1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) Microsoft Corporation. 4 * 5 * Author: 6 * Jake Oshins <jakeo@microsoft.com> 7 * 8 * This driver acts as a paravirtual front-end for PCI Express root buses. 9 * When a PCI Express function (either an entire device or an SR-IOV 10 * Virtual Function) is being passed through to the VM, this driver exposes 11 * a new bus to the guest VM. This is modeled as a root PCI bus because 12 * no bridges are being exposed to the VM. In fact, with a "Generation 2" 13 * VM within Hyper-V, there may seem to be no PCI bus at all in the VM 14 * until a device as been exposed using this driver. 15 * 16 * Each root PCI bus has its own PCI domain, which is called "Segment" in 17 * the PCI Firmware Specifications. Thus while each device passed through 18 * to the VM using this front-end will appear at "device 0", the domain will 19 * be unique. Typically, each bus will have one PCI function on it, though 20 * this driver does support more than one. 21 * 22 * In order to map the interrupts from the device through to the guest VM, 23 * this driver also implements an IRQ Domain, which handles interrupts (either 24 * MSI or MSI-X) associated with the functions on the bus. As interrupts are 25 * set up, torn down, or reaffined, this driver communicates with the 26 * underlying hypervisor to adjust the mappings in the I/O MMU so that each 27 * interrupt will be delivered to the correct virtual processor at the right 28 * vector. This driver does not support level-triggered (line-based) 29 * interrupts, and will report that the Interrupt Line register in the 30 * function's configuration space is zero. 31 * 32 * The rest of this driver mostly maps PCI concepts onto underlying Hyper-V 33 * facilities. For instance, the configuration space of a function exposed 34 * by Hyper-V is mapped into a single page of memory space, and the 35 * read and write handlers for config space must be aware of this mechanism. 36 * Similarly, device setup and teardown involves messages sent to and from 37 * the PCI back-end driver in Hyper-V. 38 */ 39 40 #include <linux/kernel.h> 41 #include <linux/module.h> 42 #include <linux/pci.h> 43 #include <linux/delay.h> 44 #include <linux/semaphore.h> 45 #include <linux/irqdomain.h> 46 #include <asm/irqdomain.h> 47 #include <asm/apic.h> 48 #include <linux/msi.h> 49 #include <linux/hyperv.h> 50 #include <linux/refcount.h> 51 #include <asm/mshyperv.h> 52 53 /* 54 * Protocol versions. The low word is the minor version, the high word the 55 * major version. 56 */ 57 58 #define PCI_MAKE_VERSION(major, minor) ((u32)(((major) << 16) | (minor))) 59 #define PCI_MAJOR_VERSION(version) ((u32)(version) >> 16) 60 #define PCI_MINOR_VERSION(version) ((u32)(version) & 0xff) 61 62 enum pci_protocol_version_t { 63 PCI_PROTOCOL_VERSION_1_1 = PCI_MAKE_VERSION(1, 1), /* Win10 */ 64 PCI_PROTOCOL_VERSION_1_2 = PCI_MAKE_VERSION(1, 2), /* RS1 */ 65 }; 66 67 #define CPU_AFFINITY_ALL -1ULL 68 69 /* 70 * Supported protocol versions in the order of probing - highest go 71 * first. 72 */ 73 static enum pci_protocol_version_t pci_protocol_versions[] = { 74 PCI_PROTOCOL_VERSION_1_2, 75 PCI_PROTOCOL_VERSION_1_1, 76 }; 77 78 /* 79 * Protocol version negotiated by hv_pci_protocol_negotiation(). 80 */ 81 static enum pci_protocol_version_t pci_protocol_version; 82 83 #define PCI_CONFIG_MMIO_LENGTH 0x2000 84 #define CFG_PAGE_OFFSET 0x1000 85 #define CFG_PAGE_SIZE (PCI_CONFIG_MMIO_LENGTH - CFG_PAGE_OFFSET) 86 87 #define MAX_SUPPORTED_MSI_MESSAGES 0x400 88 89 #define STATUS_REVISION_MISMATCH 0xC0000059 90 91 /* 92 * Message Types 93 */ 94 95 enum pci_message_type { 96 /* 97 * Version 1.1 98 */ 99 PCI_MESSAGE_BASE = 0x42490000, 100 PCI_BUS_RELATIONS = PCI_MESSAGE_BASE + 0, 101 PCI_QUERY_BUS_RELATIONS = PCI_MESSAGE_BASE + 1, 102 PCI_POWER_STATE_CHANGE = PCI_MESSAGE_BASE + 4, 103 PCI_QUERY_RESOURCE_REQUIREMENTS = PCI_MESSAGE_BASE + 5, 104 PCI_QUERY_RESOURCE_RESOURCES = PCI_MESSAGE_BASE + 6, 105 PCI_BUS_D0ENTRY = PCI_MESSAGE_BASE + 7, 106 PCI_BUS_D0EXIT = PCI_MESSAGE_BASE + 8, 107 PCI_READ_BLOCK = PCI_MESSAGE_BASE + 9, 108 PCI_WRITE_BLOCK = PCI_MESSAGE_BASE + 0xA, 109 PCI_EJECT = PCI_MESSAGE_BASE + 0xB, 110 PCI_QUERY_STOP = PCI_MESSAGE_BASE + 0xC, 111 PCI_REENABLE = PCI_MESSAGE_BASE + 0xD, 112 PCI_QUERY_STOP_FAILED = PCI_MESSAGE_BASE + 0xE, 113 PCI_EJECTION_COMPLETE = PCI_MESSAGE_BASE + 0xF, 114 PCI_RESOURCES_ASSIGNED = PCI_MESSAGE_BASE + 0x10, 115 PCI_RESOURCES_RELEASED = PCI_MESSAGE_BASE + 0x11, 116 PCI_INVALIDATE_BLOCK = PCI_MESSAGE_BASE + 0x12, 117 PCI_QUERY_PROTOCOL_VERSION = PCI_MESSAGE_BASE + 0x13, 118 PCI_CREATE_INTERRUPT_MESSAGE = PCI_MESSAGE_BASE + 0x14, 119 PCI_DELETE_INTERRUPT_MESSAGE = PCI_MESSAGE_BASE + 0x15, 120 PCI_RESOURCES_ASSIGNED2 = PCI_MESSAGE_BASE + 0x16, 121 PCI_CREATE_INTERRUPT_MESSAGE2 = PCI_MESSAGE_BASE + 0x17, 122 PCI_DELETE_INTERRUPT_MESSAGE2 = PCI_MESSAGE_BASE + 0x18, /* unused */ 123 PCI_MESSAGE_MAXIMUM 124 }; 125 126 /* 127 * Structures defining the virtual PCI Express protocol. 128 */ 129 130 union pci_version { 131 struct { 132 u16 minor_version; 133 u16 major_version; 134 } parts; 135 u32 version; 136 } __packed; 137 138 /* 139 * Function numbers are 8-bits wide on Express, as interpreted through ARI, 140 * which is all this driver does. This representation is the one used in 141 * Windows, which is what is expected when sending this back and forth with 142 * the Hyper-V parent partition. 143 */ 144 union win_slot_encoding { 145 struct { 146 u32 dev:5; 147 u32 func:3; 148 u32 reserved:24; 149 } bits; 150 u32 slot; 151 } __packed; 152 153 /* 154 * Pretty much as defined in the PCI Specifications. 155 */ 156 struct pci_function_description { 157 u16 v_id; /* vendor ID */ 158 u16 d_id; /* device ID */ 159 u8 rev; 160 u8 prog_intf; 161 u8 subclass; 162 u8 base_class; 163 u32 subsystem_id; 164 union win_slot_encoding win_slot; 165 u32 ser; /* serial number */ 166 } __packed; 167 168 /** 169 * struct hv_msi_desc 170 * @vector: IDT entry 171 * @delivery_mode: As defined in Intel's Programmer's 172 * Reference Manual, Volume 3, Chapter 8. 173 * @vector_count: Number of contiguous entries in the 174 * Interrupt Descriptor Table that are 175 * occupied by this Message-Signaled 176 * Interrupt. For "MSI", as first defined 177 * in PCI 2.2, this can be between 1 and 178 * 32. For "MSI-X," as first defined in PCI 179 * 3.0, this must be 1, as each MSI-X table 180 * entry would have its own descriptor. 181 * @reserved: Empty space 182 * @cpu_mask: All the target virtual processors. 183 */ 184 struct hv_msi_desc { 185 u8 vector; 186 u8 delivery_mode; 187 u16 vector_count; 188 u32 reserved; 189 u64 cpu_mask; 190 } __packed; 191 192 /** 193 * struct hv_msi_desc2 - 1.2 version of hv_msi_desc 194 * @vector: IDT entry 195 * @delivery_mode: As defined in Intel's Programmer's 196 * Reference Manual, Volume 3, Chapter 8. 197 * @vector_count: Number of contiguous entries in the 198 * Interrupt Descriptor Table that are 199 * occupied by this Message-Signaled 200 * Interrupt. For "MSI", as first defined 201 * in PCI 2.2, this can be between 1 and 202 * 32. For "MSI-X," as first defined in PCI 203 * 3.0, this must be 1, as each MSI-X table 204 * entry would have its own descriptor. 205 * @processor_count: number of bits enabled in array. 206 * @processor_array: All the target virtual processors. 207 */ 208 struct hv_msi_desc2 { 209 u8 vector; 210 u8 delivery_mode; 211 u16 vector_count; 212 u16 processor_count; 213 u16 processor_array[32]; 214 } __packed; 215 216 /** 217 * struct tran_int_desc 218 * @reserved: unused, padding 219 * @vector_count: same as in hv_msi_desc 220 * @data: This is the "data payload" value that is 221 * written by the device when it generates 222 * a message-signaled interrupt, either MSI 223 * or MSI-X. 224 * @address: This is the address to which the data 225 * payload is written on interrupt 226 * generation. 227 */ 228 struct tran_int_desc { 229 u16 reserved; 230 u16 vector_count; 231 u32 data; 232 u64 address; 233 } __packed; 234 235 /* 236 * A generic message format for virtual PCI. 237 * Specific message formats are defined later in the file. 238 */ 239 240 struct pci_message { 241 u32 type; 242 } __packed; 243 244 struct pci_child_message { 245 struct pci_message message_type; 246 union win_slot_encoding wslot; 247 } __packed; 248 249 struct pci_incoming_message { 250 struct vmpacket_descriptor hdr; 251 struct pci_message message_type; 252 } __packed; 253 254 struct pci_response { 255 struct vmpacket_descriptor hdr; 256 s32 status; /* negative values are failures */ 257 } __packed; 258 259 struct pci_packet { 260 void (*completion_func)(void *context, struct pci_response *resp, 261 int resp_packet_size); 262 void *compl_ctxt; 263 264 struct pci_message message[0]; 265 }; 266 267 /* 268 * Specific message types supporting the PCI protocol. 269 */ 270 271 /* 272 * Version negotiation message. Sent from the guest to the host. 273 * The guest is free to try different versions until the host 274 * accepts the version. 275 * 276 * pci_version: The protocol version requested. 277 * is_last_attempt: If TRUE, this is the last version guest will request. 278 * reservedz: Reserved field, set to zero. 279 */ 280 281 struct pci_version_request { 282 struct pci_message message_type; 283 u32 protocol_version; 284 } __packed; 285 286 /* 287 * Bus D0 Entry. This is sent from the guest to the host when the virtual 288 * bus (PCI Express port) is ready for action. 289 */ 290 291 struct pci_bus_d0_entry { 292 struct pci_message message_type; 293 u32 reserved; 294 u64 mmio_base; 295 } __packed; 296 297 struct pci_bus_relations { 298 struct pci_incoming_message incoming; 299 u32 device_count; 300 struct pci_function_description func[0]; 301 } __packed; 302 303 struct pci_q_res_req_response { 304 struct vmpacket_descriptor hdr; 305 s32 status; /* negative values are failures */ 306 u32 probed_bar[6]; 307 } __packed; 308 309 struct pci_set_power { 310 struct pci_message message_type; 311 union win_slot_encoding wslot; 312 u32 power_state; /* In Windows terms */ 313 u32 reserved; 314 } __packed; 315 316 struct pci_set_power_response { 317 struct vmpacket_descriptor hdr; 318 s32 status; /* negative values are failures */ 319 union win_slot_encoding wslot; 320 u32 resultant_state; /* In Windows terms */ 321 u32 reserved; 322 } __packed; 323 324 struct pci_resources_assigned { 325 struct pci_message message_type; 326 union win_slot_encoding wslot; 327 u8 memory_range[0x14][6]; /* not used here */ 328 u32 msi_descriptors; 329 u32 reserved[4]; 330 } __packed; 331 332 struct pci_resources_assigned2 { 333 struct pci_message message_type; 334 union win_slot_encoding wslot; 335 u8 memory_range[0x14][6]; /* not used here */ 336 u32 msi_descriptor_count; 337 u8 reserved[70]; 338 } __packed; 339 340 struct pci_create_interrupt { 341 struct pci_message message_type; 342 union win_slot_encoding wslot; 343 struct hv_msi_desc int_desc; 344 } __packed; 345 346 struct pci_create_int_response { 347 struct pci_response response; 348 u32 reserved; 349 struct tran_int_desc int_desc; 350 } __packed; 351 352 struct pci_create_interrupt2 { 353 struct pci_message message_type; 354 union win_slot_encoding wslot; 355 struct hv_msi_desc2 int_desc; 356 } __packed; 357 358 struct pci_delete_interrupt { 359 struct pci_message message_type; 360 union win_slot_encoding wslot; 361 struct tran_int_desc int_desc; 362 } __packed; 363 364 struct pci_dev_incoming { 365 struct pci_incoming_message incoming; 366 union win_slot_encoding wslot; 367 } __packed; 368 369 struct pci_eject_response { 370 struct pci_message message_type; 371 union win_slot_encoding wslot; 372 u32 status; 373 } __packed; 374 375 static int pci_ring_size = (4 * PAGE_SIZE); 376 377 /* 378 * Definitions or interrupt steering hypercall. 379 */ 380 #define HV_PARTITION_ID_SELF ((u64)-1) 381 #define HVCALL_RETARGET_INTERRUPT 0x7e 382 383 struct hv_interrupt_entry { 384 u32 source; /* 1 for MSI(-X) */ 385 u32 reserved1; 386 u32 address; 387 u32 data; 388 }; 389 390 #define HV_VP_SET_BANK_COUNT_MAX 5 /* current implementation limit */ 391 392 struct hv_vp_set { 393 u64 format; /* 0 (HvGenericSetSparse4k) */ 394 u64 valid_banks; 395 u64 masks[HV_VP_SET_BANK_COUNT_MAX]; 396 }; 397 398 /* 399 * flags for hv_device_interrupt_target.flags 400 */ 401 #define HV_DEVICE_INTERRUPT_TARGET_MULTICAST 1 402 #define HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET 2 403 404 struct hv_device_interrupt_target { 405 u32 vector; 406 u32 flags; 407 union { 408 u64 vp_mask; 409 struct hv_vp_set vp_set; 410 }; 411 }; 412 413 struct retarget_msi_interrupt { 414 u64 partition_id; /* use "self" */ 415 u64 device_id; 416 struct hv_interrupt_entry int_entry; 417 u64 reserved2; 418 struct hv_device_interrupt_target int_target; 419 } __packed; 420 421 /* 422 * Driver specific state. 423 */ 424 425 enum hv_pcibus_state { 426 hv_pcibus_init = 0, 427 hv_pcibus_probed, 428 hv_pcibus_installed, 429 hv_pcibus_removed, 430 hv_pcibus_maximum 431 }; 432 433 struct hv_pcibus_device { 434 struct pci_sysdata sysdata; 435 enum hv_pcibus_state state; 436 refcount_t remove_lock; 437 struct hv_device *hdev; 438 resource_size_t low_mmio_space; 439 resource_size_t high_mmio_space; 440 struct resource *mem_config; 441 struct resource *low_mmio_res; 442 struct resource *high_mmio_res; 443 struct completion *survey_event; 444 struct completion remove_event; 445 struct pci_bus *pci_bus; 446 spinlock_t config_lock; /* Avoid two threads writing index page */ 447 spinlock_t device_list_lock; /* Protect lists below */ 448 void __iomem *cfg_addr; 449 450 struct list_head resources_for_children; 451 452 struct list_head children; 453 struct list_head dr_list; 454 455 struct msi_domain_info msi_info; 456 struct msi_controller msi_chip; 457 struct irq_domain *irq_domain; 458 459 /* hypercall arg, must not cross page boundary */ 460 struct retarget_msi_interrupt retarget_msi_interrupt_params; 461 462 spinlock_t retarget_msi_interrupt_lock; 463 464 struct workqueue_struct *wq; 465 }; 466 467 /* 468 * Tracks "Device Relations" messages from the host, which must be both 469 * processed in order and deferred so that they don't run in the context 470 * of the incoming packet callback. 471 */ 472 struct hv_dr_work { 473 struct work_struct wrk; 474 struct hv_pcibus_device *bus; 475 }; 476 477 struct hv_dr_state { 478 struct list_head list_entry; 479 u32 device_count; 480 struct pci_function_description func[0]; 481 }; 482 483 enum hv_pcichild_state { 484 hv_pcichild_init = 0, 485 hv_pcichild_requirements, 486 hv_pcichild_resourced, 487 hv_pcichild_ejecting, 488 hv_pcichild_maximum 489 }; 490 491 struct hv_pci_dev { 492 /* List protected by pci_rescan_remove_lock */ 493 struct list_head list_entry; 494 refcount_t refs; 495 enum hv_pcichild_state state; 496 struct pci_function_description desc; 497 bool reported_missing; 498 struct hv_pcibus_device *hbus; 499 struct work_struct wrk; 500 501 /* 502 * What would be observed if one wrote 0xFFFFFFFF to a BAR and then 503 * read it back, for each of the BAR offsets within config space. 504 */ 505 u32 probed_bar[6]; 506 }; 507 508 struct hv_pci_compl { 509 struct completion host_event; 510 s32 completion_status; 511 }; 512 513 static void hv_pci_onchannelcallback(void *context); 514 515 /** 516 * hv_pci_generic_compl() - Invoked for a completion packet 517 * @context: Set up by the sender of the packet. 518 * @resp: The response packet 519 * @resp_packet_size: Size in bytes of the packet 520 * 521 * This function is used to trigger an event and report status 522 * for any message for which the completion packet contains a 523 * status and nothing else. 524 */ 525 static void hv_pci_generic_compl(void *context, struct pci_response *resp, 526 int resp_packet_size) 527 { 528 struct hv_pci_compl *comp_pkt = context; 529 530 if (resp_packet_size >= offsetofend(struct pci_response, status)) 531 comp_pkt->completion_status = resp->status; 532 else 533 comp_pkt->completion_status = -1; 534 535 complete(&comp_pkt->host_event); 536 } 537 538 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus, 539 u32 wslot); 540 541 static void get_pcichild(struct hv_pci_dev *hpdev) 542 { 543 refcount_inc(&hpdev->refs); 544 } 545 546 static void put_pcichild(struct hv_pci_dev *hpdev) 547 { 548 if (refcount_dec_and_test(&hpdev->refs)) 549 kfree(hpdev); 550 } 551 552 static void get_hvpcibus(struct hv_pcibus_device *hv_pcibus); 553 static void put_hvpcibus(struct hv_pcibus_device *hv_pcibus); 554 555 /* 556 * There is no good way to get notified from vmbus_onoffer_rescind(), 557 * so let's use polling here, since this is not a hot path. 558 */ 559 static int wait_for_response(struct hv_device *hdev, 560 struct completion *comp) 561 { 562 while (true) { 563 if (hdev->channel->rescind) { 564 dev_warn_once(&hdev->device, "The device is gone.\n"); 565 return -ENODEV; 566 } 567 568 if (wait_for_completion_timeout(comp, HZ / 10)) 569 break; 570 } 571 572 return 0; 573 } 574 575 /** 576 * devfn_to_wslot() - Convert from Linux PCI slot to Windows 577 * @devfn: The Linux representation of PCI slot 578 * 579 * Windows uses a slightly different representation of PCI slot. 580 * 581 * Return: The Windows representation 582 */ 583 static u32 devfn_to_wslot(int devfn) 584 { 585 union win_slot_encoding wslot; 586 587 wslot.slot = 0; 588 wslot.bits.dev = PCI_SLOT(devfn); 589 wslot.bits.func = PCI_FUNC(devfn); 590 591 return wslot.slot; 592 } 593 594 /** 595 * wslot_to_devfn() - Convert from Windows PCI slot to Linux 596 * @wslot: The Windows representation of PCI slot 597 * 598 * Windows uses a slightly different representation of PCI slot. 599 * 600 * Return: The Linux representation 601 */ 602 static int wslot_to_devfn(u32 wslot) 603 { 604 union win_slot_encoding slot_no; 605 606 slot_no.slot = wslot; 607 return PCI_DEVFN(slot_no.bits.dev, slot_no.bits.func); 608 } 609 610 /* 611 * PCI Configuration Space for these root PCI buses is implemented as a pair 612 * of pages in memory-mapped I/O space. Writing to the first page chooses 613 * the PCI function being written or read. Once the first page has been 614 * written to, the following page maps in the entire configuration space of 615 * the function. 616 */ 617 618 /** 619 * _hv_pcifront_read_config() - Internal PCI config read 620 * @hpdev: The PCI driver's representation of the device 621 * @where: Offset within config space 622 * @size: Size of the transfer 623 * @val: Pointer to the buffer receiving the data 624 */ 625 static void _hv_pcifront_read_config(struct hv_pci_dev *hpdev, int where, 626 int size, u32 *val) 627 { 628 unsigned long flags; 629 void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where; 630 631 /* 632 * If the attempt is to read the IDs or the ROM BAR, simulate that. 633 */ 634 if (where + size <= PCI_COMMAND) { 635 memcpy(val, ((u8 *)&hpdev->desc.v_id) + where, size); 636 } else if (where >= PCI_CLASS_REVISION && where + size <= 637 PCI_CACHE_LINE_SIZE) { 638 memcpy(val, ((u8 *)&hpdev->desc.rev) + where - 639 PCI_CLASS_REVISION, size); 640 } else if (where >= PCI_SUBSYSTEM_VENDOR_ID && where + size <= 641 PCI_ROM_ADDRESS) { 642 memcpy(val, (u8 *)&hpdev->desc.subsystem_id + where - 643 PCI_SUBSYSTEM_VENDOR_ID, size); 644 } else if (where >= PCI_ROM_ADDRESS && where + size <= 645 PCI_CAPABILITY_LIST) { 646 /* ROM BARs are unimplemented */ 647 *val = 0; 648 } else if (where >= PCI_INTERRUPT_LINE && where + size <= 649 PCI_INTERRUPT_PIN) { 650 /* 651 * Interrupt Line and Interrupt PIN are hard-wired to zero 652 * because this front-end only supports message-signaled 653 * interrupts. 654 */ 655 *val = 0; 656 } else if (where + size <= CFG_PAGE_SIZE) { 657 spin_lock_irqsave(&hpdev->hbus->config_lock, flags); 658 /* Choose the function to be read. (See comment above) */ 659 writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr); 660 /* Make sure the function was chosen before we start reading. */ 661 mb(); 662 /* Read from that function's config space. */ 663 switch (size) { 664 case 1: 665 *val = readb(addr); 666 break; 667 case 2: 668 *val = readw(addr); 669 break; 670 default: 671 *val = readl(addr); 672 break; 673 } 674 /* 675 * Make sure the read was done before we release the spinlock 676 * allowing consecutive reads/writes. 677 */ 678 mb(); 679 spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags); 680 } else { 681 dev_err(&hpdev->hbus->hdev->device, 682 "Attempt to read beyond a function's config space.\n"); 683 } 684 } 685 686 static u16 hv_pcifront_get_vendor_id(struct hv_pci_dev *hpdev) 687 { 688 u16 ret; 689 unsigned long flags; 690 void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + 691 PCI_VENDOR_ID; 692 693 spin_lock_irqsave(&hpdev->hbus->config_lock, flags); 694 695 /* Choose the function to be read. (See comment above) */ 696 writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr); 697 /* Make sure the function was chosen before we start reading. */ 698 mb(); 699 /* Read from that function's config space. */ 700 ret = readw(addr); 701 /* 702 * mb() is not required here, because the spin_unlock_irqrestore() 703 * is a barrier. 704 */ 705 706 spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags); 707 708 return ret; 709 } 710 711 /** 712 * _hv_pcifront_write_config() - Internal PCI config write 713 * @hpdev: The PCI driver's representation of the device 714 * @where: Offset within config space 715 * @size: Size of the transfer 716 * @val: The data being transferred 717 */ 718 static void _hv_pcifront_write_config(struct hv_pci_dev *hpdev, int where, 719 int size, u32 val) 720 { 721 unsigned long flags; 722 void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where; 723 724 if (where >= PCI_SUBSYSTEM_VENDOR_ID && 725 where + size <= PCI_CAPABILITY_LIST) { 726 /* SSIDs and ROM BARs are read-only */ 727 } else if (where >= PCI_COMMAND && where + size <= CFG_PAGE_SIZE) { 728 spin_lock_irqsave(&hpdev->hbus->config_lock, flags); 729 /* Choose the function to be written. (See comment above) */ 730 writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr); 731 /* Make sure the function was chosen before we start writing. */ 732 wmb(); 733 /* Write to that function's config space. */ 734 switch (size) { 735 case 1: 736 writeb(val, addr); 737 break; 738 case 2: 739 writew(val, addr); 740 break; 741 default: 742 writel(val, addr); 743 break; 744 } 745 /* 746 * Make sure the write was done before we release the spinlock 747 * allowing consecutive reads/writes. 748 */ 749 mb(); 750 spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags); 751 } else { 752 dev_err(&hpdev->hbus->hdev->device, 753 "Attempt to write beyond a function's config space.\n"); 754 } 755 } 756 757 /** 758 * hv_pcifront_read_config() - Read configuration space 759 * @bus: PCI Bus structure 760 * @devfn: Device/function 761 * @where: Offset from base 762 * @size: Byte/word/dword 763 * @val: Value to be read 764 * 765 * Return: PCIBIOS_SUCCESSFUL on success 766 * PCIBIOS_DEVICE_NOT_FOUND on failure 767 */ 768 static int hv_pcifront_read_config(struct pci_bus *bus, unsigned int devfn, 769 int where, int size, u32 *val) 770 { 771 struct hv_pcibus_device *hbus = 772 container_of(bus->sysdata, struct hv_pcibus_device, sysdata); 773 struct hv_pci_dev *hpdev; 774 775 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn)); 776 if (!hpdev) 777 return PCIBIOS_DEVICE_NOT_FOUND; 778 779 _hv_pcifront_read_config(hpdev, where, size, val); 780 781 put_pcichild(hpdev); 782 return PCIBIOS_SUCCESSFUL; 783 } 784 785 /** 786 * hv_pcifront_write_config() - Write configuration space 787 * @bus: PCI Bus structure 788 * @devfn: Device/function 789 * @where: Offset from base 790 * @size: Byte/word/dword 791 * @val: Value to be written to device 792 * 793 * Return: PCIBIOS_SUCCESSFUL on success 794 * PCIBIOS_DEVICE_NOT_FOUND on failure 795 */ 796 static int hv_pcifront_write_config(struct pci_bus *bus, unsigned int devfn, 797 int where, int size, u32 val) 798 { 799 struct hv_pcibus_device *hbus = 800 container_of(bus->sysdata, struct hv_pcibus_device, sysdata); 801 struct hv_pci_dev *hpdev; 802 803 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn)); 804 if (!hpdev) 805 return PCIBIOS_DEVICE_NOT_FOUND; 806 807 _hv_pcifront_write_config(hpdev, where, size, val); 808 809 put_pcichild(hpdev); 810 return PCIBIOS_SUCCESSFUL; 811 } 812 813 /* PCIe operations */ 814 static struct pci_ops hv_pcifront_ops = { 815 .read = hv_pcifront_read_config, 816 .write = hv_pcifront_write_config, 817 }; 818 819 /* Interrupt management hooks */ 820 static void hv_int_desc_free(struct hv_pci_dev *hpdev, 821 struct tran_int_desc *int_desc) 822 { 823 struct pci_delete_interrupt *int_pkt; 824 struct { 825 struct pci_packet pkt; 826 u8 buffer[sizeof(struct pci_delete_interrupt)]; 827 } ctxt; 828 829 memset(&ctxt, 0, sizeof(ctxt)); 830 int_pkt = (struct pci_delete_interrupt *)&ctxt.pkt.message; 831 int_pkt->message_type.type = 832 PCI_DELETE_INTERRUPT_MESSAGE; 833 int_pkt->wslot.slot = hpdev->desc.win_slot.slot; 834 int_pkt->int_desc = *int_desc; 835 vmbus_sendpacket(hpdev->hbus->hdev->channel, int_pkt, sizeof(*int_pkt), 836 (unsigned long)&ctxt.pkt, VM_PKT_DATA_INBAND, 0); 837 kfree(int_desc); 838 } 839 840 /** 841 * hv_msi_free() - Free the MSI. 842 * @domain: The interrupt domain pointer 843 * @info: Extra MSI-related context 844 * @irq: Identifies the IRQ. 845 * 846 * The Hyper-V parent partition and hypervisor are tracking the 847 * messages that are in use, keeping the interrupt redirection 848 * table up to date. This callback sends a message that frees 849 * the IRT entry and related tracking nonsense. 850 */ 851 static void hv_msi_free(struct irq_domain *domain, struct msi_domain_info *info, 852 unsigned int irq) 853 { 854 struct hv_pcibus_device *hbus; 855 struct hv_pci_dev *hpdev; 856 struct pci_dev *pdev; 857 struct tran_int_desc *int_desc; 858 struct irq_data *irq_data = irq_domain_get_irq_data(domain, irq); 859 struct msi_desc *msi = irq_data_get_msi_desc(irq_data); 860 861 pdev = msi_desc_to_pci_dev(msi); 862 hbus = info->data; 863 int_desc = irq_data_get_irq_chip_data(irq_data); 864 if (!int_desc) 865 return; 866 867 irq_data->chip_data = NULL; 868 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn)); 869 if (!hpdev) { 870 kfree(int_desc); 871 return; 872 } 873 874 hv_int_desc_free(hpdev, int_desc); 875 put_pcichild(hpdev); 876 } 877 878 static int hv_set_affinity(struct irq_data *data, const struct cpumask *dest, 879 bool force) 880 { 881 struct irq_data *parent = data->parent_data; 882 883 return parent->chip->irq_set_affinity(parent, dest, force); 884 } 885 886 static void hv_irq_mask(struct irq_data *data) 887 { 888 pci_msi_mask_irq(data); 889 } 890 891 /** 892 * hv_irq_unmask() - "Unmask" the IRQ by setting its current 893 * affinity. 894 * @data: Describes the IRQ 895 * 896 * Build new a destination for the MSI and make a hypercall to 897 * update the Interrupt Redirection Table. "Device Logical ID" 898 * is built out of this PCI bus's instance GUID and the function 899 * number of the device. 900 */ 901 static void hv_irq_unmask(struct irq_data *data) 902 { 903 struct msi_desc *msi_desc = irq_data_get_msi_desc(data); 904 struct irq_cfg *cfg = irqd_cfg(data); 905 struct retarget_msi_interrupt *params; 906 struct hv_pcibus_device *hbus; 907 struct cpumask *dest; 908 struct pci_bus *pbus; 909 struct pci_dev *pdev; 910 unsigned long flags; 911 u32 var_size = 0; 912 int cpu_vmbus; 913 int cpu; 914 u64 res; 915 916 dest = irq_data_get_effective_affinity_mask(data); 917 pdev = msi_desc_to_pci_dev(msi_desc); 918 pbus = pdev->bus; 919 hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata); 920 921 spin_lock_irqsave(&hbus->retarget_msi_interrupt_lock, flags); 922 923 params = &hbus->retarget_msi_interrupt_params; 924 memset(params, 0, sizeof(*params)); 925 params->partition_id = HV_PARTITION_ID_SELF; 926 params->int_entry.source = 1; /* MSI(-X) */ 927 params->int_entry.address = msi_desc->msg.address_lo; 928 params->int_entry.data = msi_desc->msg.data; 929 params->device_id = (hbus->hdev->dev_instance.b[5] << 24) | 930 (hbus->hdev->dev_instance.b[4] << 16) | 931 (hbus->hdev->dev_instance.b[7] << 8) | 932 (hbus->hdev->dev_instance.b[6] & 0xf8) | 933 PCI_FUNC(pdev->devfn); 934 params->int_target.vector = cfg->vector; 935 936 /* 937 * Honoring apic->irq_delivery_mode set to dest_Fixed by 938 * setting the HV_DEVICE_INTERRUPT_TARGET_MULTICAST flag results in a 939 * spurious interrupt storm. Not doing so does not seem to have a 940 * negative effect (yet?). 941 */ 942 943 if (pci_protocol_version >= PCI_PROTOCOL_VERSION_1_2) { 944 /* 945 * PCI_PROTOCOL_VERSION_1_2 supports the VP_SET version of the 946 * HVCALL_RETARGET_INTERRUPT hypercall, which also coincides 947 * with >64 VP support. 948 * ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED 949 * is not sufficient for this hypercall. 950 */ 951 params->int_target.flags |= 952 HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET; 953 params->int_target.vp_set.valid_banks = 954 (1ull << HV_VP_SET_BANK_COUNT_MAX) - 1; 955 956 /* 957 * var-sized hypercall, var-size starts after vp_mask (thus 958 * vp_set.format does not count, but vp_set.valid_banks does). 959 */ 960 var_size = 1 + HV_VP_SET_BANK_COUNT_MAX; 961 962 for_each_cpu_and(cpu, dest, cpu_online_mask) { 963 cpu_vmbus = hv_cpu_number_to_vp_number(cpu); 964 965 if (cpu_vmbus >= HV_VP_SET_BANK_COUNT_MAX * 64) { 966 dev_err(&hbus->hdev->device, 967 "too high CPU %d", cpu_vmbus); 968 res = 1; 969 goto exit_unlock; 970 } 971 972 params->int_target.vp_set.masks[cpu_vmbus / 64] |= 973 (1ULL << (cpu_vmbus & 63)); 974 } 975 } else { 976 for_each_cpu_and(cpu, dest, cpu_online_mask) { 977 params->int_target.vp_mask |= 978 (1ULL << hv_cpu_number_to_vp_number(cpu)); 979 } 980 } 981 982 res = hv_do_hypercall(HVCALL_RETARGET_INTERRUPT | (var_size << 17), 983 params, NULL); 984 985 exit_unlock: 986 spin_unlock_irqrestore(&hbus->retarget_msi_interrupt_lock, flags); 987 988 if (res) { 989 dev_err(&hbus->hdev->device, 990 "%s() failed: %#llx", __func__, res); 991 return; 992 } 993 994 pci_msi_unmask_irq(data); 995 } 996 997 struct compose_comp_ctxt { 998 struct hv_pci_compl comp_pkt; 999 struct tran_int_desc int_desc; 1000 }; 1001 1002 static void hv_pci_compose_compl(void *context, struct pci_response *resp, 1003 int resp_packet_size) 1004 { 1005 struct compose_comp_ctxt *comp_pkt = context; 1006 struct pci_create_int_response *int_resp = 1007 (struct pci_create_int_response *)resp; 1008 1009 comp_pkt->comp_pkt.completion_status = resp->status; 1010 comp_pkt->int_desc = int_resp->int_desc; 1011 complete(&comp_pkt->comp_pkt.host_event); 1012 } 1013 1014 static u32 hv_compose_msi_req_v1( 1015 struct pci_create_interrupt *int_pkt, struct cpumask *affinity, 1016 u32 slot, u8 vector) 1017 { 1018 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE; 1019 int_pkt->wslot.slot = slot; 1020 int_pkt->int_desc.vector = vector; 1021 int_pkt->int_desc.vector_count = 1; 1022 int_pkt->int_desc.delivery_mode = dest_Fixed; 1023 1024 /* 1025 * Create MSI w/ dummy vCPU set, overwritten by subsequent retarget in 1026 * hv_irq_unmask(). 1027 */ 1028 int_pkt->int_desc.cpu_mask = CPU_AFFINITY_ALL; 1029 1030 return sizeof(*int_pkt); 1031 } 1032 1033 static u32 hv_compose_msi_req_v2( 1034 struct pci_create_interrupt2 *int_pkt, struct cpumask *affinity, 1035 u32 slot, u8 vector) 1036 { 1037 int cpu; 1038 1039 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE2; 1040 int_pkt->wslot.slot = slot; 1041 int_pkt->int_desc.vector = vector; 1042 int_pkt->int_desc.vector_count = 1; 1043 int_pkt->int_desc.delivery_mode = dest_Fixed; 1044 1045 /* 1046 * Create MSI w/ dummy vCPU set targeting just one vCPU, overwritten 1047 * by subsequent retarget in hv_irq_unmask(). 1048 */ 1049 cpu = cpumask_first_and(affinity, cpu_online_mask); 1050 int_pkt->int_desc.processor_array[0] = 1051 hv_cpu_number_to_vp_number(cpu); 1052 int_pkt->int_desc.processor_count = 1; 1053 1054 return sizeof(*int_pkt); 1055 } 1056 1057 /** 1058 * hv_compose_msi_msg() - Supplies a valid MSI address/data 1059 * @data: Everything about this MSI 1060 * @msg: Buffer that is filled in by this function 1061 * 1062 * This function unpacks the IRQ looking for target CPU set, IDT 1063 * vector and mode and sends a message to the parent partition 1064 * asking for a mapping for that tuple in this partition. The 1065 * response supplies a data value and address to which that data 1066 * should be written to trigger that interrupt. 1067 */ 1068 static void hv_compose_msi_msg(struct irq_data *data, struct msi_msg *msg) 1069 { 1070 struct irq_cfg *cfg = irqd_cfg(data); 1071 struct hv_pcibus_device *hbus; 1072 struct hv_pci_dev *hpdev; 1073 struct pci_bus *pbus; 1074 struct pci_dev *pdev; 1075 struct cpumask *dest; 1076 unsigned long flags; 1077 struct compose_comp_ctxt comp; 1078 struct tran_int_desc *int_desc; 1079 struct { 1080 struct pci_packet pci_pkt; 1081 union { 1082 struct pci_create_interrupt v1; 1083 struct pci_create_interrupt2 v2; 1084 } int_pkts; 1085 } __packed ctxt; 1086 1087 u32 size; 1088 int ret; 1089 1090 pdev = msi_desc_to_pci_dev(irq_data_get_msi_desc(data)); 1091 dest = irq_data_get_effective_affinity_mask(data); 1092 pbus = pdev->bus; 1093 hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata); 1094 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn)); 1095 if (!hpdev) 1096 goto return_null_message; 1097 1098 /* Free any previous message that might have already been composed. */ 1099 if (data->chip_data) { 1100 int_desc = data->chip_data; 1101 data->chip_data = NULL; 1102 hv_int_desc_free(hpdev, int_desc); 1103 } 1104 1105 int_desc = kzalloc(sizeof(*int_desc), GFP_ATOMIC); 1106 if (!int_desc) 1107 goto drop_reference; 1108 1109 memset(&ctxt, 0, sizeof(ctxt)); 1110 init_completion(&comp.comp_pkt.host_event); 1111 ctxt.pci_pkt.completion_func = hv_pci_compose_compl; 1112 ctxt.pci_pkt.compl_ctxt = ∁ 1113 1114 switch (pci_protocol_version) { 1115 case PCI_PROTOCOL_VERSION_1_1: 1116 size = hv_compose_msi_req_v1(&ctxt.int_pkts.v1, 1117 dest, 1118 hpdev->desc.win_slot.slot, 1119 cfg->vector); 1120 break; 1121 1122 case PCI_PROTOCOL_VERSION_1_2: 1123 size = hv_compose_msi_req_v2(&ctxt.int_pkts.v2, 1124 dest, 1125 hpdev->desc.win_slot.slot, 1126 cfg->vector); 1127 break; 1128 1129 default: 1130 /* As we only negotiate protocol versions known to this driver, 1131 * this path should never hit. However, this is it not a hot 1132 * path so we print a message to aid future updates. 1133 */ 1134 dev_err(&hbus->hdev->device, 1135 "Unexpected vPCI protocol, update driver."); 1136 goto free_int_desc; 1137 } 1138 1139 ret = vmbus_sendpacket(hpdev->hbus->hdev->channel, &ctxt.int_pkts, 1140 size, (unsigned long)&ctxt.pci_pkt, 1141 VM_PKT_DATA_INBAND, 1142 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1143 if (ret) { 1144 dev_err(&hbus->hdev->device, 1145 "Sending request for interrupt failed: 0x%x", 1146 comp.comp_pkt.completion_status); 1147 goto free_int_desc; 1148 } 1149 1150 /* 1151 * Since this function is called with IRQ locks held, can't 1152 * do normal wait for completion; instead poll. 1153 */ 1154 while (!try_wait_for_completion(&comp.comp_pkt.host_event)) { 1155 /* 0xFFFF means an invalid PCI VENDOR ID. */ 1156 if (hv_pcifront_get_vendor_id(hpdev) == 0xFFFF) { 1157 dev_err_once(&hbus->hdev->device, 1158 "the device has gone\n"); 1159 goto free_int_desc; 1160 } 1161 1162 /* 1163 * When the higher level interrupt code calls us with 1164 * interrupt disabled, we must poll the channel by calling 1165 * the channel callback directly when channel->target_cpu is 1166 * the current CPU. When the higher level interrupt code 1167 * calls us with interrupt enabled, let's add the 1168 * local_irq_save()/restore() to avoid race: 1169 * hv_pci_onchannelcallback() can also run in tasklet. 1170 */ 1171 local_irq_save(flags); 1172 1173 if (hbus->hdev->channel->target_cpu == smp_processor_id()) 1174 hv_pci_onchannelcallback(hbus); 1175 1176 local_irq_restore(flags); 1177 1178 if (hpdev->state == hv_pcichild_ejecting) { 1179 dev_err_once(&hbus->hdev->device, 1180 "the device is being ejected\n"); 1181 goto free_int_desc; 1182 } 1183 1184 udelay(100); 1185 } 1186 1187 if (comp.comp_pkt.completion_status < 0) { 1188 dev_err(&hbus->hdev->device, 1189 "Request for interrupt failed: 0x%x", 1190 comp.comp_pkt.completion_status); 1191 goto free_int_desc; 1192 } 1193 1194 /* 1195 * Record the assignment so that this can be unwound later. Using 1196 * irq_set_chip_data() here would be appropriate, but the lock it takes 1197 * is already held. 1198 */ 1199 *int_desc = comp.int_desc; 1200 data->chip_data = int_desc; 1201 1202 /* Pass up the result. */ 1203 msg->address_hi = comp.int_desc.address >> 32; 1204 msg->address_lo = comp.int_desc.address & 0xffffffff; 1205 msg->data = comp.int_desc.data; 1206 1207 put_pcichild(hpdev); 1208 return; 1209 1210 free_int_desc: 1211 kfree(int_desc); 1212 drop_reference: 1213 put_pcichild(hpdev); 1214 return_null_message: 1215 msg->address_hi = 0; 1216 msg->address_lo = 0; 1217 msg->data = 0; 1218 } 1219 1220 /* HW Interrupt Chip Descriptor */ 1221 static struct irq_chip hv_msi_irq_chip = { 1222 .name = "Hyper-V PCIe MSI", 1223 .irq_compose_msi_msg = hv_compose_msi_msg, 1224 .irq_set_affinity = hv_set_affinity, 1225 .irq_ack = irq_chip_ack_parent, 1226 .irq_mask = hv_irq_mask, 1227 .irq_unmask = hv_irq_unmask, 1228 }; 1229 1230 static irq_hw_number_t hv_msi_domain_ops_get_hwirq(struct msi_domain_info *info, 1231 msi_alloc_info_t *arg) 1232 { 1233 return arg->msi_hwirq; 1234 } 1235 1236 static struct msi_domain_ops hv_msi_ops = { 1237 .get_hwirq = hv_msi_domain_ops_get_hwirq, 1238 .msi_prepare = pci_msi_prepare, 1239 .set_desc = pci_msi_set_desc, 1240 .msi_free = hv_msi_free, 1241 }; 1242 1243 /** 1244 * hv_pcie_init_irq_domain() - Initialize IRQ domain 1245 * @hbus: The root PCI bus 1246 * 1247 * This function creates an IRQ domain which will be used for 1248 * interrupts from devices that have been passed through. These 1249 * devices only support MSI and MSI-X, not line-based interrupts 1250 * or simulations of line-based interrupts through PCIe's 1251 * fabric-layer messages. Because interrupts are remapped, we 1252 * can support multi-message MSI here. 1253 * 1254 * Return: '0' on success and error value on failure 1255 */ 1256 static int hv_pcie_init_irq_domain(struct hv_pcibus_device *hbus) 1257 { 1258 hbus->msi_info.chip = &hv_msi_irq_chip; 1259 hbus->msi_info.ops = &hv_msi_ops; 1260 hbus->msi_info.flags = (MSI_FLAG_USE_DEF_DOM_OPS | 1261 MSI_FLAG_USE_DEF_CHIP_OPS | MSI_FLAG_MULTI_PCI_MSI | 1262 MSI_FLAG_PCI_MSIX); 1263 hbus->msi_info.handler = handle_edge_irq; 1264 hbus->msi_info.handler_name = "edge"; 1265 hbus->msi_info.data = hbus; 1266 hbus->irq_domain = pci_msi_create_irq_domain(hbus->sysdata.fwnode, 1267 &hbus->msi_info, 1268 x86_vector_domain); 1269 if (!hbus->irq_domain) { 1270 dev_err(&hbus->hdev->device, 1271 "Failed to build an MSI IRQ domain\n"); 1272 return -ENODEV; 1273 } 1274 1275 return 0; 1276 } 1277 1278 /** 1279 * get_bar_size() - Get the address space consumed by a BAR 1280 * @bar_val: Value that a BAR returned after -1 was written 1281 * to it. 1282 * 1283 * This function returns the size of the BAR, rounded up to 1 1284 * page. It has to be rounded up because the hypervisor's page 1285 * table entry that maps the BAR into the VM can't specify an 1286 * offset within a page. The invariant is that the hypervisor 1287 * must place any BARs of smaller than page length at the 1288 * beginning of a page. 1289 * 1290 * Return: Size in bytes of the consumed MMIO space. 1291 */ 1292 static u64 get_bar_size(u64 bar_val) 1293 { 1294 return round_up((1 + ~(bar_val & PCI_BASE_ADDRESS_MEM_MASK)), 1295 PAGE_SIZE); 1296 } 1297 1298 /** 1299 * survey_child_resources() - Total all MMIO requirements 1300 * @hbus: Root PCI bus, as understood by this driver 1301 */ 1302 static void survey_child_resources(struct hv_pcibus_device *hbus) 1303 { 1304 struct hv_pci_dev *hpdev; 1305 resource_size_t bar_size = 0; 1306 unsigned long flags; 1307 struct completion *event; 1308 u64 bar_val; 1309 int i; 1310 1311 /* If nobody is waiting on the answer, don't compute it. */ 1312 event = xchg(&hbus->survey_event, NULL); 1313 if (!event) 1314 return; 1315 1316 /* If the answer has already been computed, go with it. */ 1317 if (hbus->low_mmio_space || hbus->high_mmio_space) { 1318 complete(event); 1319 return; 1320 } 1321 1322 spin_lock_irqsave(&hbus->device_list_lock, flags); 1323 1324 /* 1325 * Due to an interesting quirk of the PCI spec, all memory regions 1326 * for a child device are a power of 2 in size and aligned in memory, 1327 * so it's sufficient to just add them up without tracking alignment. 1328 */ 1329 list_for_each_entry(hpdev, &hbus->children, list_entry) { 1330 for (i = 0; i < 6; i++) { 1331 if (hpdev->probed_bar[i] & PCI_BASE_ADDRESS_SPACE_IO) 1332 dev_err(&hbus->hdev->device, 1333 "There's an I/O BAR in this list!\n"); 1334 1335 if (hpdev->probed_bar[i] != 0) { 1336 /* 1337 * A probed BAR has all the upper bits set that 1338 * can be changed. 1339 */ 1340 1341 bar_val = hpdev->probed_bar[i]; 1342 if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64) 1343 bar_val |= 1344 ((u64)hpdev->probed_bar[++i] << 32); 1345 else 1346 bar_val |= 0xffffffff00000000ULL; 1347 1348 bar_size = get_bar_size(bar_val); 1349 1350 if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64) 1351 hbus->high_mmio_space += bar_size; 1352 else 1353 hbus->low_mmio_space += bar_size; 1354 } 1355 } 1356 } 1357 1358 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 1359 complete(event); 1360 } 1361 1362 /** 1363 * prepopulate_bars() - Fill in BARs with defaults 1364 * @hbus: Root PCI bus, as understood by this driver 1365 * 1366 * The core PCI driver code seems much, much happier if the BARs 1367 * for a device have values upon first scan. So fill them in. 1368 * The algorithm below works down from large sizes to small, 1369 * attempting to pack the assignments optimally. The assumption, 1370 * enforced in other parts of the code, is that the beginning of 1371 * the memory-mapped I/O space will be aligned on the largest 1372 * BAR size. 1373 */ 1374 static void prepopulate_bars(struct hv_pcibus_device *hbus) 1375 { 1376 resource_size_t high_size = 0; 1377 resource_size_t low_size = 0; 1378 resource_size_t high_base = 0; 1379 resource_size_t low_base = 0; 1380 resource_size_t bar_size; 1381 struct hv_pci_dev *hpdev; 1382 unsigned long flags; 1383 u64 bar_val; 1384 u32 command; 1385 bool high; 1386 int i; 1387 1388 if (hbus->low_mmio_space) { 1389 low_size = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space)); 1390 low_base = hbus->low_mmio_res->start; 1391 } 1392 1393 if (hbus->high_mmio_space) { 1394 high_size = 1ULL << 1395 (63 - __builtin_clzll(hbus->high_mmio_space)); 1396 high_base = hbus->high_mmio_res->start; 1397 } 1398 1399 spin_lock_irqsave(&hbus->device_list_lock, flags); 1400 1401 /* Pick addresses for the BARs. */ 1402 do { 1403 list_for_each_entry(hpdev, &hbus->children, list_entry) { 1404 for (i = 0; i < 6; i++) { 1405 bar_val = hpdev->probed_bar[i]; 1406 if (bar_val == 0) 1407 continue; 1408 high = bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64; 1409 if (high) { 1410 bar_val |= 1411 ((u64)hpdev->probed_bar[i + 1] 1412 << 32); 1413 } else { 1414 bar_val |= 0xffffffffULL << 32; 1415 } 1416 bar_size = get_bar_size(bar_val); 1417 if (high) { 1418 if (high_size != bar_size) { 1419 i++; 1420 continue; 1421 } 1422 _hv_pcifront_write_config(hpdev, 1423 PCI_BASE_ADDRESS_0 + (4 * i), 1424 4, 1425 (u32)(high_base & 0xffffff00)); 1426 i++; 1427 _hv_pcifront_write_config(hpdev, 1428 PCI_BASE_ADDRESS_0 + (4 * i), 1429 4, (u32)(high_base >> 32)); 1430 high_base += bar_size; 1431 } else { 1432 if (low_size != bar_size) 1433 continue; 1434 _hv_pcifront_write_config(hpdev, 1435 PCI_BASE_ADDRESS_0 + (4 * i), 1436 4, 1437 (u32)(low_base & 0xffffff00)); 1438 low_base += bar_size; 1439 } 1440 } 1441 if (high_size <= 1 && low_size <= 1) { 1442 /* Set the memory enable bit. */ 1443 _hv_pcifront_read_config(hpdev, PCI_COMMAND, 2, 1444 &command); 1445 command |= PCI_COMMAND_MEMORY; 1446 _hv_pcifront_write_config(hpdev, PCI_COMMAND, 2, 1447 command); 1448 break; 1449 } 1450 } 1451 1452 high_size >>= 1; 1453 low_size >>= 1; 1454 } while (high_size || low_size); 1455 1456 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 1457 } 1458 1459 /** 1460 * create_root_hv_pci_bus() - Expose a new root PCI bus 1461 * @hbus: Root PCI bus, as understood by this driver 1462 * 1463 * Return: 0 on success, -errno on failure 1464 */ 1465 static int create_root_hv_pci_bus(struct hv_pcibus_device *hbus) 1466 { 1467 /* Register the device */ 1468 hbus->pci_bus = pci_create_root_bus(&hbus->hdev->device, 1469 0, /* bus number is always zero */ 1470 &hv_pcifront_ops, 1471 &hbus->sysdata, 1472 &hbus->resources_for_children); 1473 if (!hbus->pci_bus) 1474 return -ENODEV; 1475 1476 hbus->pci_bus->msi = &hbus->msi_chip; 1477 hbus->pci_bus->msi->dev = &hbus->hdev->device; 1478 1479 pci_lock_rescan_remove(); 1480 pci_scan_child_bus(hbus->pci_bus); 1481 pci_bus_assign_resources(hbus->pci_bus); 1482 pci_bus_add_devices(hbus->pci_bus); 1483 pci_unlock_rescan_remove(); 1484 hbus->state = hv_pcibus_installed; 1485 return 0; 1486 } 1487 1488 struct q_res_req_compl { 1489 struct completion host_event; 1490 struct hv_pci_dev *hpdev; 1491 }; 1492 1493 /** 1494 * q_resource_requirements() - Query Resource Requirements 1495 * @context: The completion context. 1496 * @resp: The response that came from the host. 1497 * @resp_packet_size: The size in bytes of resp. 1498 * 1499 * This function is invoked on completion of a Query Resource 1500 * Requirements packet. 1501 */ 1502 static void q_resource_requirements(void *context, struct pci_response *resp, 1503 int resp_packet_size) 1504 { 1505 struct q_res_req_compl *completion = context; 1506 struct pci_q_res_req_response *q_res_req = 1507 (struct pci_q_res_req_response *)resp; 1508 int i; 1509 1510 if (resp->status < 0) { 1511 dev_err(&completion->hpdev->hbus->hdev->device, 1512 "query resource requirements failed: %x\n", 1513 resp->status); 1514 } else { 1515 for (i = 0; i < 6; i++) { 1516 completion->hpdev->probed_bar[i] = 1517 q_res_req->probed_bar[i]; 1518 } 1519 } 1520 1521 complete(&completion->host_event); 1522 } 1523 1524 /** 1525 * new_pcichild_device() - Create a new child device 1526 * @hbus: The internal struct tracking this root PCI bus. 1527 * @desc: The information supplied so far from the host 1528 * about the device. 1529 * 1530 * This function creates the tracking structure for a new child 1531 * device and kicks off the process of figuring out what it is. 1532 * 1533 * Return: Pointer to the new tracking struct 1534 */ 1535 static struct hv_pci_dev *new_pcichild_device(struct hv_pcibus_device *hbus, 1536 struct pci_function_description *desc) 1537 { 1538 struct hv_pci_dev *hpdev; 1539 struct pci_child_message *res_req; 1540 struct q_res_req_compl comp_pkt; 1541 struct { 1542 struct pci_packet init_packet; 1543 u8 buffer[sizeof(struct pci_child_message)]; 1544 } pkt; 1545 unsigned long flags; 1546 int ret; 1547 1548 hpdev = kzalloc(sizeof(*hpdev), GFP_ATOMIC); 1549 if (!hpdev) 1550 return NULL; 1551 1552 hpdev->hbus = hbus; 1553 1554 memset(&pkt, 0, sizeof(pkt)); 1555 init_completion(&comp_pkt.host_event); 1556 comp_pkt.hpdev = hpdev; 1557 pkt.init_packet.compl_ctxt = &comp_pkt; 1558 pkt.init_packet.completion_func = q_resource_requirements; 1559 res_req = (struct pci_child_message *)&pkt.init_packet.message; 1560 res_req->message_type.type = PCI_QUERY_RESOURCE_REQUIREMENTS; 1561 res_req->wslot.slot = desc->win_slot.slot; 1562 1563 ret = vmbus_sendpacket(hbus->hdev->channel, res_req, 1564 sizeof(struct pci_child_message), 1565 (unsigned long)&pkt.init_packet, 1566 VM_PKT_DATA_INBAND, 1567 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1568 if (ret) 1569 goto error; 1570 1571 if (wait_for_response(hbus->hdev, &comp_pkt.host_event)) 1572 goto error; 1573 1574 hpdev->desc = *desc; 1575 refcount_set(&hpdev->refs, 1); 1576 get_pcichild(hpdev); 1577 spin_lock_irqsave(&hbus->device_list_lock, flags); 1578 1579 list_add_tail(&hpdev->list_entry, &hbus->children); 1580 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 1581 return hpdev; 1582 1583 error: 1584 kfree(hpdev); 1585 return NULL; 1586 } 1587 1588 /** 1589 * get_pcichild_wslot() - Find device from slot 1590 * @hbus: Root PCI bus, as understood by this driver 1591 * @wslot: Location on the bus 1592 * 1593 * This function looks up a PCI device and returns the internal 1594 * representation of it. It acquires a reference on it, so that 1595 * the device won't be deleted while somebody is using it. The 1596 * caller is responsible for calling put_pcichild() to release 1597 * this reference. 1598 * 1599 * Return: Internal representation of a PCI device 1600 */ 1601 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus, 1602 u32 wslot) 1603 { 1604 unsigned long flags; 1605 struct hv_pci_dev *iter, *hpdev = NULL; 1606 1607 spin_lock_irqsave(&hbus->device_list_lock, flags); 1608 list_for_each_entry(iter, &hbus->children, list_entry) { 1609 if (iter->desc.win_slot.slot == wslot) { 1610 hpdev = iter; 1611 get_pcichild(hpdev); 1612 break; 1613 } 1614 } 1615 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 1616 1617 return hpdev; 1618 } 1619 1620 /** 1621 * pci_devices_present_work() - Handle new list of child devices 1622 * @work: Work struct embedded in struct hv_dr_work 1623 * 1624 * "Bus Relations" is the Windows term for "children of this 1625 * bus." The terminology is preserved here for people trying to 1626 * debug the interaction between Hyper-V and Linux. This 1627 * function is called when the parent partition reports a list 1628 * of functions that should be observed under this PCI Express 1629 * port (bus). 1630 * 1631 * This function updates the list, and must tolerate being 1632 * called multiple times with the same information. The typical 1633 * number of child devices is one, with very atypical cases 1634 * involving three or four, so the algorithms used here can be 1635 * simple and inefficient. 1636 * 1637 * It must also treat the omission of a previously observed device as 1638 * notification that the device no longer exists. 1639 * 1640 * Note that this function is serialized with hv_eject_device_work(), 1641 * because both are pushed to the ordered workqueue hbus->wq. 1642 */ 1643 static void pci_devices_present_work(struct work_struct *work) 1644 { 1645 u32 child_no; 1646 bool found; 1647 struct pci_function_description *new_desc; 1648 struct hv_pci_dev *hpdev; 1649 struct hv_pcibus_device *hbus; 1650 struct list_head removed; 1651 struct hv_dr_work *dr_wrk; 1652 struct hv_dr_state *dr = NULL; 1653 unsigned long flags; 1654 1655 dr_wrk = container_of(work, struct hv_dr_work, wrk); 1656 hbus = dr_wrk->bus; 1657 kfree(dr_wrk); 1658 1659 INIT_LIST_HEAD(&removed); 1660 1661 /* Pull this off the queue and process it if it was the last one. */ 1662 spin_lock_irqsave(&hbus->device_list_lock, flags); 1663 while (!list_empty(&hbus->dr_list)) { 1664 dr = list_first_entry(&hbus->dr_list, struct hv_dr_state, 1665 list_entry); 1666 list_del(&dr->list_entry); 1667 1668 /* Throw this away if the list still has stuff in it. */ 1669 if (!list_empty(&hbus->dr_list)) { 1670 kfree(dr); 1671 continue; 1672 } 1673 } 1674 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 1675 1676 if (!dr) { 1677 put_hvpcibus(hbus); 1678 return; 1679 } 1680 1681 /* First, mark all existing children as reported missing. */ 1682 spin_lock_irqsave(&hbus->device_list_lock, flags); 1683 list_for_each_entry(hpdev, &hbus->children, list_entry) { 1684 hpdev->reported_missing = true; 1685 } 1686 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 1687 1688 /* Next, add back any reported devices. */ 1689 for (child_no = 0; child_no < dr->device_count; child_no++) { 1690 found = false; 1691 new_desc = &dr->func[child_no]; 1692 1693 spin_lock_irqsave(&hbus->device_list_lock, flags); 1694 list_for_each_entry(hpdev, &hbus->children, list_entry) { 1695 if ((hpdev->desc.win_slot.slot == new_desc->win_slot.slot) && 1696 (hpdev->desc.v_id == new_desc->v_id) && 1697 (hpdev->desc.d_id == new_desc->d_id) && 1698 (hpdev->desc.ser == new_desc->ser)) { 1699 hpdev->reported_missing = false; 1700 found = true; 1701 } 1702 } 1703 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 1704 1705 if (!found) { 1706 hpdev = new_pcichild_device(hbus, new_desc); 1707 if (!hpdev) 1708 dev_err(&hbus->hdev->device, 1709 "couldn't record a child device.\n"); 1710 } 1711 } 1712 1713 /* Move missing children to a list on the stack. */ 1714 spin_lock_irqsave(&hbus->device_list_lock, flags); 1715 do { 1716 found = false; 1717 list_for_each_entry(hpdev, &hbus->children, list_entry) { 1718 if (hpdev->reported_missing) { 1719 found = true; 1720 put_pcichild(hpdev); 1721 list_move_tail(&hpdev->list_entry, &removed); 1722 break; 1723 } 1724 } 1725 } while (found); 1726 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 1727 1728 /* Delete everything that should no longer exist. */ 1729 while (!list_empty(&removed)) { 1730 hpdev = list_first_entry(&removed, struct hv_pci_dev, 1731 list_entry); 1732 list_del(&hpdev->list_entry); 1733 put_pcichild(hpdev); 1734 } 1735 1736 switch (hbus->state) { 1737 case hv_pcibus_installed: 1738 /* 1739 * Tell the core to rescan bus 1740 * because there may have been changes. 1741 */ 1742 pci_lock_rescan_remove(); 1743 pci_scan_child_bus(hbus->pci_bus); 1744 pci_unlock_rescan_remove(); 1745 break; 1746 1747 case hv_pcibus_init: 1748 case hv_pcibus_probed: 1749 survey_child_resources(hbus); 1750 break; 1751 1752 default: 1753 break; 1754 } 1755 1756 put_hvpcibus(hbus); 1757 kfree(dr); 1758 } 1759 1760 /** 1761 * hv_pci_devices_present() - Handles list of new children 1762 * @hbus: Root PCI bus, as understood by this driver 1763 * @relations: Packet from host listing children 1764 * 1765 * This function is invoked whenever a new list of devices for 1766 * this bus appears. 1767 */ 1768 static void hv_pci_devices_present(struct hv_pcibus_device *hbus, 1769 struct pci_bus_relations *relations) 1770 { 1771 struct hv_dr_state *dr; 1772 struct hv_dr_work *dr_wrk; 1773 unsigned long flags; 1774 bool pending_dr; 1775 1776 dr_wrk = kzalloc(sizeof(*dr_wrk), GFP_NOWAIT); 1777 if (!dr_wrk) 1778 return; 1779 1780 dr = kzalloc(offsetof(struct hv_dr_state, func) + 1781 (sizeof(struct pci_function_description) * 1782 (relations->device_count)), GFP_NOWAIT); 1783 if (!dr) { 1784 kfree(dr_wrk); 1785 return; 1786 } 1787 1788 INIT_WORK(&dr_wrk->wrk, pci_devices_present_work); 1789 dr_wrk->bus = hbus; 1790 dr->device_count = relations->device_count; 1791 if (dr->device_count != 0) { 1792 memcpy(dr->func, relations->func, 1793 sizeof(struct pci_function_description) * 1794 dr->device_count); 1795 } 1796 1797 spin_lock_irqsave(&hbus->device_list_lock, flags); 1798 /* 1799 * If pending_dr is true, we have already queued a work, 1800 * which will see the new dr. Otherwise, we need to 1801 * queue a new work. 1802 */ 1803 pending_dr = !list_empty(&hbus->dr_list); 1804 list_add_tail(&dr->list_entry, &hbus->dr_list); 1805 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 1806 1807 if (pending_dr) { 1808 kfree(dr_wrk); 1809 } else { 1810 get_hvpcibus(hbus); 1811 queue_work(hbus->wq, &dr_wrk->wrk); 1812 } 1813 } 1814 1815 /** 1816 * hv_eject_device_work() - Asynchronously handles ejection 1817 * @work: Work struct embedded in internal device struct 1818 * 1819 * This function handles ejecting a device. Windows will 1820 * attempt to gracefully eject a device, waiting 60 seconds to 1821 * hear back from the guest OS that this completed successfully. 1822 * If this timer expires, the device will be forcibly removed. 1823 */ 1824 static void hv_eject_device_work(struct work_struct *work) 1825 { 1826 struct pci_eject_response *ejct_pkt; 1827 struct hv_pci_dev *hpdev; 1828 struct pci_dev *pdev; 1829 unsigned long flags; 1830 int wslot; 1831 struct { 1832 struct pci_packet pkt; 1833 u8 buffer[sizeof(struct pci_eject_response)]; 1834 } ctxt; 1835 1836 hpdev = container_of(work, struct hv_pci_dev, wrk); 1837 1838 WARN_ON(hpdev->state != hv_pcichild_ejecting); 1839 1840 /* 1841 * Ejection can come before or after the PCI bus has been set up, so 1842 * attempt to find it and tear down the bus state, if it exists. This 1843 * must be done without constructs like pci_domain_nr(hbus->pci_bus) 1844 * because hbus->pci_bus may not exist yet. 1845 */ 1846 wslot = wslot_to_devfn(hpdev->desc.win_slot.slot); 1847 pdev = pci_get_domain_bus_and_slot(hpdev->hbus->sysdata.domain, 0, 1848 wslot); 1849 if (pdev) { 1850 pci_lock_rescan_remove(); 1851 pci_stop_and_remove_bus_device(pdev); 1852 pci_dev_put(pdev); 1853 pci_unlock_rescan_remove(); 1854 } 1855 1856 spin_lock_irqsave(&hpdev->hbus->device_list_lock, flags); 1857 list_del(&hpdev->list_entry); 1858 spin_unlock_irqrestore(&hpdev->hbus->device_list_lock, flags); 1859 1860 memset(&ctxt, 0, sizeof(ctxt)); 1861 ejct_pkt = (struct pci_eject_response *)&ctxt.pkt.message; 1862 ejct_pkt->message_type.type = PCI_EJECTION_COMPLETE; 1863 ejct_pkt->wslot.slot = hpdev->desc.win_slot.slot; 1864 vmbus_sendpacket(hpdev->hbus->hdev->channel, ejct_pkt, 1865 sizeof(*ejct_pkt), (unsigned long)&ctxt.pkt, 1866 VM_PKT_DATA_INBAND, 0); 1867 1868 put_pcichild(hpdev); 1869 put_pcichild(hpdev); 1870 put_hvpcibus(hpdev->hbus); 1871 } 1872 1873 /** 1874 * hv_pci_eject_device() - Handles device ejection 1875 * @hpdev: Internal device tracking struct 1876 * 1877 * This function is invoked when an ejection packet arrives. It 1878 * just schedules work so that we don't re-enter the packet 1879 * delivery code handling the ejection. 1880 */ 1881 static void hv_pci_eject_device(struct hv_pci_dev *hpdev) 1882 { 1883 hpdev->state = hv_pcichild_ejecting; 1884 get_pcichild(hpdev); 1885 INIT_WORK(&hpdev->wrk, hv_eject_device_work); 1886 get_hvpcibus(hpdev->hbus); 1887 queue_work(hpdev->hbus->wq, &hpdev->wrk); 1888 } 1889 1890 /** 1891 * hv_pci_onchannelcallback() - Handles incoming packets 1892 * @context: Internal bus tracking struct 1893 * 1894 * This function is invoked whenever the host sends a packet to 1895 * this channel (which is private to this root PCI bus). 1896 */ 1897 static void hv_pci_onchannelcallback(void *context) 1898 { 1899 const int packet_size = 0x100; 1900 int ret; 1901 struct hv_pcibus_device *hbus = context; 1902 u32 bytes_recvd; 1903 u64 req_id; 1904 struct vmpacket_descriptor *desc; 1905 unsigned char *buffer; 1906 int bufferlen = packet_size; 1907 struct pci_packet *comp_packet; 1908 struct pci_response *response; 1909 struct pci_incoming_message *new_message; 1910 struct pci_bus_relations *bus_rel; 1911 struct pci_dev_incoming *dev_message; 1912 struct hv_pci_dev *hpdev; 1913 1914 buffer = kmalloc(bufferlen, GFP_ATOMIC); 1915 if (!buffer) 1916 return; 1917 1918 while (1) { 1919 ret = vmbus_recvpacket_raw(hbus->hdev->channel, buffer, 1920 bufferlen, &bytes_recvd, &req_id); 1921 1922 if (ret == -ENOBUFS) { 1923 kfree(buffer); 1924 /* Handle large packet */ 1925 bufferlen = bytes_recvd; 1926 buffer = kmalloc(bytes_recvd, GFP_ATOMIC); 1927 if (!buffer) 1928 return; 1929 continue; 1930 } 1931 1932 /* Zero length indicates there are no more packets. */ 1933 if (ret || !bytes_recvd) 1934 break; 1935 1936 /* 1937 * All incoming packets must be at least as large as a 1938 * response. 1939 */ 1940 if (bytes_recvd <= sizeof(struct pci_response)) 1941 continue; 1942 desc = (struct vmpacket_descriptor *)buffer; 1943 1944 switch (desc->type) { 1945 case VM_PKT_COMP: 1946 1947 /* 1948 * The host is trusted, and thus it's safe to interpret 1949 * this transaction ID as a pointer. 1950 */ 1951 comp_packet = (struct pci_packet *)req_id; 1952 response = (struct pci_response *)buffer; 1953 comp_packet->completion_func(comp_packet->compl_ctxt, 1954 response, 1955 bytes_recvd); 1956 break; 1957 1958 case VM_PKT_DATA_INBAND: 1959 1960 new_message = (struct pci_incoming_message *)buffer; 1961 switch (new_message->message_type.type) { 1962 case PCI_BUS_RELATIONS: 1963 1964 bus_rel = (struct pci_bus_relations *)buffer; 1965 if (bytes_recvd < 1966 offsetof(struct pci_bus_relations, func) + 1967 (sizeof(struct pci_function_description) * 1968 (bus_rel->device_count))) { 1969 dev_err(&hbus->hdev->device, 1970 "bus relations too small\n"); 1971 break; 1972 } 1973 1974 hv_pci_devices_present(hbus, bus_rel); 1975 break; 1976 1977 case PCI_EJECT: 1978 1979 dev_message = (struct pci_dev_incoming *)buffer; 1980 hpdev = get_pcichild_wslot(hbus, 1981 dev_message->wslot.slot); 1982 if (hpdev) { 1983 hv_pci_eject_device(hpdev); 1984 put_pcichild(hpdev); 1985 } 1986 break; 1987 1988 default: 1989 dev_warn(&hbus->hdev->device, 1990 "Unimplemented protocol message %x\n", 1991 new_message->message_type.type); 1992 break; 1993 } 1994 break; 1995 1996 default: 1997 dev_err(&hbus->hdev->device, 1998 "unhandled packet type %d, tid %llx len %d\n", 1999 desc->type, req_id, bytes_recvd); 2000 break; 2001 } 2002 } 2003 2004 kfree(buffer); 2005 } 2006 2007 /** 2008 * hv_pci_protocol_negotiation() - Set up protocol 2009 * @hdev: VMBus's tracking struct for this root PCI bus 2010 * 2011 * This driver is intended to support running on Windows 10 2012 * (server) and later versions. It will not run on earlier 2013 * versions, as they assume that many of the operations which 2014 * Linux needs accomplished with a spinlock held were done via 2015 * asynchronous messaging via VMBus. Windows 10 increases the 2016 * surface area of PCI emulation so that these actions can take 2017 * place by suspending a virtual processor for their duration. 2018 * 2019 * This function negotiates the channel protocol version, 2020 * failing if the host doesn't support the necessary protocol 2021 * level. 2022 */ 2023 static int hv_pci_protocol_negotiation(struct hv_device *hdev) 2024 { 2025 struct pci_version_request *version_req; 2026 struct hv_pci_compl comp_pkt; 2027 struct pci_packet *pkt; 2028 int ret; 2029 int i; 2030 2031 /* 2032 * Initiate the handshake with the host and negotiate 2033 * a version that the host can support. We start with the 2034 * highest version number and go down if the host cannot 2035 * support it. 2036 */ 2037 pkt = kzalloc(sizeof(*pkt) + sizeof(*version_req), GFP_KERNEL); 2038 if (!pkt) 2039 return -ENOMEM; 2040 2041 init_completion(&comp_pkt.host_event); 2042 pkt->completion_func = hv_pci_generic_compl; 2043 pkt->compl_ctxt = &comp_pkt; 2044 version_req = (struct pci_version_request *)&pkt->message; 2045 version_req->message_type.type = PCI_QUERY_PROTOCOL_VERSION; 2046 2047 for (i = 0; i < ARRAY_SIZE(pci_protocol_versions); i++) { 2048 version_req->protocol_version = pci_protocol_versions[i]; 2049 ret = vmbus_sendpacket(hdev->channel, version_req, 2050 sizeof(struct pci_version_request), 2051 (unsigned long)pkt, VM_PKT_DATA_INBAND, 2052 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 2053 if (!ret) 2054 ret = wait_for_response(hdev, &comp_pkt.host_event); 2055 2056 if (ret) { 2057 dev_err(&hdev->device, 2058 "PCI Pass-through VSP failed to request version: %d", 2059 ret); 2060 goto exit; 2061 } 2062 2063 if (comp_pkt.completion_status >= 0) { 2064 pci_protocol_version = pci_protocol_versions[i]; 2065 dev_info(&hdev->device, 2066 "PCI VMBus probing: Using version %#x\n", 2067 pci_protocol_version); 2068 goto exit; 2069 } 2070 2071 if (comp_pkt.completion_status != STATUS_REVISION_MISMATCH) { 2072 dev_err(&hdev->device, 2073 "PCI Pass-through VSP failed version request: %#x", 2074 comp_pkt.completion_status); 2075 ret = -EPROTO; 2076 goto exit; 2077 } 2078 2079 reinit_completion(&comp_pkt.host_event); 2080 } 2081 2082 dev_err(&hdev->device, 2083 "PCI pass-through VSP failed to find supported version"); 2084 ret = -EPROTO; 2085 2086 exit: 2087 kfree(pkt); 2088 return ret; 2089 } 2090 2091 /** 2092 * hv_pci_free_bridge_windows() - Release memory regions for the 2093 * bus 2094 * @hbus: Root PCI bus, as understood by this driver 2095 */ 2096 static void hv_pci_free_bridge_windows(struct hv_pcibus_device *hbus) 2097 { 2098 /* 2099 * Set the resources back to the way they looked when they 2100 * were allocated by setting IORESOURCE_BUSY again. 2101 */ 2102 2103 if (hbus->low_mmio_space && hbus->low_mmio_res) { 2104 hbus->low_mmio_res->flags |= IORESOURCE_BUSY; 2105 vmbus_free_mmio(hbus->low_mmio_res->start, 2106 resource_size(hbus->low_mmio_res)); 2107 } 2108 2109 if (hbus->high_mmio_space && hbus->high_mmio_res) { 2110 hbus->high_mmio_res->flags |= IORESOURCE_BUSY; 2111 vmbus_free_mmio(hbus->high_mmio_res->start, 2112 resource_size(hbus->high_mmio_res)); 2113 } 2114 } 2115 2116 /** 2117 * hv_pci_allocate_bridge_windows() - Allocate memory regions 2118 * for the bus 2119 * @hbus: Root PCI bus, as understood by this driver 2120 * 2121 * This function calls vmbus_allocate_mmio(), which is itself a 2122 * bit of a compromise. Ideally, we might change the pnp layer 2123 * in the kernel such that it comprehends either PCI devices 2124 * which are "grandchildren of ACPI," with some intermediate bus 2125 * node (in this case, VMBus) or change it such that it 2126 * understands VMBus. The pnp layer, however, has been declared 2127 * deprecated, and not subject to change. 2128 * 2129 * The workaround, implemented here, is to ask VMBus to allocate 2130 * MMIO space for this bus. VMBus itself knows which ranges are 2131 * appropriate by looking at its own ACPI objects. Then, after 2132 * these ranges are claimed, they're modified to look like they 2133 * would have looked if the ACPI and pnp code had allocated 2134 * bridge windows. These descriptors have to exist in this form 2135 * in order to satisfy the code which will get invoked when the 2136 * endpoint PCI function driver calls request_mem_region() or 2137 * request_mem_region_exclusive(). 2138 * 2139 * Return: 0 on success, -errno on failure 2140 */ 2141 static int hv_pci_allocate_bridge_windows(struct hv_pcibus_device *hbus) 2142 { 2143 resource_size_t align; 2144 int ret; 2145 2146 if (hbus->low_mmio_space) { 2147 align = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space)); 2148 ret = vmbus_allocate_mmio(&hbus->low_mmio_res, hbus->hdev, 0, 2149 (u64)(u32)0xffffffff, 2150 hbus->low_mmio_space, 2151 align, false); 2152 if (ret) { 2153 dev_err(&hbus->hdev->device, 2154 "Need %#llx of low MMIO space. Consider reconfiguring the VM.\n", 2155 hbus->low_mmio_space); 2156 return ret; 2157 } 2158 2159 /* Modify this resource to become a bridge window. */ 2160 hbus->low_mmio_res->flags |= IORESOURCE_WINDOW; 2161 hbus->low_mmio_res->flags &= ~IORESOURCE_BUSY; 2162 pci_add_resource(&hbus->resources_for_children, 2163 hbus->low_mmio_res); 2164 } 2165 2166 if (hbus->high_mmio_space) { 2167 align = 1ULL << (63 - __builtin_clzll(hbus->high_mmio_space)); 2168 ret = vmbus_allocate_mmio(&hbus->high_mmio_res, hbus->hdev, 2169 0x100000000, -1, 2170 hbus->high_mmio_space, align, 2171 false); 2172 if (ret) { 2173 dev_err(&hbus->hdev->device, 2174 "Need %#llx of high MMIO space. Consider reconfiguring the VM.\n", 2175 hbus->high_mmio_space); 2176 goto release_low_mmio; 2177 } 2178 2179 /* Modify this resource to become a bridge window. */ 2180 hbus->high_mmio_res->flags |= IORESOURCE_WINDOW; 2181 hbus->high_mmio_res->flags &= ~IORESOURCE_BUSY; 2182 pci_add_resource(&hbus->resources_for_children, 2183 hbus->high_mmio_res); 2184 } 2185 2186 return 0; 2187 2188 release_low_mmio: 2189 if (hbus->low_mmio_res) { 2190 vmbus_free_mmio(hbus->low_mmio_res->start, 2191 resource_size(hbus->low_mmio_res)); 2192 } 2193 2194 return ret; 2195 } 2196 2197 /** 2198 * hv_allocate_config_window() - Find MMIO space for PCI Config 2199 * @hbus: Root PCI bus, as understood by this driver 2200 * 2201 * This function claims memory-mapped I/O space for accessing 2202 * configuration space for the functions on this bus. 2203 * 2204 * Return: 0 on success, -errno on failure 2205 */ 2206 static int hv_allocate_config_window(struct hv_pcibus_device *hbus) 2207 { 2208 int ret; 2209 2210 /* 2211 * Set up a region of MMIO space to use for accessing configuration 2212 * space. 2213 */ 2214 ret = vmbus_allocate_mmio(&hbus->mem_config, hbus->hdev, 0, -1, 2215 PCI_CONFIG_MMIO_LENGTH, 0x1000, false); 2216 if (ret) 2217 return ret; 2218 2219 /* 2220 * vmbus_allocate_mmio() gets used for allocating both device endpoint 2221 * resource claims (those which cannot be overlapped) and the ranges 2222 * which are valid for the children of this bus, which are intended 2223 * to be overlapped by those children. Set the flag on this claim 2224 * meaning that this region can't be overlapped. 2225 */ 2226 2227 hbus->mem_config->flags |= IORESOURCE_BUSY; 2228 2229 return 0; 2230 } 2231 2232 static void hv_free_config_window(struct hv_pcibus_device *hbus) 2233 { 2234 vmbus_free_mmio(hbus->mem_config->start, PCI_CONFIG_MMIO_LENGTH); 2235 } 2236 2237 /** 2238 * hv_pci_enter_d0() - Bring the "bus" into the D0 power state 2239 * @hdev: VMBus's tracking struct for this root PCI bus 2240 * 2241 * Return: 0 on success, -errno on failure 2242 */ 2243 static int hv_pci_enter_d0(struct hv_device *hdev) 2244 { 2245 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 2246 struct pci_bus_d0_entry *d0_entry; 2247 struct hv_pci_compl comp_pkt; 2248 struct pci_packet *pkt; 2249 int ret; 2250 2251 /* 2252 * Tell the host that the bus is ready to use, and moved into the 2253 * powered-on state. This includes telling the host which region 2254 * of memory-mapped I/O space has been chosen for configuration space 2255 * access. 2256 */ 2257 pkt = kzalloc(sizeof(*pkt) + sizeof(*d0_entry), GFP_KERNEL); 2258 if (!pkt) 2259 return -ENOMEM; 2260 2261 init_completion(&comp_pkt.host_event); 2262 pkt->completion_func = hv_pci_generic_compl; 2263 pkt->compl_ctxt = &comp_pkt; 2264 d0_entry = (struct pci_bus_d0_entry *)&pkt->message; 2265 d0_entry->message_type.type = PCI_BUS_D0ENTRY; 2266 d0_entry->mmio_base = hbus->mem_config->start; 2267 2268 ret = vmbus_sendpacket(hdev->channel, d0_entry, sizeof(*d0_entry), 2269 (unsigned long)pkt, VM_PKT_DATA_INBAND, 2270 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 2271 if (!ret) 2272 ret = wait_for_response(hdev, &comp_pkt.host_event); 2273 2274 if (ret) 2275 goto exit; 2276 2277 if (comp_pkt.completion_status < 0) { 2278 dev_err(&hdev->device, 2279 "PCI Pass-through VSP failed D0 Entry with status %x\n", 2280 comp_pkt.completion_status); 2281 ret = -EPROTO; 2282 goto exit; 2283 } 2284 2285 ret = 0; 2286 2287 exit: 2288 kfree(pkt); 2289 return ret; 2290 } 2291 2292 /** 2293 * hv_pci_query_relations() - Ask host to send list of child 2294 * devices 2295 * @hdev: VMBus's tracking struct for this root PCI bus 2296 * 2297 * Return: 0 on success, -errno on failure 2298 */ 2299 static int hv_pci_query_relations(struct hv_device *hdev) 2300 { 2301 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 2302 struct pci_message message; 2303 struct completion comp; 2304 int ret; 2305 2306 /* Ask the host to send along the list of child devices */ 2307 init_completion(&comp); 2308 if (cmpxchg(&hbus->survey_event, NULL, &comp)) 2309 return -ENOTEMPTY; 2310 2311 memset(&message, 0, sizeof(message)); 2312 message.type = PCI_QUERY_BUS_RELATIONS; 2313 2314 ret = vmbus_sendpacket(hdev->channel, &message, sizeof(message), 2315 0, VM_PKT_DATA_INBAND, 0); 2316 if (!ret) 2317 ret = wait_for_response(hdev, &comp); 2318 2319 return ret; 2320 } 2321 2322 /** 2323 * hv_send_resources_allocated() - Report local resource choices 2324 * @hdev: VMBus's tracking struct for this root PCI bus 2325 * 2326 * The host OS is expecting to be sent a request as a message 2327 * which contains all the resources that the device will use. 2328 * The response contains those same resources, "translated" 2329 * which is to say, the values which should be used by the 2330 * hardware, when it delivers an interrupt. (MMIO resources are 2331 * used in local terms.) This is nice for Windows, and lines up 2332 * with the FDO/PDO split, which doesn't exist in Linux. Linux 2333 * is deeply expecting to scan an emulated PCI configuration 2334 * space. So this message is sent here only to drive the state 2335 * machine on the host forward. 2336 * 2337 * Return: 0 on success, -errno on failure 2338 */ 2339 static int hv_send_resources_allocated(struct hv_device *hdev) 2340 { 2341 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 2342 struct pci_resources_assigned *res_assigned; 2343 struct pci_resources_assigned2 *res_assigned2; 2344 struct hv_pci_compl comp_pkt; 2345 struct hv_pci_dev *hpdev; 2346 struct pci_packet *pkt; 2347 size_t size_res; 2348 u32 wslot; 2349 int ret; 2350 2351 size_res = (pci_protocol_version < PCI_PROTOCOL_VERSION_1_2) 2352 ? sizeof(*res_assigned) : sizeof(*res_assigned2); 2353 2354 pkt = kmalloc(sizeof(*pkt) + size_res, GFP_KERNEL); 2355 if (!pkt) 2356 return -ENOMEM; 2357 2358 ret = 0; 2359 2360 for (wslot = 0; wslot < 256; wslot++) { 2361 hpdev = get_pcichild_wslot(hbus, wslot); 2362 if (!hpdev) 2363 continue; 2364 2365 memset(pkt, 0, sizeof(*pkt) + size_res); 2366 init_completion(&comp_pkt.host_event); 2367 pkt->completion_func = hv_pci_generic_compl; 2368 pkt->compl_ctxt = &comp_pkt; 2369 2370 if (pci_protocol_version < PCI_PROTOCOL_VERSION_1_2) { 2371 res_assigned = 2372 (struct pci_resources_assigned *)&pkt->message; 2373 res_assigned->message_type.type = 2374 PCI_RESOURCES_ASSIGNED; 2375 res_assigned->wslot.slot = hpdev->desc.win_slot.slot; 2376 } else { 2377 res_assigned2 = 2378 (struct pci_resources_assigned2 *)&pkt->message; 2379 res_assigned2->message_type.type = 2380 PCI_RESOURCES_ASSIGNED2; 2381 res_assigned2->wslot.slot = hpdev->desc.win_slot.slot; 2382 } 2383 put_pcichild(hpdev); 2384 2385 ret = vmbus_sendpacket(hdev->channel, &pkt->message, 2386 size_res, (unsigned long)pkt, 2387 VM_PKT_DATA_INBAND, 2388 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 2389 if (!ret) 2390 ret = wait_for_response(hdev, &comp_pkt.host_event); 2391 if (ret) 2392 break; 2393 2394 if (comp_pkt.completion_status < 0) { 2395 ret = -EPROTO; 2396 dev_err(&hdev->device, 2397 "resource allocated returned 0x%x", 2398 comp_pkt.completion_status); 2399 break; 2400 } 2401 } 2402 2403 kfree(pkt); 2404 return ret; 2405 } 2406 2407 /** 2408 * hv_send_resources_released() - Report local resources 2409 * released 2410 * @hdev: VMBus's tracking struct for this root PCI bus 2411 * 2412 * Return: 0 on success, -errno on failure 2413 */ 2414 static int hv_send_resources_released(struct hv_device *hdev) 2415 { 2416 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 2417 struct pci_child_message pkt; 2418 struct hv_pci_dev *hpdev; 2419 u32 wslot; 2420 int ret; 2421 2422 for (wslot = 0; wslot < 256; wslot++) { 2423 hpdev = get_pcichild_wslot(hbus, wslot); 2424 if (!hpdev) 2425 continue; 2426 2427 memset(&pkt, 0, sizeof(pkt)); 2428 pkt.message_type.type = PCI_RESOURCES_RELEASED; 2429 pkt.wslot.slot = hpdev->desc.win_slot.slot; 2430 2431 put_pcichild(hpdev); 2432 2433 ret = vmbus_sendpacket(hdev->channel, &pkt, sizeof(pkt), 0, 2434 VM_PKT_DATA_INBAND, 0); 2435 if (ret) 2436 return ret; 2437 } 2438 2439 return 0; 2440 } 2441 2442 static void get_hvpcibus(struct hv_pcibus_device *hbus) 2443 { 2444 refcount_inc(&hbus->remove_lock); 2445 } 2446 2447 static void put_hvpcibus(struct hv_pcibus_device *hbus) 2448 { 2449 if (refcount_dec_and_test(&hbus->remove_lock)) 2450 complete(&hbus->remove_event); 2451 } 2452 2453 /** 2454 * hv_pci_probe() - New VMBus channel probe, for a root PCI bus 2455 * @hdev: VMBus's tracking struct for this root PCI bus 2456 * @dev_id: Identifies the device itself 2457 * 2458 * Return: 0 on success, -errno on failure 2459 */ 2460 static int hv_pci_probe(struct hv_device *hdev, 2461 const struct hv_vmbus_device_id *dev_id) 2462 { 2463 struct hv_pcibus_device *hbus; 2464 int ret; 2465 2466 /* 2467 * hv_pcibus_device contains the hypercall arguments for retargeting in 2468 * hv_irq_unmask(). Those must not cross a page boundary. 2469 */ 2470 BUILD_BUG_ON(sizeof(*hbus) > PAGE_SIZE); 2471 2472 hbus = (struct hv_pcibus_device *)get_zeroed_page(GFP_KERNEL); 2473 if (!hbus) 2474 return -ENOMEM; 2475 hbus->state = hv_pcibus_init; 2476 2477 /* 2478 * The PCI bus "domain" is what is called "segment" in ACPI and 2479 * other specs. Pull it from the instance ID, to get something 2480 * unique. Bytes 8 and 9 are what is used in Windows guests, so 2481 * do the same thing for consistency. Note that, since this code 2482 * only runs in a Hyper-V VM, Hyper-V can (and does) guarantee 2483 * that (1) the only domain in use for something that looks like 2484 * a physical PCI bus (which is actually emulated by the 2485 * hypervisor) is domain 0 and (2) there will be no overlap 2486 * between domains derived from these instance IDs in the same 2487 * VM. 2488 */ 2489 hbus->sysdata.domain = hdev->dev_instance.b[9] | 2490 hdev->dev_instance.b[8] << 8; 2491 2492 hbus->hdev = hdev; 2493 refcount_set(&hbus->remove_lock, 1); 2494 INIT_LIST_HEAD(&hbus->children); 2495 INIT_LIST_HEAD(&hbus->dr_list); 2496 INIT_LIST_HEAD(&hbus->resources_for_children); 2497 spin_lock_init(&hbus->config_lock); 2498 spin_lock_init(&hbus->device_list_lock); 2499 spin_lock_init(&hbus->retarget_msi_interrupt_lock); 2500 init_completion(&hbus->remove_event); 2501 hbus->wq = alloc_ordered_workqueue("hv_pci_%x", 0, 2502 hbus->sysdata.domain); 2503 if (!hbus->wq) { 2504 ret = -ENOMEM; 2505 goto free_bus; 2506 } 2507 2508 ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0, 2509 hv_pci_onchannelcallback, hbus); 2510 if (ret) 2511 goto destroy_wq; 2512 2513 hv_set_drvdata(hdev, hbus); 2514 2515 ret = hv_pci_protocol_negotiation(hdev); 2516 if (ret) 2517 goto close; 2518 2519 ret = hv_allocate_config_window(hbus); 2520 if (ret) 2521 goto close; 2522 2523 hbus->cfg_addr = ioremap(hbus->mem_config->start, 2524 PCI_CONFIG_MMIO_LENGTH); 2525 if (!hbus->cfg_addr) { 2526 dev_err(&hdev->device, 2527 "Unable to map a virtual address for config space\n"); 2528 ret = -ENOMEM; 2529 goto free_config; 2530 } 2531 2532 hbus->sysdata.fwnode = irq_domain_alloc_fwnode(hbus); 2533 if (!hbus->sysdata.fwnode) { 2534 ret = -ENOMEM; 2535 goto unmap; 2536 } 2537 2538 ret = hv_pcie_init_irq_domain(hbus); 2539 if (ret) 2540 goto free_fwnode; 2541 2542 ret = hv_pci_query_relations(hdev); 2543 if (ret) 2544 goto free_irq_domain; 2545 2546 ret = hv_pci_enter_d0(hdev); 2547 if (ret) 2548 goto free_irq_domain; 2549 2550 ret = hv_pci_allocate_bridge_windows(hbus); 2551 if (ret) 2552 goto free_irq_domain; 2553 2554 ret = hv_send_resources_allocated(hdev); 2555 if (ret) 2556 goto free_windows; 2557 2558 prepopulate_bars(hbus); 2559 2560 hbus->state = hv_pcibus_probed; 2561 2562 ret = create_root_hv_pci_bus(hbus); 2563 if (ret) 2564 goto free_windows; 2565 2566 return 0; 2567 2568 free_windows: 2569 hv_pci_free_bridge_windows(hbus); 2570 free_irq_domain: 2571 irq_domain_remove(hbus->irq_domain); 2572 free_fwnode: 2573 irq_domain_free_fwnode(hbus->sysdata.fwnode); 2574 unmap: 2575 iounmap(hbus->cfg_addr); 2576 free_config: 2577 hv_free_config_window(hbus); 2578 close: 2579 vmbus_close(hdev->channel); 2580 destroy_wq: 2581 destroy_workqueue(hbus->wq); 2582 free_bus: 2583 free_page((unsigned long)hbus); 2584 return ret; 2585 } 2586 2587 static void hv_pci_bus_exit(struct hv_device *hdev) 2588 { 2589 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 2590 struct { 2591 struct pci_packet teardown_packet; 2592 u8 buffer[sizeof(struct pci_message)]; 2593 } pkt; 2594 struct pci_bus_relations relations; 2595 struct hv_pci_compl comp_pkt; 2596 int ret; 2597 2598 /* 2599 * After the host sends the RESCIND_CHANNEL message, it doesn't 2600 * access the per-channel ringbuffer any longer. 2601 */ 2602 if (hdev->channel->rescind) 2603 return; 2604 2605 /* Delete any children which might still exist. */ 2606 memset(&relations, 0, sizeof(relations)); 2607 hv_pci_devices_present(hbus, &relations); 2608 2609 ret = hv_send_resources_released(hdev); 2610 if (ret) 2611 dev_err(&hdev->device, 2612 "Couldn't send resources released packet(s)\n"); 2613 2614 memset(&pkt.teardown_packet, 0, sizeof(pkt.teardown_packet)); 2615 init_completion(&comp_pkt.host_event); 2616 pkt.teardown_packet.completion_func = hv_pci_generic_compl; 2617 pkt.teardown_packet.compl_ctxt = &comp_pkt; 2618 pkt.teardown_packet.message[0].type = PCI_BUS_D0EXIT; 2619 2620 ret = vmbus_sendpacket(hdev->channel, &pkt.teardown_packet.message, 2621 sizeof(struct pci_message), 2622 (unsigned long)&pkt.teardown_packet, 2623 VM_PKT_DATA_INBAND, 2624 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 2625 if (!ret) 2626 wait_for_completion_timeout(&comp_pkt.host_event, 10 * HZ); 2627 } 2628 2629 /** 2630 * hv_pci_remove() - Remove routine for this VMBus channel 2631 * @hdev: VMBus's tracking struct for this root PCI bus 2632 * 2633 * Return: 0 on success, -errno on failure 2634 */ 2635 static int hv_pci_remove(struct hv_device *hdev) 2636 { 2637 struct hv_pcibus_device *hbus; 2638 2639 hbus = hv_get_drvdata(hdev); 2640 if (hbus->state == hv_pcibus_installed) { 2641 /* Remove the bus from PCI's point of view. */ 2642 pci_lock_rescan_remove(); 2643 pci_stop_root_bus(hbus->pci_bus); 2644 pci_remove_root_bus(hbus->pci_bus); 2645 pci_unlock_rescan_remove(); 2646 hbus->state = hv_pcibus_removed; 2647 } 2648 2649 hv_pci_bus_exit(hdev); 2650 2651 vmbus_close(hdev->channel); 2652 2653 iounmap(hbus->cfg_addr); 2654 hv_free_config_window(hbus); 2655 pci_free_resource_list(&hbus->resources_for_children); 2656 hv_pci_free_bridge_windows(hbus); 2657 irq_domain_remove(hbus->irq_domain); 2658 irq_domain_free_fwnode(hbus->sysdata.fwnode); 2659 put_hvpcibus(hbus); 2660 wait_for_completion(&hbus->remove_event); 2661 destroy_workqueue(hbus->wq); 2662 free_page((unsigned long)hbus); 2663 return 0; 2664 } 2665 2666 static const struct hv_vmbus_device_id hv_pci_id_table[] = { 2667 /* PCI Pass-through Class ID */ 2668 /* 44C4F61D-4444-4400-9D52-802E27EDE19F */ 2669 { HV_PCIE_GUID, }, 2670 { }, 2671 }; 2672 2673 MODULE_DEVICE_TABLE(vmbus, hv_pci_id_table); 2674 2675 static struct hv_driver hv_pci_drv = { 2676 .name = "hv_pci", 2677 .id_table = hv_pci_id_table, 2678 .probe = hv_pci_probe, 2679 .remove = hv_pci_remove, 2680 }; 2681 2682 static void __exit exit_hv_pci_drv(void) 2683 { 2684 vmbus_driver_unregister(&hv_pci_drv); 2685 } 2686 2687 static int __init init_hv_pci_drv(void) 2688 { 2689 return vmbus_driver_register(&hv_pci_drv); 2690 } 2691 2692 module_init(init_hv_pci_drv); 2693 module_exit(exit_hv_pci_drv); 2694 2695 MODULE_DESCRIPTION("Hyper-V PCI"); 2696 MODULE_LICENSE("GPL v2"); 2697