xref: /openbmc/linux/drivers/pci/controller/pci-hyperv.c (revision 8134d27103b35dbdc94d762f82ca0bfb00f349ff)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) Microsoft Corporation.
4  *
5  * Author:
6  *   Jake Oshins <jakeo@microsoft.com>
7  *
8  * This driver acts as a paravirtual front-end for PCI Express root buses.
9  * When a PCI Express function (either an entire device or an SR-IOV
10  * Virtual Function) is being passed through to the VM, this driver exposes
11  * a new bus to the guest VM.  This is modeled as a root PCI bus because
12  * no bridges are being exposed to the VM.  In fact, with a "Generation 2"
13  * VM within Hyper-V, there may seem to be no PCI bus at all in the VM
14  * until a device as been exposed using this driver.
15  *
16  * Each root PCI bus has its own PCI domain, which is called "Segment" in
17  * the PCI Firmware Specifications.  Thus while each device passed through
18  * to the VM using this front-end will appear at "device 0", the domain will
19  * be unique.  Typically, each bus will have one PCI function on it, though
20  * this driver does support more than one.
21  *
22  * In order to map the interrupts from the device through to the guest VM,
23  * this driver also implements an IRQ Domain, which handles interrupts (either
24  * MSI or MSI-X) associated with the functions on the bus.  As interrupts are
25  * set up, torn down, or reaffined, this driver communicates with the
26  * underlying hypervisor to adjust the mappings in the I/O MMU so that each
27  * interrupt will be delivered to the correct virtual processor at the right
28  * vector.  This driver does not support level-triggered (line-based)
29  * interrupts, and will report that the Interrupt Line register in the
30  * function's configuration space is zero.
31  *
32  * The rest of this driver mostly maps PCI concepts onto underlying Hyper-V
33  * facilities.  For instance, the configuration space of a function exposed
34  * by Hyper-V is mapped into a single page of memory space, and the
35  * read and write handlers for config space must be aware of this mechanism.
36  * Similarly, device setup and teardown involves messages sent to and from
37  * the PCI back-end driver in Hyper-V.
38  */
39 
40 #include <linux/kernel.h>
41 #include <linux/module.h>
42 #include <linux/pci.h>
43 #include <linux/delay.h>
44 #include <linux/semaphore.h>
45 #include <linux/irqdomain.h>
46 #include <asm/irqdomain.h>
47 #include <asm/apic.h>
48 #include <linux/msi.h>
49 #include <linux/hyperv.h>
50 #include <linux/refcount.h>
51 #include <asm/mshyperv.h>
52 
53 /*
54  * Protocol versions. The low word is the minor version, the high word the
55  * major version.
56  */
57 
58 #define PCI_MAKE_VERSION(major, minor) ((u32)(((major) << 16) | (minor)))
59 #define PCI_MAJOR_VERSION(version) ((u32)(version) >> 16)
60 #define PCI_MINOR_VERSION(version) ((u32)(version) & 0xff)
61 
62 enum pci_protocol_version_t {
63 	PCI_PROTOCOL_VERSION_1_1 = PCI_MAKE_VERSION(1, 1),	/* Win10 */
64 	PCI_PROTOCOL_VERSION_1_2 = PCI_MAKE_VERSION(1, 2),	/* RS1 */
65 };
66 
67 #define CPU_AFFINITY_ALL	-1ULL
68 
69 /*
70  * Supported protocol versions in the order of probing - highest go
71  * first.
72  */
73 static enum pci_protocol_version_t pci_protocol_versions[] = {
74 	PCI_PROTOCOL_VERSION_1_2,
75 	PCI_PROTOCOL_VERSION_1_1,
76 };
77 
78 /*
79  * Protocol version negotiated by hv_pci_protocol_negotiation().
80  */
81 static enum pci_protocol_version_t pci_protocol_version;
82 
83 #define PCI_CONFIG_MMIO_LENGTH	0x2000
84 #define CFG_PAGE_OFFSET 0x1000
85 #define CFG_PAGE_SIZE (PCI_CONFIG_MMIO_LENGTH - CFG_PAGE_OFFSET)
86 
87 #define MAX_SUPPORTED_MSI_MESSAGES 0x400
88 
89 #define STATUS_REVISION_MISMATCH 0xC0000059
90 
91 /*
92  * Message Types
93  */
94 
95 enum pci_message_type {
96 	/*
97 	 * Version 1.1
98 	 */
99 	PCI_MESSAGE_BASE                = 0x42490000,
100 	PCI_BUS_RELATIONS               = PCI_MESSAGE_BASE + 0,
101 	PCI_QUERY_BUS_RELATIONS         = PCI_MESSAGE_BASE + 1,
102 	PCI_POWER_STATE_CHANGE          = PCI_MESSAGE_BASE + 4,
103 	PCI_QUERY_RESOURCE_REQUIREMENTS = PCI_MESSAGE_BASE + 5,
104 	PCI_QUERY_RESOURCE_RESOURCES    = PCI_MESSAGE_BASE + 6,
105 	PCI_BUS_D0ENTRY                 = PCI_MESSAGE_BASE + 7,
106 	PCI_BUS_D0EXIT                  = PCI_MESSAGE_BASE + 8,
107 	PCI_READ_BLOCK                  = PCI_MESSAGE_BASE + 9,
108 	PCI_WRITE_BLOCK                 = PCI_MESSAGE_BASE + 0xA,
109 	PCI_EJECT                       = PCI_MESSAGE_BASE + 0xB,
110 	PCI_QUERY_STOP                  = PCI_MESSAGE_BASE + 0xC,
111 	PCI_REENABLE                    = PCI_MESSAGE_BASE + 0xD,
112 	PCI_QUERY_STOP_FAILED           = PCI_MESSAGE_BASE + 0xE,
113 	PCI_EJECTION_COMPLETE           = PCI_MESSAGE_BASE + 0xF,
114 	PCI_RESOURCES_ASSIGNED          = PCI_MESSAGE_BASE + 0x10,
115 	PCI_RESOURCES_RELEASED          = PCI_MESSAGE_BASE + 0x11,
116 	PCI_INVALIDATE_BLOCK            = PCI_MESSAGE_BASE + 0x12,
117 	PCI_QUERY_PROTOCOL_VERSION      = PCI_MESSAGE_BASE + 0x13,
118 	PCI_CREATE_INTERRUPT_MESSAGE    = PCI_MESSAGE_BASE + 0x14,
119 	PCI_DELETE_INTERRUPT_MESSAGE    = PCI_MESSAGE_BASE + 0x15,
120 	PCI_RESOURCES_ASSIGNED2		= PCI_MESSAGE_BASE + 0x16,
121 	PCI_CREATE_INTERRUPT_MESSAGE2	= PCI_MESSAGE_BASE + 0x17,
122 	PCI_DELETE_INTERRUPT_MESSAGE2	= PCI_MESSAGE_BASE + 0x18, /* unused */
123 	PCI_MESSAGE_MAXIMUM
124 };
125 
126 /*
127  * Structures defining the virtual PCI Express protocol.
128  */
129 
130 union pci_version {
131 	struct {
132 		u16 minor_version;
133 		u16 major_version;
134 	} parts;
135 	u32 version;
136 } __packed;
137 
138 /*
139  * Function numbers are 8-bits wide on Express, as interpreted through ARI,
140  * which is all this driver does.  This representation is the one used in
141  * Windows, which is what is expected when sending this back and forth with
142  * the Hyper-V parent partition.
143  */
144 union win_slot_encoding {
145 	struct {
146 		u32	dev:5;
147 		u32	func:3;
148 		u32	reserved:24;
149 	} bits;
150 	u32 slot;
151 } __packed;
152 
153 /*
154  * Pretty much as defined in the PCI Specifications.
155  */
156 struct pci_function_description {
157 	u16	v_id;	/* vendor ID */
158 	u16	d_id;	/* device ID */
159 	u8	rev;
160 	u8	prog_intf;
161 	u8	subclass;
162 	u8	base_class;
163 	u32	subsystem_id;
164 	union win_slot_encoding win_slot;
165 	u32	ser;	/* serial number */
166 } __packed;
167 
168 /**
169  * struct hv_msi_desc
170  * @vector:		IDT entry
171  * @delivery_mode:	As defined in Intel's Programmer's
172  *			Reference Manual, Volume 3, Chapter 8.
173  * @vector_count:	Number of contiguous entries in the
174  *			Interrupt Descriptor Table that are
175  *			occupied by this Message-Signaled
176  *			Interrupt. For "MSI", as first defined
177  *			in PCI 2.2, this can be between 1 and
178  *			32. For "MSI-X," as first defined in PCI
179  *			3.0, this must be 1, as each MSI-X table
180  *			entry would have its own descriptor.
181  * @reserved:		Empty space
182  * @cpu_mask:		All the target virtual processors.
183  */
184 struct hv_msi_desc {
185 	u8	vector;
186 	u8	delivery_mode;
187 	u16	vector_count;
188 	u32	reserved;
189 	u64	cpu_mask;
190 } __packed;
191 
192 /**
193  * struct hv_msi_desc2 - 1.2 version of hv_msi_desc
194  * @vector:		IDT entry
195  * @delivery_mode:	As defined in Intel's Programmer's
196  *			Reference Manual, Volume 3, Chapter 8.
197  * @vector_count:	Number of contiguous entries in the
198  *			Interrupt Descriptor Table that are
199  *			occupied by this Message-Signaled
200  *			Interrupt. For "MSI", as first defined
201  *			in PCI 2.2, this can be between 1 and
202  *			32. For "MSI-X," as first defined in PCI
203  *			3.0, this must be 1, as each MSI-X table
204  *			entry would have its own descriptor.
205  * @processor_count:	number of bits enabled in array.
206  * @processor_array:	All the target virtual processors.
207  */
208 struct hv_msi_desc2 {
209 	u8	vector;
210 	u8	delivery_mode;
211 	u16	vector_count;
212 	u16	processor_count;
213 	u16	processor_array[32];
214 } __packed;
215 
216 /**
217  * struct tran_int_desc
218  * @reserved:		unused, padding
219  * @vector_count:	same as in hv_msi_desc
220  * @data:		This is the "data payload" value that is
221  *			written by the device when it generates
222  *			a message-signaled interrupt, either MSI
223  *			or MSI-X.
224  * @address:		This is the address to which the data
225  *			payload is written on interrupt
226  *			generation.
227  */
228 struct tran_int_desc {
229 	u16	reserved;
230 	u16	vector_count;
231 	u32	data;
232 	u64	address;
233 } __packed;
234 
235 /*
236  * A generic message format for virtual PCI.
237  * Specific message formats are defined later in the file.
238  */
239 
240 struct pci_message {
241 	u32 type;
242 } __packed;
243 
244 struct pci_child_message {
245 	struct pci_message message_type;
246 	union win_slot_encoding wslot;
247 } __packed;
248 
249 struct pci_incoming_message {
250 	struct vmpacket_descriptor hdr;
251 	struct pci_message message_type;
252 } __packed;
253 
254 struct pci_response {
255 	struct vmpacket_descriptor hdr;
256 	s32 status;			/* negative values are failures */
257 } __packed;
258 
259 struct pci_packet {
260 	void (*completion_func)(void *context, struct pci_response *resp,
261 				int resp_packet_size);
262 	void *compl_ctxt;
263 
264 	struct pci_message message[0];
265 };
266 
267 /*
268  * Specific message types supporting the PCI protocol.
269  */
270 
271 /*
272  * Version negotiation message. Sent from the guest to the host.
273  * The guest is free to try different versions until the host
274  * accepts the version.
275  *
276  * pci_version: The protocol version requested.
277  * is_last_attempt: If TRUE, this is the last version guest will request.
278  * reservedz: Reserved field, set to zero.
279  */
280 
281 struct pci_version_request {
282 	struct pci_message message_type;
283 	u32 protocol_version;
284 } __packed;
285 
286 /*
287  * Bus D0 Entry.  This is sent from the guest to the host when the virtual
288  * bus (PCI Express port) is ready for action.
289  */
290 
291 struct pci_bus_d0_entry {
292 	struct pci_message message_type;
293 	u32 reserved;
294 	u64 mmio_base;
295 } __packed;
296 
297 struct pci_bus_relations {
298 	struct pci_incoming_message incoming;
299 	u32 device_count;
300 	struct pci_function_description func[0];
301 } __packed;
302 
303 struct pci_q_res_req_response {
304 	struct vmpacket_descriptor hdr;
305 	s32 status;			/* negative values are failures */
306 	u32 probed_bar[6];
307 } __packed;
308 
309 struct pci_set_power {
310 	struct pci_message message_type;
311 	union win_slot_encoding wslot;
312 	u32 power_state;		/* In Windows terms */
313 	u32 reserved;
314 } __packed;
315 
316 struct pci_set_power_response {
317 	struct vmpacket_descriptor hdr;
318 	s32 status;			/* negative values are failures */
319 	union win_slot_encoding wslot;
320 	u32 resultant_state;		/* In Windows terms */
321 	u32 reserved;
322 } __packed;
323 
324 struct pci_resources_assigned {
325 	struct pci_message message_type;
326 	union win_slot_encoding wslot;
327 	u8 memory_range[0x14][6];	/* not used here */
328 	u32 msi_descriptors;
329 	u32 reserved[4];
330 } __packed;
331 
332 struct pci_resources_assigned2 {
333 	struct pci_message message_type;
334 	union win_slot_encoding wslot;
335 	u8 memory_range[0x14][6];	/* not used here */
336 	u32 msi_descriptor_count;
337 	u8 reserved[70];
338 } __packed;
339 
340 struct pci_create_interrupt {
341 	struct pci_message message_type;
342 	union win_slot_encoding wslot;
343 	struct hv_msi_desc int_desc;
344 } __packed;
345 
346 struct pci_create_int_response {
347 	struct pci_response response;
348 	u32 reserved;
349 	struct tran_int_desc int_desc;
350 } __packed;
351 
352 struct pci_create_interrupt2 {
353 	struct pci_message message_type;
354 	union win_slot_encoding wslot;
355 	struct hv_msi_desc2 int_desc;
356 } __packed;
357 
358 struct pci_delete_interrupt {
359 	struct pci_message message_type;
360 	union win_slot_encoding wslot;
361 	struct tran_int_desc int_desc;
362 } __packed;
363 
364 struct pci_dev_incoming {
365 	struct pci_incoming_message incoming;
366 	union win_slot_encoding wslot;
367 } __packed;
368 
369 struct pci_eject_response {
370 	struct pci_message message_type;
371 	union win_slot_encoding wslot;
372 	u32 status;
373 } __packed;
374 
375 static int pci_ring_size = (4 * PAGE_SIZE);
376 
377 /*
378  * Definitions or interrupt steering hypercall.
379  */
380 #define HV_PARTITION_ID_SELF		((u64)-1)
381 #define HVCALL_RETARGET_INTERRUPT	0x7e
382 
383 struct hv_interrupt_entry {
384 	u32	source;			/* 1 for MSI(-X) */
385 	u32	reserved1;
386 	u32	address;
387 	u32	data;
388 };
389 
390 #define HV_VP_SET_BANK_COUNT_MAX	5 /* current implementation limit */
391 
392 struct hv_vp_set {
393 	u64	format;			/* 0 (HvGenericSetSparse4k) */
394 	u64	valid_banks;
395 	u64	masks[HV_VP_SET_BANK_COUNT_MAX];
396 };
397 
398 /*
399  * flags for hv_device_interrupt_target.flags
400  */
401 #define HV_DEVICE_INTERRUPT_TARGET_MULTICAST		1
402 #define HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET	2
403 
404 struct hv_device_interrupt_target {
405 	u32	vector;
406 	u32	flags;
407 	union {
408 		u64		 vp_mask;
409 		struct hv_vp_set vp_set;
410 	};
411 };
412 
413 struct retarget_msi_interrupt {
414 	u64	partition_id;		/* use "self" */
415 	u64	device_id;
416 	struct hv_interrupt_entry int_entry;
417 	u64	reserved2;
418 	struct hv_device_interrupt_target int_target;
419 } __packed;
420 
421 /*
422  * Driver specific state.
423  */
424 
425 enum hv_pcibus_state {
426 	hv_pcibus_init = 0,
427 	hv_pcibus_probed,
428 	hv_pcibus_installed,
429 	hv_pcibus_removed,
430 	hv_pcibus_maximum
431 };
432 
433 struct hv_pcibus_device {
434 	struct pci_sysdata sysdata;
435 	enum hv_pcibus_state state;
436 	refcount_t remove_lock;
437 	struct hv_device *hdev;
438 	resource_size_t low_mmio_space;
439 	resource_size_t high_mmio_space;
440 	struct resource *mem_config;
441 	struct resource *low_mmio_res;
442 	struct resource *high_mmio_res;
443 	struct completion *survey_event;
444 	struct completion remove_event;
445 	struct pci_bus *pci_bus;
446 	spinlock_t config_lock;	/* Avoid two threads writing index page */
447 	spinlock_t device_list_lock;	/* Protect lists below */
448 	void __iomem *cfg_addr;
449 
450 	struct list_head resources_for_children;
451 
452 	struct list_head children;
453 	struct list_head dr_list;
454 
455 	struct msi_domain_info msi_info;
456 	struct msi_controller msi_chip;
457 	struct irq_domain *irq_domain;
458 
459 	/* hypercall arg, must not cross page boundary */
460 	struct retarget_msi_interrupt retarget_msi_interrupt_params;
461 
462 	spinlock_t retarget_msi_interrupt_lock;
463 
464 	struct workqueue_struct *wq;
465 };
466 
467 /*
468  * Tracks "Device Relations" messages from the host, which must be both
469  * processed in order and deferred so that they don't run in the context
470  * of the incoming packet callback.
471  */
472 struct hv_dr_work {
473 	struct work_struct wrk;
474 	struct hv_pcibus_device *bus;
475 };
476 
477 struct hv_dr_state {
478 	struct list_head list_entry;
479 	u32 device_count;
480 	struct pci_function_description func[0];
481 };
482 
483 enum hv_pcichild_state {
484 	hv_pcichild_init = 0,
485 	hv_pcichild_requirements,
486 	hv_pcichild_resourced,
487 	hv_pcichild_ejecting,
488 	hv_pcichild_maximum
489 };
490 
491 struct hv_pci_dev {
492 	/* List protected by pci_rescan_remove_lock */
493 	struct list_head list_entry;
494 	refcount_t refs;
495 	enum hv_pcichild_state state;
496 	struct pci_function_description desc;
497 	bool reported_missing;
498 	struct hv_pcibus_device *hbus;
499 	struct work_struct wrk;
500 
501 	/*
502 	 * What would be observed if one wrote 0xFFFFFFFF to a BAR and then
503 	 * read it back, for each of the BAR offsets within config space.
504 	 */
505 	u32 probed_bar[6];
506 };
507 
508 struct hv_pci_compl {
509 	struct completion host_event;
510 	s32 completion_status;
511 };
512 
513 static void hv_pci_onchannelcallback(void *context);
514 
515 /**
516  * hv_pci_generic_compl() - Invoked for a completion packet
517  * @context:		Set up by the sender of the packet.
518  * @resp:		The response packet
519  * @resp_packet_size:	Size in bytes of the packet
520  *
521  * This function is used to trigger an event and report status
522  * for any message for which the completion packet contains a
523  * status and nothing else.
524  */
525 static void hv_pci_generic_compl(void *context, struct pci_response *resp,
526 				 int resp_packet_size)
527 {
528 	struct hv_pci_compl *comp_pkt = context;
529 
530 	if (resp_packet_size >= offsetofend(struct pci_response, status))
531 		comp_pkt->completion_status = resp->status;
532 	else
533 		comp_pkt->completion_status = -1;
534 
535 	complete(&comp_pkt->host_event);
536 }
537 
538 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
539 						u32 wslot);
540 
541 static void get_pcichild(struct hv_pci_dev *hpdev)
542 {
543 	refcount_inc(&hpdev->refs);
544 }
545 
546 static void put_pcichild(struct hv_pci_dev *hpdev)
547 {
548 	if (refcount_dec_and_test(&hpdev->refs))
549 		kfree(hpdev);
550 }
551 
552 static void get_hvpcibus(struct hv_pcibus_device *hv_pcibus);
553 static void put_hvpcibus(struct hv_pcibus_device *hv_pcibus);
554 
555 /*
556  * There is no good way to get notified from vmbus_onoffer_rescind(),
557  * so let's use polling here, since this is not a hot path.
558  */
559 static int wait_for_response(struct hv_device *hdev,
560 			     struct completion *comp)
561 {
562 	while (true) {
563 		if (hdev->channel->rescind) {
564 			dev_warn_once(&hdev->device, "The device is gone.\n");
565 			return -ENODEV;
566 		}
567 
568 		if (wait_for_completion_timeout(comp, HZ / 10))
569 			break;
570 	}
571 
572 	return 0;
573 }
574 
575 /**
576  * devfn_to_wslot() - Convert from Linux PCI slot to Windows
577  * @devfn:	The Linux representation of PCI slot
578  *
579  * Windows uses a slightly different representation of PCI slot.
580  *
581  * Return: The Windows representation
582  */
583 static u32 devfn_to_wslot(int devfn)
584 {
585 	union win_slot_encoding wslot;
586 
587 	wslot.slot = 0;
588 	wslot.bits.dev = PCI_SLOT(devfn);
589 	wslot.bits.func = PCI_FUNC(devfn);
590 
591 	return wslot.slot;
592 }
593 
594 /**
595  * wslot_to_devfn() - Convert from Windows PCI slot to Linux
596  * @wslot:	The Windows representation of PCI slot
597  *
598  * Windows uses a slightly different representation of PCI slot.
599  *
600  * Return: The Linux representation
601  */
602 static int wslot_to_devfn(u32 wslot)
603 {
604 	union win_slot_encoding slot_no;
605 
606 	slot_no.slot = wslot;
607 	return PCI_DEVFN(slot_no.bits.dev, slot_no.bits.func);
608 }
609 
610 /*
611  * PCI Configuration Space for these root PCI buses is implemented as a pair
612  * of pages in memory-mapped I/O space.  Writing to the first page chooses
613  * the PCI function being written or read.  Once the first page has been
614  * written to, the following page maps in the entire configuration space of
615  * the function.
616  */
617 
618 /**
619  * _hv_pcifront_read_config() - Internal PCI config read
620  * @hpdev:	The PCI driver's representation of the device
621  * @where:	Offset within config space
622  * @size:	Size of the transfer
623  * @val:	Pointer to the buffer receiving the data
624  */
625 static void _hv_pcifront_read_config(struct hv_pci_dev *hpdev, int where,
626 				     int size, u32 *val)
627 {
628 	unsigned long flags;
629 	void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where;
630 
631 	/*
632 	 * If the attempt is to read the IDs or the ROM BAR, simulate that.
633 	 */
634 	if (where + size <= PCI_COMMAND) {
635 		memcpy(val, ((u8 *)&hpdev->desc.v_id) + where, size);
636 	} else if (where >= PCI_CLASS_REVISION && where + size <=
637 		   PCI_CACHE_LINE_SIZE) {
638 		memcpy(val, ((u8 *)&hpdev->desc.rev) + where -
639 		       PCI_CLASS_REVISION, size);
640 	} else if (where >= PCI_SUBSYSTEM_VENDOR_ID && where + size <=
641 		   PCI_ROM_ADDRESS) {
642 		memcpy(val, (u8 *)&hpdev->desc.subsystem_id + where -
643 		       PCI_SUBSYSTEM_VENDOR_ID, size);
644 	} else if (where >= PCI_ROM_ADDRESS && where + size <=
645 		   PCI_CAPABILITY_LIST) {
646 		/* ROM BARs are unimplemented */
647 		*val = 0;
648 	} else if (where >= PCI_INTERRUPT_LINE && where + size <=
649 		   PCI_INTERRUPT_PIN) {
650 		/*
651 		 * Interrupt Line and Interrupt PIN are hard-wired to zero
652 		 * because this front-end only supports message-signaled
653 		 * interrupts.
654 		 */
655 		*val = 0;
656 	} else if (where + size <= CFG_PAGE_SIZE) {
657 		spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
658 		/* Choose the function to be read. (See comment above) */
659 		writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
660 		/* Make sure the function was chosen before we start reading. */
661 		mb();
662 		/* Read from that function's config space. */
663 		switch (size) {
664 		case 1:
665 			*val = readb(addr);
666 			break;
667 		case 2:
668 			*val = readw(addr);
669 			break;
670 		default:
671 			*val = readl(addr);
672 			break;
673 		}
674 		/*
675 		 * Make sure the read was done before we release the spinlock
676 		 * allowing consecutive reads/writes.
677 		 */
678 		mb();
679 		spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
680 	} else {
681 		dev_err(&hpdev->hbus->hdev->device,
682 			"Attempt to read beyond a function's config space.\n");
683 	}
684 }
685 
686 static u16 hv_pcifront_get_vendor_id(struct hv_pci_dev *hpdev)
687 {
688 	u16 ret;
689 	unsigned long flags;
690 	void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET +
691 			     PCI_VENDOR_ID;
692 
693 	spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
694 
695 	/* Choose the function to be read. (See comment above) */
696 	writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
697 	/* Make sure the function was chosen before we start reading. */
698 	mb();
699 	/* Read from that function's config space. */
700 	ret = readw(addr);
701 	/*
702 	 * mb() is not required here, because the spin_unlock_irqrestore()
703 	 * is a barrier.
704 	 */
705 
706 	spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
707 
708 	return ret;
709 }
710 
711 /**
712  * _hv_pcifront_write_config() - Internal PCI config write
713  * @hpdev:	The PCI driver's representation of the device
714  * @where:	Offset within config space
715  * @size:	Size of the transfer
716  * @val:	The data being transferred
717  */
718 static void _hv_pcifront_write_config(struct hv_pci_dev *hpdev, int where,
719 				      int size, u32 val)
720 {
721 	unsigned long flags;
722 	void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where;
723 
724 	if (where >= PCI_SUBSYSTEM_VENDOR_ID &&
725 	    where + size <= PCI_CAPABILITY_LIST) {
726 		/* SSIDs and ROM BARs are read-only */
727 	} else if (where >= PCI_COMMAND && where + size <= CFG_PAGE_SIZE) {
728 		spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
729 		/* Choose the function to be written. (See comment above) */
730 		writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
731 		/* Make sure the function was chosen before we start writing. */
732 		wmb();
733 		/* Write to that function's config space. */
734 		switch (size) {
735 		case 1:
736 			writeb(val, addr);
737 			break;
738 		case 2:
739 			writew(val, addr);
740 			break;
741 		default:
742 			writel(val, addr);
743 			break;
744 		}
745 		/*
746 		 * Make sure the write was done before we release the spinlock
747 		 * allowing consecutive reads/writes.
748 		 */
749 		mb();
750 		spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
751 	} else {
752 		dev_err(&hpdev->hbus->hdev->device,
753 			"Attempt to write beyond a function's config space.\n");
754 	}
755 }
756 
757 /**
758  * hv_pcifront_read_config() - Read configuration space
759  * @bus: PCI Bus structure
760  * @devfn: Device/function
761  * @where: Offset from base
762  * @size: Byte/word/dword
763  * @val: Value to be read
764  *
765  * Return: PCIBIOS_SUCCESSFUL on success
766  *	   PCIBIOS_DEVICE_NOT_FOUND on failure
767  */
768 static int hv_pcifront_read_config(struct pci_bus *bus, unsigned int devfn,
769 				   int where, int size, u32 *val)
770 {
771 	struct hv_pcibus_device *hbus =
772 		container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
773 	struct hv_pci_dev *hpdev;
774 
775 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
776 	if (!hpdev)
777 		return PCIBIOS_DEVICE_NOT_FOUND;
778 
779 	_hv_pcifront_read_config(hpdev, where, size, val);
780 
781 	put_pcichild(hpdev);
782 	return PCIBIOS_SUCCESSFUL;
783 }
784 
785 /**
786  * hv_pcifront_write_config() - Write configuration space
787  * @bus: PCI Bus structure
788  * @devfn: Device/function
789  * @where: Offset from base
790  * @size: Byte/word/dword
791  * @val: Value to be written to device
792  *
793  * Return: PCIBIOS_SUCCESSFUL on success
794  *	   PCIBIOS_DEVICE_NOT_FOUND on failure
795  */
796 static int hv_pcifront_write_config(struct pci_bus *bus, unsigned int devfn,
797 				    int where, int size, u32 val)
798 {
799 	struct hv_pcibus_device *hbus =
800 	    container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
801 	struct hv_pci_dev *hpdev;
802 
803 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
804 	if (!hpdev)
805 		return PCIBIOS_DEVICE_NOT_FOUND;
806 
807 	_hv_pcifront_write_config(hpdev, where, size, val);
808 
809 	put_pcichild(hpdev);
810 	return PCIBIOS_SUCCESSFUL;
811 }
812 
813 /* PCIe operations */
814 static struct pci_ops hv_pcifront_ops = {
815 	.read  = hv_pcifront_read_config,
816 	.write = hv_pcifront_write_config,
817 };
818 
819 /* Interrupt management hooks */
820 static void hv_int_desc_free(struct hv_pci_dev *hpdev,
821 			     struct tran_int_desc *int_desc)
822 {
823 	struct pci_delete_interrupt *int_pkt;
824 	struct {
825 		struct pci_packet pkt;
826 		u8 buffer[sizeof(struct pci_delete_interrupt)];
827 	} ctxt;
828 
829 	memset(&ctxt, 0, sizeof(ctxt));
830 	int_pkt = (struct pci_delete_interrupt *)&ctxt.pkt.message;
831 	int_pkt->message_type.type =
832 		PCI_DELETE_INTERRUPT_MESSAGE;
833 	int_pkt->wslot.slot = hpdev->desc.win_slot.slot;
834 	int_pkt->int_desc = *int_desc;
835 	vmbus_sendpacket(hpdev->hbus->hdev->channel, int_pkt, sizeof(*int_pkt),
836 			 (unsigned long)&ctxt.pkt, VM_PKT_DATA_INBAND, 0);
837 	kfree(int_desc);
838 }
839 
840 /**
841  * hv_msi_free() - Free the MSI.
842  * @domain:	The interrupt domain pointer
843  * @info:	Extra MSI-related context
844  * @irq:	Identifies the IRQ.
845  *
846  * The Hyper-V parent partition and hypervisor are tracking the
847  * messages that are in use, keeping the interrupt redirection
848  * table up to date.  This callback sends a message that frees
849  * the IRT entry and related tracking nonsense.
850  */
851 static void hv_msi_free(struct irq_domain *domain, struct msi_domain_info *info,
852 			unsigned int irq)
853 {
854 	struct hv_pcibus_device *hbus;
855 	struct hv_pci_dev *hpdev;
856 	struct pci_dev *pdev;
857 	struct tran_int_desc *int_desc;
858 	struct irq_data *irq_data = irq_domain_get_irq_data(domain, irq);
859 	struct msi_desc *msi = irq_data_get_msi_desc(irq_data);
860 
861 	pdev = msi_desc_to_pci_dev(msi);
862 	hbus = info->data;
863 	int_desc = irq_data_get_irq_chip_data(irq_data);
864 	if (!int_desc)
865 		return;
866 
867 	irq_data->chip_data = NULL;
868 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
869 	if (!hpdev) {
870 		kfree(int_desc);
871 		return;
872 	}
873 
874 	hv_int_desc_free(hpdev, int_desc);
875 	put_pcichild(hpdev);
876 }
877 
878 static int hv_set_affinity(struct irq_data *data, const struct cpumask *dest,
879 			   bool force)
880 {
881 	struct irq_data *parent = data->parent_data;
882 
883 	return parent->chip->irq_set_affinity(parent, dest, force);
884 }
885 
886 static void hv_irq_mask(struct irq_data *data)
887 {
888 	pci_msi_mask_irq(data);
889 }
890 
891 /**
892  * hv_irq_unmask() - "Unmask" the IRQ by setting its current
893  * affinity.
894  * @data:	Describes the IRQ
895  *
896  * Build new a destination for the MSI and make a hypercall to
897  * update the Interrupt Redirection Table. "Device Logical ID"
898  * is built out of this PCI bus's instance GUID and the function
899  * number of the device.
900  */
901 static void hv_irq_unmask(struct irq_data *data)
902 {
903 	struct msi_desc *msi_desc = irq_data_get_msi_desc(data);
904 	struct irq_cfg *cfg = irqd_cfg(data);
905 	struct retarget_msi_interrupt *params;
906 	struct hv_pcibus_device *hbus;
907 	struct cpumask *dest;
908 	struct pci_bus *pbus;
909 	struct pci_dev *pdev;
910 	unsigned long flags;
911 	u32 var_size = 0;
912 	int cpu_vmbus;
913 	int cpu;
914 	u64 res;
915 
916 	dest = irq_data_get_effective_affinity_mask(data);
917 	pdev = msi_desc_to_pci_dev(msi_desc);
918 	pbus = pdev->bus;
919 	hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
920 
921 	spin_lock_irqsave(&hbus->retarget_msi_interrupt_lock, flags);
922 
923 	params = &hbus->retarget_msi_interrupt_params;
924 	memset(params, 0, sizeof(*params));
925 	params->partition_id = HV_PARTITION_ID_SELF;
926 	params->int_entry.source = 1; /* MSI(-X) */
927 	params->int_entry.address = msi_desc->msg.address_lo;
928 	params->int_entry.data = msi_desc->msg.data;
929 	params->device_id = (hbus->hdev->dev_instance.b[5] << 24) |
930 			   (hbus->hdev->dev_instance.b[4] << 16) |
931 			   (hbus->hdev->dev_instance.b[7] << 8) |
932 			   (hbus->hdev->dev_instance.b[6] & 0xf8) |
933 			   PCI_FUNC(pdev->devfn);
934 	params->int_target.vector = cfg->vector;
935 
936 	/*
937 	 * Honoring apic->irq_delivery_mode set to dest_Fixed by
938 	 * setting the HV_DEVICE_INTERRUPT_TARGET_MULTICAST flag results in a
939 	 * spurious interrupt storm. Not doing so does not seem to have a
940 	 * negative effect (yet?).
941 	 */
942 
943 	if (pci_protocol_version >= PCI_PROTOCOL_VERSION_1_2) {
944 		/*
945 		 * PCI_PROTOCOL_VERSION_1_2 supports the VP_SET version of the
946 		 * HVCALL_RETARGET_INTERRUPT hypercall, which also coincides
947 		 * with >64 VP support.
948 		 * ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED
949 		 * is not sufficient for this hypercall.
950 		 */
951 		params->int_target.flags |=
952 			HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET;
953 		params->int_target.vp_set.valid_banks =
954 			(1ull << HV_VP_SET_BANK_COUNT_MAX) - 1;
955 
956 		/*
957 		 * var-sized hypercall, var-size starts after vp_mask (thus
958 		 * vp_set.format does not count, but vp_set.valid_banks does).
959 		 */
960 		var_size = 1 + HV_VP_SET_BANK_COUNT_MAX;
961 
962 		for_each_cpu_and(cpu, dest, cpu_online_mask) {
963 			cpu_vmbus = hv_cpu_number_to_vp_number(cpu);
964 
965 			if (cpu_vmbus >= HV_VP_SET_BANK_COUNT_MAX * 64) {
966 				dev_err(&hbus->hdev->device,
967 					"too high CPU %d", cpu_vmbus);
968 				res = 1;
969 				goto exit_unlock;
970 			}
971 
972 			params->int_target.vp_set.masks[cpu_vmbus / 64] |=
973 				(1ULL << (cpu_vmbus & 63));
974 		}
975 	} else {
976 		for_each_cpu_and(cpu, dest, cpu_online_mask) {
977 			params->int_target.vp_mask |=
978 				(1ULL << hv_cpu_number_to_vp_number(cpu));
979 		}
980 	}
981 
982 	res = hv_do_hypercall(HVCALL_RETARGET_INTERRUPT | (var_size << 17),
983 			      params, NULL);
984 
985 exit_unlock:
986 	spin_unlock_irqrestore(&hbus->retarget_msi_interrupt_lock, flags);
987 
988 	if (res) {
989 		dev_err(&hbus->hdev->device,
990 			"%s() failed: %#llx", __func__, res);
991 		return;
992 	}
993 
994 	pci_msi_unmask_irq(data);
995 }
996 
997 struct compose_comp_ctxt {
998 	struct hv_pci_compl comp_pkt;
999 	struct tran_int_desc int_desc;
1000 };
1001 
1002 static void hv_pci_compose_compl(void *context, struct pci_response *resp,
1003 				 int resp_packet_size)
1004 {
1005 	struct compose_comp_ctxt *comp_pkt = context;
1006 	struct pci_create_int_response *int_resp =
1007 		(struct pci_create_int_response *)resp;
1008 
1009 	comp_pkt->comp_pkt.completion_status = resp->status;
1010 	comp_pkt->int_desc = int_resp->int_desc;
1011 	complete(&comp_pkt->comp_pkt.host_event);
1012 }
1013 
1014 static u32 hv_compose_msi_req_v1(
1015 	struct pci_create_interrupt *int_pkt, struct cpumask *affinity,
1016 	u32 slot, u8 vector)
1017 {
1018 	int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE;
1019 	int_pkt->wslot.slot = slot;
1020 	int_pkt->int_desc.vector = vector;
1021 	int_pkt->int_desc.vector_count = 1;
1022 	int_pkt->int_desc.delivery_mode = dest_Fixed;
1023 
1024 	/*
1025 	 * Create MSI w/ dummy vCPU set, overwritten by subsequent retarget in
1026 	 * hv_irq_unmask().
1027 	 */
1028 	int_pkt->int_desc.cpu_mask = CPU_AFFINITY_ALL;
1029 
1030 	return sizeof(*int_pkt);
1031 }
1032 
1033 static u32 hv_compose_msi_req_v2(
1034 	struct pci_create_interrupt2 *int_pkt, struct cpumask *affinity,
1035 	u32 slot, u8 vector)
1036 {
1037 	int cpu;
1038 
1039 	int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE2;
1040 	int_pkt->wslot.slot = slot;
1041 	int_pkt->int_desc.vector = vector;
1042 	int_pkt->int_desc.vector_count = 1;
1043 	int_pkt->int_desc.delivery_mode = dest_Fixed;
1044 
1045 	/*
1046 	 * Create MSI w/ dummy vCPU set targeting just one vCPU, overwritten
1047 	 * by subsequent retarget in hv_irq_unmask().
1048 	 */
1049 	cpu = cpumask_first_and(affinity, cpu_online_mask);
1050 	int_pkt->int_desc.processor_array[0] =
1051 		hv_cpu_number_to_vp_number(cpu);
1052 	int_pkt->int_desc.processor_count = 1;
1053 
1054 	return sizeof(*int_pkt);
1055 }
1056 
1057 /**
1058  * hv_compose_msi_msg() - Supplies a valid MSI address/data
1059  * @data:	Everything about this MSI
1060  * @msg:	Buffer that is filled in by this function
1061  *
1062  * This function unpacks the IRQ looking for target CPU set, IDT
1063  * vector and mode and sends a message to the parent partition
1064  * asking for a mapping for that tuple in this partition.  The
1065  * response supplies a data value and address to which that data
1066  * should be written to trigger that interrupt.
1067  */
1068 static void hv_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
1069 {
1070 	struct irq_cfg *cfg = irqd_cfg(data);
1071 	struct hv_pcibus_device *hbus;
1072 	struct hv_pci_dev *hpdev;
1073 	struct pci_bus *pbus;
1074 	struct pci_dev *pdev;
1075 	struct cpumask *dest;
1076 	struct compose_comp_ctxt comp;
1077 	struct tran_int_desc *int_desc;
1078 	struct {
1079 		struct pci_packet pci_pkt;
1080 		union {
1081 			struct pci_create_interrupt v1;
1082 			struct pci_create_interrupt2 v2;
1083 		} int_pkts;
1084 	} __packed ctxt;
1085 
1086 	u32 size;
1087 	int ret;
1088 
1089 	pdev = msi_desc_to_pci_dev(irq_data_get_msi_desc(data));
1090 	dest = irq_data_get_effective_affinity_mask(data);
1091 	pbus = pdev->bus;
1092 	hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
1093 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1094 	if (!hpdev)
1095 		goto return_null_message;
1096 
1097 	/* Free any previous message that might have already been composed. */
1098 	if (data->chip_data) {
1099 		int_desc = data->chip_data;
1100 		data->chip_data = NULL;
1101 		hv_int_desc_free(hpdev, int_desc);
1102 	}
1103 
1104 	int_desc = kzalloc(sizeof(*int_desc), GFP_ATOMIC);
1105 	if (!int_desc)
1106 		goto drop_reference;
1107 
1108 	memset(&ctxt, 0, sizeof(ctxt));
1109 	init_completion(&comp.comp_pkt.host_event);
1110 	ctxt.pci_pkt.completion_func = hv_pci_compose_compl;
1111 	ctxt.pci_pkt.compl_ctxt = &comp;
1112 
1113 	switch (pci_protocol_version) {
1114 	case PCI_PROTOCOL_VERSION_1_1:
1115 		size = hv_compose_msi_req_v1(&ctxt.int_pkts.v1,
1116 					dest,
1117 					hpdev->desc.win_slot.slot,
1118 					cfg->vector);
1119 		break;
1120 
1121 	case PCI_PROTOCOL_VERSION_1_2:
1122 		size = hv_compose_msi_req_v2(&ctxt.int_pkts.v2,
1123 					dest,
1124 					hpdev->desc.win_slot.slot,
1125 					cfg->vector);
1126 		break;
1127 
1128 	default:
1129 		/* As we only negotiate protocol versions known to this driver,
1130 		 * this path should never hit. However, this is it not a hot
1131 		 * path so we print a message to aid future updates.
1132 		 */
1133 		dev_err(&hbus->hdev->device,
1134 			"Unexpected vPCI protocol, update driver.");
1135 		goto free_int_desc;
1136 	}
1137 
1138 	ret = vmbus_sendpacket(hpdev->hbus->hdev->channel, &ctxt.int_pkts,
1139 			       size, (unsigned long)&ctxt.pci_pkt,
1140 			       VM_PKT_DATA_INBAND,
1141 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1142 	if (ret) {
1143 		dev_err(&hbus->hdev->device,
1144 			"Sending request for interrupt failed: 0x%x",
1145 			comp.comp_pkt.completion_status);
1146 		goto free_int_desc;
1147 	}
1148 
1149 	/*
1150 	 * Since this function is called with IRQ locks held, can't
1151 	 * do normal wait for completion; instead poll.
1152 	 */
1153 	while (!try_wait_for_completion(&comp.comp_pkt.host_event)) {
1154 		/* 0xFFFF means an invalid PCI VENDOR ID. */
1155 		if (hv_pcifront_get_vendor_id(hpdev) == 0xFFFF) {
1156 			dev_err_once(&hbus->hdev->device,
1157 				     "the device has gone\n");
1158 			goto free_int_desc;
1159 		}
1160 
1161 		/*
1162 		 * When the higher level interrupt code calls us with
1163 		 * interrupt disabled, we must poll the channel by calling
1164 		 * the channel callback directly when channel->target_cpu is
1165 		 * the current CPU. When the higher level interrupt code
1166 		 * calls us with interrupt enabled, let's add the
1167 		 * local_bh_disable()/enable() to avoid race.
1168 		 */
1169 		local_bh_disable();
1170 
1171 		if (hbus->hdev->channel->target_cpu == smp_processor_id())
1172 			hv_pci_onchannelcallback(hbus);
1173 
1174 		local_bh_enable();
1175 
1176 		if (hpdev->state == hv_pcichild_ejecting) {
1177 			dev_err_once(&hbus->hdev->device,
1178 				     "the device is being ejected\n");
1179 			goto free_int_desc;
1180 		}
1181 
1182 		udelay(100);
1183 	}
1184 
1185 	if (comp.comp_pkt.completion_status < 0) {
1186 		dev_err(&hbus->hdev->device,
1187 			"Request for interrupt failed: 0x%x",
1188 			comp.comp_pkt.completion_status);
1189 		goto free_int_desc;
1190 	}
1191 
1192 	/*
1193 	 * Record the assignment so that this can be unwound later. Using
1194 	 * irq_set_chip_data() here would be appropriate, but the lock it takes
1195 	 * is already held.
1196 	 */
1197 	*int_desc = comp.int_desc;
1198 	data->chip_data = int_desc;
1199 
1200 	/* Pass up the result. */
1201 	msg->address_hi = comp.int_desc.address >> 32;
1202 	msg->address_lo = comp.int_desc.address & 0xffffffff;
1203 	msg->data = comp.int_desc.data;
1204 
1205 	put_pcichild(hpdev);
1206 	return;
1207 
1208 free_int_desc:
1209 	kfree(int_desc);
1210 drop_reference:
1211 	put_pcichild(hpdev);
1212 return_null_message:
1213 	msg->address_hi = 0;
1214 	msg->address_lo = 0;
1215 	msg->data = 0;
1216 }
1217 
1218 /* HW Interrupt Chip Descriptor */
1219 static struct irq_chip hv_msi_irq_chip = {
1220 	.name			= "Hyper-V PCIe MSI",
1221 	.irq_compose_msi_msg	= hv_compose_msi_msg,
1222 	.irq_set_affinity	= hv_set_affinity,
1223 	.irq_ack		= irq_chip_ack_parent,
1224 	.irq_mask		= hv_irq_mask,
1225 	.irq_unmask		= hv_irq_unmask,
1226 };
1227 
1228 static irq_hw_number_t hv_msi_domain_ops_get_hwirq(struct msi_domain_info *info,
1229 						   msi_alloc_info_t *arg)
1230 {
1231 	return arg->msi_hwirq;
1232 }
1233 
1234 static struct msi_domain_ops hv_msi_ops = {
1235 	.get_hwirq	= hv_msi_domain_ops_get_hwirq,
1236 	.msi_prepare	= pci_msi_prepare,
1237 	.set_desc	= pci_msi_set_desc,
1238 	.msi_free	= hv_msi_free,
1239 };
1240 
1241 /**
1242  * hv_pcie_init_irq_domain() - Initialize IRQ domain
1243  * @hbus:	The root PCI bus
1244  *
1245  * This function creates an IRQ domain which will be used for
1246  * interrupts from devices that have been passed through.  These
1247  * devices only support MSI and MSI-X, not line-based interrupts
1248  * or simulations of line-based interrupts through PCIe's
1249  * fabric-layer messages.  Because interrupts are remapped, we
1250  * can support multi-message MSI here.
1251  *
1252  * Return: '0' on success and error value on failure
1253  */
1254 static int hv_pcie_init_irq_domain(struct hv_pcibus_device *hbus)
1255 {
1256 	hbus->msi_info.chip = &hv_msi_irq_chip;
1257 	hbus->msi_info.ops = &hv_msi_ops;
1258 	hbus->msi_info.flags = (MSI_FLAG_USE_DEF_DOM_OPS |
1259 		MSI_FLAG_USE_DEF_CHIP_OPS | MSI_FLAG_MULTI_PCI_MSI |
1260 		MSI_FLAG_PCI_MSIX);
1261 	hbus->msi_info.handler = handle_edge_irq;
1262 	hbus->msi_info.handler_name = "edge";
1263 	hbus->msi_info.data = hbus;
1264 	hbus->irq_domain = pci_msi_create_irq_domain(hbus->sysdata.fwnode,
1265 						     &hbus->msi_info,
1266 						     x86_vector_domain);
1267 	if (!hbus->irq_domain) {
1268 		dev_err(&hbus->hdev->device,
1269 			"Failed to build an MSI IRQ domain\n");
1270 		return -ENODEV;
1271 	}
1272 
1273 	return 0;
1274 }
1275 
1276 /**
1277  * get_bar_size() - Get the address space consumed by a BAR
1278  * @bar_val:	Value that a BAR returned after -1 was written
1279  *              to it.
1280  *
1281  * This function returns the size of the BAR, rounded up to 1
1282  * page.  It has to be rounded up because the hypervisor's page
1283  * table entry that maps the BAR into the VM can't specify an
1284  * offset within a page.  The invariant is that the hypervisor
1285  * must place any BARs of smaller than page length at the
1286  * beginning of a page.
1287  *
1288  * Return:	Size in bytes of the consumed MMIO space.
1289  */
1290 static u64 get_bar_size(u64 bar_val)
1291 {
1292 	return round_up((1 + ~(bar_val & PCI_BASE_ADDRESS_MEM_MASK)),
1293 			PAGE_SIZE);
1294 }
1295 
1296 /**
1297  * survey_child_resources() - Total all MMIO requirements
1298  * @hbus:	Root PCI bus, as understood by this driver
1299  */
1300 static void survey_child_resources(struct hv_pcibus_device *hbus)
1301 {
1302 	struct hv_pci_dev *hpdev;
1303 	resource_size_t bar_size = 0;
1304 	unsigned long flags;
1305 	struct completion *event;
1306 	u64 bar_val;
1307 	int i;
1308 
1309 	/* If nobody is waiting on the answer, don't compute it. */
1310 	event = xchg(&hbus->survey_event, NULL);
1311 	if (!event)
1312 		return;
1313 
1314 	/* If the answer has already been computed, go with it. */
1315 	if (hbus->low_mmio_space || hbus->high_mmio_space) {
1316 		complete(event);
1317 		return;
1318 	}
1319 
1320 	spin_lock_irqsave(&hbus->device_list_lock, flags);
1321 
1322 	/*
1323 	 * Due to an interesting quirk of the PCI spec, all memory regions
1324 	 * for a child device are a power of 2 in size and aligned in memory,
1325 	 * so it's sufficient to just add them up without tracking alignment.
1326 	 */
1327 	list_for_each_entry(hpdev, &hbus->children, list_entry) {
1328 		for (i = 0; i < 6; i++) {
1329 			if (hpdev->probed_bar[i] & PCI_BASE_ADDRESS_SPACE_IO)
1330 				dev_err(&hbus->hdev->device,
1331 					"There's an I/O BAR in this list!\n");
1332 
1333 			if (hpdev->probed_bar[i] != 0) {
1334 				/*
1335 				 * A probed BAR has all the upper bits set that
1336 				 * can be changed.
1337 				 */
1338 
1339 				bar_val = hpdev->probed_bar[i];
1340 				if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
1341 					bar_val |=
1342 					((u64)hpdev->probed_bar[++i] << 32);
1343 				else
1344 					bar_val |= 0xffffffff00000000ULL;
1345 
1346 				bar_size = get_bar_size(bar_val);
1347 
1348 				if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
1349 					hbus->high_mmio_space += bar_size;
1350 				else
1351 					hbus->low_mmio_space += bar_size;
1352 			}
1353 		}
1354 	}
1355 
1356 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1357 	complete(event);
1358 }
1359 
1360 /**
1361  * prepopulate_bars() - Fill in BARs with defaults
1362  * @hbus:	Root PCI bus, as understood by this driver
1363  *
1364  * The core PCI driver code seems much, much happier if the BARs
1365  * for a device have values upon first scan. So fill them in.
1366  * The algorithm below works down from large sizes to small,
1367  * attempting to pack the assignments optimally. The assumption,
1368  * enforced in other parts of the code, is that the beginning of
1369  * the memory-mapped I/O space will be aligned on the largest
1370  * BAR size.
1371  */
1372 static void prepopulate_bars(struct hv_pcibus_device *hbus)
1373 {
1374 	resource_size_t high_size = 0;
1375 	resource_size_t low_size = 0;
1376 	resource_size_t high_base = 0;
1377 	resource_size_t low_base = 0;
1378 	resource_size_t bar_size;
1379 	struct hv_pci_dev *hpdev;
1380 	unsigned long flags;
1381 	u64 bar_val;
1382 	u32 command;
1383 	bool high;
1384 	int i;
1385 
1386 	if (hbus->low_mmio_space) {
1387 		low_size = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
1388 		low_base = hbus->low_mmio_res->start;
1389 	}
1390 
1391 	if (hbus->high_mmio_space) {
1392 		high_size = 1ULL <<
1393 			(63 - __builtin_clzll(hbus->high_mmio_space));
1394 		high_base = hbus->high_mmio_res->start;
1395 	}
1396 
1397 	spin_lock_irqsave(&hbus->device_list_lock, flags);
1398 
1399 	/* Pick addresses for the BARs. */
1400 	do {
1401 		list_for_each_entry(hpdev, &hbus->children, list_entry) {
1402 			for (i = 0; i < 6; i++) {
1403 				bar_val = hpdev->probed_bar[i];
1404 				if (bar_val == 0)
1405 					continue;
1406 				high = bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64;
1407 				if (high) {
1408 					bar_val |=
1409 						((u64)hpdev->probed_bar[i + 1]
1410 						 << 32);
1411 				} else {
1412 					bar_val |= 0xffffffffULL << 32;
1413 				}
1414 				bar_size = get_bar_size(bar_val);
1415 				if (high) {
1416 					if (high_size != bar_size) {
1417 						i++;
1418 						continue;
1419 					}
1420 					_hv_pcifront_write_config(hpdev,
1421 						PCI_BASE_ADDRESS_0 + (4 * i),
1422 						4,
1423 						(u32)(high_base & 0xffffff00));
1424 					i++;
1425 					_hv_pcifront_write_config(hpdev,
1426 						PCI_BASE_ADDRESS_0 + (4 * i),
1427 						4, (u32)(high_base >> 32));
1428 					high_base += bar_size;
1429 				} else {
1430 					if (low_size != bar_size)
1431 						continue;
1432 					_hv_pcifront_write_config(hpdev,
1433 						PCI_BASE_ADDRESS_0 + (4 * i),
1434 						4,
1435 						(u32)(low_base & 0xffffff00));
1436 					low_base += bar_size;
1437 				}
1438 			}
1439 			if (high_size <= 1 && low_size <= 1) {
1440 				/* Set the memory enable bit. */
1441 				_hv_pcifront_read_config(hpdev, PCI_COMMAND, 2,
1442 							 &command);
1443 				command |= PCI_COMMAND_MEMORY;
1444 				_hv_pcifront_write_config(hpdev, PCI_COMMAND, 2,
1445 							  command);
1446 				break;
1447 			}
1448 		}
1449 
1450 		high_size >>= 1;
1451 		low_size >>= 1;
1452 	}  while (high_size || low_size);
1453 
1454 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1455 }
1456 
1457 /**
1458  * create_root_hv_pci_bus() - Expose a new root PCI bus
1459  * @hbus:	Root PCI bus, as understood by this driver
1460  *
1461  * Return: 0 on success, -errno on failure
1462  */
1463 static int create_root_hv_pci_bus(struct hv_pcibus_device *hbus)
1464 {
1465 	/* Register the device */
1466 	hbus->pci_bus = pci_create_root_bus(&hbus->hdev->device,
1467 					    0, /* bus number is always zero */
1468 					    &hv_pcifront_ops,
1469 					    &hbus->sysdata,
1470 					    &hbus->resources_for_children);
1471 	if (!hbus->pci_bus)
1472 		return -ENODEV;
1473 
1474 	hbus->pci_bus->msi = &hbus->msi_chip;
1475 	hbus->pci_bus->msi->dev = &hbus->hdev->device;
1476 
1477 	pci_lock_rescan_remove();
1478 	pci_scan_child_bus(hbus->pci_bus);
1479 	pci_bus_assign_resources(hbus->pci_bus);
1480 	pci_bus_add_devices(hbus->pci_bus);
1481 	pci_unlock_rescan_remove();
1482 	hbus->state = hv_pcibus_installed;
1483 	return 0;
1484 }
1485 
1486 struct q_res_req_compl {
1487 	struct completion host_event;
1488 	struct hv_pci_dev *hpdev;
1489 };
1490 
1491 /**
1492  * q_resource_requirements() - Query Resource Requirements
1493  * @context:		The completion context.
1494  * @resp:		The response that came from the host.
1495  * @resp_packet_size:	The size in bytes of resp.
1496  *
1497  * This function is invoked on completion of a Query Resource
1498  * Requirements packet.
1499  */
1500 static void q_resource_requirements(void *context, struct pci_response *resp,
1501 				    int resp_packet_size)
1502 {
1503 	struct q_res_req_compl *completion = context;
1504 	struct pci_q_res_req_response *q_res_req =
1505 		(struct pci_q_res_req_response *)resp;
1506 	int i;
1507 
1508 	if (resp->status < 0) {
1509 		dev_err(&completion->hpdev->hbus->hdev->device,
1510 			"query resource requirements failed: %x\n",
1511 			resp->status);
1512 	} else {
1513 		for (i = 0; i < 6; i++) {
1514 			completion->hpdev->probed_bar[i] =
1515 				q_res_req->probed_bar[i];
1516 		}
1517 	}
1518 
1519 	complete(&completion->host_event);
1520 }
1521 
1522 /**
1523  * new_pcichild_device() - Create a new child device
1524  * @hbus:	The internal struct tracking this root PCI bus.
1525  * @desc:	The information supplied so far from the host
1526  *              about the device.
1527  *
1528  * This function creates the tracking structure for a new child
1529  * device and kicks off the process of figuring out what it is.
1530  *
1531  * Return: Pointer to the new tracking struct
1532  */
1533 static struct hv_pci_dev *new_pcichild_device(struct hv_pcibus_device *hbus,
1534 		struct pci_function_description *desc)
1535 {
1536 	struct hv_pci_dev *hpdev;
1537 	struct pci_child_message *res_req;
1538 	struct q_res_req_compl comp_pkt;
1539 	struct {
1540 		struct pci_packet init_packet;
1541 		u8 buffer[sizeof(struct pci_child_message)];
1542 	} pkt;
1543 	unsigned long flags;
1544 	int ret;
1545 
1546 	hpdev = kzalloc(sizeof(*hpdev), GFP_ATOMIC);
1547 	if (!hpdev)
1548 		return NULL;
1549 
1550 	hpdev->hbus = hbus;
1551 
1552 	memset(&pkt, 0, sizeof(pkt));
1553 	init_completion(&comp_pkt.host_event);
1554 	comp_pkt.hpdev = hpdev;
1555 	pkt.init_packet.compl_ctxt = &comp_pkt;
1556 	pkt.init_packet.completion_func = q_resource_requirements;
1557 	res_req = (struct pci_child_message *)&pkt.init_packet.message;
1558 	res_req->message_type.type = PCI_QUERY_RESOURCE_REQUIREMENTS;
1559 	res_req->wslot.slot = desc->win_slot.slot;
1560 
1561 	ret = vmbus_sendpacket(hbus->hdev->channel, res_req,
1562 			       sizeof(struct pci_child_message),
1563 			       (unsigned long)&pkt.init_packet,
1564 			       VM_PKT_DATA_INBAND,
1565 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1566 	if (ret)
1567 		goto error;
1568 
1569 	if (wait_for_response(hbus->hdev, &comp_pkt.host_event))
1570 		goto error;
1571 
1572 	hpdev->desc = *desc;
1573 	refcount_set(&hpdev->refs, 1);
1574 	get_pcichild(hpdev);
1575 	spin_lock_irqsave(&hbus->device_list_lock, flags);
1576 
1577 	list_add_tail(&hpdev->list_entry, &hbus->children);
1578 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1579 	return hpdev;
1580 
1581 error:
1582 	kfree(hpdev);
1583 	return NULL;
1584 }
1585 
1586 /**
1587  * get_pcichild_wslot() - Find device from slot
1588  * @hbus:	Root PCI bus, as understood by this driver
1589  * @wslot:	Location on the bus
1590  *
1591  * This function looks up a PCI device and returns the internal
1592  * representation of it.  It acquires a reference on it, so that
1593  * the device won't be deleted while somebody is using it.  The
1594  * caller is responsible for calling put_pcichild() to release
1595  * this reference.
1596  *
1597  * Return:	Internal representation of a PCI device
1598  */
1599 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
1600 					     u32 wslot)
1601 {
1602 	unsigned long flags;
1603 	struct hv_pci_dev *iter, *hpdev = NULL;
1604 
1605 	spin_lock_irqsave(&hbus->device_list_lock, flags);
1606 	list_for_each_entry(iter, &hbus->children, list_entry) {
1607 		if (iter->desc.win_slot.slot == wslot) {
1608 			hpdev = iter;
1609 			get_pcichild(hpdev);
1610 			break;
1611 		}
1612 	}
1613 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1614 
1615 	return hpdev;
1616 }
1617 
1618 /**
1619  * pci_devices_present_work() - Handle new list of child devices
1620  * @work:	Work struct embedded in struct hv_dr_work
1621  *
1622  * "Bus Relations" is the Windows term for "children of this
1623  * bus."  The terminology is preserved here for people trying to
1624  * debug the interaction between Hyper-V and Linux.  This
1625  * function is called when the parent partition reports a list
1626  * of functions that should be observed under this PCI Express
1627  * port (bus).
1628  *
1629  * This function updates the list, and must tolerate being
1630  * called multiple times with the same information.  The typical
1631  * number of child devices is one, with very atypical cases
1632  * involving three or four, so the algorithms used here can be
1633  * simple and inefficient.
1634  *
1635  * It must also treat the omission of a previously observed device as
1636  * notification that the device no longer exists.
1637  *
1638  * Note that this function is serialized with hv_eject_device_work(),
1639  * because both are pushed to the ordered workqueue hbus->wq.
1640  */
1641 static void pci_devices_present_work(struct work_struct *work)
1642 {
1643 	u32 child_no;
1644 	bool found;
1645 	struct pci_function_description *new_desc;
1646 	struct hv_pci_dev *hpdev;
1647 	struct hv_pcibus_device *hbus;
1648 	struct list_head removed;
1649 	struct hv_dr_work *dr_wrk;
1650 	struct hv_dr_state *dr = NULL;
1651 	unsigned long flags;
1652 
1653 	dr_wrk = container_of(work, struct hv_dr_work, wrk);
1654 	hbus = dr_wrk->bus;
1655 	kfree(dr_wrk);
1656 
1657 	INIT_LIST_HEAD(&removed);
1658 
1659 	/* Pull this off the queue and process it if it was the last one. */
1660 	spin_lock_irqsave(&hbus->device_list_lock, flags);
1661 	while (!list_empty(&hbus->dr_list)) {
1662 		dr = list_first_entry(&hbus->dr_list, struct hv_dr_state,
1663 				      list_entry);
1664 		list_del(&dr->list_entry);
1665 
1666 		/* Throw this away if the list still has stuff in it. */
1667 		if (!list_empty(&hbus->dr_list)) {
1668 			kfree(dr);
1669 			continue;
1670 		}
1671 	}
1672 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1673 
1674 	if (!dr) {
1675 		put_hvpcibus(hbus);
1676 		return;
1677 	}
1678 
1679 	/* First, mark all existing children as reported missing. */
1680 	spin_lock_irqsave(&hbus->device_list_lock, flags);
1681 	list_for_each_entry(hpdev, &hbus->children, list_entry) {
1682 		hpdev->reported_missing = true;
1683 	}
1684 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1685 
1686 	/* Next, add back any reported devices. */
1687 	for (child_no = 0; child_no < dr->device_count; child_no++) {
1688 		found = false;
1689 		new_desc = &dr->func[child_no];
1690 
1691 		spin_lock_irqsave(&hbus->device_list_lock, flags);
1692 		list_for_each_entry(hpdev, &hbus->children, list_entry) {
1693 			if ((hpdev->desc.win_slot.slot == new_desc->win_slot.slot) &&
1694 			    (hpdev->desc.v_id == new_desc->v_id) &&
1695 			    (hpdev->desc.d_id == new_desc->d_id) &&
1696 			    (hpdev->desc.ser == new_desc->ser)) {
1697 				hpdev->reported_missing = false;
1698 				found = true;
1699 			}
1700 		}
1701 		spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1702 
1703 		if (!found) {
1704 			hpdev = new_pcichild_device(hbus, new_desc);
1705 			if (!hpdev)
1706 				dev_err(&hbus->hdev->device,
1707 					"couldn't record a child device.\n");
1708 		}
1709 	}
1710 
1711 	/* Move missing children to a list on the stack. */
1712 	spin_lock_irqsave(&hbus->device_list_lock, flags);
1713 	do {
1714 		found = false;
1715 		list_for_each_entry(hpdev, &hbus->children, list_entry) {
1716 			if (hpdev->reported_missing) {
1717 				found = true;
1718 				put_pcichild(hpdev);
1719 				list_move_tail(&hpdev->list_entry, &removed);
1720 				break;
1721 			}
1722 		}
1723 	} while (found);
1724 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1725 
1726 	/* Delete everything that should no longer exist. */
1727 	while (!list_empty(&removed)) {
1728 		hpdev = list_first_entry(&removed, struct hv_pci_dev,
1729 					 list_entry);
1730 		list_del(&hpdev->list_entry);
1731 		put_pcichild(hpdev);
1732 	}
1733 
1734 	switch (hbus->state) {
1735 	case hv_pcibus_installed:
1736 		/*
1737 		 * Tell the core to rescan bus
1738 		 * because there may have been changes.
1739 		 */
1740 		pci_lock_rescan_remove();
1741 		pci_scan_child_bus(hbus->pci_bus);
1742 		pci_unlock_rescan_remove();
1743 		break;
1744 
1745 	case hv_pcibus_init:
1746 	case hv_pcibus_probed:
1747 		survey_child_resources(hbus);
1748 		break;
1749 
1750 	default:
1751 		break;
1752 	}
1753 
1754 	put_hvpcibus(hbus);
1755 	kfree(dr);
1756 }
1757 
1758 /**
1759  * hv_pci_devices_present() - Handles list of new children
1760  * @hbus:	Root PCI bus, as understood by this driver
1761  * @relations:	Packet from host listing children
1762  *
1763  * This function is invoked whenever a new list of devices for
1764  * this bus appears.
1765  */
1766 static void hv_pci_devices_present(struct hv_pcibus_device *hbus,
1767 				   struct pci_bus_relations *relations)
1768 {
1769 	struct hv_dr_state *dr;
1770 	struct hv_dr_work *dr_wrk;
1771 	unsigned long flags;
1772 	bool pending_dr;
1773 
1774 	dr_wrk = kzalloc(sizeof(*dr_wrk), GFP_NOWAIT);
1775 	if (!dr_wrk)
1776 		return;
1777 
1778 	dr = kzalloc(offsetof(struct hv_dr_state, func) +
1779 		     (sizeof(struct pci_function_description) *
1780 		      (relations->device_count)), GFP_NOWAIT);
1781 	if (!dr)  {
1782 		kfree(dr_wrk);
1783 		return;
1784 	}
1785 
1786 	INIT_WORK(&dr_wrk->wrk, pci_devices_present_work);
1787 	dr_wrk->bus = hbus;
1788 	dr->device_count = relations->device_count;
1789 	if (dr->device_count != 0) {
1790 		memcpy(dr->func, relations->func,
1791 		       sizeof(struct pci_function_description) *
1792 		       dr->device_count);
1793 	}
1794 
1795 	spin_lock_irqsave(&hbus->device_list_lock, flags);
1796 	/*
1797 	 * If pending_dr is true, we have already queued a work,
1798 	 * which will see the new dr. Otherwise, we need to
1799 	 * queue a new work.
1800 	 */
1801 	pending_dr = !list_empty(&hbus->dr_list);
1802 	list_add_tail(&dr->list_entry, &hbus->dr_list);
1803 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1804 
1805 	if (pending_dr) {
1806 		kfree(dr_wrk);
1807 	} else {
1808 		get_hvpcibus(hbus);
1809 		queue_work(hbus->wq, &dr_wrk->wrk);
1810 	}
1811 }
1812 
1813 /**
1814  * hv_eject_device_work() - Asynchronously handles ejection
1815  * @work:	Work struct embedded in internal device struct
1816  *
1817  * This function handles ejecting a device.  Windows will
1818  * attempt to gracefully eject a device, waiting 60 seconds to
1819  * hear back from the guest OS that this completed successfully.
1820  * If this timer expires, the device will be forcibly removed.
1821  */
1822 static void hv_eject_device_work(struct work_struct *work)
1823 {
1824 	struct pci_eject_response *ejct_pkt;
1825 	struct hv_pci_dev *hpdev;
1826 	struct pci_dev *pdev;
1827 	unsigned long flags;
1828 	int wslot;
1829 	struct {
1830 		struct pci_packet pkt;
1831 		u8 buffer[sizeof(struct pci_eject_response)];
1832 	} ctxt;
1833 
1834 	hpdev = container_of(work, struct hv_pci_dev, wrk);
1835 
1836 	WARN_ON(hpdev->state != hv_pcichild_ejecting);
1837 
1838 	/*
1839 	 * Ejection can come before or after the PCI bus has been set up, so
1840 	 * attempt to find it and tear down the bus state, if it exists.  This
1841 	 * must be done without constructs like pci_domain_nr(hbus->pci_bus)
1842 	 * because hbus->pci_bus may not exist yet.
1843 	 */
1844 	wslot = wslot_to_devfn(hpdev->desc.win_slot.slot);
1845 	pdev = pci_get_domain_bus_and_slot(hpdev->hbus->sysdata.domain, 0,
1846 					   wslot);
1847 	if (pdev) {
1848 		pci_lock_rescan_remove();
1849 		pci_stop_and_remove_bus_device(pdev);
1850 		pci_dev_put(pdev);
1851 		pci_unlock_rescan_remove();
1852 	}
1853 
1854 	spin_lock_irqsave(&hpdev->hbus->device_list_lock, flags);
1855 	list_del(&hpdev->list_entry);
1856 	spin_unlock_irqrestore(&hpdev->hbus->device_list_lock, flags);
1857 
1858 	memset(&ctxt, 0, sizeof(ctxt));
1859 	ejct_pkt = (struct pci_eject_response *)&ctxt.pkt.message;
1860 	ejct_pkt->message_type.type = PCI_EJECTION_COMPLETE;
1861 	ejct_pkt->wslot.slot = hpdev->desc.win_slot.slot;
1862 	vmbus_sendpacket(hpdev->hbus->hdev->channel, ejct_pkt,
1863 			 sizeof(*ejct_pkt), (unsigned long)&ctxt.pkt,
1864 			 VM_PKT_DATA_INBAND, 0);
1865 
1866 	put_pcichild(hpdev);
1867 	put_pcichild(hpdev);
1868 	put_hvpcibus(hpdev->hbus);
1869 }
1870 
1871 /**
1872  * hv_pci_eject_device() - Handles device ejection
1873  * @hpdev:	Internal device tracking struct
1874  *
1875  * This function is invoked when an ejection packet arrives.  It
1876  * just schedules work so that we don't re-enter the packet
1877  * delivery code handling the ejection.
1878  */
1879 static void hv_pci_eject_device(struct hv_pci_dev *hpdev)
1880 {
1881 	hpdev->state = hv_pcichild_ejecting;
1882 	get_pcichild(hpdev);
1883 	INIT_WORK(&hpdev->wrk, hv_eject_device_work);
1884 	get_hvpcibus(hpdev->hbus);
1885 	queue_work(hpdev->hbus->wq, &hpdev->wrk);
1886 }
1887 
1888 /**
1889  * hv_pci_onchannelcallback() - Handles incoming packets
1890  * @context:	Internal bus tracking struct
1891  *
1892  * This function is invoked whenever the host sends a packet to
1893  * this channel (which is private to this root PCI bus).
1894  */
1895 static void hv_pci_onchannelcallback(void *context)
1896 {
1897 	const int packet_size = 0x100;
1898 	int ret;
1899 	struct hv_pcibus_device *hbus = context;
1900 	u32 bytes_recvd;
1901 	u64 req_id;
1902 	struct vmpacket_descriptor *desc;
1903 	unsigned char *buffer;
1904 	int bufferlen = packet_size;
1905 	struct pci_packet *comp_packet;
1906 	struct pci_response *response;
1907 	struct pci_incoming_message *new_message;
1908 	struct pci_bus_relations *bus_rel;
1909 	struct pci_dev_incoming *dev_message;
1910 	struct hv_pci_dev *hpdev;
1911 
1912 	buffer = kmalloc(bufferlen, GFP_ATOMIC);
1913 	if (!buffer)
1914 		return;
1915 
1916 	while (1) {
1917 		ret = vmbus_recvpacket_raw(hbus->hdev->channel, buffer,
1918 					   bufferlen, &bytes_recvd, &req_id);
1919 
1920 		if (ret == -ENOBUFS) {
1921 			kfree(buffer);
1922 			/* Handle large packet */
1923 			bufferlen = bytes_recvd;
1924 			buffer = kmalloc(bytes_recvd, GFP_ATOMIC);
1925 			if (!buffer)
1926 				return;
1927 			continue;
1928 		}
1929 
1930 		/* Zero length indicates there are no more packets. */
1931 		if (ret || !bytes_recvd)
1932 			break;
1933 
1934 		/*
1935 		 * All incoming packets must be at least as large as a
1936 		 * response.
1937 		 */
1938 		if (bytes_recvd <= sizeof(struct pci_response))
1939 			continue;
1940 		desc = (struct vmpacket_descriptor *)buffer;
1941 
1942 		switch (desc->type) {
1943 		case VM_PKT_COMP:
1944 
1945 			/*
1946 			 * The host is trusted, and thus it's safe to interpret
1947 			 * this transaction ID as a pointer.
1948 			 */
1949 			comp_packet = (struct pci_packet *)req_id;
1950 			response = (struct pci_response *)buffer;
1951 			comp_packet->completion_func(comp_packet->compl_ctxt,
1952 						     response,
1953 						     bytes_recvd);
1954 			break;
1955 
1956 		case VM_PKT_DATA_INBAND:
1957 
1958 			new_message = (struct pci_incoming_message *)buffer;
1959 			switch (new_message->message_type.type) {
1960 			case PCI_BUS_RELATIONS:
1961 
1962 				bus_rel = (struct pci_bus_relations *)buffer;
1963 				if (bytes_recvd <
1964 				    offsetof(struct pci_bus_relations, func) +
1965 				    (sizeof(struct pci_function_description) *
1966 				     (bus_rel->device_count))) {
1967 					dev_err(&hbus->hdev->device,
1968 						"bus relations too small\n");
1969 					break;
1970 				}
1971 
1972 				hv_pci_devices_present(hbus, bus_rel);
1973 				break;
1974 
1975 			case PCI_EJECT:
1976 
1977 				dev_message = (struct pci_dev_incoming *)buffer;
1978 				hpdev = get_pcichild_wslot(hbus,
1979 						      dev_message->wslot.slot);
1980 				if (hpdev) {
1981 					hv_pci_eject_device(hpdev);
1982 					put_pcichild(hpdev);
1983 				}
1984 				break;
1985 
1986 			default:
1987 				dev_warn(&hbus->hdev->device,
1988 					"Unimplemented protocol message %x\n",
1989 					new_message->message_type.type);
1990 				break;
1991 			}
1992 			break;
1993 
1994 		default:
1995 			dev_err(&hbus->hdev->device,
1996 				"unhandled packet type %d, tid %llx len %d\n",
1997 				desc->type, req_id, bytes_recvd);
1998 			break;
1999 		}
2000 	}
2001 
2002 	kfree(buffer);
2003 }
2004 
2005 /**
2006  * hv_pci_protocol_negotiation() - Set up protocol
2007  * @hdev:	VMBus's tracking struct for this root PCI bus
2008  *
2009  * This driver is intended to support running on Windows 10
2010  * (server) and later versions. It will not run on earlier
2011  * versions, as they assume that many of the operations which
2012  * Linux needs accomplished with a spinlock held were done via
2013  * asynchronous messaging via VMBus.  Windows 10 increases the
2014  * surface area of PCI emulation so that these actions can take
2015  * place by suspending a virtual processor for their duration.
2016  *
2017  * This function negotiates the channel protocol version,
2018  * failing if the host doesn't support the necessary protocol
2019  * level.
2020  */
2021 static int hv_pci_protocol_negotiation(struct hv_device *hdev)
2022 {
2023 	struct pci_version_request *version_req;
2024 	struct hv_pci_compl comp_pkt;
2025 	struct pci_packet *pkt;
2026 	int ret;
2027 	int i;
2028 
2029 	/*
2030 	 * Initiate the handshake with the host and negotiate
2031 	 * a version that the host can support. We start with the
2032 	 * highest version number and go down if the host cannot
2033 	 * support it.
2034 	 */
2035 	pkt = kzalloc(sizeof(*pkt) + sizeof(*version_req), GFP_KERNEL);
2036 	if (!pkt)
2037 		return -ENOMEM;
2038 
2039 	init_completion(&comp_pkt.host_event);
2040 	pkt->completion_func = hv_pci_generic_compl;
2041 	pkt->compl_ctxt = &comp_pkt;
2042 	version_req = (struct pci_version_request *)&pkt->message;
2043 	version_req->message_type.type = PCI_QUERY_PROTOCOL_VERSION;
2044 
2045 	for (i = 0; i < ARRAY_SIZE(pci_protocol_versions); i++) {
2046 		version_req->protocol_version = pci_protocol_versions[i];
2047 		ret = vmbus_sendpacket(hdev->channel, version_req,
2048 				sizeof(struct pci_version_request),
2049 				(unsigned long)pkt, VM_PKT_DATA_INBAND,
2050 				VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2051 		if (!ret)
2052 			ret = wait_for_response(hdev, &comp_pkt.host_event);
2053 
2054 		if (ret) {
2055 			dev_err(&hdev->device,
2056 				"PCI Pass-through VSP failed to request version: %d",
2057 				ret);
2058 			goto exit;
2059 		}
2060 
2061 		if (comp_pkt.completion_status >= 0) {
2062 			pci_protocol_version = pci_protocol_versions[i];
2063 			dev_info(&hdev->device,
2064 				"PCI VMBus probing: Using version %#x\n",
2065 				pci_protocol_version);
2066 			goto exit;
2067 		}
2068 
2069 		if (comp_pkt.completion_status != STATUS_REVISION_MISMATCH) {
2070 			dev_err(&hdev->device,
2071 				"PCI Pass-through VSP failed version request: %#x",
2072 				comp_pkt.completion_status);
2073 			ret = -EPROTO;
2074 			goto exit;
2075 		}
2076 
2077 		reinit_completion(&comp_pkt.host_event);
2078 	}
2079 
2080 	dev_err(&hdev->device,
2081 		"PCI pass-through VSP failed to find supported version");
2082 	ret = -EPROTO;
2083 
2084 exit:
2085 	kfree(pkt);
2086 	return ret;
2087 }
2088 
2089 /**
2090  * hv_pci_free_bridge_windows() - Release memory regions for the
2091  * bus
2092  * @hbus:	Root PCI bus, as understood by this driver
2093  */
2094 static void hv_pci_free_bridge_windows(struct hv_pcibus_device *hbus)
2095 {
2096 	/*
2097 	 * Set the resources back to the way they looked when they
2098 	 * were allocated by setting IORESOURCE_BUSY again.
2099 	 */
2100 
2101 	if (hbus->low_mmio_space && hbus->low_mmio_res) {
2102 		hbus->low_mmio_res->flags |= IORESOURCE_BUSY;
2103 		vmbus_free_mmio(hbus->low_mmio_res->start,
2104 				resource_size(hbus->low_mmio_res));
2105 	}
2106 
2107 	if (hbus->high_mmio_space && hbus->high_mmio_res) {
2108 		hbus->high_mmio_res->flags |= IORESOURCE_BUSY;
2109 		vmbus_free_mmio(hbus->high_mmio_res->start,
2110 				resource_size(hbus->high_mmio_res));
2111 	}
2112 }
2113 
2114 /**
2115  * hv_pci_allocate_bridge_windows() - Allocate memory regions
2116  * for the bus
2117  * @hbus:	Root PCI bus, as understood by this driver
2118  *
2119  * This function calls vmbus_allocate_mmio(), which is itself a
2120  * bit of a compromise.  Ideally, we might change the pnp layer
2121  * in the kernel such that it comprehends either PCI devices
2122  * which are "grandchildren of ACPI," with some intermediate bus
2123  * node (in this case, VMBus) or change it such that it
2124  * understands VMBus.  The pnp layer, however, has been declared
2125  * deprecated, and not subject to change.
2126  *
2127  * The workaround, implemented here, is to ask VMBus to allocate
2128  * MMIO space for this bus.  VMBus itself knows which ranges are
2129  * appropriate by looking at its own ACPI objects.  Then, after
2130  * these ranges are claimed, they're modified to look like they
2131  * would have looked if the ACPI and pnp code had allocated
2132  * bridge windows.  These descriptors have to exist in this form
2133  * in order to satisfy the code which will get invoked when the
2134  * endpoint PCI function driver calls request_mem_region() or
2135  * request_mem_region_exclusive().
2136  *
2137  * Return: 0 on success, -errno on failure
2138  */
2139 static int hv_pci_allocate_bridge_windows(struct hv_pcibus_device *hbus)
2140 {
2141 	resource_size_t align;
2142 	int ret;
2143 
2144 	if (hbus->low_mmio_space) {
2145 		align = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
2146 		ret = vmbus_allocate_mmio(&hbus->low_mmio_res, hbus->hdev, 0,
2147 					  (u64)(u32)0xffffffff,
2148 					  hbus->low_mmio_space,
2149 					  align, false);
2150 		if (ret) {
2151 			dev_err(&hbus->hdev->device,
2152 				"Need %#llx of low MMIO space. Consider reconfiguring the VM.\n",
2153 				hbus->low_mmio_space);
2154 			return ret;
2155 		}
2156 
2157 		/* Modify this resource to become a bridge window. */
2158 		hbus->low_mmio_res->flags |= IORESOURCE_WINDOW;
2159 		hbus->low_mmio_res->flags &= ~IORESOURCE_BUSY;
2160 		pci_add_resource(&hbus->resources_for_children,
2161 				 hbus->low_mmio_res);
2162 	}
2163 
2164 	if (hbus->high_mmio_space) {
2165 		align = 1ULL << (63 - __builtin_clzll(hbus->high_mmio_space));
2166 		ret = vmbus_allocate_mmio(&hbus->high_mmio_res, hbus->hdev,
2167 					  0x100000000, -1,
2168 					  hbus->high_mmio_space, align,
2169 					  false);
2170 		if (ret) {
2171 			dev_err(&hbus->hdev->device,
2172 				"Need %#llx of high MMIO space. Consider reconfiguring the VM.\n",
2173 				hbus->high_mmio_space);
2174 			goto release_low_mmio;
2175 		}
2176 
2177 		/* Modify this resource to become a bridge window. */
2178 		hbus->high_mmio_res->flags |= IORESOURCE_WINDOW;
2179 		hbus->high_mmio_res->flags &= ~IORESOURCE_BUSY;
2180 		pci_add_resource(&hbus->resources_for_children,
2181 				 hbus->high_mmio_res);
2182 	}
2183 
2184 	return 0;
2185 
2186 release_low_mmio:
2187 	if (hbus->low_mmio_res) {
2188 		vmbus_free_mmio(hbus->low_mmio_res->start,
2189 				resource_size(hbus->low_mmio_res));
2190 	}
2191 
2192 	return ret;
2193 }
2194 
2195 /**
2196  * hv_allocate_config_window() - Find MMIO space for PCI Config
2197  * @hbus:	Root PCI bus, as understood by this driver
2198  *
2199  * This function claims memory-mapped I/O space for accessing
2200  * configuration space for the functions on this bus.
2201  *
2202  * Return: 0 on success, -errno on failure
2203  */
2204 static int hv_allocate_config_window(struct hv_pcibus_device *hbus)
2205 {
2206 	int ret;
2207 
2208 	/*
2209 	 * Set up a region of MMIO space to use for accessing configuration
2210 	 * space.
2211 	 */
2212 	ret = vmbus_allocate_mmio(&hbus->mem_config, hbus->hdev, 0, -1,
2213 				  PCI_CONFIG_MMIO_LENGTH, 0x1000, false);
2214 	if (ret)
2215 		return ret;
2216 
2217 	/*
2218 	 * vmbus_allocate_mmio() gets used for allocating both device endpoint
2219 	 * resource claims (those which cannot be overlapped) and the ranges
2220 	 * which are valid for the children of this bus, which are intended
2221 	 * to be overlapped by those children.  Set the flag on this claim
2222 	 * meaning that this region can't be overlapped.
2223 	 */
2224 
2225 	hbus->mem_config->flags |= IORESOURCE_BUSY;
2226 
2227 	return 0;
2228 }
2229 
2230 static void hv_free_config_window(struct hv_pcibus_device *hbus)
2231 {
2232 	vmbus_free_mmio(hbus->mem_config->start, PCI_CONFIG_MMIO_LENGTH);
2233 }
2234 
2235 /**
2236  * hv_pci_enter_d0() - Bring the "bus" into the D0 power state
2237  * @hdev:	VMBus's tracking struct for this root PCI bus
2238  *
2239  * Return: 0 on success, -errno on failure
2240  */
2241 static int hv_pci_enter_d0(struct hv_device *hdev)
2242 {
2243 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2244 	struct pci_bus_d0_entry *d0_entry;
2245 	struct hv_pci_compl comp_pkt;
2246 	struct pci_packet *pkt;
2247 	int ret;
2248 
2249 	/*
2250 	 * Tell the host that the bus is ready to use, and moved into the
2251 	 * powered-on state.  This includes telling the host which region
2252 	 * of memory-mapped I/O space has been chosen for configuration space
2253 	 * access.
2254 	 */
2255 	pkt = kzalloc(sizeof(*pkt) + sizeof(*d0_entry), GFP_KERNEL);
2256 	if (!pkt)
2257 		return -ENOMEM;
2258 
2259 	init_completion(&comp_pkt.host_event);
2260 	pkt->completion_func = hv_pci_generic_compl;
2261 	pkt->compl_ctxt = &comp_pkt;
2262 	d0_entry = (struct pci_bus_d0_entry *)&pkt->message;
2263 	d0_entry->message_type.type = PCI_BUS_D0ENTRY;
2264 	d0_entry->mmio_base = hbus->mem_config->start;
2265 
2266 	ret = vmbus_sendpacket(hdev->channel, d0_entry, sizeof(*d0_entry),
2267 			       (unsigned long)pkt, VM_PKT_DATA_INBAND,
2268 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2269 	if (!ret)
2270 		ret = wait_for_response(hdev, &comp_pkt.host_event);
2271 
2272 	if (ret)
2273 		goto exit;
2274 
2275 	if (comp_pkt.completion_status < 0) {
2276 		dev_err(&hdev->device,
2277 			"PCI Pass-through VSP failed D0 Entry with status %x\n",
2278 			comp_pkt.completion_status);
2279 		ret = -EPROTO;
2280 		goto exit;
2281 	}
2282 
2283 	ret = 0;
2284 
2285 exit:
2286 	kfree(pkt);
2287 	return ret;
2288 }
2289 
2290 /**
2291  * hv_pci_query_relations() - Ask host to send list of child
2292  * devices
2293  * @hdev:	VMBus's tracking struct for this root PCI bus
2294  *
2295  * Return: 0 on success, -errno on failure
2296  */
2297 static int hv_pci_query_relations(struct hv_device *hdev)
2298 {
2299 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2300 	struct pci_message message;
2301 	struct completion comp;
2302 	int ret;
2303 
2304 	/* Ask the host to send along the list of child devices */
2305 	init_completion(&comp);
2306 	if (cmpxchg(&hbus->survey_event, NULL, &comp))
2307 		return -ENOTEMPTY;
2308 
2309 	memset(&message, 0, sizeof(message));
2310 	message.type = PCI_QUERY_BUS_RELATIONS;
2311 
2312 	ret = vmbus_sendpacket(hdev->channel, &message, sizeof(message),
2313 			       0, VM_PKT_DATA_INBAND, 0);
2314 	if (!ret)
2315 		ret = wait_for_response(hdev, &comp);
2316 
2317 	return ret;
2318 }
2319 
2320 /**
2321  * hv_send_resources_allocated() - Report local resource choices
2322  * @hdev:	VMBus's tracking struct for this root PCI bus
2323  *
2324  * The host OS is expecting to be sent a request as a message
2325  * which contains all the resources that the device will use.
2326  * The response contains those same resources, "translated"
2327  * which is to say, the values which should be used by the
2328  * hardware, when it delivers an interrupt.  (MMIO resources are
2329  * used in local terms.)  This is nice for Windows, and lines up
2330  * with the FDO/PDO split, which doesn't exist in Linux.  Linux
2331  * is deeply expecting to scan an emulated PCI configuration
2332  * space.  So this message is sent here only to drive the state
2333  * machine on the host forward.
2334  *
2335  * Return: 0 on success, -errno on failure
2336  */
2337 static int hv_send_resources_allocated(struct hv_device *hdev)
2338 {
2339 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2340 	struct pci_resources_assigned *res_assigned;
2341 	struct pci_resources_assigned2 *res_assigned2;
2342 	struct hv_pci_compl comp_pkt;
2343 	struct hv_pci_dev *hpdev;
2344 	struct pci_packet *pkt;
2345 	size_t size_res;
2346 	u32 wslot;
2347 	int ret;
2348 
2349 	size_res = (pci_protocol_version < PCI_PROTOCOL_VERSION_1_2)
2350 			? sizeof(*res_assigned) : sizeof(*res_assigned2);
2351 
2352 	pkt = kmalloc(sizeof(*pkt) + size_res, GFP_KERNEL);
2353 	if (!pkt)
2354 		return -ENOMEM;
2355 
2356 	ret = 0;
2357 
2358 	for (wslot = 0; wslot < 256; wslot++) {
2359 		hpdev = get_pcichild_wslot(hbus, wslot);
2360 		if (!hpdev)
2361 			continue;
2362 
2363 		memset(pkt, 0, sizeof(*pkt) + size_res);
2364 		init_completion(&comp_pkt.host_event);
2365 		pkt->completion_func = hv_pci_generic_compl;
2366 		pkt->compl_ctxt = &comp_pkt;
2367 
2368 		if (pci_protocol_version < PCI_PROTOCOL_VERSION_1_2) {
2369 			res_assigned =
2370 				(struct pci_resources_assigned *)&pkt->message;
2371 			res_assigned->message_type.type =
2372 				PCI_RESOURCES_ASSIGNED;
2373 			res_assigned->wslot.slot = hpdev->desc.win_slot.slot;
2374 		} else {
2375 			res_assigned2 =
2376 				(struct pci_resources_assigned2 *)&pkt->message;
2377 			res_assigned2->message_type.type =
2378 				PCI_RESOURCES_ASSIGNED2;
2379 			res_assigned2->wslot.slot = hpdev->desc.win_slot.slot;
2380 		}
2381 		put_pcichild(hpdev);
2382 
2383 		ret = vmbus_sendpacket(hdev->channel, &pkt->message,
2384 				size_res, (unsigned long)pkt,
2385 				VM_PKT_DATA_INBAND,
2386 				VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2387 		if (!ret)
2388 			ret = wait_for_response(hdev, &comp_pkt.host_event);
2389 		if (ret)
2390 			break;
2391 
2392 		if (comp_pkt.completion_status < 0) {
2393 			ret = -EPROTO;
2394 			dev_err(&hdev->device,
2395 				"resource allocated returned 0x%x",
2396 				comp_pkt.completion_status);
2397 			break;
2398 		}
2399 	}
2400 
2401 	kfree(pkt);
2402 	return ret;
2403 }
2404 
2405 /**
2406  * hv_send_resources_released() - Report local resources
2407  * released
2408  * @hdev:	VMBus's tracking struct for this root PCI bus
2409  *
2410  * Return: 0 on success, -errno on failure
2411  */
2412 static int hv_send_resources_released(struct hv_device *hdev)
2413 {
2414 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2415 	struct pci_child_message pkt;
2416 	struct hv_pci_dev *hpdev;
2417 	u32 wslot;
2418 	int ret;
2419 
2420 	for (wslot = 0; wslot < 256; wslot++) {
2421 		hpdev = get_pcichild_wslot(hbus, wslot);
2422 		if (!hpdev)
2423 			continue;
2424 
2425 		memset(&pkt, 0, sizeof(pkt));
2426 		pkt.message_type.type = PCI_RESOURCES_RELEASED;
2427 		pkt.wslot.slot = hpdev->desc.win_slot.slot;
2428 
2429 		put_pcichild(hpdev);
2430 
2431 		ret = vmbus_sendpacket(hdev->channel, &pkt, sizeof(pkt), 0,
2432 				       VM_PKT_DATA_INBAND, 0);
2433 		if (ret)
2434 			return ret;
2435 	}
2436 
2437 	return 0;
2438 }
2439 
2440 static void get_hvpcibus(struct hv_pcibus_device *hbus)
2441 {
2442 	refcount_inc(&hbus->remove_lock);
2443 }
2444 
2445 static void put_hvpcibus(struct hv_pcibus_device *hbus)
2446 {
2447 	if (refcount_dec_and_test(&hbus->remove_lock))
2448 		complete(&hbus->remove_event);
2449 }
2450 
2451 /**
2452  * hv_pci_probe() - New VMBus channel probe, for a root PCI bus
2453  * @hdev:	VMBus's tracking struct for this root PCI bus
2454  * @dev_id:	Identifies the device itself
2455  *
2456  * Return: 0 on success, -errno on failure
2457  */
2458 static int hv_pci_probe(struct hv_device *hdev,
2459 			const struct hv_vmbus_device_id *dev_id)
2460 {
2461 	struct hv_pcibus_device *hbus;
2462 	int ret;
2463 
2464 	/*
2465 	 * hv_pcibus_device contains the hypercall arguments for retargeting in
2466 	 * hv_irq_unmask(). Those must not cross a page boundary.
2467 	 */
2468 	BUILD_BUG_ON(sizeof(*hbus) > PAGE_SIZE);
2469 
2470 	hbus = (struct hv_pcibus_device *)get_zeroed_page(GFP_KERNEL);
2471 	if (!hbus)
2472 		return -ENOMEM;
2473 	hbus->state = hv_pcibus_init;
2474 
2475 	/*
2476 	 * The PCI bus "domain" is what is called "segment" in ACPI and
2477 	 * other specs.  Pull it from the instance ID, to get something
2478 	 * unique.  Bytes 8 and 9 are what is used in Windows guests, so
2479 	 * do the same thing for consistency.  Note that, since this code
2480 	 * only runs in a Hyper-V VM, Hyper-V can (and does) guarantee
2481 	 * that (1) the only domain in use for something that looks like
2482 	 * a physical PCI bus (which is actually emulated by the
2483 	 * hypervisor) is domain 0 and (2) there will be no overlap
2484 	 * between domains derived from these instance IDs in the same
2485 	 * VM.
2486 	 */
2487 	hbus->sysdata.domain = hdev->dev_instance.b[9] |
2488 			       hdev->dev_instance.b[8] << 8;
2489 
2490 	hbus->hdev = hdev;
2491 	refcount_set(&hbus->remove_lock, 1);
2492 	INIT_LIST_HEAD(&hbus->children);
2493 	INIT_LIST_HEAD(&hbus->dr_list);
2494 	INIT_LIST_HEAD(&hbus->resources_for_children);
2495 	spin_lock_init(&hbus->config_lock);
2496 	spin_lock_init(&hbus->device_list_lock);
2497 	spin_lock_init(&hbus->retarget_msi_interrupt_lock);
2498 	init_completion(&hbus->remove_event);
2499 	hbus->wq = alloc_ordered_workqueue("hv_pci_%x", 0,
2500 					   hbus->sysdata.domain);
2501 	if (!hbus->wq) {
2502 		ret = -ENOMEM;
2503 		goto free_bus;
2504 	}
2505 
2506 	ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0,
2507 			 hv_pci_onchannelcallback, hbus);
2508 	if (ret)
2509 		goto destroy_wq;
2510 
2511 	hv_set_drvdata(hdev, hbus);
2512 
2513 	ret = hv_pci_protocol_negotiation(hdev);
2514 	if (ret)
2515 		goto close;
2516 
2517 	ret = hv_allocate_config_window(hbus);
2518 	if (ret)
2519 		goto close;
2520 
2521 	hbus->cfg_addr = ioremap(hbus->mem_config->start,
2522 				 PCI_CONFIG_MMIO_LENGTH);
2523 	if (!hbus->cfg_addr) {
2524 		dev_err(&hdev->device,
2525 			"Unable to map a virtual address for config space\n");
2526 		ret = -ENOMEM;
2527 		goto free_config;
2528 	}
2529 
2530 	hbus->sysdata.fwnode = irq_domain_alloc_fwnode(hbus);
2531 	if (!hbus->sysdata.fwnode) {
2532 		ret = -ENOMEM;
2533 		goto unmap;
2534 	}
2535 
2536 	ret = hv_pcie_init_irq_domain(hbus);
2537 	if (ret)
2538 		goto free_fwnode;
2539 
2540 	ret = hv_pci_query_relations(hdev);
2541 	if (ret)
2542 		goto free_irq_domain;
2543 
2544 	ret = hv_pci_enter_d0(hdev);
2545 	if (ret)
2546 		goto free_irq_domain;
2547 
2548 	ret = hv_pci_allocate_bridge_windows(hbus);
2549 	if (ret)
2550 		goto free_irq_domain;
2551 
2552 	ret = hv_send_resources_allocated(hdev);
2553 	if (ret)
2554 		goto free_windows;
2555 
2556 	prepopulate_bars(hbus);
2557 
2558 	hbus->state = hv_pcibus_probed;
2559 
2560 	ret = create_root_hv_pci_bus(hbus);
2561 	if (ret)
2562 		goto free_windows;
2563 
2564 	return 0;
2565 
2566 free_windows:
2567 	hv_pci_free_bridge_windows(hbus);
2568 free_irq_domain:
2569 	irq_domain_remove(hbus->irq_domain);
2570 free_fwnode:
2571 	irq_domain_free_fwnode(hbus->sysdata.fwnode);
2572 unmap:
2573 	iounmap(hbus->cfg_addr);
2574 free_config:
2575 	hv_free_config_window(hbus);
2576 close:
2577 	vmbus_close(hdev->channel);
2578 destroy_wq:
2579 	destroy_workqueue(hbus->wq);
2580 free_bus:
2581 	free_page((unsigned long)hbus);
2582 	return ret;
2583 }
2584 
2585 static void hv_pci_bus_exit(struct hv_device *hdev)
2586 {
2587 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2588 	struct {
2589 		struct pci_packet teardown_packet;
2590 		u8 buffer[sizeof(struct pci_message)];
2591 	} pkt;
2592 	struct pci_bus_relations relations;
2593 	struct hv_pci_compl comp_pkt;
2594 	int ret;
2595 
2596 	/*
2597 	 * After the host sends the RESCIND_CHANNEL message, it doesn't
2598 	 * access the per-channel ringbuffer any longer.
2599 	 */
2600 	if (hdev->channel->rescind)
2601 		return;
2602 
2603 	/* Delete any children which might still exist. */
2604 	memset(&relations, 0, sizeof(relations));
2605 	hv_pci_devices_present(hbus, &relations);
2606 
2607 	ret = hv_send_resources_released(hdev);
2608 	if (ret)
2609 		dev_err(&hdev->device,
2610 			"Couldn't send resources released packet(s)\n");
2611 
2612 	memset(&pkt.teardown_packet, 0, sizeof(pkt.teardown_packet));
2613 	init_completion(&comp_pkt.host_event);
2614 	pkt.teardown_packet.completion_func = hv_pci_generic_compl;
2615 	pkt.teardown_packet.compl_ctxt = &comp_pkt;
2616 	pkt.teardown_packet.message[0].type = PCI_BUS_D0EXIT;
2617 
2618 	ret = vmbus_sendpacket(hdev->channel, &pkt.teardown_packet.message,
2619 			       sizeof(struct pci_message),
2620 			       (unsigned long)&pkt.teardown_packet,
2621 			       VM_PKT_DATA_INBAND,
2622 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2623 	if (!ret)
2624 		wait_for_completion_timeout(&comp_pkt.host_event, 10 * HZ);
2625 }
2626 
2627 /**
2628  * hv_pci_remove() - Remove routine for this VMBus channel
2629  * @hdev:	VMBus's tracking struct for this root PCI bus
2630  *
2631  * Return: 0 on success, -errno on failure
2632  */
2633 static int hv_pci_remove(struct hv_device *hdev)
2634 {
2635 	struct hv_pcibus_device *hbus;
2636 
2637 	hbus = hv_get_drvdata(hdev);
2638 	if (hbus->state == hv_pcibus_installed) {
2639 		/* Remove the bus from PCI's point of view. */
2640 		pci_lock_rescan_remove();
2641 		pci_stop_root_bus(hbus->pci_bus);
2642 		pci_remove_root_bus(hbus->pci_bus);
2643 		pci_unlock_rescan_remove();
2644 		hbus->state = hv_pcibus_removed;
2645 	}
2646 
2647 	hv_pci_bus_exit(hdev);
2648 
2649 	vmbus_close(hdev->channel);
2650 
2651 	iounmap(hbus->cfg_addr);
2652 	hv_free_config_window(hbus);
2653 	pci_free_resource_list(&hbus->resources_for_children);
2654 	hv_pci_free_bridge_windows(hbus);
2655 	irq_domain_remove(hbus->irq_domain);
2656 	irq_domain_free_fwnode(hbus->sysdata.fwnode);
2657 	put_hvpcibus(hbus);
2658 	wait_for_completion(&hbus->remove_event);
2659 	destroy_workqueue(hbus->wq);
2660 	free_page((unsigned long)hbus);
2661 	return 0;
2662 }
2663 
2664 static const struct hv_vmbus_device_id hv_pci_id_table[] = {
2665 	/* PCI Pass-through Class ID */
2666 	/* 44C4F61D-4444-4400-9D52-802E27EDE19F */
2667 	{ HV_PCIE_GUID, },
2668 	{ },
2669 };
2670 
2671 MODULE_DEVICE_TABLE(vmbus, hv_pci_id_table);
2672 
2673 static struct hv_driver hv_pci_drv = {
2674 	.name		= "hv_pci",
2675 	.id_table	= hv_pci_id_table,
2676 	.probe		= hv_pci_probe,
2677 	.remove		= hv_pci_remove,
2678 };
2679 
2680 static void __exit exit_hv_pci_drv(void)
2681 {
2682 	vmbus_driver_unregister(&hv_pci_drv);
2683 }
2684 
2685 static int __init init_hv_pci_drv(void)
2686 {
2687 	return vmbus_driver_register(&hv_pci_drv);
2688 }
2689 
2690 module_init(init_hv_pci_drv);
2691 module_exit(exit_hv_pci_drv);
2692 
2693 MODULE_DESCRIPTION("Hyper-V PCI");
2694 MODULE_LICENSE("GPL v2");
2695