1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) Microsoft Corporation. 4 * 5 * Author: 6 * Jake Oshins <jakeo@microsoft.com> 7 * 8 * This driver acts as a paravirtual front-end for PCI Express root buses. 9 * When a PCI Express function (either an entire device or an SR-IOV 10 * Virtual Function) is being passed through to the VM, this driver exposes 11 * a new bus to the guest VM. This is modeled as a root PCI bus because 12 * no bridges are being exposed to the VM. In fact, with a "Generation 2" 13 * VM within Hyper-V, there may seem to be no PCI bus at all in the VM 14 * until a device as been exposed using this driver. 15 * 16 * Each root PCI bus has its own PCI domain, which is called "Segment" in 17 * the PCI Firmware Specifications. Thus while each device passed through 18 * to the VM using this front-end will appear at "device 0", the domain will 19 * be unique. Typically, each bus will have one PCI function on it, though 20 * this driver does support more than one. 21 * 22 * In order to map the interrupts from the device through to the guest VM, 23 * this driver also implements an IRQ Domain, which handles interrupts (either 24 * MSI or MSI-X) associated with the functions on the bus. As interrupts are 25 * set up, torn down, or reaffined, this driver communicates with the 26 * underlying hypervisor to adjust the mappings in the I/O MMU so that each 27 * interrupt will be delivered to the correct virtual processor at the right 28 * vector. This driver does not support level-triggered (line-based) 29 * interrupts, and will report that the Interrupt Line register in the 30 * function's configuration space is zero. 31 * 32 * The rest of this driver mostly maps PCI concepts onto underlying Hyper-V 33 * facilities. For instance, the configuration space of a function exposed 34 * by Hyper-V is mapped into a single page of memory space, and the 35 * read and write handlers for config space must be aware of this mechanism. 36 * Similarly, device setup and teardown involves messages sent to and from 37 * the PCI back-end driver in Hyper-V. 38 */ 39 40 #include <linux/kernel.h> 41 #include <linux/module.h> 42 #include <linux/pci.h> 43 #include <linux/delay.h> 44 #include <linux/semaphore.h> 45 #include <linux/irqdomain.h> 46 #include <asm/irqdomain.h> 47 #include <asm/apic.h> 48 #include <linux/irq.h> 49 #include <linux/msi.h> 50 #include <linux/hyperv.h> 51 #include <linux/refcount.h> 52 #include <asm/mshyperv.h> 53 54 /* 55 * Protocol versions. The low word is the minor version, the high word the 56 * major version. 57 */ 58 59 #define PCI_MAKE_VERSION(major, minor) ((u32)(((major) << 16) | (minor))) 60 #define PCI_MAJOR_VERSION(version) ((u32)(version) >> 16) 61 #define PCI_MINOR_VERSION(version) ((u32)(version) & 0xff) 62 63 enum pci_protocol_version_t { 64 PCI_PROTOCOL_VERSION_1_1 = PCI_MAKE_VERSION(1, 1), /* Win10 */ 65 PCI_PROTOCOL_VERSION_1_2 = PCI_MAKE_VERSION(1, 2), /* RS1 */ 66 }; 67 68 #define CPU_AFFINITY_ALL -1ULL 69 70 /* 71 * Supported protocol versions in the order of probing - highest go 72 * first. 73 */ 74 static enum pci_protocol_version_t pci_protocol_versions[] = { 75 PCI_PROTOCOL_VERSION_1_2, 76 PCI_PROTOCOL_VERSION_1_1, 77 }; 78 79 /* 80 * Protocol version negotiated by hv_pci_protocol_negotiation(). 81 */ 82 static enum pci_protocol_version_t pci_protocol_version; 83 84 #define PCI_CONFIG_MMIO_LENGTH 0x2000 85 #define CFG_PAGE_OFFSET 0x1000 86 #define CFG_PAGE_SIZE (PCI_CONFIG_MMIO_LENGTH - CFG_PAGE_OFFSET) 87 88 #define MAX_SUPPORTED_MSI_MESSAGES 0x400 89 90 #define STATUS_REVISION_MISMATCH 0xC0000059 91 92 /* space for 32bit serial number as string */ 93 #define SLOT_NAME_SIZE 11 94 95 /* 96 * Message Types 97 */ 98 99 enum pci_message_type { 100 /* 101 * Version 1.1 102 */ 103 PCI_MESSAGE_BASE = 0x42490000, 104 PCI_BUS_RELATIONS = PCI_MESSAGE_BASE + 0, 105 PCI_QUERY_BUS_RELATIONS = PCI_MESSAGE_BASE + 1, 106 PCI_POWER_STATE_CHANGE = PCI_MESSAGE_BASE + 4, 107 PCI_QUERY_RESOURCE_REQUIREMENTS = PCI_MESSAGE_BASE + 5, 108 PCI_QUERY_RESOURCE_RESOURCES = PCI_MESSAGE_BASE + 6, 109 PCI_BUS_D0ENTRY = PCI_MESSAGE_BASE + 7, 110 PCI_BUS_D0EXIT = PCI_MESSAGE_BASE + 8, 111 PCI_READ_BLOCK = PCI_MESSAGE_BASE + 9, 112 PCI_WRITE_BLOCK = PCI_MESSAGE_BASE + 0xA, 113 PCI_EJECT = PCI_MESSAGE_BASE + 0xB, 114 PCI_QUERY_STOP = PCI_MESSAGE_BASE + 0xC, 115 PCI_REENABLE = PCI_MESSAGE_BASE + 0xD, 116 PCI_QUERY_STOP_FAILED = PCI_MESSAGE_BASE + 0xE, 117 PCI_EJECTION_COMPLETE = PCI_MESSAGE_BASE + 0xF, 118 PCI_RESOURCES_ASSIGNED = PCI_MESSAGE_BASE + 0x10, 119 PCI_RESOURCES_RELEASED = PCI_MESSAGE_BASE + 0x11, 120 PCI_INVALIDATE_BLOCK = PCI_MESSAGE_BASE + 0x12, 121 PCI_QUERY_PROTOCOL_VERSION = PCI_MESSAGE_BASE + 0x13, 122 PCI_CREATE_INTERRUPT_MESSAGE = PCI_MESSAGE_BASE + 0x14, 123 PCI_DELETE_INTERRUPT_MESSAGE = PCI_MESSAGE_BASE + 0x15, 124 PCI_RESOURCES_ASSIGNED2 = PCI_MESSAGE_BASE + 0x16, 125 PCI_CREATE_INTERRUPT_MESSAGE2 = PCI_MESSAGE_BASE + 0x17, 126 PCI_DELETE_INTERRUPT_MESSAGE2 = PCI_MESSAGE_BASE + 0x18, /* unused */ 127 PCI_MESSAGE_MAXIMUM 128 }; 129 130 /* 131 * Structures defining the virtual PCI Express protocol. 132 */ 133 134 union pci_version { 135 struct { 136 u16 minor_version; 137 u16 major_version; 138 } parts; 139 u32 version; 140 } __packed; 141 142 /* 143 * Function numbers are 8-bits wide on Express, as interpreted through ARI, 144 * which is all this driver does. This representation is the one used in 145 * Windows, which is what is expected when sending this back and forth with 146 * the Hyper-V parent partition. 147 */ 148 union win_slot_encoding { 149 struct { 150 u32 dev:5; 151 u32 func:3; 152 u32 reserved:24; 153 } bits; 154 u32 slot; 155 } __packed; 156 157 /* 158 * Pretty much as defined in the PCI Specifications. 159 */ 160 struct pci_function_description { 161 u16 v_id; /* vendor ID */ 162 u16 d_id; /* device ID */ 163 u8 rev; 164 u8 prog_intf; 165 u8 subclass; 166 u8 base_class; 167 u32 subsystem_id; 168 union win_slot_encoding win_slot; 169 u32 ser; /* serial number */ 170 } __packed; 171 172 /** 173 * struct hv_msi_desc 174 * @vector: IDT entry 175 * @delivery_mode: As defined in Intel's Programmer's 176 * Reference Manual, Volume 3, Chapter 8. 177 * @vector_count: Number of contiguous entries in the 178 * Interrupt Descriptor Table that are 179 * occupied by this Message-Signaled 180 * Interrupt. For "MSI", as first defined 181 * in PCI 2.2, this can be between 1 and 182 * 32. For "MSI-X," as first defined in PCI 183 * 3.0, this must be 1, as each MSI-X table 184 * entry would have its own descriptor. 185 * @reserved: Empty space 186 * @cpu_mask: All the target virtual processors. 187 */ 188 struct hv_msi_desc { 189 u8 vector; 190 u8 delivery_mode; 191 u16 vector_count; 192 u32 reserved; 193 u64 cpu_mask; 194 } __packed; 195 196 /** 197 * struct hv_msi_desc2 - 1.2 version of hv_msi_desc 198 * @vector: IDT entry 199 * @delivery_mode: As defined in Intel's Programmer's 200 * Reference Manual, Volume 3, Chapter 8. 201 * @vector_count: Number of contiguous entries in the 202 * Interrupt Descriptor Table that are 203 * occupied by this Message-Signaled 204 * Interrupt. For "MSI", as first defined 205 * in PCI 2.2, this can be between 1 and 206 * 32. For "MSI-X," as first defined in PCI 207 * 3.0, this must be 1, as each MSI-X table 208 * entry would have its own descriptor. 209 * @processor_count: number of bits enabled in array. 210 * @processor_array: All the target virtual processors. 211 */ 212 struct hv_msi_desc2 { 213 u8 vector; 214 u8 delivery_mode; 215 u16 vector_count; 216 u16 processor_count; 217 u16 processor_array[32]; 218 } __packed; 219 220 /** 221 * struct tran_int_desc 222 * @reserved: unused, padding 223 * @vector_count: same as in hv_msi_desc 224 * @data: This is the "data payload" value that is 225 * written by the device when it generates 226 * a message-signaled interrupt, either MSI 227 * or MSI-X. 228 * @address: This is the address to which the data 229 * payload is written on interrupt 230 * generation. 231 */ 232 struct tran_int_desc { 233 u16 reserved; 234 u16 vector_count; 235 u32 data; 236 u64 address; 237 } __packed; 238 239 /* 240 * A generic message format for virtual PCI. 241 * Specific message formats are defined later in the file. 242 */ 243 244 struct pci_message { 245 u32 type; 246 } __packed; 247 248 struct pci_child_message { 249 struct pci_message message_type; 250 union win_slot_encoding wslot; 251 } __packed; 252 253 struct pci_incoming_message { 254 struct vmpacket_descriptor hdr; 255 struct pci_message message_type; 256 } __packed; 257 258 struct pci_response { 259 struct vmpacket_descriptor hdr; 260 s32 status; /* negative values are failures */ 261 } __packed; 262 263 struct pci_packet { 264 void (*completion_func)(void *context, struct pci_response *resp, 265 int resp_packet_size); 266 void *compl_ctxt; 267 268 struct pci_message message[0]; 269 }; 270 271 /* 272 * Specific message types supporting the PCI protocol. 273 */ 274 275 /* 276 * Version negotiation message. Sent from the guest to the host. 277 * The guest is free to try different versions until the host 278 * accepts the version. 279 * 280 * pci_version: The protocol version requested. 281 * is_last_attempt: If TRUE, this is the last version guest will request. 282 * reservedz: Reserved field, set to zero. 283 */ 284 285 struct pci_version_request { 286 struct pci_message message_type; 287 u32 protocol_version; 288 } __packed; 289 290 /* 291 * Bus D0 Entry. This is sent from the guest to the host when the virtual 292 * bus (PCI Express port) is ready for action. 293 */ 294 295 struct pci_bus_d0_entry { 296 struct pci_message message_type; 297 u32 reserved; 298 u64 mmio_base; 299 } __packed; 300 301 struct pci_bus_relations { 302 struct pci_incoming_message incoming; 303 u32 device_count; 304 struct pci_function_description func[0]; 305 } __packed; 306 307 struct pci_q_res_req_response { 308 struct vmpacket_descriptor hdr; 309 s32 status; /* negative values are failures */ 310 u32 probed_bar[6]; 311 } __packed; 312 313 struct pci_set_power { 314 struct pci_message message_type; 315 union win_slot_encoding wslot; 316 u32 power_state; /* In Windows terms */ 317 u32 reserved; 318 } __packed; 319 320 struct pci_set_power_response { 321 struct vmpacket_descriptor hdr; 322 s32 status; /* negative values are failures */ 323 union win_slot_encoding wslot; 324 u32 resultant_state; /* In Windows terms */ 325 u32 reserved; 326 } __packed; 327 328 struct pci_resources_assigned { 329 struct pci_message message_type; 330 union win_slot_encoding wslot; 331 u8 memory_range[0x14][6]; /* not used here */ 332 u32 msi_descriptors; 333 u32 reserved[4]; 334 } __packed; 335 336 struct pci_resources_assigned2 { 337 struct pci_message message_type; 338 union win_slot_encoding wslot; 339 u8 memory_range[0x14][6]; /* not used here */ 340 u32 msi_descriptor_count; 341 u8 reserved[70]; 342 } __packed; 343 344 struct pci_create_interrupt { 345 struct pci_message message_type; 346 union win_slot_encoding wslot; 347 struct hv_msi_desc int_desc; 348 } __packed; 349 350 struct pci_create_int_response { 351 struct pci_response response; 352 u32 reserved; 353 struct tran_int_desc int_desc; 354 } __packed; 355 356 struct pci_create_interrupt2 { 357 struct pci_message message_type; 358 union win_slot_encoding wslot; 359 struct hv_msi_desc2 int_desc; 360 } __packed; 361 362 struct pci_delete_interrupt { 363 struct pci_message message_type; 364 union win_slot_encoding wslot; 365 struct tran_int_desc int_desc; 366 } __packed; 367 368 struct pci_dev_incoming { 369 struct pci_incoming_message incoming; 370 union win_slot_encoding wslot; 371 } __packed; 372 373 struct pci_eject_response { 374 struct pci_message message_type; 375 union win_slot_encoding wslot; 376 u32 status; 377 } __packed; 378 379 static int pci_ring_size = (4 * PAGE_SIZE); 380 381 /* 382 * Definitions or interrupt steering hypercall. 383 */ 384 #define HV_PARTITION_ID_SELF ((u64)-1) 385 #define HVCALL_RETARGET_INTERRUPT 0x7e 386 387 struct hv_interrupt_entry { 388 u32 source; /* 1 for MSI(-X) */ 389 u32 reserved1; 390 u32 address; 391 u32 data; 392 }; 393 394 #define HV_VP_SET_BANK_COUNT_MAX 5 /* current implementation limit */ 395 396 struct hv_vp_set { 397 u64 format; /* 0 (HvGenericSetSparse4k) */ 398 u64 valid_banks; 399 u64 masks[HV_VP_SET_BANK_COUNT_MAX]; 400 }; 401 402 /* 403 * flags for hv_device_interrupt_target.flags 404 */ 405 #define HV_DEVICE_INTERRUPT_TARGET_MULTICAST 1 406 #define HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET 2 407 408 struct hv_device_interrupt_target { 409 u32 vector; 410 u32 flags; 411 union { 412 u64 vp_mask; 413 struct hv_vp_set vp_set; 414 }; 415 }; 416 417 struct retarget_msi_interrupt { 418 u64 partition_id; /* use "self" */ 419 u64 device_id; 420 struct hv_interrupt_entry int_entry; 421 u64 reserved2; 422 struct hv_device_interrupt_target int_target; 423 } __packed; 424 425 /* 426 * Driver specific state. 427 */ 428 429 enum hv_pcibus_state { 430 hv_pcibus_init = 0, 431 hv_pcibus_probed, 432 hv_pcibus_installed, 433 hv_pcibus_removed, 434 hv_pcibus_maximum 435 }; 436 437 struct hv_pcibus_device { 438 struct pci_sysdata sysdata; 439 enum hv_pcibus_state state; 440 refcount_t remove_lock; 441 struct hv_device *hdev; 442 resource_size_t low_mmio_space; 443 resource_size_t high_mmio_space; 444 struct resource *mem_config; 445 struct resource *low_mmio_res; 446 struct resource *high_mmio_res; 447 struct completion *survey_event; 448 struct completion remove_event; 449 struct pci_bus *pci_bus; 450 spinlock_t config_lock; /* Avoid two threads writing index page */ 451 spinlock_t device_list_lock; /* Protect lists below */ 452 void __iomem *cfg_addr; 453 454 struct list_head resources_for_children; 455 456 struct list_head children; 457 struct list_head dr_list; 458 459 struct msi_domain_info msi_info; 460 struct msi_controller msi_chip; 461 struct irq_domain *irq_domain; 462 463 /* hypercall arg, must not cross page boundary */ 464 struct retarget_msi_interrupt retarget_msi_interrupt_params; 465 466 spinlock_t retarget_msi_interrupt_lock; 467 468 struct workqueue_struct *wq; 469 }; 470 471 /* 472 * Tracks "Device Relations" messages from the host, which must be both 473 * processed in order and deferred so that they don't run in the context 474 * of the incoming packet callback. 475 */ 476 struct hv_dr_work { 477 struct work_struct wrk; 478 struct hv_pcibus_device *bus; 479 }; 480 481 struct hv_dr_state { 482 struct list_head list_entry; 483 u32 device_count; 484 struct pci_function_description func[0]; 485 }; 486 487 enum hv_pcichild_state { 488 hv_pcichild_init = 0, 489 hv_pcichild_requirements, 490 hv_pcichild_resourced, 491 hv_pcichild_ejecting, 492 hv_pcichild_maximum 493 }; 494 495 struct hv_pci_dev { 496 /* List protected by pci_rescan_remove_lock */ 497 struct list_head list_entry; 498 refcount_t refs; 499 enum hv_pcichild_state state; 500 struct pci_slot *pci_slot; 501 struct pci_function_description desc; 502 bool reported_missing; 503 struct hv_pcibus_device *hbus; 504 struct work_struct wrk; 505 506 /* 507 * What would be observed if one wrote 0xFFFFFFFF to a BAR and then 508 * read it back, for each of the BAR offsets within config space. 509 */ 510 u32 probed_bar[6]; 511 }; 512 513 struct hv_pci_compl { 514 struct completion host_event; 515 s32 completion_status; 516 }; 517 518 static void hv_pci_onchannelcallback(void *context); 519 520 /** 521 * hv_pci_generic_compl() - Invoked for a completion packet 522 * @context: Set up by the sender of the packet. 523 * @resp: The response packet 524 * @resp_packet_size: Size in bytes of the packet 525 * 526 * This function is used to trigger an event and report status 527 * for any message for which the completion packet contains a 528 * status and nothing else. 529 */ 530 static void hv_pci_generic_compl(void *context, struct pci_response *resp, 531 int resp_packet_size) 532 { 533 struct hv_pci_compl *comp_pkt = context; 534 535 if (resp_packet_size >= offsetofend(struct pci_response, status)) 536 comp_pkt->completion_status = resp->status; 537 else 538 comp_pkt->completion_status = -1; 539 540 complete(&comp_pkt->host_event); 541 } 542 543 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus, 544 u32 wslot); 545 546 static void get_pcichild(struct hv_pci_dev *hpdev) 547 { 548 refcount_inc(&hpdev->refs); 549 } 550 551 static void put_pcichild(struct hv_pci_dev *hpdev) 552 { 553 if (refcount_dec_and_test(&hpdev->refs)) 554 kfree(hpdev); 555 } 556 557 static void get_hvpcibus(struct hv_pcibus_device *hv_pcibus); 558 static void put_hvpcibus(struct hv_pcibus_device *hv_pcibus); 559 560 /* 561 * There is no good way to get notified from vmbus_onoffer_rescind(), 562 * so let's use polling here, since this is not a hot path. 563 */ 564 static int wait_for_response(struct hv_device *hdev, 565 struct completion *comp) 566 { 567 while (true) { 568 if (hdev->channel->rescind) { 569 dev_warn_once(&hdev->device, "The device is gone.\n"); 570 return -ENODEV; 571 } 572 573 if (wait_for_completion_timeout(comp, HZ / 10)) 574 break; 575 } 576 577 return 0; 578 } 579 580 /** 581 * devfn_to_wslot() - Convert from Linux PCI slot to Windows 582 * @devfn: The Linux representation of PCI slot 583 * 584 * Windows uses a slightly different representation of PCI slot. 585 * 586 * Return: The Windows representation 587 */ 588 static u32 devfn_to_wslot(int devfn) 589 { 590 union win_slot_encoding wslot; 591 592 wslot.slot = 0; 593 wslot.bits.dev = PCI_SLOT(devfn); 594 wslot.bits.func = PCI_FUNC(devfn); 595 596 return wslot.slot; 597 } 598 599 /** 600 * wslot_to_devfn() - Convert from Windows PCI slot to Linux 601 * @wslot: The Windows representation of PCI slot 602 * 603 * Windows uses a slightly different representation of PCI slot. 604 * 605 * Return: The Linux representation 606 */ 607 static int wslot_to_devfn(u32 wslot) 608 { 609 union win_slot_encoding slot_no; 610 611 slot_no.slot = wslot; 612 return PCI_DEVFN(slot_no.bits.dev, slot_no.bits.func); 613 } 614 615 /* 616 * PCI Configuration Space for these root PCI buses is implemented as a pair 617 * of pages in memory-mapped I/O space. Writing to the first page chooses 618 * the PCI function being written or read. Once the first page has been 619 * written to, the following page maps in the entire configuration space of 620 * the function. 621 */ 622 623 /** 624 * _hv_pcifront_read_config() - Internal PCI config read 625 * @hpdev: The PCI driver's representation of the device 626 * @where: Offset within config space 627 * @size: Size of the transfer 628 * @val: Pointer to the buffer receiving the data 629 */ 630 static void _hv_pcifront_read_config(struct hv_pci_dev *hpdev, int where, 631 int size, u32 *val) 632 { 633 unsigned long flags; 634 void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where; 635 636 /* 637 * If the attempt is to read the IDs or the ROM BAR, simulate that. 638 */ 639 if (where + size <= PCI_COMMAND) { 640 memcpy(val, ((u8 *)&hpdev->desc.v_id) + where, size); 641 } else if (where >= PCI_CLASS_REVISION && where + size <= 642 PCI_CACHE_LINE_SIZE) { 643 memcpy(val, ((u8 *)&hpdev->desc.rev) + where - 644 PCI_CLASS_REVISION, size); 645 } else if (where >= PCI_SUBSYSTEM_VENDOR_ID && where + size <= 646 PCI_ROM_ADDRESS) { 647 memcpy(val, (u8 *)&hpdev->desc.subsystem_id + where - 648 PCI_SUBSYSTEM_VENDOR_ID, size); 649 } else if (where >= PCI_ROM_ADDRESS && where + size <= 650 PCI_CAPABILITY_LIST) { 651 /* ROM BARs are unimplemented */ 652 *val = 0; 653 } else if (where >= PCI_INTERRUPT_LINE && where + size <= 654 PCI_INTERRUPT_PIN) { 655 /* 656 * Interrupt Line and Interrupt PIN are hard-wired to zero 657 * because this front-end only supports message-signaled 658 * interrupts. 659 */ 660 *val = 0; 661 } else if (where + size <= CFG_PAGE_SIZE) { 662 spin_lock_irqsave(&hpdev->hbus->config_lock, flags); 663 /* Choose the function to be read. (See comment above) */ 664 writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr); 665 /* Make sure the function was chosen before we start reading. */ 666 mb(); 667 /* Read from that function's config space. */ 668 switch (size) { 669 case 1: 670 *val = readb(addr); 671 break; 672 case 2: 673 *val = readw(addr); 674 break; 675 default: 676 *val = readl(addr); 677 break; 678 } 679 /* 680 * Make sure the read was done before we release the spinlock 681 * allowing consecutive reads/writes. 682 */ 683 mb(); 684 spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags); 685 } else { 686 dev_err(&hpdev->hbus->hdev->device, 687 "Attempt to read beyond a function's config space.\n"); 688 } 689 } 690 691 static u16 hv_pcifront_get_vendor_id(struct hv_pci_dev *hpdev) 692 { 693 u16 ret; 694 unsigned long flags; 695 void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + 696 PCI_VENDOR_ID; 697 698 spin_lock_irqsave(&hpdev->hbus->config_lock, flags); 699 700 /* Choose the function to be read. (See comment above) */ 701 writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr); 702 /* Make sure the function was chosen before we start reading. */ 703 mb(); 704 /* Read from that function's config space. */ 705 ret = readw(addr); 706 /* 707 * mb() is not required here, because the spin_unlock_irqrestore() 708 * is a barrier. 709 */ 710 711 spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags); 712 713 return ret; 714 } 715 716 /** 717 * _hv_pcifront_write_config() - Internal PCI config write 718 * @hpdev: The PCI driver's representation of the device 719 * @where: Offset within config space 720 * @size: Size of the transfer 721 * @val: The data being transferred 722 */ 723 static void _hv_pcifront_write_config(struct hv_pci_dev *hpdev, int where, 724 int size, u32 val) 725 { 726 unsigned long flags; 727 void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where; 728 729 if (where >= PCI_SUBSYSTEM_VENDOR_ID && 730 where + size <= PCI_CAPABILITY_LIST) { 731 /* SSIDs and ROM BARs are read-only */ 732 } else if (where >= PCI_COMMAND && where + size <= CFG_PAGE_SIZE) { 733 spin_lock_irqsave(&hpdev->hbus->config_lock, flags); 734 /* Choose the function to be written. (See comment above) */ 735 writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr); 736 /* Make sure the function was chosen before we start writing. */ 737 wmb(); 738 /* Write to that function's config space. */ 739 switch (size) { 740 case 1: 741 writeb(val, addr); 742 break; 743 case 2: 744 writew(val, addr); 745 break; 746 default: 747 writel(val, addr); 748 break; 749 } 750 /* 751 * Make sure the write was done before we release the spinlock 752 * allowing consecutive reads/writes. 753 */ 754 mb(); 755 spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags); 756 } else { 757 dev_err(&hpdev->hbus->hdev->device, 758 "Attempt to write beyond a function's config space.\n"); 759 } 760 } 761 762 /** 763 * hv_pcifront_read_config() - Read configuration space 764 * @bus: PCI Bus structure 765 * @devfn: Device/function 766 * @where: Offset from base 767 * @size: Byte/word/dword 768 * @val: Value to be read 769 * 770 * Return: PCIBIOS_SUCCESSFUL on success 771 * PCIBIOS_DEVICE_NOT_FOUND on failure 772 */ 773 static int hv_pcifront_read_config(struct pci_bus *bus, unsigned int devfn, 774 int where, int size, u32 *val) 775 { 776 struct hv_pcibus_device *hbus = 777 container_of(bus->sysdata, struct hv_pcibus_device, sysdata); 778 struct hv_pci_dev *hpdev; 779 780 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn)); 781 if (!hpdev) 782 return PCIBIOS_DEVICE_NOT_FOUND; 783 784 _hv_pcifront_read_config(hpdev, where, size, val); 785 786 put_pcichild(hpdev); 787 return PCIBIOS_SUCCESSFUL; 788 } 789 790 /** 791 * hv_pcifront_write_config() - Write configuration space 792 * @bus: PCI Bus structure 793 * @devfn: Device/function 794 * @where: Offset from base 795 * @size: Byte/word/dword 796 * @val: Value to be written to device 797 * 798 * Return: PCIBIOS_SUCCESSFUL on success 799 * PCIBIOS_DEVICE_NOT_FOUND on failure 800 */ 801 static int hv_pcifront_write_config(struct pci_bus *bus, unsigned int devfn, 802 int where, int size, u32 val) 803 { 804 struct hv_pcibus_device *hbus = 805 container_of(bus->sysdata, struct hv_pcibus_device, sysdata); 806 struct hv_pci_dev *hpdev; 807 808 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn)); 809 if (!hpdev) 810 return PCIBIOS_DEVICE_NOT_FOUND; 811 812 _hv_pcifront_write_config(hpdev, where, size, val); 813 814 put_pcichild(hpdev); 815 return PCIBIOS_SUCCESSFUL; 816 } 817 818 /* PCIe operations */ 819 static struct pci_ops hv_pcifront_ops = { 820 .read = hv_pcifront_read_config, 821 .write = hv_pcifront_write_config, 822 }; 823 824 /* Interrupt management hooks */ 825 static void hv_int_desc_free(struct hv_pci_dev *hpdev, 826 struct tran_int_desc *int_desc) 827 { 828 struct pci_delete_interrupt *int_pkt; 829 struct { 830 struct pci_packet pkt; 831 u8 buffer[sizeof(struct pci_delete_interrupt)]; 832 } ctxt; 833 834 memset(&ctxt, 0, sizeof(ctxt)); 835 int_pkt = (struct pci_delete_interrupt *)&ctxt.pkt.message; 836 int_pkt->message_type.type = 837 PCI_DELETE_INTERRUPT_MESSAGE; 838 int_pkt->wslot.slot = hpdev->desc.win_slot.slot; 839 int_pkt->int_desc = *int_desc; 840 vmbus_sendpacket(hpdev->hbus->hdev->channel, int_pkt, sizeof(*int_pkt), 841 (unsigned long)&ctxt.pkt, VM_PKT_DATA_INBAND, 0); 842 kfree(int_desc); 843 } 844 845 /** 846 * hv_msi_free() - Free the MSI. 847 * @domain: The interrupt domain pointer 848 * @info: Extra MSI-related context 849 * @irq: Identifies the IRQ. 850 * 851 * The Hyper-V parent partition and hypervisor are tracking the 852 * messages that are in use, keeping the interrupt redirection 853 * table up to date. This callback sends a message that frees 854 * the IRT entry and related tracking nonsense. 855 */ 856 static void hv_msi_free(struct irq_domain *domain, struct msi_domain_info *info, 857 unsigned int irq) 858 { 859 struct hv_pcibus_device *hbus; 860 struct hv_pci_dev *hpdev; 861 struct pci_dev *pdev; 862 struct tran_int_desc *int_desc; 863 struct irq_data *irq_data = irq_domain_get_irq_data(domain, irq); 864 struct msi_desc *msi = irq_data_get_msi_desc(irq_data); 865 866 pdev = msi_desc_to_pci_dev(msi); 867 hbus = info->data; 868 int_desc = irq_data_get_irq_chip_data(irq_data); 869 if (!int_desc) 870 return; 871 872 irq_data->chip_data = NULL; 873 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn)); 874 if (!hpdev) { 875 kfree(int_desc); 876 return; 877 } 878 879 hv_int_desc_free(hpdev, int_desc); 880 put_pcichild(hpdev); 881 } 882 883 static int hv_set_affinity(struct irq_data *data, const struct cpumask *dest, 884 bool force) 885 { 886 struct irq_data *parent = data->parent_data; 887 888 return parent->chip->irq_set_affinity(parent, dest, force); 889 } 890 891 static void hv_irq_mask(struct irq_data *data) 892 { 893 pci_msi_mask_irq(data); 894 } 895 896 /** 897 * hv_irq_unmask() - "Unmask" the IRQ by setting its current 898 * affinity. 899 * @data: Describes the IRQ 900 * 901 * Build new a destination for the MSI and make a hypercall to 902 * update the Interrupt Redirection Table. "Device Logical ID" 903 * is built out of this PCI bus's instance GUID and the function 904 * number of the device. 905 */ 906 static void hv_irq_unmask(struct irq_data *data) 907 { 908 struct msi_desc *msi_desc = irq_data_get_msi_desc(data); 909 struct irq_cfg *cfg = irqd_cfg(data); 910 struct retarget_msi_interrupt *params; 911 struct hv_pcibus_device *hbus; 912 struct cpumask *dest; 913 struct pci_bus *pbus; 914 struct pci_dev *pdev; 915 unsigned long flags; 916 u32 var_size = 0; 917 int cpu_vmbus; 918 int cpu; 919 u64 res; 920 921 dest = irq_data_get_effective_affinity_mask(data); 922 pdev = msi_desc_to_pci_dev(msi_desc); 923 pbus = pdev->bus; 924 hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata); 925 926 spin_lock_irqsave(&hbus->retarget_msi_interrupt_lock, flags); 927 928 params = &hbus->retarget_msi_interrupt_params; 929 memset(params, 0, sizeof(*params)); 930 params->partition_id = HV_PARTITION_ID_SELF; 931 params->int_entry.source = 1; /* MSI(-X) */ 932 params->int_entry.address = msi_desc->msg.address_lo; 933 params->int_entry.data = msi_desc->msg.data; 934 params->device_id = (hbus->hdev->dev_instance.b[5] << 24) | 935 (hbus->hdev->dev_instance.b[4] << 16) | 936 (hbus->hdev->dev_instance.b[7] << 8) | 937 (hbus->hdev->dev_instance.b[6] & 0xf8) | 938 PCI_FUNC(pdev->devfn); 939 params->int_target.vector = cfg->vector; 940 941 /* 942 * Honoring apic->irq_delivery_mode set to dest_Fixed by 943 * setting the HV_DEVICE_INTERRUPT_TARGET_MULTICAST flag results in a 944 * spurious interrupt storm. Not doing so does not seem to have a 945 * negative effect (yet?). 946 */ 947 948 if (pci_protocol_version >= PCI_PROTOCOL_VERSION_1_2) { 949 /* 950 * PCI_PROTOCOL_VERSION_1_2 supports the VP_SET version of the 951 * HVCALL_RETARGET_INTERRUPT hypercall, which also coincides 952 * with >64 VP support. 953 * ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED 954 * is not sufficient for this hypercall. 955 */ 956 params->int_target.flags |= 957 HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET; 958 params->int_target.vp_set.valid_banks = 959 (1ull << HV_VP_SET_BANK_COUNT_MAX) - 1; 960 961 /* 962 * var-sized hypercall, var-size starts after vp_mask (thus 963 * vp_set.format does not count, but vp_set.valid_banks does). 964 */ 965 var_size = 1 + HV_VP_SET_BANK_COUNT_MAX; 966 967 for_each_cpu_and(cpu, dest, cpu_online_mask) { 968 cpu_vmbus = hv_cpu_number_to_vp_number(cpu); 969 970 if (cpu_vmbus >= HV_VP_SET_BANK_COUNT_MAX * 64) { 971 dev_err(&hbus->hdev->device, 972 "too high CPU %d", cpu_vmbus); 973 res = 1; 974 goto exit_unlock; 975 } 976 977 params->int_target.vp_set.masks[cpu_vmbus / 64] |= 978 (1ULL << (cpu_vmbus & 63)); 979 } 980 } else { 981 for_each_cpu_and(cpu, dest, cpu_online_mask) { 982 params->int_target.vp_mask |= 983 (1ULL << hv_cpu_number_to_vp_number(cpu)); 984 } 985 } 986 987 res = hv_do_hypercall(HVCALL_RETARGET_INTERRUPT | (var_size << 17), 988 params, NULL); 989 990 exit_unlock: 991 spin_unlock_irqrestore(&hbus->retarget_msi_interrupt_lock, flags); 992 993 if (res) { 994 dev_err(&hbus->hdev->device, 995 "%s() failed: %#llx", __func__, res); 996 return; 997 } 998 999 pci_msi_unmask_irq(data); 1000 } 1001 1002 struct compose_comp_ctxt { 1003 struct hv_pci_compl comp_pkt; 1004 struct tran_int_desc int_desc; 1005 }; 1006 1007 static void hv_pci_compose_compl(void *context, struct pci_response *resp, 1008 int resp_packet_size) 1009 { 1010 struct compose_comp_ctxt *comp_pkt = context; 1011 struct pci_create_int_response *int_resp = 1012 (struct pci_create_int_response *)resp; 1013 1014 comp_pkt->comp_pkt.completion_status = resp->status; 1015 comp_pkt->int_desc = int_resp->int_desc; 1016 complete(&comp_pkt->comp_pkt.host_event); 1017 } 1018 1019 static u32 hv_compose_msi_req_v1( 1020 struct pci_create_interrupt *int_pkt, struct cpumask *affinity, 1021 u32 slot, u8 vector) 1022 { 1023 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE; 1024 int_pkt->wslot.slot = slot; 1025 int_pkt->int_desc.vector = vector; 1026 int_pkt->int_desc.vector_count = 1; 1027 int_pkt->int_desc.delivery_mode = dest_Fixed; 1028 1029 /* 1030 * Create MSI w/ dummy vCPU set, overwritten by subsequent retarget in 1031 * hv_irq_unmask(). 1032 */ 1033 int_pkt->int_desc.cpu_mask = CPU_AFFINITY_ALL; 1034 1035 return sizeof(*int_pkt); 1036 } 1037 1038 static u32 hv_compose_msi_req_v2( 1039 struct pci_create_interrupt2 *int_pkt, struct cpumask *affinity, 1040 u32 slot, u8 vector) 1041 { 1042 int cpu; 1043 1044 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE2; 1045 int_pkt->wslot.slot = slot; 1046 int_pkt->int_desc.vector = vector; 1047 int_pkt->int_desc.vector_count = 1; 1048 int_pkt->int_desc.delivery_mode = dest_Fixed; 1049 1050 /* 1051 * Create MSI w/ dummy vCPU set targeting just one vCPU, overwritten 1052 * by subsequent retarget in hv_irq_unmask(). 1053 */ 1054 cpu = cpumask_first_and(affinity, cpu_online_mask); 1055 int_pkt->int_desc.processor_array[0] = 1056 hv_cpu_number_to_vp_number(cpu); 1057 int_pkt->int_desc.processor_count = 1; 1058 1059 return sizeof(*int_pkt); 1060 } 1061 1062 /** 1063 * hv_compose_msi_msg() - Supplies a valid MSI address/data 1064 * @data: Everything about this MSI 1065 * @msg: Buffer that is filled in by this function 1066 * 1067 * This function unpacks the IRQ looking for target CPU set, IDT 1068 * vector and mode and sends a message to the parent partition 1069 * asking for a mapping for that tuple in this partition. The 1070 * response supplies a data value and address to which that data 1071 * should be written to trigger that interrupt. 1072 */ 1073 static void hv_compose_msi_msg(struct irq_data *data, struct msi_msg *msg) 1074 { 1075 struct irq_cfg *cfg = irqd_cfg(data); 1076 struct hv_pcibus_device *hbus; 1077 struct hv_pci_dev *hpdev; 1078 struct pci_bus *pbus; 1079 struct pci_dev *pdev; 1080 struct cpumask *dest; 1081 unsigned long flags; 1082 struct compose_comp_ctxt comp; 1083 struct tran_int_desc *int_desc; 1084 struct { 1085 struct pci_packet pci_pkt; 1086 union { 1087 struct pci_create_interrupt v1; 1088 struct pci_create_interrupt2 v2; 1089 } int_pkts; 1090 } __packed ctxt; 1091 1092 u32 size; 1093 int ret; 1094 1095 pdev = msi_desc_to_pci_dev(irq_data_get_msi_desc(data)); 1096 dest = irq_data_get_effective_affinity_mask(data); 1097 pbus = pdev->bus; 1098 hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata); 1099 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn)); 1100 if (!hpdev) 1101 goto return_null_message; 1102 1103 /* Free any previous message that might have already been composed. */ 1104 if (data->chip_data) { 1105 int_desc = data->chip_data; 1106 data->chip_data = NULL; 1107 hv_int_desc_free(hpdev, int_desc); 1108 } 1109 1110 int_desc = kzalloc(sizeof(*int_desc), GFP_ATOMIC); 1111 if (!int_desc) 1112 goto drop_reference; 1113 1114 memset(&ctxt, 0, sizeof(ctxt)); 1115 init_completion(&comp.comp_pkt.host_event); 1116 ctxt.pci_pkt.completion_func = hv_pci_compose_compl; 1117 ctxt.pci_pkt.compl_ctxt = ∁ 1118 1119 switch (pci_protocol_version) { 1120 case PCI_PROTOCOL_VERSION_1_1: 1121 size = hv_compose_msi_req_v1(&ctxt.int_pkts.v1, 1122 dest, 1123 hpdev->desc.win_slot.slot, 1124 cfg->vector); 1125 break; 1126 1127 case PCI_PROTOCOL_VERSION_1_2: 1128 size = hv_compose_msi_req_v2(&ctxt.int_pkts.v2, 1129 dest, 1130 hpdev->desc.win_slot.slot, 1131 cfg->vector); 1132 break; 1133 1134 default: 1135 /* As we only negotiate protocol versions known to this driver, 1136 * this path should never hit. However, this is it not a hot 1137 * path so we print a message to aid future updates. 1138 */ 1139 dev_err(&hbus->hdev->device, 1140 "Unexpected vPCI protocol, update driver."); 1141 goto free_int_desc; 1142 } 1143 1144 ret = vmbus_sendpacket(hpdev->hbus->hdev->channel, &ctxt.int_pkts, 1145 size, (unsigned long)&ctxt.pci_pkt, 1146 VM_PKT_DATA_INBAND, 1147 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1148 if (ret) { 1149 dev_err(&hbus->hdev->device, 1150 "Sending request for interrupt failed: 0x%x", 1151 comp.comp_pkt.completion_status); 1152 goto free_int_desc; 1153 } 1154 1155 /* 1156 * Since this function is called with IRQ locks held, can't 1157 * do normal wait for completion; instead poll. 1158 */ 1159 while (!try_wait_for_completion(&comp.comp_pkt.host_event)) { 1160 /* 0xFFFF means an invalid PCI VENDOR ID. */ 1161 if (hv_pcifront_get_vendor_id(hpdev) == 0xFFFF) { 1162 dev_err_once(&hbus->hdev->device, 1163 "the device has gone\n"); 1164 goto free_int_desc; 1165 } 1166 1167 /* 1168 * When the higher level interrupt code calls us with 1169 * interrupt disabled, we must poll the channel by calling 1170 * the channel callback directly when channel->target_cpu is 1171 * the current CPU. When the higher level interrupt code 1172 * calls us with interrupt enabled, let's add the 1173 * local_irq_save()/restore() to avoid race: 1174 * hv_pci_onchannelcallback() can also run in tasklet. 1175 */ 1176 local_irq_save(flags); 1177 1178 if (hbus->hdev->channel->target_cpu == smp_processor_id()) 1179 hv_pci_onchannelcallback(hbus); 1180 1181 local_irq_restore(flags); 1182 1183 if (hpdev->state == hv_pcichild_ejecting) { 1184 dev_err_once(&hbus->hdev->device, 1185 "the device is being ejected\n"); 1186 goto free_int_desc; 1187 } 1188 1189 udelay(100); 1190 } 1191 1192 if (comp.comp_pkt.completion_status < 0) { 1193 dev_err(&hbus->hdev->device, 1194 "Request for interrupt failed: 0x%x", 1195 comp.comp_pkt.completion_status); 1196 goto free_int_desc; 1197 } 1198 1199 /* 1200 * Record the assignment so that this can be unwound later. Using 1201 * irq_set_chip_data() here would be appropriate, but the lock it takes 1202 * is already held. 1203 */ 1204 *int_desc = comp.int_desc; 1205 data->chip_data = int_desc; 1206 1207 /* Pass up the result. */ 1208 msg->address_hi = comp.int_desc.address >> 32; 1209 msg->address_lo = comp.int_desc.address & 0xffffffff; 1210 msg->data = comp.int_desc.data; 1211 1212 put_pcichild(hpdev); 1213 return; 1214 1215 free_int_desc: 1216 kfree(int_desc); 1217 drop_reference: 1218 put_pcichild(hpdev); 1219 return_null_message: 1220 msg->address_hi = 0; 1221 msg->address_lo = 0; 1222 msg->data = 0; 1223 } 1224 1225 /* HW Interrupt Chip Descriptor */ 1226 static struct irq_chip hv_msi_irq_chip = { 1227 .name = "Hyper-V PCIe MSI", 1228 .irq_compose_msi_msg = hv_compose_msi_msg, 1229 .irq_set_affinity = hv_set_affinity, 1230 .irq_ack = irq_chip_ack_parent, 1231 .irq_mask = hv_irq_mask, 1232 .irq_unmask = hv_irq_unmask, 1233 }; 1234 1235 static irq_hw_number_t hv_msi_domain_ops_get_hwirq(struct msi_domain_info *info, 1236 msi_alloc_info_t *arg) 1237 { 1238 return arg->msi_hwirq; 1239 } 1240 1241 static struct msi_domain_ops hv_msi_ops = { 1242 .get_hwirq = hv_msi_domain_ops_get_hwirq, 1243 .msi_prepare = pci_msi_prepare, 1244 .set_desc = pci_msi_set_desc, 1245 .msi_free = hv_msi_free, 1246 }; 1247 1248 /** 1249 * hv_pcie_init_irq_domain() - Initialize IRQ domain 1250 * @hbus: The root PCI bus 1251 * 1252 * This function creates an IRQ domain which will be used for 1253 * interrupts from devices that have been passed through. These 1254 * devices only support MSI and MSI-X, not line-based interrupts 1255 * or simulations of line-based interrupts through PCIe's 1256 * fabric-layer messages. Because interrupts are remapped, we 1257 * can support multi-message MSI here. 1258 * 1259 * Return: '0' on success and error value on failure 1260 */ 1261 static int hv_pcie_init_irq_domain(struct hv_pcibus_device *hbus) 1262 { 1263 hbus->msi_info.chip = &hv_msi_irq_chip; 1264 hbus->msi_info.ops = &hv_msi_ops; 1265 hbus->msi_info.flags = (MSI_FLAG_USE_DEF_DOM_OPS | 1266 MSI_FLAG_USE_DEF_CHIP_OPS | MSI_FLAG_MULTI_PCI_MSI | 1267 MSI_FLAG_PCI_MSIX); 1268 hbus->msi_info.handler = handle_edge_irq; 1269 hbus->msi_info.handler_name = "edge"; 1270 hbus->msi_info.data = hbus; 1271 hbus->irq_domain = pci_msi_create_irq_domain(hbus->sysdata.fwnode, 1272 &hbus->msi_info, 1273 x86_vector_domain); 1274 if (!hbus->irq_domain) { 1275 dev_err(&hbus->hdev->device, 1276 "Failed to build an MSI IRQ domain\n"); 1277 return -ENODEV; 1278 } 1279 1280 return 0; 1281 } 1282 1283 /** 1284 * get_bar_size() - Get the address space consumed by a BAR 1285 * @bar_val: Value that a BAR returned after -1 was written 1286 * to it. 1287 * 1288 * This function returns the size of the BAR, rounded up to 1 1289 * page. It has to be rounded up because the hypervisor's page 1290 * table entry that maps the BAR into the VM can't specify an 1291 * offset within a page. The invariant is that the hypervisor 1292 * must place any BARs of smaller than page length at the 1293 * beginning of a page. 1294 * 1295 * Return: Size in bytes of the consumed MMIO space. 1296 */ 1297 static u64 get_bar_size(u64 bar_val) 1298 { 1299 return round_up((1 + ~(bar_val & PCI_BASE_ADDRESS_MEM_MASK)), 1300 PAGE_SIZE); 1301 } 1302 1303 /** 1304 * survey_child_resources() - Total all MMIO requirements 1305 * @hbus: Root PCI bus, as understood by this driver 1306 */ 1307 static void survey_child_resources(struct hv_pcibus_device *hbus) 1308 { 1309 struct hv_pci_dev *hpdev; 1310 resource_size_t bar_size = 0; 1311 unsigned long flags; 1312 struct completion *event; 1313 u64 bar_val; 1314 int i; 1315 1316 /* If nobody is waiting on the answer, don't compute it. */ 1317 event = xchg(&hbus->survey_event, NULL); 1318 if (!event) 1319 return; 1320 1321 /* If the answer has already been computed, go with it. */ 1322 if (hbus->low_mmio_space || hbus->high_mmio_space) { 1323 complete(event); 1324 return; 1325 } 1326 1327 spin_lock_irqsave(&hbus->device_list_lock, flags); 1328 1329 /* 1330 * Due to an interesting quirk of the PCI spec, all memory regions 1331 * for a child device are a power of 2 in size and aligned in memory, 1332 * so it's sufficient to just add them up without tracking alignment. 1333 */ 1334 list_for_each_entry(hpdev, &hbus->children, list_entry) { 1335 for (i = 0; i < 6; i++) { 1336 if (hpdev->probed_bar[i] & PCI_BASE_ADDRESS_SPACE_IO) 1337 dev_err(&hbus->hdev->device, 1338 "There's an I/O BAR in this list!\n"); 1339 1340 if (hpdev->probed_bar[i] != 0) { 1341 /* 1342 * A probed BAR has all the upper bits set that 1343 * can be changed. 1344 */ 1345 1346 bar_val = hpdev->probed_bar[i]; 1347 if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64) 1348 bar_val |= 1349 ((u64)hpdev->probed_bar[++i] << 32); 1350 else 1351 bar_val |= 0xffffffff00000000ULL; 1352 1353 bar_size = get_bar_size(bar_val); 1354 1355 if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64) 1356 hbus->high_mmio_space += bar_size; 1357 else 1358 hbus->low_mmio_space += bar_size; 1359 } 1360 } 1361 } 1362 1363 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 1364 complete(event); 1365 } 1366 1367 /** 1368 * prepopulate_bars() - Fill in BARs with defaults 1369 * @hbus: Root PCI bus, as understood by this driver 1370 * 1371 * The core PCI driver code seems much, much happier if the BARs 1372 * for a device have values upon first scan. So fill them in. 1373 * The algorithm below works down from large sizes to small, 1374 * attempting to pack the assignments optimally. The assumption, 1375 * enforced in other parts of the code, is that the beginning of 1376 * the memory-mapped I/O space will be aligned on the largest 1377 * BAR size. 1378 */ 1379 static void prepopulate_bars(struct hv_pcibus_device *hbus) 1380 { 1381 resource_size_t high_size = 0; 1382 resource_size_t low_size = 0; 1383 resource_size_t high_base = 0; 1384 resource_size_t low_base = 0; 1385 resource_size_t bar_size; 1386 struct hv_pci_dev *hpdev; 1387 unsigned long flags; 1388 u64 bar_val; 1389 u32 command; 1390 bool high; 1391 int i; 1392 1393 if (hbus->low_mmio_space) { 1394 low_size = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space)); 1395 low_base = hbus->low_mmio_res->start; 1396 } 1397 1398 if (hbus->high_mmio_space) { 1399 high_size = 1ULL << 1400 (63 - __builtin_clzll(hbus->high_mmio_space)); 1401 high_base = hbus->high_mmio_res->start; 1402 } 1403 1404 spin_lock_irqsave(&hbus->device_list_lock, flags); 1405 1406 /* Pick addresses for the BARs. */ 1407 do { 1408 list_for_each_entry(hpdev, &hbus->children, list_entry) { 1409 for (i = 0; i < 6; i++) { 1410 bar_val = hpdev->probed_bar[i]; 1411 if (bar_val == 0) 1412 continue; 1413 high = bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64; 1414 if (high) { 1415 bar_val |= 1416 ((u64)hpdev->probed_bar[i + 1] 1417 << 32); 1418 } else { 1419 bar_val |= 0xffffffffULL << 32; 1420 } 1421 bar_size = get_bar_size(bar_val); 1422 if (high) { 1423 if (high_size != bar_size) { 1424 i++; 1425 continue; 1426 } 1427 _hv_pcifront_write_config(hpdev, 1428 PCI_BASE_ADDRESS_0 + (4 * i), 1429 4, 1430 (u32)(high_base & 0xffffff00)); 1431 i++; 1432 _hv_pcifront_write_config(hpdev, 1433 PCI_BASE_ADDRESS_0 + (4 * i), 1434 4, (u32)(high_base >> 32)); 1435 high_base += bar_size; 1436 } else { 1437 if (low_size != bar_size) 1438 continue; 1439 _hv_pcifront_write_config(hpdev, 1440 PCI_BASE_ADDRESS_0 + (4 * i), 1441 4, 1442 (u32)(low_base & 0xffffff00)); 1443 low_base += bar_size; 1444 } 1445 } 1446 if (high_size <= 1 && low_size <= 1) { 1447 /* Set the memory enable bit. */ 1448 _hv_pcifront_read_config(hpdev, PCI_COMMAND, 2, 1449 &command); 1450 command |= PCI_COMMAND_MEMORY; 1451 _hv_pcifront_write_config(hpdev, PCI_COMMAND, 2, 1452 command); 1453 break; 1454 } 1455 } 1456 1457 high_size >>= 1; 1458 low_size >>= 1; 1459 } while (high_size || low_size); 1460 1461 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 1462 } 1463 1464 /* 1465 * Assign entries in sysfs pci slot directory. 1466 * 1467 * Note that this function does not need to lock the children list 1468 * because it is called from pci_devices_present_work which 1469 * is serialized with hv_eject_device_work because they are on the 1470 * same ordered workqueue. Therefore hbus->children list will not change 1471 * even when pci_create_slot sleeps. 1472 */ 1473 static void hv_pci_assign_slots(struct hv_pcibus_device *hbus) 1474 { 1475 struct hv_pci_dev *hpdev; 1476 char name[SLOT_NAME_SIZE]; 1477 int slot_nr; 1478 1479 list_for_each_entry(hpdev, &hbus->children, list_entry) { 1480 if (hpdev->pci_slot) 1481 continue; 1482 1483 slot_nr = PCI_SLOT(wslot_to_devfn(hpdev->desc.win_slot.slot)); 1484 snprintf(name, SLOT_NAME_SIZE, "%u", hpdev->desc.ser); 1485 hpdev->pci_slot = pci_create_slot(hbus->pci_bus, slot_nr, 1486 name, NULL); 1487 if (IS_ERR(hpdev->pci_slot)) { 1488 pr_warn("pci_create slot %s failed\n", name); 1489 hpdev->pci_slot = NULL; 1490 } 1491 } 1492 } 1493 1494 /** 1495 * create_root_hv_pci_bus() - Expose a new root PCI bus 1496 * @hbus: Root PCI bus, as understood by this driver 1497 * 1498 * Return: 0 on success, -errno on failure 1499 */ 1500 static int create_root_hv_pci_bus(struct hv_pcibus_device *hbus) 1501 { 1502 /* Register the device */ 1503 hbus->pci_bus = pci_create_root_bus(&hbus->hdev->device, 1504 0, /* bus number is always zero */ 1505 &hv_pcifront_ops, 1506 &hbus->sysdata, 1507 &hbus->resources_for_children); 1508 if (!hbus->pci_bus) 1509 return -ENODEV; 1510 1511 hbus->pci_bus->msi = &hbus->msi_chip; 1512 hbus->pci_bus->msi->dev = &hbus->hdev->device; 1513 1514 pci_lock_rescan_remove(); 1515 pci_scan_child_bus(hbus->pci_bus); 1516 pci_bus_assign_resources(hbus->pci_bus); 1517 hv_pci_assign_slots(hbus); 1518 pci_bus_add_devices(hbus->pci_bus); 1519 pci_unlock_rescan_remove(); 1520 hbus->state = hv_pcibus_installed; 1521 return 0; 1522 } 1523 1524 struct q_res_req_compl { 1525 struct completion host_event; 1526 struct hv_pci_dev *hpdev; 1527 }; 1528 1529 /** 1530 * q_resource_requirements() - Query Resource Requirements 1531 * @context: The completion context. 1532 * @resp: The response that came from the host. 1533 * @resp_packet_size: The size in bytes of resp. 1534 * 1535 * This function is invoked on completion of a Query Resource 1536 * Requirements packet. 1537 */ 1538 static void q_resource_requirements(void *context, struct pci_response *resp, 1539 int resp_packet_size) 1540 { 1541 struct q_res_req_compl *completion = context; 1542 struct pci_q_res_req_response *q_res_req = 1543 (struct pci_q_res_req_response *)resp; 1544 int i; 1545 1546 if (resp->status < 0) { 1547 dev_err(&completion->hpdev->hbus->hdev->device, 1548 "query resource requirements failed: %x\n", 1549 resp->status); 1550 } else { 1551 for (i = 0; i < 6; i++) { 1552 completion->hpdev->probed_bar[i] = 1553 q_res_req->probed_bar[i]; 1554 } 1555 } 1556 1557 complete(&completion->host_event); 1558 } 1559 1560 /** 1561 * new_pcichild_device() - Create a new child device 1562 * @hbus: The internal struct tracking this root PCI bus. 1563 * @desc: The information supplied so far from the host 1564 * about the device. 1565 * 1566 * This function creates the tracking structure for a new child 1567 * device and kicks off the process of figuring out what it is. 1568 * 1569 * Return: Pointer to the new tracking struct 1570 */ 1571 static struct hv_pci_dev *new_pcichild_device(struct hv_pcibus_device *hbus, 1572 struct pci_function_description *desc) 1573 { 1574 struct hv_pci_dev *hpdev; 1575 struct pci_child_message *res_req; 1576 struct q_res_req_compl comp_pkt; 1577 struct { 1578 struct pci_packet init_packet; 1579 u8 buffer[sizeof(struct pci_child_message)]; 1580 } pkt; 1581 unsigned long flags; 1582 int ret; 1583 1584 hpdev = kzalloc(sizeof(*hpdev), GFP_KERNEL); 1585 if (!hpdev) 1586 return NULL; 1587 1588 hpdev->hbus = hbus; 1589 1590 memset(&pkt, 0, sizeof(pkt)); 1591 init_completion(&comp_pkt.host_event); 1592 comp_pkt.hpdev = hpdev; 1593 pkt.init_packet.compl_ctxt = &comp_pkt; 1594 pkt.init_packet.completion_func = q_resource_requirements; 1595 res_req = (struct pci_child_message *)&pkt.init_packet.message; 1596 res_req->message_type.type = PCI_QUERY_RESOURCE_REQUIREMENTS; 1597 res_req->wslot.slot = desc->win_slot.slot; 1598 1599 ret = vmbus_sendpacket(hbus->hdev->channel, res_req, 1600 sizeof(struct pci_child_message), 1601 (unsigned long)&pkt.init_packet, 1602 VM_PKT_DATA_INBAND, 1603 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1604 if (ret) 1605 goto error; 1606 1607 if (wait_for_response(hbus->hdev, &comp_pkt.host_event)) 1608 goto error; 1609 1610 hpdev->desc = *desc; 1611 refcount_set(&hpdev->refs, 1); 1612 get_pcichild(hpdev); 1613 spin_lock_irqsave(&hbus->device_list_lock, flags); 1614 1615 list_add_tail(&hpdev->list_entry, &hbus->children); 1616 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 1617 return hpdev; 1618 1619 error: 1620 kfree(hpdev); 1621 return NULL; 1622 } 1623 1624 /** 1625 * get_pcichild_wslot() - Find device from slot 1626 * @hbus: Root PCI bus, as understood by this driver 1627 * @wslot: Location on the bus 1628 * 1629 * This function looks up a PCI device and returns the internal 1630 * representation of it. It acquires a reference on it, so that 1631 * the device won't be deleted while somebody is using it. The 1632 * caller is responsible for calling put_pcichild() to release 1633 * this reference. 1634 * 1635 * Return: Internal representation of a PCI device 1636 */ 1637 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus, 1638 u32 wslot) 1639 { 1640 unsigned long flags; 1641 struct hv_pci_dev *iter, *hpdev = NULL; 1642 1643 spin_lock_irqsave(&hbus->device_list_lock, flags); 1644 list_for_each_entry(iter, &hbus->children, list_entry) { 1645 if (iter->desc.win_slot.slot == wslot) { 1646 hpdev = iter; 1647 get_pcichild(hpdev); 1648 break; 1649 } 1650 } 1651 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 1652 1653 return hpdev; 1654 } 1655 1656 /** 1657 * pci_devices_present_work() - Handle new list of child devices 1658 * @work: Work struct embedded in struct hv_dr_work 1659 * 1660 * "Bus Relations" is the Windows term for "children of this 1661 * bus." The terminology is preserved here for people trying to 1662 * debug the interaction between Hyper-V and Linux. This 1663 * function is called when the parent partition reports a list 1664 * of functions that should be observed under this PCI Express 1665 * port (bus). 1666 * 1667 * This function updates the list, and must tolerate being 1668 * called multiple times with the same information. The typical 1669 * number of child devices is one, with very atypical cases 1670 * involving three or four, so the algorithms used here can be 1671 * simple and inefficient. 1672 * 1673 * It must also treat the omission of a previously observed device as 1674 * notification that the device no longer exists. 1675 * 1676 * Note that this function is serialized with hv_eject_device_work(), 1677 * because both are pushed to the ordered workqueue hbus->wq. 1678 */ 1679 static void pci_devices_present_work(struct work_struct *work) 1680 { 1681 u32 child_no; 1682 bool found; 1683 struct pci_function_description *new_desc; 1684 struct hv_pci_dev *hpdev; 1685 struct hv_pcibus_device *hbus; 1686 struct list_head removed; 1687 struct hv_dr_work *dr_wrk; 1688 struct hv_dr_state *dr = NULL; 1689 unsigned long flags; 1690 1691 dr_wrk = container_of(work, struct hv_dr_work, wrk); 1692 hbus = dr_wrk->bus; 1693 kfree(dr_wrk); 1694 1695 INIT_LIST_HEAD(&removed); 1696 1697 /* Pull this off the queue and process it if it was the last one. */ 1698 spin_lock_irqsave(&hbus->device_list_lock, flags); 1699 while (!list_empty(&hbus->dr_list)) { 1700 dr = list_first_entry(&hbus->dr_list, struct hv_dr_state, 1701 list_entry); 1702 list_del(&dr->list_entry); 1703 1704 /* Throw this away if the list still has stuff in it. */ 1705 if (!list_empty(&hbus->dr_list)) { 1706 kfree(dr); 1707 continue; 1708 } 1709 } 1710 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 1711 1712 if (!dr) { 1713 put_hvpcibus(hbus); 1714 return; 1715 } 1716 1717 /* First, mark all existing children as reported missing. */ 1718 spin_lock_irqsave(&hbus->device_list_lock, flags); 1719 list_for_each_entry(hpdev, &hbus->children, list_entry) { 1720 hpdev->reported_missing = true; 1721 } 1722 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 1723 1724 /* Next, add back any reported devices. */ 1725 for (child_no = 0; child_no < dr->device_count; child_no++) { 1726 found = false; 1727 new_desc = &dr->func[child_no]; 1728 1729 spin_lock_irqsave(&hbus->device_list_lock, flags); 1730 list_for_each_entry(hpdev, &hbus->children, list_entry) { 1731 if ((hpdev->desc.win_slot.slot == new_desc->win_slot.slot) && 1732 (hpdev->desc.v_id == new_desc->v_id) && 1733 (hpdev->desc.d_id == new_desc->d_id) && 1734 (hpdev->desc.ser == new_desc->ser)) { 1735 hpdev->reported_missing = false; 1736 found = true; 1737 } 1738 } 1739 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 1740 1741 if (!found) { 1742 hpdev = new_pcichild_device(hbus, new_desc); 1743 if (!hpdev) 1744 dev_err(&hbus->hdev->device, 1745 "couldn't record a child device.\n"); 1746 } 1747 } 1748 1749 /* Move missing children to a list on the stack. */ 1750 spin_lock_irqsave(&hbus->device_list_lock, flags); 1751 do { 1752 found = false; 1753 list_for_each_entry(hpdev, &hbus->children, list_entry) { 1754 if (hpdev->reported_missing) { 1755 found = true; 1756 put_pcichild(hpdev); 1757 list_move_tail(&hpdev->list_entry, &removed); 1758 break; 1759 } 1760 } 1761 } while (found); 1762 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 1763 1764 /* Delete everything that should no longer exist. */ 1765 while (!list_empty(&removed)) { 1766 hpdev = list_first_entry(&removed, struct hv_pci_dev, 1767 list_entry); 1768 list_del(&hpdev->list_entry); 1769 put_pcichild(hpdev); 1770 } 1771 1772 switch (hbus->state) { 1773 case hv_pcibus_installed: 1774 /* 1775 * Tell the core to rescan bus 1776 * because there may have been changes. 1777 */ 1778 pci_lock_rescan_remove(); 1779 pci_scan_child_bus(hbus->pci_bus); 1780 hv_pci_assign_slots(hbus); 1781 pci_unlock_rescan_remove(); 1782 break; 1783 1784 case hv_pcibus_init: 1785 case hv_pcibus_probed: 1786 survey_child_resources(hbus); 1787 break; 1788 1789 default: 1790 break; 1791 } 1792 1793 put_hvpcibus(hbus); 1794 kfree(dr); 1795 } 1796 1797 /** 1798 * hv_pci_devices_present() - Handles list of new children 1799 * @hbus: Root PCI bus, as understood by this driver 1800 * @relations: Packet from host listing children 1801 * 1802 * This function is invoked whenever a new list of devices for 1803 * this bus appears. 1804 */ 1805 static void hv_pci_devices_present(struct hv_pcibus_device *hbus, 1806 struct pci_bus_relations *relations) 1807 { 1808 struct hv_dr_state *dr; 1809 struct hv_dr_work *dr_wrk; 1810 unsigned long flags; 1811 bool pending_dr; 1812 1813 dr_wrk = kzalloc(sizeof(*dr_wrk), GFP_NOWAIT); 1814 if (!dr_wrk) 1815 return; 1816 1817 dr = kzalloc(offsetof(struct hv_dr_state, func) + 1818 (sizeof(struct pci_function_description) * 1819 (relations->device_count)), GFP_NOWAIT); 1820 if (!dr) { 1821 kfree(dr_wrk); 1822 return; 1823 } 1824 1825 INIT_WORK(&dr_wrk->wrk, pci_devices_present_work); 1826 dr_wrk->bus = hbus; 1827 dr->device_count = relations->device_count; 1828 if (dr->device_count != 0) { 1829 memcpy(dr->func, relations->func, 1830 sizeof(struct pci_function_description) * 1831 dr->device_count); 1832 } 1833 1834 spin_lock_irqsave(&hbus->device_list_lock, flags); 1835 /* 1836 * If pending_dr is true, we have already queued a work, 1837 * which will see the new dr. Otherwise, we need to 1838 * queue a new work. 1839 */ 1840 pending_dr = !list_empty(&hbus->dr_list); 1841 list_add_tail(&dr->list_entry, &hbus->dr_list); 1842 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 1843 1844 if (pending_dr) { 1845 kfree(dr_wrk); 1846 } else { 1847 get_hvpcibus(hbus); 1848 queue_work(hbus->wq, &dr_wrk->wrk); 1849 } 1850 } 1851 1852 /** 1853 * hv_eject_device_work() - Asynchronously handles ejection 1854 * @work: Work struct embedded in internal device struct 1855 * 1856 * This function handles ejecting a device. Windows will 1857 * attempt to gracefully eject a device, waiting 60 seconds to 1858 * hear back from the guest OS that this completed successfully. 1859 * If this timer expires, the device will be forcibly removed. 1860 */ 1861 static void hv_eject_device_work(struct work_struct *work) 1862 { 1863 struct pci_eject_response *ejct_pkt; 1864 struct hv_pci_dev *hpdev; 1865 struct pci_dev *pdev; 1866 unsigned long flags; 1867 int wslot; 1868 struct { 1869 struct pci_packet pkt; 1870 u8 buffer[sizeof(struct pci_eject_response)]; 1871 } ctxt; 1872 1873 hpdev = container_of(work, struct hv_pci_dev, wrk); 1874 1875 WARN_ON(hpdev->state != hv_pcichild_ejecting); 1876 1877 /* 1878 * Ejection can come before or after the PCI bus has been set up, so 1879 * attempt to find it and tear down the bus state, if it exists. This 1880 * must be done without constructs like pci_domain_nr(hbus->pci_bus) 1881 * because hbus->pci_bus may not exist yet. 1882 */ 1883 wslot = wslot_to_devfn(hpdev->desc.win_slot.slot); 1884 pdev = pci_get_domain_bus_and_slot(hpdev->hbus->sysdata.domain, 0, 1885 wslot); 1886 if (pdev) { 1887 pci_lock_rescan_remove(); 1888 pci_stop_and_remove_bus_device(pdev); 1889 pci_dev_put(pdev); 1890 pci_unlock_rescan_remove(); 1891 } 1892 1893 spin_lock_irqsave(&hpdev->hbus->device_list_lock, flags); 1894 list_del(&hpdev->list_entry); 1895 spin_unlock_irqrestore(&hpdev->hbus->device_list_lock, flags); 1896 1897 if (hpdev->pci_slot) 1898 pci_destroy_slot(hpdev->pci_slot); 1899 1900 memset(&ctxt, 0, sizeof(ctxt)); 1901 ejct_pkt = (struct pci_eject_response *)&ctxt.pkt.message; 1902 ejct_pkt->message_type.type = PCI_EJECTION_COMPLETE; 1903 ejct_pkt->wslot.slot = hpdev->desc.win_slot.slot; 1904 vmbus_sendpacket(hpdev->hbus->hdev->channel, ejct_pkt, 1905 sizeof(*ejct_pkt), (unsigned long)&ctxt.pkt, 1906 VM_PKT_DATA_INBAND, 0); 1907 1908 put_pcichild(hpdev); 1909 put_pcichild(hpdev); 1910 put_hvpcibus(hpdev->hbus); 1911 } 1912 1913 /** 1914 * hv_pci_eject_device() - Handles device ejection 1915 * @hpdev: Internal device tracking struct 1916 * 1917 * This function is invoked when an ejection packet arrives. It 1918 * just schedules work so that we don't re-enter the packet 1919 * delivery code handling the ejection. 1920 */ 1921 static void hv_pci_eject_device(struct hv_pci_dev *hpdev) 1922 { 1923 hpdev->state = hv_pcichild_ejecting; 1924 get_pcichild(hpdev); 1925 INIT_WORK(&hpdev->wrk, hv_eject_device_work); 1926 get_hvpcibus(hpdev->hbus); 1927 queue_work(hpdev->hbus->wq, &hpdev->wrk); 1928 } 1929 1930 /** 1931 * hv_pci_onchannelcallback() - Handles incoming packets 1932 * @context: Internal bus tracking struct 1933 * 1934 * This function is invoked whenever the host sends a packet to 1935 * this channel (which is private to this root PCI bus). 1936 */ 1937 static void hv_pci_onchannelcallback(void *context) 1938 { 1939 const int packet_size = 0x100; 1940 int ret; 1941 struct hv_pcibus_device *hbus = context; 1942 u32 bytes_recvd; 1943 u64 req_id; 1944 struct vmpacket_descriptor *desc; 1945 unsigned char *buffer; 1946 int bufferlen = packet_size; 1947 struct pci_packet *comp_packet; 1948 struct pci_response *response; 1949 struct pci_incoming_message *new_message; 1950 struct pci_bus_relations *bus_rel; 1951 struct pci_dev_incoming *dev_message; 1952 struct hv_pci_dev *hpdev; 1953 1954 buffer = kmalloc(bufferlen, GFP_ATOMIC); 1955 if (!buffer) 1956 return; 1957 1958 while (1) { 1959 ret = vmbus_recvpacket_raw(hbus->hdev->channel, buffer, 1960 bufferlen, &bytes_recvd, &req_id); 1961 1962 if (ret == -ENOBUFS) { 1963 kfree(buffer); 1964 /* Handle large packet */ 1965 bufferlen = bytes_recvd; 1966 buffer = kmalloc(bytes_recvd, GFP_ATOMIC); 1967 if (!buffer) 1968 return; 1969 continue; 1970 } 1971 1972 /* Zero length indicates there are no more packets. */ 1973 if (ret || !bytes_recvd) 1974 break; 1975 1976 /* 1977 * All incoming packets must be at least as large as a 1978 * response. 1979 */ 1980 if (bytes_recvd <= sizeof(struct pci_response)) 1981 continue; 1982 desc = (struct vmpacket_descriptor *)buffer; 1983 1984 switch (desc->type) { 1985 case VM_PKT_COMP: 1986 1987 /* 1988 * The host is trusted, and thus it's safe to interpret 1989 * this transaction ID as a pointer. 1990 */ 1991 comp_packet = (struct pci_packet *)req_id; 1992 response = (struct pci_response *)buffer; 1993 comp_packet->completion_func(comp_packet->compl_ctxt, 1994 response, 1995 bytes_recvd); 1996 break; 1997 1998 case VM_PKT_DATA_INBAND: 1999 2000 new_message = (struct pci_incoming_message *)buffer; 2001 switch (new_message->message_type.type) { 2002 case PCI_BUS_RELATIONS: 2003 2004 bus_rel = (struct pci_bus_relations *)buffer; 2005 if (bytes_recvd < 2006 offsetof(struct pci_bus_relations, func) + 2007 (sizeof(struct pci_function_description) * 2008 (bus_rel->device_count))) { 2009 dev_err(&hbus->hdev->device, 2010 "bus relations too small\n"); 2011 break; 2012 } 2013 2014 hv_pci_devices_present(hbus, bus_rel); 2015 break; 2016 2017 case PCI_EJECT: 2018 2019 dev_message = (struct pci_dev_incoming *)buffer; 2020 hpdev = get_pcichild_wslot(hbus, 2021 dev_message->wslot.slot); 2022 if (hpdev) { 2023 hv_pci_eject_device(hpdev); 2024 put_pcichild(hpdev); 2025 } 2026 break; 2027 2028 default: 2029 dev_warn(&hbus->hdev->device, 2030 "Unimplemented protocol message %x\n", 2031 new_message->message_type.type); 2032 break; 2033 } 2034 break; 2035 2036 default: 2037 dev_err(&hbus->hdev->device, 2038 "unhandled packet type %d, tid %llx len %d\n", 2039 desc->type, req_id, bytes_recvd); 2040 break; 2041 } 2042 } 2043 2044 kfree(buffer); 2045 } 2046 2047 /** 2048 * hv_pci_protocol_negotiation() - Set up protocol 2049 * @hdev: VMBus's tracking struct for this root PCI bus 2050 * 2051 * This driver is intended to support running on Windows 10 2052 * (server) and later versions. It will not run on earlier 2053 * versions, as they assume that many of the operations which 2054 * Linux needs accomplished with a spinlock held were done via 2055 * asynchronous messaging via VMBus. Windows 10 increases the 2056 * surface area of PCI emulation so that these actions can take 2057 * place by suspending a virtual processor for their duration. 2058 * 2059 * This function negotiates the channel protocol version, 2060 * failing if the host doesn't support the necessary protocol 2061 * level. 2062 */ 2063 static int hv_pci_protocol_negotiation(struct hv_device *hdev) 2064 { 2065 struct pci_version_request *version_req; 2066 struct hv_pci_compl comp_pkt; 2067 struct pci_packet *pkt; 2068 int ret; 2069 int i; 2070 2071 /* 2072 * Initiate the handshake with the host and negotiate 2073 * a version that the host can support. We start with the 2074 * highest version number and go down if the host cannot 2075 * support it. 2076 */ 2077 pkt = kzalloc(sizeof(*pkt) + sizeof(*version_req), GFP_KERNEL); 2078 if (!pkt) 2079 return -ENOMEM; 2080 2081 init_completion(&comp_pkt.host_event); 2082 pkt->completion_func = hv_pci_generic_compl; 2083 pkt->compl_ctxt = &comp_pkt; 2084 version_req = (struct pci_version_request *)&pkt->message; 2085 version_req->message_type.type = PCI_QUERY_PROTOCOL_VERSION; 2086 2087 for (i = 0; i < ARRAY_SIZE(pci_protocol_versions); i++) { 2088 version_req->protocol_version = pci_protocol_versions[i]; 2089 ret = vmbus_sendpacket(hdev->channel, version_req, 2090 sizeof(struct pci_version_request), 2091 (unsigned long)pkt, VM_PKT_DATA_INBAND, 2092 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 2093 if (!ret) 2094 ret = wait_for_response(hdev, &comp_pkt.host_event); 2095 2096 if (ret) { 2097 dev_err(&hdev->device, 2098 "PCI Pass-through VSP failed to request version: %d", 2099 ret); 2100 goto exit; 2101 } 2102 2103 if (comp_pkt.completion_status >= 0) { 2104 pci_protocol_version = pci_protocol_versions[i]; 2105 dev_info(&hdev->device, 2106 "PCI VMBus probing: Using version %#x\n", 2107 pci_protocol_version); 2108 goto exit; 2109 } 2110 2111 if (comp_pkt.completion_status != STATUS_REVISION_MISMATCH) { 2112 dev_err(&hdev->device, 2113 "PCI Pass-through VSP failed version request: %#x", 2114 comp_pkt.completion_status); 2115 ret = -EPROTO; 2116 goto exit; 2117 } 2118 2119 reinit_completion(&comp_pkt.host_event); 2120 } 2121 2122 dev_err(&hdev->device, 2123 "PCI pass-through VSP failed to find supported version"); 2124 ret = -EPROTO; 2125 2126 exit: 2127 kfree(pkt); 2128 return ret; 2129 } 2130 2131 /** 2132 * hv_pci_free_bridge_windows() - Release memory regions for the 2133 * bus 2134 * @hbus: Root PCI bus, as understood by this driver 2135 */ 2136 static void hv_pci_free_bridge_windows(struct hv_pcibus_device *hbus) 2137 { 2138 /* 2139 * Set the resources back to the way they looked when they 2140 * were allocated by setting IORESOURCE_BUSY again. 2141 */ 2142 2143 if (hbus->low_mmio_space && hbus->low_mmio_res) { 2144 hbus->low_mmio_res->flags |= IORESOURCE_BUSY; 2145 vmbus_free_mmio(hbus->low_mmio_res->start, 2146 resource_size(hbus->low_mmio_res)); 2147 } 2148 2149 if (hbus->high_mmio_space && hbus->high_mmio_res) { 2150 hbus->high_mmio_res->flags |= IORESOURCE_BUSY; 2151 vmbus_free_mmio(hbus->high_mmio_res->start, 2152 resource_size(hbus->high_mmio_res)); 2153 } 2154 } 2155 2156 /** 2157 * hv_pci_allocate_bridge_windows() - Allocate memory regions 2158 * for the bus 2159 * @hbus: Root PCI bus, as understood by this driver 2160 * 2161 * This function calls vmbus_allocate_mmio(), which is itself a 2162 * bit of a compromise. Ideally, we might change the pnp layer 2163 * in the kernel such that it comprehends either PCI devices 2164 * which are "grandchildren of ACPI," with some intermediate bus 2165 * node (in this case, VMBus) or change it such that it 2166 * understands VMBus. The pnp layer, however, has been declared 2167 * deprecated, and not subject to change. 2168 * 2169 * The workaround, implemented here, is to ask VMBus to allocate 2170 * MMIO space for this bus. VMBus itself knows which ranges are 2171 * appropriate by looking at its own ACPI objects. Then, after 2172 * these ranges are claimed, they're modified to look like they 2173 * would have looked if the ACPI and pnp code had allocated 2174 * bridge windows. These descriptors have to exist in this form 2175 * in order to satisfy the code which will get invoked when the 2176 * endpoint PCI function driver calls request_mem_region() or 2177 * request_mem_region_exclusive(). 2178 * 2179 * Return: 0 on success, -errno on failure 2180 */ 2181 static int hv_pci_allocate_bridge_windows(struct hv_pcibus_device *hbus) 2182 { 2183 resource_size_t align; 2184 int ret; 2185 2186 if (hbus->low_mmio_space) { 2187 align = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space)); 2188 ret = vmbus_allocate_mmio(&hbus->low_mmio_res, hbus->hdev, 0, 2189 (u64)(u32)0xffffffff, 2190 hbus->low_mmio_space, 2191 align, false); 2192 if (ret) { 2193 dev_err(&hbus->hdev->device, 2194 "Need %#llx of low MMIO space. Consider reconfiguring the VM.\n", 2195 hbus->low_mmio_space); 2196 return ret; 2197 } 2198 2199 /* Modify this resource to become a bridge window. */ 2200 hbus->low_mmio_res->flags |= IORESOURCE_WINDOW; 2201 hbus->low_mmio_res->flags &= ~IORESOURCE_BUSY; 2202 pci_add_resource(&hbus->resources_for_children, 2203 hbus->low_mmio_res); 2204 } 2205 2206 if (hbus->high_mmio_space) { 2207 align = 1ULL << (63 - __builtin_clzll(hbus->high_mmio_space)); 2208 ret = vmbus_allocate_mmio(&hbus->high_mmio_res, hbus->hdev, 2209 0x100000000, -1, 2210 hbus->high_mmio_space, align, 2211 false); 2212 if (ret) { 2213 dev_err(&hbus->hdev->device, 2214 "Need %#llx of high MMIO space. Consider reconfiguring the VM.\n", 2215 hbus->high_mmio_space); 2216 goto release_low_mmio; 2217 } 2218 2219 /* Modify this resource to become a bridge window. */ 2220 hbus->high_mmio_res->flags |= IORESOURCE_WINDOW; 2221 hbus->high_mmio_res->flags &= ~IORESOURCE_BUSY; 2222 pci_add_resource(&hbus->resources_for_children, 2223 hbus->high_mmio_res); 2224 } 2225 2226 return 0; 2227 2228 release_low_mmio: 2229 if (hbus->low_mmio_res) { 2230 vmbus_free_mmio(hbus->low_mmio_res->start, 2231 resource_size(hbus->low_mmio_res)); 2232 } 2233 2234 return ret; 2235 } 2236 2237 /** 2238 * hv_allocate_config_window() - Find MMIO space for PCI Config 2239 * @hbus: Root PCI bus, as understood by this driver 2240 * 2241 * This function claims memory-mapped I/O space for accessing 2242 * configuration space for the functions on this bus. 2243 * 2244 * Return: 0 on success, -errno on failure 2245 */ 2246 static int hv_allocate_config_window(struct hv_pcibus_device *hbus) 2247 { 2248 int ret; 2249 2250 /* 2251 * Set up a region of MMIO space to use for accessing configuration 2252 * space. 2253 */ 2254 ret = vmbus_allocate_mmio(&hbus->mem_config, hbus->hdev, 0, -1, 2255 PCI_CONFIG_MMIO_LENGTH, 0x1000, false); 2256 if (ret) 2257 return ret; 2258 2259 /* 2260 * vmbus_allocate_mmio() gets used for allocating both device endpoint 2261 * resource claims (those which cannot be overlapped) and the ranges 2262 * which are valid for the children of this bus, which are intended 2263 * to be overlapped by those children. Set the flag on this claim 2264 * meaning that this region can't be overlapped. 2265 */ 2266 2267 hbus->mem_config->flags |= IORESOURCE_BUSY; 2268 2269 return 0; 2270 } 2271 2272 static void hv_free_config_window(struct hv_pcibus_device *hbus) 2273 { 2274 vmbus_free_mmio(hbus->mem_config->start, PCI_CONFIG_MMIO_LENGTH); 2275 } 2276 2277 /** 2278 * hv_pci_enter_d0() - Bring the "bus" into the D0 power state 2279 * @hdev: VMBus's tracking struct for this root PCI bus 2280 * 2281 * Return: 0 on success, -errno on failure 2282 */ 2283 static int hv_pci_enter_d0(struct hv_device *hdev) 2284 { 2285 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 2286 struct pci_bus_d0_entry *d0_entry; 2287 struct hv_pci_compl comp_pkt; 2288 struct pci_packet *pkt; 2289 int ret; 2290 2291 /* 2292 * Tell the host that the bus is ready to use, and moved into the 2293 * powered-on state. This includes telling the host which region 2294 * of memory-mapped I/O space has been chosen for configuration space 2295 * access. 2296 */ 2297 pkt = kzalloc(sizeof(*pkt) + sizeof(*d0_entry), GFP_KERNEL); 2298 if (!pkt) 2299 return -ENOMEM; 2300 2301 init_completion(&comp_pkt.host_event); 2302 pkt->completion_func = hv_pci_generic_compl; 2303 pkt->compl_ctxt = &comp_pkt; 2304 d0_entry = (struct pci_bus_d0_entry *)&pkt->message; 2305 d0_entry->message_type.type = PCI_BUS_D0ENTRY; 2306 d0_entry->mmio_base = hbus->mem_config->start; 2307 2308 ret = vmbus_sendpacket(hdev->channel, d0_entry, sizeof(*d0_entry), 2309 (unsigned long)pkt, VM_PKT_DATA_INBAND, 2310 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 2311 if (!ret) 2312 ret = wait_for_response(hdev, &comp_pkt.host_event); 2313 2314 if (ret) 2315 goto exit; 2316 2317 if (comp_pkt.completion_status < 0) { 2318 dev_err(&hdev->device, 2319 "PCI Pass-through VSP failed D0 Entry with status %x\n", 2320 comp_pkt.completion_status); 2321 ret = -EPROTO; 2322 goto exit; 2323 } 2324 2325 ret = 0; 2326 2327 exit: 2328 kfree(pkt); 2329 return ret; 2330 } 2331 2332 /** 2333 * hv_pci_query_relations() - Ask host to send list of child 2334 * devices 2335 * @hdev: VMBus's tracking struct for this root PCI bus 2336 * 2337 * Return: 0 on success, -errno on failure 2338 */ 2339 static int hv_pci_query_relations(struct hv_device *hdev) 2340 { 2341 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 2342 struct pci_message message; 2343 struct completion comp; 2344 int ret; 2345 2346 /* Ask the host to send along the list of child devices */ 2347 init_completion(&comp); 2348 if (cmpxchg(&hbus->survey_event, NULL, &comp)) 2349 return -ENOTEMPTY; 2350 2351 memset(&message, 0, sizeof(message)); 2352 message.type = PCI_QUERY_BUS_RELATIONS; 2353 2354 ret = vmbus_sendpacket(hdev->channel, &message, sizeof(message), 2355 0, VM_PKT_DATA_INBAND, 0); 2356 if (!ret) 2357 ret = wait_for_response(hdev, &comp); 2358 2359 return ret; 2360 } 2361 2362 /** 2363 * hv_send_resources_allocated() - Report local resource choices 2364 * @hdev: VMBus's tracking struct for this root PCI bus 2365 * 2366 * The host OS is expecting to be sent a request as a message 2367 * which contains all the resources that the device will use. 2368 * The response contains those same resources, "translated" 2369 * which is to say, the values which should be used by the 2370 * hardware, when it delivers an interrupt. (MMIO resources are 2371 * used in local terms.) This is nice for Windows, and lines up 2372 * with the FDO/PDO split, which doesn't exist in Linux. Linux 2373 * is deeply expecting to scan an emulated PCI configuration 2374 * space. So this message is sent here only to drive the state 2375 * machine on the host forward. 2376 * 2377 * Return: 0 on success, -errno on failure 2378 */ 2379 static int hv_send_resources_allocated(struct hv_device *hdev) 2380 { 2381 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 2382 struct pci_resources_assigned *res_assigned; 2383 struct pci_resources_assigned2 *res_assigned2; 2384 struct hv_pci_compl comp_pkt; 2385 struct hv_pci_dev *hpdev; 2386 struct pci_packet *pkt; 2387 size_t size_res; 2388 u32 wslot; 2389 int ret; 2390 2391 size_res = (pci_protocol_version < PCI_PROTOCOL_VERSION_1_2) 2392 ? sizeof(*res_assigned) : sizeof(*res_assigned2); 2393 2394 pkt = kmalloc(sizeof(*pkt) + size_res, GFP_KERNEL); 2395 if (!pkt) 2396 return -ENOMEM; 2397 2398 ret = 0; 2399 2400 for (wslot = 0; wslot < 256; wslot++) { 2401 hpdev = get_pcichild_wslot(hbus, wslot); 2402 if (!hpdev) 2403 continue; 2404 2405 memset(pkt, 0, sizeof(*pkt) + size_res); 2406 init_completion(&comp_pkt.host_event); 2407 pkt->completion_func = hv_pci_generic_compl; 2408 pkt->compl_ctxt = &comp_pkt; 2409 2410 if (pci_protocol_version < PCI_PROTOCOL_VERSION_1_2) { 2411 res_assigned = 2412 (struct pci_resources_assigned *)&pkt->message; 2413 res_assigned->message_type.type = 2414 PCI_RESOURCES_ASSIGNED; 2415 res_assigned->wslot.slot = hpdev->desc.win_slot.slot; 2416 } else { 2417 res_assigned2 = 2418 (struct pci_resources_assigned2 *)&pkt->message; 2419 res_assigned2->message_type.type = 2420 PCI_RESOURCES_ASSIGNED2; 2421 res_assigned2->wslot.slot = hpdev->desc.win_slot.slot; 2422 } 2423 put_pcichild(hpdev); 2424 2425 ret = vmbus_sendpacket(hdev->channel, &pkt->message, 2426 size_res, (unsigned long)pkt, 2427 VM_PKT_DATA_INBAND, 2428 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 2429 if (!ret) 2430 ret = wait_for_response(hdev, &comp_pkt.host_event); 2431 if (ret) 2432 break; 2433 2434 if (comp_pkt.completion_status < 0) { 2435 ret = -EPROTO; 2436 dev_err(&hdev->device, 2437 "resource allocated returned 0x%x", 2438 comp_pkt.completion_status); 2439 break; 2440 } 2441 } 2442 2443 kfree(pkt); 2444 return ret; 2445 } 2446 2447 /** 2448 * hv_send_resources_released() - Report local resources 2449 * released 2450 * @hdev: VMBus's tracking struct for this root PCI bus 2451 * 2452 * Return: 0 on success, -errno on failure 2453 */ 2454 static int hv_send_resources_released(struct hv_device *hdev) 2455 { 2456 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 2457 struct pci_child_message pkt; 2458 struct hv_pci_dev *hpdev; 2459 u32 wslot; 2460 int ret; 2461 2462 for (wslot = 0; wslot < 256; wslot++) { 2463 hpdev = get_pcichild_wslot(hbus, wslot); 2464 if (!hpdev) 2465 continue; 2466 2467 memset(&pkt, 0, sizeof(pkt)); 2468 pkt.message_type.type = PCI_RESOURCES_RELEASED; 2469 pkt.wslot.slot = hpdev->desc.win_slot.slot; 2470 2471 put_pcichild(hpdev); 2472 2473 ret = vmbus_sendpacket(hdev->channel, &pkt, sizeof(pkt), 0, 2474 VM_PKT_DATA_INBAND, 0); 2475 if (ret) 2476 return ret; 2477 } 2478 2479 return 0; 2480 } 2481 2482 static void get_hvpcibus(struct hv_pcibus_device *hbus) 2483 { 2484 refcount_inc(&hbus->remove_lock); 2485 } 2486 2487 static void put_hvpcibus(struct hv_pcibus_device *hbus) 2488 { 2489 if (refcount_dec_and_test(&hbus->remove_lock)) 2490 complete(&hbus->remove_event); 2491 } 2492 2493 /** 2494 * hv_pci_probe() - New VMBus channel probe, for a root PCI bus 2495 * @hdev: VMBus's tracking struct for this root PCI bus 2496 * @dev_id: Identifies the device itself 2497 * 2498 * Return: 0 on success, -errno on failure 2499 */ 2500 static int hv_pci_probe(struct hv_device *hdev, 2501 const struct hv_vmbus_device_id *dev_id) 2502 { 2503 struct hv_pcibus_device *hbus; 2504 int ret; 2505 2506 /* 2507 * hv_pcibus_device contains the hypercall arguments for retargeting in 2508 * hv_irq_unmask(). Those must not cross a page boundary. 2509 */ 2510 BUILD_BUG_ON(sizeof(*hbus) > PAGE_SIZE); 2511 2512 hbus = (struct hv_pcibus_device *)get_zeroed_page(GFP_KERNEL); 2513 if (!hbus) 2514 return -ENOMEM; 2515 hbus->state = hv_pcibus_init; 2516 2517 /* 2518 * The PCI bus "domain" is what is called "segment" in ACPI and 2519 * other specs. Pull it from the instance ID, to get something 2520 * unique. Bytes 8 and 9 are what is used in Windows guests, so 2521 * do the same thing for consistency. Note that, since this code 2522 * only runs in a Hyper-V VM, Hyper-V can (and does) guarantee 2523 * that (1) the only domain in use for something that looks like 2524 * a physical PCI bus (which is actually emulated by the 2525 * hypervisor) is domain 0 and (2) there will be no overlap 2526 * between domains derived from these instance IDs in the same 2527 * VM. 2528 */ 2529 hbus->sysdata.domain = hdev->dev_instance.b[9] | 2530 hdev->dev_instance.b[8] << 8; 2531 2532 hbus->hdev = hdev; 2533 refcount_set(&hbus->remove_lock, 1); 2534 INIT_LIST_HEAD(&hbus->children); 2535 INIT_LIST_HEAD(&hbus->dr_list); 2536 INIT_LIST_HEAD(&hbus->resources_for_children); 2537 spin_lock_init(&hbus->config_lock); 2538 spin_lock_init(&hbus->device_list_lock); 2539 spin_lock_init(&hbus->retarget_msi_interrupt_lock); 2540 init_completion(&hbus->remove_event); 2541 hbus->wq = alloc_ordered_workqueue("hv_pci_%x", 0, 2542 hbus->sysdata.domain); 2543 if (!hbus->wq) { 2544 ret = -ENOMEM; 2545 goto free_bus; 2546 } 2547 2548 ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0, 2549 hv_pci_onchannelcallback, hbus); 2550 if (ret) 2551 goto destroy_wq; 2552 2553 hv_set_drvdata(hdev, hbus); 2554 2555 ret = hv_pci_protocol_negotiation(hdev); 2556 if (ret) 2557 goto close; 2558 2559 ret = hv_allocate_config_window(hbus); 2560 if (ret) 2561 goto close; 2562 2563 hbus->cfg_addr = ioremap(hbus->mem_config->start, 2564 PCI_CONFIG_MMIO_LENGTH); 2565 if (!hbus->cfg_addr) { 2566 dev_err(&hdev->device, 2567 "Unable to map a virtual address for config space\n"); 2568 ret = -ENOMEM; 2569 goto free_config; 2570 } 2571 2572 hbus->sysdata.fwnode = irq_domain_alloc_fwnode(hbus); 2573 if (!hbus->sysdata.fwnode) { 2574 ret = -ENOMEM; 2575 goto unmap; 2576 } 2577 2578 ret = hv_pcie_init_irq_domain(hbus); 2579 if (ret) 2580 goto free_fwnode; 2581 2582 ret = hv_pci_query_relations(hdev); 2583 if (ret) 2584 goto free_irq_domain; 2585 2586 ret = hv_pci_enter_d0(hdev); 2587 if (ret) 2588 goto free_irq_domain; 2589 2590 ret = hv_pci_allocate_bridge_windows(hbus); 2591 if (ret) 2592 goto free_irq_domain; 2593 2594 ret = hv_send_resources_allocated(hdev); 2595 if (ret) 2596 goto free_windows; 2597 2598 prepopulate_bars(hbus); 2599 2600 hbus->state = hv_pcibus_probed; 2601 2602 ret = create_root_hv_pci_bus(hbus); 2603 if (ret) 2604 goto free_windows; 2605 2606 return 0; 2607 2608 free_windows: 2609 hv_pci_free_bridge_windows(hbus); 2610 free_irq_domain: 2611 irq_domain_remove(hbus->irq_domain); 2612 free_fwnode: 2613 irq_domain_free_fwnode(hbus->sysdata.fwnode); 2614 unmap: 2615 iounmap(hbus->cfg_addr); 2616 free_config: 2617 hv_free_config_window(hbus); 2618 close: 2619 vmbus_close(hdev->channel); 2620 destroy_wq: 2621 destroy_workqueue(hbus->wq); 2622 free_bus: 2623 free_page((unsigned long)hbus); 2624 return ret; 2625 } 2626 2627 static void hv_pci_bus_exit(struct hv_device *hdev) 2628 { 2629 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 2630 struct { 2631 struct pci_packet teardown_packet; 2632 u8 buffer[sizeof(struct pci_message)]; 2633 } pkt; 2634 struct pci_bus_relations relations; 2635 struct hv_pci_compl comp_pkt; 2636 int ret; 2637 2638 /* 2639 * After the host sends the RESCIND_CHANNEL message, it doesn't 2640 * access the per-channel ringbuffer any longer. 2641 */ 2642 if (hdev->channel->rescind) 2643 return; 2644 2645 /* Delete any children which might still exist. */ 2646 memset(&relations, 0, sizeof(relations)); 2647 hv_pci_devices_present(hbus, &relations); 2648 2649 ret = hv_send_resources_released(hdev); 2650 if (ret) 2651 dev_err(&hdev->device, 2652 "Couldn't send resources released packet(s)\n"); 2653 2654 memset(&pkt.teardown_packet, 0, sizeof(pkt.teardown_packet)); 2655 init_completion(&comp_pkt.host_event); 2656 pkt.teardown_packet.completion_func = hv_pci_generic_compl; 2657 pkt.teardown_packet.compl_ctxt = &comp_pkt; 2658 pkt.teardown_packet.message[0].type = PCI_BUS_D0EXIT; 2659 2660 ret = vmbus_sendpacket(hdev->channel, &pkt.teardown_packet.message, 2661 sizeof(struct pci_message), 2662 (unsigned long)&pkt.teardown_packet, 2663 VM_PKT_DATA_INBAND, 2664 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 2665 if (!ret) 2666 wait_for_completion_timeout(&comp_pkt.host_event, 10 * HZ); 2667 } 2668 2669 /** 2670 * hv_pci_remove() - Remove routine for this VMBus channel 2671 * @hdev: VMBus's tracking struct for this root PCI bus 2672 * 2673 * Return: 0 on success, -errno on failure 2674 */ 2675 static int hv_pci_remove(struct hv_device *hdev) 2676 { 2677 struct hv_pcibus_device *hbus; 2678 2679 hbus = hv_get_drvdata(hdev); 2680 if (hbus->state == hv_pcibus_installed) { 2681 /* Remove the bus from PCI's point of view. */ 2682 pci_lock_rescan_remove(); 2683 pci_stop_root_bus(hbus->pci_bus); 2684 pci_remove_root_bus(hbus->pci_bus); 2685 pci_unlock_rescan_remove(); 2686 hbus->state = hv_pcibus_removed; 2687 } 2688 2689 hv_pci_bus_exit(hdev); 2690 2691 vmbus_close(hdev->channel); 2692 2693 iounmap(hbus->cfg_addr); 2694 hv_free_config_window(hbus); 2695 pci_free_resource_list(&hbus->resources_for_children); 2696 hv_pci_free_bridge_windows(hbus); 2697 irq_domain_remove(hbus->irq_domain); 2698 irq_domain_free_fwnode(hbus->sysdata.fwnode); 2699 put_hvpcibus(hbus); 2700 wait_for_completion(&hbus->remove_event); 2701 destroy_workqueue(hbus->wq); 2702 free_page((unsigned long)hbus); 2703 return 0; 2704 } 2705 2706 static const struct hv_vmbus_device_id hv_pci_id_table[] = { 2707 /* PCI Pass-through Class ID */ 2708 /* 44C4F61D-4444-4400-9D52-802E27EDE19F */ 2709 { HV_PCIE_GUID, }, 2710 { }, 2711 }; 2712 2713 MODULE_DEVICE_TABLE(vmbus, hv_pci_id_table); 2714 2715 static struct hv_driver hv_pci_drv = { 2716 .name = "hv_pci", 2717 .id_table = hv_pci_id_table, 2718 .probe = hv_pci_probe, 2719 .remove = hv_pci_remove, 2720 }; 2721 2722 static void __exit exit_hv_pci_drv(void) 2723 { 2724 vmbus_driver_unregister(&hv_pci_drv); 2725 } 2726 2727 static int __init init_hv_pci_drv(void) 2728 { 2729 return vmbus_driver_register(&hv_pci_drv); 2730 } 2731 2732 module_init(init_hv_pci_drv); 2733 module_exit(exit_hv_pci_drv); 2734 2735 MODULE_DESCRIPTION("Hyper-V PCI"); 2736 MODULE_LICENSE("GPL v2"); 2737