 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 2539 struct pci_version_request *version_req; 2540 struct hv_pci_compl comp_pkt; 2541 struct pci_packet *pkt; 2542 int ret; 2543 int i; 2544 2545 /* 2546 * Initiate the handshake with the host and negotiate 2547 * a version that the host can support. We start with the 2548 * highest version number and go down if the host cannot 2549 * support it. 2550 */ 2551 pkt = kzalloc(sizeof(*pkt) + sizeof(*version_req), GFP_KERNEL); 2552 if (!pkt) 2553 return -ENOMEM; 2554 2555 init_completion(&comp_pkt.host_event); 2556 pkt->completion_func = hv_pci_generic_compl; 2557 pkt->compl_ctxt = &comp_pkt; 2558 version_req = (struct pci_version_request *)&pkt->message; 2559 version_req->message_type.type = PCI_QUERY_PROTOCOL_VERSION; 2560 2561 for (i = 0; i < num_version; i++) { 2562 version_req->protocol_version = version[i]; 2563 ret = vmbus_sendpacket(hdev->channel, version_req, 2564 sizeof(struct pci_version_request), 2565 (unsigned long)pkt, VM_PKT_DATA_INBAND, 2566 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 2567 if (!ret) 2568 ret = wait_for_response(hdev, &comp_pkt.host_event); 2569 2570 if (ret) { 2571 dev_err(&hdev->device, 2572 "PCI Pass-through VSP failed to request version: %d", 2573 ret); 2574 goto exit; 2575 } 2576 2577 if (comp_pkt.completion_status >= 0) { 2578 hbus->protocol_version = version[i]; 2579 dev_info(&hdev->device, 2580 "PCI VMBus probing: Using version %#x\n", 2581 hbus->protocol_version); 2582 goto exit; 2583 } 2584 2585 if (comp_pkt.completion_status != STATUS_REVISION_MISMATCH) { 2586 dev_err(&hdev->device, 2587 "PCI Pass-through VSP failed version request: %#x", 2588 comp_pkt.completion_status); 2589 ret = -EPROTO; 2590 goto exit; 2591 } 2592 2593 reinit_completion(&comp_pkt.host_event); 2594 } 2595 2596 dev_err(&hdev->device, 2597 "PCI pass-through VSP failed to find supported version"); 2598 ret = -EPROTO; 2599 2600 exit: 2601 kfree(pkt); 2602 return ret; 2603 } 2604 2605 /** 2606 * hv_pci_free_bridge_windows() - Release memory regions for the 2607 * bus 2608 * @hbus: Root PCI bus, as understood by this driver 2609 */ 2610 static void hv_pci_free_bridge_windows(struct hv_pcibus_device *hbus) 2611 { 2612 /* 2613 * Set the resources back to the way they looked when they 2614 * were allocated by setting IORESOURCE_BUSY again. 2615 */ 2616 2617 if (hbus->low_mmio_space && hbus->low_mmio_res) { 2618 hbus->low_mmio_res->flags |= IORESOURCE_BUSY; 2619 vmbus_free_mmio(hbus->low_mmio_res->start, 2620 resource_size(hbus->low_mmio_res)); 2621 } 2622 2623 if (hbus->high_mmio_space && hbus->high_mmio_res) { 2624 hbus->high_mmio_res->flags |= IORESOURCE_BUSY; 2625 vmbus_free_mmio(hbus->high_mmio_res->start, 2626 resource_size(hbus->high_mmio_res)); 2627 } 2628 } 2629 2630 /** 2631 * hv_pci_allocate_bridge_windows() - Allocate memory regions 2632 * for the bus 2633 * @hbus: Root PCI bus, as understood by this driver 2634 * 2635 * This function calls vmbus_allocate_mmio(), which is itself a 2636 * bit of a compromise. Ideally, we might change the pnp layer 2637 * in the kernel such that it comprehends either PCI devices 2638 * which are "grandchildren of ACPI," with some intermediate bus 2639 * node (in this case, VMBus) or change it such that it 2640 * understands VMBus. The pnp layer, however, has been declared 2641 * deprecated, and not subject to change. 2642 * 2643 * The workaround, implemented here, is to ask VMBus to allocate 2644 * MMIO space for this bus. VMBus itself knows which ranges are 2645 * appropriate by looking at its own ACPI objects. Then, after 2646 * these ranges are claimed, they're modified to look like they 2647 * would have looked if the ACPI and pnp code had allocated 2648 * bridge windows. These descriptors have to exist in this form 2649 * in order to satisfy the code which will get invoked when the 2650 * endpoint PCI function driver calls request_mem_region() or 2651 * request_mem_region_exclusive(). 2652 * 2653 * Return: 0 on success, -errno on failure 2654 */ 2655 static int hv_pci_allocate_bridge_windows(struct hv_pcibus_device *hbus) 2656 { 2657 resource_size_t align; 2658 int ret; 2659 2660 if (hbus->low_mmio_space) { 2661 align = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space)); 2662 ret = vmbus_allocate_mmio(&hbus->low_mmio_res, hbus->hdev, 0, 2663 (u64)(u32)0xffffffff, 2664 hbus->low_mmio_space, 2665 align, false); 2666 if (ret) { 2667 dev_err(&hbus->hdev->device, 2668 "Need %#llx of low MMIO space. Consider reconfiguring the VM.\n", 2669 hbus->low_mmio_space); 2670 return ret; 2671 } 2672 2673 /* Modify this resource to become a bridge window. */ 2674 hbus->low_mmio_res->flags |= IORESOURCE_WINDOW; 2675 hbus->low_mmio_res->flags &= ~IORESOURCE_BUSY; 2676 pci_add_resource(&hbus->resources_for_children, 2677 hbus->low_mmio_res); 2678 } 2679 2680 if (hbus->high_mmio_space) { 2681 align = 1ULL << (63 - __builtin_clzll(hbus->high_mmio_space)); 2682 ret = vmbus_allocate_mmio(&hbus->high_mmio_res, hbus->hdev, 2683 0x100000000, -1, 2684 hbus->high_mmio_space, align, 2685 false); 2686 if (ret) { 2687 dev_err(&hbus->hdev->device, 2688 "Need %#llx of high MMIO space. Consider reconfiguring the VM.\n", 2689 hbus->high_mmio_space); 2690 goto release_low_mmio; 2691 } 2692 2693 /* Modify this resource to become a bridge window. */ 2694 hbus->high_mmio_res->flags |= IORESOURCE_WINDOW; 2695 hbus->high_mmio_res->flags &= ~IORESOURCE_BUSY; 2696 pci_add_resource(&hbus->resources_for_children, 2697 hbus->high_mmio_res); 2698 } 2699 2700 return 0; 2701 2702 release_low_mmio: 2703 if (hbus->low_mmio_res) { 2704 vmbus_free_mmio(hbus->low_mmio_res->start, 2705 resource_size(hbus->low_mmio_res)); 2706 } 2707 2708 return ret; 2709 } 2710 2711 /** 2712 * hv_allocate_config_window() - Find MMIO space for PCI Config 2713 * @hbus: Root PCI bus, as understood by this driver 2714 * 2715 * This function claims memory-mapped I/O space for accessing 2716 * configuration space for the functions on this bus. 2717 * 2718 * Return: 0 on success, -errno on failure 2719 */ 2720 static int hv_allocate_config_window(struct hv_pcibus_device *hbus) 2721 { 2722 int ret; 2723 2724 /* 2725 * Set up a region of MMIO space to use for accessing configuration 2726 * space. 2727 */ 2728 ret = vmbus_allocate_mmio(&hbus->mem_config, hbus->hdev, 0, -1, 2729 PCI_CONFIG_MMIO_LENGTH, 0x1000, false); 2730 if (ret) 2731 return ret; 2732 2733 /* 2734 * vmbus_allocate_mmio() gets used for allocating both device endpoint 2735 * resource claims (those which cannot be overlapped) and the ranges 2736 * which are valid for the children of this bus, which are intended 2737 * to be overlapped by those children. Set the flag on this claim 2738 * meaning that this region can't be overlapped. 2739 */ 2740 2741 hbus->mem_config->flags |= IORESOURCE_BUSY; 2742 2743 return 0; 2744 } 2745 2746 static void hv_free_config_window(struct hv_pcibus_device *hbus) 2747 { 2748 vmbus_free_mmio(hbus->mem_config->start, PCI_CONFIG_MMIO_LENGTH); 2749 } 2750 2751 /** 2752 * hv_pci_enter_d0() - Bring the "bus" into the D0 power state 2753 * @hdev: VMBus's tracking struct for this root PCI bus 2754 * 2755 * Return: 0 on success, -errno on failure 2756 */ 2757 static int hv_pci_enter_d0(struct hv_device *hdev) 2758 { 2759 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 2760 struct pci_bus_d0_entry *d0_entry; 2761 struct hv_pci_compl comp_pkt; 2762 struct pci_packet *pkt; 2763 int ret; 2764 2765 /* 2766 * Tell the host that the bus is ready to use, and moved into the 2767 * powered-on state. This includes telling the host which region 2768 * of memory-mapped I/O space has been chosen for configuration space 2769 * access. 2770 */ 2771 pkt = kzalloc(sizeof(*pkt) + sizeof(*d0_entry), GFP_KERNEL); 2772 if (!pkt) 2773 return -ENOMEM; 2774 2775 init_completion(&comp_pkt.host_event); 2776 pkt->completion_func = hv_pci_generic_compl; 2777 pkt->compl_ctxt = &comp_pkt; 2778 d0_entry = (struct pci_bus_d0_entry *)&pkt->message; 2779 d0_entry->message_type.type = PCI_BUS_D0ENTRY; 2780 d0_entry->mmio_base = hbus->mem_config->start; 2781 2782 ret = vmbus_sendpacket(hdev->channel, d0_entry, sizeof(*d0_entry), 2783 (unsigned long)pkt, VM_PKT_DATA_INBAND, 2784 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 2785 if (!ret) 2786 ret = wait_for_response(hdev, &comp_pkt.host_event); 2787 2788 if (ret) 2789 goto exit; 2790 2791 if (comp_pkt.completion_status < 0) { 2792 dev_err(&hdev->device, 2793 "PCI Pass-through VSP failed D0 Entry with status %x\n", 2794 comp_pkt.completion_status); 2795 ret = -EPROTO; 2796 goto exit; 2797 } 2798 2799 ret = 0; 2800 2801 exit: 2802 kfree(pkt); 2803 return ret; 2804 } 2805 2806 /** 2807 * hv_pci_query_relations() - Ask host to send list of child 2808 * devices 2809 * @hdev: VMBus's tracking struct for this root PCI bus 2810 * 2811 * Return: 0 on success, -errno on failure 2812 */ 2813 static int hv_pci_query_relations(struct hv_device *hdev) 2814 { 2815 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 2816 struct pci_message message; 2817 struct completion comp; 2818 int ret; 2819 2820 /* Ask the host to send along the list of child devices */ 2821 init_completion(&comp); 2822 if (cmpxchg(&hbus->survey_event, NULL, &comp)) 2823 return -ENOTEMPTY; 2824 2825 memset(&message, 0, sizeof(message)); 2826 message.type = PCI_QUERY_BUS_RELATIONS; 2827 2828 ret = vmbus_sendpacket(hdev->channel, &message, sizeof(message), 2829 0, VM_PKT_DATA_INBAND, 0); 2830 if (!ret) 2831 ret = wait_for_response(hdev, &comp); 2832 2833 return ret; 2834 } 2835 2836 /** 2837 * hv_send_resources_allocated() - Report local resource choices 2838 * @hdev: VMBus's tracking struct for this root PCI bus 2839 * 2840 * The host OS is expecting to be sent a request as a message 2841 * which contains all the resources that the device will use. 2842 * The response contains those same resources, "translated" 2843 * which is to say, the values which should be used by the 2844 * hardware, when it delivers an interrupt. (MMIO resources are 2845 * used in local terms.) This is nice for Windows, and lines up 2846 * with the FDO/PDO split, which doesn't exist in Linux. Linux 2847 * is deeply expecting to scan an emulated PCI configuration 2848 * space. So this message is sent here only to drive the state 2849 * machine on the host forward. 2850 * 2851 * Return: 0 on success, -errno on failure 2852 */ 2853 static int hv_send_resources_allocated(struct hv_device *hdev) 2854 { 2855 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 2856 struct pci_resources_assigned *res_assigned; 2857 struct pci_resources_assigned2 *res_assigned2; 2858 struct hv_pci_compl comp_pkt; 2859 struct hv_pci_dev *hpdev; 2860 struct pci_packet *pkt; 2861 size_t size_res; 2862 u32 wslot; 2863 int ret; 2864 2865 size_res = (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2) 2866 ? sizeof(*res_assigned) : sizeof(*res_assigned2); 2867 2868 pkt = kmalloc(sizeof(*pkt) + size_res, GFP_KERNEL); 2869 if (!pkt) 2870 return -ENOMEM; 2871 2872 ret = 0; 2873 2874 for (wslot = 0; wslot < 256; wslot++) { 2875 hpdev = get_pcichild_wslot(hbus, wslot); 2876 if (!hpdev) 2877 continue; 2878 2879 memset(pkt, 0, sizeof(*pkt) + size_res); 2880 init_completion(&comp_pkt.host_event); 2881 pkt->completion_func = hv_pci_generic_compl; 2882 pkt->compl_ctxt = &comp_pkt; 2883 2884 if (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2) { 2885 res_assigned = 2886 (struct pci_resources_assigned *)&pkt->message; 2887 res_assigned->message_type.type = 2888 PCI_RESOURCES_ASSIGNED; 2889 res_assigned->wslot.slot = hpdev->desc.win_slot.slot; 2890 } else { 2891 res_assigned2 = 2892 (struct pci_resources_assigned2 *)&pkt->message; 2893 res_assigned2->message_type.type = 2894 PCI_RESOURCES_ASSIGNED2; 2895 res_assigned2->wslot.slot = hpdev->desc.win_slot.slot; 2896 } 2897 put_pcichild(hpdev); 2898 2899 ret = vmbus_sendpacket(hdev->channel, &pkt->message, 2900 size_res, (unsigned long)pkt, 2901 VM_PKT_DATA_INBAND, 2902 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 2903 if (!ret) 2904 ret = wait_for_response(hdev, &comp_pkt.host_event); 2905 if (ret) 2906 break; 2907 2908 if (comp_pkt.completion_status < 0) { 2909 ret = -EPROTO; 2910 dev_err(&hdev->device, 2911 "resource allocated returned 0x%x", 2912 comp_pkt.completion_status); 2913 break; 2914 } 2915 } 2916 2917 kfree(pkt); 2918 return ret; 2919 } 2920 2921 /** 2922 * hv_send_resources_released() - Report local resources 2923 * released 2924 * @hdev: VMBus's tracking struct for this root PCI bus 2925 * 2926 * Return: 0 on success, -errno on failure 2927 */ 2928 static int hv_send_resources_released(struct hv_device *hdev) 2929 { 2930 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 2931 struct pci_child_message pkt; 2932 struct hv_pci_dev *hpdev; 2933 u32 wslot; 2934 int ret; 2935 2936 for (wslot = 0; wslot < 256; wslot++) { 2937 hpdev = get_pcichild_wslot(hbus, wslot); 2938 if (!hpdev) 2939 continue; 2940 2941 memset(&pkt, 0, sizeof(pkt)); 2942 pkt.message_type.type = PCI_RESOURCES_RELEASED; 2943 pkt.wslot.slot = hpdev->desc.win_slot.slot; 2944 2945 put_pcichild(hpdev); 2946 2947 ret = vmbus_sendpacket(hdev->channel, &pkt, sizeof(pkt), 0, 2948 VM_PKT_DATA_INBAND, 0); 2949 if (ret) 2950 return ret; 2951 } 2952 2953 return 0; 2954 } 2955 2956 static void get_hvpcibus(struct hv_pcibus_device *hbus) 2957 { 2958 refcount_inc(&hbus->remove_lock); 2959 } 2960 2961 static void put_hvpcibus(struct hv_pcibus_device *hbus) 2962 { 2963 if (refcount_dec_and_test(&hbus->remove_lock)) 2964 complete(&hbus->remove_event); 2965 } 2966 2967 #define HVPCI_DOM_MAP_SIZE (64 * 1024) 2968 static DECLARE_BITMAP(hvpci_dom_map, HVPCI_DOM_MAP_SIZE); 2969 2970 /* 2971 * PCI domain number 0 is used by emulated devices on Gen1 VMs, so define 0 2972 * as invalid for passthrough PCI devices of this driver. 2973 */ 2974 #define HVPCI_DOM_INVALID 0 2975 2976 /** 2977 * hv_get_dom_num() - Get a valid PCI domain number 2978 * Check if the PCI domain number is in use, and return another number if 2979 * it is in use. 2980 * 2981 * @dom: Requested domain number 2982 * 2983 * return: domain number on success, HVPCI_DOM_INVALID on failure 2984 */ 2985 static u16 hv_get_dom_num(u16 dom) 2986 { 2987 unsigned int i; 2988 2989 if (test_and_set_bit(dom, hvpci_dom_map) == 0) 2990 return dom; 2991 2992 for_each_clear_bit(i, hvpci_dom_map, HVPCI_DOM_MAP_SIZE) { 2993 if (test_and_set_bit(i, hvpci_dom_map) == 0) 2994 return i; 2995 } 2996 2997 return HVPCI_DOM_INVALID; 2998 } 2999 3000 /** 3001 * hv_put_dom_num() - Mark the PCI domain number as free 3002 * @dom: Domain number to be freed 3003 */ 3004 static void hv_put_dom_num(u16 dom) 3005 { 3006 clear_bit(dom, hvpci_dom_map); 3007 } 3008 3009 /** 3010 * hv_pci_probe() - New VMBus channel probe, for a root PCI bus 3011 * @hdev: VMBus's tracking struct for this root PCI bus 3012 * @dev_id: Identifies the device itself 3013 * 3014 * Return: 0 on success, -errno on failure 3015 */ 3016 static int hv_pci_probe(struct hv_device *hdev, 3017 const struct hv_vmbus_device_id *dev_id) 3018 { 3019 struct hv_pcibus_device *hbus; 3020 u16 dom_req, dom; 3021 char *name; 3022 int ret; 3023 3024 /* 3025 * hv_pcibus_device contains the hypercall arguments for retargeting in 3026 * hv_irq_unmask(). Those must not cross a page boundary. 3027 */ 3028 BUILD_BUG_ON(sizeof(*hbus) > HV_HYP_PAGE_SIZE); 3029 3030 /* 3031 * With the recent 59bb47985c1d ("mm, sl[aou]b: guarantee natural 3032 * alignment for kmalloc(power-of-two)"), kzalloc() is able to allocate 3033 * a 4KB buffer that is guaranteed to be 4KB-aligned. Here the size and 3034 * alignment of hbus is important because hbus's field 3035 * retarget_msi_interrupt_params must not cross a 4KB page boundary. 3036 * 3037 * Here we prefer kzalloc to get_zeroed_page(), because a buffer 3038 * allocated by the latter is not tracked and scanned by kmemleak, and 3039 * hence kmemleak reports the pointer contained in the hbus buffer 3040 * (i.e. the hpdev struct, which is created in new_pcichild_device() and 3041 * is tracked by hbus->children) as memory leak (false positive). 3042 * 3043 * If the kernel doesn't have 59bb47985c1d, get_zeroed_page() *must* be 3044 * used to allocate the hbus buffer and we can avoid the kmemleak false 3045 * positive by using kmemleak_alloc() and kmemleak_free() to ask 3046 * kmemleak to track and scan the hbus buffer. 3047 */ 3048 hbus = kzalloc(HV_HYP_PAGE_SIZE, GFP_KERNEL); 3049 if (!hbus) 3050 return -ENOMEM; 3051 hbus->state = hv_pcibus_init; 3052 3053 /* 3054 * The PCI bus "domain" is what is called "segment" in ACPI and other 3055 * specs. Pull it from the instance ID, to get something usually 3056 * unique. In rare cases of collision, we will find out another number 3057 * not in use. 3058 * 3059 * Note that, since this code only runs in a Hyper-V VM, Hyper-V 3060 * together with this guest driver can guarantee that (1) The only 3061 * domain used by Gen1 VMs for something that looks like a physical 3062 * PCI bus (which is actually emulated by the hypervisor) is domain 0. 3063 * (2) There will be no overlap between domains (after fixing possible 3064 * collisions) in the same VM. 3065 */ 3066 dom_req = hdev->dev_instance.b[5] << 8 | hdev->dev_instance.b[4]; 3067 dom = hv_get_dom_num(dom_req); 3068 3069 if (dom == HVPCI_DOM_INVALID) { 3070 dev_err(&hdev->device, 3071 "Unable to use dom# 0x%hx or other numbers", dom_req); 3072 ret = -EINVAL; 3073 goto free_bus; 3074 } 3075 3076 if (dom != dom_req) 3077 dev_info(&hdev->device, 3078 "PCI dom# 0x%hx has collision, using 0x%hx", 3079 dom_req, dom); 3080 3081 hbus->sysdata.domain = dom; 3082 3083 hbus->hdev = hdev; 3084 refcount_set(&hbus->remove_lock, 1); 3085 INIT_LIST_HEAD(&hbus->children); 3086 INIT_LIST_HEAD(&hbus->dr_list); 3087 INIT_LIST_HEAD(&hbus->resources_for_children); 3088 spin_lock_init(&hbus->config_lock); 3089 spin_lock_init(&hbus->device_list_lock); 3090 spin_lock_init(&hbus->retarget_msi_interrupt_lock); 3091 init_completion(&hbus->remove_event); 3092 hbus->wq = alloc_ordered_workqueue("hv_pci_%x", 0, 3093 hbus->sysdata.domain); 3094 if (!hbus->wq) { 3095 ret = -ENOMEM; 3096 goto free_dom; 3097 } 3098 3099 ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0, 3100 hv_pci_onchannelcallback, hbus); 3101 if (ret) 3102 goto destroy_wq; 3103 3104 hv_set_drvdata(hdev, hbus); 3105 3106 ret = hv_pci_protocol_negotiation(hdev, pci_protocol_versions, 3107 ARRAY_SIZE(pci_protocol_versions)); 3108 if (ret) 3109 goto close; 3110 3111 ret = hv_allocate_config_window(hbus); 3112 if (ret) 3113 goto close; 3114 3115 hbus->cfg_addr = ioremap(hbus->mem_config->start, 3116 PCI_CONFIG_MMIO_LENGTH); 3117 if (!hbus->cfg_addr) { 3118 dev_err(&hdev->device, 3119 "Unable to map a virtual address for config space\n"); 3120 ret = -ENOMEM; 3121 goto free_config; 3122 } 3123 3124 name = kasprintf(GFP_KERNEL, "%pUL", &hdev->dev_instance); 3125 if (!name) { 3126 ret = -ENOMEM; 3127 goto unmap; 3128 } 3129 3130 hbus->sysdata.fwnode = irq_domain_alloc_named_fwnode(name); 3131 kfree(name); 3132 if (!hbus->sysdata.fwnode) { 3133 ret = -ENOMEM; 3134 goto unmap; 3135 } 3136 3137 ret = hv_pcie_init_irq_domain(hbus); 3138 if (ret) 3139 goto free_fwnode; 3140 3141 ret = hv_pci_query_relations(hdev); 3142 if (ret) 3143 goto free_irq_domain; 3144 3145 ret = hv_pci_enter_d0(hdev); 3146 if (ret) 3147 goto free_irq_domain; 3148 3149 ret = hv_pci_allocate_bridge_windows(hbus); 3150 if (ret) 3151 goto free_irq_domain; 3152 3153 ret = hv_send_resources_allocated(hdev); 3154 if (ret) 3155 goto free_windows; 3156 3157 prepopulate_bars(hbus); 3158 3159 hbus->state = hv_pcibus_probed; 3160 3161 ret = create_root_hv_pci_bus(hbus); 3162 if (ret) 3163 goto free_windows; 3164 3165 return 0; 3166 3167 free_windows: 3168 hv_pci_free_bridge_windows(hbus); 3169 free_irq_domain: 3170 irq_domain_remove(hbus->irq_domain); 3171 free_fwnode: 3172 irq_domain_free_fwnode(hbus->sysdata.fwnode); 3173 unmap: 3174 iounmap(hbus->cfg_addr); 3175 free_config: 3176 hv_free_config_window(hbus); 3177 close: 3178 vmbus_close(hdev->channel); 3179 destroy_wq: 3180 destroy_workqueue(hbus->wq); 3181 free_dom: 3182 hv_put_dom_num(hbus->sysdata.domain); 3183 free_bus: 3184 kfree(hbus); 3185 return ret; 3186 } 3187 3188 static int hv_pci_bus_exit(struct hv_device *hdev, bool hibernating) 3189 { 3190 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3191 struct { 3192 struct pci_packet teardown_packet; 3193 u8 buffer[sizeof(struct pci_message)]; 3194 } pkt; 3195 struct hv_dr_state *dr; 3196 struct hv_pci_compl comp_pkt; 3197 int ret; 3198 3199 /* 3200 * After the host sends the RESCIND_CHANNEL message, it doesn't 3201 * access the per-channel ringbuffer any longer. 3202 */ 3203 if (hdev->channel->rescind) 3204 return 0; 3205 3206 if (!hibernating) { 3207 /* Delete any children which might still exist. */ 3208 dr = kzalloc(sizeof(*dr), GFP_KERNEL); 3209 if (dr && hv_pci_start_relations_work(hbus, dr)) 3210 kfree(dr); 3211 } 3212 3213 ret = hv_send_resources_released(hdev); 3214 if (ret) { 3215 dev_err(&hdev->device, 3216 "Couldn't send resources released packet(s)\n"); 3217 return ret; 3218 } 3219 3220 memset(&pkt.teardown_packet, 0, sizeof(pkt.teardown_packet)); 3221 init_completion(&comp_pkt.host_event); 3222 pkt.teardown_packet.completion_func = hv_pci_generic_compl; 3223 pkt.teardown_packet.compl_ctxt = &comp_pkt; 3224 pkt.teardown_packet.message[0].type = PCI_BUS_D0EXIT; 3225 3226 ret = vmbus_sendpacket(hdev->channel, &pkt.teardown_packet.message, 3227 sizeof(struct pci_message), 3228 (unsigned long)&pkt.teardown_packet, 3229 VM_PKT_DATA_INBAND, 3230 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 3231 if (ret) 3232 return ret; 3233 3234 if (wait_for_completion_timeout(&comp_pkt.host_event, 10 * HZ) == 0) 3235 return -ETIMEDOUT; 3236 3237 return 0; 3238 } 3239 3240 /** 3241 * hv_pci_remove() - Remove routine for this VMBus channel 3242 * @hdev: VMBus's tracking struct for this root PCI bus 3243 * 3244 * Return: 0 on success, -errno on failure 3245 */ 3246 static int hv_pci_remove(struct hv_device *hdev) 3247 { 3248 struct hv_pcibus_device *hbus; 3249 int ret; 3250 3251 hbus = hv_get_drvdata(hdev); 3252 if (hbus->state == hv_pcibus_installed) { 3253 /* Remove the bus from PCI's point of view. */ 3254 pci_lock_rescan_remove(); 3255 pci_stop_root_bus(hbus->pci_bus); 3256 hv_pci_remove_slots(hbus); 3257 pci_remove_root_bus(hbus->pci_bus); 3258 pci_unlock_rescan_remove(); 3259 hbus->state = hv_pcibus_removed; 3260 } 3261 3262 ret = hv_pci_bus_exit(hdev, false); 3263 3264 vmbus_close(hdev->channel); 3265 3266 iounmap(hbus->cfg_addr); 3267 hv_free_config_window(hbus); 3268 pci_free_resource_list(&hbus->resources_for_children); 3269 hv_pci_free_bridge_windows(hbus); 3270 irq_domain_remove(hbus->irq_domain); 3271 irq_domain_free_fwnode(hbus->sysdata.fwnode); 3272 put_hvpcibus(hbus); 3273 wait_for_completion(&hbus->remove_event); 3274 destroy_workqueue(hbus->wq); 3275 3276 hv_put_dom_num(hbus->sysdata.domain); 3277 3278 kfree(hbus); 3279 return ret; 3280 } 3281 3282 static int hv_pci_suspend(struct hv_device *hdev) 3283 { 3284 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3285 enum hv_pcibus_state old_state; 3286 int ret; 3287 3288 /* 3289 * hv_pci_suspend() must make sure there are no pending work items 3290 * before calling vmbus_close(), since it runs in a process context 3291 * as a callback in dpm_suspend(). When it starts to run, the channel 3292 * callback hv_pci_onchannelcallback(), which runs in a tasklet 3293 * context, can be still running concurrently and scheduling new work 3294 * items onto hbus->wq in hv_pci_devices_present() and 3295 * hv_pci_eject_device(), and the work item handlers can access the 3296 * vmbus channel, which can be being closed by hv_pci_suspend(), e.g. 3297 * the work item handler pci_devices_present_work() -> 3298 * new_pcichild_device() writes to the vmbus channel. 3299 * 3300 * To eliminate the race, hv_pci_suspend() disables the channel 3301 * callback tasklet, sets hbus->state to hv_pcibus_removing, and 3302 * re-enables the tasklet. This way, when hv_pci_suspend() proceeds, 3303 * it knows that no new work item can be scheduled, and then it flushes 3304 * hbus->wq and safely closes the vmbus channel. 3305 */ 3306 tasklet_disable(&hdev->channel->callback_event); 3307 3308 /* Change the hbus state to prevent new work items. */ 3309 old_state = hbus->state; 3310 if (hbus->state == hv_pcibus_installed) 3311 hbus->state = hv_pcibus_removing; 3312 3313 tasklet_enable(&hdev->channel->callback_event); 3314 3315 if (old_state != hv_pcibus_installed) 3316 return -EINVAL; 3317 3318 flush_workqueue(hbus->wq); 3319 3320 ret = hv_pci_bus_exit(hdev, true); 3321 if (ret) 3322 return ret; 3323 3324 vmbus_close(hdev->channel); 3325 3326 return 0; 3327 } 3328 3329 static int hv_pci_resume(struct hv_device *hdev) 3330 { 3331 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3332 enum pci_protocol_version_t version[1]; 3333 int ret; 3334 3335 hbus->state = hv_pcibus_init; 3336 3337 ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0, 3338 hv_pci_onchannelcallback, hbus); 3339 if (ret) 3340 return ret; 3341 3342 /* Only use the version that was in use before hibernation. */ 3343 version[0] = hbus->protocol_version; 3344 ret = hv_pci_protocol_negotiation(hdev, version, 1); 3345 if (ret) 3346 goto out; 3347 3348 ret = hv_pci_query_relations(hdev); 3349 if (ret) 3350 goto out; 3351 3352 ret = hv_pci_enter_d0(hdev); 3353 if (ret) 3354 goto out; 3355 3356 ret = hv_send_resources_allocated(hdev); 3357 if (ret) 3358 goto out; 3359 3360 prepopulate_bars(hbus); 3361 3362 hbus->state = hv_pcibus_installed; 3363 return 0; 3364 out: 3365 vmbus_close(hdev->channel); 3366 return ret; 3367 } 3368 3369 static const struct hv_vmbus_device_id hv_pci_id_table[] = { 3370 /* PCI Pass-through Class ID */ 3371 /* 44C4F61D-4444-4400-9D52-802E27EDE19F */ 3372 { HV_PCIE_GUID, }, 3373 { }, 3374 }; 3375 3376 MODULE_DEVICE_TABLE(vmbus, hv_pci_id_table); 3377 3378 static struct hv_driver hv_pci_drv = { 3379 .name = "hv_pci", 3380 .id_table = hv_pci_id_table, 3381 .probe = hv_pci_probe, 3382 .remove = hv_pci_remove, 3383 .suspend = hv_pci_suspend, 3384 .resume = hv_pci_resume, 3385 }; 3386 3387 static void __exit exit_hv_pci_drv(void) 3388 { 3389 vmbus_driver_unregister(&hv_pci_drv); 3390 3391 hvpci_block_ops.read_block = NULL; 3392 hvpci_block_ops.write_block = NULL; 3393 hvpci_block_ops.reg_blk_invalidate = NULL; 3394 } 3395 3396 static int __init init_hv_pci_drv(void) 3397 { 3398 /* Set the invalid domain number's bit, so it will not be used */ 3399 set_bit(HVPCI_DOM_INVALID, hvpci_dom_map); 3400 3401 /* Initialize PCI block r/w interface */ 3402 hvpci_block_ops.read_block = hv_read_config_block; 3403 hvpci_block_ops.write_block = hv_write_config_block; 3404 hvpci_block_ops.reg_blk_invalidate = hv_register_block_invalidate; 3405 3406 return vmbus_driver_register(&hv_pci_drv); 3407 } 3408 3409 module_init(init_hv_pci_drv); 3410 module_exit(exit_hv_pci_drv); 3411 3412 MODULE_DESCRIPTION("Hyper-V PCI"); 3413 MODULE_LICENSE("GPL v2"); 3414