1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) Microsoft Corporation. 4 * 5 * Author: 6 * Jake Oshins <jakeo@microsoft.com> 7 * 8 * This driver acts as a paravirtual front-end for PCI Express root buses. 9 * When a PCI Express function (either an entire device or an SR-IOV 10 * Virtual Function) is being passed through to the VM, this driver exposes 11 * a new bus to the guest VM. This is modeled as a root PCI bus because 12 * no bridges are being exposed to the VM. In fact, with a "Generation 2" 13 * VM within Hyper-V, there may seem to be no PCI bus at all in the VM 14 * until a device as been exposed using this driver. 15 * 16 * Each root PCI bus has its own PCI domain, which is called "Segment" in 17 * the PCI Firmware Specifications. Thus while each device passed through 18 * to the VM using this front-end will appear at "device 0", the domain will 19 * be unique. Typically, each bus will have one PCI function on it, though 20 * this driver does support more than one. 21 * 22 * In order to map the interrupts from the device through to the guest VM, 23 * this driver also implements an IRQ Domain, which handles interrupts (either 24 * MSI or MSI-X) associated with the functions on the bus. As interrupts are 25 * set up, torn down, or reaffined, this driver communicates with the 26 * underlying hypervisor to adjust the mappings in the I/O MMU so that each 27 * interrupt will be delivered to the correct virtual processor at the right 28 * vector. This driver does not support level-triggered (line-based) 29 * interrupts, and will report that the Interrupt Line register in the 30 * function's configuration space is zero. 31 * 32 * The rest of this driver mostly maps PCI concepts onto underlying Hyper-V 33 * facilities. For instance, the configuration space of a function exposed 34 * by Hyper-V is mapped into a single page of memory space, and the 35 * read and write handlers for config space must be aware of this mechanism. 36 * Similarly, device setup and teardown involves messages sent to and from 37 * the PCI back-end driver in Hyper-V. 38 */ 39 40 #include <linux/kernel.h> 41 #include <linux/module.h> 42 #include <linux/pci.h> 43 #include <linux/pci-ecam.h> 44 #include <linux/delay.h> 45 #include <linux/semaphore.h> 46 #include <linux/irq.h> 47 #include <linux/msi.h> 48 #include <linux/hyperv.h> 49 #include <linux/refcount.h> 50 #include <linux/irqdomain.h> 51 #include <linux/acpi.h> 52 #include <asm/mshyperv.h> 53 54 /* 55 * Protocol versions. The low word is the minor version, the high word the 56 * major version. 57 */ 58 59 #define PCI_MAKE_VERSION(major, minor) ((u32)(((major) << 16) | (minor))) 60 #define PCI_MAJOR_VERSION(version) ((u32)(version) >> 16) 61 #define PCI_MINOR_VERSION(version) ((u32)(version) & 0xff) 62 63 enum pci_protocol_version_t { 64 PCI_PROTOCOL_VERSION_1_1 = PCI_MAKE_VERSION(1, 1), /* Win10 */ 65 PCI_PROTOCOL_VERSION_1_2 = PCI_MAKE_VERSION(1, 2), /* RS1 */ 66 PCI_PROTOCOL_VERSION_1_3 = PCI_MAKE_VERSION(1, 3), /* Vibranium */ 67 PCI_PROTOCOL_VERSION_1_4 = PCI_MAKE_VERSION(1, 4), /* WS2022 */ 68 }; 69 70 #define CPU_AFFINITY_ALL -1ULL 71 72 /* 73 * Supported protocol versions in the order of probing - highest go 74 * first. 75 */ 76 static enum pci_protocol_version_t pci_protocol_versions[] = { 77 PCI_PROTOCOL_VERSION_1_4, 78 PCI_PROTOCOL_VERSION_1_3, 79 PCI_PROTOCOL_VERSION_1_2, 80 PCI_PROTOCOL_VERSION_1_1, 81 }; 82 83 #define PCI_CONFIG_MMIO_LENGTH 0x2000 84 #define CFG_PAGE_OFFSET 0x1000 85 #define CFG_PAGE_SIZE (PCI_CONFIG_MMIO_LENGTH - CFG_PAGE_OFFSET) 86 87 #define MAX_SUPPORTED_MSI_MESSAGES 0x400 88 89 #define STATUS_REVISION_MISMATCH 0xC0000059 90 91 /* space for 32bit serial number as string */ 92 #define SLOT_NAME_SIZE 11 93 94 /* 95 * Size of requestor for VMbus; the value is based on the observation 96 * that having more than one request outstanding is 'rare', and so 64 97 * should be generous in ensuring that we don't ever run out. 98 */ 99 #define HV_PCI_RQSTOR_SIZE 64 100 101 /* 102 * Message Types 103 */ 104 105 enum pci_message_type { 106 /* 107 * Version 1.1 108 */ 109 PCI_MESSAGE_BASE = 0x42490000, 110 PCI_BUS_RELATIONS = PCI_MESSAGE_BASE + 0, 111 PCI_QUERY_BUS_RELATIONS = PCI_MESSAGE_BASE + 1, 112 PCI_POWER_STATE_CHANGE = PCI_MESSAGE_BASE + 4, 113 PCI_QUERY_RESOURCE_REQUIREMENTS = PCI_MESSAGE_BASE + 5, 114 PCI_QUERY_RESOURCE_RESOURCES = PCI_MESSAGE_BASE + 6, 115 PCI_BUS_D0ENTRY = PCI_MESSAGE_BASE + 7, 116 PCI_BUS_D0EXIT = PCI_MESSAGE_BASE + 8, 117 PCI_READ_BLOCK = PCI_MESSAGE_BASE + 9, 118 PCI_WRITE_BLOCK = PCI_MESSAGE_BASE + 0xA, 119 PCI_EJECT = PCI_MESSAGE_BASE + 0xB, 120 PCI_QUERY_STOP = PCI_MESSAGE_BASE + 0xC, 121 PCI_REENABLE = PCI_MESSAGE_BASE + 0xD, 122 PCI_QUERY_STOP_FAILED = PCI_MESSAGE_BASE + 0xE, 123 PCI_EJECTION_COMPLETE = PCI_MESSAGE_BASE + 0xF, 124 PCI_RESOURCES_ASSIGNED = PCI_MESSAGE_BASE + 0x10, 125 PCI_RESOURCES_RELEASED = PCI_MESSAGE_BASE + 0x11, 126 PCI_INVALIDATE_BLOCK = PCI_MESSAGE_BASE + 0x12, 127 PCI_QUERY_PROTOCOL_VERSION = PCI_MESSAGE_BASE + 0x13, 128 PCI_CREATE_INTERRUPT_MESSAGE = PCI_MESSAGE_BASE + 0x14, 129 PCI_DELETE_INTERRUPT_MESSAGE = PCI_MESSAGE_BASE + 0x15, 130 PCI_RESOURCES_ASSIGNED2 = PCI_MESSAGE_BASE + 0x16, 131 PCI_CREATE_INTERRUPT_MESSAGE2 = PCI_MESSAGE_BASE + 0x17, 132 PCI_DELETE_INTERRUPT_MESSAGE2 = PCI_MESSAGE_BASE + 0x18, /* unused */ 133 PCI_BUS_RELATIONS2 = PCI_MESSAGE_BASE + 0x19, 134 PCI_RESOURCES_ASSIGNED3 = PCI_MESSAGE_BASE + 0x1A, 135 PCI_CREATE_INTERRUPT_MESSAGE3 = PCI_MESSAGE_BASE + 0x1B, 136 PCI_MESSAGE_MAXIMUM 137 }; 138 139 /* 140 * Structures defining the virtual PCI Express protocol. 141 */ 142 143 union pci_version { 144 struct { 145 u16 minor_version; 146 u16 major_version; 147 } parts; 148 u32 version; 149 } __packed; 150 151 /* 152 * Function numbers are 8-bits wide on Express, as interpreted through ARI, 153 * which is all this driver does. This representation is the one used in 154 * Windows, which is what is expected when sending this back and forth with 155 * the Hyper-V parent partition. 156 */ 157 union win_slot_encoding { 158 struct { 159 u32 dev:5; 160 u32 func:3; 161 u32 reserved:24; 162 } bits; 163 u32 slot; 164 } __packed; 165 166 /* 167 * Pretty much as defined in the PCI Specifications. 168 */ 169 struct pci_function_description { 170 u16 v_id; /* vendor ID */ 171 u16 d_id; /* device ID */ 172 u8 rev; 173 u8 prog_intf; 174 u8 subclass; 175 u8 base_class; 176 u32 subsystem_id; 177 union win_slot_encoding win_slot; 178 u32 ser; /* serial number */ 179 } __packed; 180 181 enum pci_device_description_flags { 182 HV_PCI_DEVICE_FLAG_NONE = 0x0, 183 HV_PCI_DEVICE_FLAG_NUMA_AFFINITY = 0x1, 184 }; 185 186 struct pci_function_description2 { 187 u16 v_id; /* vendor ID */ 188 u16 d_id; /* device ID */ 189 u8 rev; 190 u8 prog_intf; 191 u8 subclass; 192 u8 base_class; 193 u32 subsystem_id; 194 union win_slot_encoding win_slot; 195 u32 ser; /* serial number */ 196 u32 flags; 197 u16 virtual_numa_node; 198 u16 reserved; 199 } __packed; 200 201 /** 202 * struct hv_msi_desc 203 * @vector: IDT entry 204 * @delivery_mode: As defined in Intel's Programmer's 205 * Reference Manual, Volume 3, Chapter 8. 206 * @vector_count: Number of contiguous entries in the 207 * Interrupt Descriptor Table that are 208 * occupied by this Message-Signaled 209 * Interrupt. For "MSI", as first defined 210 * in PCI 2.2, this can be between 1 and 211 * 32. For "MSI-X," as first defined in PCI 212 * 3.0, this must be 1, as each MSI-X table 213 * entry would have its own descriptor. 214 * @reserved: Empty space 215 * @cpu_mask: All the target virtual processors. 216 */ 217 struct hv_msi_desc { 218 u8 vector; 219 u8 delivery_mode; 220 u16 vector_count; 221 u32 reserved; 222 u64 cpu_mask; 223 } __packed; 224 225 /** 226 * struct hv_msi_desc2 - 1.2 version of hv_msi_desc 227 * @vector: IDT entry 228 * @delivery_mode: As defined in Intel's Programmer's 229 * Reference Manual, Volume 3, Chapter 8. 230 * @vector_count: Number of contiguous entries in the 231 * Interrupt Descriptor Table that are 232 * occupied by this Message-Signaled 233 * Interrupt. For "MSI", as first defined 234 * in PCI 2.2, this can be between 1 and 235 * 32. For "MSI-X," as first defined in PCI 236 * 3.0, this must be 1, as each MSI-X table 237 * entry would have its own descriptor. 238 * @processor_count: number of bits enabled in array. 239 * @processor_array: All the target virtual processors. 240 */ 241 struct hv_msi_desc2 { 242 u8 vector; 243 u8 delivery_mode; 244 u16 vector_count; 245 u16 processor_count; 246 u16 processor_array[32]; 247 } __packed; 248 249 /* 250 * struct hv_msi_desc3 - 1.3 version of hv_msi_desc 251 * Everything is the same as in 'hv_msi_desc2' except that the size of the 252 * 'vector' field is larger to support bigger vector values. For ex: LPI 253 * vectors on ARM. 254 */ 255 struct hv_msi_desc3 { 256 u32 vector; 257 u8 delivery_mode; 258 u8 reserved; 259 u16 vector_count; 260 u16 processor_count; 261 u16 processor_array[32]; 262 } __packed; 263 264 /** 265 * struct tran_int_desc 266 * @reserved: unused, padding 267 * @vector_count: same as in hv_msi_desc 268 * @data: This is the "data payload" value that is 269 * written by the device when it generates 270 * a message-signaled interrupt, either MSI 271 * or MSI-X. 272 * @address: This is the address to which the data 273 * payload is written on interrupt 274 * generation. 275 */ 276 struct tran_int_desc { 277 u16 reserved; 278 u16 vector_count; 279 u32 data; 280 u64 address; 281 } __packed; 282 283 /* 284 * A generic message format for virtual PCI. 285 * Specific message formats are defined later in the file. 286 */ 287 288 struct pci_message { 289 u32 type; 290 } __packed; 291 292 struct pci_child_message { 293 struct pci_message message_type; 294 union win_slot_encoding wslot; 295 } __packed; 296 297 struct pci_incoming_message { 298 struct vmpacket_descriptor hdr; 299 struct pci_message message_type; 300 } __packed; 301 302 struct pci_response { 303 struct vmpacket_descriptor hdr; 304 s32 status; /* negative values are failures */ 305 } __packed; 306 307 struct pci_packet { 308 void (*completion_func)(void *context, struct pci_response *resp, 309 int resp_packet_size); 310 void *compl_ctxt; 311 312 struct pci_message message[]; 313 }; 314 315 /* 316 * Specific message types supporting the PCI protocol. 317 */ 318 319 /* 320 * Version negotiation message. Sent from the guest to the host. 321 * The guest is free to try different versions until the host 322 * accepts the version. 323 * 324 * pci_version: The protocol version requested. 325 * is_last_attempt: If TRUE, this is the last version guest will request. 326 * reservedz: Reserved field, set to zero. 327 */ 328 329 struct pci_version_request { 330 struct pci_message message_type; 331 u32 protocol_version; 332 } __packed; 333 334 /* 335 * Bus D0 Entry. This is sent from the guest to the host when the virtual 336 * bus (PCI Express port) is ready for action. 337 */ 338 339 struct pci_bus_d0_entry { 340 struct pci_message message_type; 341 u32 reserved; 342 u64 mmio_base; 343 } __packed; 344 345 struct pci_bus_relations { 346 struct pci_incoming_message incoming; 347 u32 device_count; 348 struct pci_function_description func[]; 349 } __packed; 350 351 struct pci_bus_relations2 { 352 struct pci_incoming_message incoming; 353 u32 device_count; 354 struct pci_function_description2 func[]; 355 } __packed; 356 357 struct pci_q_res_req_response { 358 struct vmpacket_descriptor hdr; 359 s32 status; /* negative values are failures */ 360 u32 probed_bar[PCI_STD_NUM_BARS]; 361 } __packed; 362 363 struct pci_set_power { 364 struct pci_message message_type; 365 union win_slot_encoding wslot; 366 u32 power_state; /* In Windows terms */ 367 u32 reserved; 368 } __packed; 369 370 struct pci_set_power_response { 371 struct vmpacket_descriptor hdr; 372 s32 status; /* negative values are failures */ 373 union win_slot_encoding wslot; 374 u32 resultant_state; /* In Windows terms */ 375 u32 reserved; 376 } __packed; 377 378 struct pci_resources_assigned { 379 struct pci_message message_type; 380 union win_slot_encoding wslot; 381 u8 memory_range[0x14][6]; /* not used here */ 382 u32 msi_descriptors; 383 u32 reserved[4]; 384 } __packed; 385 386 struct pci_resources_assigned2 { 387 struct pci_message message_type; 388 union win_slot_encoding wslot; 389 u8 memory_range[0x14][6]; /* not used here */ 390 u32 msi_descriptor_count; 391 u8 reserved[70]; 392 } __packed; 393 394 struct pci_create_interrupt { 395 struct pci_message message_type; 396 union win_slot_encoding wslot; 397 struct hv_msi_desc int_desc; 398 } __packed; 399 400 struct pci_create_int_response { 401 struct pci_response response; 402 u32 reserved; 403 struct tran_int_desc int_desc; 404 } __packed; 405 406 struct pci_create_interrupt2 { 407 struct pci_message message_type; 408 union win_slot_encoding wslot; 409 struct hv_msi_desc2 int_desc; 410 } __packed; 411 412 struct pci_create_interrupt3 { 413 struct pci_message message_type; 414 union win_slot_encoding wslot; 415 struct hv_msi_desc3 int_desc; 416 } __packed; 417 418 struct pci_delete_interrupt { 419 struct pci_message message_type; 420 union win_slot_encoding wslot; 421 struct tran_int_desc int_desc; 422 } __packed; 423 424 /* 425 * Note: the VM must pass a valid block id, wslot and bytes_requested. 426 */ 427 struct pci_read_block { 428 struct pci_message message_type; 429 u32 block_id; 430 union win_slot_encoding wslot; 431 u32 bytes_requested; 432 } __packed; 433 434 struct pci_read_block_response { 435 struct vmpacket_descriptor hdr; 436 u32 status; 437 u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX]; 438 } __packed; 439 440 /* 441 * Note: the VM must pass a valid block id, wslot and byte_count. 442 */ 443 struct pci_write_block { 444 struct pci_message message_type; 445 u32 block_id; 446 union win_slot_encoding wslot; 447 u32 byte_count; 448 u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX]; 449 } __packed; 450 451 struct pci_dev_inval_block { 452 struct pci_incoming_message incoming; 453 union win_slot_encoding wslot; 454 u64 block_mask; 455 } __packed; 456 457 struct pci_dev_incoming { 458 struct pci_incoming_message incoming; 459 union win_slot_encoding wslot; 460 } __packed; 461 462 struct pci_eject_response { 463 struct pci_message message_type; 464 union win_slot_encoding wslot; 465 u32 status; 466 } __packed; 467 468 static int pci_ring_size = (4 * PAGE_SIZE); 469 470 /* 471 * Driver specific state. 472 */ 473 474 enum hv_pcibus_state { 475 hv_pcibus_init = 0, 476 hv_pcibus_probed, 477 hv_pcibus_installed, 478 hv_pcibus_removing, 479 hv_pcibus_maximum 480 }; 481 482 struct hv_pcibus_device { 483 #ifdef CONFIG_X86 484 struct pci_sysdata sysdata; 485 #elif defined(CONFIG_ARM64) 486 struct pci_config_window sysdata; 487 #endif 488 struct pci_host_bridge *bridge; 489 struct fwnode_handle *fwnode; 490 /* Protocol version negotiated with the host */ 491 enum pci_protocol_version_t protocol_version; 492 enum hv_pcibus_state state; 493 struct hv_device *hdev; 494 resource_size_t low_mmio_space; 495 resource_size_t high_mmio_space; 496 struct resource *mem_config; 497 struct resource *low_mmio_res; 498 struct resource *high_mmio_res; 499 struct completion *survey_event; 500 struct pci_bus *pci_bus; 501 spinlock_t config_lock; /* Avoid two threads writing index page */ 502 spinlock_t device_list_lock; /* Protect lists below */ 503 void __iomem *cfg_addr; 504 505 struct list_head children; 506 struct list_head dr_list; 507 508 struct msi_domain_info msi_info; 509 struct irq_domain *irq_domain; 510 511 spinlock_t retarget_msi_interrupt_lock; 512 513 struct workqueue_struct *wq; 514 515 /* Highest slot of child device with resources allocated */ 516 int wslot_res_allocated; 517 518 /* hypercall arg, must not cross page boundary */ 519 struct hv_retarget_device_interrupt retarget_msi_interrupt_params; 520 521 /* 522 * Don't put anything here: retarget_msi_interrupt_params must be last 523 */ 524 }; 525 526 /* 527 * Tracks "Device Relations" messages from the host, which must be both 528 * processed in order and deferred so that they don't run in the context 529 * of the incoming packet callback. 530 */ 531 struct hv_dr_work { 532 struct work_struct wrk; 533 struct hv_pcibus_device *bus; 534 }; 535 536 struct hv_pcidev_description { 537 u16 v_id; /* vendor ID */ 538 u16 d_id; /* device ID */ 539 u8 rev; 540 u8 prog_intf; 541 u8 subclass; 542 u8 base_class; 543 u32 subsystem_id; 544 union win_slot_encoding win_slot; 545 u32 ser; /* serial number */ 546 u32 flags; 547 u16 virtual_numa_node; 548 }; 549 550 struct hv_dr_state { 551 struct list_head list_entry; 552 u32 device_count; 553 struct hv_pcidev_description func[]; 554 }; 555 556 enum hv_pcichild_state { 557 hv_pcichild_init = 0, 558 hv_pcichild_requirements, 559 hv_pcichild_resourced, 560 hv_pcichild_ejecting, 561 hv_pcichild_maximum 562 }; 563 564 struct hv_pci_dev { 565 /* List protected by pci_rescan_remove_lock */ 566 struct list_head list_entry; 567 refcount_t refs; 568 enum hv_pcichild_state state; 569 struct pci_slot *pci_slot; 570 struct hv_pcidev_description desc; 571 bool reported_missing; 572 struct hv_pcibus_device *hbus; 573 struct work_struct wrk; 574 575 void (*block_invalidate)(void *context, u64 block_mask); 576 void *invalidate_context; 577 578 /* 579 * What would be observed if one wrote 0xFFFFFFFF to a BAR and then 580 * read it back, for each of the BAR offsets within config space. 581 */ 582 u32 probed_bar[PCI_STD_NUM_BARS]; 583 }; 584 585 struct hv_pci_compl { 586 struct completion host_event; 587 s32 completion_status; 588 }; 589 590 static void hv_pci_onchannelcallback(void *context); 591 592 #ifdef CONFIG_X86 593 #define DELIVERY_MODE APIC_DELIVERY_MODE_FIXED 594 #define FLOW_HANDLER handle_edge_irq 595 #define FLOW_NAME "edge" 596 597 static int hv_pci_irqchip_init(void) 598 { 599 return 0; 600 } 601 602 static struct irq_domain *hv_pci_get_root_domain(void) 603 { 604 return x86_vector_domain; 605 } 606 607 static unsigned int hv_msi_get_int_vector(struct irq_data *data) 608 { 609 struct irq_cfg *cfg = irqd_cfg(data); 610 611 return cfg->vector; 612 } 613 614 static int hv_msi_prepare(struct irq_domain *domain, struct device *dev, 615 int nvec, msi_alloc_info_t *info) 616 { 617 int ret = pci_msi_prepare(domain, dev, nvec, info); 618 619 /* 620 * By using the interrupt remapper in the hypervisor IOMMU, contiguous 621 * CPU vectors is not needed for multi-MSI 622 */ 623 if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI) 624 info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS; 625 626 return ret; 627 } 628 629 /** 630 * hv_arch_irq_unmask() - "Unmask" the IRQ by setting its current 631 * affinity. 632 * @data: Describes the IRQ 633 * 634 * Build new a destination for the MSI and make a hypercall to 635 * update the Interrupt Redirection Table. "Device Logical ID" 636 * is built out of this PCI bus's instance GUID and the function 637 * number of the device. 638 */ 639 static void hv_arch_irq_unmask(struct irq_data *data) 640 { 641 struct msi_desc *msi_desc = irq_data_get_msi_desc(data); 642 struct hv_retarget_device_interrupt *params; 643 struct tran_int_desc *int_desc; 644 struct hv_pcibus_device *hbus; 645 const struct cpumask *dest; 646 cpumask_var_t tmp; 647 struct pci_bus *pbus; 648 struct pci_dev *pdev; 649 unsigned long flags; 650 u32 var_size = 0; 651 int cpu, nr_bank; 652 u64 res; 653 654 dest = irq_data_get_effective_affinity_mask(data); 655 pdev = msi_desc_to_pci_dev(msi_desc); 656 pbus = pdev->bus; 657 hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata); 658 int_desc = data->chip_data; 659 660 spin_lock_irqsave(&hbus->retarget_msi_interrupt_lock, flags); 661 662 params = &hbus->retarget_msi_interrupt_params; 663 memset(params, 0, sizeof(*params)); 664 params->partition_id = HV_PARTITION_ID_SELF; 665 params->int_entry.source = HV_INTERRUPT_SOURCE_MSI; 666 params->int_entry.msi_entry.address.as_uint32 = int_desc->address & 0xffffffff; 667 params->int_entry.msi_entry.data.as_uint32 = int_desc->data; 668 params->device_id = (hbus->hdev->dev_instance.b[5] << 24) | 669 (hbus->hdev->dev_instance.b[4] << 16) | 670 (hbus->hdev->dev_instance.b[7] << 8) | 671 (hbus->hdev->dev_instance.b[6] & 0xf8) | 672 PCI_FUNC(pdev->devfn); 673 params->int_target.vector = hv_msi_get_int_vector(data); 674 675 /* 676 * Honoring apic->delivery_mode set to APIC_DELIVERY_MODE_FIXED by 677 * setting the HV_DEVICE_INTERRUPT_TARGET_MULTICAST flag results in a 678 * spurious interrupt storm. Not doing so does not seem to have a 679 * negative effect (yet?). 680 */ 681 682 if (hbus->protocol_version >= PCI_PROTOCOL_VERSION_1_2) { 683 /* 684 * PCI_PROTOCOL_VERSION_1_2 supports the VP_SET version of the 685 * HVCALL_RETARGET_INTERRUPT hypercall, which also coincides 686 * with >64 VP support. 687 * ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED 688 * is not sufficient for this hypercall. 689 */ 690 params->int_target.flags |= 691 HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET; 692 693 if (!alloc_cpumask_var(&tmp, GFP_ATOMIC)) { 694 res = 1; 695 goto exit_unlock; 696 } 697 698 cpumask_and(tmp, dest, cpu_online_mask); 699 nr_bank = cpumask_to_vpset(¶ms->int_target.vp_set, tmp); 700 free_cpumask_var(tmp); 701 702 if (nr_bank <= 0) { 703 res = 1; 704 goto exit_unlock; 705 } 706 707 /* 708 * var-sized hypercall, var-size starts after vp_mask (thus 709 * vp_set.format does not count, but vp_set.valid_bank_mask 710 * does). 711 */ 712 var_size = 1 + nr_bank; 713 } else { 714 for_each_cpu_and(cpu, dest, cpu_online_mask) { 715 params->int_target.vp_mask |= 716 (1ULL << hv_cpu_number_to_vp_number(cpu)); 717 } 718 } 719 720 res = hv_do_hypercall(HVCALL_RETARGET_INTERRUPT | (var_size << 17), 721 params, NULL); 722 723 exit_unlock: 724 spin_unlock_irqrestore(&hbus->retarget_msi_interrupt_lock, flags); 725 726 /* 727 * During hibernation, when a CPU is offlined, the kernel tries 728 * to move the interrupt to the remaining CPUs that haven't 729 * been offlined yet. In this case, the below hv_do_hypercall() 730 * always fails since the vmbus channel has been closed: 731 * refer to cpu_disable_common() -> fixup_irqs() -> 732 * irq_migrate_all_off_this_cpu() -> migrate_one_irq(). 733 * 734 * Suppress the error message for hibernation because the failure 735 * during hibernation does not matter (at this time all the devices 736 * have been frozen). Note: the correct affinity info is still updated 737 * into the irqdata data structure in migrate_one_irq() -> 738 * irq_do_set_affinity() -> hv_set_affinity(), so later when the VM 739 * resumes, hv_pci_restore_msi_state() is able to correctly restore 740 * the interrupt with the correct affinity. 741 */ 742 if (!hv_result_success(res) && hbus->state != hv_pcibus_removing) 743 dev_err(&hbus->hdev->device, 744 "%s() failed: %#llx", __func__, res); 745 } 746 #elif defined(CONFIG_ARM64) 747 /* 748 * SPI vectors to use for vPCI; arch SPIs range is [32, 1019], but leaving a bit 749 * of room at the start to allow for SPIs to be specified through ACPI and 750 * starting with a power of two to satisfy power of 2 multi-MSI requirement. 751 */ 752 #define HV_PCI_MSI_SPI_START 64 753 #define HV_PCI_MSI_SPI_NR (1020 - HV_PCI_MSI_SPI_START) 754 #define DELIVERY_MODE 0 755 #define FLOW_HANDLER NULL 756 #define FLOW_NAME NULL 757 #define hv_msi_prepare NULL 758 759 struct hv_pci_chip_data { 760 DECLARE_BITMAP(spi_map, HV_PCI_MSI_SPI_NR); 761 struct mutex map_lock; 762 }; 763 764 /* Hyper-V vPCI MSI GIC IRQ domain */ 765 static struct irq_domain *hv_msi_gic_irq_domain; 766 767 /* Hyper-V PCI MSI IRQ chip */ 768 static struct irq_chip hv_arm64_msi_irq_chip = { 769 .name = "MSI", 770 .irq_set_affinity = irq_chip_set_affinity_parent, 771 .irq_eoi = irq_chip_eoi_parent, 772 .irq_mask = irq_chip_mask_parent, 773 .irq_unmask = irq_chip_unmask_parent 774 }; 775 776 static unsigned int hv_msi_get_int_vector(struct irq_data *irqd) 777 { 778 return irqd->parent_data->hwirq; 779 } 780 781 /* 782 * @nr_bm_irqs: Indicates the number of IRQs that were allocated from 783 * the bitmap. 784 * @nr_dom_irqs: Indicates the number of IRQs that were allocated from 785 * the parent domain. 786 */ 787 static void hv_pci_vec_irq_free(struct irq_domain *domain, 788 unsigned int virq, 789 unsigned int nr_bm_irqs, 790 unsigned int nr_dom_irqs) 791 { 792 struct hv_pci_chip_data *chip_data = domain->host_data; 793 struct irq_data *d = irq_domain_get_irq_data(domain, virq); 794 int first = d->hwirq - HV_PCI_MSI_SPI_START; 795 int i; 796 797 mutex_lock(&chip_data->map_lock); 798 bitmap_release_region(chip_data->spi_map, 799 first, 800 get_count_order(nr_bm_irqs)); 801 mutex_unlock(&chip_data->map_lock); 802 for (i = 0; i < nr_dom_irqs; i++) { 803 if (i) 804 d = irq_domain_get_irq_data(domain, virq + i); 805 irq_domain_reset_irq_data(d); 806 } 807 808 irq_domain_free_irqs_parent(domain, virq, nr_dom_irqs); 809 } 810 811 static void hv_pci_vec_irq_domain_free(struct irq_domain *domain, 812 unsigned int virq, 813 unsigned int nr_irqs) 814 { 815 hv_pci_vec_irq_free(domain, virq, nr_irqs, nr_irqs); 816 } 817 818 static int hv_pci_vec_alloc_device_irq(struct irq_domain *domain, 819 unsigned int nr_irqs, 820 irq_hw_number_t *hwirq) 821 { 822 struct hv_pci_chip_data *chip_data = domain->host_data; 823 int index; 824 825 /* Find and allocate region from the SPI bitmap */ 826 mutex_lock(&chip_data->map_lock); 827 index = bitmap_find_free_region(chip_data->spi_map, 828 HV_PCI_MSI_SPI_NR, 829 get_count_order(nr_irqs)); 830 mutex_unlock(&chip_data->map_lock); 831 if (index < 0) 832 return -ENOSPC; 833 834 *hwirq = index + HV_PCI_MSI_SPI_START; 835 836 return 0; 837 } 838 839 static int hv_pci_vec_irq_gic_domain_alloc(struct irq_domain *domain, 840 unsigned int virq, 841 irq_hw_number_t hwirq) 842 { 843 struct irq_fwspec fwspec; 844 struct irq_data *d; 845 int ret; 846 847 fwspec.fwnode = domain->parent->fwnode; 848 fwspec.param_count = 2; 849 fwspec.param[0] = hwirq; 850 fwspec.param[1] = IRQ_TYPE_EDGE_RISING; 851 852 ret = irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec); 853 if (ret) 854 return ret; 855 856 /* 857 * Since the interrupt specifier is not coming from ACPI or DT, the 858 * trigger type will need to be set explicitly. Otherwise, it will be 859 * set to whatever is in the GIC configuration. 860 */ 861 d = irq_domain_get_irq_data(domain->parent, virq); 862 863 return d->chip->irq_set_type(d, IRQ_TYPE_EDGE_RISING); 864 } 865 866 static int hv_pci_vec_irq_domain_alloc(struct irq_domain *domain, 867 unsigned int virq, unsigned int nr_irqs, 868 void *args) 869 { 870 irq_hw_number_t hwirq; 871 unsigned int i; 872 int ret; 873 874 ret = hv_pci_vec_alloc_device_irq(domain, nr_irqs, &hwirq); 875 if (ret) 876 return ret; 877 878 for (i = 0; i < nr_irqs; i++) { 879 ret = hv_pci_vec_irq_gic_domain_alloc(domain, virq + i, 880 hwirq + i); 881 if (ret) { 882 hv_pci_vec_irq_free(domain, virq, nr_irqs, i); 883 return ret; 884 } 885 886 irq_domain_set_hwirq_and_chip(domain, virq + i, 887 hwirq + i, 888 &hv_arm64_msi_irq_chip, 889 domain->host_data); 890 pr_debug("pID:%d vID:%u\n", (int)(hwirq + i), virq + i); 891 } 892 893 return 0; 894 } 895 896 /* 897 * Pick the first cpu as the irq affinity that can be temporarily used for 898 * composing MSI from the hypervisor. GIC will eventually set the right 899 * affinity for the irq and the 'unmask' will retarget the interrupt to that 900 * cpu. 901 */ 902 static int hv_pci_vec_irq_domain_activate(struct irq_domain *domain, 903 struct irq_data *irqd, bool reserve) 904 { 905 int cpu = cpumask_first(cpu_present_mask); 906 907 irq_data_update_effective_affinity(irqd, cpumask_of(cpu)); 908 909 return 0; 910 } 911 912 static const struct irq_domain_ops hv_pci_domain_ops = { 913 .alloc = hv_pci_vec_irq_domain_alloc, 914 .free = hv_pci_vec_irq_domain_free, 915 .activate = hv_pci_vec_irq_domain_activate, 916 }; 917 918 static int hv_pci_irqchip_init(void) 919 { 920 static struct hv_pci_chip_data *chip_data; 921 struct fwnode_handle *fn = NULL; 922 int ret = -ENOMEM; 923 924 chip_data = kzalloc(sizeof(*chip_data), GFP_KERNEL); 925 if (!chip_data) 926 return ret; 927 928 mutex_init(&chip_data->map_lock); 929 fn = irq_domain_alloc_named_fwnode("hv_vpci_arm64"); 930 if (!fn) 931 goto free_chip; 932 933 /* 934 * IRQ domain once enabled, should not be removed since there is no 935 * way to ensure that all the corresponding devices are also gone and 936 * no interrupts will be generated. 937 */ 938 hv_msi_gic_irq_domain = acpi_irq_create_hierarchy(0, HV_PCI_MSI_SPI_NR, 939 fn, &hv_pci_domain_ops, 940 chip_data); 941 942 if (!hv_msi_gic_irq_domain) { 943 pr_err("Failed to create Hyper-V arm64 vPCI MSI IRQ domain\n"); 944 goto free_chip; 945 } 946 947 return 0; 948 949 free_chip: 950 kfree(chip_data); 951 if (fn) 952 irq_domain_free_fwnode(fn); 953 954 return ret; 955 } 956 957 static struct irq_domain *hv_pci_get_root_domain(void) 958 { 959 return hv_msi_gic_irq_domain; 960 } 961 962 /* 963 * SPIs are used for interrupts of PCI devices and SPIs is managed via GICD 964 * registers which Hyper-V already supports, so no hypercall needed. 965 */ 966 static void hv_arch_irq_unmask(struct irq_data *data) { } 967 #endif /* CONFIG_ARM64 */ 968 969 /** 970 * hv_pci_generic_compl() - Invoked for a completion packet 971 * @context: Set up by the sender of the packet. 972 * @resp: The response packet 973 * @resp_packet_size: Size in bytes of the packet 974 * 975 * This function is used to trigger an event and report status 976 * for any message for which the completion packet contains a 977 * status and nothing else. 978 */ 979 static void hv_pci_generic_compl(void *context, struct pci_response *resp, 980 int resp_packet_size) 981 { 982 struct hv_pci_compl *comp_pkt = context; 983 984 comp_pkt->completion_status = resp->status; 985 complete(&comp_pkt->host_event); 986 } 987 988 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus, 989 u32 wslot); 990 991 static void get_pcichild(struct hv_pci_dev *hpdev) 992 { 993 refcount_inc(&hpdev->refs); 994 } 995 996 static void put_pcichild(struct hv_pci_dev *hpdev) 997 { 998 if (refcount_dec_and_test(&hpdev->refs)) 999 kfree(hpdev); 1000 } 1001 1002 /* 1003 * There is no good way to get notified from vmbus_onoffer_rescind(), 1004 * so let's use polling here, since this is not a hot path. 1005 */ 1006 static int wait_for_response(struct hv_device *hdev, 1007 struct completion *comp) 1008 { 1009 while (true) { 1010 if (hdev->channel->rescind) { 1011 dev_warn_once(&hdev->device, "The device is gone.\n"); 1012 return -ENODEV; 1013 } 1014 1015 if (wait_for_completion_timeout(comp, HZ / 10)) 1016 break; 1017 } 1018 1019 return 0; 1020 } 1021 1022 /** 1023 * devfn_to_wslot() - Convert from Linux PCI slot to Windows 1024 * @devfn: The Linux representation of PCI slot 1025 * 1026 * Windows uses a slightly different representation of PCI slot. 1027 * 1028 * Return: The Windows representation 1029 */ 1030 static u32 devfn_to_wslot(int devfn) 1031 { 1032 union win_slot_encoding wslot; 1033 1034 wslot.slot = 0; 1035 wslot.bits.dev = PCI_SLOT(devfn); 1036 wslot.bits.func = PCI_FUNC(devfn); 1037 1038 return wslot.slot; 1039 } 1040 1041 /** 1042 * wslot_to_devfn() - Convert from Windows PCI slot to Linux 1043 * @wslot: The Windows representation of PCI slot 1044 * 1045 * Windows uses a slightly different representation of PCI slot. 1046 * 1047 * Return: The Linux representation 1048 */ 1049 static int wslot_to_devfn(u32 wslot) 1050 { 1051 union win_slot_encoding slot_no; 1052 1053 slot_no.slot = wslot; 1054 return PCI_DEVFN(slot_no.bits.dev, slot_no.bits.func); 1055 } 1056 1057 /* 1058 * PCI Configuration Space for these root PCI buses is implemented as a pair 1059 * of pages in memory-mapped I/O space. Writing to the first page chooses 1060 * the PCI function being written or read. Once the first page has been 1061 * written to, the following page maps in the entire configuration space of 1062 * the function. 1063 */ 1064 1065 /** 1066 * _hv_pcifront_read_config() - Internal PCI config read 1067 * @hpdev: The PCI driver's representation of the device 1068 * @where: Offset within config space 1069 * @size: Size of the transfer 1070 * @val: Pointer to the buffer receiving the data 1071 */ 1072 static void _hv_pcifront_read_config(struct hv_pci_dev *hpdev, int where, 1073 int size, u32 *val) 1074 { 1075 unsigned long flags; 1076 void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where; 1077 1078 /* 1079 * If the attempt is to read the IDs or the ROM BAR, simulate that. 1080 */ 1081 if (where + size <= PCI_COMMAND) { 1082 memcpy(val, ((u8 *)&hpdev->desc.v_id) + where, size); 1083 } else if (where >= PCI_CLASS_REVISION && where + size <= 1084 PCI_CACHE_LINE_SIZE) { 1085 memcpy(val, ((u8 *)&hpdev->desc.rev) + where - 1086 PCI_CLASS_REVISION, size); 1087 } else if (where >= PCI_SUBSYSTEM_VENDOR_ID && where + size <= 1088 PCI_ROM_ADDRESS) { 1089 memcpy(val, (u8 *)&hpdev->desc.subsystem_id + where - 1090 PCI_SUBSYSTEM_VENDOR_ID, size); 1091 } else if (where >= PCI_ROM_ADDRESS && where + size <= 1092 PCI_CAPABILITY_LIST) { 1093 /* ROM BARs are unimplemented */ 1094 *val = 0; 1095 } else if (where >= PCI_INTERRUPT_LINE && where + size <= 1096 PCI_INTERRUPT_PIN) { 1097 /* 1098 * Interrupt Line and Interrupt PIN are hard-wired to zero 1099 * because this front-end only supports message-signaled 1100 * interrupts. 1101 */ 1102 *val = 0; 1103 } else if (where + size <= CFG_PAGE_SIZE) { 1104 spin_lock_irqsave(&hpdev->hbus->config_lock, flags); 1105 /* Choose the function to be read. (See comment above) */ 1106 writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr); 1107 /* Make sure the function was chosen before we start reading. */ 1108 mb(); 1109 /* Read from that function's config space. */ 1110 switch (size) { 1111 case 1: 1112 *val = readb(addr); 1113 break; 1114 case 2: 1115 *val = readw(addr); 1116 break; 1117 default: 1118 *val = readl(addr); 1119 break; 1120 } 1121 /* 1122 * Make sure the read was done before we release the spinlock 1123 * allowing consecutive reads/writes. 1124 */ 1125 mb(); 1126 spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags); 1127 } else { 1128 dev_err(&hpdev->hbus->hdev->device, 1129 "Attempt to read beyond a function's config space.\n"); 1130 } 1131 } 1132 1133 static u16 hv_pcifront_get_vendor_id(struct hv_pci_dev *hpdev) 1134 { 1135 u16 ret; 1136 unsigned long flags; 1137 void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + 1138 PCI_VENDOR_ID; 1139 1140 spin_lock_irqsave(&hpdev->hbus->config_lock, flags); 1141 1142 /* Choose the function to be read. (See comment above) */ 1143 writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr); 1144 /* Make sure the function was chosen before we start reading. */ 1145 mb(); 1146 /* Read from that function's config space. */ 1147 ret = readw(addr); 1148 /* 1149 * mb() is not required here, because the spin_unlock_irqrestore() 1150 * is a barrier. 1151 */ 1152 1153 spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags); 1154 1155 return ret; 1156 } 1157 1158 /** 1159 * _hv_pcifront_write_config() - Internal PCI config write 1160 * @hpdev: The PCI driver's representation of the device 1161 * @where: Offset within config space 1162 * @size: Size of the transfer 1163 * @val: The data being transferred 1164 */ 1165 static void _hv_pcifront_write_config(struct hv_pci_dev *hpdev, int where, 1166 int size, u32 val) 1167 { 1168 unsigned long flags; 1169 void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where; 1170 1171 if (where >= PCI_SUBSYSTEM_VENDOR_ID && 1172 where + size <= PCI_CAPABILITY_LIST) { 1173 /* SSIDs and ROM BARs are read-only */ 1174 } else if (where >= PCI_COMMAND && where + size <= CFG_PAGE_SIZE) { 1175 spin_lock_irqsave(&hpdev->hbus->config_lock, flags); 1176 /* Choose the function to be written. (See comment above) */ 1177 writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr); 1178 /* Make sure the function was chosen before we start writing. */ 1179 wmb(); 1180 /* Write to that function's config space. */ 1181 switch (size) { 1182 case 1: 1183 writeb(val, addr); 1184 break; 1185 case 2: 1186 writew(val, addr); 1187 break; 1188 default: 1189 writel(val, addr); 1190 break; 1191 } 1192 /* 1193 * Make sure the write was done before we release the spinlock 1194 * allowing consecutive reads/writes. 1195 */ 1196 mb(); 1197 spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags); 1198 } else { 1199 dev_err(&hpdev->hbus->hdev->device, 1200 "Attempt to write beyond a function's config space.\n"); 1201 } 1202 } 1203 1204 /** 1205 * hv_pcifront_read_config() - Read configuration space 1206 * @bus: PCI Bus structure 1207 * @devfn: Device/function 1208 * @where: Offset from base 1209 * @size: Byte/word/dword 1210 * @val: Value to be read 1211 * 1212 * Return: PCIBIOS_SUCCESSFUL on success 1213 * PCIBIOS_DEVICE_NOT_FOUND on failure 1214 */ 1215 static int hv_pcifront_read_config(struct pci_bus *bus, unsigned int devfn, 1216 int where, int size, u32 *val) 1217 { 1218 struct hv_pcibus_device *hbus = 1219 container_of(bus->sysdata, struct hv_pcibus_device, sysdata); 1220 struct hv_pci_dev *hpdev; 1221 1222 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn)); 1223 if (!hpdev) 1224 return PCIBIOS_DEVICE_NOT_FOUND; 1225 1226 _hv_pcifront_read_config(hpdev, where, size, val); 1227 1228 put_pcichild(hpdev); 1229 return PCIBIOS_SUCCESSFUL; 1230 } 1231 1232 /** 1233 * hv_pcifront_write_config() - Write configuration space 1234 * @bus: PCI Bus structure 1235 * @devfn: Device/function 1236 * @where: Offset from base 1237 * @size: Byte/word/dword 1238 * @val: Value to be written to device 1239 * 1240 * Return: PCIBIOS_SUCCESSFUL on success 1241 * PCIBIOS_DEVICE_NOT_FOUND on failure 1242 */ 1243 static int hv_pcifront_write_config(struct pci_bus *bus, unsigned int devfn, 1244 int where, int size, u32 val) 1245 { 1246 struct hv_pcibus_device *hbus = 1247 container_of(bus->sysdata, struct hv_pcibus_device, sysdata); 1248 struct hv_pci_dev *hpdev; 1249 1250 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn)); 1251 if (!hpdev) 1252 return PCIBIOS_DEVICE_NOT_FOUND; 1253 1254 _hv_pcifront_write_config(hpdev, where, size, val); 1255 1256 put_pcichild(hpdev); 1257 return PCIBIOS_SUCCESSFUL; 1258 } 1259 1260 /* PCIe operations */ 1261 static struct pci_ops hv_pcifront_ops = { 1262 .read = hv_pcifront_read_config, 1263 .write = hv_pcifront_write_config, 1264 }; 1265 1266 /* 1267 * Paravirtual backchannel 1268 * 1269 * Hyper-V SR-IOV provides a backchannel mechanism in software for 1270 * communication between a VF driver and a PF driver. These 1271 * "configuration blocks" are similar in concept to PCI configuration space, 1272 * but instead of doing reads and writes in 32-bit chunks through a very slow 1273 * path, packets of up to 128 bytes can be sent or received asynchronously. 1274 * 1275 * Nearly every SR-IOV device contains just such a communications channel in 1276 * hardware, so using this one in software is usually optional. Using the 1277 * software channel, however, allows driver implementers to leverage software 1278 * tools that fuzz the communications channel looking for vulnerabilities. 1279 * 1280 * The usage model for these packets puts the responsibility for reading or 1281 * writing on the VF driver. The VF driver sends a read or a write packet, 1282 * indicating which "block" is being referred to by number. 1283 * 1284 * If the PF driver wishes to initiate communication, it can "invalidate" one or 1285 * more of the first 64 blocks. This invalidation is delivered via a callback 1286 * supplied by the VF driver by this driver. 1287 * 1288 * No protocol is implied, except that supplied by the PF and VF drivers. 1289 */ 1290 1291 struct hv_read_config_compl { 1292 struct hv_pci_compl comp_pkt; 1293 void *buf; 1294 unsigned int len; 1295 unsigned int bytes_returned; 1296 }; 1297 1298 /** 1299 * hv_pci_read_config_compl() - Invoked when a response packet 1300 * for a read config block operation arrives. 1301 * @context: Identifies the read config operation 1302 * @resp: The response packet itself 1303 * @resp_packet_size: Size in bytes of the response packet 1304 */ 1305 static void hv_pci_read_config_compl(void *context, struct pci_response *resp, 1306 int resp_packet_size) 1307 { 1308 struct hv_read_config_compl *comp = context; 1309 struct pci_read_block_response *read_resp = 1310 (struct pci_read_block_response *)resp; 1311 unsigned int data_len, hdr_len; 1312 1313 hdr_len = offsetof(struct pci_read_block_response, bytes); 1314 if (resp_packet_size < hdr_len) { 1315 comp->comp_pkt.completion_status = -1; 1316 goto out; 1317 } 1318 1319 data_len = resp_packet_size - hdr_len; 1320 if (data_len > 0 && read_resp->status == 0) { 1321 comp->bytes_returned = min(comp->len, data_len); 1322 memcpy(comp->buf, read_resp->bytes, comp->bytes_returned); 1323 } else { 1324 comp->bytes_returned = 0; 1325 } 1326 1327 comp->comp_pkt.completion_status = read_resp->status; 1328 out: 1329 complete(&comp->comp_pkt.host_event); 1330 } 1331 1332 /** 1333 * hv_read_config_block() - Sends a read config block request to 1334 * the back-end driver running in the Hyper-V parent partition. 1335 * @pdev: The PCI driver's representation for this device. 1336 * @buf: Buffer into which the config block will be copied. 1337 * @len: Size in bytes of buf. 1338 * @block_id: Identifies the config block which has been requested. 1339 * @bytes_returned: Size which came back from the back-end driver. 1340 * 1341 * Return: 0 on success, -errno on failure 1342 */ 1343 static int hv_read_config_block(struct pci_dev *pdev, void *buf, 1344 unsigned int len, unsigned int block_id, 1345 unsigned int *bytes_returned) 1346 { 1347 struct hv_pcibus_device *hbus = 1348 container_of(pdev->bus->sysdata, struct hv_pcibus_device, 1349 sysdata); 1350 struct { 1351 struct pci_packet pkt; 1352 char buf[sizeof(struct pci_read_block)]; 1353 } pkt; 1354 struct hv_read_config_compl comp_pkt; 1355 struct pci_read_block *read_blk; 1356 int ret; 1357 1358 if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX) 1359 return -EINVAL; 1360 1361 init_completion(&comp_pkt.comp_pkt.host_event); 1362 comp_pkt.buf = buf; 1363 comp_pkt.len = len; 1364 1365 memset(&pkt, 0, sizeof(pkt)); 1366 pkt.pkt.completion_func = hv_pci_read_config_compl; 1367 pkt.pkt.compl_ctxt = &comp_pkt; 1368 read_blk = (struct pci_read_block *)&pkt.pkt.message; 1369 read_blk->message_type.type = PCI_READ_BLOCK; 1370 read_blk->wslot.slot = devfn_to_wslot(pdev->devfn); 1371 read_blk->block_id = block_id; 1372 read_blk->bytes_requested = len; 1373 1374 ret = vmbus_sendpacket(hbus->hdev->channel, read_blk, 1375 sizeof(*read_blk), (unsigned long)&pkt.pkt, 1376 VM_PKT_DATA_INBAND, 1377 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1378 if (ret) 1379 return ret; 1380 1381 ret = wait_for_response(hbus->hdev, &comp_pkt.comp_pkt.host_event); 1382 if (ret) 1383 return ret; 1384 1385 if (comp_pkt.comp_pkt.completion_status != 0 || 1386 comp_pkt.bytes_returned == 0) { 1387 dev_err(&hbus->hdev->device, 1388 "Read Config Block failed: 0x%x, bytes_returned=%d\n", 1389 comp_pkt.comp_pkt.completion_status, 1390 comp_pkt.bytes_returned); 1391 return -EIO; 1392 } 1393 1394 *bytes_returned = comp_pkt.bytes_returned; 1395 return 0; 1396 } 1397 1398 /** 1399 * hv_pci_write_config_compl() - Invoked when a response packet for a write 1400 * config block operation arrives. 1401 * @context: Identifies the write config operation 1402 * @resp: The response packet itself 1403 * @resp_packet_size: Size in bytes of the response packet 1404 */ 1405 static void hv_pci_write_config_compl(void *context, struct pci_response *resp, 1406 int resp_packet_size) 1407 { 1408 struct hv_pci_compl *comp_pkt = context; 1409 1410 comp_pkt->completion_status = resp->status; 1411 complete(&comp_pkt->host_event); 1412 } 1413 1414 /** 1415 * hv_write_config_block() - Sends a write config block request to the 1416 * back-end driver running in the Hyper-V parent partition. 1417 * @pdev: The PCI driver's representation for this device. 1418 * @buf: Buffer from which the config block will be copied. 1419 * @len: Size in bytes of buf. 1420 * @block_id: Identifies the config block which is being written. 1421 * 1422 * Return: 0 on success, -errno on failure 1423 */ 1424 static int hv_write_config_block(struct pci_dev *pdev, void *buf, 1425 unsigned int len, unsigned int block_id) 1426 { 1427 struct hv_pcibus_device *hbus = 1428 container_of(pdev->bus->sysdata, struct hv_pcibus_device, 1429 sysdata); 1430 struct { 1431 struct pci_packet pkt; 1432 char buf[sizeof(struct pci_write_block)]; 1433 u32 reserved; 1434 } pkt; 1435 struct hv_pci_compl comp_pkt; 1436 struct pci_write_block *write_blk; 1437 u32 pkt_size; 1438 int ret; 1439 1440 if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX) 1441 return -EINVAL; 1442 1443 init_completion(&comp_pkt.host_event); 1444 1445 memset(&pkt, 0, sizeof(pkt)); 1446 pkt.pkt.completion_func = hv_pci_write_config_compl; 1447 pkt.pkt.compl_ctxt = &comp_pkt; 1448 write_blk = (struct pci_write_block *)&pkt.pkt.message; 1449 write_blk->message_type.type = PCI_WRITE_BLOCK; 1450 write_blk->wslot.slot = devfn_to_wslot(pdev->devfn); 1451 write_blk->block_id = block_id; 1452 write_blk->byte_count = len; 1453 memcpy(write_blk->bytes, buf, len); 1454 pkt_size = offsetof(struct pci_write_block, bytes) + len; 1455 /* 1456 * This quirk is required on some hosts shipped around 2018, because 1457 * these hosts don't check the pkt_size correctly (new hosts have been 1458 * fixed since early 2019). The quirk is also safe on very old hosts 1459 * and new hosts, because, on them, what really matters is the length 1460 * specified in write_blk->byte_count. 1461 */ 1462 pkt_size += sizeof(pkt.reserved); 1463 1464 ret = vmbus_sendpacket(hbus->hdev->channel, write_blk, pkt_size, 1465 (unsigned long)&pkt.pkt, VM_PKT_DATA_INBAND, 1466 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1467 if (ret) 1468 return ret; 1469 1470 ret = wait_for_response(hbus->hdev, &comp_pkt.host_event); 1471 if (ret) 1472 return ret; 1473 1474 if (comp_pkt.completion_status != 0) { 1475 dev_err(&hbus->hdev->device, 1476 "Write Config Block failed: 0x%x\n", 1477 comp_pkt.completion_status); 1478 return -EIO; 1479 } 1480 1481 return 0; 1482 } 1483 1484 /** 1485 * hv_register_block_invalidate() - Invoked when a config block invalidation 1486 * arrives from the back-end driver. 1487 * @pdev: The PCI driver's representation for this device. 1488 * @context: Identifies the device. 1489 * @block_invalidate: Identifies all of the blocks being invalidated. 1490 * 1491 * Return: 0 on success, -errno on failure 1492 */ 1493 static int hv_register_block_invalidate(struct pci_dev *pdev, void *context, 1494 void (*block_invalidate)(void *context, 1495 u64 block_mask)) 1496 { 1497 struct hv_pcibus_device *hbus = 1498 container_of(pdev->bus->sysdata, struct hv_pcibus_device, 1499 sysdata); 1500 struct hv_pci_dev *hpdev; 1501 1502 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn)); 1503 if (!hpdev) 1504 return -ENODEV; 1505 1506 hpdev->block_invalidate = block_invalidate; 1507 hpdev->invalidate_context = context; 1508 1509 put_pcichild(hpdev); 1510 return 0; 1511 1512 } 1513 1514 /* Interrupt management hooks */ 1515 static void hv_int_desc_free(struct hv_pci_dev *hpdev, 1516 struct tran_int_desc *int_desc) 1517 { 1518 struct pci_delete_interrupt *int_pkt; 1519 struct { 1520 struct pci_packet pkt; 1521 u8 buffer[sizeof(struct pci_delete_interrupt)]; 1522 } ctxt; 1523 1524 if (!int_desc->vector_count) { 1525 kfree(int_desc); 1526 return; 1527 } 1528 memset(&ctxt, 0, sizeof(ctxt)); 1529 int_pkt = (struct pci_delete_interrupt *)&ctxt.pkt.message; 1530 int_pkt->message_type.type = 1531 PCI_DELETE_INTERRUPT_MESSAGE; 1532 int_pkt->wslot.slot = hpdev->desc.win_slot.slot; 1533 int_pkt->int_desc = *int_desc; 1534 vmbus_sendpacket(hpdev->hbus->hdev->channel, int_pkt, sizeof(*int_pkt), 1535 0, VM_PKT_DATA_INBAND, 0); 1536 kfree(int_desc); 1537 } 1538 1539 /** 1540 * hv_msi_free() - Free the MSI. 1541 * @domain: The interrupt domain pointer 1542 * @info: Extra MSI-related context 1543 * @irq: Identifies the IRQ. 1544 * 1545 * The Hyper-V parent partition and hypervisor are tracking the 1546 * messages that are in use, keeping the interrupt redirection 1547 * table up to date. This callback sends a message that frees 1548 * the IRT entry and related tracking nonsense. 1549 */ 1550 static void hv_msi_free(struct irq_domain *domain, struct msi_domain_info *info, 1551 unsigned int irq) 1552 { 1553 struct hv_pcibus_device *hbus; 1554 struct hv_pci_dev *hpdev; 1555 struct pci_dev *pdev; 1556 struct tran_int_desc *int_desc; 1557 struct irq_data *irq_data = irq_domain_get_irq_data(domain, irq); 1558 struct msi_desc *msi = irq_data_get_msi_desc(irq_data); 1559 1560 pdev = msi_desc_to_pci_dev(msi); 1561 hbus = info->data; 1562 int_desc = irq_data_get_irq_chip_data(irq_data); 1563 if (!int_desc) 1564 return; 1565 1566 irq_data->chip_data = NULL; 1567 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn)); 1568 if (!hpdev) { 1569 kfree(int_desc); 1570 return; 1571 } 1572 1573 hv_int_desc_free(hpdev, int_desc); 1574 put_pcichild(hpdev); 1575 } 1576 1577 static void hv_irq_mask(struct irq_data *data) 1578 { 1579 pci_msi_mask_irq(data); 1580 if (data->parent_data->chip->irq_mask) 1581 irq_chip_mask_parent(data); 1582 } 1583 1584 static void hv_irq_unmask(struct irq_data *data) 1585 { 1586 hv_arch_irq_unmask(data); 1587 1588 if (data->parent_data->chip->irq_unmask) 1589 irq_chip_unmask_parent(data); 1590 pci_msi_unmask_irq(data); 1591 } 1592 1593 struct compose_comp_ctxt { 1594 struct hv_pci_compl comp_pkt; 1595 struct tran_int_desc int_desc; 1596 }; 1597 1598 static void hv_pci_compose_compl(void *context, struct pci_response *resp, 1599 int resp_packet_size) 1600 { 1601 struct compose_comp_ctxt *comp_pkt = context; 1602 struct pci_create_int_response *int_resp = 1603 (struct pci_create_int_response *)resp; 1604 1605 if (resp_packet_size < sizeof(*int_resp)) { 1606 comp_pkt->comp_pkt.completion_status = -1; 1607 goto out; 1608 } 1609 comp_pkt->comp_pkt.completion_status = resp->status; 1610 comp_pkt->int_desc = int_resp->int_desc; 1611 out: 1612 complete(&comp_pkt->comp_pkt.host_event); 1613 } 1614 1615 static u32 hv_compose_msi_req_v1( 1616 struct pci_create_interrupt *int_pkt, const struct cpumask *affinity, 1617 u32 slot, u8 vector, u8 vector_count) 1618 { 1619 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE; 1620 int_pkt->wslot.slot = slot; 1621 int_pkt->int_desc.vector = vector; 1622 int_pkt->int_desc.vector_count = vector_count; 1623 int_pkt->int_desc.delivery_mode = DELIVERY_MODE; 1624 1625 /* 1626 * Create MSI w/ dummy vCPU set, overwritten by subsequent retarget in 1627 * hv_irq_unmask(). 1628 */ 1629 int_pkt->int_desc.cpu_mask = CPU_AFFINITY_ALL; 1630 1631 return sizeof(*int_pkt); 1632 } 1633 1634 /* 1635 * Create MSI w/ dummy vCPU set targeting just one vCPU, overwritten 1636 * by subsequent retarget in hv_irq_unmask(). 1637 */ 1638 static int hv_compose_msi_req_get_cpu(const struct cpumask *affinity) 1639 { 1640 return cpumask_first_and(affinity, cpu_online_mask); 1641 } 1642 1643 static u32 hv_compose_msi_req_v2( 1644 struct pci_create_interrupt2 *int_pkt, const struct cpumask *affinity, 1645 u32 slot, u8 vector, u8 vector_count) 1646 { 1647 int cpu; 1648 1649 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE2; 1650 int_pkt->wslot.slot = slot; 1651 int_pkt->int_desc.vector = vector; 1652 int_pkt->int_desc.vector_count = vector_count; 1653 int_pkt->int_desc.delivery_mode = DELIVERY_MODE; 1654 cpu = hv_compose_msi_req_get_cpu(affinity); 1655 int_pkt->int_desc.processor_array[0] = 1656 hv_cpu_number_to_vp_number(cpu); 1657 int_pkt->int_desc.processor_count = 1; 1658 1659 return sizeof(*int_pkt); 1660 } 1661 1662 static u32 hv_compose_msi_req_v3( 1663 struct pci_create_interrupt3 *int_pkt, const struct cpumask *affinity, 1664 u32 slot, u32 vector, u8 vector_count) 1665 { 1666 int cpu; 1667 1668 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE3; 1669 int_pkt->wslot.slot = slot; 1670 int_pkt->int_desc.vector = vector; 1671 int_pkt->int_desc.reserved = 0; 1672 int_pkt->int_desc.vector_count = vector_count; 1673 int_pkt->int_desc.delivery_mode = DELIVERY_MODE; 1674 cpu = hv_compose_msi_req_get_cpu(affinity); 1675 int_pkt->int_desc.processor_array[0] = 1676 hv_cpu_number_to_vp_number(cpu); 1677 int_pkt->int_desc.processor_count = 1; 1678 1679 return sizeof(*int_pkt); 1680 } 1681 1682 /** 1683 * hv_compose_msi_msg() - Supplies a valid MSI address/data 1684 * @data: Everything about this MSI 1685 * @msg: Buffer that is filled in by this function 1686 * 1687 * This function unpacks the IRQ looking for target CPU set, IDT 1688 * vector and mode and sends a message to the parent partition 1689 * asking for a mapping for that tuple in this partition. The 1690 * response supplies a data value and address to which that data 1691 * should be written to trigger that interrupt. 1692 */ 1693 static void hv_compose_msi_msg(struct irq_data *data, struct msi_msg *msg) 1694 { 1695 struct hv_pcibus_device *hbus; 1696 struct vmbus_channel *channel; 1697 struct hv_pci_dev *hpdev; 1698 struct pci_bus *pbus; 1699 struct pci_dev *pdev; 1700 const struct cpumask *dest; 1701 struct compose_comp_ctxt comp; 1702 struct tran_int_desc *int_desc; 1703 struct msi_desc *msi_desc; 1704 u8 vector, vector_count; 1705 struct { 1706 struct pci_packet pci_pkt; 1707 union { 1708 struct pci_create_interrupt v1; 1709 struct pci_create_interrupt2 v2; 1710 struct pci_create_interrupt3 v3; 1711 } int_pkts; 1712 } __packed ctxt; 1713 u64 trans_id; 1714 u32 size; 1715 int ret; 1716 1717 /* Reuse the previous allocation */ 1718 if (data->chip_data) { 1719 int_desc = data->chip_data; 1720 msg->address_hi = int_desc->address >> 32; 1721 msg->address_lo = int_desc->address & 0xffffffff; 1722 msg->data = int_desc->data; 1723 return; 1724 } 1725 1726 msi_desc = irq_data_get_msi_desc(data); 1727 pdev = msi_desc_to_pci_dev(msi_desc); 1728 dest = irq_data_get_effective_affinity_mask(data); 1729 pbus = pdev->bus; 1730 hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata); 1731 channel = hbus->hdev->channel; 1732 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn)); 1733 if (!hpdev) 1734 goto return_null_message; 1735 1736 int_desc = kzalloc(sizeof(*int_desc), GFP_ATOMIC); 1737 if (!int_desc) 1738 goto drop_reference; 1739 1740 if (!msi_desc->pci.msi_attrib.is_msix && msi_desc->nvec_used > 1) { 1741 /* 1742 * If this is not the first MSI of Multi MSI, we already have 1743 * a mapping. Can exit early. 1744 */ 1745 if (msi_desc->irq != data->irq) { 1746 data->chip_data = int_desc; 1747 int_desc->address = msi_desc->msg.address_lo | 1748 (u64)msi_desc->msg.address_hi << 32; 1749 int_desc->data = msi_desc->msg.data + 1750 (data->irq - msi_desc->irq); 1751 msg->address_hi = msi_desc->msg.address_hi; 1752 msg->address_lo = msi_desc->msg.address_lo; 1753 msg->data = int_desc->data; 1754 put_pcichild(hpdev); 1755 return; 1756 } 1757 /* 1758 * The vector we select here is a dummy value. The correct 1759 * value gets sent to the hypervisor in unmask(). This needs 1760 * to be aligned with the count, and also not zero. Multi-msi 1761 * is powers of 2 up to 32, so 32 will always work here. 1762 */ 1763 vector = 32; 1764 vector_count = msi_desc->nvec_used; 1765 } else { 1766 vector = hv_msi_get_int_vector(data); 1767 vector_count = 1; 1768 } 1769 1770 memset(&ctxt, 0, sizeof(ctxt)); 1771 init_completion(&comp.comp_pkt.host_event); 1772 ctxt.pci_pkt.completion_func = hv_pci_compose_compl; 1773 ctxt.pci_pkt.compl_ctxt = ∁ 1774 1775 switch (hbus->protocol_version) { 1776 case PCI_PROTOCOL_VERSION_1_1: 1777 size = hv_compose_msi_req_v1(&ctxt.int_pkts.v1, 1778 dest, 1779 hpdev->desc.win_slot.slot, 1780 vector, 1781 vector_count); 1782 break; 1783 1784 case PCI_PROTOCOL_VERSION_1_2: 1785 case PCI_PROTOCOL_VERSION_1_3: 1786 size = hv_compose_msi_req_v2(&ctxt.int_pkts.v2, 1787 dest, 1788 hpdev->desc.win_slot.slot, 1789 vector, 1790 vector_count); 1791 break; 1792 1793 case PCI_PROTOCOL_VERSION_1_4: 1794 size = hv_compose_msi_req_v3(&ctxt.int_pkts.v3, 1795 dest, 1796 hpdev->desc.win_slot.slot, 1797 vector, 1798 vector_count); 1799 break; 1800 1801 default: 1802 /* As we only negotiate protocol versions known to this driver, 1803 * this path should never hit. However, this is it not a hot 1804 * path so we print a message to aid future updates. 1805 */ 1806 dev_err(&hbus->hdev->device, 1807 "Unexpected vPCI protocol, update driver."); 1808 goto free_int_desc; 1809 } 1810 1811 ret = vmbus_sendpacket_getid(hpdev->hbus->hdev->channel, &ctxt.int_pkts, 1812 size, (unsigned long)&ctxt.pci_pkt, 1813 &trans_id, VM_PKT_DATA_INBAND, 1814 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1815 if (ret) { 1816 dev_err(&hbus->hdev->device, 1817 "Sending request for interrupt failed: 0x%x", 1818 comp.comp_pkt.completion_status); 1819 goto free_int_desc; 1820 } 1821 1822 /* 1823 * Prevents hv_pci_onchannelcallback() from running concurrently 1824 * in the tasklet. 1825 */ 1826 tasklet_disable_in_atomic(&channel->callback_event); 1827 1828 /* 1829 * Since this function is called with IRQ locks held, can't 1830 * do normal wait for completion; instead poll. 1831 */ 1832 while (!try_wait_for_completion(&comp.comp_pkt.host_event)) { 1833 unsigned long flags; 1834 1835 /* 0xFFFF means an invalid PCI VENDOR ID. */ 1836 if (hv_pcifront_get_vendor_id(hpdev) == 0xFFFF) { 1837 dev_err_once(&hbus->hdev->device, 1838 "the device has gone\n"); 1839 goto enable_tasklet; 1840 } 1841 1842 /* 1843 * Make sure that the ring buffer data structure doesn't get 1844 * freed while we dereference the ring buffer pointer. Test 1845 * for the channel's onchannel_callback being NULL within a 1846 * sched_lock critical section. See also the inline comments 1847 * in vmbus_reset_channel_cb(). 1848 */ 1849 spin_lock_irqsave(&channel->sched_lock, flags); 1850 if (unlikely(channel->onchannel_callback == NULL)) { 1851 spin_unlock_irqrestore(&channel->sched_lock, flags); 1852 goto enable_tasklet; 1853 } 1854 hv_pci_onchannelcallback(hbus); 1855 spin_unlock_irqrestore(&channel->sched_lock, flags); 1856 1857 if (hpdev->state == hv_pcichild_ejecting) { 1858 dev_err_once(&hbus->hdev->device, 1859 "the device is being ejected\n"); 1860 goto enable_tasklet; 1861 } 1862 1863 udelay(100); 1864 } 1865 1866 tasklet_enable(&channel->callback_event); 1867 1868 if (comp.comp_pkt.completion_status < 0) { 1869 dev_err(&hbus->hdev->device, 1870 "Request for interrupt failed: 0x%x", 1871 comp.comp_pkt.completion_status); 1872 goto free_int_desc; 1873 } 1874 1875 /* 1876 * Record the assignment so that this can be unwound later. Using 1877 * irq_set_chip_data() here would be appropriate, but the lock it takes 1878 * is already held. 1879 */ 1880 *int_desc = comp.int_desc; 1881 data->chip_data = int_desc; 1882 1883 /* Pass up the result. */ 1884 msg->address_hi = comp.int_desc.address >> 32; 1885 msg->address_lo = comp.int_desc.address & 0xffffffff; 1886 msg->data = comp.int_desc.data; 1887 1888 put_pcichild(hpdev); 1889 return; 1890 1891 enable_tasklet: 1892 tasklet_enable(&channel->callback_event); 1893 /* 1894 * The completion packet on the stack becomes invalid after 'return'; 1895 * remove the ID from the VMbus requestor if the identifier is still 1896 * mapped to/associated with the packet. (The identifier could have 1897 * been 're-used', i.e., already removed and (re-)mapped.) 1898 * 1899 * Cf. hv_pci_onchannelcallback(). 1900 */ 1901 vmbus_request_addr_match(channel, trans_id, (unsigned long)&ctxt.pci_pkt); 1902 free_int_desc: 1903 kfree(int_desc); 1904 drop_reference: 1905 put_pcichild(hpdev); 1906 return_null_message: 1907 msg->address_hi = 0; 1908 msg->address_lo = 0; 1909 msg->data = 0; 1910 } 1911 1912 /* HW Interrupt Chip Descriptor */ 1913 static struct irq_chip hv_msi_irq_chip = { 1914 .name = "Hyper-V PCIe MSI", 1915 .irq_compose_msi_msg = hv_compose_msi_msg, 1916 .irq_set_affinity = irq_chip_set_affinity_parent, 1917 #ifdef CONFIG_X86 1918 .irq_ack = irq_chip_ack_parent, 1919 #elif defined(CONFIG_ARM64) 1920 .irq_eoi = irq_chip_eoi_parent, 1921 #endif 1922 .irq_mask = hv_irq_mask, 1923 .irq_unmask = hv_irq_unmask, 1924 }; 1925 1926 static struct msi_domain_ops hv_msi_ops = { 1927 .msi_prepare = hv_msi_prepare, 1928 .msi_free = hv_msi_free, 1929 }; 1930 1931 /** 1932 * hv_pcie_init_irq_domain() - Initialize IRQ domain 1933 * @hbus: The root PCI bus 1934 * 1935 * This function creates an IRQ domain which will be used for 1936 * interrupts from devices that have been passed through. These 1937 * devices only support MSI and MSI-X, not line-based interrupts 1938 * or simulations of line-based interrupts through PCIe's 1939 * fabric-layer messages. Because interrupts are remapped, we 1940 * can support multi-message MSI here. 1941 * 1942 * Return: '0' on success and error value on failure 1943 */ 1944 static int hv_pcie_init_irq_domain(struct hv_pcibus_device *hbus) 1945 { 1946 hbus->msi_info.chip = &hv_msi_irq_chip; 1947 hbus->msi_info.ops = &hv_msi_ops; 1948 hbus->msi_info.flags = (MSI_FLAG_USE_DEF_DOM_OPS | 1949 MSI_FLAG_USE_DEF_CHIP_OPS | MSI_FLAG_MULTI_PCI_MSI | 1950 MSI_FLAG_PCI_MSIX); 1951 hbus->msi_info.handler = FLOW_HANDLER; 1952 hbus->msi_info.handler_name = FLOW_NAME; 1953 hbus->msi_info.data = hbus; 1954 hbus->irq_domain = pci_msi_create_irq_domain(hbus->fwnode, 1955 &hbus->msi_info, 1956 hv_pci_get_root_domain()); 1957 if (!hbus->irq_domain) { 1958 dev_err(&hbus->hdev->device, 1959 "Failed to build an MSI IRQ domain\n"); 1960 return -ENODEV; 1961 } 1962 1963 dev_set_msi_domain(&hbus->bridge->dev, hbus->irq_domain); 1964 1965 return 0; 1966 } 1967 1968 /** 1969 * get_bar_size() - Get the address space consumed by a BAR 1970 * @bar_val: Value that a BAR returned after -1 was written 1971 * to it. 1972 * 1973 * This function returns the size of the BAR, rounded up to 1 1974 * page. It has to be rounded up because the hypervisor's page 1975 * table entry that maps the BAR into the VM can't specify an 1976 * offset within a page. The invariant is that the hypervisor 1977 * must place any BARs of smaller than page length at the 1978 * beginning of a page. 1979 * 1980 * Return: Size in bytes of the consumed MMIO space. 1981 */ 1982 static u64 get_bar_size(u64 bar_val) 1983 { 1984 return round_up((1 + ~(bar_val & PCI_BASE_ADDRESS_MEM_MASK)), 1985 PAGE_SIZE); 1986 } 1987 1988 /** 1989 * survey_child_resources() - Total all MMIO requirements 1990 * @hbus: Root PCI bus, as understood by this driver 1991 */ 1992 static void survey_child_resources(struct hv_pcibus_device *hbus) 1993 { 1994 struct hv_pci_dev *hpdev; 1995 resource_size_t bar_size = 0; 1996 unsigned long flags; 1997 struct completion *event; 1998 u64 bar_val; 1999 int i; 2000 2001 /* If nobody is waiting on the answer, don't compute it. */ 2002 event = xchg(&hbus->survey_event, NULL); 2003 if (!event) 2004 return; 2005 2006 /* If the answer has already been computed, go with it. */ 2007 if (hbus->low_mmio_space || hbus->high_mmio_space) { 2008 complete(event); 2009 return; 2010 } 2011 2012 spin_lock_irqsave(&hbus->device_list_lock, flags); 2013 2014 /* 2015 * Due to an interesting quirk of the PCI spec, all memory regions 2016 * for a child device are a power of 2 in size and aligned in memory, 2017 * so it's sufficient to just add them up without tracking alignment. 2018 */ 2019 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2020 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 2021 if (hpdev->probed_bar[i] & PCI_BASE_ADDRESS_SPACE_IO) 2022 dev_err(&hbus->hdev->device, 2023 "There's an I/O BAR in this list!\n"); 2024 2025 if (hpdev->probed_bar[i] != 0) { 2026 /* 2027 * A probed BAR has all the upper bits set that 2028 * can be changed. 2029 */ 2030 2031 bar_val = hpdev->probed_bar[i]; 2032 if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64) 2033 bar_val |= 2034 ((u64)hpdev->probed_bar[++i] << 32); 2035 else 2036 bar_val |= 0xffffffff00000000ULL; 2037 2038 bar_size = get_bar_size(bar_val); 2039 2040 if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64) 2041 hbus->high_mmio_space += bar_size; 2042 else 2043 hbus->low_mmio_space += bar_size; 2044 } 2045 } 2046 } 2047 2048 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2049 complete(event); 2050 } 2051 2052 /** 2053 * prepopulate_bars() - Fill in BARs with defaults 2054 * @hbus: Root PCI bus, as understood by this driver 2055 * 2056 * The core PCI driver code seems much, much happier if the BARs 2057 * for a device have values upon first scan. So fill them in. 2058 * The algorithm below works down from large sizes to small, 2059 * attempting to pack the assignments optimally. The assumption, 2060 * enforced in other parts of the code, is that the beginning of 2061 * the memory-mapped I/O space will be aligned on the largest 2062 * BAR size. 2063 */ 2064 static void prepopulate_bars(struct hv_pcibus_device *hbus) 2065 { 2066 resource_size_t high_size = 0; 2067 resource_size_t low_size = 0; 2068 resource_size_t high_base = 0; 2069 resource_size_t low_base = 0; 2070 resource_size_t bar_size; 2071 struct hv_pci_dev *hpdev; 2072 unsigned long flags; 2073 u64 bar_val; 2074 u32 command; 2075 bool high; 2076 int i; 2077 2078 if (hbus->low_mmio_space) { 2079 low_size = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space)); 2080 low_base = hbus->low_mmio_res->start; 2081 } 2082 2083 if (hbus->high_mmio_space) { 2084 high_size = 1ULL << 2085 (63 - __builtin_clzll(hbus->high_mmio_space)); 2086 high_base = hbus->high_mmio_res->start; 2087 } 2088 2089 spin_lock_irqsave(&hbus->device_list_lock, flags); 2090 2091 /* 2092 * Clear the memory enable bit, in case it's already set. This occurs 2093 * in the suspend path of hibernation, where the device is suspended, 2094 * resumed and suspended again: see hibernation_snapshot() and 2095 * hibernation_platform_enter(). 2096 * 2097 * If the memory enable bit is already set, Hyper-V silently ignores 2098 * the below BAR updates, and the related PCI device driver can not 2099 * work, because reading from the device register(s) always returns 2100 * 0xFFFFFFFF (PCI_ERROR_RESPONSE). 2101 */ 2102 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2103 _hv_pcifront_read_config(hpdev, PCI_COMMAND, 2, &command); 2104 command &= ~PCI_COMMAND_MEMORY; 2105 _hv_pcifront_write_config(hpdev, PCI_COMMAND, 2, command); 2106 } 2107 2108 /* Pick addresses for the BARs. */ 2109 do { 2110 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2111 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 2112 bar_val = hpdev->probed_bar[i]; 2113 if (bar_val == 0) 2114 continue; 2115 high = bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64; 2116 if (high) { 2117 bar_val |= 2118 ((u64)hpdev->probed_bar[i + 1] 2119 << 32); 2120 } else { 2121 bar_val |= 0xffffffffULL << 32; 2122 } 2123 bar_size = get_bar_size(bar_val); 2124 if (high) { 2125 if (high_size != bar_size) { 2126 i++; 2127 continue; 2128 } 2129 _hv_pcifront_write_config(hpdev, 2130 PCI_BASE_ADDRESS_0 + (4 * i), 2131 4, 2132 (u32)(high_base & 0xffffff00)); 2133 i++; 2134 _hv_pcifront_write_config(hpdev, 2135 PCI_BASE_ADDRESS_0 + (4 * i), 2136 4, (u32)(high_base >> 32)); 2137 high_base += bar_size; 2138 } else { 2139 if (low_size != bar_size) 2140 continue; 2141 _hv_pcifront_write_config(hpdev, 2142 PCI_BASE_ADDRESS_0 + (4 * i), 2143 4, 2144 (u32)(low_base & 0xffffff00)); 2145 low_base += bar_size; 2146 } 2147 } 2148 if (high_size <= 1 && low_size <= 1) { 2149 /* 2150 * No need to set the PCI_COMMAND_MEMORY bit as 2151 * the core PCI driver doesn't require the bit 2152 * to be pre-set. Actually here we intentionally 2153 * keep the bit off so that the PCI BAR probing 2154 * in the core PCI driver doesn't cause Hyper-V 2155 * to unnecessarily unmap/map the virtual BARs 2156 * from/to the physical BARs multiple times. 2157 * This reduces the VM boot time significantly 2158 * if the BAR sizes are huge. 2159 */ 2160 break; 2161 } 2162 } 2163 2164 high_size >>= 1; 2165 low_size >>= 1; 2166 } while (high_size || low_size); 2167 2168 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2169 } 2170 2171 /* 2172 * Assign entries in sysfs pci slot directory. 2173 * 2174 * Note that this function does not need to lock the children list 2175 * because it is called from pci_devices_present_work which 2176 * is serialized with hv_eject_device_work because they are on the 2177 * same ordered workqueue. Therefore hbus->children list will not change 2178 * even when pci_create_slot sleeps. 2179 */ 2180 static void hv_pci_assign_slots(struct hv_pcibus_device *hbus) 2181 { 2182 struct hv_pci_dev *hpdev; 2183 char name[SLOT_NAME_SIZE]; 2184 int slot_nr; 2185 2186 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2187 if (hpdev->pci_slot) 2188 continue; 2189 2190 slot_nr = PCI_SLOT(wslot_to_devfn(hpdev->desc.win_slot.slot)); 2191 snprintf(name, SLOT_NAME_SIZE, "%u", hpdev->desc.ser); 2192 hpdev->pci_slot = pci_create_slot(hbus->bridge->bus, slot_nr, 2193 name, NULL); 2194 if (IS_ERR(hpdev->pci_slot)) { 2195 pr_warn("pci_create slot %s failed\n", name); 2196 hpdev->pci_slot = NULL; 2197 } 2198 } 2199 } 2200 2201 /* 2202 * Remove entries in sysfs pci slot directory. 2203 */ 2204 static void hv_pci_remove_slots(struct hv_pcibus_device *hbus) 2205 { 2206 struct hv_pci_dev *hpdev; 2207 2208 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2209 if (!hpdev->pci_slot) 2210 continue; 2211 pci_destroy_slot(hpdev->pci_slot); 2212 hpdev->pci_slot = NULL; 2213 } 2214 } 2215 2216 /* 2217 * Set NUMA node for the devices on the bus 2218 */ 2219 static void hv_pci_assign_numa_node(struct hv_pcibus_device *hbus) 2220 { 2221 struct pci_dev *dev; 2222 struct pci_bus *bus = hbus->bridge->bus; 2223 struct hv_pci_dev *hv_dev; 2224 2225 list_for_each_entry(dev, &bus->devices, bus_list) { 2226 hv_dev = get_pcichild_wslot(hbus, devfn_to_wslot(dev->devfn)); 2227 if (!hv_dev) 2228 continue; 2229 2230 if (hv_dev->desc.flags & HV_PCI_DEVICE_FLAG_NUMA_AFFINITY && 2231 hv_dev->desc.virtual_numa_node < num_possible_nodes()) 2232 /* 2233 * The kernel may boot with some NUMA nodes offline 2234 * (e.g. in a KDUMP kernel) or with NUMA disabled via 2235 * "numa=off". In those cases, adjust the host provided 2236 * NUMA node to a valid NUMA node used by the kernel. 2237 */ 2238 set_dev_node(&dev->dev, 2239 numa_map_to_online_node( 2240 hv_dev->desc.virtual_numa_node)); 2241 2242 put_pcichild(hv_dev); 2243 } 2244 } 2245 2246 /** 2247 * create_root_hv_pci_bus() - Expose a new root PCI bus 2248 * @hbus: Root PCI bus, as understood by this driver 2249 * 2250 * Return: 0 on success, -errno on failure 2251 */ 2252 static int create_root_hv_pci_bus(struct hv_pcibus_device *hbus) 2253 { 2254 int error; 2255 struct pci_host_bridge *bridge = hbus->bridge; 2256 2257 bridge->dev.parent = &hbus->hdev->device; 2258 bridge->sysdata = &hbus->sysdata; 2259 bridge->ops = &hv_pcifront_ops; 2260 2261 error = pci_scan_root_bus_bridge(bridge); 2262 if (error) 2263 return error; 2264 2265 pci_lock_rescan_remove(); 2266 hv_pci_assign_numa_node(hbus); 2267 pci_bus_assign_resources(bridge->bus); 2268 hv_pci_assign_slots(hbus); 2269 pci_bus_add_devices(bridge->bus); 2270 pci_unlock_rescan_remove(); 2271 hbus->state = hv_pcibus_installed; 2272 return 0; 2273 } 2274 2275 struct q_res_req_compl { 2276 struct completion host_event; 2277 struct hv_pci_dev *hpdev; 2278 }; 2279 2280 /** 2281 * q_resource_requirements() - Query Resource Requirements 2282 * @context: The completion context. 2283 * @resp: The response that came from the host. 2284 * @resp_packet_size: The size in bytes of resp. 2285 * 2286 * This function is invoked on completion of a Query Resource 2287 * Requirements packet. 2288 */ 2289 static void q_resource_requirements(void *context, struct pci_response *resp, 2290 int resp_packet_size) 2291 { 2292 struct q_res_req_compl *completion = context; 2293 struct pci_q_res_req_response *q_res_req = 2294 (struct pci_q_res_req_response *)resp; 2295 s32 status; 2296 int i; 2297 2298 status = (resp_packet_size < sizeof(*q_res_req)) ? -1 : resp->status; 2299 if (status < 0) { 2300 dev_err(&completion->hpdev->hbus->hdev->device, 2301 "query resource requirements failed: %x\n", 2302 status); 2303 } else { 2304 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 2305 completion->hpdev->probed_bar[i] = 2306 q_res_req->probed_bar[i]; 2307 } 2308 } 2309 2310 complete(&completion->host_event); 2311 } 2312 2313 /** 2314 * new_pcichild_device() - Create a new child device 2315 * @hbus: The internal struct tracking this root PCI bus. 2316 * @desc: The information supplied so far from the host 2317 * about the device. 2318 * 2319 * This function creates the tracking structure for a new child 2320 * device and kicks off the process of figuring out what it is. 2321 * 2322 * Return: Pointer to the new tracking struct 2323 */ 2324 static struct hv_pci_dev *new_pcichild_device(struct hv_pcibus_device *hbus, 2325 struct hv_pcidev_description *desc) 2326 { 2327 struct hv_pci_dev *hpdev; 2328 struct pci_child_message *res_req; 2329 struct q_res_req_compl comp_pkt; 2330 struct { 2331 struct pci_packet init_packet; 2332 u8 buffer[sizeof(struct pci_child_message)]; 2333 } pkt; 2334 unsigned long flags; 2335 int ret; 2336 2337 hpdev = kzalloc(sizeof(*hpdev), GFP_KERNEL); 2338 if (!hpdev) 2339 return NULL; 2340 2341 hpdev->hbus = hbus; 2342 2343 memset(&pkt, 0, sizeof(pkt)); 2344 init_completion(&comp_pkt.host_event); 2345 comp_pkt.hpdev = hpdev; 2346 pkt.init_packet.compl_ctxt = &comp_pkt; 2347 pkt.init_packet.completion_func = q_resource_requirements; 2348 res_req = (struct pci_child_message *)&pkt.init_packet.message; 2349 res_req->message_type.type = PCI_QUERY_RESOURCE_REQUIREMENTS; 2350 res_req->wslot.slot = desc->win_slot.slot; 2351 2352 ret = vmbus_sendpacket(hbus->hdev->channel, res_req, 2353 sizeof(struct pci_child_message), 2354 (unsigned long)&pkt.init_packet, 2355 VM_PKT_DATA_INBAND, 2356 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 2357 if (ret) 2358 goto error; 2359 2360 if (wait_for_response(hbus->hdev, &comp_pkt.host_event)) 2361 goto error; 2362 2363 hpdev->desc = *desc; 2364 refcount_set(&hpdev->refs, 1); 2365 get_pcichild(hpdev); 2366 spin_lock_irqsave(&hbus->device_list_lock, flags); 2367 2368 list_add_tail(&hpdev->list_entry, &hbus->children); 2369 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2370 return hpdev; 2371 2372 error: 2373 kfree(hpdev); 2374 return NULL; 2375 } 2376 2377 /** 2378 * get_pcichild_wslot() - Find device from slot 2379 * @hbus: Root PCI bus, as understood by this driver 2380 * @wslot: Location on the bus 2381 * 2382 * This function looks up a PCI device and returns the internal 2383 * representation of it. It acquires a reference on it, so that 2384 * the device won't be deleted while somebody is using it. The 2385 * caller is responsible for calling put_pcichild() to release 2386 * this reference. 2387 * 2388 * Return: Internal representation of a PCI device 2389 */ 2390 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus, 2391 u32 wslot) 2392 { 2393 unsigned long flags; 2394 struct hv_pci_dev *iter, *hpdev = NULL; 2395 2396 spin_lock_irqsave(&hbus->device_list_lock, flags); 2397 list_for_each_entry(iter, &hbus->children, list_entry) { 2398 if (iter->desc.win_slot.slot == wslot) { 2399 hpdev = iter; 2400 get_pcichild(hpdev); 2401 break; 2402 } 2403 } 2404 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2405 2406 return hpdev; 2407 } 2408 2409 /** 2410 * pci_devices_present_work() - Handle new list of child devices 2411 * @work: Work struct embedded in struct hv_dr_work 2412 * 2413 * "Bus Relations" is the Windows term for "children of this 2414 * bus." The terminology is preserved here for people trying to 2415 * debug the interaction between Hyper-V and Linux. This 2416 * function is called when the parent partition reports a list 2417 * of functions that should be observed under this PCI Express 2418 * port (bus). 2419 * 2420 * This function updates the list, and must tolerate being 2421 * called multiple times with the same information. The typical 2422 * number of child devices is one, with very atypical cases 2423 * involving three or four, so the algorithms used here can be 2424 * simple and inefficient. 2425 * 2426 * It must also treat the omission of a previously observed device as 2427 * notification that the device no longer exists. 2428 * 2429 * Note that this function is serialized with hv_eject_device_work(), 2430 * because both are pushed to the ordered workqueue hbus->wq. 2431 */ 2432 static void pci_devices_present_work(struct work_struct *work) 2433 { 2434 u32 child_no; 2435 bool found; 2436 struct hv_pcidev_description *new_desc; 2437 struct hv_pci_dev *hpdev; 2438 struct hv_pcibus_device *hbus; 2439 struct list_head removed; 2440 struct hv_dr_work *dr_wrk; 2441 struct hv_dr_state *dr = NULL; 2442 unsigned long flags; 2443 2444 dr_wrk = container_of(work, struct hv_dr_work, wrk); 2445 hbus = dr_wrk->bus; 2446 kfree(dr_wrk); 2447 2448 INIT_LIST_HEAD(&removed); 2449 2450 /* Pull this off the queue and process it if it was the last one. */ 2451 spin_lock_irqsave(&hbus->device_list_lock, flags); 2452 while (!list_empty(&hbus->dr_list)) { 2453 dr = list_first_entry(&hbus->dr_list, struct hv_dr_state, 2454 list_entry); 2455 list_del(&dr->list_entry); 2456 2457 /* Throw this away if the list still has stuff in it. */ 2458 if (!list_empty(&hbus->dr_list)) { 2459 kfree(dr); 2460 continue; 2461 } 2462 } 2463 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2464 2465 if (!dr) 2466 return; 2467 2468 /* First, mark all existing children as reported missing. */ 2469 spin_lock_irqsave(&hbus->device_list_lock, flags); 2470 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2471 hpdev->reported_missing = true; 2472 } 2473 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2474 2475 /* Next, add back any reported devices. */ 2476 for (child_no = 0; child_no < dr->device_count; child_no++) { 2477 found = false; 2478 new_desc = &dr->func[child_no]; 2479 2480 spin_lock_irqsave(&hbus->device_list_lock, flags); 2481 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2482 if ((hpdev->desc.win_slot.slot == new_desc->win_slot.slot) && 2483 (hpdev->desc.v_id == new_desc->v_id) && 2484 (hpdev->desc.d_id == new_desc->d_id) && 2485 (hpdev->desc.ser == new_desc->ser)) { 2486 hpdev->reported_missing = false; 2487 found = true; 2488 } 2489 } 2490 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2491 2492 if (!found) { 2493 hpdev = new_pcichild_device(hbus, new_desc); 2494 if (!hpdev) 2495 dev_err(&hbus->hdev->device, 2496 "couldn't record a child device.\n"); 2497 } 2498 } 2499 2500 /* Move missing children to a list on the stack. */ 2501 spin_lock_irqsave(&hbus->device_list_lock, flags); 2502 do { 2503 found = false; 2504 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2505 if (hpdev->reported_missing) { 2506 found = true; 2507 put_pcichild(hpdev); 2508 list_move_tail(&hpdev->list_entry, &removed); 2509 break; 2510 } 2511 } 2512 } while (found); 2513 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2514 2515 /* Delete everything that should no longer exist. */ 2516 while (!list_empty(&removed)) { 2517 hpdev = list_first_entry(&removed, struct hv_pci_dev, 2518 list_entry); 2519 list_del(&hpdev->list_entry); 2520 2521 if (hpdev->pci_slot) 2522 pci_destroy_slot(hpdev->pci_slot); 2523 2524 put_pcichild(hpdev); 2525 } 2526 2527 switch (hbus->state) { 2528 case hv_pcibus_installed: 2529 /* 2530 * Tell the core to rescan bus 2531 * because there may have been changes. 2532 */ 2533 pci_lock_rescan_remove(); 2534 pci_scan_child_bus(hbus->bridge->bus); 2535 hv_pci_assign_numa_node(hbus); 2536 hv_pci_assign_slots(hbus); 2537 pci_unlock_rescan_remove(); 2538 break; 2539 2540 case hv_pcibus_init: 2541 case hv_pcibus_probed: 2542 survey_child_resources(hbus); 2543 break; 2544 2545 default: 2546 break; 2547 } 2548 2549 kfree(dr); 2550 } 2551 2552 /** 2553 * hv_pci_start_relations_work() - Queue work to start device discovery 2554 * @hbus: Root PCI bus, as understood by this driver 2555 * @dr: The list of children returned from host 2556 * 2557 * Return: 0 on success, -errno on failure 2558 */ 2559 static int hv_pci_start_relations_work(struct hv_pcibus_device *hbus, 2560 struct hv_dr_state *dr) 2561 { 2562 struct hv_dr_work *dr_wrk; 2563 unsigned long flags; 2564 bool pending_dr; 2565 2566 if (hbus->state == hv_pcibus_removing) { 2567 dev_info(&hbus->hdev->device, 2568 "PCI VMBus BUS_RELATIONS: ignored\n"); 2569 return -ENOENT; 2570 } 2571 2572 dr_wrk = kzalloc(sizeof(*dr_wrk), GFP_NOWAIT); 2573 if (!dr_wrk) 2574 return -ENOMEM; 2575 2576 INIT_WORK(&dr_wrk->wrk, pci_devices_present_work); 2577 dr_wrk->bus = hbus; 2578 2579 spin_lock_irqsave(&hbus->device_list_lock, flags); 2580 /* 2581 * If pending_dr is true, we have already queued a work, 2582 * which will see the new dr. Otherwise, we need to 2583 * queue a new work. 2584 */ 2585 pending_dr = !list_empty(&hbus->dr_list); 2586 list_add_tail(&dr->list_entry, &hbus->dr_list); 2587 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2588 2589 if (pending_dr) 2590 kfree(dr_wrk); 2591 else 2592 queue_work(hbus->wq, &dr_wrk->wrk); 2593 2594 return 0; 2595 } 2596 2597 /** 2598 * hv_pci_devices_present() - Handle list of new children 2599 * @hbus: Root PCI bus, as understood by this driver 2600 * @relations: Packet from host listing children 2601 * 2602 * Process a new list of devices on the bus. The list of devices is 2603 * discovered by VSP and sent to us via VSP message PCI_BUS_RELATIONS, 2604 * whenever a new list of devices for this bus appears. 2605 */ 2606 static void hv_pci_devices_present(struct hv_pcibus_device *hbus, 2607 struct pci_bus_relations *relations) 2608 { 2609 struct hv_dr_state *dr; 2610 int i; 2611 2612 dr = kzalloc(struct_size(dr, func, relations->device_count), 2613 GFP_NOWAIT); 2614 if (!dr) 2615 return; 2616 2617 dr->device_count = relations->device_count; 2618 for (i = 0; i < dr->device_count; i++) { 2619 dr->func[i].v_id = relations->func[i].v_id; 2620 dr->func[i].d_id = relations->func[i].d_id; 2621 dr->func[i].rev = relations->func[i].rev; 2622 dr->func[i].prog_intf = relations->func[i].prog_intf; 2623 dr->func[i].subclass = relations->func[i].subclass; 2624 dr->func[i].base_class = relations->func[i].base_class; 2625 dr->func[i].subsystem_id = relations->func[i].subsystem_id; 2626 dr->func[i].win_slot = relations->func[i].win_slot; 2627 dr->func[i].ser = relations->func[i].ser; 2628 } 2629 2630 if (hv_pci_start_relations_work(hbus, dr)) 2631 kfree(dr); 2632 } 2633 2634 /** 2635 * hv_pci_devices_present2() - Handle list of new children 2636 * @hbus: Root PCI bus, as understood by this driver 2637 * @relations: Packet from host listing children 2638 * 2639 * This function is the v2 version of hv_pci_devices_present() 2640 */ 2641 static void hv_pci_devices_present2(struct hv_pcibus_device *hbus, 2642 struct pci_bus_relations2 *relations) 2643 { 2644 struct hv_dr_state *dr; 2645 int i; 2646 2647 dr = kzalloc(struct_size(dr, func, relations->device_count), 2648 GFP_NOWAIT); 2649 if (!dr) 2650 return; 2651 2652 dr->device_count = relations->device_count; 2653 for (i = 0; i < dr->device_count; i++) { 2654 dr->func[i].v_id = relations->func[i].v_id; 2655 dr->func[i].d_id = relations->func[i].d_id; 2656 dr->func[i].rev = relations->func[i].rev; 2657 dr->func[i].prog_intf = relations->func[i].prog_intf; 2658 dr->func[i].subclass = relations->func[i].subclass; 2659 dr->func[i].base_class = relations->func[i].base_class; 2660 dr->func[i].subsystem_id = relations->func[i].subsystem_id; 2661 dr->func[i].win_slot = relations->func[i].win_slot; 2662 dr->func[i].ser = relations->func[i].ser; 2663 dr->func[i].flags = relations->func[i].flags; 2664 dr->func[i].virtual_numa_node = 2665 relations->func[i].virtual_numa_node; 2666 } 2667 2668 if (hv_pci_start_relations_work(hbus, dr)) 2669 kfree(dr); 2670 } 2671 2672 /** 2673 * hv_eject_device_work() - Asynchronously handles ejection 2674 * @work: Work struct embedded in internal device struct 2675 * 2676 * This function handles ejecting a device. Windows will 2677 * attempt to gracefully eject a device, waiting 60 seconds to 2678 * hear back from the guest OS that this completed successfully. 2679 * If this timer expires, the device will be forcibly removed. 2680 */ 2681 static void hv_eject_device_work(struct work_struct *work) 2682 { 2683 struct pci_eject_response *ejct_pkt; 2684 struct hv_pcibus_device *hbus; 2685 struct hv_pci_dev *hpdev; 2686 struct pci_dev *pdev; 2687 unsigned long flags; 2688 int wslot; 2689 struct { 2690 struct pci_packet pkt; 2691 u8 buffer[sizeof(struct pci_eject_response)]; 2692 } ctxt; 2693 2694 hpdev = container_of(work, struct hv_pci_dev, wrk); 2695 hbus = hpdev->hbus; 2696 2697 WARN_ON(hpdev->state != hv_pcichild_ejecting); 2698 2699 /* 2700 * Ejection can come before or after the PCI bus has been set up, so 2701 * attempt to find it and tear down the bus state, if it exists. This 2702 * must be done without constructs like pci_domain_nr(hbus->bridge->bus) 2703 * because hbus->bridge->bus may not exist yet. 2704 */ 2705 wslot = wslot_to_devfn(hpdev->desc.win_slot.slot); 2706 pdev = pci_get_domain_bus_and_slot(hbus->bridge->domain_nr, 0, wslot); 2707 if (pdev) { 2708 pci_lock_rescan_remove(); 2709 pci_stop_and_remove_bus_device(pdev); 2710 pci_dev_put(pdev); 2711 pci_unlock_rescan_remove(); 2712 } 2713 2714 spin_lock_irqsave(&hbus->device_list_lock, flags); 2715 list_del(&hpdev->list_entry); 2716 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2717 2718 if (hpdev->pci_slot) 2719 pci_destroy_slot(hpdev->pci_slot); 2720 2721 memset(&ctxt, 0, sizeof(ctxt)); 2722 ejct_pkt = (struct pci_eject_response *)&ctxt.pkt.message; 2723 ejct_pkt->message_type.type = PCI_EJECTION_COMPLETE; 2724 ejct_pkt->wslot.slot = hpdev->desc.win_slot.slot; 2725 vmbus_sendpacket(hbus->hdev->channel, ejct_pkt, 2726 sizeof(*ejct_pkt), 0, 2727 VM_PKT_DATA_INBAND, 0); 2728 2729 /* For the get_pcichild() in hv_pci_eject_device() */ 2730 put_pcichild(hpdev); 2731 /* For the two refs got in new_pcichild_device() */ 2732 put_pcichild(hpdev); 2733 put_pcichild(hpdev); 2734 /* hpdev has been freed. Do not use it any more. */ 2735 } 2736 2737 /** 2738 * hv_pci_eject_device() - Handles device ejection 2739 * @hpdev: Internal device tracking struct 2740 * 2741 * This function is invoked when an ejection packet arrives. It 2742 * just schedules work so that we don't re-enter the packet 2743 * delivery code handling the ejection. 2744 */ 2745 static void hv_pci_eject_device(struct hv_pci_dev *hpdev) 2746 { 2747 struct hv_pcibus_device *hbus = hpdev->hbus; 2748 struct hv_device *hdev = hbus->hdev; 2749 2750 if (hbus->state == hv_pcibus_removing) { 2751 dev_info(&hdev->device, "PCI VMBus EJECT: ignored\n"); 2752 return; 2753 } 2754 2755 hpdev->state = hv_pcichild_ejecting; 2756 get_pcichild(hpdev); 2757 INIT_WORK(&hpdev->wrk, hv_eject_device_work); 2758 queue_work(hbus->wq, &hpdev->wrk); 2759 } 2760 2761 /** 2762 * hv_pci_onchannelcallback() - Handles incoming packets 2763 * @context: Internal bus tracking struct 2764 * 2765 * This function is invoked whenever the host sends a packet to 2766 * this channel (which is private to this root PCI bus). 2767 */ 2768 static void hv_pci_onchannelcallback(void *context) 2769 { 2770 const int packet_size = 0x100; 2771 int ret; 2772 struct hv_pcibus_device *hbus = context; 2773 struct vmbus_channel *chan = hbus->hdev->channel; 2774 u32 bytes_recvd; 2775 u64 req_id, req_addr; 2776 struct vmpacket_descriptor *desc; 2777 unsigned char *buffer; 2778 int bufferlen = packet_size; 2779 struct pci_packet *comp_packet; 2780 struct pci_response *response; 2781 struct pci_incoming_message *new_message; 2782 struct pci_bus_relations *bus_rel; 2783 struct pci_bus_relations2 *bus_rel2; 2784 struct pci_dev_inval_block *inval; 2785 struct pci_dev_incoming *dev_message; 2786 struct hv_pci_dev *hpdev; 2787 unsigned long flags; 2788 2789 buffer = kmalloc(bufferlen, GFP_ATOMIC); 2790 if (!buffer) 2791 return; 2792 2793 while (1) { 2794 ret = vmbus_recvpacket_raw(chan, buffer, bufferlen, 2795 &bytes_recvd, &req_id); 2796 2797 if (ret == -ENOBUFS) { 2798 kfree(buffer); 2799 /* Handle large packet */ 2800 bufferlen = bytes_recvd; 2801 buffer = kmalloc(bytes_recvd, GFP_ATOMIC); 2802 if (!buffer) 2803 return; 2804 continue; 2805 } 2806 2807 /* Zero length indicates there are no more packets. */ 2808 if (ret || !bytes_recvd) 2809 break; 2810 2811 /* 2812 * All incoming packets must be at least as large as a 2813 * response. 2814 */ 2815 if (bytes_recvd <= sizeof(struct pci_response)) 2816 continue; 2817 desc = (struct vmpacket_descriptor *)buffer; 2818 2819 switch (desc->type) { 2820 case VM_PKT_COMP: 2821 2822 lock_requestor(chan, flags); 2823 req_addr = __vmbus_request_addr_match(chan, req_id, 2824 VMBUS_RQST_ADDR_ANY); 2825 if (req_addr == VMBUS_RQST_ERROR) { 2826 unlock_requestor(chan, flags); 2827 dev_err(&hbus->hdev->device, 2828 "Invalid transaction ID %llx\n", 2829 req_id); 2830 break; 2831 } 2832 comp_packet = (struct pci_packet *)req_addr; 2833 response = (struct pci_response *)buffer; 2834 /* 2835 * Call ->completion_func() within the critical section to make 2836 * sure that the packet pointer is still valid during the call: 2837 * here 'valid' means that there's a task still waiting for the 2838 * completion, and that the packet data is still on the waiting 2839 * task's stack. Cf. hv_compose_msi_msg(). 2840 */ 2841 comp_packet->completion_func(comp_packet->compl_ctxt, 2842 response, 2843 bytes_recvd); 2844 unlock_requestor(chan, flags); 2845 break; 2846 2847 case VM_PKT_DATA_INBAND: 2848 2849 new_message = (struct pci_incoming_message *)buffer; 2850 switch (new_message->message_type.type) { 2851 case PCI_BUS_RELATIONS: 2852 2853 bus_rel = (struct pci_bus_relations *)buffer; 2854 if (bytes_recvd < sizeof(*bus_rel) || 2855 bytes_recvd < 2856 struct_size(bus_rel, func, 2857 bus_rel->device_count)) { 2858 dev_err(&hbus->hdev->device, 2859 "bus relations too small\n"); 2860 break; 2861 } 2862 2863 hv_pci_devices_present(hbus, bus_rel); 2864 break; 2865 2866 case PCI_BUS_RELATIONS2: 2867 2868 bus_rel2 = (struct pci_bus_relations2 *)buffer; 2869 if (bytes_recvd < sizeof(*bus_rel2) || 2870 bytes_recvd < 2871 struct_size(bus_rel2, func, 2872 bus_rel2->device_count)) { 2873 dev_err(&hbus->hdev->device, 2874 "bus relations v2 too small\n"); 2875 break; 2876 } 2877 2878 hv_pci_devices_present2(hbus, bus_rel2); 2879 break; 2880 2881 case PCI_EJECT: 2882 2883 dev_message = (struct pci_dev_incoming *)buffer; 2884 if (bytes_recvd < sizeof(*dev_message)) { 2885 dev_err(&hbus->hdev->device, 2886 "eject message too small\n"); 2887 break; 2888 } 2889 hpdev = get_pcichild_wslot(hbus, 2890 dev_message->wslot.slot); 2891 if (hpdev) { 2892 hv_pci_eject_device(hpdev); 2893 put_pcichild(hpdev); 2894 } 2895 break; 2896 2897 case PCI_INVALIDATE_BLOCK: 2898 2899 inval = (struct pci_dev_inval_block *)buffer; 2900 if (bytes_recvd < sizeof(*inval)) { 2901 dev_err(&hbus->hdev->device, 2902 "invalidate message too small\n"); 2903 break; 2904 } 2905 hpdev = get_pcichild_wslot(hbus, 2906 inval->wslot.slot); 2907 if (hpdev) { 2908 if (hpdev->block_invalidate) { 2909 hpdev->block_invalidate( 2910 hpdev->invalidate_context, 2911 inval->block_mask); 2912 } 2913 put_pcichild(hpdev); 2914 } 2915 break; 2916 2917 default: 2918 dev_warn(&hbus->hdev->device, 2919 "Unimplemented protocol message %x\n", 2920 new_message->message_type.type); 2921 break; 2922 } 2923 break; 2924 2925 default: 2926 dev_err(&hbus->hdev->device, 2927 "unhandled packet type %d, tid %llx len %d\n", 2928 desc->type, req_id, bytes_recvd); 2929 break; 2930 } 2931 } 2932 2933 kfree(buffer); 2934 } 2935 2936 /** 2937 * hv_pci_protocol_negotiation() - Set up protocol 2938 * @hdev: VMBus's tracking struct for this root PCI bus. 2939 * @version: Array of supported channel protocol versions in 2940 * the order of probing - highest go first. 2941 * @num_version: Number of elements in the version array. 2942 * 2943 * This driver is intended to support running on Windows 10 2944 * (server) and later versions. It will not run on earlier 2945 * versions, as they assume that many of the operations which 2946 * Linux needs accomplished with a spinlock held were done via 2947 * asynchronous messaging via VMBus. Windows 10 increases the 2948 * surface area of PCI emulation so that these actions can take 2949 * place by suspending a virtual processor for their duration. 2950 * 2951 * This function negotiates the channel protocol version, 2952 * failing if the host doesn't support the necessary protocol 2953 * level. 2954 */ 2955 static int hv_pci_protocol_negotiation(struct hv_device *hdev, 2956 enum pci_protocol_version_t version[], 2957 int num_version) 2958 { 2959 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 2960 struct pci_version_request *version_req; 2961 struct hv_pci_compl comp_pkt; 2962 struct pci_packet *pkt; 2963 int ret; 2964 int i; 2965 2966 /* 2967 * Initiate the handshake with the host and negotiate 2968 * a version that the host can support. We start with the 2969 * highest version number and go down if the host cannot 2970 * support it. 2971 */ 2972 pkt = kzalloc(sizeof(*pkt) + sizeof(*version_req), GFP_KERNEL); 2973 if (!pkt) 2974 return -ENOMEM; 2975 2976 init_completion(&comp_pkt.host_event); 2977 pkt->completion_func = hv_pci_generic_compl; 2978 pkt->compl_ctxt = &comp_pkt; 2979 version_req = (struct pci_version_request *)&pkt->message; 2980 version_req->message_type.type = PCI_QUERY_PROTOCOL_VERSION; 2981 2982 for (i = 0; i < num_version; i++) { 2983 version_req->protocol_version = version[i]; 2984 ret = vmbus_sendpacket(hdev->channel, version_req, 2985 sizeof(struct pci_version_request), 2986 (unsigned long)pkt, VM_PKT_DATA_INBAND, 2987 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 2988 if (!ret) 2989 ret = wait_for_response(hdev, &comp_pkt.host_event); 2990 2991 if (ret) { 2992 dev_err(&hdev->device, 2993 "PCI Pass-through VSP failed to request version: %d", 2994 ret); 2995 goto exit; 2996 } 2997 2998 if (comp_pkt.completion_status >= 0) { 2999 hbus->protocol_version = version[i]; 3000 dev_info(&hdev->device, 3001 "PCI VMBus probing: Using version %#x\n", 3002 hbus->protocol_version); 3003 goto exit; 3004 } 3005 3006 if (comp_pkt.completion_status != STATUS_REVISION_MISMATCH) { 3007 dev_err(&hdev->device, 3008 "PCI Pass-through VSP failed version request: %#x", 3009 comp_pkt.completion_status); 3010 ret = -EPROTO; 3011 goto exit; 3012 } 3013 3014 reinit_completion(&comp_pkt.host_event); 3015 } 3016 3017 dev_err(&hdev->device, 3018 "PCI pass-through VSP failed to find supported version"); 3019 ret = -EPROTO; 3020 3021 exit: 3022 kfree(pkt); 3023 return ret; 3024 } 3025 3026 /** 3027 * hv_pci_free_bridge_windows() - Release memory regions for the 3028 * bus 3029 * @hbus: Root PCI bus, as understood by this driver 3030 */ 3031 static void hv_pci_free_bridge_windows(struct hv_pcibus_device *hbus) 3032 { 3033 /* 3034 * Set the resources back to the way they looked when they 3035 * were allocated by setting IORESOURCE_BUSY again. 3036 */ 3037 3038 if (hbus->low_mmio_space && hbus->low_mmio_res) { 3039 hbus->low_mmio_res->flags |= IORESOURCE_BUSY; 3040 vmbus_free_mmio(hbus->low_mmio_res->start, 3041 resource_size(hbus->low_mmio_res)); 3042 } 3043 3044 if (hbus->high_mmio_space && hbus->high_mmio_res) { 3045 hbus->high_mmio_res->flags |= IORESOURCE_BUSY; 3046 vmbus_free_mmio(hbus->high_mmio_res->start, 3047 resource_size(hbus->high_mmio_res)); 3048 } 3049 } 3050 3051 /** 3052 * hv_pci_allocate_bridge_windows() - Allocate memory regions 3053 * for the bus 3054 * @hbus: Root PCI bus, as understood by this driver 3055 * 3056 * This function calls vmbus_allocate_mmio(), which is itself a 3057 * bit of a compromise. Ideally, we might change the pnp layer 3058 * in the kernel such that it comprehends either PCI devices 3059 * which are "grandchildren of ACPI," with some intermediate bus 3060 * node (in this case, VMBus) or change it such that it 3061 * understands VMBus. The pnp layer, however, has been declared 3062 * deprecated, and not subject to change. 3063 * 3064 * The workaround, implemented here, is to ask VMBus to allocate 3065 * MMIO space for this bus. VMBus itself knows which ranges are 3066 * appropriate by looking at its own ACPI objects. Then, after 3067 * these ranges are claimed, they're modified to look like they 3068 * would have looked if the ACPI and pnp code had allocated 3069 * bridge windows. These descriptors have to exist in this form 3070 * in order to satisfy the code which will get invoked when the 3071 * endpoint PCI function driver calls request_mem_region() or 3072 * request_mem_region_exclusive(). 3073 * 3074 * Return: 0 on success, -errno on failure 3075 */ 3076 static int hv_pci_allocate_bridge_windows(struct hv_pcibus_device *hbus) 3077 { 3078 resource_size_t align; 3079 int ret; 3080 3081 if (hbus->low_mmio_space) { 3082 align = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space)); 3083 ret = vmbus_allocate_mmio(&hbus->low_mmio_res, hbus->hdev, 0, 3084 (u64)(u32)0xffffffff, 3085 hbus->low_mmio_space, 3086 align, false); 3087 if (ret) { 3088 dev_err(&hbus->hdev->device, 3089 "Need %#llx of low MMIO space. Consider reconfiguring the VM.\n", 3090 hbus->low_mmio_space); 3091 return ret; 3092 } 3093 3094 /* Modify this resource to become a bridge window. */ 3095 hbus->low_mmio_res->flags |= IORESOURCE_WINDOW; 3096 hbus->low_mmio_res->flags &= ~IORESOURCE_BUSY; 3097 pci_add_resource(&hbus->bridge->windows, hbus->low_mmio_res); 3098 } 3099 3100 if (hbus->high_mmio_space) { 3101 align = 1ULL << (63 - __builtin_clzll(hbus->high_mmio_space)); 3102 ret = vmbus_allocate_mmio(&hbus->high_mmio_res, hbus->hdev, 3103 0x100000000, -1, 3104 hbus->high_mmio_space, align, 3105 false); 3106 if (ret) { 3107 dev_err(&hbus->hdev->device, 3108 "Need %#llx of high MMIO space. Consider reconfiguring the VM.\n", 3109 hbus->high_mmio_space); 3110 goto release_low_mmio; 3111 } 3112 3113 /* Modify this resource to become a bridge window. */ 3114 hbus->high_mmio_res->flags |= IORESOURCE_WINDOW; 3115 hbus->high_mmio_res->flags &= ~IORESOURCE_BUSY; 3116 pci_add_resource(&hbus->bridge->windows, hbus->high_mmio_res); 3117 } 3118 3119 return 0; 3120 3121 release_low_mmio: 3122 if (hbus->low_mmio_res) { 3123 vmbus_free_mmio(hbus->low_mmio_res->start, 3124 resource_size(hbus->low_mmio_res)); 3125 } 3126 3127 return ret; 3128 } 3129 3130 /** 3131 * hv_allocate_config_window() - Find MMIO space for PCI Config 3132 * @hbus: Root PCI bus, as understood by this driver 3133 * 3134 * This function claims memory-mapped I/O space for accessing 3135 * configuration space for the functions on this bus. 3136 * 3137 * Return: 0 on success, -errno on failure 3138 */ 3139 static int hv_allocate_config_window(struct hv_pcibus_device *hbus) 3140 { 3141 int ret; 3142 3143 /* 3144 * Set up a region of MMIO space to use for accessing configuration 3145 * space. 3146 */ 3147 ret = vmbus_allocate_mmio(&hbus->mem_config, hbus->hdev, 0, -1, 3148 PCI_CONFIG_MMIO_LENGTH, 0x1000, false); 3149 if (ret) 3150 return ret; 3151 3152 /* 3153 * vmbus_allocate_mmio() gets used for allocating both device endpoint 3154 * resource claims (those which cannot be overlapped) and the ranges 3155 * which are valid for the children of this bus, which are intended 3156 * to be overlapped by those children. Set the flag on this claim 3157 * meaning that this region can't be overlapped. 3158 */ 3159 3160 hbus->mem_config->flags |= IORESOURCE_BUSY; 3161 3162 return 0; 3163 } 3164 3165 static void hv_free_config_window(struct hv_pcibus_device *hbus) 3166 { 3167 vmbus_free_mmio(hbus->mem_config->start, PCI_CONFIG_MMIO_LENGTH); 3168 } 3169 3170 static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs); 3171 3172 /** 3173 * hv_pci_enter_d0() - Bring the "bus" into the D0 power state 3174 * @hdev: VMBus's tracking struct for this root PCI bus 3175 * 3176 * Return: 0 on success, -errno on failure 3177 */ 3178 static int hv_pci_enter_d0(struct hv_device *hdev) 3179 { 3180 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3181 struct pci_bus_d0_entry *d0_entry; 3182 struct hv_pci_compl comp_pkt; 3183 struct pci_packet *pkt; 3184 int ret; 3185 3186 /* 3187 * Tell the host that the bus is ready to use, and moved into the 3188 * powered-on state. This includes telling the host which region 3189 * of memory-mapped I/O space has been chosen for configuration space 3190 * access. 3191 */ 3192 pkt = kzalloc(sizeof(*pkt) + sizeof(*d0_entry), GFP_KERNEL); 3193 if (!pkt) 3194 return -ENOMEM; 3195 3196 init_completion(&comp_pkt.host_event); 3197 pkt->completion_func = hv_pci_generic_compl; 3198 pkt->compl_ctxt = &comp_pkt; 3199 d0_entry = (struct pci_bus_d0_entry *)&pkt->message; 3200 d0_entry->message_type.type = PCI_BUS_D0ENTRY; 3201 d0_entry->mmio_base = hbus->mem_config->start; 3202 3203 ret = vmbus_sendpacket(hdev->channel, d0_entry, sizeof(*d0_entry), 3204 (unsigned long)pkt, VM_PKT_DATA_INBAND, 3205 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 3206 if (!ret) 3207 ret = wait_for_response(hdev, &comp_pkt.host_event); 3208 3209 if (ret) 3210 goto exit; 3211 3212 if (comp_pkt.completion_status < 0) { 3213 dev_err(&hdev->device, 3214 "PCI Pass-through VSP failed D0 Entry with status %x\n", 3215 comp_pkt.completion_status); 3216 ret = -EPROTO; 3217 goto exit; 3218 } 3219 3220 ret = 0; 3221 3222 exit: 3223 kfree(pkt); 3224 return ret; 3225 } 3226 3227 /** 3228 * hv_pci_query_relations() - Ask host to send list of child 3229 * devices 3230 * @hdev: VMBus's tracking struct for this root PCI bus 3231 * 3232 * Return: 0 on success, -errno on failure 3233 */ 3234 static int hv_pci_query_relations(struct hv_device *hdev) 3235 { 3236 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3237 struct pci_message message; 3238 struct completion comp; 3239 int ret; 3240 3241 /* Ask the host to send along the list of child devices */ 3242 init_completion(&comp); 3243 if (cmpxchg(&hbus->survey_event, NULL, &comp)) 3244 return -ENOTEMPTY; 3245 3246 memset(&message, 0, sizeof(message)); 3247 message.type = PCI_QUERY_BUS_RELATIONS; 3248 3249 ret = vmbus_sendpacket(hdev->channel, &message, sizeof(message), 3250 0, VM_PKT_DATA_INBAND, 0); 3251 if (!ret) 3252 ret = wait_for_response(hdev, &comp); 3253 3254 return ret; 3255 } 3256 3257 /** 3258 * hv_send_resources_allocated() - Report local resource choices 3259 * @hdev: VMBus's tracking struct for this root PCI bus 3260 * 3261 * The host OS is expecting to be sent a request as a message 3262 * which contains all the resources that the device will use. 3263 * The response contains those same resources, "translated" 3264 * which is to say, the values which should be used by the 3265 * hardware, when it delivers an interrupt. (MMIO resources are 3266 * used in local terms.) This is nice for Windows, and lines up 3267 * with the FDO/PDO split, which doesn't exist in Linux. Linux 3268 * is deeply expecting to scan an emulated PCI configuration 3269 * space. So this message is sent here only to drive the state 3270 * machine on the host forward. 3271 * 3272 * Return: 0 on success, -errno on failure 3273 */ 3274 static int hv_send_resources_allocated(struct hv_device *hdev) 3275 { 3276 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3277 struct pci_resources_assigned *res_assigned; 3278 struct pci_resources_assigned2 *res_assigned2; 3279 struct hv_pci_compl comp_pkt; 3280 struct hv_pci_dev *hpdev; 3281 struct pci_packet *pkt; 3282 size_t size_res; 3283 int wslot; 3284 int ret; 3285 3286 size_res = (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2) 3287 ? sizeof(*res_assigned) : sizeof(*res_assigned2); 3288 3289 pkt = kmalloc(sizeof(*pkt) + size_res, GFP_KERNEL); 3290 if (!pkt) 3291 return -ENOMEM; 3292 3293 ret = 0; 3294 3295 for (wslot = 0; wslot < 256; wslot++) { 3296 hpdev = get_pcichild_wslot(hbus, wslot); 3297 if (!hpdev) 3298 continue; 3299 3300 memset(pkt, 0, sizeof(*pkt) + size_res); 3301 init_completion(&comp_pkt.host_event); 3302 pkt->completion_func = hv_pci_generic_compl; 3303 pkt->compl_ctxt = &comp_pkt; 3304 3305 if (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2) { 3306 res_assigned = 3307 (struct pci_resources_assigned *)&pkt->message; 3308 res_assigned->message_type.type = 3309 PCI_RESOURCES_ASSIGNED; 3310 res_assigned->wslot.slot = hpdev->desc.win_slot.slot; 3311 } else { 3312 res_assigned2 = 3313 (struct pci_resources_assigned2 *)&pkt->message; 3314 res_assigned2->message_type.type = 3315 PCI_RESOURCES_ASSIGNED2; 3316 res_assigned2->wslot.slot = hpdev->desc.win_slot.slot; 3317 } 3318 put_pcichild(hpdev); 3319 3320 ret = vmbus_sendpacket(hdev->channel, &pkt->message, 3321 size_res, (unsigned long)pkt, 3322 VM_PKT_DATA_INBAND, 3323 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 3324 if (!ret) 3325 ret = wait_for_response(hdev, &comp_pkt.host_event); 3326 if (ret) 3327 break; 3328 3329 if (comp_pkt.completion_status < 0) { 3330 ret = -EPROTO; 3331 dev_err(&hdev->device, 3332 "resource allocated returned 0x%x", 3333 comp_pkt.completion_status); 3334 break; 3335 } 3336 3337 hbus->wslot_res_allocated = wslot; 3338 } 3339 3340 kfree(pkt); 3341 return ret; 3342 } 3343 3344 /** 3345 * hv_send_resources_released() - Report local resources 3346 * released 3347 * @hdev: VMBus's tracking struct for this root PCI bus 3348 * 3349 * Return: 0 on success, -errno on failure 3350 */ 3351 static int hv_send_resources_released(struct hv_device *hdev) 3352 { 3353 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3354 struct pci_child_message pkt; 3355 struct hv_pci_dev *hpdev; 3356 int wslot; 3357 int ret; 3358 3359 for (wslot = hbus->wslot_res_allocated; wslot >= 0; wslot--) { 3360 hpdev = get_pcichild_wslot(hbus, wslot); 3361 if (!hpdev) 3362 continue; 3363 3364 memset(&pkt, 0, sizeof(pkt)); 3365 pkt.message_type.type = PCI_RESOURCES_RELEASED; 3366 pkt.wslot.slot = hpdev->desc.win_slot.slot; 3367 3368 put_pcichild(hpdev); 3369 3370 ret = vmbus_sendpacket(hdev->channel, &pkt, sizeof(pkt), 0, 3371 VM_PKT_DATA_INBAND, 0); 3372 if (ret) 3373 return ret; 3374 3375 hbus->wslot_res_allocated = wslot - 1; 3376 } 3377 3378 hbus->wslot_res_allocated = -1; 3379 3380 return 0; 3381 } 3382 3383 #define HVPCI_DOM_MAP_SIZE (64 * 1024) 3384 static DECLARE_BITMAP(hvpci_dom_map, HVPCI_DOM_MAP_SIZE); 3385 3386 /* 3387 * PCI domain number 0 is used by emulated devices on Gen1 VMs, so define 0 3388 * as invalid for passthrough PCI devices of this driver. 3389 */ 3390 #define HVPCI_DOM_INVALID 0 3391 3392 /** 3393 * hv_get_dom_num() - Get a valid PCI domain number 3394 * Check if the PCI domain number is in use, and return another number if 3395 * it is in use. 3396 * 3397 * @dom: Requested domain number 3398 * 3399 * return: domain number on success, HVPCI_DOM_INVALID on failure 3400 */ 3401 static u16 hv_get_dom_num(u16 dom) 3402 { 3403 unsigned int i; 3404 3405 if (test_and_set_bit(dom, hvpci_dom_map) == 0) 3406 return dom; 3407 3408 for_each_clear_bit(i, hvpci_dom_map, HVPCI_DOM_MAP_SIZE) { 3409 if (test_and_set_bit(i, hvpci_dom_map) == 0) 3410 return i; 3411 } 3412 3413 return HVPCI_DOM_INVALID; 3414 } 3415 3416 /** 3417 * hv_put_dom_num() - Mark the PCI domain number as free 3418 * @dom: Domain number to be freed 3419 */ 3420 static void hv_put_dom_num(u16 dom) 3421 { 3422 clear_bit(dom, hvpci_dom_map); 3423 } 3424 3425 /** 3426 * hv_pci_probe() - New VMBus channel probe, for a root PCI bus 3427 * @hdev: VMBus's tracking struct for this root PCI bus 3428 * @dev_id: Identifies the device itself 3429 * 3430 * Return: 0 on success, -errno on failure 3431 */ 3432 static int hv_pci_probe(struct hv_device *hdev, 3433 const struct hv_vmbus_device_id *dev_id) 3434 { 3435 struct pci_host_bridge *bridge; 3436 struct hv_pcibus_device *hbus; 3437 u16 dom_req, dom; 3438 char *name; 3439 bool enter_d0_retry = true; 3440 int ret; 3441 3442 /* 3443 * hv_pcibus_device contains the hypercall arguments for retargeting in 3444 * hv_irq_unmask(). Those must not cross a page boundary. 3445 */ 3446 BUILD_BUG_ON(sizeof(*hbus) > HV_HYP_PAGE_SIZE); 3447 3448 bridge = devm_pci_alloc_host_bridge(&hdev->device, 0); 3449 if (!bridge) 3450 return -ENOMEM; 3451 3452 /* 3453 * With the recent 59bb47985c1d ("mm, sl[aou]b: guarantee natural 3454 * alignment for kmalloc(power-of-two)"), kzalloc() is able to allocate 3455 * a 4KB buffer that is guaranteed to be 4KB-aligned. Here the size and 3456 * alignment of hbus is important because hbus's field 3457 * retarget_msi_interrupt_params must not cross a 4KB page boundary. 3458 * 3459 * Here we prefer kzalloc to get_zeroed_page(), because a buffer 3460 * allocated by the latter is not tracked and scanned by kmemleak, and 3461 * hence kmemleak reports the pointer contained in the hbus buffer 3462 * (i.e. the hpdev struct, which is created in new_pcichild_device() and 3463 * is tracked by hbus->children) as memory leak (false positive). 3464 * 3465 * If the kernel doesn't have 59bb47985c1d, get_zeroed_page() *must* be 3466 * used to allocate the hbus buffer and we can avoid the kmemleak false 3467 * positive by using kmemleak_alloc() and kmemleak_free() to ask 3468 * kmemleak to track and scan the hbus buffer. 3469 */ 3470 hbus = kzalloc(HV_HYP_PAGE_SIZE, GFP_KERNEL); 3471 if (!hbus) 3472 return -ENOMEM; 3473 3474 hbus->bridge = bridge; 3475 hbus->state = hv_pcibus_init; 3476 hbus->wslot_res_allocated = -1; 3477 3478 /* 3479 * The PCI bus "domain" is what is called "segment" in ACPI and other 3480 * specs. Pull it from the instance ID, to get something usually 3481 * unique. In rare cases of collision, we will find out another number 3482 * not in use. 3483 * 3484 * Note that, since this code only runs in a Hyper-V VM, Hyper-V 3485 * together with this guest driver can guarantee that (1) The only 3486 * domain used by Gen1 VMs for something that looks like a physical 3487 * PCI bus (which is actually emulated by the hypervisor) is domain 0. 3488 * (2) There will be no overlap between domains (after fixing possible 3489 * collisions) in the same VM. 3490 */ 3491 dom_req = hdev->dev_instance.b[5] << 8 | hdev->dev_instance.b[4]; 3492 dom = hv_get_dom_num(dom_req); 3493 3494 if (dom == HVPCI_DOM_INVALID) { 3495 dev_err(&hdev->device, 3496 "Unable to use dom# 0x%x or other numbers", dom_req); 3497 ret = -EINVAL; 3498 goto free_bus; 3499 } 3500 3501 if (dom != dom_req) 3502 dev_info(&hdev->device, 3503 "PCI dom# 0x%x has collision, using 0x%x", 3504 dom_req, dom); 3505 3506 hbus->bridge->domain_nr = dom; 3507 #ifdef CONFIG_X86 3508 hbus->sysdata.domain = dom; 3509 #elif defined(CONFIG_ARM64) 3510 /* 3511 * Set the PCI bus parent to be the corresponding VMbus 3512 * device. Then the VMbus device will be assigned as the 3513 * ACPI companion in pcibios_root_bridge_prepare() and 3514 * pci_dma_configure() will propagate device coherence 3515 * information to devices created on the bus. 3516 */ 3517 hbus->sysdata.parent = hdev->device.parent; 3518 #endif 3519 3520 hbus->hdev = hdev; 3521 INIT_LIST_HEAD(&hbus->children); 3522 INIT_LIST_HEAD(&hbus->dr_list); 3523 spin_lock_init(&hbus->config_lock); 3524 spin_lock_init(&hbus->device_list_lock); 3525 spin_lock_init(&hbus->retarget_msi_interrupt_lock); 3526 hbus->wq = alloc_ordered_workqueue("hv_pci_%x", 0, 3527 hbus->bridge->domain_nr); 3528 if (!hbus->wq) { 3529 ret = -ENOMEM; 3530 goto free_dom; 3531 } 3532 3533 hdev->channel->next_request_id_callback = vmbus_next_request_id; 3534 hdev->channel->request_addr_callback = vmbus_request_addr; 3535 hdev->channel->rqstor_size = HV_PCI_RQSTOR_SIZE; 3536 3537 ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0, 3538 hv_pci_onchannelcallback, hbus); 3539 if (ret) 3540 goto destroy_wq; 3541 3542 hv_set_drvdata(hdev, hbus); 3543 3544 ret = hv_pci_protocol_negotiation(hdev, pci_protocol_versions, 3545 ARRAY_SIZE(pci_protocol_versions)); 3546 if (ret) 3547 goto close; 3548 3549 ret = hv_allocate_config_window(hbus); 3550 if (ret) 3551 goto close; 3552 3553 hbus->cfg_addr = ioremap(hbus->mem_config->start, 3554 PCI_CONFIG_MMIO_LENGTH); 3555 if (!hbus->cfg_addr) { 3556 dev_err(&hdev->device, 3557 "Unable to map a virtual address for config space\n"); 3558 ret = -ENOMEM; 3559 goto free_config; 3560 } 3561 3562 name = kasprintf(GFP_KERNEL, "%pUL", &hdev->dev_instance); 3563 if (!name) { 3564 ret = -ENOMEM; 3565 goto unmap; 3566 } 3567 3568 hbus->fwnode = irq_domain_alloc_named_fwnode(name); 3569 kfree(name); 3570 if (!hbus->fwnode) { 3571 ret = -ENOMEM; 3572 goto unmap; 3573 } 3574 3575 ret = hv_pcie_init_irq_domain(hbus); 3576 if (ret) 3577 goto free_fwnode; 3578 3579 retry: 3580 ret = hv_pci_query_relations(hdev); 3581 if (ret) 3582 goto free_irq_domain; 3583 3584 ret = hv_pci_enter_d0(hdev); 3585 /* 3586 * In certain case (Kdump) the pci device of interest was 3587 * not cleanly shut down and resource is still held on host 3588 * side, the host could return invalid device status. 3589 * We need to explicitly request host to release the resource 3590 * and try to enter D0 again. 3591 * Since the hv_pci_bus_exit() call releases structures 3592 * of all its child devices, we need to start the retry from 3593 * hv_pci_query_relations() call, requesting host to send 3594 * the synchronous child device relations message before this 3595 * information is needed in hv_send_resources_allocated() 3596 * call later. 3597 */ 3598 if (ret == -EPROTO && enter_d0_retry) { 3599 enter_d0_retry = false; 3600 3601 dev_err(&hdev->device, "Retrying D0 Entry\n"); 3602 3603 /* 3604 * Hv_pci_bus_exit() calls hv_send_resources_released() 3605 * to free up resources of its child devices. 3606 * In the kdump kernel we need to set the 3607 * wslot_res_allocated to 255 so it scans all child 3608 * devices to release resources allocated in the 3609 * normal kernel before panic happened. 3610 */ 3611 hbus->wslot_res_allocated = 255; 3612 ret = hv_pci_bus_exit(hdev, true); 3613 3614 if (ret == 0) 3615 goto retry; 3616 3617 dev_err(&hdev->device, 3618 "Retrying D0 failed with ret %d\n", ret); 3619 } 3620 if (ret) 3621 goto free_irq_domain; 3622 3623 ret = hv_pci_allocate_bridge_windows(hbus); 3624 if (ret) 3625 goto exit_d0; 3626 3627 ret = hv_send_resources_allocated(hdev); 3628 if (ret) 3629 goto free_windows; 3630 3631 prepopulate_bars(hbus); 3632 3633 hbus->state = hv_pcibus_probed; 3634 3635 ret = create_root_hv_pci_bus(hbus); 3636 if (ret) 3637 goto free_windows; 3638 3639 return 0; 3640 3641 free_windows: 3642 hv_pci_free_bridge_windows(hbus); 3643 exit_d0: 3644 (void) hv_pci_bus_exit(hdev, true); 3645 free_irq_domain: 3646 irq_domain_remove(hbus->irq_domain); 3647 free_fwnode: 3648 irq_domain_free_fwnode(hbus->fwnode); 3649 unmap: 3650 iounmap(hbus->cfg_addr); 3651 free_config: 3652 hv_free_config_window(hbus); 3653 close: 3654 vmbus_close(hdev->channel); 3655 destroy_wq: 3656 destroy_workqueue(hbus->wq); 3657 free_dom: 3658 hv_put_dom_num(hbus->bridge->domain_nr); 3659 free_bus: 3660 kfree(hbus); 3661 return ret; 3662 } 3663 3664 static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs) 3665 { 3666 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3667 struct vmbus_channel *chan = hdev->channel; 3668 struct { 3669 struct pci_packet teardown_packet; 3670 u8 buffer[sizeof(struct pci_message)]; 3671 } pkt; 3672 struct hv_pci_compl comp_pkt; 3673 struct hv_pci_dev *hpdev, *tmp; 3674 unsigned long flags; 3675 u64 trans_id; 3676 int ret; 3677 3678 /* 3679 * After the host sends the RESCIND_CHANNEL message, it doesn't 3680 * access the per-channel ringbuffer any longer. 3681 */ 3682 if (chan->rescind) 3683 return 0; 3684 3685 if (!keep_devs) { 3686 struct list_head removed; 3687 3688 /* Move all present children to the list on stack */ 3689 INIT_LIST_HEAD(&removed); 3690 spin_lock_irqsave(&hbus->device_list_lock, flags); 3691 list_for_each_entry_safe(hpdev, tmp, &hbus->children, list_entry) 3692 list_move_tail(&hpdev->list_entry, &removed); 3693 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 3694 3695 /* Remove all children in the list */ 3696 list_for_each_entry_safe(hpdev, tmp, &removed, list_entry) { 3697 list_del(&hpdev->list_entry); 3698 if (hpdev->pci_slot) 3699 pci_destroy_slot(hpdev->pci_slot); 3700 /* For the two refs got in new_pcichild_device() */ 3701 put_pcichild(hpdev); 3702 put_pcichild(hpdev); 3703 } 3704 } 3705 3706 ret = hv_send_resources_released(hdev); 3707 if (ret) { 3708 dev_err(&hdev->device, 3709 "Couldn't send resources released packet(s)\n"); 3710 return ret; 3711 } 3712 3713 memset(&pkt.teardown_packet, 0, sizeof(pkt.teardown_packet)); 3714 init_completion(&comp_pkt.host_event); 3715 pkt.teardown_packet.completion_func = hv_pci_generic_compl; 3716 pkt.teardown_packet.compl_ctxt = &comp_pkt; 3717 pkt.teardown_packet.message[0].type = PCI_BUS_D0EXIT; 3718 3719 ret = vmbus_sendpacket_getid(chan, &pkt.teardown_packet.message, 3720 sizeof(struct pci_message), 3721 (unsigned long)&pkt.teardown_packet, 3722 &trans_id, VM_PKT_DATA_INBAND, 3723 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 3724 if (ret) 3725 return ret; 3726 3727 if (wait_for_completion_timeout(&comp_pkt.host_event, 10 * HZ) == 0) { 3728 /* 3729 * The completion packet on the stack becomes invalid after 3730 * 'return'; remove the ID from the VMbus requestor if the 3731 * identifier is still mapped to/associated with the packet. 3732 * 3733 * Cf. hv_pci_onchannelcallback(). 3734 */ 3735 vmbus_request_addr_match(chan, trans_id, 3736 (unsigned long)&pkt.teardown_packet); 3737 return -ETIMEDOUT; 3738 } 3739 3740 return 0; 3741 } 3742 3743 /** 3744 * hv_pci_remove() - Remove routine for this VMBus channel 3745 * @hdev: VMBus's tracking struct for this root PCI bus 3746 * 3747 * Return: 0 on success, -errno on failure 3748 */ 3749 static int hv_pci_remove(struct hv_device *hdev) 3750 { 3751 struct hv_pcibus_device *hbus; 3752 int ret; 3753 3754 hbus = hv_get_drvdata(hdev); 3755 if (hbus->state == hv_pcibus_installed) { 3756 tasklet_disable(&hdev->channel->callback_event); 3757 hbus->state = hv_pcibus_removing; 3758 tasklet_enable(&hdev->channel->callback_event); 3759 destroy_workqueue(hbus->wq); 3760 hbus->wq = NULL; 3761 /* 3762 * At this point, no work is running or can be scheduled 3763 * on hbus-wq. We can't race with hv_pci_devices_present() 3764 * or hv_pci_eject_device(), it's safe to proceed. 3765 */ 3766 3767 /* Remove the bus from PCI's point of view. */ 3768 pci_lock_rescan_remove(); 3769 pci_stop_root_bus(hbus->bridge->bus); 3770 hv_pci_remove_slots(hbus); 3771 pci_remove_root_bus(hbus->bridge->bus); 3772 pci_unlock_rescan_remove(); 3773 } 3774 3775 ret = hv_pci_bus_exit(hdev, false); 3776 3777 vmbus_close(hdev->channel); 3778 3779 iounmap(hbus->cfg_addr); 3780 hv_free_config_window(hbus); 3781 hv_pci_free_bridge_windows(hbus); 3782 irq_domain_remove(hbus->irq_domain); 3783 irq_domain_free_fwnode(hbus->fwnode); 3784 3785 hv_put_dom_num(hbus->bridge->domain_nr); 3786 3787 kfree(hbus); 3788 return ret; 3789 } 3790 3791 static int hv_pci_suspend(struct hv_device *hdev) 3792 { 3793 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3794 enum hv_pcibus_state old_state; 3795 int ret; 3796 3797 /* 3798 * hv_pci_suspend() must make sure there are no pending work items 3799 * before calling vmbus_close(), since it runs in a process context 3800 * as a callback in dpm_suspend(). When it starts to run, the channel 3801 * callback hv_pci_onchannelcallback(), which runs in a tasklet 3802 * context, can be still running concurrently and scheduling new work 3803 * items onto hbus->wq in hv_pci_devices_present() and 3804 * hv_pci_eject_device(), and the work item handlers can access the 3805 * vmbus channel, which can be being closed by hv_pci_suspend(), e.g. 3806 * the work item handler pci_devices_present_work() -> 3807 * new_pcichild_device() writes to the vmbus channel. 3808 * 3809 * To eliminate the race, hv_pci_suspend() disables the channel 3810 * callback tasklet, sets hbus->state to hv_pcibus_removing, and 3811 * re-enables the tasklet. This way, when hv_pci_suspend() proceeds, 3812 * it knows that no new work item can be scheduled, and then it flushes 3813 * hbus->wq and safely closes the vmbus channel. 3814 */ 3815 tasklet_disable(&hdev->channel->callback_event); 3816 3817 /* Change the hbus state to prevent new work items. */ 3818 old_state = hbus->state; 3819 if (hbus->state == hv_pcibus_installed) 3820 hbus->state = hv_pcibus_removing; 3821 3822 tasklet_enable(&hdev->channel->callback_event); 3823 3824 if (old_state != hv_pcibus_installed) 3825 return -EINVAL; 3826 3827 flush_workqueue(hbus->wq); 3828 3829 ret = hv_pci_bus_exit(hdev, true); 3830 if (ret) 3831 return ret; 3832 3833 vmbus_close(hdev->channel); 3834 3835 return 0; 3836 } 3837 3838 static int hv_pci_restore_msi_msg(struct pci_dev *pdev, void *arg) 3839 { 3840 struct irq_data *irq_data; 3841 struct msi_desc *entry; 3842 int ret = 0; 3843 3844 msi_lock_descs(&pdev->dev); 3845 msi_for_each_desc(entry, &pdev->dev, MSI_DESC_ASSOCIATED) { 3846 irq_data = irq_get_irq_data(entry->irq); 3847 if (WARN_ON_ONCE(!irq_data)) { 3848 ret = -EINVAL; 3849 break; 3850 } 3851 3852 hv_compose_msi_msg(irq_data, &entry->msg); 3853 } 3854 msi_unlock_descs(&pdev->dev); 3855 3856 return ret; 3857 } 3858 3859 /* 3860 * Upon resume, pci_restore_msi_state() -> ... -> __pci_write_msi_msg() 3861 * directly writes the MSI/MSI-X registers via MMIO, but since Hyper-V 3862 * doesn't trap and emulate the MMIO accesses, here hv_compose_msi_msg() 3863 * must be used to ask Hyper-V to re-create the IOMMU Interrupt Remapping 3864 * Table entries. 3865 */ 3866 static void hv_pci_restore_msi_state(struct hv_pcibus_device *hbus) 3867 { 3868 pci_walk_bus(hbus->bridge->bus, hv_pci_restore_msi_msg, NULL); 3869 } 3870 3871 static int hv_pci_resume(struct hv_device *hdev) 3872 { 3873 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3874 enum pci_protocol_version_t version[1]; 3875 int ret; 3876 3877 hbus->state = hv_pcibus_init; 3878 3879 hdev->channel->next_request_id_callback = vmbus_next_request_id; 3880 hdev->channel->request_addr_callback = vmbus_request_addr; 3881 hdev->channel->rqstor_size = HV_PCI_RQSTOR_SIZE; 3882 3883 ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0, 3884 hv_pci_onchannelcallback, hbus); 3885 if (ret) 3886 return ret; 3887 3888 /* Only use the version that was in use before hibernation. */ 3889 version[0] = hbus->protocol_version; 3890 ret = hv_pci_protocol_negotiation(hdev, version, 1); 3891 if (ret) 3892 goto out; 3893 3894 ret = hv_pci_query_relations(hdev); 3895 if (ret) 3896 goto out; 3897 3898 ret = hv_pci_enter_d0(hdev); 3899 if (ret) 3900 goto out; 3901 3902 ret = hv_send_resources_allocated(hdev); 3903 if (ret) 3904 goto out; 3905 3906 prepopulate_bars(hbus); 3907 3908 hv_pci_restore_msi_state(hbus); 3909 3910 hbus->state = hv_pcibus_installed; 3911 return 0; 3912 out: 3913 vmbus_close(hdev->channel); 3914 return ret; 3915 } 3916 3917 static const struct hv_vmbus_device_id hv_pci_id_table[] = { 3918 /* PCI Pass-through Class ID */ 3919 /* 44C4F61D-4444-4400-9D52-802E27EDE19F */ 3920 { HV_PCIE_GUID, }, 3921 { }, 3922 }; 3923 3924 MODULE_DEVICE_TABLE(vmbus, hv_pci_id_table); 3925 3926 static struct hv_driver hv_pci_drv = { 3927 .name = "hv_pci", 3928 .id_table = hv_pci_id_table, 3929 .probe = hv_pci_probe, 3930 .remove = hv_pci_remove, 3931 .suspend = hv_pci_suspend, 3932 .resume = hv_pci_resume, 3933 }; 3934 3935 static void __exit exit_hv_pci_drv(void) 3936 { 3937 vmbus_driver_unregister(&hv_pci_drv); 3938 3939 hvpci_block_ops.read_block = NULL; 3940 hvpci_block_ops.write_block = NULL; 3941 hvpci_block_ops.reg_blk_invalidate = NULL; 3942 } 3943 3944 static int __init init_hv_pci_drv(void) 3945 { 3946 int ret; 3947 3948 if (!hv_is_hyperv_initialized()) 3949 return -ENODEV; 3950 3951 ret = hv_pci_irqchip_init(); 3952 if (ret) 3953 return ret; 3954 3955 /* Set the invalid domain number's bit, so it will not be used */ 3956 set_bit(HVPCI_DOM_INVALID, hvpci_dom_map); 3957 3958 /* Initialize PCI block r/w interface */ 3959 hvpci_block_ops.read_block = hv_read_config_block; 3960 hvpci_block_ops.write_block = hv_write_config_block; 3961 hvpci_block_ops.reg_blk_invalidate = hv_register_block_invalidate; 3962 3963 return vmbus_driver_register(&hv_pci_drv); 3964 } 3965 3966 module_init(init_hv_pci_drv); 3967 module_exit(exit_hv_pci_drv); 3968 3969 MODULE_DESCRIPTION("Hyper-V PCI"); 3970 MODULE_LICENSE("GPL v2"); 3971