xref: /openbmc/linux/drivers/pci/controller/pci-hyperv.c (revision 87fcfa7b7fe6bf819033fe827a27f710e38639b5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) Microsoft Corporation.
4  *
5  * Author:
6  *   Jake Oshins <jakeo@microsoft.com>
7  *
8  * This driver acts as a paravirtual front-end for PCI Express root buses.
9  * When a PCI Express function (either an entire device or an SR-IOV
10  * Virtual Function) is being passed through to the VM, this driver exposes
11  * a new bus to the guest VM.  This is modeled as a root PCI bus because
12  * no bridges are being exposed to the VM.  In fact, with a "Generation 2"
13  * VM within Hyper-V, there may seem to be no PCI bus at all in the VM
14  * until a device as been exposed using this driver.
15  *
16  * Each root PCI bus has its own PCI domain, which is called "Segment" in
17  * the PCI Firmware Specifications.  Thus while each device passed through
18  * to the VM using this front-end will appear at "device 0", the domain will
19  * be unique.  Typically, each bus will have one PCI function on it, though
20  * this driver does support more than one.
21  *
22  * In order to map the interrupts from the device through to the guest VM,
23  * this driver also implements an IRQ Domain, which handles interrupts (either
24  * MSI or MSI-X) associated with the functions on the bus.  As interrupts are
25  * set up, torn down, or reaffined, this driver communicates with the
26  * underlying hypervisor to adjust the mappings in the I/O MMU so that each
27  * interrupt will be delivered to the correct virtual processor at the right
28  * vector.  This driver does not support level-triggered (line-based)
29  * interrupts, and will report that the Interrupt Line register in the
30  * function's configuration space is zero.
31  *
32  * The rest of this driver mostly maps PCI concepts onto underlying Hyper-V
33  * facilities.  For instance, the configuration space of a function exposed
34  * by Hyper-V is mapped into a single page of memory space, and the
35  * read and write handlers for config space must be aware of this mechanism.
36  * Similarly, device setup and teardown involves messages sent to and from
37  * the PCI back-end driver in Hyper-V.
38  */
39 
40 #include <linux/kernel.h>
41 #include <linux/module.h>
42 #include <linux/pci.h>
43 #include <linux/delay.h>
44 #include <linux/semaphore.h>
45 #include <linux/irqdomain.h>
46 #include <asm/irqdomain.h>
47 #include <asm/apic.h>
48 #include <linux/irq.h>
49 #include <linux/msi.h>
50 #include <linux/hyperv.h>
51 #include <linux/refcount.h>
52 #include <asm/mshyperv.h>
53 
54 /*
55  * Protocol versions. The low word is the minor version, the high word the
56  * major version.
57  */
58 
59 #define PCI_MAKE_VERSION(major, minor) ((u32)(((major) << 16) | (minor)))
60 #define PCI_MAJOR_VERSION(version) ((u32)(version) >> 16)
61 #define PCI_MINOR_VERSION(version) ((u32)(version) & 0xff)
62 
63 enum pci_protocol_version_t {
64 	PCI_PROTOCOL_VERSION_1_1 = PCI_MAKE_VERSION(1, 1),	/* Win10 */
65 	PCI_PROTOCOL_VERSION_1_2 = PCI_MAKE_VERSION(1, 2),	/* RS1 */
66 };
67 
68 #define CPU_AFFINITY_ALL	-1ULL
69 
70 /*
71  * Supported protocol versions in the order of probing - highest go
72  * first.
73  */
74 static enum pci_protocol_version_t pci_protocol_versions[] = {
75 	PCI_PROTOCOL_VERSION_1_2,
76 	PCI_PROTOCOL_VERSION_1_1,
77 };
78 
79 #define PCI_CONFIG_MMIO_LENGTH	0x2000
80 #define CFG_PAGE_OFFSET 0x1000
81 #define CFG_PAGE_SIZE (PCI_CONFIG_MMIO_LENGTH - CFG_PAGE_OFFSET)
82 
83 #define MAX_SUPPORTED_MSI_MESSAGES 0x400
84 
85 #define STATUS_REVISION_MISMATCH 0xC0000059
86 
87 /* space for 32bit serial number as string */
88 #define SLOT_NAME_SIZE 11
89 
90 /*
91  * Message Types
92  */
93 
94 enum pci_message_type {
95 	/*
96 	 * Version 1.1
97 	 */
98 	PCI_MESSAGE_BASE                = 0x42490000,
99 	PCI_BUS_RELATIONS               = PCI_MESSAGE_BASE + 0,
100 	PCI_QUERY_BUS_RELATIONS         = PCI_MESSAGE_BASE + 1,
101 	PCI_POWER_STATE_CHANGE          = PCI_MESSAGE_BASE + 4,
102 	PCI_QUERY_RESOURCE_REQUIREMENTS = PCI_MESSAGE_BASE + 5,
103 	PCI_QUERY_RESOURCE_RESOURCES    = PCI_MESSAGE_BASE + 6,
104 	PCI_BUS_D0ENTRY                 = PCI_MESSAGE_BASE + 7,
105 	PCI_BUS_D0EXIT                  = PCI_MESSAGE_BASE + 8,
106 	PCI_READ_BLOCK                  = PCI_MESSAGE_BASE + 9,
107 	PCI_WRITE_BLOCK                 = PCI_MESSAGE_BASE + 0xA,
108 	PCI_EJECT                       = PCI_MESSAGE_BASE + 0xB,
109 	PCI_QUERY_STOP                  = PCI_MESSAGE_BASE + 0xC,
110 	PCI_REENABLE                    = PCI_MESSAGE_BASE + 0xD,
111 	PCI_QUERY_STOP_FAILED           = PCI_MESSAGE_BASE + 0xE,
112 	PCI_EJECTION_COMPLETE           = PCI_MESSAGE_BASE + 0xF,
113 	PCI_RESOURCES_ASSIGNED          = PCI_MESSAGE_BASE + 0x10,
114 	PCI_RESOURCES_RELEASED          = PCI_MESSAGE_BASE + 0x11,
115 	PCI_INVALIDATE_BLOCK            = PCI_MESSAGE_BASE + 0x12,
116 	PCI_QUERY_PROTOCOL_VERSION      = PCI_MESSAGE_BASE + 0x13,
117 	PCI_CREATE_INTERRUPT_MESSAGE    = PCI_MESSAGE_BASE + 0x14,
118 	PCI_DELETE_INTERRUPT_MESSAGE    = PCI_MESSAGE_BASE + 0x15,
119 	PCI_RESOURCES_ASSIGNED2		= PCI_MESSAGE_BASE + 0x16,
120 	PCI_CREATE_INTERRUPT_MESSAGE2	= PCI_MESSAGE_BASE + 0x17,
121 	PCI_DELETE_INTERRUPT_MESSAGE2	= PCI_MESSAGE_BASE + 0x18, /* unused */
122 	PCI_MESSAGE_MAXIMUM
123 };
124 
125 /*
126  * Structures defining the virtual PCI Express protocol.
127  */
128 
129 union pci_version {
130 	struct {
131 		u16 minor_version;
132 		u16 major_version;
133 	} parts;
134 	u32 version;
135 } __packed;
136 
137 /*
138  * Function numbers are 8-bits wide on Express, as interpreted through ARI,
139  * which is all this driver does.  This representation is the one used in
140  * Windows, which is what is expected when sending this back and forth with
141  * the Hyper-V parent partition.
142  */
143 union win_slot_encoding {
144 	struct {
145 		u32	dev:5;
146 		u32	func:3;
147 		u32	reserved:24;
148 	} bits;
149 	u32 slot;
150 } __packed;
151 
152 /*
153  * Pretty much as defined in the PCI Specifications.
154  */
155 struct pci_function_description {
156 	u16	v_id;	/* vendor ID */
157 	u16	d_id;	/* device ID */
158 	u8	rev;
159 	u8	prog_intf;
160 	u8	subclass;
161 	u8	base_class;
162 	u32	subsystem_id;
163 	union win_slot_encoding win_slot;
164 	u32	ser;	/* serial number */
165 } __packed;
166 
167 /**
168  * struct hv_msi_desc
169  * @vector:		IDT entry
170  * @delivery_mode:	As defined in Intel's Programmer's
171  *			Reference Manual, Volume 3, Chapter 8.
172  * @vector_count:	Number of contiguous entries in the
173  *			Interrupt Descriptor Table that are
174  *			occupied by this Message-Signaled
175  *			Interrupt. For "MSI", as first defined
176  *			in PCI 2.2, this can be between 1 and
177  *			32. For "MSI-X," as first defined in PCI
178  *			3.0, this must be 1, as each MSI-X table
179  *			entry would have its own descriptor.
180  * @reserved:		Empty space
181  * @cpu_mask:		All the target virtual processors.
182  */
183 struct hv_msi_desc {
184 	u8	vector;
185 	u8	delivery_mode;
186 	u16	vector_count;
187 	u32	reserved;
188 	u64	cpu_mask;
189 } __packed;
190 
191 /**
192  * struct hv_msi_desc2 - 1.2 version of hv_msi_desc
193  * @vector:		IDT entry
194  * @delivery_mode:	As defined in Intel's Programmer's
195  *			Reference Manual, Volume 3, Chapter 8.
196  * @vector_count:	Number of contiguous entries in the
197  *			Interrupt Descriptor Table that are
198  *			occupied by this Message-Signaled
199  *			Interrupt. For "MSI", as first defined
200  *			in PCI 2.2, this can be between 1 and
201  *			32. For "MSI-X," as first defined in PCI
202  *			3.0, this must be 1, as each MSI-X table
203  *			entry would have its own descriptor.
204  * @processor_count:	number of bits enabled in array.
205  * @processor_array:	All the target virtual processors.
206  */
207 struct hv_msi_desc2 {
208 	u8	vector;
209 	u8	delivery_mode;
210 	u16	vector_count;
211 	u16	processor_count;
212 	u16	processor_array[32];
213 } __packed;
214 
215 /**
216  * struct tran_int_desc
217  * @reserved:		unused, padding
218  * @vector_count:	same as in hv_msi_desc
219  * @data:		This is the "data payload" value that is
220  *			written by the device when it generates
221  *			a message-signaled interrupt, either MSI
222  *			or MSI-X.
223  * @address:		This is the address to which the data
224  *			payload is written on interrupt
225  *			generation.
226  */
227 struct tran_int_desc {
228 	u16	reserved;
229 	u16	vector_count;
230 	u32	data;
231 	u64	address;
232 } __packed;
233 
234 /*
235  * A generic message format for virtual PCI.
236  * Specific message formats are defined later in the file.
237  */
238 
239 struct pci_message {
240 	u32 type;
241 } __packed;
242 
243 struct pci_child_message {
244 	struct pci_message message_type;
245 	union win_slot_encoding wslot;
246 } __packed;
247 
248 struct pci_incoming_message {
249 	struct vmpacket_descriptor hdr;
250 	struct pci_message message_type;
251 } __packed;
252 
253 struct pci_response {
254 	struct vmpacket_descriptor hdr;
255 	s32 status;			/* negative values are failures */
256 } __packed;
257 
258 struct pci_packet {
259 	void (*completion_func)(void *context, struct pci_response *resp,
260 				int resp_packet_size);
261 	void *compl_ctxt;
262 
263 	struct pci_message message[0];
264 };
265 
266 /*
267  * Specific message types supporting the PCI protocol.
268  */
269 
270 /*
271  * Version negotiation message. Sent from the guest to the host.
272  * The guest is free to try different versions until the host
273  * accepts the version.
274  *
275  * pci_version: The protocol version requested.
276  * is_last_attempt: If TRUE, this is the last version guest will request.
277  * reservedz: Reserved field, set to zero.
278  */
279 
280 struct pci_version_request {
281 	struct pci_message message_type;
282 	u32 protocol_version;
283 } __packed;
284 
285 /*
286  * Bus D0 Entry.  This is sent from the guest to the host when the virtual
287  * bus (PCI Express port) is ready for action.
288  */
289 
290 struct pci_bus_d0_entry {
291 	struct pci_message message_type;
292 	u32 reserved;
293 	u64 mmio_base;
294 } __packed;
295 
296 struct pci_bus_relations {
297 	struct pci_incoming_message incoming;
298 	u32 device_count;
299 	struct pci_function_description func[0];
300 } __packed;
301 
302 struct pci_q_res_req_response {
303 	struct vmpacket_descriptor hdr;
304 	s32 status;			/* negative values are failures */
305 	u32 probed_bar[PCI_STD_NUM_BARS];
306 } __packed;
307 
308 struct pci_set_power {
309 	struct pci_message message_type;
310 	union win_slot_encoding wslot;
311 	u32 power_state;		/* In Windows terms */
312 	u32 reserved;
313 } __packed;
314 
315 struct pci_set_power_response {
316 	struct vmpacket_descriptor hdr;
317 	s32 status;			/* negative values are failures */
318 	union win_slot_encoding wslot;
319 	u32 resultant_state;		/* In Windows terms */
320 	u32 reserved;
321 } __packed;
322 
323 struct pci_resources_assigned {
324 	struct pci_message message_type;
325 	union win_slot_encoding wslot;
326 	u8 memory_range[0x14][6];	/* not used here */
327 	u32 msi_descriptors;
328 	u32 reserved[4];
329 } __packed;
330 
331 struct pci_resources_assigned2 {
332 	struct pci_message message_type;
333 	union win_slot_encoding wslot;
334 	u8 memory_range[0x14][6];	/* not used here */
335 	u32 msi_descriptor_count;
336 	u8 reserved[70];
337 } __packed;
338 
339 struct pci_create_interrupt {
340 	struct pci_message message_type;
341 	union win_slot_encoding wslot;
342 	struct hv_msi_desc int_desc;
343 } __packed;
344 
345 struct pci_create_int_response {
346 	struct pci_response response;
347 	u32 reserved;
348 	struct tran_int_desc int_desc;
349 } __packed;
350 
351 struct pci_create_interrupt2 {
352 	struct pci_message message_type;
353 	union win_slot_encoding wslot;
354 	struct hv_msi_desc2 int_desc;
355 } __packed;
356 
357 struct pci_delete_interrupt {
358 	struct pci_message message_type;
359 	union win_slot_encoding wslot;
360 	struct tran_int_desc int_desc;
361 } __packed;
362 
363 /*
364  * Note: the VM must pass a valid block id, wslot and bytes_requested.
365  */
366 struct pci_read_block {
367 	struct pci_message message_type;
368 	u32 block_id;
369 	union win_slot_encoding wslot;
370 	u32 bytes_requested;
371 } __packed;
372 
373 struct pci_read_block_response {
374 	struct vmpacket_descriptor hdr;
375 	u32 status;
376 	u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX];
377 } __packed;
378 
379 /*
380  * Note: the VM must pass a valid block id, wslot and byte_count.
381  */
382 struct pci_write_block {
383 	struct pci_message message_type;
384 	u32 block_id;
385 	union win_slot_encoding wslot;
386 	u32 byte_count;
387 	u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX];
388 } __packed;
389 
390 struct pci_dev_inval_block {
391 	struct pci_incoming_message incoming;
392 	union win_slot_encoding wslot;
393 	u64 block_mask;
394 } __packed;
395 
396 struct pci_dev_incoming {
397 	struct pci_incoming_message incoming;
398 	union win_slot_encoding wslot;
399 } __packed;
400 
401 struct pci_eject_response {
402 	struct pci_message message_type;
403 	union win_slot_encoding wslot;
404 	u32 status;
405 } __packed;
406 
407 static int pci_ring_size = (4 * PAGE_SIZE);
408 
409 /*
410  * Definitions or interrupt steering hypercall.
411  */
412 #define HV_PARTITION_ID_SELF		((u64)-1)
413 #define HVCALL_RETARGET_INTERRUPT	0x7e
414 
415 struct hv_interrupt_entry {
416 	u32	source;			/* 1 for MSI(-X) */
417 	u32	reserved1;
418 	u32	address;
419 	u32	data;
420 };
421 
422 /*
423  * flags for hv_device_interrupt_target.flags
424  */
425 #define HV_DEVICE_INTERRUPT_TARGET_MULTICAST		1
426 #define HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET	2
427 
428 struct hv_device_interrupt_target {
429 	u32	vector;
430 	u32	flags;
431 	union {
432 		u64		 vp_mask;
433 		struct hv_vpset vp_set;
434 	};
435 };
436 
437 struct retarget_msi_interrupt {
438 	u64	partition_id;		/* use "self" */
439 	u64	device_id;
440 	struct hv_interrupt_entry int_entry;
441 	u64	reserved2;
442 	struct hv_device_interrupt_target int_target;
443 } __packed __aligned(8);
444 
445 /*
446  * Driver specific state.
447  */
448 
449 enum hv_pcibus_state {
450 	hv_pcibus_init = 0,
451 	hv_pcibus_probed,
452 	hv_pcibus_installed,
453 	hv_pcibus_removing,
454 	hv_pcibus_removed,
455 	hv_pcibus_maximum
456 };
457 
458 struct hv_pcibus_device {
459 	struct pci_sysdata sysdata;
460 	/* Protocol version negotiated with the host */
461 	enum pci_protocol_version_t protocol_version;
462 	enum hv_pcibus_state state;
463 	refcount_t remove_lock;
464 	struct hv_device *hdev;
465 	resource_size_t low_mmio_space;
466 	resource_size_t high_mmio_space;
467 	struct resource *mem_config;
468 	struct resource *low_mmio_res;
469 	struct resource *high_mmio_res;
470 	struct completion *survey_event;
471 	struct completion remove_event;
472 	struct pci_bus *pci_bus;
473 	spinlock_t config_lock;	/* Avoid two threads writing index page */
474 	spinlock_t device_list_lock;	/* Protect lists below */
475 	void __iomem *cfg_addr;
476 
477 	struct list_head resources_for_children;
478 
479 	struct list_head children;
480 	struct list_head dr_list;
481 
482 	struct msi_domain_info msi_info;
483 	struct msi_controller msi_chip;
484 	struct irq_domain *irq_domain;
485 
486 	spinlock_t retarget_msi_interrupt_lock;
487 
488 	struct workqueue_struct *wq;
489 
490 	/* hypercall arg, must not cross page boundary */
491 	struct retarget_msi_interrupt retarget_msi_interrupt_params;
492 
493 	/*
494 	 * Don't put anything here: retarget_msi_interrupt_params must be last
495 	 */
496 };
497 
498 /*
499  * Tracks "Device Relations" messages from the host, which must be both
500  * processed in order and deferred so that they don't run in the context
501  * of the incoming packet callback.
502  */
503 struct hv_dr_work {
504 	struct work_struct wrk;
505 	struct hv_pcibus_device *bus;
506 };
507 
508 struct hv_dr_state {
509 	struct list_head list_entry;
510 	u32 device_count;
511 	struct pci_function_description func[0];
512 };
513 
514 enum hv_pcichild_state {
515 	hv_pcichild_init = 0,
516 	hv_pcichild_requirements,
517 	hv_pcichild_resourced,
518 	hv_pcichild_ejecting,
519 	hv_pcichild_maximum
520 };
521 
522 struct hv_pci_dev {
523 	/* List protected by pci_rescan_remove_lock */
524 	struct list_head list_entry;
525 	refcount_t refs;
526 	enum hv_pcichild_state state;
527 	struct pci_slot *pci_slot;
528 	struct pci_function_description desc;
529 	bool reported_missing;
530 	struct hv_pcibus_device *hbus;
531 	struct work_struct wrk;
532 
533 	void (*block_invalidate)(void *context, u64 block_mask);
534 	void *invalidate_context;
535 
536 	/*
537 	 * What would be observed if one wrote 0xFFFFFFFF to a BAR and then
538 	 * read it back, for each of the BAR offsets within config space.
539 	 */
540 	u32 probed_bar[PCI_STD_NUM_BARS];
541 };
542 
543 struct hv_pci_compl {
544 	struct completion host_event;
545 	s32 completion_status;
546 };
547 
548 static void hv_pci_onchannelcallback(void *context);
549 
550 /**
551  * hv_pci_generic_compl() - Invoked for a completion packet
552  * @context:		Set up by the sender of the packet.
553  * @resp:		The response packet
554  * @resp_packet_size:	Size in bytes of the packet
555  *
556  * This function is used to trigger an event and report status
557  * for any message for which the completion packet contains a
558  * status and nothing else.
559  */
560 static void hv_pci_generic_compl(void *context, struct pci_response *resp,
561 				 int resp_packet_size)
562 {
563 	struct hv_pci_compl *comp_pkt = context;
564 
565 	if (resp_packet_size >= offsetofend(struct pci_response, status))
566 		comp_pkt->completion_status = resp->status;
567 	else
568 		comp_pkt->completion_status = -1;
569 
570 	complete(&comp_pkt->host_event);
571 }
572 
573 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
574 						u32 wslot);
575 
576 static void get_pcichild(struct hv_pci_dev *hpdev)
577 {
578 	refcount_inc(&hpdev->refs);
579 }
580 
581 static void put_pcichild(struct hv_pci_dev *hpdev)
582 {
583 	if (refcount_dec_and_test(&hpdev->refs))
584 		kfree(hpdev);
585 }
586 
587 static void get_hvpcibus(struct hv_pcibus_device *hv_pcibus);
588 static void put_hvpcibus(struct hv_pcibus_device *hv_pcibus);
589 
590 /*
591  * There is no good way to get notified from vmbus_onoffer_rescind(),
592  * so let's use polling here, since this is not a hot path.
593  */
594 static int wait_for_response(struct hv_device *hdev,
595 			     struct completion *comp)
596 {
597 	while (true) {
598 		if (hdev->channel->rescind) {
599 			dev_warn_once(&hdev->device, "The device is gone.\n");
600 			return -ENODEV;
601 		}
602 
603 		if (wait_for_completion_timeout(comp, HZ / 10))
604 			break;
605 	}
606 
607 	return 0;
608 }
609 
610 /**
611  * devfn_to_wslot() - Convert from Linux PCI slot to Windows
612  * @devfn:	The Linux representation of PCI slot
613  *
614  * Windows uses a slightly different representation of PCI slot.
615  *
616  * Return: The Windows representation
617  */
618 static u32 devfn_to_wslot(int devfn)
619 {
620 	union win_slot_encoding wslot;
621 
622 	wslot.slot = 0;
623 	wslot.bits.dev = PCI_SLOT(devfn);
624 	wslot.bits.func = PCI_FUNC(devfn);
625 
626 	return wslot.slot;
627 }
628 
629 /**
630  * wslot_to_devfn() - Convert from Windows PCI slot to Linux
631  * @wslot:	The Windows representation of PCI slot
632  *
633  * Windows uses a slightly different representation of PCI slot.
634  *
635  * Return: The Linux representation
636  */
637 static int wslot_to_devfn(u32 wslot)
638 {
639 	union win_slot_encoding slot_no;
640 
641 	slot_no.slot = wslot;
642 	return PCI_DEVFN(slot_no.bits.dev, slot_no.bits.func);
643 }
644 
645 /*
646  * PCI Configuration Space for these root PCI buses is implemented as a pair
647  * of pages in memory-mapped I/O space.  Writing to the first page chooses
648  * the PCI function being written or read.  Once the first page has been
649  * written to, the following page maps in the entire configuration space of
650  * the function.
651  */
652 
653 /**
654  * _hv_pcifront_read_config() - Internal PCI config read
655  * @hpdev:	The PCI driver's representation of the device
656  * @where:	Offset within config space
657  * @size:	Size of the transfer
658  * @val:	Pointer to the buffer receiving the data
659  */
660 static void _hv_pcifront_read_config(struct hv_pci_dev *hpdev, int where,
661 				     int size, u32 *val)
662 {
663 	unsigned long flags;
664 	void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where;
665 
666 	/*
667 	 * If the attempt is to read the IDs or the ROM BAR, simulate that.
668 	 */
669 	if (where + size <= PCI_COMMAND) {
670 		memcpy(val, ((u8 *)&hpdev->desc.v_id) + where, size);
671 	} else if (where >= PCI_CLASS_REVISION && where + size <=
672 		   PCI_CACHE_LINE_SIZE) {
673 		memcpy(val, ((u8 *)&hpdev->desc.rev) + where -
674 		       PCI_CLASS_REVISION, size);
675 	} else if (where >= PCI_SUBSYSTEM_VENDOR_ID && where + size <=
676 		   PCI_ROM_ADDRESS) {
677 		memcpy(val, (u8 *)&hpdev->desc.subsystem_id + where -
678 		       PCI_SUBSYSTEM_VENDOR_ID, size);
679 	} else if (where >= PCI_ROM_ADDRESS && where + size <=
680 		   PCI_CAPABILITY_LIST) {
681 		/* ROM BARs are unimplemented */
682 		*val = 0;
683 	} else if (where >= PCI_INTERRUPT_LINE && where + size <=
684 		   PCI_INTERRUPT_PIN) {
685 		/*
686 		 * Interrupt Line and Interrupt PIN are hard-wired to zero
687 		 * because this front-end only supports message-signaled
688 		 * interrupts.
689 		 */
690 		*val = 0;
691 	} else if (where + size <= CFG_PAGE_SIZE) {
692 		spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
693 		/* Choose the function to be read. (See comment above) */
694 		writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
695 		/* Make sure the function was chosen before we start reading. */
696 		mb();
697 		/* Read from that function's config space. */
698 		switch (size) {
699 		case 1:
700 			*val = readb(addr);
701 			break;
702 		case 2:
703 			*val = readw(addr);
704 			break;
705 		default:
706 			*val = readl(addr);
707 			break;
708 		}
709 		/*
710 		 * Make sure the read was done before we release the spinlock
711 		 * allowing consecutive reads/writes.
712 		 */
713 		mb();
714 		spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
715 	} else {
716 		dev_err(&hpdev->hbus->hdev->device,
717 			"Attempt to read beyond a function's config space.\n");
718 	}
719 }
720 
721 static u16 hv_pcifront_get_vendor_id(struct hv_pci_dev *hpdev)
722 {
723 	u16 ret;
724 	unsigned long flags;
725 	void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET +
726 			     PCI_VENDOR_ID;
727 
728 	spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
729 
730 	/* Choose the function to be read. (See comment above) */
731 	writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
732 	/* Make sure the function was chosen before we start reading. */
733 	mb();
734 	/* Read from that function's config space. */
735 	ret = readw(addr);
736 	/*
737 	 * mb() is not required here, because the spin_unlock_irqrestore()
738 	 * is a barrier.
739 	 */
740 
741 	spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
742 
743 	return ret;
744 }
745 
746 /**
747  * _hv_pcifront_write_config() - Internal PCI config write
748  * @hpdev:	The PCI driver's representation of the device
749  * @where:	Offset within config space
750  * @size:	Size of the transfer
751  * @val:	The data being transferred
752  */
753 static void _hv_pcifront_write_config(struct hv_pci_dev *hpdev, int where,
754 				      int size, u32 val)
755 {
756 	unsigned long flags;
757 	void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where;
758 
759 	if (where >= PCI_SUBSYSTEM_VENDOR_ID &&
760 	    where + size <= PCI_CAPABILITY_LIST) {
761 		/* SSIDs and ROM BARs are read-only */
762 	} else if (where >= PCI_COMMAND && where + size <= CFG_PAGE_SIZE) {
763 		spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
764 		/* Choose the function to be written. (See comment above) */
765 		writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
766 		/* Make sure the function was chosen before we start writing. */
767 		wmb();
768 		/* Write to that function's config space. */
769 		switch (size) {
770 		case 1:
771 			writeb(val, addr);
772 			break;
773 		case 2:
774 			writew(val, addr);
775 			break;
776 		default:
777 			writel(val, addr);
778 			break;
779 		}
780 		/*
781 		 * Make sure the write was done before we release the spinlock
782 		 * allowing consecutive reads/writes.
783 		 */
784 		mb();
785 		spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
786 	} else {
787 		dev_err(&hpdev->hbus->hdev->device,
788 			"Attempt to write beyond a function's config space.\n");
789 	}
790 }
791 
792 /**
793  * hv_pcifront_read_config() - Read configuration space
794  * @bus: PCI Bus structure
795  * @devfn: Device/function
796  * @where: Offset from base
797  * @size: Byte/word/dword
798  * @val: Value to be read
799  *
800  * Return: PCIBIOS_SUCCESSFUL on success
801  *	   PCIBIOS_DEVICE_NOT_FOUND on failure
802  */
803 static int hv_pcifront_read_config(struct pci_bus *bus, unsigned int devfn,
804 				   int where, int size, u32 *val)
805 {
806 	struct hv_pcibus_device *hbus =
807 		container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
808 	struct hv_pci_dev *hpdev;
809 
810 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
811 	if (!hpdev)
812 		return PCIBIOS_DEVICE_NOT_FOUND;
813 
814 	_hv_pcifront_read_config(hpdev, where, size, val);
815 
816 	put_pcichild(hpdev);
817 	return PCIBIOS_SUCCESSFUL;
818 }
819 
820 /**
821  * hv_pcifront_write_config() - Write configuration space
822  * @bus: PCI Bus structure
823  * @devfn: Device/function
824  * @where: Offset from base
825  * @size: Byte/word/dword
826  * @val: Value to be written to device
827  *
828  * Return: PCIBIOS_SUCCESSFUL on success
829  *	   PCIBIOS_DEVICE_NOT_FOUND on failure
830  */
831 static int hv_pcifront_write_config(struct pci_bus *bus, unsigned int devfn,
832 				    int where, int size, u32 val)
833 {
834 	struct hv_pcibus_device *hbus =
835 	    container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
836 	struct hv_pci_dev *hpdev;
837 
838 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
839 	if (!hpdev)
840 		return PCIBIOS_DEVICE_NOT_FOUND;
841 
842 	_hv_pcifront_write_config(hpdev, where, size, val);
843 
844 	put_pcichild(hpdev);
845 	return PCIBIOS_SUCCESSFUL;
846 }
847 
848 /* PCIe operations */
849 static struct pci_ops hv_pcifront_ops = {
850 	.read  = hv_pcifront_read_config,
851 	.write = hv_pcifront_write_config,
852 };
853 
854 /*
855  * Paravirtual backchannel
856  *
857  * Hyper-V SR-IOV provides a backchannel mechanism in software for
858  * communication between a VF driver and a PF driver.  These
859  * "configuration blocks" are similar in concept to PCI configuration space,
860  * but instead of doing reads and writes in 32-bit chunks through a very slow
861  * path, packets of up to 128 bytes can be sent or received asynchronously.
862  *
863  * Nearly every SR-IOV device contains just such a communications channel in
864  * hardware, so using this one in software is usually optional.  Using the
865  * software channel, however, allows driver implementers to leverage software
866  * tools that fuzz the communications channel looking for vulnerabilities.
867  *
868  * The usage model for these packets puts the responsibility for reading or
869  * writing on the VF driver.  The VF driver sends a read or a write packet,
870  * indicating which "block" is being referred to by number.
871  *
872  * If the PF driver wishes to initiate communication, it can "invalidate" one or
873  * more of the first 64 blocks.  This invalidation is delivered via a callback
874  * supplied by the VF driver by this driver.
875  *
876  * No protocol is implied, except that supplied by the PF and VF drivers.
877  */
878 
879 struct hv_read_config_compl {
880 	struct hv_pci_compl comp_pkt;
881 	void *buf;
882 	unsigned int len;
883 	unsigned int bytes_returned;
884 };
885 
886 /**
887  * hv_pci_read_config_compl() - Invoked when a response packet
888  * for a read config block operation arrives.
889  * @context:		Identifies the read config operation
890  * @resp:		The response packet itself
891  * @resp_packet_size:	Size in bytes of the response packet
892  */
893 static void hv_pci_read_config_compl(void *context, struct pci_response *resp,
894 				     int resp_packet_size)
895 {
896 	struct hv_read_config_compl *comp = context;
897 	struct pci_read_block_response *read_resp =
898 		(struct pci_read_block_response *)resp;
899 	unsigned int data_len, hdr_len;
900 
901 	hdr_len = offsetof(struct pci_read_block_response, bytes);
902 	if (resp_packet_size < hdr_len) {
903 		comp->comp_pkt.completion_status = -1;
904 		goto out;
905 	}
906 
907 	data_len = resp_packet_size - hdr_len;
908 	if (data_len > 0 && read_resp->status == 0) {
909 		comp->bytes_returned = min(comp->len, data_len);
910 		memcpy(comp->buf, read_resp->bytes, comp->bytes_returned);
911 	} else {
912 		comp->bytes_returned = 0;
913 	}
914 
915 	comp->comp_pkt.completion_status = read_resp->status;
916 out:
917 	complete(&comp->comp_pkt.host_event);
918 }
919 
920 /**
921  * hv_read_config_block() - Sends a read config block request to
922  * the back-end driver running in the Hyper-V parent partition.
923  * @pdev:		The PCI driver's representation for this device.
924  * @buf:		Buffer into which the config block will be copied.
925  * @len:		Size in bytes of buf.
926  * @block_id:		Identifies the config block which has been requested.
927  * @bytes_returned:	Size which came back from the back-end driver.
928  *
929  * Return: 0 on success, -errno on failure
930  */
931 int hv_read_config_block(struct pci_dev *pdev, void *buf, unsigned int len,
932 			 unsigned int block_id, unsigned int *bytes_returned)
933 {
934 	struct hv_pcibus_device *hbus =
935 		container_of(pdev->bus->sysdata, struct hv_pcibus_device,
936 			     sysdata);
937 	struct {
938 		struct pci_packet pkt;
939 		char buf[sizeof(struct pci_read_block)];
940 	} pkt;
941 	struct hv_read_config_compl comp_pkt;
942 	struct pci_read_block *read_blk;
943 	int ret;
944 
945 	if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX)
946 		return -EINVAL;
947 
948 	init_completion(&comp_pkt.comp_pkt.host_event);
949 	comp_pkt.buf = buf;
950 	comp_pkt.len = len;
951 
952 	memset(&pkt, 0, sizeof(pkt));
953 	pkt.pkt.completion_func = hv_pci_read_config_compl;
954 	pkt.pkt.compl_ctxt = &comp_pkt;
955 	read_blk = (struct pci_read_block *)&pkt.pkt.message;
956 	read_blk->message_type.type = PCI_READ_BLOCK;
957 	read_blk->wslot.slot = devfn_to_wslot(pdev->devfn);
958 	read_blk->block_id = block_id;
959 	read_blk->bytes_requested = len;
960 
961 	ret = vmbus_sendpacket(hbus->hdev->channel, read_blk,
962 			       sizeof(*read_blk), (unsigned long)&pkt.pkt,
963 			       VM_PKT_DATA_INBAND,
964 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
965 	if (ret)
966 		return ret;
967 
968 	ret = wait_for_response(hbus->hdev, &comp_pkt.comp_pkt.host_event);
969 	if (ret)
970 		return ret;
971 
972 	if (comp_pkt.comp_pkt.completion_status != 0 ||
973 	    comp_pkt.bytes_returned == 0) {
974 		dev_err(&hbus->hdev->device,
975 			"Read Config Block failed: 0x%x, bytes_returned=%d\n",
976 			comp_pkt.comp_pkt.completion_status,
977 			comp_pkt.bytes_returned);
978 		return -EIO;
979 	}
980 
981 	*bytes_returned = comp_pkt.bytes_returned;
982 	return 0;
983 }
984 
985 /**
986  * hv_pci_write_config_compl() - Invoked when a response packet for a write
987  * config block operation arrives.
988  * @context:		Identifies the write config operation
989  * @resp:		The response packet itself
990  * @resp_packet_size:	Size in bytes of the response packet
991  */
992 static void hv_pci_write_config_compl(void *context, struct pci_response *resp,
993 				      int resp_packet_size)
994 {
995 	struct hv_pci_compl *comp_pkt = context;
996 
997 	comp_pkt->completion_status = resp->status;
998 	complete(&comp_pkt->host_event);
999 }
1000 
1001 /**
1002  * hv_write_config_block() - Sends a write config block request to the
1003  * back-end driver running in the Hyper-V parent partition.
1004  * @pdev:		The PCI driver's representation for this device.
1005  * @buf:		Buffer from which the config block will	be copied.
1006  * @len:		Size in bytes of buf.
1007  * @block_id:		Identifies the config block which is being written.
1008  *
1009  * Return: 0 on success, -errno on failure
1010  */
1011 int hv_write_config_block(struct pci_dev *pdev, void *buf, unsigned int len,
1012 			  unsigned int block_id)
1013 {
1014 	struct hv_pcibus_device *hbus =
1015 		container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1016 			     sysdata);
1017 	struct {
1018 		struct pci_packet pkt;
1019 		char buf[sizeof(struct pci_write_block)];
1020 		u32 reserved;
1021 	} pkt;
1022 	struct hv_pci_compl comp_pkt;
1023 	struct pci_write_block *write_blk;
1024 	u32 pkt_size;
1025 	int ret;
1026 
1027 	if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX)
1028 		return -EINVAL;
1029 
1030 	init_completion(&comp_pkt.host_event);
1031 
1032 	memset(&pkt, 0, sizeof(pkt));
1033 	pkt.pkt.completion_func = hv_pci_write_config_compl;
1034 	pkt.pkt.compl_ctxt = &comp_pkt;
1035 	write_blk = (struct pci_write_block *)&pkt.pkt.message;
1036 	write_blk->message_type.type = PCI_WRITE_BLOCK;
1037 	write_blk->wslot.slot = devfn_to_wslot(pdev->devfn);
1038 	write_blk->block_id = block_id;
1039 	write_blk->byte_count = len;
1040 	memcpy(write_blk->bytes, buf, len);
1041 	pkt_size = offsetof(struct pci_write_block, bytes) + len;
1042 	/*
1043 	 * This quirk is required on some hosts shipped around 2018, because
1044 	 * these hosts don't check the pkt_size correctly (new hosts have been
1045 	 * fixed since early 2019). The quirk is also safe on very old hosts
1046 	 * and new hosts, because, on them, what really matters is the length
1047 	 * specified in write_blk->byte_count.
1048 	 */
1049 	pkt_size += sizeof(pkt.reserved);
1050 
1051 	ret = vmbus_sendpacket(hbus->hdev->channel, write_blk, pkt_size,
1052 			       (unsigned long)&pkt.pkt, VM_PKT_DATA_INBAND,
1053 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1054 	if (ret)
1055 		return ret;
1056 
1057 	ret = wait_for_response(hbus->hdev, &comp_pkt.host_event);
1058 	if (ret)
1059 		return ret;
1060 
1061 	if (comp_pkt.completion_status != 0) {
1062 		dev_err(&hbus->hdev->device,
1063 			"Write Config Block failed: 0x%x\n",
1064 			comp_pkt.completion_status);
1065 		return -EIO;
1066 	}
1067 
1068 	return 0;
1069 }
1070 
1071 /**
1072  * hv_register_block_invalidate() - Invoked when a config block invalidation
1073  * arrives from the back-end driver.
1074  * @pdev:		The PCI driver's representation for this device.
1075  * @context:		Identifies the device.
1076  * @block_invalidate:	Identifies all of the blocks being invalidated.
1077  *
1078  * Return: 0 on success, -errno on failure
1079  */
1080 int hv_register_block_invalidate(struct pci_dev *pdev, void *context,
1081 				 void (*block_invalidate)(void *context,
1082 							  u64 block_mask))
1083 {
1084 	struct hv_pcibus_device *hbus =
1085 		container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1086 			     sysdata);
1087 	struct hv_pci_dev *hpdev;
1088 
1089 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1090 	if (!hpdev)
1091 		return -ENODEV;
1092 
1093 	hpdev->block_invalidate = block_invalidate;
1094 	hpdev->invalidate_context = context;
1095 
1096 	put_pcichild(hpdev);
1097 	return 0;
1098 
1099 }
1100 
1101 /* Interrupt management hooks */
1102 static void hv_int_desc_free(struct hv_pci_dev *hpdev,
1103 			     struct tran_int_desc *int_desc)
1104 {
1105 	struct pci_delete_interrupt *int_pkt;
1106 	struct {
1107 		struct pci_packet pkt;
1108 		u8 buffer[sizeof(struct pci_delete_interrupt)];
1109 	} ctxt;
1110 
1111 	memset(&ctxt, 0, sizeof(ctxt));
1112 	int_pkt = (struct pci_delete_interrupt *)&ctxt.pkt.message;
1113 	int_pkt->message_type.type =
1114 		PCI_DELETE_INTERRUPT_MESSAGE;
1115 	int_pkt->wslot.slot = hpdev->desc.win_slot.slot;
1116 	int_pkt->int_desc = *int_desc;
1117 	vmbus_sendpacket(hpdev->hbus->hdev->channel, int_pkt, sizeof(*int_pkt),
1118 			 (unsigned long)&ctxt.pkt, VM_PKT_DATA_INBAND, 0);
1119 	kfree(int_desc);
1120 }
1121 
1122 /**
1123  * hv_msi_free() - Free the MSI.
1124  * @domain:	The interrupt domain pointer
1125  * @info:	Extra MSI-related context
1126  * @irq:	Identifies the IRQ.
1127  *
1128  * The Hyper-V parent partition and hypervisor are tracking the
1129  * messages that are in use, keeping the interrupt redirection
1130  * table up to date.  This callback sends a message that frees
1131  * the IRT entry and related tracking nonsense.
1132  */
1133 static void hv_msi_free(struct irq_domain *domain, struct msi_domain_info *info,
1134 			unsigned int irq)
1135 {
1136 	struct hv_pcibus_device *hbus;
1137 	struct hv_pci_dev *hpdev;
1138 	struct pci_dev *pdev;
1139 	struct tran_int_desc *int_desc;
1140 	struct irq_data *irq_data = irq_domain_get_irq_data(domain, irq);
1141 	struct msi_desc *msi = irq_data_get_msi_desc(irq_data);
1142 
1143 	pdev = msi_desc_to_pci_dev(msi);
1144 	hbus = info->data;
1145 	int_desc = irq_data_get_irq_chip_data(irq_data);
1146 	if (!int_desc)
1147 		return;
1148 
1149 	irq_data->chip_data = NULL;
1150 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1151 	if (!hpdev) {
1152 		kfree(int_desc);
1153 		return;
1154 	}
1155 
1156 	hv_int_desc_free(hpdev, int_desc);
1157 	put_pcichild(hpdev);
1158 }
1159 
1160 static int hv_set_affinity(struct irq_data *data, const struct cpumask *dest,
1161 			   bool force)
1162 {
1163 	struct irq_data *parent = data->parent_data;
1164 
1165 	return parent->chip->irq_set_affinity(parent, dest, force);
1166 }
1167 
1168 static void hv_irq_mask(struct irq_data *data)
1169 {
1170 	pci_msi_mask_irq(data);
1171 }
1172 
1173 /**
1174  * hv_irq_unmask() - "Unmask" the IRQ by setting its current
1175  * affinity.
1176  * @data:	Describes the IRQ
1177  *
1178  * Build new a destination for the MSI and make a hypercall to
1179  * update the Interrupt Redirection Table. "Device Logical ID"
1180  * is built out of this PCI bus's instance GUID and the function
1181  * number of the device.
1182  */
1183 static void hv_irq_unmask(struct irq_data *data)
1184 {
1185 	struct msi_desc *msi_desc = irq_data_get_msi_desc(data);
1186 	struct irq_cfg *cfg = irqd_cfg(data);
1187 	struct retarget_msi_interrupt *params;
1188 	struct hv_pcibus_device *hbus;
1189 	struct cpumask *dest;
1190 	cpumask_var_t tmp;
1191 	struct pci_bus *pbus;
1192 	struct pci_dev *pdev;
1193 	unsigned long flags;
1194 	u32 var_size = 0;
1195 	int cpu, nr_bank;
1196 	u64 res;
1197 
1198 	dest = irq_data_get_effective_affinity_mask(data);
1199 	pdev = msi_desc_to_pci_dev(msi_desc);
1200 	pbus = pdev->bus;
1201 	hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
1202 
1203 	spin_lock_irqsave(&hbus->retarget_msi_interrupt_lock, flags);
1204 
1205 	params = &hbus->retarget_msi_interrupt_params;
1206 	memset(params, 0, sizeof(*params));
1207 	params->partition_id = HV_PARTITION_ID_SELF;
1208 	params->int_entry.source = 1; /* MSI(-X) */
1209 	params->int_entry.address = msi_desc->msg.address_lo;
1210 	params->int_entry.data = msi_desc->msg.data;
1211 	params->device_id = (hbus->hdev->dev_instance.b[5] << 24) |
1212 			   (hbus->hdev->dev_instance.b[4] << 16) |
1213 			   (hbus->hdev->dev_instance.b[7] << 8) |
1214 			   (hbus->hdev->dev_instance.b[6] & 0xf8) |
1215 			   PCI_FUNC(pdev->devfn);
1216 	params->int_target.vector = cfg->vector;
1217 
1218 	/*
1219 	 * Honoring apic->irq_delivery_mode set to dest_Fixed by
1220 	 * setting the HV_DEVICE_INTERRUPT_TARGET_MULTICAST flag results in a
1221 	 * spurious interrupt storm. Not doing so does not seem to have a
1222 	 * negative effect (yet?).
1223 	 */
1224 
1225 	if (hbus->protocol_version >= PCI_PROTOCOL_VERSION_1_2) {
1226 		/*
1227 		 * PCI_PROTOCOL_VERSION_1_2 supports the VP_SET version of the
1228 		 * HVCALL_RETARGET_INTERRUPT hypercall, which also coincides
1229 		 * with >64 VP support.
1230 		 * ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED
1231 		 * is not sufficient for this hypercall.
1232 		 */
1233 		params->int_target.flags |=
1234 			HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET;
1235 
1236 		if (!alloc_cpumask_var(&tmp, GFP_ATOMIC)) {
1237 			res = 1;
1238 			goto exit_unlock;
1239 		}
1240 
1241 		cpumask_and(tmp, dest, cpu_online_mask);
1242 		nr_bank = cpumask_to_vpset(&params->int_target.vp_set, tmp);
1243 		free_cpumask_var(tmp);
1244 
1245 		if (nr_bank <= 0) {
1246 			res = 1;
1247 			goto exit_unlock;
1248 		}
1249 
1250 		/*
1251 		 * var-sized hypercall, var-size starts after vp_mask (thus
1252 		 * vp_set.format does not count, but vp_set.valid_bank_mask
1253 		 * does).
1254 		 */
1255 		var_size = 1 + nr_bank;
1256 	} else {
1257 		for_each_cpu_and(cpu, dest, cpu_online_mask) {
1258 			params->int_target.vp_mask |=
1259 				(1ULL << hv_cpu_number_to_vp_number(cpu));
1260 		}
1261 	}
1262 
1263 	res = hv_do_hypercall(HVCALL_RETARGET_INTERRUPT | (var_size << 17),
1264 			      params, NULL);
1265 
1266 exit_unlock:
1267 	spin_unlock_irqrestore(&hbus->retarget_msi_interrupt_lock, flags);
1268 
1269 	if (res) {
1270 		dev_err(&hbus->hdev->device,
1271 			"%s() failed: %#llx", __func__, res);
1272 		return;
1273 	}
1274 
1275 	pci_msi_unmask_irq(data);
1276 }
1277 
1278 struct compose_comp_ctxt {
1279 	struct hv_pci_compl comp_pkt;
1280 	struct tran_int_desc int_desc;
1281 };
1282 
1283 static void hv_pci_compose_compl(void *context, struct pci_response *resp,
1284 				 int resp_packet_size)
1285 {
1286 	struct compose_comp_ctxt *comp_pkt = context;
1287 	struct pci_create_int_response *int_resp =
1288 		(struct pci_create_int_response *)resp;
1289 
1290 	comp_pkt->comp_pkt.completion_status = resp->status;
1291 	comp_pkt->int_desc = int_resp->int_desc;
1292 	complete(&comp_pkt->comp_pkt.host_event);
1293 }
1294 
1295 static u32 hv_compose_msi_req_v1(
1296 	struct pci_create_interrupt *int_pkt, struct cpumask *affinity,
1297 	u32 slot, u8 vector)
1298 {
1299 	int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE;
1300 	int_pkt->wslot.slot = slot;
1301 	int_pkt->int_desc.vector = vector;
1302 	int_pkt->int_desc.vector_count = 1;
1303 	int_pkt->int_desc.delivery_mode = dest_Fixed;
1304 
1305 	/*
1306 	 * Create MSI w/ dummy vCPU set, overwritten by subsequent retarget in
1307 	 * hv_irq_unmask().
1308 	 */
1309 	int_pkt->int_desc.cpu_mask = CPU_AFFINITY_ALL;
1310 
1311 	return sizeof(*int_pkt);
1312 }
1313 
1314 static u32 hv_compose_msi_req_v2(
1315 	struct pci_create_interrupt2 *int_pkt, struct cpumask *affinity,
1316 	u32 slot, u8 vector)
1317 {
1318 	int cpu;
1319 
1320 	int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE2;
1321 	int_pkt->wslot.slot = slot;
1322 	int_pkt->int_desc.vector = vector;
1323 	int_pkt->int_desc.vector_count = 1;
1324 	int_pkt->int_desc.delivery_mode = dest_Fixed;
1325 
1326 	/*
1327 	 * Create MSI w/ dummy vCPU set targeting just one vCPU, overwritten
1328 	 * by subsequent retarget in hv_irq_unmask().
1329 	 */
1330 	cpu = cpumask_first_and(affinity, cpu_online_mask);
1331 	int_pkt->int_desc.processor_array[0] =
1332 		hv_cpu_number_to_vp_number(cpu);
1333 	int_pkt->int_desc.processor_count = 1;
1334 
1335 	return sizeof(*int_pkt);
1336 }
1337 
1338 /**
1339  * hv_compose_msi_msg() - Supplies a valid MSI address/data
1340  * @data:	Everything about this MSI
1341  * @msg:	Buffer that is filled in by this function
1342  *
1343  * This function unpacks the IRQ looking for target CPU set, IDT
1344  * vector and mode and sends a message to the parent partition
1345  * asking for a mapping for that tuple in this partition.  The
1346  * response supplies a data value and address to which that data
1347  * should be written to trigger that interrupt.
1348  */
1349 static void hv_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
1350 {
1351 	struct irq_cfg *cfg = irqd_cfg(data);
1352 	struct hv_pcibus_device *hbus;
1353 	struct hv_pci_dev *hpdev;
1354 	struct pci_bus *pbus;
1355 	struct pci_dev *pdev;
1356 	struct cpumask *dest;
1357 	unsigned long flags;
1358 	struct compose_comp_ctxt comp;
1359 	struct tran_int_desc *int_desc;
1360 	struct {
1361 		struct pci_packet pci_pkt;
1362 		union {
1363 			struct pci_create_interrupt v1;
1364 			struct pci_create_interrupt2 v2;
1365 		} int_pkts;
1366 	} __packed ctxt;
1367 
1368 	u32 size;
1369 	int ret;
1370 
1371 	pdev = msi_desc_to_pci_dev(irq_data_get_msi_desc(data));
1372 	dest = irq_data_get_effective_affinity_mask(data);
1373 	pbus = pdev->bus;
1374 	hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
1375 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1376 	if (!hpdev)
1377 		goto return_null_message;
1378 
1379 	/* Free any previous message that might have already been composed. */
1380 	if (data->chip_data) {
1381 		int_desc = data->chip_data;
1382 		data->chip_data = NULL;
1383 		hv_int_desc_free(hpdev, int_desc);
1384 	}
1385 
1386 	int_desc = kzalloc(sizeof(*int_desc), GFP_ATOMIC);
1387 	if (!int_desc)
1388 		goto drop_reference;
1389 
1390 	memset(&ctxt, 0, sizeof(ctxt));
1391 	init_completion(&comp.comp_pkt.host_event);
1392 	ctxt.pci_pkt.completion_func = hv_pci_compose_compl;
1393 	ctxt.pci_pkt.compl_ctxt = &comp;
1394 
1395 	switch (hbus->protocol_version) {
1396 	case PCI_PROTOCOL_VERSION_1_1:
1397 		size = hv_compose_msi_req_v1(&ctxt.int_pkts.v1,
1398 					dest,
1399 					hpdev->desc.win_slot.slot,
1400 					cfg->vector);
1401 		break;
1402 
1403 	case PCI_PROTOCOL_VERSION_1_2:
1404 		size = hv_compose_msi_req_v2(&ctxt.int_pkts.v2,
1405 					dest,
1406 					hpdev->desc.win_slot.slot,
1407 					cfg->vector);
1408 		break;
1409 
1410 	default:
1411 		/* As we only negotiate protocol versions known to this driver,
1412 		 * this path should never hit. However, this is it not a hot
1413 		 * path so we print a message to aid future updates.
1414 		 */
1415 		dev_err(&hbus->hdev->device,
1416 			"Unexpected vPCI protocol, update driver.");
1417 		goto free_int_desc;
1418 	}
1419 
1420 	ret = vmbus_sendpacket(hpdev->hbus->hdev->channel, &ctxt.int_pkts,
1421 			       size, (unsigned long)&ctxt.pci_pkt,
1422 			       VM_PKT_DATA_INBAND,
1423 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1424 	if (ret) {
1425 		dev_err(&hbus->hdev->device,
1426 			"Sending request for interrupt failed: 0x%x",
1427 			comp.comp_pkt.completion_status);
1428 		goto free_int_desc;
1429 	}
1430 
1431 	/*
1432 	 * Since this function is called with IRQ locks held, can't
1433 	 * do normal wait for completion; instead poll.
1434 	 */
1435 	while (!try_wait_for_completion(&comp.comp_pkt.host_event)) {
1436 		/* 0xFFFF means an invalid PCI VENDOR ID. */
1437 		if (hv_pcifront_get_vendor_id(hpdev) == 0xFFFF) {
1438 			dev_err_once(&hbus->hdev->device,
1439 				     "the device has gone\n");
1440 			goto free_int_desc;
1441 		}
1442 
1443 		/*
1444 		 * When the higher level interrupt code calls us with
1445 		 * interrupt disabled, we must poll the channel by calling
1446 		 * the channel callback directly when channel->target_cpu is
1447 		 * the current CPU. When the higher level interrupt code
1448 		 * calls us with interrupt enabled, let's add the
1449 		 * local_irq_save()/restore() to avoid race:
1450 		 * hv_pci_onchannelcallback() can also run in tasklet.
1451 		 */
1452 		local_irq_save(flags);
1453 
1454 		if (hbus->hdev->channel->target_cpu == smp_processor_id())
1455 			hv_pci_onchannelcallback(hbus);
1456 
1457 		local_irq_restore(flags);
1458 
1459 		if (hpdev->state == hv_pcichild_ejecting) {
1460 			dev_err_once(&hbus->hdev->device,
1461 				     "the device is being ejected\n");
1462 			goto free_int_desc;
1463 		}
1464 
1465 		udelay(100);
1466 	}
1467 
1468 	if (comp.comp_pkt.completion_status < 0) {
1469 		dev_err(&hbus->hdev->device,
1470 			"Request for interrupt failed: 0x%x",
1471 			comp.comp_pkt.completion_status);
1472 		goto free_int_desc;
1473 	}
1474 
1475 	/*
1476 	 * Record the assignment so that this can be unwound later. Using
1477 	 * irq_set_chip_data() here would be appropriate, but the lock it takes
1478 	 * is already held.
1479 	 */
1480 	*int_desc = comp.int_desc;
1481 	data->chip_data = int_desc;
1482 
1483 	/* Pass up the result. */
1484 	msg->address_hi = comp.int_desc.address >> 32;
1485 	msg->address_lo = comp.int_desc.address & 0xffffffff;
1486 	msg->data = comp.int_desc.data;
1487 
1488 	put_pcichild(hpdev);
1489 	return;
1490 
1491 free_int_desc:
1492 	kfree(int_desc);
1493 drop_reference:
1494 	put_pcichild(hpdev);
1495 return_null_message:
1496 	msg->address_hi = 0;
1497 	msg->address_lo = 0;
1498 	msg->data = 0;
1499 }
1500 
1501 /* HW Interrupt Chip Descriptor */
1502 static struct irq_chip hv_msi_irq_chip = {
1503 	.name			= "Hyper-V PCIe MSI",
1504 	.irq_compose_msi_msg	= hv_compose_msi_msg,
1505 	.irq_set_affinity	= hv_set_affinity,
1506 	.irq_ack		= irq_chip_ack_parent,
1507 	.irq_mask		= hv_irq_mask,
1508 	.irq_unmask		= hv_irq_unmask,
1509 };
1510 
1511 static irq_hw_number_t hv_msi_domain_ops_get_hwirq(struct msi_domain_info *info,
1512 						   msi_alloc_info_t *arg)
1513 {
1514 	return arg->msi_hwirq;
1515 }
1516 
1517 static struct msi_domain_ops hv_msi_ops = {
1518 	.get_hwirq	= hv_msi_domain_ops_get_hwirq,
1519 	.msi_prepare	= pci_msi_prepare,
1520 	.set_desc	= pci_msi_set_desc,
1521 	.msi_free	= hv_msi_free,
1522 };
1523 
1524 /**
1525  * hv_pcie_init_irq_domain() - Initialize IRQ domain
1526  * @hbus:	The root PCI bus
1527  *
1528  * This function creates an IRQ domain which will be used for
1529  * interrupts from devices that have been passed through.  These
1530  * devices only support MSI and MSI-X, not line-based interrupts
1531  * or simulations of line-based interrupts through PCIe's
1532  * fabric-layer messages.  Because interrupts are remapped, we
1533  * can support multi-message MSI here.
1534  *
1535  * Return: '0' on success and error value on failure
1536  */
1537 static int hv_pcie_init_irq_domain(struct hv_pcibus_device *hbus)
1538 {
1539 	hbus->msi_info.chip = &hv_msi_irq_chip;
1540 	hbus->msi_info.ops = &hv_msi_ops;
1541 	hbus->msi_info.flags = (MSI_FLAG_USE_DEF_DOM_OPS |
1542 		MSI_FLAG_USE_DEF_CHIP_OPS | MSI_FLAG_MULTI_PCI_MSI |
1543 		MSI_FLAG_PCI_MSIX);
1544 	hbus->msi_info.handler = handle_edge_irq;
1545 	hbus->msi_info.handler_name = "edge";
1546 	hbus->msi_info.data = hbus;
1547 	hbus->irq_domain = pci_msi_create_irq_domain(hbus->sysdata.fwnode,
1548 						     &hbus->msi_info,
1549 						     x86_vector_domain);
1550 	if (!hbus->irq_domain) {
1551 		dev_err(&hbus->hdev->device,
1552 			"Failed to build an MSI IRQ domain\n");
1553 		return -ENODEV;
1554 	}
1555 
1556 	return 0;
1557 }
1558 
1559 /**
1560  * get_bar_size() - Get the address space consumed by a BAR
1561  * @bar_val:	Value that a BAR returned after -1 was written
1562  *              to it.
1563  *
1564  * This function returns the size of the BAR, rounded up to 1
1565  * page.  It has to be rounded up because the hypervisor's page
1566  * table entry that maps the BAR into the VM can't specify an
1567  * offset within a page.  The invariant is that the hypervisor
1568  * must place any BARs of smaller than page length at the
1569  * beginning of a page.
1570  *
1571  * Return:	Size in bytes of the consumed MMIO space.
1572  */
1573 static u64 get_bar_size(u64 bar_val)
1574 {
1575 	return round_up((1 + ~(bar_val & PCI_BASE_ADDRESS_MEM_MASK)),
1576 			PAGE_SIZE);
1577 }
1578 
1579 /**
1580  * survey_child_resources() - Total all MMIO requirements
1581  * @hbus:	Root PCI bus, as understood by this driver
1582  */
1583 static void survey_child_resources(struct hv_pcibus_device *hbus)
1584 {
1585 	struct hv_pci_dev *hpdev;
1586 	resource_size_t bar_size = 0;
1587 	unsigned long flags;
1588 	struct completion *event;
1589 	u64 bar_val;
1590 	int i;
1591 
1592 	/* If nobody is waiting on the answer, don't compute it. */
1593 	event = xchg(&hbus->survey_event, NULL);
1594 	if (!event)
1595 		return;
1596 
1597 	/* If the answer has already been computed, go with it. */
1598 	if (hbus->low_mmio_space || hbus->high_mmio_space) {
1599 		complete(event);
1600 		return;
1601 	}
1602 
1603 	spin_lock_irqsave(&hbus->device_list_lock, flags);
1604 
1605 	/*
1606 	 * Due to an interesting quirk of the PCI spec, all memory regions
1607 	 * for a child device are a power of 2 in size and aligned in memory,
1608 	 * so it's sufficient to just add them up without tracking alignment.
1609 	 */
1610 	list_for_each_entry(hpdev, &hbus->children, list_entry) {
1611 		for (i = 0; i < PCI_STD_NUM_BARS; i++) {
1612 			if (hpdev->probed_bar[i] & PCI_BASE_ADDRESS_SPACE_IO)
1613 				dev_err(&hbus->hdev->device,
1614 					"There's an I/O BAR in this list!\n");
1615 
1616 			if (hpdev->probed_bar[i] != 0) {
1617 				/*
1618 				 * A probed BAR has all the upper bits set that
1619 				 * can be changed.
1620 				 */
1621 
1622 				bar_val = hpdev->probed_bar[i];
1623 				if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
1624 					bar_val |=
1625 					((u64)hpdev->probed_bar[++i] << 32);
1626 				else
1627 					bar_val |= 0xffffffff00000000ULL;
1628 
1629 				bar_size = get_bar_size(bar_val);
1630 
1631 				if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
1632 					hbus->high_mmio_space += bar_size;
1633 				else
1634 					hbus->low_mmio_space += bar_size;
1635 			}
1636 		}
1637 	}
1638 
1639 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1640 	complete(event);
1641 }
1642 
1643 /**
1644  * prepopulate_bars() - Fill in BARs with defaults
1645  * @hbus:	Root PCI bus, as understood by this driver
1646  *
1647  * The core PCI driver code seems much, much happier if the BARs
1648  * for a device have values upon first scan. So fill them in.
1649  * The algorithm below works down from large sizes to small,
1650  * attempting to pack the assignments optimally. The assumption,
1651  * enforced in other parts of the code, is that the beginning of
1652  * the memory-mapped I/O space will be aligned on the largest
1653  * BAR size.
1654  */
1655 static void prepopulate_bars(struct hv_pcibus_device *hbus)
1656 {
1657 	resource_size_t high_size = 0;
1658 	resource_size_t low_size = 0;
1659 	resource_size_t high_base = 0;
1660 	resource_size_t low_base = 0;
1661 	resource_size_t bar_size;
1662 	struct hv_pci_dev *hpdev;
1663 	unsigned long flags;
1664 	u64 bar_val;
1665 	u32 command;
1666 	bool high;
1667 	int i;
1668 
1669 	if (hbus->low_mmio_space) {
1670 		low_size = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
1671 		low_base = hbus->low_mmio_res->start;
1672 	}
1673 
1674 	if (hbus->high_mmio_space) {
1675 		high_size = 1ULL <<
1676 			(63 - __builtin_clzll(hbus->high_mmio_space));
1677 		high_base = hbus->high_mmio_res->start;
1678 	}
1679 
1680 	spin_lock_irqsave(&hbus->device_list_lock, flags);
1681 
1682 	/*
1683 	 * Clear the memory enable bit, in case it's already set. This occurs
1684 	 * in the suspend path of hibernation, where the device is suspended,
1685 	 * resumed and suspended again: see hibernation_snapshot() and
1686 	 * hibernation_platform_enter().
1687 	 *
1688 	 * If the memory enable bit is already set, Hyper-V sliently ignores
1689 	 * the below BAR updates, and the related PCI device driver can not
1690 	 * work, because reading from the device register(s) always returns
1691 	 * 0xFFFFFFFF.
1692 	 */
1693 	list_for_each_entry(hpdev, &hbus->children, list_entry) {
1694 		_hv_pcifront_read_config(hpdev, PCI_COMMAND, 2, &command);
1695 		command &= ~PCI_COMMAND_MEMORY;
1696 		_hv_pcifront_write_config(hpdev, PCI_COMMAND, 2, command);
1697 	}
1698 
1699 	/* Pick addresses for the BARs. */
1700 	do {
1701 		list_for_each_entry(hpdev, &hbus->children, list_entry) {
1702 			for (i = 0; i < PCI_STD_NUM_BARS; i++) {
1703 				bar_val = hpdev->probed_bar[i];
1704 				if (bar_val == 0)
1705 					continue;
1706 				high = bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64;
1707 				if (high) {
1708 					bar_val |=
1709 						((u64)hpdev->probed_bar[i + 1]
1710 						 << 32);
1711 				} else {
1712 					bar_val |= 0xffffffffULL << 32;
1713 				}
1714 				bar_size = get_bar_size(bar_val);
1715 				if (high) {
1716 					if (high_size != bar_size) {
1717 						i++;
1718 						continue;
1719 					}
1720 					_hv_pcifront_write_config(hpdev,
1721 						PCI_BASE_ADDRESS_0 + (4 * i),
1722 						4,
1723 						(u32)(high_base & 0xffffff00));
1724 					i++;
1725 					_hv_pcifront_write_config(hpdev,
1726 						PCI_BASE_ADDRESS_0 + (4 * i),
1727 						4, (u32)(high_base >> 32));
1728 					high_base += bar_size;
1729 				} else {
1730 					if (low_size != bar_size)
1731 						continue;
1732 					_hv_pcifront_write_config(hpdev,
1733 						PCI_BASE_ADDRESS_0 + (4 * i),
1734 						4,
1735 						(u32)(low_base & 0xffffff00));
1736 					low_base += bar_size;
1737 				}
1738 			}
1739 			if (high_size <= 1 && low_size <= 1) {
1740 				/* Set the memory enable bit. */
1741 				_hv_pcifront_read_config(hpdev, PCI_COMMAND, 2,
1742 							 &command);
1743 				command |= PCI_COMMAND_MEMORY;
1744 				_hv_pcifront_write_config(hpdev, PCI_COMMAND, 2,
1745 							  command);
1746 				break;
1747 			}
1748 		}
1749 
1750 		high_size >>= 1;
1751 		low_size >>= 1;
1752 	}  while (high_size || low_size);
1753 
1754 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1755 }
1756 
1757 /*
1758  * Assign entries in sysfs pci slot directory.
1759  *
1760  * Note that this function does not need to lock the children list
1761  * because it is called from pci_devices_present_work which
1762  * is serialized with hv_eject_device_work because they are on the
1763  * same ordered workqueue. Therefore hbus->children list will not change
1764  * even when pci_create_slot sleeps.
1765  */
1766 static void hv_pci_assign_slots(struct hv_pcibus_device *hbus)
1767 {
1768 	struct hv_pci_dev *hpdev;
1769 	char name[SLOT_NAME_SIZE];
1770 	int slot_nr;
1771 
1772 	list_for_each_entry(hpdev, &hbus->children, list_entry) {
1773 		if (hpdev->pci_slot)
1774 			continue;
1775 
1776 		slot_nr = PCI_SLOT(wslot_to_devfn(hpdev->desc.win_slot.slot));
1777 		snprintf(name, SLOT_NAME_SIZE, "%u", hpdev->desc.ser);
1778 		hpdev->pci_slot = pci_create_slot(hbus->pci_bus, slot_nr,
1779 					  name, NULL);
1780 		if (IS_ERR(hpdev->pci_slot)) {
1781 			pr_warn("pci_create slot %s failed\n", name);
1782 			hpdev->pci_slot = NULL;
1783 		}
1784 	}
1785 }
1786 
1787 /*
1788  * Remove entries in sysfs pci slot directory.
1789  */
1790 static void hv_pci_remove_slots(struct hv_pcibus_device *hbus)
1791 {
1792 	struct hv_pci_dev *hpdev;
1793 
1794 	list_for_each_entry(hpdev, &hbus->children, list_entry) {
1795 		if (!hpdev->pci_slot)
1796 			continue;
1797 		pci_destroy_slot(hpdev->pci_slot);
1798 		hpdev->pci_slot = NULL;
1799 	}
1800 }
1801 
1802 /**
1803  * create_root_hv_pci_bus() - Expose a new root PCI bus
1804  * @hbus:	Root PCI bus, as understood by this driver
1805  *
1806  * Return: 0 on success, -errno on failure
1807  */
1808 static int create_root_hv_pci_bus(struct hv_pcibus_device *hbus)
1809 {
1810 	/* Register the device */
1811 	hbus->pci_bus = pci_create_root_bus(&hbus->hdev->device,
1812 					    0, /* bus number is always zero */
1813 					    &hv_pcifront_ops,
1814 					    &hbus->sysdata,
1815 					    &hbus->resources_for_children);
1816 	if (!hbus->pci_bus)
1817 		return -ENODEV;
1818 
1819 	hbus->pci_bus->msi = &hbus->msi_chip;
1820 	hbus->pci_bus->msi->dev = &hbus->hdev->device;
1821 
1822 	pci_lock_rescan_remove();
1823 	pci_scan_child_bus(hbus->pci_bus);
1824 	pci_bus_assign_resources(hbus->pci_bus);
1825 	hv_pci_assign_slots(hbus);
1826 	pci_bus_add_devices(hbus->pci_bus);
1827 	pci_unlock_rescan_remove();
1828 	hbus->state = hv_pcibus_installed;
1829 	return 0;
1830 }
1831 
1832 struct q_res_req_compl {
1833 	struct completion host_event;
1834 	struct hv_pci_dev *hpdev;
1835 };
1836 
1837 /**
1838  * q_resource_requirements() - Query Resource Requirements
1839  * @context:		The completion context.
1840  * @resp:		The response that came from the host.
1841  * @resp_packet_size:	The size in bytes of resp.
1842  *
1843  * This function is invoked on completion of a Query Resource
1844  * Requirements packet.
1845  */
1846 static void q_resource_requirements(void *context, struct pci_response *resp,
1847 				    int resp_packet_size)
1848 {
1849 	struct q_res_req_compl *completion = context;
1850 	struct pci_q_res_req_response *q_res_req =
1851 		(struct pci_q_res_req_response *)resp;
1852 	int i;
1853 
1854 	if (resp->status < 0) {
1855 		dev_err(&completion->hpdev->hbus->hdev->device,
1856 			"query resource requirements failed: %x\n",
1857 			resp->status);
1858 	} else {
1859 		for (i = 0; i < PCI_STD_NUM_BARS; i++) {
1860 			completion->hpdev->probed_bar[i] =
1861 				q_res_req->probed_bar[i];
1862 		}
1863 	}
1864 
1865 	complete(&completion->host_event);
1866 }
1867 
1868 /**
1869  * new_pcichild_device() - Create a new child device
1870  * @hbus:	The internal struct tracking this root PCI bus.
1871  * @desc:	The information supplied so far from the host
1872  *              about the device.
1873  *
1874  * This function creates the tracking structure for a new child
1875  * device and kicks off the process of figuring out what it is.
1876  *
1877  * Return: Pointer to the new tracking struct
1878  */
1879 static struct hv_pci_dev *new_pcichild_device(struct hv_pcibus_device *hbus,
1880 		struct pci_function_description *desc)
1881 {
1882 	struct hv_pci_dev *hpdev;
1883 	struct pci_child_message *res_req;
1884 	struct q_res_req_compl comp_pkt;
1885 	struct {
1886 		struct pci_packet init_packet;
1887 		u8 buffer[sizeof(struct pci_child_message)];
1888 	} pkt;
1889 	unsigned long flags;
1890 	int ret;
1891 
1892 	hpdev = kzalloc(sizeof(*hpdev), GFP_KERNEL);
1893 	if (!hpdev)
1894 		return NULL;
1895 
1896 	hpdev->hbus = hbus;
1897 
1898 	memset(&pkt, 0, sizeof(pkt));
1899 	init_completion(&comp_pkt.host_event);
1900 	comp_pkt.hpdev = hpdev;
1901 	pkt.init_packet.compl_ctxt = &comp_pkt;
1902 	pkt.init_packet.completion_func = q_resource_requirements;
1903 	res_req = (struct pci_child_message *)&pkt.init_packet.message;
1904 	res_req->message_type.type = PCI_QUERY_RESOURCE_REQUIREMENTS;
1905 	res_req->wslot.slot = desc->win_slot.slot;
1906 
1907 	ret = vmbus_sendpacket(hbus->hdev->channel, res_req,
1908 			       sizeof(struct pci_child_message),
1909 			       (unsigned long)&pkt.init_packet,
1910 			       VM_PKT_DATA_INBAND,
1911 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1912 	if (ret)
1913 		goto error;
1914 
1915 	if (wait_for_response(hbus->hdev, &comp_pkt.host_event))
1916 		goto error;
1917 
1918 	hpdev->desc = *desc;
1919 	refcount_set(&hpdev->refs, 1);
1920 	get_pcichild(hpdev);
1921 	spin_lock_irqsave(&hbus->device_list_lock, flags);
1922 
1923 	list_add_tail(&hpdev->list_entry, &hbus->children);
1924 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1925 	return hpdev;
1926 
1927 error:
1928 	kfree(hpdev);
1929 	return NULL;
1930 }
1931 
1932 /**
1933  * get_pcichild_wslot() - Find device from slot
1934  * @hbus:	Root PCI bus, as understood by this driver
1935  * @wslot:	Location on the bus
1936  *
1937  * This function looks up a PCI device and returns the internal
1938  * representation of it.  It acquires a reference on it, so that
1939  * the device won't be deleted while somebody is using it.  The
1940  * caller is responsible for calling put_pcichild() to release
1941  * this reference.
1942  *
1943  * Return:	Internal representation of a PCI device
1944  */
1945 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
1946 					     u32 wslot)
1947 {
1948 	unsigned long flags;
1949 	struct hv_pci_dev *iter, *hpdev = NULL;
1950 
1951 	spin_lock_irqsave(&hbus->device_list_lock, flags);
1952 	list_for_each_entry(iter, &hbus->children, list_entry) {
1953 		if (iter->desc.win_slot.slot == wslot) {
1954 			hpdev = iter;
1955 			get_pcichild(hpdev);
1956 			break;
1957 		}
1958 	}
1959 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1960 
1961 	return hpdev;
1962 }
1963 
1964 /**
1965  * pci_devices_present_work() - Handle new list of child devices
1966  * @work:	Work struct embedded in struct hv_dr_work
1967  *
1968  * "Bus Relations" is the Windows term for "children of this
1969  * bus."  The terminology is preserved here for people trying to
1970  * debug the interaction between Hyper-V and Linux.  This
1971  * function is called when the parent partition reports a list
1972  * of functions that should be observed under this PCI Express
1973  * port (bus).
1974  *
1975  * This function updates the list, and must tolerate being
1976  * called multiple times with the same information.  The typical
1977  * number of child devices is one, with very atypical cases
1978  * involving three or four, so the algorithms used here can be
1979  * simple and inefficient.
1980  *
1981  * It must also treat the omission of a previously observed device as
1982  * notification that the device no longer exists.
1983  *
1984  * Note that this function is serialized with hv_eject_device_work(),
1985  * because both are pushed to the ordered workqueue hbus->wq.
1986  */
1987 static void pci_devices_present_work(struct work_struct *work)
1988 {
1989 	u32 child_no;
1990 	bool found;
1991 	struct pci_function_description *new_desc;
1992 	struct hv_pci_dev *hpdev;
1993 	struct hv_pcibus_device *hbus;
1994 	struct list_head removed;
1995 	struct hv_dr_work *dr_wrk;
1996 	struct hv_dr_state *dr = NULL;
1997 	unsigned long flags;
1998 
1999 	dr_wrk = container_of(work, struct hv_dr_work, wrk);
2000 	hbus = dr_wrk->bus;
2001 	kfree(dr_wrk);
2002 
2003 	INIT_LIST_HEAD(&removed);
2004 
2005 	/* Pull this off the queue and process it if it was the last one. */
2006 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2007 	while (!list_empty(&hbus->dr_list)) {
2008 		dr = list_first_entry(&hbus->dr_list, struct hv_dr_state,
2009 				      list_entry);
2010 		list_del(&dr->list_entry);
2011 
2012 		/* Throw this away if the list still has stuff in it. */
2013 		if (!list_empty(&hbus->dr_list)) {
2014 			kfree(dr);
2015 			continue;
2016 		}
2017 	}
2018 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2019 
2020 	if (!dr) {
2021 		put_hvpcibus(hbus);
2022 		return;
2023 	}
2024 
2025 	/* First, mark all existing children as reported missing. */
2026 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2027 	list_for_each_entry(hpdev, &hbus->children, list_entry) {
2028 		hpdev->reported_missing = true;
2029 	}
2030 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2031 
2032 	/* Next, add back any reported devices. */
2033 	for (child_no = 0; child_no < dr->device_count; child_no++) {
2034 		found = false;
2035 		new_desc = &dr->func[child_no];
2036 
2037 		spin_lock_irqsave(&hbus->device_list_lock, flags);
2038 		list_for_each_entry(hpdev, &hbus->children, list_entry) {
2039 			if ((hpdev->desc.win_slot.slot == new_desc->win_slot.slot) &&
2040 			    (hpdev->desc.v_id == new_desc->v_id) &&
2041 			    (hpdev->desc.d_id == new_desc->d_id) &&
2042 			    (hpdev->desc.ser == new_desc->ser)) {
2043 				hpdev->reported_missing = false;
2044 				found = true;
2045 			}
2046 		}
2047 		spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2048 
2049 		if (!found) {
2050 			hpdev = new_pcichild_device(hbus, new_desc);
2051 			if (!hpdev)
2052 				dev_err(&hbus->hdev->device,
2053 					"couldn't record a child device.\n");
2054 		}
2055 	}
2056 
2057 	/* Move missing children to a list on the stack. */
2058 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2059 	do {
2060 		found = false;
2061 		list_for_each_entry(hpdev, &hbus->children, list_entry) {
2062 			if (hpdev->reported_missing) {
2063 				found = true;
2064 				put_pcichild(hpdev);
2065 				list_move_tail(&hpdev->list_entry, &removed);
2066 				break;
2067 			}
2068 		}
2069 	} while (found);
2070 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2071 
2072 	/* Delete everything that should no longer exist. */
2073 	while (!list_empty(&removed)) {
2074 		hpdev = list_first_entry(&removed, struct hv_pci_dev,
2075 					 list_entry);
2076 		list_del(&hpdev->list_entry);
2077 
2078 		if (hpdev->pci_slot)
2079 			pci_destroy_slot(hpdev->pci_slot);
2080 
2081 		put_pcichild(hpdev);
2082 	}
2083 
2084 	switch (hbus->state) {
2085 	case hv_pcibus_installed:
2086 		/*
2087 		 * Tell the core to rescan bus
2088 		 * because there may have been changes.
2089 		 */
2090 		pci_lock_rescan_remove();
2091 		pci_scan_child_bus(hbus->pci_bus);
2092 		hv_pci_assign_slots(hbus);
2093 		pci_unlock_rescan_remove();
2094 		break;
2095 
2096 	case hv_pcibus_init:
2097 	case hv_pcibus_probed:
2098 		survey_child_resources(hbus);
2099 		break;
2100 
2101 	default:
2102 		break;
2103 	}
2104 
2105 	put_hvpcibus(hbus);
2106 	kfree(dr);
2107 }
2108 
2109 /**
2110  * hv_pci_devices_present() - Handles list of new children
2111  * @hbus:	Root PCI bus, as understood by this driver
2112  * @relations:	Packet from host listing children
2113  *
2114  * This function is invoked whenever a new list of devices for
2115  * this bus appears.
2116  */
2117 static void hv_pci_devices_present(struct hv_pcibus_device *hbus,
2118 				   struct pci_bus_relations *relations)
2119 {
2120 	struct hv_dr_state *dr;
2121 	struct hv_dr_work *dr_wrk;
2122 	unsigned long flags;
2123 	bool pending_dr;
2124 
2125 	if (hbus->state == hv_pcibus_removing) {
2126 		dev_info(&hbus->hdev->device,
2127 			 "PCI VMBus BUS_RELATIONS: ignored\n");
2128 		return;
2129 	}
2130 
2131 	dr_wrk = kzalloc(sizeof(*dr_wrk), GFP_NOWAIT);
2132 	if (!dr_wrk)
2133 		return;
2134 
2135 	dr = kzalloc(offsetof(struct hv_dr_state, func) +
2136 		     (sizeof(struct pci_function_description) *
2137 		      (relations->device_count)), GFP_NOWAIT);
2138 	if (!dr)  {
2139 		kfree(dr_wrk);
2140 		return;
2141 	}
2142 
2143 	INIT_WORK(&dr_wrk->wrk, pci_devices_present_work);
2144 	dr_wrk->bus = hbus;
2145 	dr->device_count = relations->device_count;
2146 	if (dr->device_count != 0) {
2147 		memcpy(dr->func, relations->func,
2148 		       sizeof(struct pci_function_description) *
2149 		       dr->device_count);
2150 	}
2151 
2152 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2153 	/*
2154 	 * If pending_dr is true, we have already queued a work,
2155 	 * which will see the new dr. Otherwise, we need to
2156 	 * queue a new work.
2157 	 */
2158 	pending_dr = !list_empty(&hbus->dr_list);
2159 	list_add_tail(&dr->list_entry, &hbus->dr_list);
2160 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2161 
2162 	if (pending_dr) {
2163 		kfree(dr_wrk);
2164 	} else {
2165 		get_hvpcibus(hbus);
2166 		queue_work(hbus->wq, &dr_wrk->wrk);
2167 	}
2168 }
2169 
2170 /**
2171  * hv_eject_device_work() - Asynchronously handles ejection
2172  * @work:	Work struct embedded in internal device struct
2173  *
2174  * This function handles ejecting a device.  Windows will
2175  * attempt to gracefully eject a device, waiting 60 seconds to
2176  * hear back from the guest OS that this completed successfully.
2177  * If this timer expires, the device will be forcibly removed.
2178  */
2179 static void hv_eject_device_work(struct work_struct *work)
2180 {
2181 	struct pci_eject_response *ejct_pkt;
2182 	struct hv_pcibus_device *hbus;
2183 	struct hv_pci_dev *hpdev;
2184 	struct pci_dev *pdev;
2185 	unsigned long flags;
2186 	int wslot;
2187 	struct {
2188 		struct pci_packet pkt;
2189 		u8 buffer[sizeof(struct pci_eject_response)];
2190 	} ctxt;
2191 
2192 	hpdev = container_of(work, struct hv_pci_dev, wrk);
2193 	hbus = hpdev->hbus;
2194 
2195 	WARN_ON(hpdev->state != hv_pcichild_ejecting);
2196 
2197 	/*
2198 	 * Ejection can come before or after the PCI bus has been set up, so
2199 	 * attempt to find it and tear down the bus state, if it exists.  This
2200 	 * must be done without constructs like pci_domain_nr(hbus->pci_bus)
2201 	 * because hbus->pci_bus may not exist yet.
2202 	 */
2203 	wslot = wslot_to_devfn(hpdev->desc.win_slot.slot);
2204 	pdev = pci_get_domain_bus_and_slot(hbus->sysdata.domain, 0, wslot);
2205 	if (pdev) {
2206 		pci_lock_rescan_remove();
2207 		pci_stop_and_remove_bus_device(pdev);
2208 		pci_dev_put(pdev);
2209 		pci_unlock_rescan_remove();
2210 	}
2211 
2212 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2213 	list_del(&hpdev->list_entry);
2214 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2215 
2216 	if (hpdev->pci_slot)
2217 		pci_destroy_slot(hpdev->pci_slot);
2218 
2219 	memset(&ctxt, 0, sizeof(ctxt));
2220 	ejct_pkt = (struct pci_eject_response *)&ctxt.pkt.message;
2221 	ejct_pkt->message_type.type = PCI_EJECTION_COMPLETE;
2222 	ejct_pkt->wslot.slot = hpdev->desc.win_slot.slot;
2223 	vmbus_sendpacket(hbus->hdev->channel, ejct_pkt,
2224 			 sizeof(*ejct_pkt), (unsigned long)&ctxt.pkt,
2225 			 VM_PKT_DATA_INBAND, 0);
2226 
2227 	/* For the get_pcichild() in hv_pci_eject_device() */
2228 	put_pcichild(hpdev);
2229 	/* For the two refs got in new_pcichild_device() */
2230 	put_pcichild(hpdev);
2231 	put_pcichild(hpdev);
2232 	/* hpdev has been freed. Do not use it any more. */
2233 
2234 	put_hvpcibus(hbus);
2235 }
2236 
2237 /**
2238  * hv_pci_eject_device() - Handles device ejection
2239  * @hpdev:	Internal device tracking struct
2240  *
2241  * This function is invoked when an ejection packet arrives.  It
2242  * just schedules work so that we don't re-enter the packet
2243  * delivery code handling the ejection.
2244  */
2245 static void hv_pci_eject_device(struct hv_pci_dev *hpdev)
2246 {
2247 	struct hv_pcibus_device *hbus = hpdev->hbus;
2248 	struct hv_device *hdev = hbus->hdev;
2249 
2250 	if (hbus->state == hv_pcibus_removing) {
2251 		dev_info(&hdev->device, "PCI VMBus EJECT: ignored\n");
2252 		return;
2253 	}
2254 
2255 	hpdev->state = hv_pcichild_ejecting;
2256 	get_pcichild(hpdev);
2257 	INIT_WORK(&hpdev->wrk, hv_eject_device_work);
2258 	get_hvpcibus(hbus);
2259 	queue_work(hbus->wq, &hpdev->wrk);
2260 }
2261 
2262 /**
2263  * hv_pci_onchannelcallback() - Handles incoming packets
2264  * @context:	Internal bus tracking struct
2265  *
2266  * This function is invoked whenever the host sends a packet to
2267  * this channel (which is private to this root PCI bus).
2268  */
2269 static void hv_pci_onchannelcallback(void *context)
2270 {
2271 	const int packet_size = 0x100;
2272 	int ret;
2273 	struct hv_pcibus_device *hbus = context;
2274 	u32 bytes_recvd;
2275 	u64 req_id;
2276 	struct vmpacket_descriptor *desc;
2277 	unsigned char *buffer;
2278 	int bufferlen = packet_size;
2279 	struct pci_packet *comp_packet;
2280 	struct pci_response *response;
2281 	struct pci_incoming_message *new_message;
2282 	struct pci_bus_relations *bus_rel;
2283 	struct pci_dev_inval_block *inval;
2284 	struct pci_dev_incoming *dev_message;
2285 	struct hv_pci_dev *hpdev;
2286 
2287 	buffer = kmalloc(bufferlen, GFP_ATOMIC);
2288 	if (!buffer)
2289 		return;
2290 
2291 	while (1) {
2292 		ret = vmbus_recvpacket_raw(hbus->hdev->channel, buffer,
2293 					   bufferlen, &bytes_recvd, &req_id);
2294 
2295 		if (ret == -ENOBUFS) {
2296 			kfree(buffer);
2297 			/* Handle large packet */
2298 			bufferlen = bytes_recvd;
2299 			buffer = kmalloc(bytes_recvd, GFP_ATOMIC);
2300 			if (!buffer)
2301 				return;
2302 			continue;
2303 		}
2304 
2305 		/* Zero length indicates there are no more packets. */
2306 		if (ret || !bytes_recvd)
2307 			break;
2308 
2309 		/*
2310 		 * All incoming packets must be at least as large as a
2311 		 * response.
2312 		 */
2313 		if (bytes_recvd <= sizeof(struct pci_response))
2314 			continue;
2315 		desc = (struct vmpacket_descriptor *)buffer;
2316 
2317 		switch (desc->type) {
2318 		case VM_PKT_COMP:
2319 
2320 			/*
2321 			 * The host is trusted, and thus it's safe to interpret
2322 			 * this transaction ID as a pointer.
2323 			 */
2324 			comp_packet = (struct pci_packet *)req_id;
2325 			response = (struct pci_response *)buffer;
2326 			comp_packet->completion_func(comp_packet->compl_ctxt,
2327 						     response,
2328 						     bytes_recvd);
2329 			break;
2330 
2331 		case VM_PKT_DATA_INBAND:
2332 
2333 			new_message = (struct pci_incoming_message *)buffer;
2334 			switch (new_message->message_type.type) {
2335 			case PCI_BUS_RELATIONS:
2336 
2337 				bus_rel = (struct pci_bus_relations *)buffer;
2338 				if (bytes_recvd <
2339 				    offsetof(struct pci_bus_relations, func) +
2340 				    (sizeof(struct pci_function_description) *
2341 				     (bus_rel->device_count))) {
2342 					dev_err(&hbus->hdev->device,
2343 						"bus relations too small\n");
2344 					break;
2345 				}
2346 
2347 				hv_pci_devices_present(hbus, bus_rel);
2348 				break;
2349 
2350 			case PCI_EJECT:
2351 
2352 				dev_message = (struct pci_dev_incoming *)buffer;
2353 				hpdev = get_pcichild_wslot(hbus,
2354 						      dev_message->wslot.slot);
2355 				if (hpdev) {
2356 					hv_pci_eject_device(hpdev);
2357 					put_pcichild(hpdev);
2358 				}
2359 				break;
2360 
2361 			case PCI_INVALIDATE_BLOCK:
2362 
2363 				inval = (struct pci_dev_inval_block *)buffer;
2364 				hpdev = get_pcichild_wslot(hbus,
2365 							   inval->wslot.slot);
2366 				if (hpdev) {
2367 					if (hpdev->block_invalidate) {
2368 						hpdev->block_invalidate(
2369 						    hpdev->invalidate_context,
2370 						    inval->block_mask);
2371 					}
2372 					put_pcichild(hpdev);
2373 				}
2374 				break;
2375 
2376 			default:
2377 				dev_warn(&hbus->hdev->device,
2378 					"Unimplemented protocol message %x\n",
2379 					new_message->message_type.type);
2380 				break;
2381 			}
2382 			break;
2383 
2384 		default:
2385 			dev_err(&hbus->hdev->device,
2386 				"unhandled packet type %d, tid %llx len %d\n",
2387 				desc->type, req_id, bytes_recvd);
2388 			break;
2389 		}
2390 	}
2391 
2392 	kfree(buffer);
2393 }
2394 
2395 /**
2396  * hv_pci_protocol_negotiation() - Set up protocol
2397  * @hdev:	VMBus's tracking struct for this root PCI bus
2398  *
2399  * This driver is intended to support running on Windows 10
2400  * (server) and later versions. It will not run on earlier
2401  * versions, as they assume that many of the operations which
2402  * Linux needs accomplished with a spinlock held were done via
2403  * asynchronous messaging via VMBus.  Windows 10 increases the
2404  * surface area of PCI emulation so that these actions can take
2405  * place by suspending a virtual processor for their duration.
2406  *
2407  * This function negotiates the channel protocol version,
2408  * failing if the host doesn't support the necessary protocol
2409  * level.
2410  */
2411 static int hv_pci_protocol_negotiation(struct hv_device *hdev,
2412 				       enum pci_protocol_version_t version[],
2413 				       int num_version)
2414 {
2415 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2416 	struct pci_version_request *version_req;
2417 	struct hv_pci_compl comp_pkt;
2418 	struct pci_packet *pkt;
2419 	int ret;
2420 	int i;
2421 
2422 	/*
2423 	 * Initiate the handshake with the host and negotiate
2424 	 * a version that the host can support. We start with the
2425 	 * highest version number and go down if the host cannot
2426 	 * support it.
2427 	 */
2428 	pkt = kzalloc(sizeof(*pkt) + sizeof(*version_req), GFP_KERNEL);
2429 	if (!pkt)
2430 		return -ENOMEM;
2431 
2432 	init_completion(&comp_pkt.host_event);
2433 	pkt->completion_func = hv_pci_generic_compl;
2434 	pkt->compl_ctxt = &comp_pkt;
2435 	version_req = (struct pci_version_request *)&pkt->message;
2436 	version_req->message_type.type = PCI_QUERY_PROTOCOL_VERSION;
2437 
2438 	for (i = 0; i < num_version; i++) {
2439 		version_req->protocol_version = version[i];
2440 		ret = vmbus_sendpacket(hdev->channel, version_req,
2441 				sizeof(struct pci_version_request),
2442 				(unsigned long)pkt, VM_PKT_DATA_INBAND,
2443 				VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2444 		if (!ret)
2445 			ret = wait_for_response(hdev, &comp_pkt.host_event);
2446 
2447 		if (ret) {
2448 			dev_err(&hdev->device,
2449 				"PCI Pass-through VSP failed to request version: %d",
2450 				ret);
2451 			goto exit;
2452 		}
2453 
2454 		if (comp_pkt.completion_status >= 0) {
2455 			hbus->protocol_version = version[i];
2456 			dev_info(&hdev->device,
2457 				"PCI VMBus probing: Using version %#x\n",
2458 				hbus->protocol_version);
2459 			goto exit;
2460 		}
2461 
2462 		if (comp_pkt.completion_status != STATUS_REVISION_MISMATCH) {
2463 			dev_err(&hdev->device,
2464 				"PCI Pass-through VSP failed version request: %#x",
2465 				comp_pkt.completion_status);
2466 			ret = -EPROTO;
2467 			goto exit;
2468 		}
2469 
2470 		reinit_completion(&comp_pkt.host_event);
2471 	}
2472 
2473 	dev_err(&hdev->device,
2474 		"PCI pass-through VSP failed to find supported version");
2475 	ret = -EPROTO;
2476 
2477 exit:
2478 	kfree(pkt);
2479 	return ret;
2480 }
2481 
2482 /**
2483  * hv_pci_free_bridge_windows() - Release memory regions for the
2484  * bus
2485  * @hbus:	Root PCI bus, as understood by this driver
2486  */
2487 static void hv_pci_free_bridge_windows(struct hv_pcibus_device *hbus)
2488 {
2489 	/*
2490 	 * Set the resources back to the way they looked when they
2491 	 * were allocated by setting IORESOURCE_BUSY again.
2492 	 */
2493 
2494 	if (hbus->low_mmio_space && hbus->low_mmio_res) {
2495 		hbus->low_mmio_res->flags |= IORESOURCE_BUSY;
2496 		vmbus_free_mmio(hbus->low_mmio_res->start,
2497 				resource_size(hbus->low_mmio_res));
2498 	}
2499 
2500 	if (hbus->high_mmio_space && hbus->high_mmio_res) {
2501 		hbus->high_mmio_res->flags |= IORESOURCE_BUSY;
2502 		vmbus_free_mmio(hbus->high_mmio_res->start,
2503 				resource_size(hbus->high_mmio_res));
2504 	}
2505 }
2506 
2507 /**
2508  * hv_pci_allocate_bridge_windows() - Allocate memory regions
2509  * for the bus
2510  * @hbus:	Root PCI bus, as understood by this driver
2511  *
2512  * This function calls vmbus_allocate_mmio(), which is itself a
2513  * bit of a compromise.  Ideally, we might change the pnp layer
2514  * in the kernel such that it comprehends either PCI devices
2515  * which are "grandchildren of ACPI," with some intermediate bus
2516  * node (in this case, VMBus) or change it such that it
2517  * understands VMBus.  The pnp layer, however, has been declared
2518  * deprecated, and not subject to change.
2519  *
2520  * The workaround, implemented here, is to ask VMBus to allocate
2521  * MMIO space for this bus.  VMBus itself knows which ranges are
2522  * appropriate by looking at its own ACPI objects.  Then, after
2523  * these ranges are claimed, they're modified to look like they
2524  * would have looked if the ACPI and pnp code had allocated
2525  * bridge windows.  These descriptors have to exist in this form
2526  * in order to satisfy the code which will get invoked when the
2527  * endpoint PCI function driver calls request_mem_region() or
2528  * request_mem_region_exclusive().
2529  *
2530  * Return: 0 on success, -errno on failure
2531  */
2532 static int hv_pci_allocate_bridge_windows(struct hv_pcibus_device *hbus)
2533 {
2534 	resource_size_t align;
2535 	int ret;
2536 
2537 	if (hbus->low_mmio_space) {
2538 		align = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
2539 		ret = vmbus_allocate_mmio(&hbus->low_mmio_res, hbus->hdev, 0,
2540 					  (u64)(u32)0xffffffff,
2541 					  hbus->low_mmio_space,
2542 					  align, false);
2543 		if (ret) {
2544 			dev_err(&hbus->hdev->device,
2545 				"Need %#llx of low MMIO space. Consider reconfiguring the VM.\n",
2546 				hbus->low_mmio_space);
2547 			return ret;
2548 		}
2549 
2550 		/* Modify this resource to become a bridge window. */
2551 		hbus->low_mmio_res->flags |= IORESOURCE_WINDOW;
2552 		hbus->low_mmio_res->flags &= ~IORESOURCE_BUSY;
2553 		pci_add_resource(&hbus->resources_for_children,
2554 				 hbus->low_mmio_res);
2555 	}
2556 
2557 	if (hbus->high_mmio_space) {
2558 		align = 1ULL << (63 - __builtin_clzll(hbus->high_mmio_space));
2559 		ret = vmbus_allocate_mmio(&hbus->high_mmio_res, hbus->hdev,
2560 					  0x100000000, -1,
2561 					  hbus->high_mmio_space, align,
2562 					  false);
2563 		if (ret) {
2564 			dev_err(&hbus->hdev->device,
2565 				"Need %#llx of high MMIO space. Consider reconfiguring the VM.\n",
2566 				hbus->high_mmio_space);
2567 			goto release_low_mmio;
2568 		}
2569 
2570 		/* Modify this resource to become a bridge window. */
2571 		hbus->high_mmio_res->flags |= IORESOURCE_WINDOW;
2572 		hbus->high_mmio_res->flags &= ~IORESOURCE_BUSY;
2573 		pci_add_resource(&hbus->resources_for_children,
2574 				 hbus->high_mmio_res);
2575 	}
2576 
2577 	return 0;
2578 
2579 release_low_mmio:
2580 	if (hbus->low_mmio_res) {
2581 		vmbus_free_mmio(hbus->low_mmio_res->start,
2582 				resource_size(hbus->low_mmio_res));
2583 	}
2584 
2585 	return ret;
2586 }
2587 
2588 /**
2589  * hv_allocate_config_window() - Find MMIO space for PCI Config
2590  * @hbus:	Root PCI bus, as understood by this driver
2591  *
2592  * This function claims memory-mapped I/O space for accessing
2593  * configuration space for the functions on this bus.
2594  *
2595  * Return: 0 on success, -errno on failure
2596  */
2597 static int hv_allocate_config_window(struct hv_pcibus_device *hbus)
2598 {
2599 	int ret;
2600 
2601 	/*
2602 	 * Set up a region of MMIO space to use for accessing configuration
2603 	 * space.
2604 	 */
2605 	ret = vmbus_allocate_mmio(&hbus->mem_config, hbus->hdev, 0, -1,
2606 				  PCI_CONFIG_MMIO_LENGTH, 0x1000, false);
2607 	if (ret)
2608 		return ret;
2609 
2610 	/*
2611 	 * vmbus_allocate_mmio() gets used for allocating both device endpoint
2612 	 * resource claims (those which cannot be overlapped) and the ranges
2613 	 * which are valid for the children of this bus, which are intended
2614 	 * to be overlapped by those children.  Set the flag on this claim
2615 	 * meaning that this region can't be overlapped.
2616 	 */
2617 
2618 	hbus->mem_config->flags |= IORESOURCE_BUSY;
2619 
2620 	return 0;
2621 }
2622 
2623 static void hv_free_config_window(struct hv_pcibus_device *hbus)
2624 {
2625 	vmbus_free_mmio(hbus->mem_config->start, PCI_CONFIG_MMIO_LENGTH);
2626 }
2627 
2628 /**
2629  * hv_pci_enter_d0() - Bring the "bus" into the D0 power state
2630  * @hdev:	VMBus's tracking struct for this root PCI bus
2631  *
2632  * Return: 0 on success, -errno on failure
2633  */
2634 static int hv_pci_enter_d0(struct hv_device *hdev)
2635 {
2636 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2637 	struct pci_bus_d0_entry *d0_entry;
2638 	struct hv_pci_compl comp_pkt;
2639 	struct pci_packet *pkt;
2640 	int ret;
2641 
2642 	/*
2643 	 * Tell the host that the bus is ready to use, and moved into the
2644 	 * powered-on state.  This includes telling the host which region
2645 	 * of memory-mapped I/O space has been chosen for configuration space
2646 	 * access.
2647 	 */
2648 	pkt = kzalloc(sizeof(*pkt) + sizeof(*d0_entry), GFP_KERNEL);
2649 	if (!pkt)
2650 		return -ENOMEM;
2651 
2652 	init_completion(&comp_pkt.host_event);
2653 	pkt->completion_func = hv_pci_generic_compl;
2654 	pkt->compl_ctxt = &comp_pkt;
2655 	d0_entry = (struct pci_bus_d0_entry *)&pkt->message;
2656 	d0_entry->message_type.type = PCI_BUS_D0ENTRY;
2657 	d0_entry->mmio_base = hbus->mem_config->start;
2658 
2659 	ret = vmbus_sendpacket(hdev->channel, d0_entry, sizeof(*d0_entry),
2660 			       (unsigned long)pkt, VM_PKT_DATA_INBAND,
2661 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2662 	if (!ret)
2663 		ret = wait_for_response(hdev, &comp_pkt.host_event);
2664 
2665 	if (ret)
2666 		goto exit;
2667 
2668 	if (comp_pkt.completion_status < 0) {
2669 		dev_err(&hdev->device,
2670 			"PCI Pass-through VSP failed D0 Entry with status %x\n",
2671 			comp_pkt.completion_status);
2672 		ret = -EPROTO;
2673 		goto exit;
2674 	}
2675 
2676 	ret = 0;
2677 
2678 exit:
2679 	kfree(pkt);
2680 	return ret;
2681 }
2682 
2683 /**
2684  * hv_pci_query_relations() - Ask host to send list of child
2685  * devices
2686  * @hdev:	VMBus's tracking struct for this root PCI bus
2687  *
2688  * Return: 0 on success, -errno on failure
2689  */
2690 static int hv_pci_query_relations(struct hv_device *hdev)
2691 {
2692 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2693 	struct pci_message message;
2694 	struct completion comp;
2695 	int ret;
2696 
2697 	/* Ask the host to send along the list of child devices */
2698 	init_completion(&comp);
2699 	if (cmpxchg(&hbus->survey_event, NULL, &comp))
2700 		return -ENOTEMPTY;
2701 
2702 	memset(&message, 0, sizeof(message));
2703 	message.type = PCI_QUERY_BUS_RELATIONS;
2704 
2705 	ret = vmbus_sendpacket(hdev->channel, &message, sizeof(message),
2706 			       0, VM_PKT_DATA_INBAND, 0);
2707 	if (!ret)
2708 		ret = wait_for_response(hdev, &comp);
2709 
2710 	return ret;
2711 }
2712 
2713 /**
2714  * hv_send_resources_allocated() - Report local resource choices
2715  * @hdev:	VMBus's tracking struct for this root PCI bus
2716  *
2717  * The host OS is expecting to be sent a request as a message
2718  * which contains all the resources that the device will use.
2719  * The response contains those same resources, "translated"
2720  * which is to say, the values which should be used by the
2721  * hardware, when it delivers an interrupt.  (MMIO resources are
2722  * used in local terms.)  This is nice for Windows, and lines up
2723  * with the FDO/PDO split, which doesn't exist in Linux.  Linux
2724  * is deeply expecting to scan an emulated PCI configuration
2725  * space.  So this message is sent here only to drive the state
2726  * machine on the host forward.
2727  *
2728  * Return: 0 on success, -errno on failure
2729  */
2730 static int hv_send_resources_allocated(struct hv_device *hdev)
2731 {
2732 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2733 	struct pci_resources_assigned *res_assigned;
2734 	struct pci_resources_assigned2 *res_assigned2;
2735 	struct hv_pci_compl comp_pkt;
2736 	struct hv_pci_dev *hpdev;
2737 	struct pci_packet *pkt;
2738 	size_t size_res;
2739 	u32 wslot;
2740 	int ret;
2741 
2742 	size_res = (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2)
2743 			? sizeof(*res_assigned) : sizeof(*res_assigned2);
2744 
2745 	pkt = kmalloc(sizeof(*pkt) + size_res, GFP_KERNEL);
2746 	if (!pkt)
2747 		return -ENOMEM;
2748 
2749 	ret = 0;
2750 
2751 	for (wslot = 0; wslot < 256; wslot++) {
2752 		hpdev = get_pcichild_wslot(hbus, wslot);
2753 		if (!hpdev)
2754 			continue;
2755 
2756 		memset(pkt, 0, sizeof(*pkt) + size_res);
2757 		init_completion(&comp_pkt.host_event);
2758 		pkt->completion_func = hv_pci_generic_compl;
2759 		pkt->compl_ctxt = &comp_pkt;
2760 
2761 		if (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2) {
2762 			res_assigned =
2763 				(struct pci_resources_assigned *)&pkt->message;
2764 			res_assigned->message_type.type =
2765 				PCI_RESOURCES_ASSIGNED;
2766 			res_assigned->wslot.slot = hpdev->desc.win_slot.slot;
2767 		} else {
2768 			res_assigned2 =
2769 				(struct pci_resources_assigned2 *)&pkt->message;
2770 			res_assigned2->message_type.type =
2771 				PCI_RESOURCES_ASSIGNED2;
2772 			res_assigned2->wslot.slot = hpdev->desc.win_slot.slot;
2773 		}
2774 		put_pcichild(hpdev);
2775 
2776 		ret = vmbus_sendpacket(hdev->channel, &pkt->message,
2777 				size_res, (unsigned long)pkt,
2778 				VM_PKT_DATA_INBAND,
2779 				VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2780 		if (!ret)
2781 			ret = wait_for_response(hdev, &comp_pkt.host_event);
2782 		if (ret)
2783 			break;
2784 
2785 		if (comp_pkt.completion_status < 0) {
2786 			ret = -EPROTO;
2787 			dev_err(&hdev->device,
2788 				"resource allocated returned 0x%x",
2789 				comp_pkt.completion_status);
2790 			break;
2791 		}
2792 	}
2793 
2794 	kfree(pkt);
2795 	return ret;
2796 }
2797 
2798 /**
2799  * hv_send_resources_released() - Report local resources
2800  * released
2801  * @hdev:	VMBus's tracking struct for this root PCI bus
2802  *
2803  * Return: 0 on success, -errno on failure
2804  */
2805 static int hv_send_resources_released(struct hv_device *hdev)
2806 {
2807 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2808 	struct pci_child_message pkt;
2809 	struct hv_pci_dev *hpdev;
2810 	u32 wslot;
2811 	int ret;
2812 
2813 	for (wslot = 0; wslot < 256; wslot++) {
2814 		hpdev = get_pcichild_wslot(hbus, wslot);
2815 		if (!hpdev)
2816 			continue;
2817 
2818 		memset(&pkt, 0, sizeof(pkt));
2819 		pkt.message_type.type = PCI_RESOURCES_RELEASED;
2820 		pkt.wslot.slot = hpdev->desc.win_slot.slot;
2821 
2822 		put_pcichild(hpdev);
2823 
2824 		ret = vmbus_sendpacket(hdev->channel, &pkt, sizeof(pkt), 0,
2825 				       VM_PKT_DATA_INBAND, 0);
2826 		if (ret)
2827 			return ret;
2828 	}
2829 
2830 	return 0;
2831 }
2832 
2833 static void get_hvpcibus(struct hv_pcibus_device *hbus)
2834 {
2835 	refcount_inc(&hbus->remove_lock);
2836 }
2837 
2838 static void put_hvpcibus(struct hv_pcibus_device *hbus)
2839 {
2840 	if (refcount_dec_and_test(&hbus->remove_lock))
2841 		complete(&hbus->remove_event);
2842 }
2843 
2844 #define HVPCI_DOM_MAP_SIZE (64 * 1024)
2845 static DECLARE_BITMAP(hvpci_dom_map, HVPCI_DOM_MAP_SIZE);
2846 
2847 /*
2848  * PCI domain number 0 is used by emulated devices on Gen1 VMs, so define 0
2849  * as invalid for passthrough PCI devices of this driver.
2850  */
2851 #define HVPCI_DOM_INVALID 0
2852 
2853 /**
2854  * hv_get_dom_num() - Get a valid PCI domain number
2855  * Check if the PCI domain number is in use, and return another number if
2856  * it is in use.
2857  *
2858  * @dom: Requested domain number
2859  *
2860  * return: domain number on success, HVPCI_DOM_INVALID on failure
2861  */
2862 static u16 hv_get_dom_num(u16 dom)
2863 {
2864 	unsigned int i;
2865 
2866 	if (test_and_set_bit(dom, hvpci_dom_map) == 0)
2867 		return dom;
2868 
2869 	for_each_clear_bit(i, hvpci_dom_map, HVPCI_DOM_MAP_SIZE) {
2870 		if (test_and_set_bit(i, hvpci_dom_map) == 0)
2871 			return i;
2872 	}
2873 
2874 	return HVPCI_DOM_INVALID;
2875 }
2876 
2877 /**
2878  * hv_put_dom_num() - Mark the PCI domain number as free
2879  * @dom: Domain number to be freed
2880  */
2881 static void hv_put_dom_num(u16 dom)
2882 {
2883 	clear_bit(dom, hvpci_dom_map);
2884 }
2885 
2886 /**
2887  * hv_pci_probe() - New VMBus channel probe, for a root PCI bus
2888  * @hdev:	VMBus's tracking struct for this root PCI bus
2889  * @dev_id:	Identifies the device itself
2890  *
2891  * Return: 0 on success, -errno on failure
2892  */
2893 static int hv_pci_probe(struct hv_device *hdev,
2894 			const struct hv_vmbus_device_id *dev_id)
2895 {
2896 	struct hv_pcibus_device *hbus;
2897 	u16 dom_req, dom;
2898 	char *name;
2899 	int ret;
2900 
2901 	/*
2902 	 * hv_pcibus_device contains the hypercall arguments for retargeting in
2903 	 * hv_irq_unmask(). Those must not cross a page boundary.
2904 	 */
2905 	BUILD_BUG_ON(sizeof(*hbus) > HV_HYP_PAGE_SIZE);
2906 
2907 	/*
2908 	 * With the recent 59bb47985c1d ("mm, sl[aou]b: guarantee natural
2909 	 * alignment for kmalloc(power-of-two)"), kzalloc() is able to allocate
2910 	 * a 4KB buffer that is guaranteed to be 4KB-aligned. Here the size and
2911 	 * alignment of hbus is important because hbus's field
2912 	 * retarget_msi_interrupt_params must not cross a 4KB page boundary.
2913 	 *
2914 	 * Here we prefer kzalloc to get_zeroed_page(), because a buffer
2915 	 * allocated by the latter is not tracked and scanned by kmemleak, and
2916 	 * hence kmemleak reports the pointer contained in the hbus buffer
2917 	 * (i.e. the hpdev struct, which is created in new_pcichild_device() and
2918 	 * is tracked by hbus->children) as memory leak (false positive).
2919 	 *
2920 	 * If the kernel doesn't have 59bb47985c1d, get_zeroed_page() *must* be
2921 	 * used to allocate the hbus buffer and we can avoid the kmemleak false
2922 	 * positive by using kmemleak_alloc() and kmemleak_free() to ask
2923 	 * kmemleak to track and scan the hbus buffer.
2924 	 */
2925 	hbus = (struct hv_pcibus_device *)kzalloc(HV_HYP_PAGE_SIZE, GFP_KERNEL);
2926 	if (!hbus)
2927 		return -ENOMEM;
2928 	hbus->state = hv_pcibus_init;
2929 
2930 	/*
2931 	 * The PCI bus "domain" is what is called "segment" in ACPI and other
2932 	 * specs. Pull it from the instance ID, to get something usually
2933 	 * unique. In rare cases of collision, we will find out another number
2934 	 * not in use.
2935 	 *
2936 	 * Note that, since this code only runs in a Hyper-V VM, Hyper-V
2937 	 * together with this guest driver can guarantee that (1) The only
2938 	 * domain used by Gen1 VMs for something that looks like a physical
2939 	 * PCI bus (which is actually emulated by the hypervisor) is domain 0.
2940 	 * (2) There will be no overlap between domains (after fixing possible
2941 	 * collisions) in the same VM.
2942 	 */
2943 	dom_req = hdev->dev_instance.b[5] << 8 | hdev->dev_instance.b[4];
2944 	dom = hv_get_dom_num(dom_req);
2945 
2946 	if (dom == HVPCI_DOM_INVALID) {
2947 		dev_err(&hdev->device,
2948 			"Unable to use dom# 0x%hx or other numbers", dom_req);
2949 		ret = -EINVAL;
2950 		goto free_bus;
2951 	}
2952 
2953 	if (dom != dom_req)
2954 		dev_info(&hdev->device,
2955 			 "PCI dom# 0x%hx has collision, using 0x%hx",
2956 			 dom_req, dom);
2957 
2958 	hbus->sysdata.domain = dom;
2959 
2960 	hbus->hdev = hdev;
2961 	refcount_set(&hbus->remove_lock, 1);
2962 	INIT_LIST_HEAD(&hbus->children);
2963 	INIT_LIST_HEAD(&hbus->dr_list);
2964 	INIT_LIST_HEAD(&hbus->resources_for_children);
2965 	spin_lock_init(&hbus->config_lock);
2966 	spin_lock_init(&hbus->device_list_lock);
2967 	spin_lock_init(&hbus->retarget_msi_interrupt_lock);
2968 	init_completion(&hbus->remove_event);
2969 	hbus->wq = alloc_ordered_workqueue("hv_pci_%x", 0,
2970 					   hbus->sysdata.domain);
2971 	if (!hbus->wq) {
2972 		ret = -ENOMEM;
2973 		goto free_dom;
2974 	}
2975 
2976 	ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0,
2977 			 hv_pci_onchannelcallback, hbus);
2978 	if (ret)
2979 		goto destroy_wq;
2980 
2981 	hv_set_drvdata(hdev, hbus);
2982 
2983 	ret = hv_pci_protocol_negotiation(hdev, pci_protocol_versions,
2984 					  ARRAY_SIZE(pci_protocol_versions));
2985 	if (ret)
2986 		goto close;
2987 
2988 	ret = hv_allocate_config_window(hbus);
2989 	if (ret)
2990 		goto close;
2991 
2992 	hbus->cfg_addr = ioremap(hbus->mem_config->start,
2993 				 PCI_CONFIG_MMIO_LENGTH);
2994 	if (!hbus->cfg_addr) {
2995 		dev_err(&hdev->device,
2996 			"Unable to map a virtual address for config space\n");
2997 		ret = -ENOMEM;
2998 		goto free_config;
2999 	}
3000 
3001 	name = kasprintf(GFP_KERNEL, "%pUL", &hdev->dev_instance);
3002 	if (!name) {
3003 		ret = -ENOMEM;
3004 		goto unmap;
3005 	}
3006 
3007 	hbus->sysdata.fwnode = irq_domain_alloc_named_fwnode(name);
3008 	kfree(name);
3009 	if (!hbus->sysdata.fwnode) {
3010 		ret = -ENOMEM;
3011 		goto unmap;
3012 	}
3013 
3014 	ret = hv_pcie_init_irq_domain(hbus);
3015 	if (ret)
3016 		goto free_fwnode;
3017 
3018 	ret = hv_pci_query_relations(hdev);
3019 	if (ret)
3020 		goto free_irq_domain;
3021 
3022 	ret = hv_pci_enter_d0(hdev);
3023 	if (ret)
3024 		goto free_irq_domain;
3025 
3026 	ret = hv_pci_allocate_bridge_windows(hbus);
3027 	if (ret)
3028 		goto free_irq_domain;
3029 
3030 	ret = hv_send_resources_allocated(hdev);
3031 	if (ret)
3032 		goto free_windows;
3033 
3034 	prepopulate_bars(hbus);
3035 
3036 	hbus->state = hv_pcibus_probed;
3037 
3038 	ret = create_root_hv_pci_bus(hbus);
3039 	if (ret)
3040 		goto free_windows;
3041 
3042 	return 0;
3043 
3044 free_windows:
3045 	hv_pci_free_bridge_windows(hbus);
3046 free_irq_domain:
3047 	irq_domain_remove(hbus->irq_domain);
3048 free_fwnode:
3049 	irq_domain_free_fwnode(hbus->sysdata.fwnode);
3050 unmap:
3051 	iounmap(hbus->cfg_addr);
3052 free_config:
3053 	hv_free_config_window(hbus);
3054 close:
3055 	vmbus_close(hdev->channel);
3056 destroy_wq:
3057 	destroy_workqueue(hbus->wq);
3058 free_dom:
3059 	hv_put_dom_num(hbus->sysdata.domain);
3060 free_bus:
3061 	free_page((unsigned long)hbus);
3062 	return ret;
3063 }
3064 
3065 static int hv_pci_bus_exit(struct hv_device *hdev, bool hibernating)
3066 {
3067 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3068 	struct {
3069 		struct pci_packet teardown_packet;
3070 		u8 buffer[sizeof(struct pci_message)];
3071 	} pkt;
3072 	struct pci_bus_relations relations;
3073 	struct hv_pci_compl comp_pkt;
3074 	int ret;
3075 
3076 	/*
3077 	 * After the host sends the RESCIND_CHANNEL message, it doesn't
3078 	 * access the per-channel ringbuffer any longer.
3079 	 */
3080 	if (hdev->channel->rescind)
3081 		return 0;
3082 
3083 	if (!hibernating) {
3084 		/* Delete any children which might still exist. */
3085 		memset(&relations, 0, sizeof(relations));
3086 		hv_pci_devices_present(hbus, &relations);
3087 	}
3088 
3089 	ret = hv_send_resources_released(hdev);
3090 	if (ret) {
3091 		dev_err(&hdev->device,
3092 			"Couldn't send resources released packet(s)\n");
3093 		return ret;
3094 	}
3095 
3096 	memset(&pkt.teardown_packet, 0, sizeof(pkt.teardown_packet));
3097 	init_completion(&comp_pkt.host_event);
3098 	pkt.teardown_packet.completion_func = hv_pci_generic_compl;
3099 	pkt.teardown_packet.compl_ctxt = &comp_pkt;
3100 	pkt.teardown_packet.message[0].type = PCI_BUS_D0EXIT;
3101 
3102 	ret = vmbus_sendpacket(hdev->channel, &pkt.teardown_packet.message,
3103 			       sizeof(struct pci_message),
3104 			       (unsigned long)&pkt.teardown_packet,
3105 			       VM_PKT_DATA_INBAND,
3106 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3107 	if (ret)
3108 		return ret;
3109 
3110 	if (wait_for_completion_timeout(&comp_pkt.host_event, 10 * HZ) == 0)
3111 		return -ETIMEDOUT;
3112 
3113 	return 0;
3114 }
3115 
3116 /**
3117  * hv_pci_remove() - Remove routine for this VMBus channel
3118  * @hdev:	VMBus's tracking struct for this root PCI bus
3119  *
3120  * Return: 0 on success, -errno on failure
3121  */
3122 static int hv_pci_remove(struct hv_device *hdev)
3123 {
3124 	struct hv_pcibus_device *hbus;
3125 	int ret;
3126 
3127 	hbus = hv_get_drvdata(hdev);
3128 	if (hbus->state == hv_pcibus_installed) {
3129 		/* Remove the bus from PCI's point of view. */
3130 		pci_lock_rescan_remove();
3131 		pci_stop_root_bus(hbus->pci_bus);
3132 		hv_pci_remove_slots(hbus);
3133 		pci_remove_root_bus(hbus->pci_bus);
3134 		pci_unlock_rescan_remove();
3135 		hbus->state = hv_pcibus_removed;
3136 	}
3137 
3138 	ret = hv_pci_bus_exit(hdev, false);
3139 
3140 	vmbus_close(hdev->channel);
3141 
3142 	iounmap(hbus->cfg_addr);
3143 	hv_free_config_window(hbus);
3144 	pci_free_resource_list(&hbus->resources_for_children);
3145 	hv_pci_free_bridge_windows(hbus);
3146 	irq_domain_remove(hbus->irq_domain);
3147 	irq_domain_free_fwnode(hbus->sysdata.fwnode);
3148 	put_hvpcibus(hbus);
3149 	wait_for_completion(&hbus->remove_event);
3150 	destroy_workqueue(hbus->wq);
3151 
3152 	hv_put_dom_num(hbus->sysdata.domain);
3153 
3154 	kfree(hbus);
3155 	return ret;
3156 }
3157 
3158 static int hv_pci_suspend(struct hv_device *hdev)
3159 {
3160 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3161 	enum hv_pcibus_state old_state;
3162 	int ret;
3163 
3164 	/*
3165 	 * hv_pci_suspend() must make sure there are no pending work items
3166 	 * before calling vmbus_close(), since it runs in a process context
3167 	 * as a callback in dpm_suspend().  When it starts to run, the channel
3168 	 * callback hv_pci_onchannelcallback(), which runs in a tasklet
3169 	 * context, can be still running concurrently and scheduling new work
3170 	 * items onto hbus->wq in hv_pci_devices_present() and
3171 	 * hv_pci_eject_device(), and the work item handlers can access the
3172 	 * vmbus channel, which can be being closed by hv_pci_suspend(), e.g.
3173 	 * the work item handler pci_devices_present_work() ->
3174 	 * new_pcichild_device() writes to the vmbus channel.
3175 	 *
3176 	 * To eliminate the race, hv_pci_suspend() disables the channel
3177 	 * callback tasklet, sets hbus->state to hv_pcibus_removing, and
3178 	 * re-enables the tasklet. This way, when hv_pci_suspend() proceeds,
3179 	 * it knows that no new work item can be scheduled, and then it flushes
3180 	 * hbus->wq and safely closes the vmbus channel.
3181 	 */
3182 	tasklet_disable(&hdev->channel->callback_event);
3183 
3184 	/* Change the hbus state to prevent new work items. */
3185 	old_state = hbus->state;
3186 	if (hbus->state == hv_pcibus_installed)
3187 		hbus->state = hv_pcibus_removing;
3188 
3189 	tasklet_enable(&hdev->channel->callback_event);
3190 
3191 	if (old_state != hv_pcibus_installed)
3192 		return -EINVAL;
3193 
3194 	flush_workqueue(hbus->wq);
3195 
3196 	ret = hv_pci_bus_exit(hdev, true);
3197 	if (ret)
3198 		return ret;
3199 
3200 	vmbus_close(hdev->channel);
3201 
3202 	return 0;
3203 }
3204 
3205 static int hv_pci_resume(struct hv_device *hdev)
3206 {
3207 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3208 	enum pci_protocol_version_t version[1];
3209 	int ret;
3210 
3211 	hbus->state = hv_pcibus_init;
3212 
3213 	ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0,
3214 			 hv_pci_onchannelcallback, hbus);
3215 	if (ret)
3216 		return ret;
3217 
3218 	/* Only use the version that was in use before hibernation. */
3219 	version[0] = hbus->protocol_version;
3220 	ret = hv_pci_protocol_negotiation(hdev, version, 1);
3221 	if (ret)
3222 		goto out;
3223 
3224 	ret = hv_pci_query_relations(hdev);
3225 	if (ret)
3226 		goto out;
3227 
3228 	ret = hv_pci_enter_d0(hdev);
3229 	if (ret)
3230 		goto out;
3231 
3232 	ret = hv_send_resources_allocated(hdev);
3233 	if (ret)
3234 		goto out;
3235 
3236 	prepopulate_bars(hbus);
3237 
3238 	hbus->state = hv_pcibus_installed;
3239 	return 0;
3240 out:
3241 	vmbus_close(hdev->channel);
3242 	return ret;
3243 }
3244 
3245 static const struct hv_vmbus_device_id hv_pci_id_table[] = {
3246 	/* PCI Pass-through Class ID */
3247 	/* 44C4F61D-4444-4400-9D52-802E27EDE19F */
3248 	{ HV_PCIE_GUID, },
3249 	{ },
3250 };
3251 
3252 MODULE_DEVICE_TABLE(vmbus, hv_pci_id_table);
3253 
3254 static struct hv_driver hv_pci_drv = {
3255 	.name		= "hv_pci",
3256 	.id_table	= hv_pci_id_table,
3257 	.probe		= hv_pci_probe,
3258 	.remove		= hv_pci_remove,
3259 	.suspend	= hv_pci_suspend,
3260 	.resume		= hv_pci_resume,
3261 };
3262 
3263 static void __exit exit_hv_pci_drv(void)
3264 {
3265 	vmbus_driver_unregister(&hv_pci_drv);
3266 
3267 	hvpci_block_ops.read_block = NULL;
3268 	hvpci_block_ops.write_block = NULL;
3269 	hvpci_block_ops.reg_blk_invalidate = NULL;
3270 }
3271 
3272 static int __init init_hv_pci_drv(void)
3273 {
3274 	/* Set the invalid domain number's bit, so it will not be used */
3275 	set_bit(HVPCI_DOM_INVALID, hvpci_dom_map);
3276 
3277 	/* Initialize PCI block r/w interface */
3278 	hvpci_block_ops.read_block = hv_read_config_block;
3279 	hvpci_block_ops.write_block = hv_write_config_block;
3280 	hvpci_block_ops.reg_blk_invalidate = hv_register_block_invalidate;
3281 
3282 	return vmbus_driver_register(&hv_pci_drv);
3283 }
3284 
3285 module_init(init_hv_pci_drv);
3286 module_exit(exit_hv_pci_drv);
3287 
3288 MODULE_DESCRIPTION("Hyper-V PCI");
3289 MODULE_LICENSE("GPL v2");
3290