1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) Microsoft Corporation. 4 * 5 * Author: 6 * Jake Oshins <jakeo@microsoft.com> 7 * 8 * This driver acts as a paravirtual front-end for PCI Express root buses. 9 * When a PCI Express function (either an entire device or an SR-IOV 10 * Virtual Function) is being passed through to the VM, this driver exposes 11 * a new bus to the guest VM. This is modeled as a root PCI bus because 12 * no bridges are being exposed to the VM. In fact, with a "Generation 2" 13 * VM within Hyper-V, there may seem to be no PCI bus at all in the VM 14 * until a device as been exposed using this driver. 15 * 16 * Each root PCI bus has its own PCI domain, which is called "Segment" in 17 * the PCI Firmware Specifications. Thus while each device passed through 18 * to the VM using this front-end will appear at "device 0", the domain will 19 * be unique. Typically, each bus will have one PCI function on it, though 20 * this driver does support more than one. 21 * 22 * In order to map the interrupts from the device through to the guest VM, 23 * this driver also implements an IRQ Domain, which handles interrupts (either 24 * MSI or MSI-X) associated with the functions on the bus. As interrupts are 25 * set up, torn down, or reaffined, this driver communicates with the 26 * underlying hypervisor to adjust the mappings in the I/O MMU so that each 27 * interrupt will be delivered to the correct virtual processor at the right 28 * vector. This driver does not support level-triggered (line-based) 29 * interrupts, and will report that the Interrupt Line register in the 30 * function's configuration space is zero. 31 * 32 * The rest of this driver mostly maps PCI concepts onto underlying Hyper-V 33 * facilities. For instance, the configuration space of a function exposed 34 * by Hyper-V is mapped into a single page of memory space, and the 35 * read and write handlers for config space must be aware of this mechanism. 36 * Similarly, device setup and teardown involves messages sent to and from 37 * the PCI back-end driver in Hyper-V. 38 */ 39 40 #include <linux/kernel.h> 41 #include <linux/module.h> 42 #include <linux/pci.h> 43 #include <linux/delay.h> 44 #include <linux/semaphore.h> 45 #include <linux/irqdomain.h> 46 #include <asm/irqdomain.h> 47 #include <asm/apic.h> 48 #include <linux/irq.h> 49 #include <linux/msi.h> 50 #include <linux/hyperv.h> 51 #include <linux/refcount.h> 52 #include <asm/mshyperv.h> 53 54 /* 55 * Protocol versions. The low word is the minor version, the high word the 56 * major version. 57 */ 58 59 #define PCI_MAKE_VERSION(major, minor) ((u32)(((major) << 16) | (minor))) 60 #define PCI_MAJOR_VERSION(version) ((u32)(version) >> 16) 61 #define PCI_MINOR_VERSION(version) ((u32)(version) & 0xff) 62 63 enum pci_protocol_version_t { 64 PCI_PROTOCOL_VERSION_1_1 = PCI_MAKE_VERSION(1, 1), /* Win10 */ 65 PCI_PROTOCOL_VERSION_1_2 = PCI_MAKE_VERSION(1, 2), /* RS1 */ 66 }; 67 68 #define CPU_AFFINITY_ALL -1ULL 69 70 /* 71 * Supported protocol versions in the order of probing - highest go 72 * first. 73 */ 74 static enum pci_protocol_version_t pci_protocol_versions[] = { 75 PCI_PROTOCOL_VERSION_1_2, 76 PCI_PROTOCOL_VERSION_1_1, 77 }; 78 79 /* 80 * Protocol version negotiated by hv_pci_protocol_negotiation(). 81 */ 82 static enum pci_protocol_version_t pci_protocol_version; 83 84 #define PCI_CONFIG_MMIO_LENGTH 0x2000 85 #define CFG_PAGE_OFFSET 0x1000 86 #define CFG_PAGE_SIZE (PCI_CONFIG_MMIO_LENGTH - CFG_PAGE_OFFSET) 87 88 #define MAX_SUPPORTED_MSI_MESSAGES 0x400 89 90 #define STATUS_REVISION_MISMATCH 0xC0000059 91 92 /* space for 32bit serial number as string */ 93 #define SLOT_NAME_SIZE 11 94 95 /* 96 * Message Types 97 */ 98 99 enum pci_message_type { 100 /* 101 * Version 1.1 102 */ 103 PCI_MESSAGE_BASE = 0x42490000, 104 PCI_BUS_RELATIONS = PCI_MESSAGE_BASE + 0, 105 PCI_QUERY_BUS_RELATIONS = PCI_MESSAGE_BASE + 1, 106 PCI_POWER_STATE_CHANGE = PCI_MESSAGE_BASE + 4, 107 PCI_QUERY_RESOURCE_REQUIREMENTS = PCI_MESSAGE_BASE + 5, 108 PCI_QUERY_RESOURCE_RESOURCES = PCI_MESSAGE_BASE + 6, 109 PCI_BUS_D0ENTRY = PCI_MESSAGE_BASE + 7, 110 PCI_BUS_D0EXIT = PCI_MESSAGE_BASE + 8, 111 PCI_READ_BLOCK = PCI_MESSAGE_BASE + 9, 112 PCI_WRITE_BLOCK = PCI_MESSAGE_BASE + 0xA, 113 PCI_EJECT = PCI_MESSAGE_BASE + 0xB, 114 PCI_QUERY_STOP = PCI_MESSAGE_BASE + 0xC, 115 PCI_REENABLE = PCI_MESSAGE_BASE + 0xD, 116 PCI_QUERY_STOP_FAILED = PCI_MESSAGE_BASE + 0xE, 117 PCI_EJECTION_COMPLETE = PCI_MESSAGE_BASE + 0xF, 118 PCI_RESOURCES_ASSIGNED = PCI_MESSAGE_BASE + 0x10, 119 PCI_RESOURCES_RELEASED = PCI_MESSAGE_BASE + 0x11, 120 PCI_INVALIDATE_BLOCK = PCI_MESSAGE_BASE + 0x12, 121 PCI_QUERY_PROTOCOL_VERSION = PCI_MESSAGE_BASE + 0x13, 122 PCI_CREATE_INTERRUPT_MESSAGE = PCI_MESSAGE_BASE + 0x14, 123 PCI_DELETE_INTERRUPT_MESSAGE = PCI_MESSAGE_BASE + 0x15, 124 PCI_RESOURCES_ASSIGNED2 = PCI_MESSAGE_BASE + 0x16, 125 PCI_CREATE_INTERRUPT_MESSAGE2 = PCI_MESSAGE_BASE + 0x17, 126 PCI_DELETE_INTERRUPT_MESSAGE2 = PCI_MESSAGE_BASE + 0x18, /* unused */ 127 PCI_MESSAGE_MAXIMUM 128 }; 129 130 /* 131 * Structures defining the virtual PCI Express protocol. 132 */ 133 134 union pci_version { 135 struct { 136 u16 minor_version; 137 u16 major_version; 138 } parts; 139 u32 version; 140 } __packed; 141 142 /* 143 * Function numbers are 8-bits wide on Express, as interpreted through ARI, 144 * which is all this driver does. This representation is the one used in 145 * Windows, which is what is expected when sending this back and forth with 146 * the Hyper-V parent partition. 147 */ 148 union win_slot_encoding { 149 struct { 150 u32 dev:5; 151 u32 func:3; 152 u32 reserved:24; 153 } bits; 154 u32 slot; 155 } __packed; 156 157 /* 158 * Pretty much as defined in the PCI Specifications. 159 */ 160 struct pci_function_description { 161 u16 v_id; /* vendor ID */ 162 u16 d_id; /* device ID */ 163 u8 rev; 164 u8 prog_intf; 165 u8 subclass; 166 u8 base_class; 167 u32 subsystem_id; 168 union win_slot_encoding win_slot; 169 u32 ser; /* serial number */ 170 } __packed; 171 172 /** 173 * struct hv_msi_desc 174 * @vector: IDT entry 175 * @delivery_mode: As defined in Intel's Programmer's 176 * Reference Manual, Volume 3, Chapter 8. 177 * @vector_count: Number of contiguous entries in the 178 * Interrupt Descriptor Table that are 179 * occupied by this Message-Signaled 180 * Interrupt. For "MSI", as first defined 181 * in PCI 2.2, this can be between 1 and 182 * 32. For "MSI-X," as first defined in PCI 183 * 3.0, this must be 1, as each MSI-X table 184 * entry would have its own descriptor. 185 * @reserved: Empty space 186 * @cpu_mask: All the target virtual processors. 187 */ 188 struct hv_msi_desc { 189 u8 vector; 190 u8 delivery_mode; 191 u16 vector_count; 192 u32 reserved; 193 u64 cpu_mask; 194 } __packed; 195 196 /** 197 * struct hv_msi_desc2 - 1.2 version of hv_msi_desc 198 * @vector: IDT entry 199 * @delivery_mode: As defined in Intel's Programmer's 200 * Reference Manual, Volume 3, Chapter 8. 201 * @vector_count: Number of contiguous entries in the 202 * Interrupt Descriptor Table that are 203 * occupied by this Message-Signaled 204 * Interrupt. For "MSI", as first defined 205 * in PCI 2.2, this can be between 1 and 206 * 32. For "MSI-X," as first defined in PCI 207 * 3.0, this must be 1, as each MSI-X table 208 * entry would have its own descriptor. 209 * @processor_count: number of bits enabled in array. 210 * @processor_array: All the target virtual processors. 211 */ 212 struct hv_msi_desc2 { 213 u8 vector; 214 u8 delivery_mode; 215 u16 vector_count; 216 u16 processor_count; 217 u16 processor_array[32]; 218 } __packed; 219 220 /** 221 * struct tran_int_desc 222 * @reserved: unused, padding 223 * @vector_count: same as in hv_msi_desc 224 * @data: This is the "data payload" value that is 225 * written by the device when it generates 226 * a message-signaled interrupt, either MSI 227 * or MSI-X. 228 * @address: This is the address to which the data 229 * payload is written on interrupt 230 * generation. 231 */ 232 struct tran_int_desc { 233 u16 reserved; 234 u16 vector_count; 235 u32 data; 236 u64 address; 237 } __packed; 238 239 /* 240 * A generic message format for virtual PCI. 241 * Specific message formats are defined later in the file. 242 */ 243 244 struct pci_message { 245 u32 type; 246 } __packed; 247 248 struct pci_child_message { 249 struct pci_message message_type; 250 union win_slot_encoding wslot; 251 } __packed; 252 253 struct pci_incoming_message { 254 struct vmpacket_descriptor hdr; 255 struct pci_message message_type; 256 } __packed; 257 258 struct pci_response { 259 struct vmpacket_descriptor hdr; 260 s32 status; /* negative values are failures */ 261 } __packed; 262 263 struct pci_packet { 264 void (*completion_func)(void *context, struct pci_response *resp, 265 int resp_packet_size); 266 void *compl_ctxt; 267 268 struct pci_message message[0]; 269 }; 270 271 /* 272 * Specific message types supporting the PCI protocol. 273 */ 274 275 /* 276 * Version negotiation message. Sent from the guest to the host. 277 * The guest is free to try different versions until the host 278 * accepts the version. 279 * 280 * pci_version: The protocol version requested. 281 * is_last_attempt: If TRUE, this is the last version guest will request. 282 * reservedz: Reserved field, set to zero. 283 */ 284 285 struct pci_version_request { 286 struct pci_message message_type; 287 u32 protocol_version; 288 } __packed; 289 290 /* 291 * Bus D0 Entry. This is sent from the guest to the host when the virtual 292 * bus (PCI Express port) is ready for action. 293 */ 294 295 struct pci_bus_d0_entry { 296 struct pci_message message_type; 297 u32 reserved; 298 u64 mmio_base; 299 } __packed; 300 301 struct pci_bus_relations { 302 struct pci_incoming_message incoming; 303 u32 device_count; 304 struct pci_function_description func[0]; 305 } __packed; 306 307 struct pci_q_res_req_response { 308 struct vmpacket_descriptor hdr; 309 s32 status; /* negative values are failures */ 310 u32 probed_bar[6]; 311 } __packed; 312 313 struct pci_set_power { 314 struct pci_message message_type; 315 union win_slot_encoding wslot; 316 u32 power_state; /* In Windows terms */ 317 u32 reserved; 318 } __packed; 319 320 struct pci_set_power_response { 321 struct vmpacket_descriptor hdr; 322 s32 status; /* negative values are failures */ 323 union win_slot_encoding wslot; 324 u32 resultant_state; /* In Windows terms */ 325 u32 reserved; 326 } __packed; 327 328 struct pci_resources_assigned { 329 struct pci_message message_type; 330 union win_slot_encoding wslot; 331 u8 memory_range[0x14][6]; /* not used here */ 332 u32 msi_descriptors; 333 u32 reserved[4]; 334 } __packed; 335 336 struct pci_resources_assigned2 { 337 struct pci_message message_type; 338 union win_slot_encoding wslot; 339 u8 memory_range[0x14][6]; /* not used here */ 340 u32 msi_descriptor_count; 341 u8 reserved[70]; 342 } __packed; 343 344 struct pci_create_interrupt { 345 struct pci_message message_type; 346 union win_slot_encoding wslot; 347 struct hv_msi_desc int_desc; 348 } __packed; 349 350 struct pci_create_int_response { 351 struct pci_response response; 352 u32 reserved; 353 struct tran_int_desc int_desc; 354 } __packed; 355 356 struct pci_create_interrupt2 { 357 struct pci_message message_type; 358 union win_slot_encoding wslot; 359 struct hv_msi_desc2 int_desc; 360 } __packed; 361 362 struct pci_delete_interrupt { 363 struct pci_message message_type; 364 union win_slot_encoding wslot; 365 struct tran_int_desc int_desc; 366 } __packed; 367 368 struct pci_dev_incoming { 369 struct pci_incoming_message incoming; 370 union win_slot_encoding wslot; 371 } __packed; 372 373 struct pci_eject_response { 374 struct pci_message message_type; 375 union win_slot_encoding wslot; 376 u32 status; 377 } __packed; 378 379 static int pci_ring_size = (4 * PAGE_SIZE); 380 381 /* 382 * Definitions or interrupt steering hypercall. 383 */ 384 #define HV_PARTITION_ID_SELF ((u64)-1) 385 #define HVCALL_RETARGET_INTERRUPT 0x7e 386 387 struct hv_interrupt_entry { 388 u32 source; /* 1 for MSI(-X) */ 389 u32 reserved1; 390 u32 address; 391 u32 data; 392 }; 393 394 /* 395 * flags for hv_device_interrupt_target.flags 396 */ 397 #define HV_DEVICE_INTERRUPT_TARGET_MULTICAST 1 398 #define HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET 2 399 400 struct hv_device_interrupt_target { 401 u32 vector; 402 u32 flags; 403 union { 404 u64 vp_mask; 405 struct hv_vpset vp_set; 406 }; 407 }; 408 409 struct retarget_msi_interrupt { 410 u64 partition_id; /* use "self" */ 411 u64 device_id; 412 struct hv_interrupt_entry int_entry; 413 u64 reserved2; 414 struct hv_device_interrupt_target int_target; 415 } __packed __aligned(8); 416 417 /* 418 * Driver specific state. 419 */ 420 421 enum hv_pcibus_state { 422 hv_pcibus_init = 0, 423 hv_pcibus_probed, 424 hv_pcibus_installed, 425 hv_pcibus_removed, 426 hv_pcibus_maximum 427 }; 428 429 struct hv_pcibus_device { 430 struct pci_sysdata sysdata; 431 enum hv_pcibus_state state; 432 refcount_t remove_lock; 433 struct hv_device *hdev; 434 resource_size_t low_mmio_space; 435 resource_size_t high_mmio_space; 436 struct resource *mem_config; 437 struct resource *low_mmio_res; 438 struct resource *high_mmio_res; 439 struct completion *survey_event; 440 struct completion remove_event; 441 struct pci_bus *pci_bus; 442 spinlock_t config_lock; /* Avoid two threads writing index page */ 443 spinlock_t device_list_lock; /* Protect lists below */ 444 void __iomem *cfg_addr; 445 446 struct list_head resources_for_children; 447 448 struct list_head children; 449 struct list_head dr_list; 450 451 struct msi_domain_info msi_info; 452 struct msi_controller msi_chip; 453 struct irq_domain *irq_domain; 454 455 spinlock_t retarget_msi_interrupt_lock; 456 457 struct workqueue_struct *wq; 458 459 /* hypercall arg, must not cross page boundary */ 460 struct retarget_msi_interrupt retarget_msi_interrupt_params; 461 462 /* 463 * Don't put anything here: retarget_msi_interrupt_params must be last 464 */ 465 }; 466 467 /* 468 * Tracks "Device Relations" messages from the host, which must be both 469 * processed in order and deferred so that they don't run in the context 470 * of the incoming packet callback. 471 */ 472 struct hv_dr_work { 473 struct work_struct wrk; 474 struct hv_pcibus_device *bus; 475 }; 476 477 struct hv_dr_state { 478 struct list_head list_entry; 479 u32 device_count; 480 struct pci_function_description func[0]; 481 }; 482 483 enum hv_pcichild_state { 484 hv_pcichild_init = 0, 485 hv_pcichild_requirements, 486 hv_pcichild_resourced, 487 hv_pcichild_ejecting, 488 hv_pcichild_maximum 489 }; 490 491 struct hv_pci_dev { 492 /* List protected by pci_rescan_remove_lock */ 493 struct list_head list_entry; 494 refcount_t refs; 495 enum hv_pcichild_state state; 496 struct pci_slot *pci_slot; 497 struct pci_function_description desc; 498 bool reported_missing; 499 struct hv_pcibus_device *hbus; 500 struct work_struct wrk; 501 502 /* 503 * What would be observed if one wrote 0xFFFFFFFF to a BAR and then 504 * read it back, for each of the BAR offsets within config space. 505 */ 506 u32 probed_bar[6]; 507 }; 508 509 struct hv_pci_compl { 510 struct completion host_event; 511 s32 completion_status; 512 }; 513 514 static void hv_pci_onchannelcallback(void *context); 515 516 /** 517 * hv_pci_generic_compl() - Invoked for a completion packet 518 * @context: Set up by the sender of the packet. 519 * @resp: The response packet 520 * @resp_packet_size: Size in bytes of the packet 521 * 522 * This function is used to trigger an event and report status 523 * for any message for which the completion packet contains a 524 * status and nothing else. 525 */ 526 static void hv_pci_generic_compl(void *context, struct pci_response *resp, 527 int resp_packet_size) 528 { 529 struct hv_pci_compl *comp_pkt = context; 530 531 if (resp_packet_size >= offsetofend(struct pci_response, status)) 532 comp_pkt->completion_status = resp->status; 533 else 534 comp_pkt->completion_status = -1; 535 536 complete(&comp_pkt->host_event); 537 } 538 539 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus, 540 u32 wslot); 541 542 static void get_pcichild(struct hv_pci_dev *hpdev) 543 { 544 refcount_inc(&hpdev->refs); 545 } 546 547 static void put_pcichild(struct hv_pci_dev *hpdev) 548 { 549 if (refcount_dec_and_test(&hpdev->refs)) 550 kfree(hpdev); 551 } 552 553 static void get_hvpcibus(struct hv_pcibus_device *hv_pcibus); 554 static void put_hvpcibus(struct hv_pcibus_device *hv_pcibus); 555 556 /* 557 * There is no good way to get notified from vmbus_onoffer_rescind(), 558 * so let's use polling here, since this is not a hot path. 559 */ 560 static int wait_for_response(struct hv_device *hdev, 561 struct completion *comp) 562 { 563 while (true) { 564 if (hdev->channel->rescind) { 565 dev_warn_once(&hdev->device, "The device is gone.\n"); 566 return -ENODEV; 567 } 568 569 if (wait_for_completion_timeout(comp, HZ / 10)) 570 break; 571 } 572 573 return 0; 574 } 575 576 /** 577 * devfn_to_wslot() - Convert from Linux PCI slot to Windows 578 * @devfn: The Linux representation of PCI slot 579 * 580 * Windows uses a slightly different representation of PCI slot. 581 * 582 * Return: The Windows representation 583 */ 584 static u32 devfn_to_wslot(int devfn) 585 { 586 union win_slot_encoding wslot; 587 588 wslot.slot = 0; 589 wslot.bits.dev = PCI_SLOT(devfn); 590 wslot.bits.func = PCI_FUNC(devfn); 591 592 return wslot.slot; 593 } 594 595 /** 596 * wslot_to_devfn() - Convert from Windows PCI slot to Linux 597 * @wslot: The Windows representation of PCI slot 598 * 599 * Windows uses a slightly different representation of PCI slot. 600 * 601 * Return: The Linux representation 602 */ 603 static int wslot_to_devfn(u32 wslot) 604 { 605 union win_slot_encoding slot_no; 606 607 slot_no.slot = wslot; 608 return PCI_DEVFN(slot_no.bits.dev, slot_no.bits.func); 609 } 610 611 /* 612 * PCI Configuration Space for these root PCI buses is implemented as a pair 613 * of pages in memory-mapped I/O space. Writing to the first page chooses 614 * the PCI function being written or read. Once the first page has been 615 * written to, the following page maps in the entire configuration space of 616 * the function. 617 */ 618 619 /** 620 * _hv_pcifront_read_config() - Internal PCI config read 621 * @hpdev: The PCI driver's representation of the device 622 * @where: Offset within config space 623 * @size: Size of the transfer 624 * @val: Pointer to the buffer receiving the data 625 */ 626 static void _hv_pcifront_read_config(struct hv_pci_dev *hpdev, int where, 627 int size, u32 *val) 628 { 629 unsigned long flags; 630 void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where; 631 632 /* 633 * If the attempt is to read the IDs or the ROM BAR, simulate that. 634 */ 635 if (where + size <= PCI_COMMAND) { 636 memcpy(val, ((u8 *)&hpdev->desc.v_id) + where, size); 637 } else if (where >= PCI_CLASS_REVISION && where + size <= 638 PCI_CACHE_LINE_SIZE) { 639 memcpy(val, ((u8 *)&hpdev->desc.rev) + where - 640 PCI_CLASS_REVISION, size); 641 } else if (where >= PCI_SUBSYSTEM_VENDOR_ID && where + size <= 642 PCI_ROM_ADDRESS) { 643 memcpy(val, (u8 *)&hpdev->desc.subsystem_id + where - 644 PCI_SUBSYSTEM_VENDOR_ID, size); 645 } else if (where >= PCI_ROM_ADDRESS && where + size <= 646 PCI_CAPABILITY_LIST) { 647 /* ROM BARs are unimplemented */ 648 *val = 0; 649 } else if (where >= PCI_INTERRUPT_LINE && where + size <= 650 PCI_INTERRUPT_PIN) { 651 /* 652 * Interrupt Line and Interrupt PIN are hard-wired to zero 653 * because this front-end only supports message-signaled 654 * interrupts. 655 */ 656 *val = 0; 657 } else if (where + size <= CFG_PAGE_SIZE) { 658 spin_lock_irqsave(&hpdev->hbus->config_lock, flags); 659 /* Choose the function to be read. (See comment above) */ 660 writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr); 661 /* Make sure the function was chosen before we start reading. */ 662 mb(); 663 /* Read from that function's config space. */ 664 switch (size) { 665 case 1: 666 *val = readb(addr); 667 break; 668 case 2: 669 *val = readw(addr); 670 break; 671 default: 672 *val = readl(addr); 673 break; 674 } 675 /* 676 * Make sure the read was done before we release the spinlock 677 * allowing consecutive reads/writes. 678 */ 679 mb(); 680 spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags); 681 } else { 682 dev_err(&hpdev->hbus->hdev->device, 683 "Attempt to read beyond a function's config space.\n"); 684 } 685 } 686 687 static u16 hv_pcifront_get_vendor_id(struct hv_pci_dev *hpdev) 688 { 689 u16 ret; 690 unsigned long flags; 691 void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + 692 PCI_VENDOR_ID; 693 694 spin_lock_irqsave(&hpdev->hbus->config_lock, flags); 695 696 /* Choose the function to be read. (See comment above) */ 697 writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr); 698 /* Make sure the function was chosen before we start reading. */ 699 mb(); 700 /* Read from that function's config space. */ 701 ret = readw(addr); 702 /* 703 * mb() is not required here, because the spin_unlock_irqrestore() 704 * is a barrier. 705 */ 706 707 spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags); 708 709 return ret; 710 } 711 712 /** 713 * _hv_pcifront_write_config() - Internal PCI config write 714 * @hpdev: The PCI driver's representation of the device 715 * @where: Offset within config space 716 * @size: Size of the transfer 717 * @val: The data being transferred 718 */ 719 static void _hv_pcifront_write_config(struct hv_pci_dev *hpdev, int where, 720 int size, u32 val) 721 { 722 unsigned long flags; 723 void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where; 724 725 if (where >= PCI_SUBSYSTEM_VENDOR_ID && 726 where + size <= PCI_CAPABILITY_LIST) { 727 /* SSIDs and ROM BARs are read-only */ 728 } else if (where >= PCI_COMMAND && where + size <= CFG_PAGE_SIZE) { 729 spin_lock_irqsave(&hpdev->hbus->config_lock, flags); 730 /* Choose the function to be written. (See comment above) */ 731 writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr); 732 /* Make sure the function was chosen before we start writing. */ 733 wmb(); 734 /* Write to that function's config space. */ 735 switch (size) { 736 case 1: 737 writeb(val, addr); 738 break; 739 case 2: 740 writew(val, addr); 741 break; 742 default: 743 writel(val, addr); 744 break; 745 } 746 /* 747 * Make sure the write was done before we release the spinlock 748 * allowing consecutive reads/writes. 749 */ 750 mb(); 751 spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags); 752 } else { 753 dev_err(&hpdev->hbus->hdev->device, 754 "Attempt to write beyond a function's config space.\n"); 755 } 756 } 757 758 /** 759 * hv_pcifront_read_config() - Read configuration space 760 * @bus: PCI Bus structure 761 * @devfn: Device/function 762 * @where: Offset from base 763 * @size: Byte/word/dword 764 * @val: Value to be read 765 * 766 * Return: PCIBIOS_SUCCESSFUL on success 767 * PCIBIOS_DEVICE_NOT_FOUND on failure 768 */ 769 static int hv_pcifront_read_config(struct pci_bus *bus, unsigned int devfn, 770 int where, int size, u32 *val) 771 { 772 struct hv_pcibus_device *hbus = 773 container_of(bus->sysdata, struct hv_pcibus_device, sysdata); 774 struct hv_pci_dev *hpdev; 775 776 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn)); 777 if (!hpdev) 778 return PCIBIOS_DEVICE_NOT_FOUND; 779 780 _hv_pcifront_read_config(hpdev, where, size, val); 781 782 put_pcichild(hpdev); 783 return PCIBIOS_SUCCESSFUL; 784 } 785 786 /** 787 * hv_pcifront_write_config() - Write configuration space 788 * @bus: PCI Bus structure 789 * @devfn: Device/function 790 * @where: Offset from base 791 * @size: Byte/word/dword 792 * @val: Value to be written to device 793 * 794 * Return: PCIBIOS_SUCCESSFUL on success 795 * PCIBIOS_DEVICE_NOT_FOUND on failure 796 */ 797 static int hv_pcifront_write_config(struct pci_bus *bus, unsigned int devfn, 798 int where, int size, u32 val) 799 { 800 struct hv_pcibus_device *hbus = 801 container_of(bus->sysdata, struct hv_pcibus_device, sysdata); 802 struct hv_pci_dev *hpdev; 803 804 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn)); 805 if (!hpdev) 806 return PCIBIOS_DEVICE_NOT_FOUND; 807 808 _hv_pcifront_write_config(hpdev, where, size, val); 809 810 put_pcichild(hpdev); 811 return PCIBIOS_SUCCESSFUL; 812 } 813 814 /* PCIe operations */ 815 static struct pci_ops hv_pcifront_ops = { 816 .read = hv_pcifront_read_config, 817 .write = hv_pcifront_write_config, 818 }; 819 820 /* Interrupt management hooks */ 821 static void hv_int_desc_free(struct hv_pci_dev *hpdev, 822 struct tran_int_desc *int_desc) 823 { 824 struct pci_delete_interrupt *int_pkt; 825 struct { 826 struct pci_packet pkt; 827 u8 buffer[sizeof(struct pci_delete_interrupt)]; 828 } ctxt; 829 830 memset(&ctxt, 0, sizeof(ctxt)); 831 int_pkt = (struct pci_delete_interrupt *)&ctxt.pkt.message; 832 int_pkt->message_type.type = 833 PCI_DELETE_INTERRUPT_MESSAGE; 834 int_pkt->wslot.slot = hpdev->desc.win_slot.slot; 835 int_pkt->int_desc = *int_desc; 836 vmbus_sendpacket(hpdev->hbus->hdev->channel, int_pkt, sizeof(*int_pkt), 837 (unsigned long)&ctxt.pkt, VM_PKT_DATA_INBAND, 0); 838 kfree(int_desc); 839 } 840 841 /** 842 * hv_msi_free() - Free the MSI. 843 * @domain: The interrupt domain pointer 844 * @info: Extra MSI-related context 845 * @irq: Identifies the IRQ. 846 * 847 * The Hyper-V parent partition and hypervisor are tracking the 848 * messages that are in use, keeping the interrupt redirection 849 * table up to date. This callback sends a message that frees 850 * the IRT entry and related tracking nonsense. 851 */ 852 static void hv_msi_free(struct irq_domain *domain, struct msi_domain_info *info, 853 unsigned int irq) 854 { 855 struct hv_pcibus_device *hbus; 856 struct hv_pci_dev *hpdev; 857 struct pci_dev *pdev; 858 struct tran_int_desc *int_desc; 859 struct irq_data *irq_data = irq_domain_get_irq_data(domain, irq); 860 struct msi_desc *msi = irq_data_get_msi_desc(irq_data); 861 862 pdev = msi_desc_to_pci_dev(msi); 863 hbus = info->data; 864 int_desc = irq_data_get_irq_chip_data(irq_data); 865 if (!int_desc) 866 return; 867 868 irq_data->chip_data = NULL; 869 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn)); 870 if (!hpdev) { 871 kfree(int_desc); 872 return; 873 } 874 875 hv_int_desc_free(hpdev, int_desc); 876 put_pcichild(hpdev); 877 } 878 879 static int hv_set_affinity(struct irq_data *data, const struct cpumask *dest, 880 bool force) 881 { 882 struct irq_data *parent = data->parent_data; 883 884 return parent->chip->irq_set_affinity(parent, dest, force); 885 } 886 887 static void hv_irq_mask(struct irq_data *data) 888 { 889 pci_msi_mask_irq(data); 890 } 891 892 /** 893 * hv_irq_unmask() - "Unmask" the IRQ by setting its current 894 * affinity. 895 * @data: Describes the IRQ 896 * 897 * Build new a destination for the MSI and make a hypercall to 898 * update the Interrupt Redirection Table. "Device Logical ID" 899 * is built out of this PCI bus's instance GUID and the function 900 * number of the device. 901 */ 902 static void hv_irq_unmask(struct irq_data *data) 903 { 904 struct msi_desc *msi_desc = irq_data_get_msi_desc(data); 905 struct irq_cfg *cfg = irqd_cfg(data); 906 struct retarget_msi_interrupt *params; 907 struct hv_pcibus_device *hbus; 908 struct cpumask *dest; 909 cpumask_var_t tmp; 910 struct pci_bus *pbus; 911 struct pci_dev *pdev; 912 unsigned long flags; 913 u32 var_size = 0; 914 int cpu, nr_bank; 915 u64 res; 916 917 dest = irq_data_get_effective_affinity_mask(data); 918 pdev = msi_desc_to_pci_dev(msi_desc); 919 pbus = pdev->bus; 920 hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata); 921 922 spin_lock_irqsave(&hbus->retarget_msi_interrupt_lock, flags); 923 924 params = &hbus->retarget_msi_interrupt_params; 925 memset(params, 0, sizeof(*params)); 926 params->partition_id = HV_PARTITION_ID_SELF; 927 params->int_entry.source = 1; /* MSI(-X) */ 928 params->int_entry.address = msi_desc->msg.address_lo; 929 params->int_entry.data = msi_desc->msg.data; 930 params->device_id = (hbus->hdev->dev_instance.b[5] << 24) | 931 (hbus->hdev->dev_instance.b[4] << 16) | 932 (hbus->hdev->dev_instance.b[7] << 8) | 933 (hbus->hdev->dev_instance.b[6] & 0xf8) | 934 PCI_FUNC(pdev->devfn); 935 params->int_target.vector = cfg->vector; 936 937 /* 938 * Honoring apic->irq_delivery_mode set to dest_Fixed by 939 * setting the HV_DEVICE_INTERRUPT_TARGET_MULTICAST flag results in a 940 * spurious interrupt storm. Not doing so does not seem to have a 941 * negative effect (yet?). 942 */ 943 944 if (pci_protocol_version >= PCI_PROTOCOL_VERSION_1_2) { 945 /* 946 * PCI_PROTOCOL_VERSION_1_2 supports the VP_SET version of the 947 * HVCALL_RETARGET_INTERRUPT hypercall, which also coincides 948 * with >64 VP support. 949 * ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED 950 * is not sufficient for this hypercall. 951 */ 952 params->int_target.flags |= 953 HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET; 954 955 if (!alloc_cpumask_var(&tmp, GFP_ATOMIC)) { 956 res = 1; 957 goto exit_unlock; 958 } 959 960 cpumask_and(tmp, dest, cpu_online_mask); 961 nr_bank = cpumask_to_vpset(¶ms->int_target.vp_set, tmp); 962 free_cpumask_var(tmp); 963 964 if (nr_bank <= 0) { 965 res = 1; 966 goto exit_unlock; 967 } 968 969 /* 970 * var-sized hypercall, var-size starts after vp_mask (thus 971 * vp_set.format does not count, but vp_set.valid_bank_mask 972 * does). 973 */ 974 var_size = 1 + nr_bank; 975 } else { 976 for_each_cpu_and(cpu, dest, cpu_online_mask) { 977 params->int_target.vp_mask |= 978 (1ULL << hv_cpu_number_to_vp_number(cpu)); 979 } 980 } 981 982 res = hv_do_hypercall(HVCALL_RETARGET_INTERRUPT | (var_size << 17), 983 params, NULL); 984 985 exit_unlock: 986 spin_unlock_irqrestore(&hbus->retarget_msi_interrupt_lock, flags); 987 988 if (res) { 989 dev_err(&hbus->hdev->device, 990 "%s() failed: %#llx", __func__, res); 991 return; 992 } 993 994 pci_msi_unmask_irq(data); 995 } 996 997 struct compose_comp_ctxt { 998 struct hv_pci_compl comp_pkt; 999 struct tran_int_desc int_desc; 1000 }; 1001 1002 static void hv_pci_compose_compl(void *context, struct pci_response *resp, 1003 int resp_packet_size) 1004 { 1005 struct compose_comp_ctxt *comp_pkt = context; 1006 struct pci_create_int_response *int_resp = 1007 (struct pci_create_int_response *)resp; 1008 1009 comp_pkt->comp_pkt.completion_status = resp->status; 1010 comp_pkt->int_desc = int_resp->int_desc; 1011 complete(&comp_pkt->comp_pkt.host_event); 1012 } 1013 1014 static u32 hv_compose_msi_req_v1( 1015 struct pci_create_interrupt *int_pkt, struct cpumask *affinity, 1016 u32 slot, u8 vector) 1017 { 1018 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE; 1019 int_pkt->wslot.slot = slot; 1020 int_pkt->int_desc.vector = vector; 1021 int_pkt->int_desc.vector_count = 1; 1022 int_pkt->int_desc.delivery_mode = dest_Fixed; 1023 1024 /* 1025 * Create MSI w/ dummy vCPU set, overwritten by subsequent retarget in 1026 * hv_irq_unmask(). 1027 */ 1028 int_pkt->int_desc.cpu_mask = CPU_AFFINITY_ALL; 1029 1030 return sizeof(*int_pkt); 1031 } 1032 1033 static u32 hv_compose_msi_req_v2( 1034 struct pci_create_interrupt2 *int_pkt, struct cpumask *affinity, 1035 u32 slot, u8 vector) 1036 { 1037 int cpu; 1038 1039 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE2; 1040 int_pkt->wslot.slot = slot; 1041 int_pkt->int_desc.vector = vector; 1042 int_pkt->int_desc.vector_count = 1; 1043 int_pkt->int_desc.delivery_mode = dest_Fixed; 1044 1045 /* 1046 * Create MSI w/ dummy vCPU set targeting just one vCPU, overwritten 1047 * by subsequent retarget in hv_irq_unmask(). 1048 */ 1049 cpu = cpumask_first_and(affinity, cpu_online_mask); 1050 int_pkt->int_desc.processor_array[0] = 1051 hv_cpu_number_to_vp_number(cpu); 1052 int_pkt->int_desc.processor_count = 1; 1053 1054 return sizeof(*int_pkt); 1055 } 1056 1057 /** 1058 * hv_compose_msi_msg() - Supplies a valid MSI address/data 1059 * @data: Everything about this MSI 1060 * @msg: Buffer that is filled in by this function 1061 * 1062 * This function unpacks the IRQ looking for target CPU set, IDT 1063 * vector and mode and sends a message to the parent partition 1064 * asking for a mapping for that tuple in this partition. The 1065 * response supplies a data value and address to which that data 1066 * should be written to trigger that interrupt. 1067 */ 1068 static void hv_compose_msi_msg(struct irq_data *data, struct msi_msg *msg) 1069 { 1070 struct irq_cfg *cfg = irqd_cfg(data); 1071 struct hv_pcibus_device *hbus; 1072 struct hv_pci_dev *hpdev; 1073 struct pci_bus *pbus; 1074 struct pci_dev *pdev; 1075 struct cpumask *dest; 1076 unsigned long flags; 1077 struct compose_comp_ctxt comp; 1078 struct tran_int_desc *int_desc; 1079 struct { 1080 struct pci_packet pci_pkt; 1081 union { 1082 struct pci_create_interrupt v1; 1083 struct pci_create_interrupt2 v2; 1084 } int_pkts; 1085 } __packed ctxt; 1086 1087 u32 size; 1088 int ret; 1089 1090 pdev = msi_desc_to_pci_dev(irq_data_get_msi_desc(data)); 1091 dest = irq_data_get_effective_affinity_mask(data); 1092 pbus = pdev->bus; 1093 hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata); 1094 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn)); 1095 if (!hpdev) 1096 goto return_null_message; 1097 1098 /* Free any previous message that might have already been composed. */ 1099 if (data->chip_data) { 1100 int_desc = data->chip_data; 1101 data->chip_data = NULL; 1102 hv_int_desc_free(hpdev, int_desc); 1103 } 1104 1105 int_desc = kzalloc(sizeof(*int_desc), GFP_ATOMIC); 1106 if (!int_desc) 1107 goto drop_reference; 1108 1109 memset(&ctxt, 0, sizeof(ctxt)); 1110 init_completion(&comp.comp_pkt.host_event); 1111 ctxt.pci_pkt.completion_func = hv_pci_compose_compl; 1112 ctxt.pci_pkt.compl_ctxt = ∁ 1113 1114 switch (pci_protocol_version) { 1115 case PCI_PROTOCOL_VERSION_1_1: 1116 size = hv_compose_msi_req_v1(&ctxt.int_pkts.v1, 1117 dest, 1118 hpdev->desc.win_slot.slot, 1119 cfg->vector); 1120 break; 1121 1122 case PCI_PROTOCOL_VERSION_1_2: 1123 size = hv_compose_msi_req_v2(&ctxt.int_pkts.v2, 1124 dest, 1125 hpdev->desc.win_slot.slot, 1126 cfg->vector); 1127 break; 1128 1129 default: 1130 /* As we only negotiate protocol versions known to this driver, 1131 * this path should never hit. However, this is it not a hot 1132 * path so we print a message to aid future updates. 1133 */ 1134 dev_err(&hbus->hdev->device, 1135 "Unexpected vPCI protocol, update driver."); 1136 goto free_int_desc; 1137 } 1138 1139 ret = vmbus_sendpacket(hpdev->hbus->hdev->channel, &ctxt.int_pkts, 1140 size, (unsigned long)&ctxt.pci_pkt, 1141 VM_PKT_DATA_INBAND, 1142 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1143 if (ret) { 1144 dev_err(&hbus->hdev->device, 1145 "Sending request for interrupt failed: 0x%x", 1146 comp.comp_pkt.completion_status); 1147 goto free_int_desc; 1148 } 1149 1150 /* 1151 * Since this function is called with IRQ locks held, can't 1152 * do normal wait for completion; instead poll. 1153 */ 1154 while (!try_wait_for_completion(&comp.comp_pkt.host_event)) { 1155 /* 0xFFFF means an invalid PCI VENDOR ID. */ 1156 if (hv_pcifront_get_vendor_id(hpdev) == 0xFFFF) { 1157 dev_err_once(&hbus->hdev->device, 1158 "the device has gone\n"); 1159 goto free_int_desc; 1160 } 1161 1162 /* 1163 * When the higher level interrupt code calls us with 1164 * interrupt disabled, we must poll the channel by calling 1165 * the channel callback directly when channel->target_cpu is 1166 * the current CPU. When the higher level interrupt code 1167 * calls us with interrupt enabled, let's add the 1168 * local_irq_save()/restore() to avoid race: 1169 * hv_pci_onchannelcallback() can also run in tasklet. 1170 */ 1171 local_irq_save(flags); 1172 1173 if (hbus->hdev->channel->target_cpu == smp_processor_id()) 1174 hv_pci_onchannelcallback(hbus); 1175 1176 local_irq_restore(flags); 1177 1178 if (hpdev->state == hv_pcichild_ejecting) { 1179 dev_err_once(&hbus->hdev->device, 1180 "the device is being ejected\n"); 1181 goto free_int_desc; 1182 } 1183 1184 udelay(100); 1185 } 1186 1187 if (comp.comp_pkt.completion_status < 0) { 1188 dev_err(&hbus->hdev->device, 1189 "Request for interrupt failed: 0x%x", 1190 comp.comp_pkt.completion_status); 1191 goto free_int_desc; 1192 } 1193 1194 /* 1195 * Record the assignment so that this can be unwound later. Using 1196 * irq_set_chip_data() here would be appropriate, but the lock it takes 1197 * is already held. 1198 */ 1199 *int_desc = comp.int_desc; 1200 data->chip_data = int_desc; 1201 1202 /* Pass up the result. */ 1203 msg->address_hi = comp.int_desc.address >> 32; 1204 msg->address_lo = comp.int_desc.address & 0xffffffff; 1205 msg->data = comp.int_desc.data; 1206 1207 put_pcichild(hpdev); 1208 return; 1209 1210 free_int_desc: 1211 kfree(int_desc); 1212 drop_reference: 1213 put_pcichild(hpdev); 1214 return_null_message: 1215 msg->address_hi = 0; 1216 msg->address_lo = 0; 1217 msg->data = 0; 1218 } 1219 1220 /* HW Interrupt Chip Descriptor */ 1221 static struct irq_chip hv_msi_irq_chip = { 1222 .name = "Hyper-V PCIe MSI", 1223 .irq_compose_msi_msg = hv_compose_msi_msg, 1224 .irq_set_affinity = hv_set_affinity, 1225 .irq_ack = irq_chip_ack_parent, 1226 .irq_mask = hv_irq_mask, 1227 .irq_unmask = hv_irq_unmask, 1228 }; 1229 1230 static irq_hw_number_t hv_msi_domain_ops_get_hwirq(struct msi_domain_info *info, 1231 msi_alloc_info_t *arg) 1232 { 1233 return arg->msi_hwirq; 1234 } 1235 1236 static struct msi_domain_ops hv_msi_ops = { 1237 .get_hwirq = hv_msi_domain_ops_get_hwirq, 1238 .msi_prepare = pci_msi_prepare, 1239 .set_desc = pci_msi_set_desc, 1240 .msi_free = hv_msi_free, 1241 }; 1242 1243 /** 1244 * hv_pcie_init_irq_domain() - Initialize IRQ domain 1245 * @hbus: The root PCI bus 1246 * 1247 * This function creates an IRQ domain which will be used for 1248 * interrupts from devices that have been passed through. These 1249 * devices only support MSI and MSI-X, not line-based interrupts 1250 * or simulations of line-based interrupts through PCIe's 1251 * fabric-layer messages. Because interrupts are remapped, we 1252 * can support multi-message MSI here. 1253 * 1254 * Return: '0' on success and error value on failure 1255 */ 1256 static int hv_pcie_init_irq_domain(struct hv_pcibus_device *hbus) 1257 { 1258 hbus->msi_info.chip = &hv_msi_irq_chip; 1259 hbus->msi_info.ops = &hv_msi_ops; 1260 hbus->msi_info.flags = (MSI_FLAG_USE_DEF_DOM_OPS | 1261 MSI_FLAG_USE_DEF_CHIP_OPS | MSI_FLAG_MULTI_PCI_MSI | 1262 MSI_FLAG_PCI_MSIX); 1263 hbus->msi_info.handler = handle_edge_irq; 1264 hbus->msi_info.handler_name = "edge"; 1265 hbus->msi_info.data = hbus; 1266 hbus->irq_domain = pci_msi_create_irq_domain(hbus->sysdata.fwnode, 1267 &hbus->msi_info, 1268 x86_vector_domain); 1269 if (!hbus->irq_domain) { 1270 dev_err(&hbus->hdev->device, 1271 "Failed to build an MSI IRQ domain\n"); 1272 return -ENODEV; 1273 } 1274 1275 return 0; 1276 } 1277 1278 /** 1279 * get_bar_size() - Get the address space consumed by a BAR 1280 * @bar_val: Value that a BAR returned after -1 was written 1281 * to it. 1282 * 1283 * This function returns the size of the BAR, rounded up to 1 1284 * page. It has to be rounded up because the hypervisor's page 1285 * table entry that maps the BAR into the VM can't specify an 1286 * offset within a page. The invariant is that the hypervisor 1287 * must place any BARs of smaller than page length at the 1288 * beginning of a page. 1289 * 1290 * Return: Size in bytes of the consumed MMIO space. 1291 */ 1292 static u64 get_bar_size(u64 bar_val) 1293 { 1294 return round_up((1 + ~(bar_val & PCI_BASE_ADDRESS_MEM_MASK)), 1295 PAGE_SIZE); 1296 } 1297 1298 /** 1299 * survey_child_resources() - Total all MMIO requirements 1300 * @hbus: Root PCI bus, as understood by this driver 1301 */ 1302 static void survey_child_resources(struct hv_pcibus_device *hbus) 1303 { 1304 struct hv_pci_dev *hpdev; 1305 resource_size_t bar_size = 0; 1306 unsigned long flags; 1307 struct completion *event; 1308 u64 bar_val; 1309 int i; 1310 1311 /* If nobody is waiting on the answer, don't compute it. */ 1312 event = xchg(&hbus->survey_event, NULL); 1313 if (!event) 1314 return; 1315 1316 /* If the answer has already been computed, go with it. */ 1317 if (hbus->low_mmio_space || hbus->high_mmio_space) { 1318 complete(event); 1319 return; 1320 } 1321 1322 spin_lock_irqsave(&hbus->device_list_lock, flags); 1323 1324 /* 1325 * Due to an interesting quirk of the PCI spec, all memory regions 1326 * for a child device are a power of 2 in size and aligned in memory, 1327 * so it's sufficient to just add them up without tracking alignment. 1328 */ 1329 list_for_each_entry(hpdev, &hbus->children, list_entry) { 1330 for (i = 0; i < 6; i++) { 1331 if (hpdev->probed_bar[i] & PCI_BASE_ADDRESS_SPACE_IO) 1332 dev_err(&hbus->hdev->device, 1333 "There's an I/O BAR in this list!\n"); 1334 1335 if (hpdev->probed_bar[i] != 0) { 1336 /* 1337 * A probed BAR has all the upper bits set that 1338 * can be changed. 1339 */ 1340 1341 bar_val = hpdev->probed_bar[i]; 1342 if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64) 1343 bar_val |= 1344 ((u64)hpdev->probed_bar[++i] << 32); 1345 else 1346 bar_val |= 0xffffffff00000000ULL; 1347 1348 bar_size = get_bar_size(bar_val); 1349 1350 if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64) 1351 hbus->high_mmio_space += bar_size; 1352 else 1353 hbus->low_mmio_space += bar_size; 1354 } 1355 } 1356 } 1357 1358 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 1359 complete(event); 1360 } 1361 1362 /** 1363 * prepopulate_bars() - Fill in BARs with defaults 1364 * @hbus: Root PCI bus, as understood by this driver 1365 * 1366 * The core PCI driver code seems much, much happier if the BARs 1367 * for a device have values upon first scan. So fill them in. 1368 * The algorithm below works down from large sizes to small, 1369 * attempting to pack the assignments optimally. The assumption, 1370 * enforced in other parts of the code, is that the beginning of 1371 * the memory-mapped I/O space will be aligned on the largest 1372 * BAR size. 1373 */ 1374 static void prepopulate_bars(struct hv_pcibus_device *hbus) 1375 { 1376 resource_size_t high_size = 0; 1377 resource_size_t low_size = 0; 1378 resource_size_t high_base = 0; 1379 resource_size_t low_base = 0; 1380 resource_size_t bar_size; 1381 struct hv_pci_dev *hpdev; 1382 unsigned long flags; 1383 u64 bar_val; 1384 u32 command; 1385 bool high; 1386 int i; 1387 1388 if (hbus->low_mmio_space) { 1389 low_size = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space)); 1390 low_base = hbus->low_mmio_res->start; 1391 } 1392 1393 if (hbus->high_mmio_space) { 1394 high_size = 1ULL << 1395 (63 - __builtin_clzll(hbus->high_mmio_space)); 1396 high_base = hbus->high_mmio_res->start; 1397 } 1398 1399 spin_lock_irqsave(&hbus->device_list_lock, flags); 1400 1401 /* Pick addresses for the BARs. */ 1402 do { 1403 list_for_each_entry(hpdev, &hbus->children, list_entry) { 1404 for (i = 0; i < 6; i++) { 1405 bar_val = hpdev->probed_bar[i]; 1406 if (bar_val == 0) 1407 continue; 1408 high = bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64; 1409 if (high) { 1410 bar_val |= 1411 ((u64)hpdev->probed_bar[i + 1] 1412 << 32); 1413 } else { 1414 bar_val |= 0xffffffffULL << 32; 1415 } 1416 bar_size = get_bar_size(bar_val); 1417 if (high) { 1418 if (high_size != bar_size) { 1419 i++; 1420 continue; 1421 } 1422 _hv_pcifront_write_config(hpdev, 1423 PCI_BASE_ADDRESS_0 + (4 * i), 1424 4, 1425 (u32)(high_base & 0xffffff00)); 1426 i++; 1427 _hv_pcifront_write_config(hpdev, 1428 PCI_BASE_ADDRESS_0 + (4 * i), 1429 4, (u32)(high_base >> 32)); 1430 high_base += bar_size; 1431 } else { 1432 if (low_size != bar_size) 1433 continue; 1434 _hv_pcifront_write_config(hpdev, 1435 PCI_BASE_ADDRESS_0 + (4 * i), 1436 4, 1437 (u32)(low_base & 0xffffff00)); 1438 low_base += bar_size; 1439 } 1440 } 1441 if (high_size <= 1 && low_size <= 1) { 1442 /* Set the memory enable bit. */ 1443 _hv_pcifront_read_config(hpdev, PCI_COMMAND, 2, 1444 &command); 1445 command |= PCI_COMMAND_MEMORY; 1446 _hv_pcifront_write_config(hpdev, PCI_COMMAND, 2, 1447 command); 1448 break; 1449 } 1450 } 1451 1452 high_size >>= 1; 1453 low_size >>= 1; 1454 } while (high_size || low_size); 1455 1456 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 1457 } 1458 1459 /* 1460 * Assign entries in sysfs pci slot directory. 1461 * 1462 * Note that this function does not need to lock the children list 1463 * because it is called from pci_devices_present_work which 1464 * is serialized with hv_eject_device_work because they are on the 1465 * same ordered workqueue. Therefore hbus->children list will not change 1466 * even when pci_create_slot sleeps. 1467 */ 1468 static void hv_pci_assign_slots(struct hv_pcibus_device *hbus) 1469 { 1470 struct hv_pci_dev *hpdev; 1471 char name[SLOT_NAME_SIZE]; 1472 int slot_nr; 1473 1474 list_for_each_entry(hpdev, &hbus->children, list_entry) { 1475 if (hpdev->pci_slot) 1476 continue; 1477 1478 slot_nr = PCI_SLOT(wslot_to_devfn(hpdev->desc.win_slot.slot)); 1479 snprintf(name, SLOT_NAME_SIZE, "%u", hpdev->desc.ser); 1480 hpdev->pci_slot = pci_create_slot(hbus->pci_bus, slot_nr, 1481 name, NULL); 1482 if (IS_ERR(hpdev->pci_slot)) { 1483 pr_warn("pci_create slot %s failed\n", name); 1484 hpdev->pci_slot = NULL; 1485 } 1486 } 1487 } 1488 1489 /** 1490 * create_root_hv_pci_bus() - Expose a new root PCI bus 1491 * @hbus: Root PCI bus, as understood by this driver 1492 * 1493 * Return: 0 on success, -errno on failure 1494 */ 1495 static int create_root_hv_pci_bus(struct hv_pcibus_device *hbus) 1496 { 1497 /* Register the device */ 1498 hbus->pci_bus = pci_create_root_bus(&hbus->hdev->device, 1499 0, /* bus number is always zero */ 1500 &hv_pcifront_ops, 1501 &hbus->sysdata, 1502 &hbus->resources_for_children); 1503 if (!hbus->pci_bus) 1504 return -ENODEV; 1505 1506 hbus->pci_bus->msi = &hbus->msi_chip; 1507 hbus->pci_bus->msi->dev = &hbus->hdev->device; 1508 1509 pci_lock_rescan_remove(); 1510 pci_scan_child_bus(hbus->pci_bus); 1511 pci_bus_assign_resources(hbus->pci_bus); 1512 hv_pci_assign_slots(hbus); 1513 pci_bus_add_devices(hbus->pci_bus); 1514 pci_unlock_rescan_remove(); 1515 hbus->state = hv_pcibus_installed; 1516 return 0; 1517 } 1518 1519 struct q_res_req_compl { 1520 struct completion host_event; 1521 struct hv_pci_dev *hpdev; 1522 }; 1523 1524 /** 1525 * q_resource_requirements() - Query Resource Requirements 1526 * @context: The completion context. 1527 * @resp: The response that came from the host. 1528 * @resp_packet_size: The size in bytes of resp. 1529 * 1530 * This function is invoked on completion of a Query Resource 1531 * Requirements packet. 1532 */ 1533 static void q_resource_requirements(void *context, struct pci_response *resp, 1534 int resp_packet_size) 1535 { 1536 struct q_res_req_compl *completion = context; 1537 struct pci_q_res_req_response *q_res_req = 1538 (struct pci_q_res_req_response *)resp; 1539 int i; 1540 1541 if (resp->status < 0) { 1542 dev_err(&completion->hpdev->hbus->hdev->device, 1543 "query resource requirements failed: %x\n", 1544 resp->status); 1545 } else { 1546 for (i = 0; i < 6; i++) { 1547 completion->hpdev->probed_bar[i] = 1548 q_res_req->probed_bar[i]; 1549 } 1550 } 1551 1552 complete(&completion->host_event); 1553 } 1554 1555 /** 1556 * new_pcichild_device() - Create a new child device 1557 * @hbus: The internal struct tracking this root PCI bus. 1558 * @desc: The information supplied so far from the host 1559 * about the device. 1560 * 1561 * This function creates the tracking structure for a new child 1562 * device and kicks off the process of figuring out what it is. 1563 * 1564 * Return: Pointer to the new tracking struct 1565 */ 1566 static struct hv_pci_dev *new_pcichild_device(struct hv_pcibus_device *hbus, 1567 struct pci_function_description *desc) 1568 { 1569 struct hv_pci_dev *hpdev; 1570 struct pci_child_message *res_req; 1571 struct q_res_req_compl comp_pkt; 1572 struct { 1573 struct pci_packet init_packet; 1574 u8 buffer[sizeof(struct pci_child_message)]; 1575 } pkt; 1576 unsigned long flags; 1577 int ret; 1578 1579 hpdev = kzalloc(sizeof(*hpdev), GFP_KERNEL); 1580 if (!hpdev) 1581 return NULL; 1582 1583 hpdev->hbus = hbus; 1584 1585 memset(&pkt, 0, sizeof(pkt)); 1586 init_completion(&comp_pkt.host_event); 1587 comp_pkt.hpdev = hpdev; 1588 pkt.init_packet.compl_ctxt = &comp_pkt; 1589 pkt.init_packet.completion_func = q_resource_requirements; 1590 res_req = (struct pci_child_message *)&pkt.init_packet.message; 1591 res_req->message_type.type = PCI_QUERY_RESOURCE_REQUIREMENTS; 1592 res_req->wslot.slot = desc->win_slot.slot; 1593 1594 ret = vmbus_sendpacket(hbus->hdev->channel, res_req, 1595 sizeof(struct pci_child_message), 1596 (unsigned long)&pkt.init_packet, 1597 VM_PKT_DATA_INBAND, 1598 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1599 if (ret) 1600 goto error; 1601 1602 if (wait_for_response(hbus->hdev, &comp_pkt.host_event)) 1603 goto error; 1604 1605 hpdev->desc = *desc; 1606 refcount_set(&hpdev->refs, 1); 1607 get_pcichild(hpdev); 1608 spin_lock_irqsave(&hbus->device_list_lock, flags); 1609 1610 list_add_tail(&hpdev->list_entry, &hbus->children); 1611 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 1612 return hpdev; 1613 1614 error: 1615 kfree(hpdev); 1616 return NULL; 1617 } 1618 1619 /** 1620 * get_pcichild_wslot() - Find device from slot 1621 * @hbus: Root PCI bus, as understood by this driver 1622 * @wslot: Location on the bus 1623 * 1624 * This function looks up a PCI device and returns the internal 1625 * representation of it. It acquires a reference on it, so that 1626 * the device won't be deleted while somebody is using it. The 1627 * caller is responsible for calling put_pcichild() to release 1628 * this reference. 1629 * 1630 * Return: Internal representation of a PCI device 1631 */ 1632 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus, 1633 u32 wslot) 1634 { 1635 unsigned long flags; 1636 struct hv_pci_dev *iter, *hpdev = NULL; 1637 1638 spin_lock_irqsave(&hbus->device_list_lock, flags); 1639 list_for_each_entry(iter, &hbus->children, list_entry) { 1640 if (iter->desc.win_slot.slot == wslot) { 1641 hpdev = iter; 1642 get_pcichild(hpdev); 1643 break; 1644 } 1645 } 1646 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 1647 1648 return hpdev; 1649 } 1650 1651 /** 1652 * pci_devices_present_work() - Handle new list of child devices 1653 * @work: Work struct embedded in struct hv_dr_work 1654 * 1655 * "Bus Relations" is the Windows term for "children of this 1656 * bus." The terminology is preserved here for people trying to 1657 * debug the interaction between Hyper-V and Linux. This 1658 * function is called when the parent partition reports a list 1659 * of functions that should be observed under this PCI Express 1660 * port (bus). 1661 * 1662 * This function updates the list, and must tolerate being 1663 * called multiple times with the same information. The typical 1664 * number of child devices is one, with very atypical cases 1665 * involving three or four, so the algorithms used here can be 1666 * simple and inefficient. 1667 * 1668 * It must also treat the omission of a previously observed device as 1669 * notification that the device no longer exists. 1670 * 1671 * Note that this function is serialized with hv_eject_device_work(), 1672 * because both are pushed to the ordered workqueue hbus->wq. 1673 */ 1674 static void pci_devices_present_work(struct work_struct *work) 1675 { 1676 u32 child_no; 1677 bool found; 1678 struct pci_function_description *new_desc; 1679 struct hv_pci_dev *hpdev; 1680 struct hv_pcibus_device *hbus; 1681 struct list_head removed; 1682 struct hv_dr_work *dr_wrk; 1683 struct hv_dr_state *dr = NULL; 1684 unsigned long flags; 1685 1686 dr_wrk = container_of(work, struct hv_dr_work, wrk); 1687 hbus = dr_wrk->bus; 1688 kfree(dr_wrk); 1689 1690 INIT_LIST_HEAD(&removed); 1691 1692 /* Pull this off the queue and process it if it was the last one. */ 1693 spin_lock_irqsave(&hbus->device_list_lock, flags); 1694 while (!list_empty(&hbus->dr_list)) { 1695 dr = list_first_entry(&hbus->dr_list, struct hv_dr_state, 1696 list_entry); 1697 list_del(&dr->list_entry); 1698 1699 /* Throw this away if the list still has stuff in it. */ 1700 if (!list_empty(&hbus->dr_list)) { 1701 kfree(dr); 1702 continue; 1703 } 1704 } 1705 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 1706 1707 if (!dr) { 1708 put_hvpcibus(hbus); 1709 return; 1710 } 1711 1712 /* First, mark all existing children as reported missing. */ 1713 spin_lock_irqsave(&hbus->device_list_lock, flags); 1714 list_for_each_entry(hpdev, &hbus->children, list_entry) { 1715 hpdev->reported_missing = true; 1716 } 1717 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 1718 1719 /* Next, add back any reported devices. */ 1720 for (child_no = 0; child_no < dr->device_count; child_no++) { 1721 found = false; 1722 new_desc = &dr->func[child_no]; 1723 1724 spin_lock_irqsave(&hbus->device_list_lock, flags); 1725 list_for_each_entry(hpdev, &hbus->children, list_entry) { 1726 if ((hpdev->desc.win_slot.slot == new_desc->win_slot.slot) && 1727 (hpdev->desc.v_id == new_desc->v_id) && 1728 (hpdev->desc.d_id == new_desc->d_id) && 1729 (hpdev->desc.ser == new_desc->ser)) { 1730 hpdev->reported_missing = false; 1731 found = true; 1732 } 1733 } 1734 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 1735 1736 if (!found) { 1737 hpdev = new_pcichild_device(hbus, new_desc); 1738 if (!hpdev) 1739 dev_err(&hbus->hdev->device, 1740 "couldn't record a child device.\n"); 1741 } 1742 } 1743 1744 /* Move missing children to a list on the stack. */ 1745 spin_lock_irqsave(&hbus->device_list_lock, flags); 1746 do { 1747 found = false; 1748 list_for_each_entry(hpdev, &hbus->children, list_entry) { 1749 if (hpdev->reported_missing) { 1750 found = true; 1751 put_pcichild(hpdev); 1752 list_move_tail(&hpdev->list_entry, &removed); 1753 break; 1754 } 1755 } 1756 } while (found); 1757 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 1758 1759 /* Delete everything that should no longer exist. */ 1760 while (!list_empty(&removed)) { 1761 hpdev = list_first_entry(&removed, struct hv_pci_dev, 1762 list_entry); 1763 list_del(&hpdev->list_entry); 1764 put_pcichild(hpdev); 1765 } 1766 1767 switch (hbus->state) { 1768 case hv_pcibus_installed: 1769 /* 1770 * Tell the core to rescan bus 1771 * because there may have been changes. 1772 */ 1773 pci_lock_rescan_remove(); 1774 pci_scan_child_bus(hbus->pci_bus); 1775 hv_pci_assign_slots(hbus); 1776 pci_unlock_rescan_remove(); 1777 break; 1778 1779 case hv_pcibus_init: 1780 case hv_pcibus_probed: 1781 survey_child_resources(hbus); 1782 break; 1783 1784 default: 1785 break; 1786 } 1787 1788 put_hvpcibus(hbus); 1789 kfree(dr); 1790 } 1791 1792 /** 1793 * hv_pci_devices_present() - Handles list of new children 1794 * @hbus: Root PCI bus, as understood by this driver 1795 * @relations: Packet from host listing children 1796 * 1797 * This function is invoked whenever a new list of devices for 1798 * this bus appears. 1799 */ 1800 static void hv_pci_devices_present(struct hv_pcibus_device *hbus, 1801 struct pci_bus_relations *relations) 1802 { 1803 struct hv_dr_state *dr; 1804 struct hv_dr_work *dr_wrk; 1805 unsigned long flags; 1806 bool pending_dr; 1807 1808 dr_wrk = kzalloc(sizeof(*dr_wrk), GFP_NOWAIT); 1809 if (!dr_wrk) 1810 return; 1811 1812 dr = kzalloc(offsetof(struct hv_dr_state, func) + 1813 (sizeof(struct pci_function_description) * 1814 (relations->device_count)), GFP_NOWAIT); 1815 if (!dr) { 1816 kfree(dr_wrk); 1817 return; 1818 } 1819 1820 INIT_WORK(&dr_wrk->wrk, pci_devices_present_work); 1821 dr_wrk->bus = hbus; 1822 dr->device_count = relations->device_count; 1823 if (dr->device_count != 0) { 1824 memcpy(dr->func, relations->func, 1825 sizeof(struct pci_function_description) * 1826 dr->device_count); 1827 } 1828 1829 spin_lock_irqsave(&hbus->device_list_lock, flags); 1830 /* 1831 * If pending_dr is true, we have already queued a work, 1832 * which will see the new dr. Otherwise, we need to 1833 * queue a new work. 1834 */ 1835 pending_dr = !list_empty(&hbus->dr_list); 1836 list_add_tail(&dr->list_entry, &hbus->dr_list); 1837 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 1838 1839 if (pending_dr) { 1840 kfree(dr_wrk); 1841 } else { 1842 get_hvpcibus(hbus); 1843 queue_work(hbus->wq, &dr_wrk->wrk); 1844 } 1845 } 1846 1847 /** 1848 * hv_eject_device_work() - Asynchronously handles ejection 1849 * @work: Work struct embedded in internal device struct 1850 * 1851 * This function handles ejecting a device. Windows will 1852 * attempt to gracefully eject a device, waiting 60 seconds to 1853 * hear back from the guest OS that this completed successfully. 1854 * If this timer expires, the device will be forcibly removed. 1855 */ 1856 static void hv_eject_device_work(struct work_struct *work) 1857 { 1858 struct pci_eject_response *ejct_pkt; 1859 struct hv_pci_dev *hpdev; 1860 struct pci_dev *pdev; 1861 unsigned long flags; 1862 int wslot; 1863 struct { 1864 struct pci_packet pkt; 1865 u8 buffer[sizeof(struct pci_eject_response)]; 1866 } ctxt; 1867 1868 hpdev = container_of(work, struct hv_pci_dev, wrk); 1869 1870 WARN_ON(hpdev->state != hv_pcichild_ejecting); 1871 1872 /* 1873 * Ejection can come before or after the PCI bus has been set up, so 1874 * attempt to find it and tear down the bus state, if it exists. This 1875 * must be done without constructs like pci_domain_nr(hbus->pci_bus) 1876 * because hbus->pci_bus may not exist yet. 1877 */ 1878 wslot = wslot_to_devfn(hpdev->desc.win_slot.slot); 1879 pdev = pci_get_domain_bus_and_slot(hpdev->hbus->sysdata.domain, 0, 1880 wslot); 1881 if (pdev) { 1882 pci_lock_rescan_remove(); 1883 pci_stop_and_remove_bus_device(pdev); 1884 pci_dev_put(pdev); 1885 pci_unlock_rescan_remove(); 1886 } 1887 1888 spin_lock_irqsave(&hpdev->hbus->device_list_lock, flags); 1889 list_del(&hpdev->list_entry); 1890 spin_unlock_irqrestore(&hpdev->hbus->device_list_lock, flags); 1891 1892 if (hpdev->pci_slot) 1893 pci_destroy_slot(hpdev->pci_slot); 1894 1895 memset(&ctxt, 0, sizeof(ctxt)); 1896 ejct_pkt = (struct pci_eject_response *)&ctxt.pkt.message; 1897 ejct_pkt->message_type.type = PCI_EJECTION_COMPLETE; 1898 ejct_pkt->wslot.slot = hpdev->desc.win_slot.slot; 1899 vmbus_sendpacket(hpdev->hbus->hdev->channel, ejct_pkt, 1900 sizeof(*ejct_pkt), (unsigned long)&ctxt.pkt, 1901 VM_PKT_DATA_INBAND, 0); 1902 1903 put_pcichild(hpdev); 1904 put_pcichild(hpdev); 1905 put_hvpcibus(hpdev->hbus); 1906 } 1907 1908 /** 1909 * hv_pci_eject_device() - Handles device ejection 1910 * @hpdev: Internal device tracking struct 1911 * 1912 * This function is invoked when an ejection packet arrives. It 1913 * just schedules work so that we don't re-enter the packet 1914 * delivery code handling the ejection. 1915 */ 1916 static void hv_pci_eject_device(struct hv_pci_dev *hpdev) 1917 { 1918 hpdev->state = hv_pcichild_ejecting; 1919 get_pcichild(hpdev); 1920 INIT_WORK(&hpdev->wrk, hv_eject_device_work); 1921 get_hvpcibus(hpdev->hbus); 1922 queue_work(hpdev->hbus->wq, &hpdev->wrk); 1923 } 1924 1925 /** 1926 * hv_pci_onchannelcallback() - Handles incoming packets 1927 * @context: Internal bus tracking struct 1928 * 1929 * This function is invoked whenever the host sends a packet to 1930 * this channel (which is private to this root PCI bus). 1931 */ 1932 static void hv_pci_onchannelcallback(void *context) 1933 { 1934 const int packet_size = 0x100; 1935 int ret; 1936 struct hv_pcibus_device *hbus = context; 1937 u32 bytes_recvd; 1938 u64 req_id; 1939 struct vmpacket_descriptor *desc; 1940 unsigned char *buffer; 1941 int bufferlen = packet_size; 1942 struct pci_packet *comp_packet; 1943 struct pci_response *response; 1944 struct pci_incoming_message *new_message; 1945 struct pci_bus_relations *bus_rel; 1946 struct pci_dev_incoming *dev_message; 1947 struct hv_pci_dev *hpdev; 1948 1949 buffer = kmalloc(bufferlen, GFP_ATOMIC); 1950 if (!buffer) 1951 return; 1952 1953 while (1) { 1954 ret = vmbus_recvpacket_raw(hbus->hdev->channel, buffer, 1955 bufferlen, &bytes_recvd, &req_id); 1956 1957 if (ret == -ENOBUFS) { 1958 kfree(buffer); 1959 /* Handle large packet */ 1960 bufferlen = bytes_recvd; 1961 buffer = kmalloc(bytes_recvd, GFP_ATOMIC); 1962 if (!buffer) 1963 return; 1964 continue; 1965 } 1966 1967 /* Zero length indicates there are no more packets. */ 1968 if (ret || !bytes_recvd) 1969 break; 1970 1971 /* 1972 * All incoming packets must be at least as large as a 1973 * response. 1974 */ 1975 if (bytes_recvd <= sizeof(struct pci_response)) 1976 continue; 1977 desc = (struct vmpacket_descriptor *)buffer; 1978 1979 switch (desc->type) { 1980 case VM_PKT_COMP: 1981 1982 /* 1983 * The host is trusted, and thus it's safe to interpret 1984 * this transaction ID as a pointer. 1985 */ 1986 comp_packet = (struct pci_packet *)req_id; 1987 response = (struct pci_response *)buffer; 1988 comp_packet->completion_func(comp_packet->compl_ctxt, 1989 response, 1990 bytes_recvd); 1991 break; 1992 1993 case VM_PKT_DATA_INBAND: 1994 1995 new_message = (struct pci_incoming_message *)buffer; 1996 switch (new_message->message_type.type) { 1997 case PCI_BUS_RELATIONS: 1998 1999 bus_rel = (struct pci_bus_relations *)buffer; 2000 if (bytes_recvd < 2001 offsetof(struct pci_bus_relations, func) + 2002 (sizeof(struct pci_function_description) * 2003 (bus_rel->device_count))) { 2004 dev_err(&hbus->hdev->device, 2005 "bus relations too small\n"); 2006 break; 2007 } 2008 2009 hv_pci_devices_present(hbus, bus_rel); 2010 break; 2011 2012 case PCI_EJECT: 2013 2014 dev_message = (struct pci_dev_incoming *)buffer; 2015 hpdev = get_pcichild_wslot(hbus, 2016 dev_message->wslot.slot); 2017 if (hpdev) { 2018 hv_pci_eject_device(hpdev); 2019 put_pcichild(hpdev); 2020 } 2021 break; 2022 2023 default: 2024 dev_warn(&hbus->hdev->device, 2025 "Unimplemented protocol message %x\n", 2026 new_message->message_type.type); 2027 break; 2028 } 2029 break; 2030 2031 default: 2032 dev_err(&hbus->hdev->device, 2033 "unhandled packet type %d, tid %llx len %d\n", 2034 desc->type, req_id, bytes_recvd); 2035 break; 2036 } 2037 } 2038 2039 kfree(buffer); 2040 } 2041 2042 /** 2043 * hv_pci_protocol_negotiation() - Set up protocol 2044 * @hdev: VMBus's tracking struct for this root PCI bus 2045 * 2046 * This driver is intended to support running on Windows 10 2047 * (server) and later versions. It will not run on earlier 2048 * versions, as they assume that many of the operations which 2049 * Linux needs accomplished with a spinlock held were done via 2050 * asynchronous messaging via VMBus. Windows 10 increases the 2051 * surface area of PCI emulation so that these actions can take 2052 * place by suspending a virtual processor for their duration. 2053 * 2054 * This function negotiates the channel protocol version, 2055 * failing if the host doesn't support the necessary protocol 2056 * level. 2057 */ 2058 static int hv_pci_protocol_negotiation(struct hv_device *hdev) 2059 { 2060 struct pci_version_request *version_req; 2061 struct hv_pci_compl comp_pkt; 2062 struct pci_packet *pkt; 2063 int ret; 2064 int i; 2065 2066 /* 2067 * Initiate the handshake with the host and negotiate 2068 * a version that the host can support. We start with the 2069 * highest version number and go down if the host cannot 2070 * support it. 2071 */ 2072 pkt = kzalloc(sizeof(*pkt) + sizeof(*version_req), GFP_KERNEL); 2073 if (!pkt) 2074 return -ENOMEM; 2075 2076 init_completion(&comp_pkt.host_event); 2077 pkt->completion_func = hv_pci_generic_compl; 2078 pkt->compl_ctxt = &comp_pkt; 2079 version_req = (struct pci_version_request *)&pkt->message; 2080 version_req->message_type.type = PCI_QUERY_PROTOCOL_VERSION; 2081 2082 for (i = 0; i < ARRAY_SIZE(pci_protocol_versions); i++) { 2083 version_req->protocol_version = pci_protocol_versions[i]; 2084 ret = vmbus_sendpacket(hdev->channel, version_req, 2085 sizeof(struct pci_version_request), 2086 (unsigned long)pkt, VM_PKT_DATA_INBAND, 2087 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 2088 if (!ret) 2089 ret = wait_for_response(hdev, &comp_pkt.host_event); 2090 2091 if (ret) { 2092 dev_err(&hdev->device, 2093 "PCI Pass-through VSP failed to request version: %d", 2094 ret); 2095 goto exit; 2096 } 2097 2098 if (comp_pkt.completion_status >= 0) { 2099 pci_protocol_version = pci_protocol_versions[i]; 2100 dev_info(&hdev->device, 2101 "PCI VMBus probing: Using version %#x\n", 2102 pci_protocol_version); 2103 goto exit; 2104 } 2105 2106 if (comp_pkt.completion_status != STATUS_REVISION_MISMATCH) { 2107 dev_err(&hdev->device, 2108 "PCI Pass-through VSP failed version request: %#x", 2109 comp_pkt.completion_status); 2110 ret = -EPROTO; 2111 goto exit; 2112 } 2113 2114 reinit_completion(&comp_pkt.host_event); 2115 } 2116 2117 dev_err(&hdev->device, 2118 "PCI pass-through VSP failed to find supported version"); 2119 ret = -EPROTO; 2120 2121 exit: 2122 kfree(pkt); 2123 return ret; 2124 } 2125 2126 /** 2127 * hv_pci_free_bridge_windows() - Release memory regions for the 2128 * bus 2129 * @hbus: Root PCI bus, as understood by this driver 2130 */ 2131 static void hv_pci_free_bridge_windows(struct hv_pcibus_device *hbus) 2132 { 2133 /* 2134 * Set the resources back to the way they looked when they 2135 * were allocated by setting IORESOURCE_BUSY again. 2136 */ 2137 2138 if (hbus->low_mmio_space && hbus->low_mmio_res) { 2139 hbus->low_mmio_res->flags |= IORESOURCE_BUSY; 2140 vmbus_free_mmio(hbus->low_mmio_res->start, 2141 resource_size(hbus->low_mmio_res)); 2142 } 2143 2144 if (hbus->high_mmio_space && hbus->high_mmio_res) { 2145 hbus->high_mmio_res->flags |= IORESOURCE_BUSY; 2146 vmbus_free_mmio(hbus->high_mmio_res->start, 2147 resource_size(hbus->high_mmio_res)); 2148 } 2149 } 2150 2151 /** 2152 * hv_pci_allocate_bridge_windows() - Allocate memory regions 2153 * for the bus 2154 * @hbus: Root PCI bus, as understood by this driver 2155 * 2156 * This function calls vmbus_allocate_mmio(), which is itself a 2157 * bit of a compromise. Ideally, we might change the pnp layer 2158 * in the kernel such that it comprehends either PCI devices 2159 * which are "grandchildren of ACPI," with some intermediate bus 2160 * node (in this case, VMBus) or change it such that it 2161 * understands VMBus. The pnp layer, however, has been declared 2162 * deprecated, and not subject to change. 2163 * 2164 * The workaround, implemented here, is to ask VMBus to allocate 2165 * MMIO space for this bus. VMBus itself knows which ranges are 2166 * appropriate by looking at its own ACPI objects. Then, after 2167 * these ranges are claimed, they're modified to look like they 2168 * would have looked if the ACPI and pnp code had allocated 2169 * bridge windows. These descriptors have to exist in this form 2170 * in order to satisfy the code which will get invoked when the 2171 * endpoint PCI function driver calls request_mem_region() or 2172 * request_mem_region_exclusive(). 2173 * 2174 * Return: 0 on success, -errno on failure 2175 */ 2176 static int hv_pci_allocate_bridge_windows(struct hv_pcibus_device *hbus) 2177 { 2178 resource_size_t align; 2179 int ret; 2180 2181 if (hbus->low_mmio_space) { 2182 align = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space)); 2183 ret = vmbus_allocate_mmio(&hbus->low_mmio_res, hbus->hdev, 0, 2184 (u64)(u32)0xffffffff, 2185 hbus->low_mmio_space, 2186 align, false); 2187 if (ret) { 2188 dev_err(&hbus->hdev->device, 2189 "Need %#llx of low MMIO space. Consider reconfiguring the VM.\n", 2190 hbus->low_mmio_space); 2191 return ret; 2192 } 2193 2194 /* Modify this resource to become a bridge window. */ 2195 hbus->low_mmio_res->flags |= IORESOURCE_WINDOW; 2196 hbus->low_mmio_res->flags &= ~IORESOURCE_BUSY; 2197 pci_add_resource(&hbus->resources_for_children, 2198 hbus->low_mmio_res); 2199 } 2200 2201 if (hbus->high_mmio_space) { 2202 align = 1ULL << (63 - __builtin_clzll(hbus->high_mmio_space)); 2203 ret = vmbus_allocate_mmio(&hbus->high_mmio_res, hbus->hdev, 2204 0x100000000, -1, 2205 hbus->high_mmio_space, align, 2206 false); 2207 if (ret) { 2208 dev_err(&hbus->hdev->device, 2209 "Need %#llx of high MMIO space. Consider reconfiguring the VM.\n", 2210 hbus->high_mmio_space); 2211 goto release_low_mmio; 2212 } 2213 2214 /* Modify this resource to become a bridge window. */ 2215 hbus->high_mmio_res->flags |= IORESOURCE_WINDOW; 2216 hbus->high_mmio_res->flags &= ~IORESOURCE_BUSY; 2217 pci_add_resource(&hbus->resources_for_children, 2218 hbus->high_mmio_res); 2219 } 2220 2221 return 0; 2222 2223 release_low_mmio: 2224 if (hbus->low_mmio_res) { 2225 vmbus_free_mmio(hbus->low_mmio_res->start, 2226 resource_size(hbus->low_mmio_res)); 2227 } 2228 2229 return ret; 2230 } 2231 2232 /** 2233 * hv_allocate_config_window() - Find MMIO space for PCI Config 2234 * @hbus: Root PCI bus, as understood by this driver 2235 * 2236 * This function claims memory-mapped I/O space for accessing 2237 * configuration space for the functions on this bus. 2238 * 2239 * Return: 0 on success, -errno on failure 2240 */ 2241 static int hv_allocate_config_window(struct hv_pcibus_device *hbus) 2242 { 2243 int ret; 2244 2245 /* 2246 * Set up a region of MMIO space to use for accessing configuration 2247 * space. 2248 */ 2249 ret = vmbus_allocate_mmio(&hbus->mem_config, hbus->hdev, 0, -1, 2250 PCI_CONFIG_MMIO_LENGTH, 0x1000, false); 2251 if (ret) 2252 return ret; 2253 2254 /* 2255 * vmbus_allocate_mmio() gets used for allocating both device endpoint 2256 * resource claims (those which cannot be overlapped) and the ranges 2257 * which are valid for the children of this bus, which are intended 2258 * to be overlapped by those children. Set the flag on this claim 2259 * meaning that this region can't be overlapped. 2260 */ 2261 2262 hbus->mem_config->flags |= IORESOURCE_BUSY; 2263 2264 return 0; 2265 } 2266 2267 static void hv_free_config_window(struct hv_pcibus_device *hbus) 2268 { 2269 vmbus_free_mmio(hbus->mem_config->start, PCI_CONFIG_MMIO_LENGTH); 2270 } 2271 2272 /** 2273 * hv_pci_enter_d0() - Bring the "bus" into the D0 power state 2274 * @hdev: VMBus's tracking struct for this root PCI bus 2275 * 2276 * Return: 0 on success, -errno on failure 2277 */ 2278 static int hv_pci_enter_d0(struct hv_device *hdev) 2279 { 2280 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 2281 struct pci_bus_d0_entry *d0_entry; 2282 struct hv_pci_compl comp_pkt; 2283 struct pci_packet *pkt; 2284 int ret; 2285 2286 /* 2287 * Tell the host that the bus is ready to use, and moved into the 2288 * powered-on state. This includes telling the host which region 2289 * of memory-mapped I/O space has been chosen for configuration space 2290 * access. 2291 */ 2292 pkt = kzalloc(sizeof(*pkt) + sizeof(*d0_entry), GFP_KERNEL); 2293 if (!pkt) 2294 return -ENOMEM; 2295 2296 init_completion(&comp_pkt.host_event); 2297 pkt->completion_func = hv_pci_generic_compl; 2298 pkt->compl_ctxt = &comp_pkt; 2299 d0_entry = (struct pci_bus_d0_entry *)&pkt->message; 2300 d0_entry->message_type.type = PCI_BUS_D0ENTRY; 2301 d0_entry->mmio_base = hbus->mem_config->start; 2302 2303 ret = vmbus_sendpacket(hdev->channel, d0_entry, sizeof(*d0_entry), 2304 (unsigned long)pkt, VM_PKT_DATA_INBAND, 2305 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 2306 if (!ret) 2307 ret = wait_for_response(hdev, &comp_pkt.host_event); 2308 2309 if (ret) 2310 goto exit; 2311 2312 if (comp_pkt.completion_status < 0) { 2313 dev_err(&hdev->device, 2314 "PCI Pass-through VSP failed D0 Entry with status %x\n", 2315 comp_pkt.completion_status); 2316 ret = -EPROTO; 2317 goto exit; 2318 } 2319 2320 ret = 0; 2321 2322 exit: 2323 kfree(pkt); 2324 return ret; 2325 } 2326 2327 /** 2328 * hv_pci_query_relations() - Ask host to send list of child 2329 * devices 2330 * @hdev: VMBus's tracking struct for this root PCI bus 2331 * 2332 * Return: 0 on success, -errno on failure 2333 */ 2334 static int hv_pci_query_relations(struct hv_device *hdev) 2335 { 2336 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 2337 struct pci_message message; 2338 struct completion comp; 2339 int ret; 2340 2341 /* Ask the host to send along the list of child devices */ 2342 init_completion(&comp); 2343 if (cmpxchg(&hbus->survey_event, NULL, &comp)) 2344 return -ENOTEMPTY; 2345 2346 memset(&message, 0, sizeof(message)); 2347 message.type = PCI_QUERY_BUS_RELATIONS; 2348 2349 ret = vmbus_sendpacket(hdev->channel, &message, sizeof(message), 2350 0, VM_PKT_DATA_INBAND, 0); 2351 if (!ret) 2352 ret = wait_for_response(hdev, &comp); 2353 2354 return ret; 2355 } 2356 2357 /** 2358 * hv_send_resources_allocated() - Report local resource choices 2359 * @hdev: VMBus's tracking struct for this root PCI bus 2360 * 2361 * The host OS is expecting to be sent a request as a message 2362 * which contains all the resources that the device will use. 2363 * The response contains those same resources, "translated" 2364 * which is to say, the values which should be used by the 2365 * hardware, when it delivers an interrupt. (MMIO resources are 2366 * used in local terms.) This is nice for Windows, and lines up 2367 * with the FDO/PDO split, which doesn't exist in Linux. Linux 2368 * is deeply expecting to scan an emulated PCI configuration 2369 * space. So this message is sent here only to drive the state 2370 * machine on the host forward. 2371 * 2372 * Return: 0 on success, -errno on failure 2373 */ 2374 static int hv_send_resources_allocated(struct hv_device *hdev) 2375 { 2376 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 2377 struct pci_resources_assigned *res_assigned; 2378 struct pci_resources_assigned2 *res_assigned2; 2379 struct hv_pci_compl comp_pkt; 2380 struct hv_pci_dev *hpdev; 2381 struct pci_packet *pkt; 2382 size_t size_res; 2383 u32 wslot; 2384 int ret; 2385 2386 size_res = (pci_protocol_version < PCI_PROTOCOL_VERSION_1_2) 2387 ? sizeof(*res_assigned) : sizeof(*res_assigned2); 2388 2389 pkt = kmalloc(sizeof(*pkt) + size_res, GFP_KERNEL); 2390 if (!pkt) 2391 return -ENOMEM; 2392 2393 ret = 0; 2394 2395 for (wslot = 0; wslot < 256; wslot++) { 2396 hpdev = get_pcichild_wslot(hbus, wslot); 2397 if (!hpdev) 2398 continue; 2399 2400 memset(pkt, 0, sizeof(*pkt) + size_res); 2401 init_completion(&comp_pkt.host_event); 2402 pkt->completion_func = hv_pci_generic_compl; 2403 pkt->compl_ctxt = &comp_pkt; 2404 2405 if (pci_protocol_version < PCI_PROTOCOL_VERSION_1_2) { 2406 res_assigned = 2407 (struct pci_resources_assigned *)&pkt->message; 2408 res_assigned->message_type.type = 2409 PCI_RESOURCES_ASSIGNED; 2410 res_assigned->wslot.slot = hpdev->desc.win_slot.slot; 2411 } else { 2412 res_assigned2 = 2413 (struct pci_resources_assigned2 *)&pkt->message; 2414 res_assigned2->message_type.type = 2415 PCI_RESOURCES_ASSIGNED2; 2416 res_assigned2->wslot.slot = hpdev->desc.win_slot.slot; 2417 } 2418 put_pcichild(hpdev); 2419 2420 ret = vmbus_sendpacket(hdev->channel, &pkt->message, 2421 size_res, (unsigned long)pkt, 2422 VM_PKT_DATA_INBAND, 2423 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 2424 if (!ret) 2425 ret = wait_for_response(hdev, &comp_pkt.host_event); 2426 if (ret) 2427 break; 2428 2429 if (comp_pkt.completion_status < 0) { 2430 ret = -EPROTO; 2431 dev_err(&hdev->device, 2432 "resource allocated returned 0x%x", 2433 comp_pkt.completion_status); 2434 break; 2435 } 2436 } 2437 2438 kfree(pkt); 2439 return ret; 2440 } 2441 2442 /** 2443 * hv_send_resources_released() - Report local resources 2444 * released 2445 * @hdev: VMBus's tracking struct for this root PCI bus 2446 * 2447 * Return: 0 on success, -errno on failure 2448 */ 2449 static int hv_send_resources_released(struct hv_device *hdev) 2450 { 2451 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 2452 struct pci_child_message pkt; 2453 struct hv_pci_dev *hpdev; 2454 u32 wslot; 2455 int ret; 2456 2457 for (wslot = 0; wslot < 256; wslot++) { 2458 hpdev = get_pcichild_wslot(hbus, wslot); 2459 if (!hpdev) 2460 continue; 2461 2462 memset(&pkt, 0, sizeof(pkt)); 2463 pkt.message_type.type = PCI_RESOURCES_RELEASED; 2464 pkt.wslot.slot = hpdev->desc.win_slot.slot; 2465 2466 put_pcichild(hpdev); 2467 2468 ret = vmbus_sendpacket(hdev->channel, &pkt, sizeof(pkt), 0, 2469 VM_PKT_DATA_INBAND, 0); 2470 if (ret) 2471 return ret; 2472 } 2473 2474 return 0; 2475 } 2476 2477 static void get_hvpcibus(struct hv_pcibus_device *hbus) 2478 { 2479 refcount_inc(&hbus->remove_lock); 2480 } 2481 2482 static void put_hvpcibus(struct hv_pcibus_device *hbus) 2483 { 2484 if (refcount_dec_and_test(&hbus->remove_lock)) 2485 complete(&hbus->remove_event); 2486 } 2487 2488 /** 2489 * hv_pci_probe() - New VMBus channel probe, for a root PCI bus 2490 * @hdev: VMBus's tracking struct for this root PCI bus 2491 * @dev_id: Identifies the device itself 2492 * 2493 * Return: 0 on success, -errno on failure 2494 */ 2495 static int hv_pci_probe(struct hv_device *hdev, 2496 const struct hv_vmbus_device_id *dev_id) 2497 { 2498 struct hv_pcibus_device *hbus; 2499 int ret; 2500 2501 /* 2502 * hv_pcibus_device contains the hypercall arguments for retargeting in 2503 * hv_irq_unmask(). Those must not cross a page boundary. 2504 */ 2505 BUILD_BUG_ON(sizeof(*hbus) > PAGE_SIZE); 2506 2507 hbus = (struct hv_pcibus_device *)get_zeroed_page(GFP_KERNEL); 2508 if (!hbus) 2509 return -ENOMEM; 2510 hbus->state = hv_pcibus_init; 2511 2512 /* 2513 * The PCI bus "domain" is what is called "segment" in ACPI and 2514 * other specs. Pull it from the instance ID, to get something 2515 * unique. Bytes 8 and 9 are what is used in Windows guests, so 2516 * do the same thing for consistency. Note that, since this code 2517 * only runs in a Hyper-V VM, Hyper-V can (and does) guarantee 2518 * that (1) the only domain in use for something that looks like 2519 * a physical PCI bus (which is actually emulated by the 2520 * hypervisor) is domain 0 and (2) there will be no overlap 2521 * between domains derived from these instance IDs in the same 2522 * VM. 2523 */ 2524 hbus->sysdata.domain = hdev->dev_instance.b[9] | 2525 hdev->dev_instance.b[8] << 8; 2526 2527 hbus->hdev = hdev; 2528 refcount_set(&hbus->remove_lock, 1); 2529 INIT_LIST_HEAD(&hbus->children); 2530 INIT_LIST_HEAD(&hbus->dr_list); 2531 INIT_LIST_HEAD(&hbus->resources_for_children); 2532 spin_lock_init(&hbus->config_lock); 2533 spin_lock_init(&hbus->device_list_lock); 2534 spin_lock_init(&hbus->retarget_msi_interrupt_lock); 2535 init_completion(&hbus->remove_event); 2536 hbus->wq = alloc_ordered_workqueue("hv_pci_%x", 0, 2537 hbus->sysdata.domain); 2538 if (!hbus->wq) { 2539 ret = -ENOMEM; 2540 goto free_bus; 2541 } 2542 2543 ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0, 2544 hv_pci_onchannelcallback, hbus); 2545 if (ret) 2546 goto destroy_wq; 2547 2548 hv_set_drvdata(hdev, hbus); 2549 2550 ret = hv_pci_protocol_negotiation(hdev); 2551 if (ret) 2552 goto close; 2553 2554 ret = hv_allocate_config_window(hbus); 2555 if (ret) 2556 goto close; 2557 2558 hbus->cfg_addr = ioremap(hbus->mem_config->start, 2559 PCI_CONFIG_MMIO_LENGTH); 2560 if (!hbus->cfg_addr) { 2561 dev_err(&hdev->device, 2562 "Unable to map a virtual address for config space\n"); 2563 ret = -ENOMEM; 2564 goto free_config; 2565 } 2566 2567 hbus->sysdata.fwnode = irq_domain_alloc_fwnode(hbus); 2568 if (!hbus->sysdata.fwnode) { 2569 ret = -ENOMEM; 2570 goto unmap; 2571 } 2572 2573 ret = hv_pcie_init_irq_domain(hbus); 2574 if (ret) 2575 goto free_fwnode; 2576 2577 ret = hv_pci_query_relations(hdev); 2578 if (ret) 2579 goto free_irq_domain; 2580 2581 ret = hv_pci_enter_d0(hdev); 2582 if (ret) 2583 goto free_irq_domain; 2584 2585 ret = hv_pci_allocate_bridge_windows(hbus); 2586 if (ret) 2587 goto free_irq_domain; 2588 2589 ret = hv_send_resources_allocated(hdev); 2590 if (ret) 2591 goto free_windows; 2592 2593 prepopulate_bars(hbus); 2594 2595 hbus->state = hv_pcibus_probed; 2596 2597 ret = create_root_hv_pci_bus(hbus); 2598 if (ret) 2599 goto free_windows; 2600 2601 return 0; 2602 2603 free_windows: 2604 hv_pci_free_bridge_windows(hbus); 2605 free_irq_domain: 2606 irq_domain_remove(hbus->irq_domain); 2607 free_fwnode: 2608 irq_domain_free_fwnode(hbus->sysdata.fwnode); 2609 unmap: 2610 iounmap(hbus->cfg_addr); 2611 free_config: 2612 hv_free_config_window(hbus); 2613 close: 2614 vmbus_close(hdev->channel); 2615 destroy_wq: 2616 destroy_workqueue(hbus->wq); 2617 free_bus: 2618 free_page((unsigned long)hbus); 2619 return ret; 2620 } 2621 2622 static void hv_pci_bus_exit(struct hv_device *hdev) 2623 { 2624 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 2625 struct { 2626 struct pci_packet teardown_packet; 2627 u8 buffer[sizeof(struct pci_message)]; 2628 } pkt; 2629 struct pci_bus_relations relations; 2630 struct hv_pci_compl comp_pkt; 2631 int ret; 2632 2633 /* 2634 * After the host sends the RESCIND_CHANNEL message, it doesn't 2635 * access the per-channel ringbuffer any longer. 2636 */ 2637 if (hdev->channel->rescind) 2638 return; 2639 2640 /* Delete any children which might still exist. */ 2641 memset(&relations, 0, sizeof(relations)); 2642 hv_pci_devices_present(hbus, &relations); 2643 2644 ret = hv_send_resources_released(hdev); 2645 if (ret) 2646 dev_err(&hdev->device, 2647 "Couldn't send resources released packet(s)\n"); 2648 2649 memset(&pkt.teardown_packet, 0, sizeof(pkt.teardown_packet)); 2650 init_completion(&comp_pkt.host_event); 2651 pkt.teardown_packet.completion_func = hv_pci_generic_compl; 2652 pkt.teardown_packet.compl_ctxt = &comp_pkt; 2653 pkt.teardown_packet.message[0].type = PCI_BUS_D0EXIT; 2654 2655 ret = vmbus_sendpacket(hdev->channel, &pkt.teardown_packet.message, 2656 sizeof(struct pci_message), 2657 (unsigned long)&pkt.teardown_packet, 2658 VM_PKT_DATA_INBAND, 2659 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 2660 if (!ret) 2661 wait_for_completion_timeout(&comp_pkt.host_event, 10 * HZ); 2662 } 2663 2664 /** 2665 * hv_pci_remove() - Remove routine for this VMBus channel 2666 * @hdev: VMBus's tracking struct for this root PCI bus 2667 * 2668 * Return: 0 on success, -errno on failure 2669 */ 2670 static int hv_pci_remove(struct hv_device *hdev) 2671 { 2672 struct hv_pcibus_device *hbus; 2673 2674 hbus = hv_get_drvdata(hdev); 2675 if (hbus->state == hv_pcibus_installed) { 2676 /* Remove the bus from PCI's point of view. */ 2677 pci_lock_rescan_remove(); 2678 pci_stop_root_bus(hbus->pci_bus); 2679 pci_remove_root_bus(hbus->pci_bus); 2680 pci_unlock_rescan_remove(); 2681 hbus->state = hv_pcibus_removed; 2682 } 2683 2684 hv_pci_bus_exit(hdev); 2685 2686 vmbus_close(hdev->channel); 2687 2688 iounmap(hbus->cfg_addr); 2689 hv_free_config_window(hbus); 2690 pci_free_resource_list(&hbus->resources_for_children); 2691 hv_pci_free_bridge_windows(hbus); 2692 irq_domain_remove(hbus->irq_domain); 2693 irq_domain_free_fwnode(hbus->sysdata.fwnode); 2694 put_hvpcibus(hbus); 2695 wait_for_completion(&hbus->remove_event); 2696 destroy_workqueue(hbus->wq); 2697 free_page((unsigned long)hbus); 2698 return 0; 2699 } 2700 2701 static const struct hv_vmbus_device_id hv_pci_id_table[] = { 2702 /* PCI Pass-through Class ID */ 2703 /* 44C4F61D-4444-4400-9D52-802E27EDE19F */ 2704 { HV_PCIE_GUID, }, 2705 { }, 2706 }; 2707 2708 MODULE_DEVICE_TABLE(vmbus, hv_pci_id_table); 2709 2710 static struct hv_driver hv_pci_drv = { 2711 .name = "hv_pci", 2712 .id_table = hv_pci_id_table, 2713 .probe = hv_pci_probe, 2714 .remove = hv_pci_remove, 2715 }; 2716 2717 static void __exit exit_hv_pci_drv(void) 2718 { 2719 vmbus_driver_unregister(&hv_pci_drv); 2720 } 2721 2722 static int __init init_hv_pci_drv(void) 2723 { 2724 return vmbus_driver_register(&hv_pci_drv); 2725 } 2726 2727 module_init(init_hv_pci_drv); 2728 module_exit(exit_hv_pci_drv); 2729 2730 MODULE_DESCRIPTION("Hyper-V PCI"); 2731 MODULE_LICENSE("GPL v2"); 2732