1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) Microsoft Corporation.
4  *
5  * Author:
6  *   Jake Oshins <jakeo@microsoft.com>
7  *
8  * This driver acts as a paravirtual front-end for PCI Express root buses.
9  * When a PCI Express function (either an entire device or an SR-IOV
10  * Virtual Function) is being passed through to the VM, this driver exposes
11  * a new bus to the guest VM.  This is modeled as a root PCI bus because
12  * no bridges are being exposed to the VM.  In fact, with a "Generation 2"
13  * VM within Hyper-V, there may seem to be no PCI bus at all in the VM
14  * until a device as been exposed using this driver.
15  *
16  * Each root PCI bus has its own PCI domain, which is called "Segment" in
17  * the PCI Firmware Specifications.  Thus while each device passed through
18  * to the VM using this front-end will appear at "device 0", the domain will
19  * be unique.  Typically, each bus will have one PCI function on it, though
20  * this driver does support more than one.
21  *
22  * In order to map the interrupts from the device through to the guest VM,
23  * this driver also implements an IRQ Domain, which handles interrupts (either
24  * MSI or MSI-X) associated with the functions on the bus.  As interrupts are
25  * set up, torn down, or reaffined, this driver communicates with the
26  * underlying hypervisor to adjust the mappings in the I/O MMU so that each
27  * interrupt will be delivered to the correct virtual processor at the right
28  * vector.  This driver does not support level-triggered (line-based)
29  * interrupts, and will report that the Interrupt Line register in the
30  * function's configuration space is zero.
31  *
32  * The rest of this driver mostly maps PCI concepts onto underlying Hyper-V
33  * facilities.  For instance, the configuration space of a function exposed
34  * by Hyper-V is mapped into a single page of memory space, and the
35  * read and write handlers for config space must be aware of this mechanism.
36  * Similarly, device setup and teardown involves messages sent to and from
37  * the PCI back-end driver in Hyper-V.
38  */
39 
40 #include <linux/kernel.h>
41 #include <linux/module.h>
42 #include <linux/pci.h>
43 #include <linux/delay.h>
44 #include <linux/semaphore.h>
45 #include <linux/irqdomain.h>
46 #include <asm/irqdomain.h>
47 #include <asm/apic.h>
48 #include <linux/msi.h>
49 #include <linux/hyperv.h>
50 #include <linux/refcount.h>
51 #include <asm/mshyperv.h>
52 
53 /*
54  * Protocol versions. The low word is the minor version, the high word the
55  * major version.
56  */
57 
58 #define PCI_MAKE_VERSION(major, minor) ((u32)(((major) << 16) | (minor)))
59 #define PCI_MAJOR_VERSION(version) ((u32)(version) >> 16)
60 #define PCI_MINOR_VERSION(version) ((u32)(version) & 0xff)
61 
62 enum pci_protocol_version_t {
63 	PCI_PROTOCOL_VERSION_1_1 = PCI_MAKE_VERSION(1, 1),	/* Win10 */
64 	PCI_PROTOCOL_VERSION_1_2 = PCI_MAKE_VERSION(1, 2),	/* RS1 */
65 };
66 
67 #define CPU_AFFINITY_ALL	-1ULL
68 
69 /*
70  * Supported protocol versions in the order of probing - highest go
71  * first.
72  */
73 static enum pci_protocol_version_t pci_protocol_versions[] = {
74 	PCI_PROTOCOL_VERSION_1_2,
75 	PCI_PROTOCOL_VERSION_1_1,
76 };
77 
78 /*
79  * Protocol version negotiated by hv_pci_protocol_negotiation().
80  */
81 static enum pci_protocol_version_t pci_protocol_version;
82 
83 #define PCI_CONFIG_MMIO_LENGTH	0x2000
84 #define CFG_PAGE_OFFSET 0x1000
85 #define CFG_PAGE_SIZE (PCI_CONFIG_MMIO_LENGTH - CFG_PAGE_OFFSET)
86 
87 #define MAX_SUPPORTED_MSI_MESSAGES 0x400
88 
89 #define STATUS_REVISION_MISMATCH 0xC0000059
90 
91 /*
92  * Message Types
93  */
94 
95 enum pci_message_type {
96 	/*
97 	 * Version 1.1
98 	 */
99 	PCI_MESSAGE_BASE                = 0x42490000,
100 	PCI_BUS_RELATIONS               = PCI_MESSAGE_BASE + 0,
101 	PCI_QUERY_BUS_RELATIONS         = PCI_MESSAGE_BASE + 1,
102 	PCI_POWER_STATE_CHANGE          = PCI_MESSAGE_BASE + 4,
103 	PCI_QUERY_RESOURCE_REQUIREMENTS = PCI_MESSAGE_BASE + 5,
104 	PCI_QUERY_RESOURCE_RESOURCES    = PCI_MESSAGE_BASE + 6,
105 	PCI_BUS_D0ENTRY                 = PCI_MESSAGE_BASE + 7,
106 	PCI_BUS_D0EXIT                  = PCI_MESSAGE_BASE + 8,
107 	PCI_READ_BLOCK                  = PCI_MESSAGE_BASE + 9,
108 	PCI_WRITE_BLOCK                 = PCI_MESSAGE_BASE + 0xA,
109 	PCI_EJECT                       = PCI_MESSAGE_BASE + 0xB,
110 	PCI_QUERY_STOP                  = PCI_MESSAGE_BASE + 0xC,
111 	PCI_REENABLE                    = PCI_MESSAGE_BASE + 0xD,
112 	PCI_QUERY_STOP_FAILED           = PCI_MESSAGE_BASE + 0xE,
113 	PCI_EJECTION_COMPLETE           = PCI_MESSAGE_BASE + 0xF,
114 	PCI_RESOURCES_ASSIGNED          = PCI_MESSAGE_BASE + 0x10,
115 	PCI_RESOURCES_RELEASED          = PCI_MESSAGE_BASE + 0x11,
116 	PCI_INVALIDATE_BLOCK            = PCI_MESSAGE_BASE + 0x12,
117 	PCI_QUERY_PROTOCOL_VERSION      = PCI_MESSAGE_BASE + 0x13,
118 	PCI_CREATE_INTERRUPT_MESSAGE    = PCI_MESSAGE_BASE + 0x14,
119 	PCI_DELETE_INTERRUPT_MESSAGE    = PCI_MESSAGE_BASE + 0x15,
120 	PCI_RESOURCES_ASSIGNED2		= PCI_MESSAGE_BASE + 0x16,
121 	PCI_CREATE_INTERRUPT_MESSAGE2	= PCI_MESSAGE_BASE + 0x17,
122 	PCI_DELETE_INTERRUPT_MESSAGE2	= PCI_MESSAGE_BASE + 0x18, /* unused */
123 	PCI_MESSAGE_MAXIMUM
124 };
125 
126 /*
127  * Structures defining the virtual PCI Express protocol.
128  */
129 
130 union pci_version {
131 	struct {
132 		u16 minor_version;
133 		u16 major_version;
134 	} parts;
135 	u32 version;
136 } __packed;
137 
138 /*
139  * Function numbers are 8-bits wide on Express, as interpreted through ARI,
140  * which is all this driver does.  This representation is the one used in
141  * Windows, which is what is expected when sending this back and forth with
142  * the Hyper-V parent partition.
143  */
144 union win_slot_encoding {
145 	struct {
146 		u32	dev:5;
147 		u32	func:3;
148 		u32	reserved:24;
149 	} bits;
150 	u32 slot;
151 } __packed;
152 
153 /*
154  * Pretty much as defined in the PCI Specifications.
155  */
156 struct pci_function_description {
157 	u16	v_id;	/* vendor ID */
158 	u16	d_id;	/* device ID */
159 	u8	rev;
160 	u8	prog_intf;
161 	u8	subclass;
162 	u8	base_class;
163 	u32	subsystem_id;
164 	union win_slot_encoding win_slot;
165 	u32	ser;	/* serial number */
166 } __packed;
167 
168 /**
169  * struct hv_msi_desc
170  * @vector:		IDT entry
171  * @delivery_mode:	As defined in Intel's Programmer's
172  *			Reference Manual, Volume 3, Chapter 8.
173  * @vector_count:	Number of contiguous entries in the
174  *			Interrupt Descriptor Table that are
175  *			occupied by this Message-Signaled
176  *			Interrupt. For "MSI", as first defined
177  *			in PCI 2.2, this can be between 1 and
178  *			32. For "MSI-X," as first defined in PCI
179  *			3.0, this must be 1, as each MSI-X table
180  *			entry would have its own descriptor.
181  * @reserved:		Empty space
182  * @cpu_mask:		All the target virtual processors.
183  */
184 struct hv_msi_desc {
185 	u8	vector;
186 	u8	delivery_mode;
187 	u16	vector_count;
188 	u32	reserved;
189 	u64	cpu_mask;
190 } __packed;
191 
192 /**
193  * struct hv_msi_desc2 - 1.2 version of hv_msi_desc
194  * @vector:		IDT entry
195  * @delivery_mode:	As defined in Intel's Programmer's
196  *			Reference Manual, Volume 3, Chapter 8.
197  * @vector_count:	Number of contiguous entries in the
198  *			Interrupt Descriptor Table that are
199  *			occupied by this Message-Signaled
200  *			Interrupt. For "MSI", as first defined
201  *			in PCI 2.2, this can be between 1 and
202  *			32. For "MSI-X," as first defined in PCI
203  *			3.0, this must be 1, as each MSI-X table
204  *			entry would have its own descriptor.
205  * @processor_count:	number of bits enabled in array.
206  * @processor_array:	All the target virtual processors.
207  */
208 struct hv_msi_desc2 {
209 	u8	vector;
210 	u8	delivery_mode;
211 	u16	vector_count;
212 	u16	processor_count;
213 	u16	processor_array[32];
214 } __packed;
215 
216 /**
217  * struct tran_int_desc
218  * @reserved:		unused, padding
219  * @vector_count:	same as in hv_msi_desc
220  * @data:		This is the "data payload" value that is
221  *			written by the device when it generates
222  *			a message-signaled interrupt, either MSI
223  *			or MSI-X.
224  * @address:		This is the address to which the data
225  *			payload is written on interrupt
226  *			generation.
227  */
228 struct tran_int_desc {
229 	u16	reserved;
230 	u16	vector_count;
231 	u32	data;
232 	u64	address;
233 } __packed;
234 
235 /*
236  * A generic message format for virtual PCI.
237  * Specific message formats are defined later in the file.
238  */
239 
240 struct pci_message {
241 	u32 type;
242 } __packed;
243 
244 struct pci_child_message {
245 	struct pci_message message_type;
246 	union win_slot_encoding wslot;
247 } __packed;
248 
249 struct pci_incoming_message {
250 	struct vmpacket_descriptor hdr;
251 	struct pci_message message_type;
252 } __packed;
253 
254 struct pci_response {
255 	struct vmpacket_descriptor hdr;
256 	s32 status;			/* negative values are failures */
257 } __packed;
258 
259 struct pci_packet {
260 	void (*completion_func)(void *context, struct pci_response *resp,
261 				int resp_packet_size);
262 	void *compl_ctxt;
263 
264 	struct pci_message message[0];
265 };
266 
267 /*
268  * Specific message types supporting the PCI protocol.
269  */
270 
271 /*
272  * Version negotiation message. Sent from the guest to the host.
273  * The guest is free to try different versions until the host
274  * accepts the version.
275  *
276  * pci_version: The protocol version requested.
277  * is_last_attempt: If TRUE, this is the last version guest will request.
278  * reservedz: Reserved field, set to zero.
279  */
280 
281 struct pci_version_request {
282 	struct pci_message message_type;
283 	u32 protocol_version;
284 } __packed;
285 
286 /*
287  * Bus D0 Entry.  This is sent from the guest to the host when the virtual
288  * bus (PCI Express port) is ready for action.
289  */
290 
291 struct pci_bus_d0_entry {
292 	struct pci_message message_type;
293 	u32 reserved;
294 	u64 mmio_base;
295 } __packed;
296 
297 struct pci_bus_relations {
298 	struct pci_incoming_message incoming;
299 	u32 device_count;
300 	struct pci_function_description func[0];
301 } __packed;
302 
303 struct pci_q_res_req_response {
304 	struct vmpacket_descriptor hdr;
305 	s32 status;			/* negative values are failures */
306 	u32 probed_bar[6];
307 } __packed;
308 
309 struct pci_set_power {
310 	struct pci_message message_type;
311 	union win_slot_encoding wslot;
312 	u32 power_state;		/* In Windows terms */
313 	u32 reserved;
314 } __packed;
315 
316 struct pci_set_power_response {
317 	struct vmpacket_descriptor hdr;
318 	s32 status;			/* negative values are failures */
319 	union win_slot_encoding wslot;
320 	u32 resultant_state;		/* In Windows terms */
321 	u32 reserved;
322 } __packed;
323 
324 struct pci_resources_assigned {
325 	struct pci_message message_type;
326 	union win_slot_encoding wslot;
327 	u8 memory_range[0x14][6];	/* not used here */
328 	u32 msi_descriptors;
329 	u32 reserved[4];
330 } __packed;
331 
332 struct pci_resources_assigned2 {
333 	struct pci_message message_type;
334 	union win_slot_encoding wslot;
335 	u8 memory_range[0x14][6];	/* not used here */
336 	u32 msi_descriptor_count;
337 	u8 reserved[70];
338 } __packed;
339 
340 struct pci_create_interrupt {
341 	struct pci_message message_type;
342 	union win_slot_encoding wslot;
343 	struct hv_msi_desc int_desc;
344 } __packed;
345 
346 struct pci_create_int_response {
347 	struct pci_response response;
348 	u32 reserved;
349 	struct tran_int_desc int_desc;
350 } __packed;
351 
352 struct pci_create_interrupt2 {
353 	struct pci_message message_type;
354 	union win_slot_encoding wslot;
355 	struct hv_msi_desc2 int_desc;
356 } __packed;
357 
358 struct pci_delete_interrupt {
359 	struct pci_message message_type;
360 	union win_slot_encoding wslot;
361 	struct tran_int_desc int_desc;
362 } __packed;
363 
364 struct pci_dev_incoming {
365 	struct pci_incoming_message incoming;
366 	union win_slot_encoding wslot;
367 } __packed;
368 
369 struct pci_eject_response {
370 	struct pci_message message_type;
371 	union win_slot_encoding wslot;
372 	u32 status;
373 } __packed;
374 
375 static int pci_ring_size = (4 * PAGE_SIZE);
376 
377 /*
378  * Definitions or interrupt steering hypercall.
379  */
380 #define HV_PARTITION_ID_SELF		((u64)-1)
381 #define HVCALL_RETARGET_INTERRUPT	0x7e
382 
383 struct hv_interrupt_entry {
384 	u32	source;			/* 1 for MSI(-X) */
385 	u32	reserved1;
386 	u32	address;
387 	u32	data;
388 };
389 
390 #define HV_VP_SET_BANK_COUNT_MAX	5 /* current implementation limit */
391 
392 struct hv_vp_set {
393 	u64	format;			/* 0 (HvGenericSetSparse4k) */
394 	u64	valid_banks;
395 	u64	masks[HV_VP_SET_BANK_COUNT_MAX];
396 };
397 
398 /*
399  * flags for hv_device_interrupt_target.flags
400  */
401 #define HV_DEVICE_INTERRUPT_TARGET_MULTICAST		1
402 #define HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET	2
403 
404 struct hv_device_interrupt_target {
405 	u32	vector;
406 	u32	flags;
407 	union {
408 		u64		 vp_mask;
409 		struct hv_vp_set vp_set;
410 	};
411 };
412 
413 struct retarget_msi_interrupt {
414 	u64	partition_id;		/* use "self" */
415 	u64	device_id;
416 	struct hv_interrupt_entry int_entry;
417 	u64	reserved2;
418 	struct hv_device_interrupt_target int_target;
419 } __packed;
420 
421 /*
422  * Driver specific state.
423  */
424 
425 enum hv_pcibus_state {
426 	hv_pcibus_init = 0,
427 	hv_pcibus_probed,
428 	hv_pcibus_installed,
429 	hv_pcibus_removed,
430 	hv_pcibus_maximum
431 };
432 
433 struct hv_pcibus_device {
434 	struct pci_sysdata sysdata;
435 	enum hv_pcibus_state state;
436 	refcount_t remove_lock;
437 	struct hv_device *hdev;
438 	resource_size_t low_mmio_space;
439 	resource_size_t high_mmio_space;
440 	struct resource *mem_config;
441 	struct resource *low_mmio_res;
442 	struct resource *high_mmio_res;
443 	struct completion *survey_event;
444 	struct completion remove_event;
445 	struct pci_bus *pci_bus;
446 	spinlock_t config_lock;	/* Avoid two threads writing index page */
447 	spinlock_t device_list_lock;	/* Protect lists below */
448 	void __iomem *cfg_addr;
449 
450 	struct list_head resources_for_children;
451 
452 	struct list_head children;
453 	struct list_head dr_list;
454 
455 	struct msi_domain_info msi_info;
456 	struct msi_controller msi_chip;
457 	struct irq_domain *irq_domain;
458 
459 	/* hypercall arg, must not cross page boundary */
460 	struct retarget_msi_interrupt retarget_msi_interrupt_params;
461 
462 	spinlock_t retarget_msi_interrupt_lock;
463 
464 	struct workqueue_struct *wq;
465 };
466 
467 /*
468  * Tracks "Device Relations" messages from the host, which must be both
469  * processed in order and deferred so that they don't run in the context
470  * of the incoming packet callback.
471  */
472 struct hv_dr_work {
473 	struct work_struct wrk;
474 	struct hv_pcibus_device *bus;
475 };
476 
477 struct hv_dr_state {
478 	struct list_head list_entry;
479 	u32 device_count;
480 	struct pci_function_description func[0];
481 };
482 
483 enum hv_pcichild_state {
484 	hv_pcichild_init = 0,
485 	hv_pcichild_requirements,
486 	hv_pcichild_resourced,
487 	hv_pcichild_ejecting,
488 	hv_pcichild_maximum
489 };
490 
491 struct hv_pci_dev {
492 	/* List protected by pci_rescan_remove_lock */
493 	struct list_head list_entry;
494 	refcount_t refs;
495 	enum hv_pcichild_state state;
496 	struct pci_function_description desc;
497 	bool reported_missing;
498 	struct hv_pcibus_device *hbus;
499 	struct work_struct wrk;
500 
501 	/*
502 	 * What would be observed if one wrote 0xFFFFFFFF to a BAR and then
503 	 * read it back, for each of the BAR offsets within config space.
504 	 */
505 	u32 probed_bar[6];
506 };
507 
508 struct hv_pci_compl {
509 	struct completion host_event;
510 	s32 completion_status;
511 };
512 
513 static void hv_pci_onchannelcallback(void *context);
514 
515 /**
516  * hv_pci_generic_compl() - Invoked for a completion packet
517  * @context:		Set up by the sender of the packet.
518  * @resp:		The response packet
519  * @resp_packet_size:	Size in bytes of the packet
520  *
521  * This function is used to trigger an event and report status
522  * for any message for which the completion packet contains a
523  * status and nothing else.
524  */
525 static void hv_pci_generic_compl(void *context, struct pci_response *resp,
526 				 int resp_packet_size)
527 {
528 	struct hv_pci_compl *comp_pkt = context;
529 
530 	if (resp_packet_size >= offsetofend(struct pci_response, status))
531 		comp_pkt->completion_status = resp->status;
532 	else
533 		comp_pkt->completion_status = -1;
534 
535 	complete(&comp_pkt->host_event);
536 }
537 
538 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
539 						u32 wslot);
540 
541 static void get_pcichild(struct hv_pci_dev *hpdev)
542 {
543 	refcount_inc(&hpdev->refs);
544 }
545 
546 static void put_pcichild(struct hv_pci_dev *hpdev)
547 {
548 	if (refcount_dec_and_test(&hpdev->refs))
549 		kfree(hpdev);
550 }
551 
552 static void get_hvpcibus(struct hv_pcibus_device *hv_pcibus);
553 static void put_hvpcibus(struct hv_pcibus_device *hv_pcibus);
554 
555 /*
556  * There is no good way to get notified from vmbus_onoffer_rescind(),
557  * so let's use polling here, since this is not a hot path.
558  */
559 static int wait_for_response(struct hv_device *hdev,
560 			     struct completion *comp)
561 {
562 	while (true) {
563 		if (hdev->channel->rescind) {
564 			dev_warn_once(&hdev->device, "The device is gone.\n");
565 			return -ENODEV;
566 		}
567 
568 		if (wait_for_completion_timeout(comp, HZ / 10))
569 			break;
570 	}
571 
572 	return 0;
573 }
574 
575 /**
576  * devfn_to_wslot() - Convert from Linux PCI slot to Windows
577  * @devfn:	The Linux representation of PCI slot
578  *
579  * Windows uses a slightly different representation of PCI slot.
580  *
581  * Return: The Windows representation
582  */
583 static u32 devfn_to_wslot(int devfn)
584 {
585 	union win_slot_encoding wslot;
586 
587 	wslot.slot = 0;
588 	wslot.bits.dev = PCI_SLOT(devfn);
589 	wslot.bits.func = PCI_FUNC(devfn);
590 
591 	return wslot.slot;
592 }
593 
594 /**
595  * wslot_to_devfn() - Convert from Windows PCI slot to Linux
596  * @wslot:	The Windows representation of PCI slot
597  *
598  * Windows uses a slightly different representation of PCI slot.
599  *
600  * Return: The Linux representation
601  */
602 static int wslot_to_devfn(u32 wslot)
603 {
604 	union win_slot_encoding slot_no;
605 
606 	slot_no.slot = wslot;
607 	return PCI_DEVFN(slot_no.bits.dev, slot_no.bits.func);
608 }
609 
610 /*
611  * PCI Configuration Space for these root PCI buses is implemented as a pair
612  * of pages in memory-mapped I/O space.  Writing to the first page chooses
613  * the PCI function being written or read.  Once the first page has been
614  * written to, the following page maps in the entire configuration space of
615  * the function.
616  */
617 
618 /**
619  * _hv_pcifront_read_config() - Internal PCI config read
620  * @hpdev:	The PCI driver's representation of the device
621  * @where:	Offset within config space
622  * @size:	Size of the transfer
623  * @val:	Pointer to the buffer receiving the data
624  */
625 static void _hv_pcifront_read_config(struct hv_pci_dev *hpdev, int where,
626 				     int size, u32 *val)
627 {
628 	unsigned long flags;
629 	void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where;
630 
631 	/*
632 	 * If the attempt is to read the IDs or the ROM BAR, simulate that.
633 	 */
634 	if (where + size <= PCI_COMMAND) {
635 		memcpy(val, ((u8 *)&hpdev->desc.v_id) + where, size);
636 	} else if (where >= PCI_CLASS_REVISION && where + size <=
637 		   PCI_CACHE_LINE_SIZE) {
638 		memcpy(val, ((u8 *)&hpdev->desc.rev) + where -
639 		       PCI_CLASS_REVISION, size);
640 	} else if (where >= PCI_SUBSYSTEM_VENDOR_ID && where + size <=
641 		   PCI_ROM_ADDRESS) {
642 		memcpy(val, (u8 *)&hpdev->desc.subsystem_id + where -
643 		       PCI_SUBSYSTEM_VENDOR_ID, size);
644 	} else if (where >= PCI_ROM_ADDRESS && where + size <=
645 		   PCI_CAPABILITY_LIST) {
646 		/* ROM BARs are unimplemented */
647 		*val = 0;
648 	} else if (where >= PCI_INTERRUPT_LINE && where + size <=
649 		   PCI_INTERRUPT_PIN) {
650 		/*
651 		 * Interrupt Line and Interrupt PIN are hard-wired to zero
652 		 * because this front-end only supports message-signaled
653 		 * interrupts.
654 		 */
655 		*val = 0;
656 	} else if (where + size <= CFG_PAGE_SIZE) {
657 		spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
658 		/* Choose the function to be read. (See comment above) */
659 		writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
660 		/* Make sure the function was chosen before we start reading. */
661 		mb();
662 		/* Read from that function's config space. */
663 		switch (size) {
664 		case 1:
665 			*val = readb(addr);
666 			break;
667 		case 2:
668 			*val = readw(addr);
669 			break;
670 		default:
671 			*val = readl(addr);
672 			break;
673 		}
674 		/*
675 		 * Make sure the read was done before we release the spinlock
676 		 * allowing consecutive reads/writes.
677 		 */
678 		mb();
679 		spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
680 	} else {
681 		dev_err(&hpdev->hbus->hdev->device,
682 			"Attempt to read beyond a function's config space.\n");
683 	}
684 }
685 
686 static u16 hv_pcifront_get_vendor_id(struct hv_pci_dev *hpdev)
687 {
688 	u16 ret;
689 	unsigned long flags;
690 	void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET +
691 			     PCI_VENDOR_ID;
692 
693 	spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
694 
695 	/* Choose the function to be read. (See comment above) */
696 	writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
697 	/* Make sure the function was chosen before we start reading. */
698 	mb();
699 	/* Read from that function's config space. */
700 	ret = readw(addr);
701 	/*
702 	 * mb() is not required here, because the spin_unlock_irqrestore()
703 	 * is a barrier.
704 	 */
705 
706 	spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
707 
708 	return ret;
709 }
710 
711 /**
712  * _hv_pcifront_write_config() - Internal PCI config write
713  * @hpdev:	The PCI driver's representation of the device
714  * @where:	Offset within config space
715  * @size:	Size of the transfer
716  * @val:	The data being transferred
717  */
718 static void _hv_pcifront_write_config(struct hv_pci_dev *hpdev, int where,
719 				      int size, u32 val)
720 {
721 	unsigned long flags;
722 	void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where;
723 
724 	if (where >= PCI_SUBSYSTEM_VENDOR_ID &&
725 	    where + size <= PCI_CAPABILITY_LIST) {
726 		/* SSIDs and ROM BARs are read-only */
727 	} else if (where >= PCI_COMMAND && where + size <= CFG_PAGE_SIZE) {
728 		spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
729 		/* Choose the function to be written. (See comment above) */
730 		writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
731 		/* Make sure the function was chosen before we start writing. */
732 		wmb();
733 		/* Write to that function's config space. */
734 		switch (size) {
735 		case 1:
736 			writeb(val, addr);
737 			break;
738 		case 2:
739 			writew(val, addr);
740 			break;
741 		default:
742 			writel(val, addr);
743 			break;
744 		}
745 		/*
746 		 * Make sure the write was done before we release the spinlock
747 		 * allowing consecutive reads/writes.
748 		 */
749 		mb();
750 		spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
751 	} else {
752 		dev_err(&hpdev->hbus->hdev->device,
753 			"Attempt to write beyond a function's config space.\n");
754 	}
755 }
756 
757 /**
758  * hv_pcifront_read_config() - Read configuration space
759  * @bus: PCI Bus structure
760  * @devfn: Device/function
761  * @where: Offset from base
762  * @size: Byte/word/dword
763  * @val: Value to be read
764  *
765  * Return: PCIBIOS_SUCCESSFUL on success
766  *	   PCIBIOS_DEVICE_NOT_FOUND on failure
767  */
768 static int hv_pcifront_read_config(struct pci_bus *bus, unsigned int devfn,
769 				   int where, int size, u32 *val)
770 {
771 	struct hv_pcibus_device *hbus =
772 		container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
773 	struct hv_pci_dev *hpdev;
774 
775 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
776 	if (!hpdev)
777 		return PCIBIOS_DEVICE_NOT_FOUND;
778 
779 	_hv_pcifront_read_config(hpdev, where, size, val);
780 
781 	put_pcichild(hpdev);
782 	return PCIBIOS_SUCCESSFUL;
783 }
784 
785 /**
786  * hv_pcifront_write_config() - Write configuration space
787  * @bus: PCI Bus structure
788  * @devfn: Device/function
789  * @where: Offset from base
790  * @size: Byte/word/dword
791  * @val: Value to be written to device
792  *
793  * Return: PCIBIOS_SUCCESSFUL on success
794  *	   PCIBIOS_DEVICE_NOT_FOUND on failure
795  */
796 static int hv_pcifront_write_config(struct pci_bus *bus, unsigned int devfn,
797 				    int where, int size, u32 val)
798 {
799 	struct hv_pcibus_device *hbus =
800 	    container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
801 	struct hv_pci_dev *hpdev;
802 
803 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
804 	if (!hpdev)
805 		return PCIBIOS_DEVICE_NOT_FOUND;
806 
807 	_hv_pcifront_write_config(hpdev, where, size, val);
808 
809 	put_pcichild(hpdev);
810 	return PCIBIOS_SUCCESSFUL;
811 }
812 
813 /* PCIe operations */
814 static struct pci_ops hv_pcifront_ops = {
815 	.read  = hv_pcifront_read_config,
816 	.write = hv_pcifront_write_config,
817 };
818 
819 /* Interrupt management hooks */
820 static void hv_int_desc_free(struct hv_pci_dev *hpdev,
821 			     struct tran_int_desc *int_desc)
822 {
823 	struct pci_delete_interrupt *int_pkt;
824 	struct {
825 		struct pci_packet pkt;
826 		u8 buffer[sizeof(struct pci_delete_interrupt)];
827 	} ctxt;
828 
829 	memset(&ctxt, 0, sizeof(ctxt));
830 	int_pkt = (struct pci_delete_interrupt *)&ctxt.pkt.message;
831 	int_pkt->message_type.type =
832 		PCI_DELETE_INTERRUPT_MESSAGE;
833 	int_pkt->wslot.slot = hpdev->desc.win_slot.slot;
834 	int_pkt->int_desc = *int_desc;
835 	vmbus_sendpacket(hpdev->hbus->hdev->channel, int_pkt, sizeof(*int_pkt),
836 			 (unsigned long)&ctxt.pkt, VM_PKT_DATA_INBAND, 0);
837 	kfree(int_desc);
838 }
839 
840 /**
841  * hv_msi_free() - Free the MSI.
842  * @domain:	The interrupt domain pointer
843  * @info:	Extra MSI-related context
844  * @irq:	Identifies the IRQ.
845  *
846  * The Hyper-V parent partition and hypervisor are tracking the
847  * messages that are in use, keeping the interrupt redirection
848  * table up to date.  This callback sends a message that frees
849  * the IRT entry and related tracking nonsense.
850  */
851 static void hv_msi_free(struct irq_domain *domain, struct msi_domain_info *info,
852 			unsigned int irq)
853 {
854 	struct hv_pcibus_device *hbus;
855 	struct hv_pci_dev *hpdev;
856 	struct pci_dev *pdev;
857 	struct tran_int_desc *int_desc;
858 	struct irq_data *irq_data = irq_domain_get_irq_data(domain, irq);
859 	struct msi_desc *msi = irq_data_get_msi_desc(irq_data);
860 
861 	pdev = msi_desc_to_pci_dev(msi);
862 	hbus = info->data;
863 	int_desc = irq_data_get_irq_chip_data(irq_data);
864 	if (!int_desc)
865 		return;
866 
867 	irq_data->chip_data = NULL;
868 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
869 	if (!hpdev) {
870 		kfree(int_desc);
871 		return;
872 	}
873 
874 	hv_int_desc_free(hpdev, int_desc);
875 	put_pcichild(hpdev);
876 }
877 
878 static int hv_set_affinity(struct irq_data *data, const struct cpumask *dest,
879 			   bool force)
880 {
881 	struct irq_data *parent = data->parent_data;
882 
883 	return parent->chip->irq_set_affinity(parent, dest, force);
884 }
885 
886 static void hv_irq_mask(struct irq_data *data)
887 {
888 	pci_msi_mask_irq(data);
889 }
890 
891 /**
892  * hv_irq_unmask() - "Unmask" the IRQ by setting its current
893  * affinity.
894  * @data:	Describes the IRQ
895  *
896  * Build new a destination for the MSI and make a hypercall to
897  * update the Interrupt Redirection Table. "Device Logical ID"
898  * is built out of this PCI bus's instance GUID and the function
899  * number of the device.
900  */
901 static void hv_irq_unmask(struct irq_data *data)
902 {
903 	struct msi_desc *msi_desc = irq_data_get_msi_desc(data);
904 	struct irq_cfg *cfg = irqd_cfg(data);
905 	struct retarget_msi_interrupt *params;
906 	struct hv_pcibus_device *hbus;
907 	struct cpumask *dest;
908 	struct pci_bus *pbus;
909 	struct pci_dev *pdev;
910 	unsigned long flags;
911 	u32 var_size = 0;
912 	int cpu_vmbus;
913 	int cpu;
914 	u64 res;
915 
916 	dest = irq_data_get_effective_affinity_mask(data);
917 	pdev = msi_desc_to_pci_dev(msi_desc);
918 	pbus = pdev->bus;
919 	hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
920 
921 	spin_lock_irqsave(&hbus->retarget_msi_interrupt_lock, flags);
922 
923 	params = &hbus->retarget_msi_interrupt_params;
924 	memset(params, 0, sizeof(*params));
925 	params->partition_id = HV_PARTITION_ID_SELF;
926 	params->int_entry.source = 1; /* MSI(-X) */
927 	params->int_entry.address = msi_desc->msg.address_lo;
928 	params->int_entry.data = msi_desc->msg.data;
929 	params->device_id = (hbus->hdev->dev_instance.b[5] << 24) |
930 			   (hbus->hdev->dev_instance.b[4] << 16) |
931 			   (hbus->hdev->dev_instance.b[7] << 8) |
932 			   (hbus->hdev->dev_instance.b[6] & 0xf8) |
933 			   PCI_FUNC(pdev->devfn);
934 	params->int_target.vector = cfg->vector;
935 
936 	/*
937 	 * Honoring apic->irq_delivery_mode set to dest_Fixed by
938 	 * setting the HV_DEVICE_INTERRUPT_TARGET_MULTICAST flag results in a
939 	 * spurious interrupt storm. Not doing so does not seem to have a
940 	 * negative effect (yet?).
941 	 */
942 
943 	if (pci_protocol_version >= PCI_PROTOCOL_VERSION_1_2) {
944 		/*
945 		 * PCI_PROTOCOL_VERSION_1_2 supports the VP_SET version of the
946 		 * HVCALL_RETARGET_INTERRUPT hypercall, which also coincides
947 		 * with >64 VP support.
948 		 * ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED
949 		 * is not sufficient for this hypercall.
950 		 */
951 		params->int_target.flags |=
952 			HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET;
953 		params->int_target.vp_set.valid_banks =
954 			(1ull << HV_VP_SET_BANK_COUNT_MAX) - 1;
955 
956 		/*
957 		 * var-sized hypercall, var-size starts after vp_mask (thus
958 		 * vp_set.format does not count, but vp_set.valid_banks does).
959 		 */
960 		var_size = 1 + HV_VP_SET_BANK_COUNT_MAX;
961 
962 		for_each_cpu_and(cpu, dest, cpu_online_mask) {
963 			cpu_vmbus = hv_cpu_number_to_vp_number(cpu);
964 
965 			if (cpu_vmbus >= HV_VP_SET_BANK_COUNT_MAX * 64) {
966 				dev_err(&hbus->hdev->device,
967 					"too high CPU %d", cpu_vmbus);
968 				res = 1;
969 				goto exit_unlock;
970 			}
971 
972 			params->int_target.vp_set.masks[cpu_vmbus / 64] |=
973 				(1ULL << (cpu_vmbus & 63));
974 		}
975 	} else {
976 		for_each_cpu_and(cpu, dest, cpu_online_mask) {
977 			params->int_target.vp_mask |=
978 				(1ULL << hv_cpu_number_to_vp_number(cpu));
979 		}
980 	}
981 
982 	res = hv_do_hypercall(HVCALL_RETARGET_INTERRUPT | (var_size << 17),
983 			      params, NULL);
984 
985 exit_unlock:
986 	spin_unlock_irqrestore(&hbus->retarget_msi_interrupt_lock, flags);
987 
988 	if (res) {
989 		dev_err(&hbus->hdev->device,
990 			"%s() failed: %#llx", __func__, res);
991 		return;
992 	}
993 
994 	pci_msi_unmask_irq(data);
995 }
996 
997 struct compose_comp_ctxt {
998 	struct hv_pci_compl comp_pkt;
999 	struct tran_int_desc int_desc;
1000 };
1001 
1002 static void hv_pci_compose_compl(void *context, struct pci_response *resp,
1003 				 int resp_packet_size)
1004 {
1005 	struct compose_comp_ctxt *comp_pkt = context;
1006 	struct pci_create_int_response *int_resp =
1007 		(struct pci_create_int_response *)resp;
1008 
1009 	comp_pkt->comp_pkt.completion_status = resp->status;
1010 	comp_pkt->int_desc = int_resp->int_desc;
1011 	complete(&comp_pkt->comp_pkt.host_event);
1012 }
1013 
1014 static u32 hv_compose_msi_req_v1(
1015 	struct pci_create_interrupt *int_pkt, struct cpumask *affinity,
1016 	u32 slot, u8 vector)
1017 {
1018 	int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE;
1019 	int_pkt->wslot.slot = slot;
1020 	int_pkt->int_desc.vector = vector;
1021 	int_pkt->int_desc.vector_count = 1;
1022 	int_pkt->int_desc.delivery_mode = dest_Fixed;
1023 
1024 	/*
1025 	 * Create MSI w/ dummy vCPU set, overwritten by subsequent retarget in
1026 	 * hv_irq_unmask().
1027 	 */
1028 	int_pkt->int_desc.cpu_mask = CPU_AFFINITY_ALL;
1029 
1030 	return sizeof(*int_pkt);
1031 }
1032 
1033 static u32 hv_compose_msi_req_v2(
1034 	struct pci_create_interrupt2 *int_pkt, struct cpumask *affinity,
1035 	u32 slot, u8 vector)
1036 {
1037 	int cpu;
1038 
1039 	int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE2;
1040 	int_pkt->wslot.slot = slot;
1041 	int_pkt->int_desc.vector = vector;
1042 	int_pkt->int_desc.vector_count = 1;
1043 	int_pkt->int_desc.delivery_mode = dest_Fixed;
1044 
1045 	/*
1046 	 * Create MSI w/ dummy vCPU set targeting just one vCPU, overwritten
1047 	 * by subsequent retarget in hv_irq_unmask().
1048 	 */
1049 	cpu = cpumask_first_and(affinity, cpu_online_mask);
1050 	int_pkt->int_desc.processor_array[0] =
1051 		hv_cpu_number_to_vp_number(cpu);
1052 	int_pkt->int_desc.processor_count = 1;
1053 
1054 	return sizeof(*int_pkt);
1055 }
1056 
1057 /**
1058  * hv_compose_msi_msg() - Supplies a valid MSI address/data
1059  * @data:	Everything about this MSI
1060  * @msg:	Buffer that is filled in by this function
1061  *
1062  * This function unpacks the IRQ looking for target CPU set, IDT
1063  * vector and mode and sends a message to the parent partition
1064  * asking for a mapping for that tuple in this partition.  The
1065  * response supplies a data value and address to which that data
1066  * should be written to trigger that interrupt.
1067  */
1068 static void hv_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
1069 {
1070 	struct irq_cfg *cfg = irqd_cfg(data);
1071 	struct hv_pcibus_device *hbus;
1072 	struct hv_pci_dev *hpdev;
1073 	struct pci_bus *pbus;
1074 	struct pci_dev *pdev;
1075 	struct cpumask *dest;
1076 	unsigned long flags;
1077 	struct compose_comp_ctxt comp;
1078 	struct tran_int_desc *int_desc;
1079 	struct {
1080 		struct pci_packet pci_pkt;
1081 		union {
1082 			struct pci_create_interrupt v1;
1083 			struct pci_create_interrupt2 v2;
1084 		} int_pkts;
1085 	} __packed ctxt;
1086 
1087 	u32 size;
1088 	int ret;
1089 
1090 	pdev = msi_desc_to_pci_dev(irq_data_get_msi_desc(data));
1091 	dest = irq_data_get_effective_affinity_mask(data);
1092 	pbus = pdev->bus;
1093 	hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
1094 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1095 	if (!hpdev)
1096 		goto return_null_message;
1097 
1098 	/* Free any previous message that might have already been composed. */
1099 	if (data->chip_data) {
1100 		int_desc = data->chip_data;
1101 		data->chip_data = NULL;
1102 		hv_int_desc_free(hpdev, int_desc);
1103 	}
1104 
1105 	int_desc = kzalloc(sizeof(*int_desc), GFP_ATOMIC);
1106 	if (!int_desc)
1107 		goto drop_reference;
1108 
1109 	memset(&ctxt, 0, sizeof(ctxt));
1110 	init_completion(&comp.comp_pkt.host_event);
1111 	ctxt.pci_pkt.completion_func = hv_pci_compose_compl;
1112 	ctxt.pci_pkt.compl_ctxt = &comp;
1113 
1114 	switch (pci_protocol_version) {
1115 	case PCI_PROTOCOL_VERSION_1_1:
1116 		size = hv_compose_msi_req_v1(&ctxt.int_pkts.v1,
1117 					dest,
1118 					hpdev->desc.win_slot.slot,
1119 					cfg->vector);
1120 		break;
1121 
1122 	case PCI_PROTOCOL_VERSION_1_2:
1123 		size = hv_compose_msi_req_v2(&ctxt.int_pkts.v2,
1124 					dest,
1125 					hpdev->desc.win_slot.slot,
1126 					cfg->vector);
1127 		break;
1128 
1129 	default:
1130 		/* As we only negotiate protocol versions known to this driver,
1131 		 * this path should never hit. However, this is it not a hot
1132 		 * path so we print a message to aid future updates.
1133 		 */
1134 		dev_err(&hbus->hdev->device,
1135 			"Unexpected vPCI protocol, update driver.");
1136 		goto free_int_desc;
1137 	}
1138 
1139 	ret = vmbus_sendpacket(hpdev->hbus->hdev->channel, &ctxt.int_pkts,
1140 			       size, (unsigned long)&ctxt.pci_pkt,
1141 			       VM_PKT_DATA_INBAND,
1142 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1143 	if (ret) {
1144 		dev_err(&hbus->hdev->device,
1145 			"Sending request for interrupt failed: 0x%x",
1146 			comp.comp_pkt.completion_status);
1147 		goto free_int_desc;
1148 	}
1149 
1150 	/*
1151 	 * Since this function is called with IRQ locks held, can't
1152 	 * do normal wait for completion; instead poll.
1153 	 */
1154 	while (!try_wait_for_completion(&comp.comp_pkt.host_event)) {
1155 		/* 0xFFFF means an invalid PCI VENDOR ID. */
1156 		if (hv_pcifront_get_vendor_id(hpdev) == 0xFFFF) {
1157 			dev_err_once(&hbus->hdev->device,
1158 				     "the device has gone\n");
1159 			goto free_int_desc;
1160 		}
1161 
1162 		/*
1163 		 * When the higher level interrupt code calls us with
1164 		 * interrupt disabled, we must poll the channel by calling
1165 		 * the channel callback directly when channel->target_cpu is
1166 		 * the current CPU. When the higher level interrupt code
1167 		 * calls us with interrupt enabled, let's add the
1168 		 * local_irq_save()/restore() to avoid race:
1169 		 * hv_pci_onchannelcallback() can also run in tasklet.
1170 		 */
1171 		local_irq_save(flags);
1172 
1173 		if (hbus->hdev->channel->target_cpu == smp_processor_id())
1174 			hv_pci_onchannelcallback(hbus);
1175 
1176 		local_irq_restore(flags);
1177 
1178 		if (hpdev->state == hv_pcichild_ejecting) {
1179 			dev_err_once(&hbus->hdev->device,
1180 				     "the device is being ejected\n");
1181 			goto free_int_desc;
1182 		}
1183 
1184 		udelay(100);
1185 	}
1186 
1187 	if (comp.comp_pkt.completion_status < 0) {
1188 		dev_err(&hbus->hdev->device,
1189 			"Request for interrupt failed: 0x%x",
1190 			comp.comp_pkt.completion_status);
1191 		goto free_int_desc;
1192 	}
1193 
1194 	/*
1195 	 * Record the assignment so that this can be unwound later. Using
1196 	 * irq_set_chip_data() here would be appropriate, but the lock it takes
1197 	 * is already held.
1198 	 */
1199 	*int_desc = comp.int_desc;
1200 	data->chip_data = int_desc;
1201 
1202 	/* Pass up the result. */
1203 	msg->address_hi = comp.int_desc.address >> 32;
1204 	msg->address_lo = comp.int_desc.address & 0xffffffff;
1205 	msg->data = comp.int_desc.data;
1206 
1207 	put_pcichild(hpdev);
1208 	return;
1209 
1210 free_int_desc:
1211 	kfree(int_desc);
1212 drop_reference:
1213 	put_pcichild(hpdev);
1214 return_null_message:
1215 	msg->address_hi = 0;
1216 	msg->address_lo = 0;
1217 	msg->data = 0;
1218 }
1219 
1220 /* HW Interrupt Chip Descriptor */
1221 static struct irq_chip hv_msi_irq_chip = {
1222 	.name			= "Hyper-V PCIe MSI",
1223 	.irq_compose_msi_msg	= hv_compose_msi_msg,
1224 	.irq_set_affinity	= hv_set_affinity,
1225 	.irq_ack		= irq_chip_ack_parent,
1226 	.irq_mask		= hv_irq_mask,
1227 	.irq_unmask		= hv_irq_unmask,
1228 };
1229 
1230 static irq_hw_number_t hv_msi_domain_ops_get_hwirq(struct msi_domain_info *info,
1231 						   msi_alloc_info_t *arg)
1232 {
1233 	return arg->msi_hwirq;
1234 }
1235 
1236 static struct msi_domain_ops hv_msi_ops = {
1237 	.get_hwirq	= hv_msi_domain_ops_get_hwirq,
1238 	.msi_prepare	= pci_msi_prepare,
1239 	.set_desc	= pci_msi_set_desc,
1240 	.msi_free	= hv_msi_free,
1241 };
1242 
1243 /**
1244  * hv_pcie_init_irq_domain() - Initialize IRQ domain
1245  * @hbus:	The root PCI bus
1246  *
1247  * This function creates an IRQ domain which will be used for
1248  * interrupts from devices that have been passed through.  These
1249  * devices only support MSI and MSI-X, not line-based interrupts
1250  * or simulations of line-based interrupts through PCIe's
1251  * fabric-layer messages.  Because interrupts are remapped, we
1252  * can support multi-message MSI here.
1253  *
1254  * Return: '0' on success and error value on failure
1255  */
1256 static int hv_pcie_init_irq_domain(struct hv_pcibus_device *hbus)
1257 {
1258 	hbus->msi_info.chip = &hv_msi_irq_chip;
1259 	hbus->msi_info.ops = &hv_msi_ops;
1260 	hbus->msi_info.flags = (MSI_FLAG_USE_DEF_DOM_OPS |
1261 		MSI_FLAG_USE_DEF_CHIP_OPS | MSI_FLAG_MULTI_PCI_MSI |
1262 		MSI_FLAG_PCI_MSIX);
1263 	hbus->msi_info.handler = handle_edge_irq;
1264 	hbus->msi_info.handler_name = "edge";
1265 	hbus->msi_info.data = hbus;
1266 	hbus->irq_domain = pci_msi_create_irq_domain(hbus->sysdata.fwnode,
1267 						     &hbus->msi_info,
1268 						     x86_vector_domain);
1269 	if (!hbus->irq_domain) {
1270 		dev_err(&hbus->hdev->device,
1271 			"Failed to build an MSI IRQ domain\n");
1272 		return -ENODEV;
1273 	}
1274 
1275 	return 0;
1276 }
1277 
1278 /**
1279  * get_bar_size() - Get the address space consumed by a BAR
1280  * @bar_val:	Value that a BAR returned after -1 was written
1281  *              to it.
1282  *
1283  * This function returns the size of the BAR, rounded up to 1
1284  * page.  It has to be rounded up because the hypervisor's page
1285  * table entry that maps the BAR into the VM can't specify an
1286  * offset within a page.  The invariant is that the hypervisor
1287  * must place any BARs of smaller than page length at the
1288  * beginning of a page.
1289  *
1290  * Return:	Size in bytes of the consumed MMIO space.
1291  */
1292 static u64 get_bar_size(u64 bar_val)
1293 {
1294 	return round_up((1 + ~(bar_val & PCI_BASE_ADDRESS_MEM_MASK)),
1295 			PAGE_SIZE);
1296 }
1297 
1298 /**
1299  * survey_child_resources() - Total all MMIO requirements
1300  * @hbus:	Root PCI bus, as understood by this driver
1301  */
1302 static void survey_child_resources(struct hv_pcibus_device *hbus)
1303 {
1304 	struct hv_pci_dev *hpdev;
1305 	resource_size_t bar_size = 0;
1306 	unsigned long flags;
1307 	struct completion *event;
1308 	u64 bar_val;
1309 	int i;
1310 
1311 	/* If nobody is waiting on the answer, don't compute it. */
1312 	event = xchg(&hbus->survey_event, NULL);
1313 	if (!event)
1314 		return;
1315 
1316 	/* If the answer has already been computed, go with it. */
1317 	if (hbus->low_mmio_space || hbus->high_mmio_space) {
1318 		complete(event);
1319 		return;
1320 	}
1321 
1322 	spin_lock_irqsave(&hbus->device_list_lock, flags);
1323 
1324 	/*
1325 	 * Due to an interesting quirk of the PCI spec, all memory regions
1326 	 * for a child device are a power of 2 in size and aligned in memory,
1327 	 * so it's sufficient to just add them up without tracking alignment.
1328 	 */
1329 	list_for_each_entry(hpdev, &hbus->children, list_entry) {
1330 		for (i = 0; i < 6; i++) {
1331 			if (hpdev->probed_bar[i] & PCI_BASE_ADDRESS_SPACE_IO)
1332 				dev_err(&hbus->hdev->device,
1333 					"There's an I/O BAR in this list!\n");
1334 
1335 			if (hpdev->probed_bar[i] != 0) {
1336 				/*
1337 				 * A probed BAR has all the upper bits set that
1338 				 * can be changed.
1339 				 */
1340 
1341 				bar_val = hpdev->probed_bar[i];
1342 				if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
1343 					bar_val |=
1344 					((u64)hpdev->probed_bar[++i] << 32);
1345 				else
1346 					bar_val |= 0xffffffff00000000ULL;
1347 
1348 				bar_size = get_bar_size(bar_val);
1349 
1350 				if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
1351 					hbus->high_mmio_space += bar_size;
1352 				else
1353 					hbus->low_mmio_space += bar_size;
1354 			}
1355 		}
1356 	}
1357 
1358 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1359 	complete(event);
1360 }
1361 
1362 /**
1363  * prepopulate_bars() - Fill in BARs with defaults
1364  * @hbus:	Root PCI bus, as understood by this driver
1365  *
1366  * The core PCI driver code seems much, much happier if the BARs
1367  * for a device have values upon first scan. So fill them in.
1368  * The algorithm below works down from large sizes to small,
1369  * attempting to pack the assignments optimally. The assumption,
1370  * enforced in other parts of the code, is that the beginning of
1371  * the memory-mapped I/O space will be aligned on the largest
1372  * BAR size.
1373  */
1374 static void prepopulate_bars(struct hv_pcibus_device *hbus)
1375 {
1376 	resource_size_t high_size = 0;
1377 	resource_size_t low_size = 0;
1378 	resource_size_t high_base = 0;
1379 	resource_size_t low_base = 0;
1380 	resource_size_t bar_size;
1381 	struct hv_pci_dev *hpdev;
1382 	unsigned long flags;
1383 	u64 bar_val;
1384 	u32 command;
1385 	bool high;
1386 	int i;
1387 
1388 	if (hbus->low_mmio_space) {
1389 		low_size = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
1390 		low_base = hbus->low_mmio_res->start;
1391 	}
1392 
1393 	if (hbus->high_mmio_space) {
1394 		high_size = 1ULL <<
1395 			(63 - __builtin_clzll(hbus->high_mmio_space));
1396 		high_base = hbus->high_mmio_res->start;
1397 	}
1398 
1399 	spin_lock_irqsave(&hbus->device_list_lock, flags);
1400 
1401 	/* Pick addresses for the BARs. */
1402 	do {
1403 		list_for_each_entry(hpdev, &hbus->children, list_entry) {
1404 			for (i = 0; i < 6; i++) {
1405 				bar_val = hpdev->probed_bar[i];
1406 				if (bar_val == 0)
1407 					continue;
1408 				high = bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64;
1409 				if (high) {
1410 					bar_val |=
1411 						((u64)hpdev->probed_bar[i + 1]
1412 						 << 32);
1413 				} else {
1414 					bar_val |= 0xffffffffULL << 32;
1415 				}
1416 				bar_size = get_bar_size(bar_val);
1417 				if (high) {
1418 					if (high_size != bar_size) {
1419 						i++;
1420 						continue;
1421 					}
1422 					_hv_pcifront_write_config(hpdev,
1423 						PCI_BASE_ADDRESS_0 + (4 * i),
1424 						4,
1425 						(u32)(high_base & 0xffffff00));
1426 					i++;
1427 					_hv_pcifront_write_config(hpdev,
1428 						PCI_BASE_ADDRESS_0 + (4 * i),
1429 						4, (u32)(high_base >> 32));
1430 					high_base += bar_size;
1431 				} else {
1432 					if (low_size != bar_size)
1433 						continue;
1434 					_hv_pcifront_write_config(hpdev,
1435 						PCI_BASE_ADDRESS_0 + (4 * i),
1436 						4,
1437 						(u32)(low_base & 0xffffff00));
1438 					low_base += bar_size;
1439 				}
1440 			}
1441 			if (high_size <= 1 && low_size <= 1) {
1442 				/* Set the memory enable bit. */
1443 				_hv_pcifront_read_config(hpdev, PCI_COMMAND, 2,
1444 							 &command);
1445 				command |= PCI_COMMAND_MEMORY;
1446 				_hv_pcifront_write_config(hpdev, PCI_COMMAND, 2,
1447 							  command);
1448 				break;
1449 			}
1450 		}
1451 
1452 		high_size >>= 1;
1453 		low_size >>= 1;
1454 	}  while (high_size || low_size);
1455 
1456 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1457 }
1458 
1459 /**
1460  * create_root_hv_pci_bus() - Expose a new root PCI bus
1461  * @hbus:	Root PCI bus, as understood by this driver
1462  *
1463  * Return: 0 on success, -errno on failure
1464  */
1465 static int create_root_hv_pci_bus(struct hv_pcibus_device *hbus)
1466 {
1467 	/* Register the device */
1468 	hbus->pci_bus = pci_create_root_bus(&hbus->hdev->device,
1469 					    0, /* bus number is always zero */
1470 					    &hv_pcifront_ops,
1471 					    &hbus->sysdata,
1472 					    &hbus->resources_for_children);
1473 	if (!hbus->pci_bus)
1474 		return -ENODEV;
1475 
1476 	hbus->pci_bus->msi = &hbus->msi_chip;
1477 	hbus->pci_bus->msi->dev = &hbus->hdev->device;
1478 
1479 	pci_lock_rescan_remove();
1480 	pci_scan_child_bus(hbus->pci_bus);
1481 	pci_bus_assign_resources(hbus->pci_bus);
1482 	pci_bus_add_devices(hbus->pci_bus);
1483 	pci_unlock_rescan_remove();
1484 	hbus->state = hv_pcibus_installed;
1485 	return 0;
1486 }
1487 
1488 struct q_res_req_compl {
1489 	struct completion host_event;
1490 	struct hv_pci_dev *hpdev;
1491 };
1492 
1493 /**
1494  * q_resource_requirements() - Query Resource Requirements
1495  * @context:		The completion context.
1496  * @resp:		The response that came from the host.
1497  * @resp_packet_size:	The size in bytes of resp.
1498  *
1499  * This function is invoked on completion of a Query Resource
1500  * Requirements packet.
1501  */
1502 static void q_resource_requirements(void *context, struct pci_response *resp,
1503 				    int resp_packet_size)
1504 {
1505 	struct q_res_req_compl *completion = context;
1506 	struct pci_q_res_req_response *q_res_req =
1507 		(struct pci_q_res_req_response *)resp;
1508 	int i;
1509 
1510 	if (resp->status < 0) {
1511 		dev_err(&completion->hpdev->hbus->hdev->device,
1512 			"query resource requirements failed: %x\n",
1513 			resp->status);
1514 	} else {
1515 		for (i = 0; i < 6; i++) {
1516 			completion->hpdev->probed_bar[i] =
1517 				q_res_req->probed_bar[i];
1518 		}
1519 	}
1520 
1521 	complete(&completion->host_event);
1522 }
1523 
1524 /**
1525  * new_pcichild_device() - Create a new child device
1526  * @hbus:	The internal struct tracking this root PCI bus.
1527  * @desc:	The information supplied so far from the host
1528  *              about the device.
1529  *
1530  * This function creates the tracking structure for a new child
1531  * device and kicks off the process of figuring out what it is.
1532  *
1533  * Return: Pointer to the new tracking struct
1534  */
1535 static struct hv_pci_dev *new_pcichild_device(struct hv_pcibus_device *hbus,
1536 		struct pci_function_description *desc)
1537 {
1538 	struct hv_pci_dev *hpdev;
1539 	struct pci_child_message *res_req;
1540 	struct q_res_req_compl comp_pkt;
1541 	struct {
1542 		struct pci_packet init_packet;
1543 		u8 buffer[sizeof(struct pci_child_message)];
1544 	} pkt;
1545 	unsigned long flags;
1546 	int ret;
1547 
1548 	hpdev = kzalloc(sizeof(*hpdev), GFP_ATOMIC);
1549 	if (!hpdev)
1550 		return NULL;
1551 
1552 	hpdev->hbus = hbus;
1553 
1554 	memset(&pkt, 0, sizeof(pkt));
1555 	init_completion(&comp_pkt.host_event);
1556 	comp_pkt.hpdev = hpdev;
1557 	pkt.init_packet.compl_ctxt = &comp_pkt;
1558 	pkt.init_packet.completion_func = q_resource_requirements;
1559 	res_req = (struct pci_child_message *)&pkt.init_packet.message;
1560 	res_req->message_type.type = PCI_QUERY_RESOURCE_REQUIREMENTS;
1561 	res_req->wslot.slot = desc->win_slot.slot;
1562 
1563 	ret = vmbus_sendpacket(hbus->hdev->channel, res_req,
1564 			       sizeof(struct pci_child_message),
1565 			       (unsigned long)&pkt.init_packet,
1566 			       VM_PKT_DATA_INBAND,
1567 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1568 	if (ret)
1569 		goto error;
1570 
1571 	if (wait_for_response(hbus->hdev, &comp_pkt.host_event))
1572 		goto error;
1573 
1574 	hpdev->desc = *desc;
1575 	refcount_set(&hpdev->refs, 1);
1576 	get_pcichild(hpdev);
1577 	spin_lock_irqsave(&hbus->device_list_lock, flags);
1578 
1579 	list_add_tail(&hpdev->list_entry, &hbus->children);
1580 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1581 	return hpdev;
1582 
1583 error:
1584 	kfree(hpdev);
1585 	return NULL;
1586 }
1587 
1588 /**
1589  * get_pcichild_wslot() - Find device from slot
1590  * @hbus:	Root PCI bus, as understood by this driver
1591  * @wslot:	Location on the bus
1592  *
1593  * This function looks up a PCI device and returns the internal
1594  * representation of it.  It acquires a reference on it, so that
1595  * the device won't be deleted while somebody is using it.  The
1596  * caller is responsible for calling put_pcichild() to release
1597  * this reference.
1598  *
1599  * Return:	Internal representation of a PCI device
1600  */
1601 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
1602 					     u32 wslot)
1603 {
1604 	unsigned long flags;
1605 	struct hv_pci_dev *iter, *hpdev = NULL;
1606 
1607 	spin_lock_irqsave(&hbus->device_list_lock, flags);
1608 	list_for_each_entry(iter, &hbus->children, list_entry) {
1609 		if (iter->desc.win_slot.slot == wslot) {
1610 			hpdev = iter;
1611 			get_pcichild(hpdev);
1612 			break;
1613 		}
1614 	}
1615 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1616 
1617 	return hpdev;
1618 }
1619 
1620 /**
1621  * pci_devices_present_work() - Handle new list of child devices
1622  * @work:	Work struct embedded in struct hv_dr_work
1623  *
1624  * "Bus Relations" is the Windows term for "children of this
1625  * bus."  The terminology is preserved here for people trying to
1626  * debug the interaction between Hyper-V and Linux.  This
1627  * function is called when the parent partition reports a list
1628  * of functions that should be observed under this PCI Express
1629  * port (bus).
1630  *
1631  * This function updates the list, and must tolerate being
1632  * called multiple times with the same information.  The typical
1633  * number of child devices is one, with very atypical cases
1634  * involving three or four, so the algorithms used here can be
1635  * simple and inefficient.
1636  *
1637  * It must also treat the omission of a previously observed device as
1638  * notification that the device no longer exists.
1639  *
1640  * Note that this function is serialized with hv_eject_device_work(),
1641  * because both are pushed to the ordered workqueue hbus->wq.
1642  */
1643 static void pci_devices_present_work(struct work_struct *work)
1644 {
1645 	u32 child_no;
1646 	bool found;
1647 	struct pci_function_description *new_desc;
1648 	struct hv_pci_dev *hpdev;
1649 	struct hv_pcibus_device *hbus;
1650 	struct list_head removed;
1651 	struct hv_dr_work *dr_wrk;
1652 	struct hv_dr_state *dr = NULL;
1653 	unsigned long flags;
1654 
1655 	dr_wrk = container_of(work, struct hv_dr_work, wrk);
1656 	hbus = dr_wrk->bus;
1657 	kfree(dr_wrk);
1658 
1659 	INIT_LIST_HEAD(&removed);
1660 
1661 	/* Pull this off the queue and process it if it was the last one. */
1662 	spin_lock_irqsave(&hbus->device_list_lock, flags);
1663 	while (!list_empty(&hbus->dr_list)) {
1664 		dr = list_first_entry(&hbus->dr_list, struct hv_dr_state,
1665 				      list_entry);
1666 		list_del(&dr->list_entry);
1667 
1668 		/* Throw this away if the list still has stuff in it. */
1669 		if (!list_empty(&hbus->dr_list)) {
1670 			kfree(dr);
1671 			continue;
1672 		}
1673 	}
1674 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1675 
1676 	if (!dr) {
1677 		put_hvpcibus(hbus);
1678 		return;
1679 	}
1680 
1681 	/* First, mark all existing children as reported missing. */
1682 	spin_lock_irqsave(&hbus->device_list_lock, flags);
1683 	list_for_each_entry(hpdev, &hbus->children, list_entry) {
1684 		hpdev->reported_missing = true;
1685 	}
1686 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1687 
1688 	/* Next, add back any reported devices. */
1689 	for (child_no = 0; child_no < dr->device_count; child_no++) {
1690 		found = false;
1691 		new_desc = &dr->func[child_no];
1692 
1693 		spin_lock_irqsave(&hbus->device_list_lock, flags);
1694 		list_for_each_entry(hpdev, &hbus->children, list_entry) {
1695 			if ((hpdev->desc.win_slot.slot == new_desc->win_slot.slot) &&
1696 			    (hpdev->desc.v_id == new_desc->v_id) &&
1697 			    (hpdev->desc.d_id == new_desc->d_id) &&
1698 			    (hpdev->desc.ser == new_desc->ser)) {
1699 				hpdev->reported_missing = false;
1700 				found = true;
1701 			}
1702 		}
1703 		spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1704 
1705 		if (!found) {
1706 			hpdev = new_pcichild_device(hbus, new_desc);
1707 			if (!hpdev)
1708 				dev_err(&hbus->hdev->device,
1709 					"couldn't record a child device.\n");
1710 		}
1711 	}
1712 
1713 	/* Move missing children to a list on the stack. */
1714 	spin_lock_irqsave(&hbus->device_list_lock, flags);
1715 	do {
1716 		found = false;
1717 		list_for_each_entry(hpdev, &hbus->children, list_entry) {
1718 			if (hpdev->reported_missing) {
1719 				found = true;
1720 				put_pcichild(hpdev);
1721 				list_move_tail(&hpdev->list_entry, &removed);
1722 				break;
1723 			}
1724 		}
1725 	} while (found);
1726 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1727 
1728 	/* Delete everything that should no longer exist. */
1729 	while (!list_empty(&removed)) {
1730 		hpdev = list_first_entry(&removed, struct hv_pci_dev,
1731 					 list_entry);
1732 		list_del(&hpdev->list_entry);
1733 		put_pcichild(hpdev);
1734 	}
1735 
1736 	switch (hbus->state) {
1737 	case hv_pcibus_installed:
1738 		/*
1739 		 * Tell the core to rescan bus
1740 		 * because there may have been changes.
1741 		 */
1742 		pci_lock_rescan_remove();
1743 		pci_scan_child_bus(hbus->pci_bus);
1744 		pci_unlock_rescan_remove();
1745 		break;
1746 
1747 	case hv_pcibus_init:
1748 	case hv_pcibus_probed:
1749 		survey_child_resources(hbus);
1750 		break;
1751 
1752 	default:
1753 		break;
1754 	}
1755 
1756 	put_hvpcibus(hbus);
1757 	kfree(dr);
1758 }
1759 
1760 /**
1761  * hv_pci_devices_present() - Handles list of new children
1762  * @hbus:	Root PCI bus, as understood by this driver
1763  * @relations:	Packet from host listing children
1764  *
1765  * This function is invoked whenever a new list of devices for
1766  * this bus appears.
1767  */
1768 static void hv_pci_devices_present(struct hv_pcibus_device *hbus,
1769 				   struct pci_bus_relations *relations)
1770 {
1771 	struct hv_dr_state *dr;
1772 	struct hv_dr_work *dr_wrk;
1773 	unsigned long flags;
1774 	bool pending_dr;
1775 
1776 	dr_wrk = kzalloc(sizeof(*dr_wrk), GFP_NOWAIT);
1777 	if (!dr_wrk)
1778 		return;
1779 
1780 	dr = kzalloc(offsetof(struct hv_dr_state, func) +
1781 		     (sizeof(struct pci_function_description) *
1782 		      (relations->device_count)), GFP_NOWAIT);
1783 	if (!dr)  {
1784 		kfree(dr_wrk);
1785 		return;
1786 	}
1787 
1788 	INIT_WORK(&dr_wrk->wrk, pci_devices_present_work);
1789 	dr_wrk->bus = hbus;
1790 	dr->device_count = relations->device_count;
1791 	if (dr->device_count != 0) {
1792 		memcpy(dr->func, relations->func,
1793 		       sizeof(struct pci_function_description) *
1794 		       dr->device_count);
1795 	}
1796 
1797 	spin_lock_irqsave(&hbus->device_list_lock, flags);
1798 	/*
1799 	 * If pending_dr is true, we have already queued a work,
1800 	 * which will see the new dr. Otherwise, we need to
1801 	 * queue a new work.
1802 	 */
1803 	pending_dr = !list_empty(&hbus->dr_list);
1804 	list_add_tail(&dr->list_entry, &hbus->dr_list);
1805 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1806 
1807 	if (pending_dr) {
1808 		kfree(dr_wrk);
1809 	} else {
1810 		get_hvpcibus(hbus);
1811 		queue_work(hbus->wq, &dr_wrk->wrk);
1812 	}
1813 }
1814 
1815 /**
1816  * hv_eject_device_work() - Asynchronously handles ejection
1817  * @work:	Work struct embedded in internal device struct
1818  *
1819  * This function handles ejecting a device.  Windows will
1820  * attempt to gracefully eject a device, waiting 60 seconds to
1821  * hear back from the guest OS that this completed successfully.
1822  * If this timer expires, the device will be forcibly removed.
1823  */
1824 static void hv_eject_device_work(struct work_struct *work)
1825 {
1826 	struct pci_eject_response *ejct_pkt;
1827 	struct hv_pci_dev *hpdev;
1828 	struct pci_dev *pdev;
1829 	unsigned long flags;
1830 	int wslot;
1831 	struct {
1832 		struct pci_packet pkt;
1833 		u8 buffer[sizeof(struct pci_eject_response)];
1834 	} ctxt;
1835 
1836 	hpdev = container_of(work, struct hv_pci_dev, wrk);
1837 
1838 	WARN_ON(hpdev->state != hv_pcichild_ejecting);
1839 
1840 	/*
1841 	 * Ejection can come before or after the PCI bus has been set up, so
1842 	 * attempt to find it and tear down the bus state, if it exists.  This
1843 	 * must be done without constructs like pci_domain_nr(hbus->pci_bus)
1844 	 * because hbus->pci_bus may not exist yet.
1845 	 */
1846 	wslot = wslot_to_devfn(hpdev->desc.win_slot.slot);
1847 	pdev = pci_get_domain_bus_and_slot(hpdev->hbus->sysdata.domain, 0,
1848 					   wslot);
1849 	if (pdev) {
1850 		pci_lock_rescan_remove();
1851 		pci_stop_and_remove_bus_device(pdev);
1852 		pci_dev_put(pdev);
1853 		pci_unlock_rescan_remove();
1854 	}
1855 
1856 	spin_lock_irqsave(&hpdev->hbus->device_list_lock, flags);
1857 	list_del(&hpdev->list_entry);
1858 	spin_unlock_irqrestore(&hpdev->hbus->device_list_lock, flags);
1859 
1860 	memset(&ctxt, 0, sizeof(ctxt));
1861 	ejct_pkt = (struct pci_eject_response *)&ctxt.pkt.message;
1862 	ejct_pkt->message_type.type = PCI_EJECTION_COMPLETE;
1863 	ejct_pkt->wslot.slot = hpdev->desc.win_slot.slot;
1864 	vmbus_sendpacket(hpdev->hbus->hdev->channel, ejct_pkt,
1865 			 sizeof(*ejct_pkt), (unsigned long)&ctxt.pkt,
1866 			 VM_PKT_DATA_INBAND, 0);
1867 
1868 	put_pcichild(hpdev);
1869 	put_pcichild(hpdev);
1870 	put_hvpcibus(hpdev->hbus);
1871 }
1872 
1873 /**
1874  * hv_pci_eject_device() - Handles device ejection
1875  * @hpdev:	Internal device tracking struct
1876  *
1877  * This function is invoked when an ejection packet arrives.  It
1878  * just schedules work so that we don't re-enter the packet
1879  * delivery code handling the ejection.
1880  */
1881 static void hv_pci_eject_device(struct hv_pci_dev *hpdev)
1882 {
1883 	hpdev->state = hv_pcichild_ejecting;
1884 	get_pcichild(hpdev);
1885 	INIT_WORK(&hpdev->wrk, hv_eject_device_work);
1886 	get_hvpcibus(hpdev->hbus);
1887 	queue_work(hpdev->hbus->wq, &hpdev->wrk);
1888 }
1889 
1890 /**
1891  * hv_pci_onchannelcallback() - Handles incoming packets
1892  * @context:	Internal bus tracking struct
1893  *
1894  * This function is invoked whenever the host sends a packet to
1895  * this channel (which is private to this root PCI bus).
1896  */
1897 static void hv_pci_onchannelcallback(void *context)
1898 {
1899 	const int packet_size = 0x100;
1900 	int ret;
1901 	struct hv_pcibus_device *hbus = context;
1902 	u32 bytes_recvd;
1903 	u64 req_id;
1904 	struct vmpacket_descriptor *desc;
1905 	unsigned char *buffer;
1906 	int bufferlen = packet_size;
1907 	struct pci_packet *comp_packet;
1908 	struct pci_response *response;
1909 	struct pci_incoming_message *new_message;
1910 	struct pci_bus_relations *bus_rel;
1911 	struct pci_dev_incoming *dev_message;
1912 	struct hv_pci_dev *hpdev;
1913 
1914 	buffer = kmalloc(bufferlen, GFP_ATOMIC);
1915 	if (!buffer)
1916 		return;
1917 
1918 	while (1) {
1919 		ret = vmbus_recvpacket_raw(hbus->hdev->channel, buffer,
1920 					   bufferlen, &bytes_recvd, &req_id);
1921 
1922 		if (ret == -ENOBUFS) {
1923 			kfree(buffer);
1924 			/* Handle large packet */
1925 			bufferlen = bytes_recvd;
1926 			buffer = kmalloc(bytes_recvd, GFP_ATOMIC);
1927 			if (!buffer)
1928 				return;
1929 			continue;
1930 		}
1931 
1932 		/* Zero length indicates there are no more packets. */
1933 		if (ret || !bytes_recvd)
1934 			break;
1935 
1936 		/*
1937 		 * All incoming packets must be at least as large as a
1938 		 * response.
1939 		 */
1940 		if (bytes_recvd <= sizeof(struct pci_response))
1941 			continue;
1942 		desc = (struct vmpacket_descriptor *)buffer;
1943 
1944 		switch (desc->type) {
1945 		case VM_PKT_COMP:
1946 
1947 			/*
1948 			 * The host is trusted, and thus it's safe to interpret
1949 			 * this transaction ID as a pointer.
1950 			 */
1951 			comp_packet = (struct pci_packet *)req_id;
1952 			response = (struct pci_response *)buffer;
1953 			comp_packet->completion_func(comp_packet->compl_ctxt,
1954 						     response,
1955 						     bytes_recvd);
1956 			break;
1957 
1958 		case VM_PKT_DATA_INBAND:
1959 
1960 			new_message = (struct pci_incoming_message *)buffer;
1961 			switch (new_message->message_type.type) {
1962 			case PCI_BUS_RELATIONS:
1963 
1964 				bus_rel = (struct pci_bus_relations *)buffer;
1965 				if (bytes_recvd <
1966 				    offsetof(struct pci_bus_relations, func) +
1967 				    (sizeof(struct pci_function_description) *
1968 				     (bus_rel->device_count))) {
1969 					dev_err(&hbus->hdev->device,
1970 						"bus relations too small\n");
1971 					break;
1972 				}
1973 
1974 				hv_pci_devices_present(hbus, bus_rel);
1975 				break;
1976 
1977 			case PCI_EJECT:
1978 
1979 				dev_message = (struct pci_dev_incoming *)buffer;
1980 				hpdev = get_pcichild_wslot(hbus,
1981 						      dev_message->wslot.slot);
1982 				if (hpdev) {
1983 					hv_pci_eject_device(hpdev);
1984 					put_pcichild(hpdev);
1985 				}
1986 				break;
1987 
1988 			default:
1989 				dev_warn(&hbus->hdev->device,
1990 					"Unimplemented protocol message %x\n",
1991 					new_message->message_type.type);
1992 				break;
1993 			}
1994 			break;
1995 
1996 		default:
1997 			dev_err(&hbus->hdev->device,
1998 				"unhandled packet type %d, tid %llx len %d\n",
1999 				desc->type, req_id, bytes_recvd);
2000 			break;
2001 		}
2002 	}
2003 
2004 	kfree(buffer);
2005 }
2006 
2007 /**
2008  * hv_pci_protocol_negotiation() - Set up protocol
2009  * @hdev:	VMBus's tracking struct for this root PCI bus
2010  *
2011  * This driver is intended to support running on Windows 10
2012  * (server) and later versions. It will not run on earlier
2013  * versions, as they assume that many of the operations which
2014  * Linux needs accomplished with a spinlock held were done via
2015  * asynchronous messaging via VMBus.  Windows 10 increases the
2016  * surface area of PCI emulation so that these actions can take
2017  * place by suspending a virtual processor for their duration.
2018  *
2019  * This function negotiates the channel protocol version,
2020  * failing if the host doesn't support the necessary protocol
2021  * level.
2022  */
2023 static int hv_pci_protocol_negotiation(struct hv_device *hdev)
2024 {
2025 	struct pci_version_request *version_req;
2026 	struct hv_pci_compl comp_pkt;
2027 	struct pci_packet *pkt;
2028 	int ret;
2029 	int i;
2030 
2031 	/*
2032 	 * Initiate the handshake with the host and negotiate
2033 	 * a version that the host can support. We start with the
2034 	 * highest version number and go down if the host cannot
2035 	 * support it.
2036 	 */
2037 	pkt = kzalloc(sizeof(*pkt) + sizeof(*version_req), GFP_KERNEL);
2038 	if (!pkt)
2039 		return -ENOMEM;
2040 
2041 	init_completion(&comp_pkt.host_event);
2042 	pkt->completion_func = hv_pci_generic_compl;
2043 	pkt->compl_ctxt = &comp_pkt;
2044 	version_req = (struct pci_version_request *)&pkt->message;
2045 	version_req->message_type.type = PCI_QUERY_PROTOCOL_VERSION;
2046 
2047 	for (i = 0; i < ARRAY_SIZE(pci_protocol_versions); i++) {
2048 		version_req->protocol_version = pci_protocol_versions[i];
2049 		ret = vmbus_sendpacket(hdev->channel, version_req,
2050 				sizeof(struct pci_version_request),
2051 				(unsigned long)pkt, VM_PKT_DATA_INBAND,
2052 				VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2053 		if (!ret)
2054 			ret = wait_for_response(hdev, &comp_pkt.host_event);
2055 
2056 		if (ret) {
2057 			dev_err(&hdev->device,
2058 				"PCI Pass-through VSP failed to request version: %d",
2059 				ret);
2060 			goto exit;
2061 		}
2062 
2063 		if (comp_pkt.completion_status >= 0) {
2064 			pci_protocol_version = pci_protocol_versions[i];
2065 			dev_info(&hdev->device,
2066 				"PCI VMBus probing: Using version %#x\n",
2067 				pci_protocol_version);
2068 			goto exit;
2069 		}
2070 
2071 		if (comp_pkt.completion_status != STATUS_REVISION_MISMATCH) {
2072 			dev_err(&hdev->device,
2073 				"PCI Pass-through VSP failed version request: %#x",
2074 				comp_pkt.completion_status);
2075 			ret = -EPROTO;
2076 			goto exit;
2077 		}
2078 
2079 		reinit_completion(&comp_pkt.host_event);
2080 	}
2081 
2082 	dev_err(&hdev->device,
2083 		"PCI pass-through VSP failed to find supported version");
2084 	ret = -EPROTO;
2085 
2086 exit:
2087 	kfree(pkt);
2088 	return ret;
2089 }
2090 
2091 /**
2092  * hv_pci_free_bridge_windows() - Release memory regions for the
2093  * bus
2094  * @hbus:	Root PCI bus, as understood by this driver
2095  */
2096 static void hv_pci_free_bridge_windows(struct hv_pcibus_device *hbus)
2097 {
2098 	/*
2099 	 * Set the resources back to the way they looked when they
2100 	 * were allocated by setting IORESOURCE_BUSY again.
2101 	 */
2102 
2103 	if (hbus->low_mmio_space && hbus->low_mmio_res) {
2104 		hbus->low_mmio_res->flags |= IORESOURCE_BUSY;
2105 		vmbus_free_mmio(hbus->low_mmio_res->start,
2106 				resource_size(hbus->low_mmio_res));
2107 	}
2108 
2109 	if (hbus->high_mmio_space && hbus->high_mmio_res) {
2110 		hbus->high_mmio_res->flags |= IORESOURCE_BUSY;
2111 		vmbus_free_mmio(hbus->high_mmio_res->start,
2112 				resource_size(hbus->high_mmio_res));
2113 	}
2114 }
2115 
2116 /**
2117  * hv_pci_allocate_bridge_windows() - Allocate memory regions
2118  * for the bus
2119  * @hbus:	Root PCI bus, as understood by this driver
2120  *
2121  * This function calls vmbus_allocate_mmio(), which is itself a
2122  * bit of a compromise.  Ideally, we might change the pnp layer
2123  * in the kernel such that it comprehends either PCI devices
2124  * which are "grandchildren of ACPI," with some intermediate bus
2125  * node (in this case, VMBus) or change it such that it
2126  * understands VMBus.  The pnp layer, however, has been declared
2127  * deprecated, and not subject to change.
2128  *
2129  * The workaround, implemented here, is to ask VMBus to allocate
2130  * MMIO space for this bus.  VMBus itself knows which ranges are
2131  * appropriate by looking at its own ACPI objects.  Then, after
2132  * these ranges are claimed, they're modified to look like they
2133  * would have looked if the ACPI and pnp code had allocated
2134  * bridge windows.  These descriptors have to exist in this form
2135  * in order to satisfy the code which will get invoked when the
2136  * endpoint PCI function driver calls request_mem_region() or
2137  * request_mem_region_exclusive().
2138  *
2139  * Return: 0 on success, -errno on failure
2140  */
2141 static int hv_pci_allocate_bridge_windows(struct hv_pcibus_device *hbus)
2142 {
2143 	resource_size_t align;
2144 	int ret;
2145 
2146 	if (hbus->low_mmio_space) {
2147 		align = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
2148 		ret = vmbus_allocate_mmio(&hbus->low_mmio_res, hbus->hdev, 0,
2149 					  (u64)(u32)0xffffffff,
2150 					  hbus->low_mmio_space,
2151 					  align, false);
2152 		if (ret) {
2153 			dev_err(&hbus->hdev->device,
2154 				"Need %#llx of low MMIO space. Consider reconfiguring the VM.\n",
2155 				hbus->low_mmio_space);
2156 			return ret;
2157 		}
2158 
2159 		/* Modify this resource to become a bridge window. */
2160 		hbus->low_mmio_res->flags |= IORESOURCE_WINDOW;
2161 		hbus->low_mmio_res->flags &= ~IORESOURCE_BUSY;
2162 		pci_add_resource(&hbus->resources_for_children,
2163 				 hbus->low_mmio_res);
2164 	}
2165 
2166 	if (hbus->high_mmio_space) {
2167 		align = 1ULL << (63 - __builtin_clzll(hbus->high_mmio_space));
2168 		ret = vmbus_allocate_mmio(&hbus->high_mmio_res, hbus->hdev,
2169 					  0x100000000, -1,
2170 					  hbus->high_mmio_space, align,
2171 					  false);
2172 		if (ret) {
2173 			dev_err(&hbus->hdev->device,
2174 				"Need %#llx of high MMIO space. Consider reconfiguring the VM.\n",
2175 				hbus->high_mmio_space);
2176 			goto release_low_mmio;
2177 		}
2178 
2179 		/* Modify this resource to become a bridge window. */
2180 		hbus->high_mmio_res->flags |= IORESOURCE_WINDOW;
2181 		hbus->high_mmio_res->flags &= ~IORESOURCE_BUSY;
2182 		pci_add_resource(&hbus->resources_for_children,
2183 				 hbus->high_mmio_res);
2184 	}
2185 
2186 	return 0;
2187 
2188 release_low_mmio:
2189 	if (hbus->low_mmio_res) {
2190 		vmbus_free_mmio(hbus->low_mmio_res->start,
2191 				resource_size(hbus->low_mmio_res));
2192 	}
2193 
2194 	return ret;
2195 }
2196 
2197 /**
2198  * hv_allocate_config_window() - Find MMIO space for PCI Config
2199  * @hbus:	Root PCI bus, as understood by this driver
2200  *
2201  * This function claims memory-mapped I/O space for accessing
2202  * configuration space for the functions on this bus.
2203  *
2204  * Return: 0 on success, -errno on failure
2205  */
2206 static int hv_allocate_config_window(struct hv_pcibus_device *hbus)
2207 {
2208 	int ret;
2209 
2210 	/*
2211 	 * Set up a region of MMIO space to use for accessing configuration
2212 	 * space.
2213 	 */
2214 	ret = vmbus_allocate_mmio(&hbus->mem_config, hbus->hdev, 0, -1,
2215 				  PCI_CONFIG_MMIO_LENGTH, 0x1000, false);
2216 	if (ret)
2217 		return ret;
2218 
2219 	/*
2220 	 * vmbus_allocate_mmio() gets used for allocating both device endpoint
2221 	 * resource claims (those which cannot be overlapped) and the ranges
2222 	 * which are valid for the children of this bus, which are intended
2223 	 * to be overlapped by those children.  Set the flag on this claim
2224 	 * meaning that this region can't be overlapped.
2225 	 */
2226 
2227 	hbus->mem_config->flags |= IORESOURCE_BUSY;
2228 
2229 	return 0;
2230 }
2231 
2232 static void hv_free_config_window(struct hv_pcibus_device *hbus)
2233 {
2234 	vmbus_free_mmio(hbus->mem_config->start, PCI_CONFIG_MMIO_LENGTH);
2235 }
2236 
2237 /**
2238  * hv_pci_enter_d0() - Bring the "bus" into the D0 power state
2239  * @hdev:	VMBus's tracking struct for this root PCI bus
2240  *
2241  * Return: 0 on success, -errno on failure
2242  */
2243 static int hv_pci_enter_d0(struct hv_device *hdev)
2244 {
2245 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2246 	struct pci_bus_d0_entry *d0_entry;
2247 	struct hv_pci_compl comp_pkt;
2248 	struct pci_packet *pkt;
2249 	int ret;
2250 
2251 	/*
2252 	 * Tell the host that the bus is ready to use, and moved into the
2253 	 * powered-on state.  This includes telling the host which region
2254 	 * of memory-mapped I/O space has been chosen for configuration space
2255 	 * access.
2256 	 */
2257 	pkt = kzalloc(sizeof(*pkt) + sizeof(*d0_entry), GFP_KERNEL);
2258 	if (!pkt)
2259 		return -ENOMEM;
2260 
2261 	init_completion(&comp_pkt.host_event);
2262 	pkt->completion_func = hv_pci_generic_compl;
2263 	pkt->compl_ctxt = &comp_pkt;
2264 	d0_entry = (struct pci_bus_d0_entry *)&pkt->message;
2265 	d0_entry->message_type.type = PCI_BUS_D0ENTRY;
2266 	d0_entry->mmio_base = hbus->mem_config->start;
2267 
2268 	ret = vmbus_sendpacket(hdev->channel, d0_entry, sizeof(*d0_entry),
2269 			       (unsigned long)pkt, VM_PKT_DATA_INBAND,
2270 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2271 	if (!ret)
2272 		ret = wait_for_response(hdev, &comp_pkt.host_event);
2273 
2274 	if (ret)
2275 		goto exit;
2276 
2277 	if (comp_pkt.completion_status < 0) {
2278 		dev_err(&hdev->device,
2279 			"PCI Pass-through VSP failed D0 Entry with status %x\n",
2280 			comp_pkt.completion_status);
2281 		ret = -EPROTO;
2282 		goto exit;
2283 	}
2284 
2285 	ret = 0;
2286 
2287 exit:
2288 	kfree(pkt);
2289 	return ret;
2290 }
2291 
2292 /**
2293  * hv_pci_query_relations() - Ask host to send list of child
2294  * devices
2295  * @hdev:	VMBus's tracking struct for this root PCI bus
2296  *
2297  * Return: 0 on success, -errno on failure
2298  */
2299 static int hv_pci_query_relations(struct hv_device *hdev)
2300 {
2301 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2302 	struct pci_message message;
2303 	struct completion comp;
2304 	int ret;
2305 
2306 	/* Ask the host to send along the list of child devices */
2307 	init_completion(&comp);
2308 	if (cmpxchg(&hbus->survey_event, NULL, &comp))
2309 		return -ENOTEMPTY;
2310 
2311 	memset(&message, 0, sizeof(message));
2312 	message.type = PCI_QUERY_BUS_RELATIONS;
2313 
2314 	ret = vmbus_sendpacket(hdev->channel, &message, sizeof(message),
2315 			       0, VM_PKT_DATA_INBAND, 0);
2316 	if (!ret)
2317 		ret = wait_for_response(hdev, &comp);
2318 
2319 	return ret;
2320 }
2321 
2322 /**
2323  * hv_send_resources_allocated() - Report local resource choices
2324  * @hdev:	VMBus's tracking struct for this root PCI bus
2325  *
2326  * The host OS is expecting to be sent a request as a message
2327  * which contains all the resources that the device will use.
2328  * The response contains those same resources, "translated"
2329  * which is to say, the values which should be used by the
2330  * hardware, when it delivers an interrupt.  (MMIO resources are
2331  * used in local terms.)  This is nice for Windows, and lines up
2332  * with the FDO/PDO split, which doesn't exist in Linux.  Linux
2333  * is deeply expecting to scan an emulated PCI configuration
2334  * space.  So this message is sent here only to drive the state
2335  * machine on the host forward.
2336  *
2337  * Return: 0 on success, -errno on failure
2338  */
2339 static int hv_send_resources_allocated(struct hv_device *hdev)
2340 {
2341 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2342 	struct pci_resources_assigned *res_assigned;
2343 	struct pci_resources_assigned2 *res_assigned2;
2344 	struct hv_pci_compl comp_pkt;
2345 	struct hv_pci_dev *hpdev;
2346 	struct pci_packet *pkt;
2347 	size_t size_res;
2348 	u32 wslot;
2349 	int ret;
2350 
2351 	size_res = (pci_protocol_version < PCI_PROTOCOL_VERSION_1_2)
2352 			? sizeof(*res_assigned) : sizeof(*res_assigned2);
2353 
2354 	pkt = kmalloc(sizeof(*pkt) + size_res, GFP_KERNEL);
2355 	if (!pkt)
2356 		return -ENOMEM;
2357 
2358 	ret = 0;
2359 
2360 	for (wslot = 0; wslot < 256; wslot++) {
2361 		hpdev = get_pcichild_wslot(hbus, wslot);
2362 		if (!hpdev)
2363 			continue;
2364 
2365 		memset(pkt, 0, sizeof(*pkt) + size_res);
2366 		init_completion(&comp_pkt.host_event);
2367 		pkt->completion_func = hv_pci_generic_compl;
2368 		pkt->compl_ctxt = &comp_pkt;
2369 
2370 		if (pci_protocol_version < PCI_PROTOCOL_VERSION_1_2) {
2371 			res_assigned =
2372 				(struct pci_resources_assigned *)&pkt->message;
2373 			res_assigned->message_type.type =
2374 				PCI_RESOURCES_ASSIGNED;
2375 			res_assigned->wslot.slot = hpdev->desc.win_slot.slot;
2376 		} else {
2377 			res_assigned2 =
2378 				(struct pci_resources_assigned2 *)&pkt->message;
2379 			res_assigned2->message_type.type =
2380 				PCI_RESOURCES_ASSIGNED2;
2381 			res_assigned2->wslot.slot = hpdev->desc.win_slot.slot;
2382 		}
2383 		put_pcichild(hpdev);
2384 
2385 		ret = vmbus_sendpacket(hdev->channel, &pkt->message,
2386 				size_res, (unsigned long)pkt,
2387 				VM_PKT_DATA_INBAND,
2388 				VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2389 		if (!ret)
2390 			ret = wait_for_response(hdev, &comp_pkt.host_event);
2391 		if (ret)
2392 			break;
2393 
2394 		if (comp_pkt.completion_status < 0) {
2395 			ret = -EPROTO;
2396 			dev_err(&hdev->device,
2397 				"resource allocated returned 0x%x",
2398 				comp_pkt.completion_status);
2399 			break;
2400 		}
2401 	}
2402 
2403 	kfree(pkt);
2404 	return ret;
2405 }
2406 
2407 /**
2408  * hv_send_resources_released() - Report local resources
2409  * released
2410  * @hdev:	VMBus's tracking struct for this root PCI bus
2411  *
2412  * Return: 0 on success, -errno on failure
2413  */
2414 static int hv_send_resources_released(struct hv_device *hdev)
2415 {
2416 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2417 	struct pci_child_message pkt;
2418 	struct hv_pci_dev *hpdev;
2419 	u32 wslot;
2420 	int ret;
2421 
2422 	for (wslot = 0; wslot < 256; wslot++) {
2423 		hpdev = get_pcichild_wslot(hbus, wslot);
2424 		if (!hpdev)
2425 			continue;
2426 
2427 		memset(&pkt, 0, sizeof(pkt));
2428 		pkt.message_type.type = PCI_RESOURCES_RELEASED;
2429 		pkt.wslot.slot = hpdev->desc.win_slot.slot;
2430 
2431 		put_pcichild(hpdev);
2432 
2433 		ret = vmbus_sendpacket(hdev->channel, &pkt, sizeof(pkt), 0,
2434 				       VM_PKT_DATA_INBAND, 0);
2435 		if (ret)
2436 			return ret;
2437 	}
2438 
2439 	return 0;
2440 }
2441 
2442 static void get_hvpcibus(struct hv_pcibus_device *hbus)
2443 {
2444 	refcount_inc(&hbus->remove_lock);
2445 }
2446 
2447 static void put_hvpcibus(struct hv_pcibus_device *hbus)
2448 {
2449 	if (refcount_dec_and_test(&hbus->remove_lock))
2450 		complete(&hbus->remove_event);
2451 }
2452 
2453 /**
2454  * hv_pci_probe() - New VMBus channel probe, for a root PCI bus
2455  * @hdev:	VMBus's tracking struct for this root PCI bus
2456  * @dev_id:	Identifies the device itself
2457  *
2458  * Return: 0 on success, -errno on failure
2459  */
2460 static int hv_pci_probe(struct hv_device *hdev,
2461 			const struct hv_vmbus_device_id *dev_id)
2462 {
2463 	struct hv_pcibus_device *hbus;
2464 	int ret;
2465 
2466 	/*
2467 	 * hv_pcibus_device contains the hypercall arguments for retargeting in
2468 	 * hv_irq_unmask(). Those must not cross a page boundary.
2469 	 */
2470 	BUILD_BUG_ON(sizeof(*hbus) > PAGE_SIZE);
2471 
2472 	hbus = (struct hv_pcibus_device *)get_zeroed_page(GFP_KERNEL);
2473 	if (!hbus)
2474 		return -ENOMEM;
2475 	hbus->state = hv_pcibus_init;
2476 
2477 	/*
2478 	 * The PCI bus "domain" is what is called "segment" in ACPI and
2479 	 * other specs.  Pull it from the instance ID, to get something
2480 	 * unique.  Bytes 8 and 9 are what is used in Windows guests, so
2481 	 * do the same thing for consistency.  Note that, since this code
2482 	 * only runs in a Hyper-V VM, Hyper-V can (and does) guarantee
2483 	 * that (1) the only domain in use for something that looks like
2484 	 * a physical PCI bus (which is actually emulated by the
2485 	 * hypervisor) is domain 0 and (2) there will be no overlap
2486 	 * between domains derived from these instance IDs in the same
2487 	 * VM.
2488 	 */
2489 	hbus->sysdata.domain = hdev->dev_instance.b[9] |
2490 			       hdev->dev_instance.b[8] << 8;
2491 
2492 	hbus->hdev = hdev;
2493 	refcount_set(&hbus->remove_lock, 1);
2494 	INIT_LIST_HEAD(&hbus->children);
2495 	INIT_LIST_HEAD(&hbus->dr_list);
2496 	INIT_LIST_HEAD(&hbus->resources_for_children);
2497 	spin_lock_init(&hbus->config_lock);
2498 	spin_lock_init(&hbus->device_list_lock);
2499 	spin_lock_init(&hbus->retarget_msi_interrupt_lock);
2500 	init_completion(&hbus->remove_event);
2501 	hbus->wq = alloc_ordered_workqueue("hv_pci_%x", 0,
2502 					   hbus->sysdata.domain);
2503 	if (!hbus->wq) {
2504 		ret = -ENOMEM;
2505 		goto free_bus;
2506 	}
2507 
2508 	ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0,
2509 			 hv_pci_onchannelcallback, hbus);
2510 	if (ret)
2511 		goto destroy_wq;
2512 
2513 	hv_set_drvdata(hdev, hbus);
2514 
2515 	ret = hv_pci_protocol_negotiation(hdev);
2516 	if (ret)
2517 		goto close;
2518 
2519 	ret = hv_allocate_config_window(hbus);
2520 	if (ret)
2521 		goto close;
2522 
2523 	hbus->cfg_addr = ioremap(hbus->mem_config->start,
2524 				 PCI_CONFIG_MMIO_LENGTH);
2525 	if (!hbus->cfg_addr) {
2526 		dev_err(&hdev->device,
2527 			"Unable to map a virtual address for config space\n");
2528 		ret = -ENOMEM;
2529 		goto free_config;
2530 	}
2531 
2532 	hbus->sysdata.fwnode = irq_domain_alloc_fwnode(hbus);
2533 	if (!hbus->sysdata.fwnode) {
2534 		ret = -ENOMEM;
2535 		goto unmap;
2536 	}
2537 
2538 	ret = hv_pcie_init_irq_domain(hbus);
2539 	if (ret)
2540 		goto free_fwnode;
2541 
2542 	ret = hv_pci_query_relations(hdev);
2543 	if (ret)
2544 		goto free_irq_domain;
2545 
2546 	ret = hv_pci_enter_d0(hdev);
2547 	if (ret)
2548 		goto free_irq_domain;
2549 
2550 	ret = hv_pci_allocate_bridge_windows(hbus);
2551 	if (ret)
2552 		goto free_irq_domain;
2553 
2554 	ret = hv_send_resources_allocated(hdev);
2555 	if (ret)
2556 		goto free_windows;
2557 
2558 	prepopulate_bars(hbus);
2559 
2560 	hbus->state = hv_pcibus_probed;
2561 
2562 	ret = create_root_hv_pci_bus(hbus);
2563 	if (ret)
2564 		goto free_windows;
2565 
2566 	return 0;
2567 
2568 free_windows:
2569 	hv_pci_free_bridge_windows(hbus);
2570 free_irq_domain:
2571 	irq_domain_remove(hbus->irq_domain);
2572 free_fwnode:
2573 	irq_domain_free_fwnode(hbus->sysdata.fwnode);
2574 unmap:
2575 	iounmap(hbus->cfg_addr);
2576 free_config:
2577 	hv_free_config_window(hbus);
2578 close:
2579 	vmbus_close(hdev->channel);
2580 destroy_wq:
2581 	destroy_workqueue(hbus->wq);
2582 free_bus:
2583 	free_page((unsigned long)hbus);
2584 	return ret;
2585 }
2586 
2587 static void hv_pci_bus_exit(struct hv_device *hdev)
2588 {
2589 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2590 	struct {
2591 		struct pci_packet teardown_packet;
2592 		u8 buffer[sizeof(struct pci_message)];
2593 	} pkt;
2594 	struct pci_bus_relations relations;
2595 	struct hv_pci_compl comp_pkt;
2596 	int ret;
2597 
2598 	/*
2599 	 * After the host sends the RESCIND_CHANNEL message, it doesn't
2600 	 * access the per-channel ringbuffer any longer.
2601 	 */
2602 	if (hdev->channel->rescind)
2603 		return;
2604 
2605 	/* Delete any children which might still exist. */
2606 	memset(&relations, 0, sizeof(relations));
2607 	hv_pci_devices_present(hbus, &relations);
2608 
2609 	ret = hv_send_resources_released(hdev);
2610 	if (ret)
2611 		dev_err(&hdev->device,
2612 			"Couldn't send resources released packet(s)\n");
2613 
2614 	memset(&pkt.teardown_packet, 0, sizeof(pkt.teardown_packet));
2615 	init_completion(&comp_pkt.host_event);
2616 	pkt.teardown_packet.completion_func = hv_pci_generic_compl;
2617 	pkt.teardown_packet.compl_ctxt = &comp_pkt;
2618 	pkt.teardown_packet.message[0].type = PCI_BUS_D0EXIT;
2619 
2620 	ret = vmbus_sendpacket(hdev->channel, &pkt.teardown_packet.message,
2621 			       sizeof(struct pci_message),
2622 			       (unsigned long)&pkt.teardown_packet,
2623 			       VM_PKT_DATA_INBAND,
2624 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2625 	if (!ret)
2626 		wait_for_completion_timeout(&comp_pkt.host_event, 10 * HZ);
2627 }
2628 
2629 /**
2630  * hv_pci_remove() - Remove routine for this VMBus channel
2631  * @hdev:	VMBus's tracking struct for this root PCI bus
2632  *
2633  * Return: 0 on success, -errno on failure
2634  */
2635 static int hv_pci_remove(struct hv_device *hdev)
2636 {
2637 	struct hv_pcibus_device *hbus;
2638 
2639 	hbus = hv_get_drvdata(hdev);
2640 	if (hbus->state == hv_pcibus_installed) {
2641 		/* Remove the bus from PCI's point of view. */
2642 		pci_lock_rescan_remove();
2643 		pci_stop_root_bus(hbus->pci_bus);
2644 		pci_remove_root_bus(hbus->pci_bus);
2645 		pci_unlock_rescan_remove();
2646 		hbus->state = hv_pcibus_removed;
2647 	}
2648 
2649 	hv_pci_bus_exit(hdev);
2650 
2651 	vmbus_close(hdev->channel);
2652 
2653 	iounmap(hbus->cfg_addr);
2654 	hv_free_config_window(hbus);
2655 	pci_free_resource_list(&hbus->resources_for_children);
2656 	hv_pci_free_bridge_windows(hbus);
2657 	irq_domain_remove(hbus->irq_domain);
2658 	irq_domain_free_fwnode(hbus->sysdata.fwnode);
2659 	put_hvpcibus(hbus);
2660 	wait_for_completion(&hbus->remove_event);
2661 	destroy_workqueue(hbus->wq);
2662 	free_page((unsigned long)hbus);
2663 	return 0;
2664 }
2665 
2666 static const struct hv_vmbus_device_id hv_pci_id_table[] = {
2667 	/* PCI Pass-through Class ID */
2668 	/* 44C4F61D-4444-4400-9D52-802E27EDE19F */
2669 	{ HV_PCIE_GUID, },
2670 	{ },
2671 };
2672 
2673 MODULE_DEVICE_TABLE(vmbus, hv_pci_id_table);
2674 
2675 static struct hv_driver hv_pci_drv = {
2676 	.name		= "hv_pci",
2677 	.id_table	= hv_pci_id_table,
2678 	.probe		= hv_pci_probe,
2679 	.remove		= hv_pci_remove,
2680 };
2681 
2682 static void __exit exit_hv_pci_drv(void)
2683 {
2684 	vmbus_driver_unregister(&hv_pci_drv);
2685 }
2686 
2687 static int __init init_hv_pci_drv(void)
2688 {
2689 	return vmbus_driver_register(&hv_pci_drv);
2690 }
2691 
2692 module_init(init_hv_pci_drv);
2693 module_exit(exit_hv_pci_drv);
2694 
2695 MODULE_DESCRIPTION("Hyper-V PCI");
2696 MODULE_LICENSE("GPL v2");
2697