1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) Microsoft Corporation.
4  *
5  * Author:
6  *   Jake Oshins <jakeo@microsoft.com>
7  *
8  * This driver acts as a paravirtual front-end for PCI Express root buses.
9  * When a PCI Express function (either an entire device or an SR-IOV
10  * Virtual Function) is being passed through to the VM, this driver exposes
11  * a new bus to the guest VM.  This is modeled as a root PCI bus because
12  * no bridges are being exposed to the VM.  In fact, with a "Generation 2"
13  * VM within Hyper-V, there may seem to be no PCI bus at all in the VM
14  * until a device as been exposed using this driver.
15  *
16  * Each root PCI bus has its own PCI domain, which is called "Segment" in
17  * the PCI Firmware Specifications.  Thus while each device passed through
18  * to the VM using this front-end will appear at "device 0", the domain will
19  * be unique.  Typically, each bus will have one PCI function on it, though
20  * this driver does support more than one.
21  *
22  * In order to map the interrupts from the device through to the guest VM,
23  * this driver also implements an IRQ Domain, which handles interrupts (either
24  * MSI or MSI-X) associated with the functions on the bus.  As interrupts are
25  * set up, torn down, or reaffined, this driver communicates with the
26  * underlying hypervisor to adjust the mappings in the I/O MMU so that each
27  * interrupt will be delivered to the correct virtual processor at the right
28  * vector.  This driver does not support level-triggered (line-based)
29  * interrupts, and will report that the Interrupt Line register in the
30  * function's configuration space is zero.
31  *
32  * The rest of this driver mostly maps PCI concepts onto underlying Hyper-V
33  * facilities.  For instance, the configuration space of a function exposed
34  * by Hyper-V is mapped into a single page of memory space, and the
35  * read and write handlers for config space must be aware of this mechanism.
36  * Similarly, device setup and teardown involves messages sent to and from
37  * the PCI back-end driver in Hyper-V.
38  */
39 
40 #include <linux/kernel.h>
41 #include <linux/module.h>
42 #include <linux/pci.h>
43 #include <linux/pci-ecam.h>
44 #include <linux/delay.h>
45 #include <linux/semaphore.h>
46 #include <linux/irqdomain.h>
47 #include <asm/irqdomain.h>
48 #include <asm/apic.h>
49 #include <linux/irq.h>
50 #include <linux/msi.h>
51 #include <linux/hyperv.h>
52 #include <linux/refcount.h>
53 #include <asm/mshyperv.h>
54 
55 /*
56  * Protocol versions. The low word is the minor version, the high word the
57  * major version.
58  */
59 
60 #define PCI_MAKE_VERSION(major, minor) ((u32)(((major) << 16) | (minor)))
61 #define PCI_MAJOR_VERSION(version) ((u32)(version) >> 16)
62 #define PCI_MINOR_VERSION(version) ((u32)(version) & 0xff)
63 
64 enum pci_protocol_version_t {
65 	PCI_PROTOCOL_VERSION_1_1 = PCI_MAKE_VERSION(1, 1),	/* Win10 */
66 	PCI_PROTOCOL_VERSION_1_2 = PCI_MAKE_VERSION(1, 2),	/* RS1 */
67 	PCI_PROTOCOL_VERSION_1_3 = PCI_MAKE_VERSION(1, 3),	/* Vibranium */
68 	PCI_PROTOCOL_VERSION_1_4 = PCI_MAKE_VERSION(1, 4),	/* WS2022 */
69 };
70 
71 #define CPU_AFFINITY_ALL	-1ULL
72 
73 /*
74  * Supported protocol versions in the order of probing - highest go
75  * first.
76  */
77 static enum pci_protocol_version_t pci_protocol_versions[] = {
78 	PCI_PROTOCOL_VERSION_1_4,
79 	PCI_PROTOCOL_VERSION_1_3,
80 	PCI_PROTOCOL_VERSION_1_2,
81 	PCI_PROTOCOL_VERSION_1_1,
82 };
83 
84 #define PCI_CONFIG_MMIO_LENGTH	0x2000
85 #define CFG_PAGE_OFFSET 0x1000
86 #define CFG_PAGE_SIZE (PCI_CONFIG_MMIO_LENGTH - CFG_PAGE_OFFSET)
87 
88 #define MAX_SUPPORTED_MSI_MESSAGES 0x400
89 
90 #define STATUS_REVISION_MISMATCH 0xC0000059
91 
92 /* space for 32bit serial number as string */
93 #define SLOT_NAME_SIZE 11
94 
95 /*
96  * Message Types
97  */
98 
99 enum pci_message_type {
100 	/*
101 	 * Version 1.1
102 	 */
103 	PCI_MESSAGE_BASE                = 0x42490000,
104 	PCI_BUS_RELATIONS               = PCI_MESSAGE_BASE + 0,
105 	PCI_QUERY_BUS_RELATIONS         = PCI_MESSAGE_BASE + 1,
106 	PCI_POWER_STATE_CHANGE          = PCI_MESSAGE_BASE + 4,
107 	PCI_QUERY_RESOURCE_REQUIREMENTS = PCI_MESSAGE_BASE + 5,
108 	PCI_QUERY_RESOURCE_RESOURCES    = PCI_MESSAGE_BASE + 6,
109 	PCI_BUS_D0ENTRY                 = PCI_MESSAGE_BASE + 7,
110 	PCI_BUS_D0EXIT                  = PCI_MESSAGE_BASE + 8,
111 	PCI_READ_BLOCK                  = PCI_MESSAGE_BASE + 9,
112 	PCI_WRITE_BLOCK                 = PCI_MESSAGE_BASE + 0xA,
113 	PCI_EJECT                       = PCI_MESSAGE_BASE + 0xB,
114 	PCI_QUERY_STOP                  = PCI_MESSAGE_BASE + 0xC,
115 	PCI_REENABLE                    = PCI_MESSAGE_BASE + 0xD,
116 	PCI_QUERY_STOP_FAILED           = PCI_MESSAGE_BASE + 0xE,
117 	PCI_EJECTION_COMPLETE           = PCI_MESSAGE_BASE + 0xF,
118 	PCI_RESOURCES_ASSIGNED          = PCI_MESSAGE_BASE + 0x10,
119 	PCI_RESOURCES_RELEASED          = PCI_MESSAGE_BASE + 0x11,
120 	PCI_INVALIDATE_BLOCK            = PCI_MESSAGE_BASE + 0x12,
121 	PCI_QUERY_PROTOCOL_VERSION      = PCI_MESSAGE_BASE + 0x13,
122 	PCI_CREATE_INTERRUPT_MESSAGE    = PCI_MESSAGE_BASE + 0x14,
123 	PCI_DELETE_INTERRUPT_MESSAGE    = PCI_MESSAGE_BASE + 0x15,
124 	PCI_RESOURCES_ASSIGNED2		= PCI_MESSAGE_BASE + 0x16,
125 	PCI_CREATE_INTERRUPT_MESSAGE2	= PCI_MESSAGE_BASE + 0x17,
126 	PCI_DELETE_INTERRUPT_MESSAGE2	= PCI_MESSAGE_BASE + 0x18, /* unused */
127 	PCI_BUS_RELATIONS2		= PCI_MESSAGE_BASE + 0x19,
128 	PCI_RESOURCES_ASSIGNED3         = PCI_MESSAGE_BASE + 0x1A,
129 	PCI_CREATE_INTERRUPT_MESSAGE3   = PCI_MESSAGE_BASE + 0x1B,
130 	PCI_MESSAGE_MAXIMUM
131 };
132 
133 /*
134  * Structures defining the virtual PCI Express protocol.
135  */
136 
137 union pci_version {
138 	struct {
139 		u16 minor_version;
140 		u16 major_version;
141 	} parts;
142 	u32 version;
143 } __packed;
144 
145 /*
146  * Function numbers are 8-bits wide on Express, as interpreted through ARI,
147  * which is all this driver does.  This representation is the one used in
148  * Windows, which is what is expected when sending this back and forth with
149  * the Hyper-V parent partition.
150  */
151 union win_slot_encoding {
152 	struct {
153 		u32	dev:5;
154 		u32	func:3;
155 		u32	reserved:24;
156 	} bits;
157 	u32 slot;
158 } __packed;
159 
160 /*
161  * Pretty much as defined in the PCI Specifications.
162  */
163 struct pci_function_description {
164 	u16	v_id;	/* vendor ID */
165 	u16	d_id;	/* device ID */
166 	u8	rev;
167 	u8	prog_intf;
168 	u8	subclass;
169 	u8	base_class;
170 	u32	subsystem_id;
171 	union win_slot_encoding win_slot;
172 	u32	ser;	/* serial number */
173 } __packed;
174 
175 enum pci_device_description_flags {
176 	HV_PCI_DEVICE_FLAG_NONE			= 0x0,
177 	HV_PCI_DEVICE_FLAG_NUMA_AFFINITY	= 0x1,
178 };
179 
180 struct pci_function_description2 {
181 	u16	v_id;	/* vendor ID */
182 	u16	d_id;	/* device ID */
183 	u8	rev;
184 	u8	prog_intf;
185 	u8	subclass;
186 	u8	base_class;
187 	u32	subsystem_id;
188 	union	win_slot_encoding win_slot;
189 	u32	ser;	/* serial number */
190 	u32	flags;
191 	u16	virtual_numa_node;
192 	u16	reserved;
193 } __packed;
194 
195 /**
196  * struct hv_msi_desc
197  * @vector:		IDT entry
198  * @delivery_mode:	As defined in Intel's Programmer's
199  *			Reference Manual, Volume 3, Chapter 8.
200  * @vector_count:	Number of contiguous entries in the
201  *			Interrupt Descriptor Table that are
202  *			occupied by this Message-Signaled
203  *			Interrupt. For "MSI", as first defined
204  *			in PCI 2.2, this can be between 1 and
205  *			32. For "MSI-X," as first defined in PCI
206  *			3.0, this must be 1, as each MSI-X table
207  *			entry would have its own descriptor.
208  * @reserved:		Empty space
209  * @cpu_mask:		All the target virtual processors.
210  */
211 struct hv_msi_desc {
212 	u8	vector;
213 	u8	delivery_mode;
214 	u16	vector_count;
215 	u32	reserved;
216 	u64	cpu_mask;
217 } __packed;
218 
219 /**
220  * struct hv_msi_desc2 - 1.2 version of hv_msi_desc
221  * @vector:		IDT entry
222  * @delivery_mode:	As defined in Intel's Programmer's
223  *			Reference Manual, Volume 3, Chapter 8.
224  * @vector_count:	Number of contiguous entries in the
225  *			Interrupt Descriptor Table that are
226  *			occupied by this Message-Signaled
227  *			Interrupt. For "MSI", as first defined
228  *			in PCI 2.2, this can be between 1 and
229  *			32. For "MSI-X," as first defined in PCI
230  *			3.0, this must be 1, as each MSI-X table
231  *			entry would have its own descriptor.
232  * @processor_count:	number of bits enabled in array.
233  * @processor_array:	All the target virtual processors.
234  */
235 struct hv_msi_desc2 {
236 	u8	vector;
237 	u8	delivery_mode;
238 	u16	vector_count;
239 	u16	processor_count;
240 	u16	processor_array[32];
241 } __packed;
242 
243 /*
244  * struct hv_msi_desc3 - 1.3 version of hv_msi_desc
245  *	Everything is the same as in 'hv_msi_desc2' except that the size of the
246  *	'vector' field is larger to support bigger vector values. For ex: LPI
247  *	vectors on ARM.
248  */
249 struct hv_msi_desc3 {
250 	u32	vector;
251 	u8	delivery_mode;
252 	u8	reserved;
253 	u16	vector_count;
254 	u16	processor_count;
255 	u16	processor_array[32];
256 } __packed;
257 
258 /**
259  * struct tran_int_desc
260  * @reserved:		unused, padding
261  * @vector_count:	same as in hv_msi_desc
262  * @data:		This is the "data payload" value that is
263  *			written by the device when it generates
264  *			a message-signaled interrupt, either MSI
265  *			or MSI-X.
266  * @address:		This is the address to which the data
267  *			payload is written on interrupt
268  *			generation.
269  */
270 struct tran_int_desc {
271 	u16	reserved;
272 	u16	vector_count;
273 	u32	data;
274 	u64	address;
275 } __packed;
276 
277 /*
278  * A generic message format for virtual PCI.
279  * Specific message formats are defined later in the file.
280  */
281 
282 struct pci_message {
283 	u32 type;
284 } __packed;
285 
286 struct pci_child_message {
287 	struct pci_message message_type;
288 	union win_slot_encoding wslot;
289 } __packed;
290 
291 struct pci_incoming_message {
292 	struct vmpacket_descriptor hdr;
293 	struct pci_message message_type;
294 } __packed;
295 
296 struct pci_response {
297 	struct vmpacket_descriptor hdr;
298 	s32 status;			/* negative values are failures */
299 } __packed;
300 
301 struct pci_packet {
302 	void (*completion_func)(void *context, struct pci_response *resp,
303 				int resp_packet_size);
304 	void *compl_ctxt;
305 
306 	struct pci_message message[];
307 };
308 
309 /*
310  * Specific message types supporting the PCI protocol.
311  */
312 
313 /*
314  * Version negotiation message. Sent from the guest to the host.
315  * The guest is free to try different versions until the host
316  * accepts the version.
317  *
318  * pci_version: The protocol version requested.
319  * is_last_attempt: If TRUE, this is the last version guest will request.
320  * reservedz: Reserved field, set to zero.
321  */
322 
323 struct pci_version_request {
324 	struct pci_message message_type;
325 	u32 protocol_version;
326 } __packed;
327 
328 /*
329  * Bus D0 Entry.  This is sent from the guest to the host when the virtual
330  * bus (PCI Express port) is ready for action.
331  */
332 
333 struct pci_bus_d0_entry {
334 	struct pci_message message_type;
335 	u32 reserved;
336 	u64 mmio_base;
337 } __packed;
338 
339 struct pci_bus_relations {
340 	struct pci_incoming_message incoming;
341 	u32 device_count;
342 	struct pci_function_description func[];
343 } __packed;
344 
345 struct pci_bus_relations2 {
346 	struct pci_incoming_message incoming;
347 	u32 device_count;
348 	struct pci_function_description2 func[];
349 } __packed;
350 
351 struct pci_q_res_req_response {
352 	struct vmpacket_descriptor hdr;
353 	s32 status;			/* negative values are failures */
354 	u32 probed_bar[PCI_STD_NUM_BARS];
355 } __packed;
356 
357 struct pci_set_power {
358 	struct pci_message message_type;
359 	union win_slot_encoding wslot;
360 	u32 power_state;		/* In Windows terms */
361 	u32 reserved;
362 } __packed;
363 
364 struct pci_set_power_response {
365 	struct vmpacket_descriptor hdr;
366 	s32 status;			/* negative values are failures */
367 	union win_slot_encoding wslot;
368 	u32 resultant_state;		/* In Windows terms */
369 	u32 reserved;
370 } __packed;
371 
372 struct pci_resources_assigned {
373 	struct pci_message message_type;
374 	union win_slot_encoding wslot;
375 	u8 memory_range[0x14][6];	/* not used here */
376 	u32 msi_descriptors;
377 	u32 reserved[4];
378 } __packed;
379 
380 struct pci_resources_assigned2 {
381 	struct pci_message message_type;
382 	union win_slot_encoding wslot;
383 	u8 memory_range[0x14][6];	/* not used here */
384 	u32 msi_descriptor_count;
385 	u8 reserved[70];
386 } __packed;
387 
388 struct pci_create_interrupt {
389 	struct pci_message message_type;
390 	union win_slot_encoding wslot;
391 	struct hv_msi_desc int_desc;
392 } __packed;
393 
394 struct pci_create_int_response {
395 	struct pci_response response;
396 	u32 reserved;
397 	struct tran_int_desc int_desc;
398 } __packed;
399 
400 struct pci_create_interrupt2 {
401 	struct pci_message message_type;
402 	union win_slot_encoding wslot;
403 	struct hv_msi_desc2 int_desc;
404 } __packed;
405 
406 struct pci_create_interrupt3 {
407 	struct pci_message message_type;
408 	union win_slot_encoding wslot;
409 	struct hv_msi_desc3 int_desc;
410 } __packed;
411 
412 struct pci_delete_interrupt {
413 	struct pci_message message_type;
414 	union win_slot_encoding wslot;
415 	struct tran_int_desc int_desc;
416 } __packed;
417 
418 /*
419  * Note: the VM must pass a valid block id, wslot and bytes_requested.
420  */
421 struct pci_read_block {
422 	struct pci_message message_type;
423 	u32 block_id;
424 	union win_slot_encoding wslot;
425 	u32 bytes_requested;
426 } __packed;
427 
428 struct pci_read_block_response {
429 	struct vmpacket_descriptor hdr;
430 	u32 status;
431 	u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX];
432 } __packed;
433 
434 /*
435  * Note: the VM must pass a valid block id, wslot and byte_count.
436  */
437 struct pci_write_block {
438 	struct pci_message message_type;
439 	u32 block_id;
440 	union win_slot_encoding wslot;
441 	u32 byte_count;
442 	u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX];
443 } __packed;
444 
445 struct pci_dev_inval_block {
446 	struct pci_incoming_message incoming;
447 	union win_slot_encoding wslot;
448 	u64 block_mask;
449 } __packed;
450 
451 struct pci_dev_incoming {
452 	struct pci_incoming_message incoming;
453 	union win_slot_encoding wslot;
454 } __packed;
455 
456 struct pci_eject_response {
457 	struct pci_message message_type;
458 	union win_slot_encoding wslot;
459 	u32 status;
460 } __packed;
461 
462 static int pci_ring_size = (4 * PAGE_SIZE);
463 
464 /*
465  * Driver specific state.
466  */
467 
468 enum hv_pcibus_state {
469 	hv_pcibus_init = 0,
470 	hv_pcibus_probed,
471 	hv_pcibus_installed,
472 	hv_pcibus_removing,
473 	hv_pcibus_maximum
474 };
475 
476 struct hv_pcibus_device {
477 #ifdef CONFIG_X86
478 	struct pci_sysdata sysdata;
479 #elif defined(CONFIG_ARM64)
480 	struct pci_config_window sysdata;
481 #endif
482 	struct pci_host_bridge *bridge;
483 	struct fwnode_handle *fwnode;
484 	/* Protocol version negotiated with the host */
485 	enum pci_protocol_version_t protocol_version;
486 	enum hv_pcibus_state state;
487 	struct hv_device *hdev;
488 	resource_size_t low_mmio_space;
489 	resource_size_t high_mmio_space;
490 	struct resource *mem_config;
491 	struct resource *low_mmio_res;
492 	struct resource *high_mmio_res;
493 	struct completion *survey_event;
494 	struct pci_bus *pci_bus;
495 	spinlock_t config_lock;	/* Avoid two threads writing index page */
496 	spinlock_t device_list_lock;	/* Protect lists below */
497 	void __iomem *cfg_addr;
498 
499 	struct list_head children;
500 	struct list_head dr_list;
501 
502 	struct msi_domain_info msi_info;
503 	struct irq_domain *irq_domain;
504 
505 	spinlock_t retarget_msi_interrupt_lock;
506 
507 	struct workqueue_struct *wq;
508 
509 	/* Highest slot of child device with resources allocated */
510 	int wslot_res_allocated;
511 
512 	/* hypercall arg, must not cross page boundary */
513 	struct hv_retarget_device_interrupt retarget_msi_interrupt_params;
514 
515 	/*
516 	 * Don't put anything here: retarget_msi_interrupt_params must be last
517 	 */
518 };
519 
520 /*
521  * Tracks "Device Relations" messages from the host, which must be both
522  * processed in order and deferred so that they don't run in the context
523  * of the incoming packet callback.
524  */
525 struct hv_dr_work {
526 	struct work_struct wrk;
527 	struct hv_pcibus_device *bus;
528 };
529 
530 struct hv_pcidev_description {
531 	u16	v_id;	/* vendor ID */
532 	u16	d_id;	/* device ID */
533 	u8	rev;
534 	u8	prog_intf;
535 	u8	subclass;
536 	u8	base_class;
537 	u32	subsystem_id;
538 	union	win_slot_encoding win_slot;
539 	u32	ser;	/* serial number */
540 	u32	flags;
541 	u16	virtual_numa_node;
542 };
543 
544 struct hv_dr_state {
545 	struct list_head list_entry;
546 	u32 device_count;
547 	struct hv_pcidev_description func[];
548 };
549 
550 enum hv_pcichild_state {
551 	hv_pcichild_init = 0,
552 	hv_pcichild_requirements,
553 	hv_pcichild_resourced,
554 	hv_pcichild_ejecting,
555 	hv_pcichild_maximum
556 };
557 
558 struct hv_pci_dev {
559 	/* List protected by pci_rescan_remove_lock */
560 	struct list_head list_entry;
561 	refcount_t refs;
562 	enum hv_pcichild_state state;
563 	struct pci_slot *pci_slot;
564 	struct hv_pcidev_description desc;
565 	bool reported_missing;
566 	struct hv_pcibus_device *hbus;
567 	struct work_struct wrk;
568 
569 	void (*block_invalidate)(void *context, u64 block_mask);
570 	void *invalidate_context;
571 
572 	/*
573 	 * What would be observed if one wrote 0xFFFFFFFF to a BAR and then
574 	 * read it back, for each of the BAR offsets within config space.
575 	 */
576 	u32 probed_bar[PCI_STD_NUM_BARS];
577 };
578 
579 struct hv_pci_compl {
580 	struct completion host_event;
581 	s32 completion_status;
582 };
583 
584 static void hv_pci_onchannelcallback(void *context);
585 
586 /**
587  * hv_pci_generic_compl() - Invoked for a completion packet
588  * @context:		Set up by the sender of the packet.
589  * @resp:		The response packet
590  * @resp_packet_size:	Size in bytes of the packet
591  *
592  * This function is used to trigger an event and report status
593  * for any message for which the completion packet contains a
594  * status and nothing else.
595  */
596 static void hv_pci_generic_compl(void *context, struct pci_response *resp,
597 				 int resp_packet_size)
598 {
599 	struct hv_pci_compl *comp_pkt = context;
600 
601 	if (resp_packet_size >= offsetofend(struct pci_response, status))
602 		comp_pkt->completion_status = resp->status;
603 	else
604 		comp_pkt->completion_status = -1;
605 
606 	complete(&comp_pkt->host_event);
607 }
608 
609 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
610 						u32 wslot);
611 
612 static void get_pcichild(struct hv_pci_dev *hpdev)
613 {
614 	refcount_inc(&hpdev->refs);
615 }
616 
617 static void put_pcichild(struct hv_pci_dev *hpdev)
618 {
619 	if (refcount_dec_and_test(&hpdev->refs))
620 		kfree(hpdev);
621 }
622 
623 /*
624  * There is no good way to get notified from vmbus_onoffer_rescind(),
625  * so let's use polling here, since this is not a hot path.
626  */
627 static int wait_for_response(struct hv_device *hdev,
628 			     struct completion *comp)
629 {
630 	while (true) {
631 		if (hdev->channel->rescind) {
632 			dev_warn_once(&hdev->device, "The device is gone.\n");
633 			return -ENODEV;
634 		}
635 
636 		if (wait_for_completion_timeout(comp, HZ / 10))
637 			break;
638 	}
639 
640 	return 0;
641 }
642 
643 /**
644  * devfn_to_wslot() - Convert from Linux PCI slot to Windows
645  * @devfn:	The Linux representation of PCI slot
646  *
647  * Windows uses a slightly different representation of PCI slot.
648  *
649  * Return: The Windows representation
650  */
651 static u32 devfn_to_wslot(int devfn)
652 {
653 	union win_slot_encoding wslot;
654 
655 	wslot.slot = 0;
656 	wslot.bits.dev = PCI_SLOT(devfn);
657 	wslot.bits.func = PCI_FUNC(devfn);
658 
659 	return wslot.slot;
660 }
661 
662 /**
663  * wslot_to_devfn() - Convert from Windows PCI slot to Linux
664  * @wslot:	The Windows representation of PCI slot
665  *
666  * Windows uses a slightly different representation of PCI slot.
667  *
668  * Return: The Linux representation
669  */
670 static int wslot_to_devfn(u32 wslot)
671 {
672 	union win_slot_encoding slot_no;
673 
674 	slot_no.slot = wslot;
675 	return PCI_DEVFN(slot_no.bits.dev, slot_no.bits.func);
676 }
677 
678 /*
679  * PCI Configuration Space for these root PCI buses is implemented as a pair
680  * of pages in memory-mapped I/O space.  Writing to the first page chooses
681  * the PCI function being written or read.  Once the first page has been
682  * written to, the following page maps in the entire configuration space of
683  * the function.
684  */
685 
686 /**
687  * _hv_pcifront_read_config() - Internal PCI config read
688  * @hpdev:	The PCI driver's representation of the device
689  * @where:	Offset within config space
690  * @size:	Size of the transfer
691  * @val:	Pointer to the buffer receiving the data
692  */
693 static void _hv_pcifront_read_config(struct hv_pci_dev *hpdev, int where,
694 				     int size, u32 *val)
695 {
696 	unsigned long flags;
697 	void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where;
698 
699 	/*
700 	 * If the attempt is to read the IDs or the ROM BAR, simulate that.
701 	 */
702 	if (where + size <= PCI_COMMAND) {
703 		memcpy(val, ((u8 *)&hpdev->desc.v_id) + where, size);
704 	} else if (where >= PCI_CLASS_REVISION && where + size <=
705 		   PCI_CACHE_LINE_SIZE) {
706 		memcpy(val, ((u8 *)&hpdev->desc.rev) + where -
707 		       PCI_CLASS_REVISION, size);
708 	} else if (where >= PCI_SUBSYSTEM_VENDOR_ID && where + size <=
709 		   PCI_ROM_ADDRESS) {
710 		memcpy(val, (u8 *)&hpdev->desc.subsystem_id + where -
711 		       PCI_SUBSYSTEM_VENDOR_ID, size);
712 	} else if (where >= PCI_ROM_ADDRESS && where + size <=
713 		   PCI_CAPABILITY_LIST) {
714 		/* ROM BARs are unimplemented */
715 		*val = 0;
716 	} else if (where >= PCI_INTERRUPT_LINE && where + size <=
717 		   PCI_INTERRUPT_PIN) {
718 		/*
719 		 * Interrupt Line and Interrupt PIN are hard-wired to zero
720 		 * because this front-end only supports message-signaled
721 		 * interrupts.
722 		 */
723 		*val = 0;
724 	} else if (where + size <= CFG_PAGE_SIZE) {
725 		spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
726 		/* Choose the function to be read. (See comment above) */
727 		writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
728 		/* Make sure the function was chosen before we start reading. */
729 		mb();
730 		/* Read from that function's config space. */
731 		switch (size) {
732 		case 1:
733 			*val = readb(addr);
734 			break;
735 		case 2:
736 			*val = readw(addr);
737 			break;
738 		default:
739 			*val = readl(addr);
740 			break;
741 		}
742 		/*
743 		 * Make sure the read was done before we release the spinlock
744 		 * allowing consecutive reads/writes.
745 		 */
746 		mb();
747 		spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
748 	} else {
749 		dev_err(&hpdev->hbus->hdev->device,
750 			"Attempt to read beyond a function's config space.\n");
751 	}
752 }
753 
754 static u16 hv_pcifront_get_vendor_id(struct hv_pci_dev *hpdev)
755 {
756 	u16 ret;
757 	unsigned long flags;
758 	void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET +
759 			     PCI_VENDOR_ID;
760 
761 	spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
762 
763 	/* Choose the function to be read. (See comment above) */
764 	writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
765 	/* Make sure the function was chosen before we start reading. */
766 	mb();
767 	/* Read from that function's config space. */
768 	ret = readw(addr);
769 	/*
770 	 * mb() is not required here, because the spin_unlock_irqrestore()
771 	 * is a barrier.
772 	 */
773 
774 	spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
775 
776 	return ret;
777 }
778 
779 /**
780  * _hv_pcifront_write_config() - Internal PCI config write
781  * @hpdev:	The PCI driver's representation of the device
782  * @where:	Offset within config space
783  * @size:	Size of the transfer
784  * @val:	The data being transferred
785  */
786 static void _hv_pcifront_write_config(struct hv_pci_dev *hpdev, int where,
787 				      int size, u32 val)
788 {
789 	unsigned long flags;
790 	void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where;
791 
792 	if (where >= PCI_SUBSYSTEM_VENDOR_ID &&
793 	    where + size <= PCI_CAPABILITY_LIST) {
794 		/* SSIDs and ROM BARs are read-only */
795 	} else if (where >= PCI_COMMAND && where + size <= CFG_PAGE_SIZE) {
796 		spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
797 		/* Choose the function to be written. (See comment above) */
798 		writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
799 		/* Make sure the function was chosen before we start writing. */
800 		wmb();
801 		/* Write to that function's config space. */
802 		switch (size) {
803 		case 1:
804 			writeb(val, addr);
805 			break;
806 		case 2:
807 			writew(val, addr);
808 			break;
809 		default:
810 			writel(val, addr);
811 			break;
812 		}
813 		/*
814 		 * Make sure the write was done before we release the spinlock
815 		 * allowing consecutive reads/writes.
816 		 */
817 		mb();
818 		spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
819 	} else {
820 		dev_err(&hpdev->hbus->hdev->device,
821 			"Attempt to write beyond a function's config space.\n");
822 	}
823 }
824 
825 /**
826  * hv_pcifront_read_config() - Read configuration space
827  * @bus: PCI Bus structure
828  * @devfn: Device/function
829  * @where: Offset from base
830  * @size: Byte/word/dword
831  * @val: Value to be read
832  *
833  * Return: PCIBIOS_SUCCESSFUL on success
834  *	   PCIBIOS_DEVICE_NOT_FOUND on failure
835  */
836 static int hv_pcifront_read_config(struct pci_bus *bus, unsigned int devfn,
837 				   int where, int size, u32 *val)
838 {
839 	struct hv_pcibus_device *hbus =
840 		container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
841 	struct hv_pci_dev *hpdev;
842 
843 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
844 	if (!hpdev)
845 		return PCIBIOS_DEVICE_NOT_FOUND;
846 
847 	_hv_pcifront_read_config(hpdev, where, size, val);
848 
849 	put_pcichild(hpdev);
850 	return PCIBIOS_SUCCESSFUL;
851 }
852 
853 /**
854  * hv_pcifront_write_config() - Write configuration space
855  * @bus: PCI Bus structure
856  * @devfn: Device/function
857  * @where: Offset from base
858  * @size: Byte/word/dword
859  * @val: Value to be written to device
860  *
861  * Return: PCIBIOS_SUCCESSFUL on success
862  *	   PCIBIOS_DEVICE_NOT_FOUND on failure
863  */
864 static int hv_pcifront_write_config(struct pci_bus *bus, unsigned int devfn,
865 				    int where, int size, u32 val)
866 {
867 	struct hv_pcibus_device *hbus =
868 	    container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
869 	struct hv_pci_dev *hpdev;
870 
871 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
872 	if (!hpdev)
873 		return PCIBIOS_DEVICE_NOT_FOUND;
874 
875 	_hv_pcifront_write_config(hpdev, where, size, val);
876 
877 	put_pcichild(hpdev);
878 	return PCIBIOS_SUCCESSFUL;
879 }
880 
881 /* PCIe operations */
882 static struct pci_ops hv_pcifront_ops = {
883 	.read  = hv_pcifront_read_config,
884 	.write = hv_pcifront_write_config,
885 };
886 
887 /*
888  * Paravirtual backchannel
889  *
890  * Hyper-V SR-IOV provides a backchannel mechanism in software for
891  * communication between a VF driver and a PF driver.  These
892  * "configuration blocks" are similar in concept to PCI configuration space,
893  * but instead of doing reads and writes in 32-bit chunks through a very slow
894  * path, packets of up to 128 bytes can be sent or received asynchronously.
895  *
896  * Nearly every SR-IOV device contains just such a communications channel in
897  * hardware, so using this one in software is usually optional.  Using the
898  * software channel, however, allows driver implementers to leverage software
899  * tools that fuzz the communications channel looking for vulnerabilities.
900  *
901  * The usage model for these packets puts the responsibility for reading or
902  * writing on the VF driver.  The VF driver sends a read or a write packet,
903  * indicating which "block" is being referred to by number.
904  *
905  * If the PF driver wishes to initiate communication, it can "invalidate" one or
906  * more of the first 64 blocks.  This invalidation is delivered via a callback
907  * supplied by the VF driver by this driver.
908  *
909  * No protocol is implied, except that supplied by the PF and VF drivers.
910  */
911 
912 struct hv_read_config_compl {
913 	struct hv_pci_compl comp_pkt;
914 	void *buf;
915 	unsigned int len;
916 	unsigned int bytes_returned;
917 };
918 
919 /**
920  * hv_pci_read_config_compl() - Invoked when a response packet
921  * for a read config block operation arrives.
922  * @context:		Identifies the read config operation
923  * @resp:		The response packet itself
924  * @resp_packet_size:	Size in bytes of the response packet
925  */
926 static void hv_pci_read_config_compl(void *context, struct pci_response *resp,
927 				     int resp_packet_size)
928 {
929 	struct hv_read_config_compl *comp = context;
930 	struct pci_read_block_response *read_resp =
931 		(struct pci_read_block_response *)resp;
932 	unsigned int data_len, hdr_len;
933 
934 	hdr_len = offsetof(struct pci_read_block_response, bytes);
935 	if (resp_packet_size < hdr_len) {
936 		comp->comp_pkt.completion_status = -1;
937 		goto out;
938 	}
939 
940 	data_len = resp_packet_size - hdr_len;
941 	if (data_len > 0 && read_resp->status == 0) {
942 		comp->bytes_returned = min(comp->len, data_len);
943 		memcpy(comp->buf, read_resp->bytes, comp->bytes_returned);
944 	} else {
945 		comp->bytes_returned = 0;
946 	}
947 
948 	comp->comp_pkt.completion_status = read_resp->status;
949 out:
950 	complete(&comp->comp_pkt.host_event);
951 }
952 
953 /**
954  * hv_read_config_block() - Sends a read config block request to
955  * the back-end driver running in the Hyper-V parent partition.
956  * @pdev:		The PCI driver's representation for this device.
957  * @buf:		Buffer into which the config block will be copied.
958  * @len:		Size in bytes of buf.
959  * @block_id:		Identifies the config block which has been requested.
960  * @bytes_returned:	Size which came back from the back-end driver.
961  *
962  * Return: 0 on success, -errno on failure
963  */
964 static int hv_read_config_block(struct pci_dev *pdev, void *buf,
965 				unsigned int len, unsigned int block_id,
966 				unsigned int *bytes_returned)
967 {
968 	struct hv_pcibus_device *hbus =
969 		container_of(pdev->bus->sysdata, struct hv_pcibus_device,
970 			     sysdata);
971 	struct {
972 		struct pci_packet pkt;
973 		char buf[sizeof(struct pci_read_block)];
974 	} pkt;
975 	struct hv_read_config_compl comp_pkt;
976 	struct pci_read_block *read_blk;
977 	int ret;
978 
979 	if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX)
980 		return -EINVAL;
981 
982 	init_completion(&comp_pkt.comp_pkt.host_event);
983 	comp_pkt.buf = buf;
984 	comp_pkt.len = len;
985 
986 	memset(&pkt, 0, sizeof(pkt));
987 	pkt.pkt.completion_func = hv_pci_read_config_compl;
988 	pkt.pkt.compl_ctxt = &comp_pkt;
989 	read_blk = (struct pci_read_block *)&pkt.pkt.message;
990 	read_blk->message_type.type = PCI_READ_BLOCK;
991 	read_blk->wslot.slot = devfn_to_wslot(pdev->devfn);
992 	read_blk->block_id = block_id;
993 	read_blk->bytes_requested = len;
994 
995 	ret = vmbus_sendpacket(hbus->hdev->channel, read_blk,
996 			       sizeof(*read_blk), (unsigned long)&pkt.pkt,
997 			       VM_PKT_DATA_INBAND,
998 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
999 	if (ret)
1000 		return ret;
1001 
1002 	ret = wait_for_response(hbus->hdev, &comp_pkt.comp_pkt.host_event);
1003 	if (ret)
1004 		return ret;
1005 
1006 	if (comp_pkt.comp_pkt.completion_status != 0 ||
1007 	    comp_pkt.bytes_returned == 0) {
1008 		dev_err(&hbus->hdev->device,
1009 			"Read Config Block failed: 0x%x, bytes_returned=%d\n",
1010 			comp_pkt.comp_pkt.completion_status,
1011 			comp_pkt.bytes_returned);
1012 		return -EIO;
1013 	}
1014 
1015 	*bytes_returned = comp_pkt.bytes_returned;
1016 	return 0;
1017 }
1018 
1019 /**
1020  * hv_pci_write_config_compl() - Invoked when a response packet for a write
1021  * config block operation arrives.
1022  * @context:		Identifies the write config operation
1023  * @resp:		The response packet itself
1024  * @resp_packet_size:	Size in bytes of the response packet
1025  */
1026 static void hv_pci_write_config_compl(void *context, struct pci_response *resp,
1027 				      int resp_packet_size)
1028 {
1029 	struct hv_pci_compl *comp_pkt = context;
1030 
1031 	comp_pkt->completion_status = resp->status;
1032 	complete(&comp_pkt->host_event);
1033 }
1034 
1035 /**
1036  * hv_write_config_block() - Sends a write config block request to the
1037  * back-end driver running in the Hyper-V parent partition.
1038  * @pdev:		The PCI driver's representation for this device.
1039  * @buf:		Buffer from which the config block will	be copied.
1040  * @len:		Size in bytes of buf.
1041  * @block_id:		Identifies the config block which is being written.
1042  *
1043  * Return: 0 on success, -errno on failure
1044  */
1045 static int hv_write_config_block(struct pci_dev *pdev, void *buf,
1046 				unsigned int len, unsigned int block_id)
1047 {
1048 	struct hv_pcibus_device *hbus =
1049 		container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1050 			     sysdata);
1051 	struct {
1052 		struct pci_packet pkt;
1053 		char buf[sizeof(struct pci_write_block)];
1054 		u32 reserved;
1055 	} pkt;
1056 	struct hv_pci_compl comp_pkt;
1057 	struct pci_write_block *write_blk;
1058 	u32 pkt_size;
1059 	int ret;
1060 
1061 	if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX)
1062 		return -EINVAL;
1063 
1064 	init_completion(&comp_pkt.host_event);
1065 
1066 	memset(&pkt, 0, sizeof(pkt));
1067 	pkt.pkt.completion_func = hv_pci_write_config_compl;
1068 	pkt.pkt.compl_ctxt = &comp_pkt;
1069 	write_blk = (struct pci_write_block *)&pkt.pkt.message;
1070 	write_blk->message_type.type = PCI_WRITE_BLOCK;
1071 	write_blk->wslot.slot = devfn_to_wslot(pdev->devfn);
1072 	write_blk->block_id = block_id;
1073 	write_blk->byte_count = len;
1074 	memcpy(write_blk->bytes, buf, len);
1075 	pkt_size = offsetof(struct pci_write_block, bytes) + len;
1076 	/*
1077 	 * This quirk is required on some hosts shipped around 2018, because
1078 	 * these hosts don't check the pkt_size correctly (new hosts have been
1079 	 * fixed since early 2019). The quirk is also safe on very old hosts
1080 	 * and new hosts, because, on them, what really matters is the length
1081 	 * specified in write_blk->byte_count.
1082 	 */
1083 	pkt_size += sizeof(pkt.reserved);
1084 
1085 	ret = vmbus_sendpacket(hbus->hdev->channel, write_blk, pkt_size,
1086 			       (unsigned long)&pkt.pkt, VM_PKT_DATA_INBAND,
1087 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1088 	if (ret)
1089 		return ret;
1090 
1091 	ret = wait_for_response(hbus->hdev, &comp_pkt.host_event);
1092 	if (ret)
1093 		return ret;
1094 
1095 	if (comp_pkt.completion_status != 0) {
1096 		dev_err(&hbus->hdev->device,
1097 			"Write Config Block failed: 0x%x\n",
1098 			comp_pkt.completion_status);
1099 		return -EIO;
1100 	}
1101 
1102 	return 0;
1103 }
1104 
1105 /**
1106  * hv_register_block_invalidate() - Invoked when a config block invalidation
1107  * arrives from the back-end driver.
1108  * @pdev:		The PCI driver's representation for this device.
1109  * @context:		Identifies the device.
1110  * @block_invalidate:	Identifies all of the blocks being invalidated.
1111  *
1112  * Return: 0 on success, -errno on failure
1113  */
1114 static int hv_register_block_invalidate(struct pci_dev *pdev, void *context,
1115 					void (*block_invalidate)(void *context,
1116 								 u64 block_mask))
1117 {
1118 	struct hv_pcibus_device *hbus =
1119 		container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1120 			     sysdata);
1121 	struct hv_pci_dev *hpdev;
1122 
1123 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1124 	if (!hpdev)
1125 		return -ENODEV;
1126 
1127 	hpdev->block_invalidate = block_invalidate;
1128 	hpdev->invalidate_context = context;
1129 
1130 	put_pcichild(hpdev);
1131 	return 0;
1132 
1133 }
1134 
1135 /* Interrupt management hooks */
1136 static void hv_int_desc_free(struct hv_pci_dev *hpdev,
1137 			     struct tran_int_desc *int_desc)
1138 {
1139 	struct pci_delete_interrupt *int_pkt;
1140 	struct {
1141 		struct pci_packet pkt;
1142 		u8 buffer[sizeof(struct pci_delete_interrupt)];
1143 	} ctxt;
1144 
1145 	memset(&ctxt, 0, sizeof(ctxt));
1146 	int_pkt = (struct pci_delete_interrupt *)&ctxt.pkt.message;
1147 	int_pkt->message_type.type =
1148 		PCI_DELETE_INTERRUPT_MESSAGE;
1149 	int_pkt->wslot.slot = hpdev->desc.win_slot.slot;
1150 	int_pkt->int_desc = *int_desc;
1151 	vmbus_sendpacket(hpdev->hbus->hdev->channel, int_pkt, sizeof(*int_pkt),
1152 			 (unsigned long)&ctxt.pkt, VM_PKT_DATA_INBAND, 0);
1153 	kfree(int_desc);
1154 }
1155 
1156 /**
1157  * hv_msi_free() - Free the MSI.
1158  * @domain:	The interrupt domain pointer
1159  * @info:	Extra MSI-related context
1160  * @irq:	Identifies the IRQ.
1161  *
1162  * The Hyper-V parent partition and hypervisor are tracking the
1163  * messages that are in use, keeping the interrupt redirection
1164  * table up to date.  This callback sends a message that frees
1165  * the IRT entry and related tracking nonsense.
1166  */
1167 static void hv_msi_free(struct irq_domain *domain, struct msi_domain_info *info,
1168 			unsigned int irq)
1169 {
1170 	struct hv_pcibus_device *hbus;
1171 	struct hv_pci_dev *hpdev;
1172 	struct pci_dev *pdev;
1173 	struct tran_int_desc *int_desc;
1174 	struct irq_data *irq_data = irq_domain_get_irq_data(domain, irq);
1175 	struct msi_desc *msi = irq_data_get_msi_desc(irq_data);
1176 
1177 	pdev = msi_desc_to_pci_dev(msi);
1178 	hbus = info->data;
1179 	int_desc = irq_data_get_irq_chip_data(irq_data);
1180 	if (!int_desc)
1181 		return;
1182 
1183 	irq_data->chip_data = NULL;
1184 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1185 	if (!hpdev) {
1186 		kfree(int_desc);
1187 		return;
1188 	}
1189 
1190 	hv_int_desc_free(hpdev, int_desc);
1191 	put_pcichild(hpdev);
1192 }
1193 
1194 static int hv_set_affinity(struct irq_data *data, const struct cpumask *dest,
1195 			   bool force)
1196 {
1197 	struct irq_data *parent = data->parent_data;
1198 
1199 	return parent->chip->irq_set_affinity(parent, dest, force);
1200 }
1201 
1202 static void hv_irq_mask(struct irq_data *data)
1203 {
1204 	pci_msi_mask_irq(data);
1205 }
1206 
1207 /**
1208  * hv_irq_unmask() - "Unmask" the IRQ by setting its current
1209  * affinity.
1210  * @data:	Describes the IRQ
1211  *
1212  * Build new a destination for the MSI and make a hypercall to
1213  * update the Interrupt Redirection Table. "Device Logical ID"
1214  * is built out of this PCI bus's instance GUID and the function
1215  * number of the device.
1216  */
1217 static void hv_irq_unmask(struct irq_data *data)
1218 {
1219 	struct msi_desc *msi_desc = irq_data_get_msi_desc(data);
1220 	struct irq_cfg *cfg = irqd_cfg(data);
1221 	struct hv_retarget_device_interrupt *params;
1222 	struct hv_pcibus_device *hbus;
1223 	struct cpumask *dest;
1224 	cpumask_var_t tmp;
1225 	struct pci_bus *pbus;
1226 	struct pci_dev *pdev;
1227 	unsigned long flags;
1228 	u32 var_size = 0;
1229 	int cpu, nr_bank;
1230 	u64 res;
1231 
1232 	dest = irq_data_get_effective_affinity_mask(data);
1233 	pdev = msi_desc_to_pci_dev(msi_desc);
1234 	pbus = pdev->bus;
1235 	hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
1236 
1237 	spin_lock_irqsave(&hbus->retarget_msi_interrupt_lock, flags);
1238 
1239 	params = &hbus->retarget_msi_interrupt_params;
1240 	memset(params, 0, sizeof(*params));
1241 	params->partition_id = HV_PARTITION_ID_SELF;
1242 	params->int_entry.source = HV_INTERRUPT_SOURCE_MSI;
1243 	hv_set_msi_entry_from_desc(&params->int_entry.msi_entry, msi_desc);
1244 	params->device_id = (hbus->hdev->dev_instance.b[5] << 24) |
1245 			   (hbus->hdev->dev_instance.b[4] << 16) |
1246 			   (hbus->hdev->dev_instance.b[7] << 8) |
1247 			   (hbus->hdev->dev_instance.b[6] & 0xf8) |
1248 			   PCI_FUNC(pdev->devfn);
1249 	params->int_target.vector = cfg->vector;
1250 
1251 	/*
1252 	 * Honoring apic->delivery_mode set to APIC_DELIVERY_MODE_FIXED by
1253 	 * setting the HV_DEVICE_INTERRUPT_TARGET_MULTICAST flag results in a
1254 	 * spurious interrupt storm. Not doing so does not seem to have a
1255 	 * negative effect (yet?).
1256 	 */
1257 
1258 	if (hbus->protocol_version >= PCI_PROTOCOL_VERSION_1_2) {
1259 		/*
1260 		 * PCI_PROTOCOL_VERSION_1_2 supports the VP_SET version of the
1261 		 * HVCALL_RETARGET_INTERRUPT hypercall, which also coincides
1262 		 * with >64 VP support.
1263 		 * ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED
1264 		 * is not sufficient for this hypercall.
1265 		 */
1266 		params->int_target.flags |=
1267 			HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET;
1268 
1269 		if (!alloc_cpumask_var(&tmp, GFP_ATOMIC)) {
1270 			res = 1;
1271 			goto exit_unlock;
1272 		}
1273 
1274 		cpumask_and(tmp, dest, cpu_online_mask);
1275 		nr_bank = cpumask_to_vpset(&params->int_target.vp_set, tmp);
1276 		free_cpumask_var(tmp);
1277 
1278 		if (nr_bank <= 0) {
1279 			res = 1;
1280 			goto exit_unlock;
1281 		}
1282 
1283 		/*
1284 		 * var-sized hypercall, var-size starts after vp_mask (thus
1285 		 * vp_set.format does not count, but vp_set.valid_bank_mask
1286 		 * does).
1287 		 */
1288 		var_size = 1 + nr_bank;
1289 	} else {
1290 		for_each_cpu_and(cpu, dest, cpu_online_mask) {
1291 			params->int_target.vp_mask |=
1292 				(1ULL << hv_cpu_number_to_vp_number(cpu));
1293 		}
1294 	}
1295 
1296 	res = hv_do_hypercall(HVCALL_RETARGET_INTERRUPT | (var_size << 17),
1297 			      params, NULL);
1298 
1299 exit_unlock:
1300 	spin_unlock_irqrestore(&hbus->retarget_msi_interrupt_lock, flags);
1301 
1302 	/*
1303 	 * During hibernation, when a CPU is offlined, the kernel tries
1304 	 * to move the interrupt to the remaining CPUs that haven't
1305 	 * been offlined yet. In this case, the below hv_do_hypercall()
1306 	 * always fails since the vmbus channel has been closed:
1307 	 * refer to cpu_disable_common() -> fixup_irqs() ->
1308 	 * irq_migrate_all_off_this_cpu() -> migrate_one_irq().
1309 	 *
1310 	 * Suppress the error message for hibernation because the failure
1311 	 * during hibernation does not matter (at this time all the devices
1312 	 * have been frozen). Note: the correct affinity info is still updated
1313 	 * into the irqdata data structure in migrate_one_irq() ->
1314 	 * irq_do_set_affinity() -> hv_set_affinity(), so later when the VM
1315 	 * resumes, hv_pci_restore_msi_state() is able to correctly restore
1316 	 * the interrupt with the correct affinity.
1317 	 */
1318 	if (!hv_result_success(res) && hbus->state != hv_pcibus_removing)
1319 		dev_err(&hbus->hdev->device,
1320 			"%s() failed: %#llx", __func__, res);
1321 
1322 	pci_msi_unmask_irq(data);
1323 }
1324 
1325 struct compose_comp_ctxt {
1326 	struct hv_pci_compl comp_pkt;
1327 	struct tran_int_desc int_desc;
1328 };
1329 
1330 static void hv_pci_compose_compl(void *context, struct pci_response *resp,
1331 				 int resp_packet_size)
1332 {
1333 	struct compose_comp_ctxt *comp_pkt = context;
1334 	struct pci_create_int_response *int_resp =
1335 		(struct pci_create_int_response *)resp;
1336 
1337 	comp_pkt->comp_pkt.completion_status = resp->status;
1338 	comp_pkt->int_desc = int_resp->int_desc;
1339 	complete(&comp_pkt->comp_pkt.host_event);
1340 }
1341 
1342 static u32 hv_compose_msi_req_v1(
1343 	struct pci_create_interrupt *int_pkt, struct cpumask *affinity,
1344 	u32 slot, u8 vector)
1345 {
1346 	int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE;
1347 	int_pkt->wslot.slot = slot;
1348 	int_pkt->int_desc.vector = vector;
1349 	int_pkt->int_desc.vector_count = 1;
1350 	int_pkt->int_desc.delivery_mode = APIC_DELIVERY_MODE_FIXED;
1351 
1352 	/*
1353 	 * Create MSI w/ dummy vCPU set, overwritten by subsequent retarget in
1354 	 * hv_irq_unmask().
1355 	 */
1356 	int_pkt->int_desc.cpu_mask = CPU_AFFINITY_ALL;
1357 
1358 	return sizeof(*int_pkt);
1359 }
1360 
1361 /*
1362  * Create MSI w/ dummy vCPU set targeting just one vCPU, overwritten
1363  * by subsequent retarget in hv_irq_unmask().
1364  */
1365 static int hv_compose_msi_req_get_cpu(struct cpumask *affinity)
1366 {
1367 	return cpumask_first_and(affinity, cpu_online_mask);
1368 }
1369 
1370 static u32 hv_compose_msi_req_v2(
1371 	struct pci_create_interrupt2 *int_pkt, struct cpumask *affinity,
1372 	u32 slot, u8 vector)
1373 {
1374 	int cpu;
1375 
1376 	int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE2;
1377 	int_pkt->wslot.slot = slot;
1378 	int_pkt->int_desc.vector = vector;
1379 	int_pkt->int_desc.vector_count = 1;
1380 	int_pkt->int_desc.delivery_mode = APIC_DELIVERY_MODE_FIXED;
1381 	cpu = hv_compose_msi_req_get_cpu(affinity);
1382 	int_pkt->int_desc.processor_array[0] =
1383 		hv_cpu_number_to_vp_number(cpu);
1384 	int_pkt->int_desc.processor_count = 1;
1385 
1386 	return sizeof(*int_pkt);
1387 }
1388 
1389 static u32 hv_compose_msi_req_v3(
1390 	struct pci_create_interrupt3 *int_pkt, struct cpumask *affinity,
1391 	u32 slot, u32 vector)
1392 {
1393 	int cpu;
1394 
1395 	int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE3;
1396 	int_pkt->wslot.slot = slot;
1397 	int_pkt->int_desc.vector = vector;
1398 	int_pkt->int_desc.reserved = 0;
1399 	int_pkt->int_desc.vector_count = 1;
1400 	int_pkt->int_desc.delivery_mode = APIC_DELIVERY_MODE_FIXED;
1401 	cpu = hv_compose_msi_req_get_cpu(affinity);
1402 	int_pkt->int_desc.processor_array[0] =
1403 		hv_cpu_number_to_vp_number(cpu);
1404 	int_pkt->int_desc.processor_count = 1;
1405 
1406 	return sizeof(*int_pkt);
1407 }
1408 
1409 /**
1410  * hv_compose_msi_msg() - Supplies a valid MSI address/data
1411  * @data:	Everything about this MSI
1412  * @msg:	Buffer that is filled in by this function
1413  *
1414  * This function unpacks the IRQ looking for target CPU set, IDT
1415  * vector and mode and sends a message to the parent partition
1416  * asking for a mapping for that tuple in this partition.  The
1417  * response supplies a data value and address to which that data
1418  * should be written to trigger that interrupt.
1419  */
1420 static void hv_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
1421 {
1422 	struct irq_cfg *cfg = irqd_cfg(data);
1423 	struct hv_pcibus_device *hbus;
1424 	struct vmbus_channel *channel;
1425 	struct hv_pci_dev *hpdev;
1426 	struct pci_bus *pbus;
1427 	struct pci_dev *pdev;
1428 	struct cpumask *dest;
1429 	struct compose_comp_ctxt comp;
1430 	struct tran_int_desc *int_desc;
1431 	struct {
1432 		struct pci_packet pci_pkt;
1433 		union {
1434 			struct pci_create_interrupt v1;
1435 			struct pci_create_interrupt2 v2;
1436 			struct pci_create_interrupt3 v3;
1437 		} int_pkts;
1438 	} __packed ctxt;
1439 
1440 	u32 size;
1441 	int ret;
1442 
1443 	pdev = msi_desc_to_pci_dev(irq_data_get_msi_desc(data));
1444 	dest = irq_data_get_effective_affinity_mask(data);
1445 	pbus = pdev->bus;
1446 	hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
1447 	channel = hbus->hdev->channel;
1448 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1449 	if (!hpdev)
1450 		goto return_null_message;
1451 
1452 	/* Free any previous message that might have already been composed. */
1453 	if (data->chip_data) {
1454 		int_desc = data->chip_data;
1455 		data->chip_data = NULL;
1456 		hv_int_desc_free(hpdev, int_desc);
1457 	}
1458 
1459 	int_desc = kzalloc(sizeof(*int_desc), GFP_ATOMIC);
1460 	if (!int_desc)
1461 		goto drop_reference;
1462 
1463 	memset(&ctxt, 0, sizeof(ctxt));
1464 	init_completion(&comp.comp_pkt.host_event);
1465 	ctxt.pci_pkt.completion_func = hv_pci_compose_compl;
1466 	ctxt.pci_pkt.compl_ctxt = &comp;
1467 
1468 	switch (hbus->protocol_version) {
1469 	case PCI_PROTOCOL_VERSION_1_1:
1470 		size = hv_compose_msi_req_v1(&ctxt.int_pkts.v1,
1471 					dest,
1472 					hpdev->desc.win_slot.slot,
1473 					cfg->vector);
1474 		break;
1475 
1476 	case PCI_PROTOCOL_VERSION_1_2:
1477 	case PCI_PROTOCOL_VERSION_1_3:
1478 		size = hv_compose_msi_req_v2(&ctxt.int_pkts.v2,
1479 					dest,
1480 					hpdev->desc.win_slot.slot,
1481 					cfg->vector);
1482 		break;
1483 
1484 	case PCI_PROTOCOL_VERSION_1_4:
1485 		size = hv_compose_msi_req_v3(&ctxt.int_pkts.v3,
1486 					dest,
1487 					hpdev->desc.win_slot.slot,
1488 					cfg->vector);
1489 		break;
1490 
1491 	default:
1492 		/* As we only negotiate protocol versions known to this driver,
1493 		 * this path should never hit. However, this is it not a hot
1494 		 * path so we print a message to aid future updates.
1495 		 */
1496 		dev_err(&hbus->hdev->device,
1497 			"Unexpected vPCI protocol, update driver.");
1498 		goto free_int_desc;
1499 	}
1500 
1501 	ret = vmbus_sendpacket(hpdev->hbus->hdev->channel, &ctxt.int_pkts,
1502 			       size, (unsigned long)&ctxt.pci_pkt,
1503 			       VM_PKT_DATA_INBAND,
1504 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1505 	if (ret) {
1506 		dev_err(&hbus->hdev->device,
1507 			"Sending request for interrupt failed: 0x%x",
1508 			comp.comp_pkt.completion_status);
1509 		goto free_int_desc;
1510 	}
1511 
1512 	/*
1513 	 * Prevents hv_pci_onchannelcallback() from running concurrently
1514 	 * in the tasklet.
1515 	 */
1516 	tasklet_disable_in_atomic(&channel->callback_event);
1517 
1518 	/*
1519 	 * Since this function is called with IRQ locks held, can't
1520 	 * do normal wait for completion; instead poll.
1521 	 */
1522 	while (!try_wait_for_completion(&comp.comp_pkt.host_event)) {
1523 		unsigned long flags;
1524 
1525 		/* 0xFFFF means an invalid PCI VENDOR ID. */
1526 		if (hv_pcifront_get_vendor_id(hpdev) == 0xFFFF) {
1527 			dev_err_once(&hbus->hdev->device,
1528 				     "the device has gone\n");
1529 			goto enable_tasklet;
1530 		}
1531 
1532 		/*
1533 		 * Make sure that the ring buffer data structure doesn't get
1534 		 * freed while we dereference the ring buffer pointer.  Test
1535 		 * for the channel's onchannel_callback being NULL within a
1536 		 * sched_lock critical section.  See also the inline comments
1537 		 * in vmbus_reset_channel_cb().
1538 		 */
1539 		spin_lock_irqsave(&channel->sched_lock, flags);
1540 		if (unlikely(channel->onchannel_callback == NULL)) {
1541 			spin_unlock_irqrestore(&channel->sched_lock, flags);
1542 			goto enable_tasklet;
1543 		}
1544 		hv_pci_onchannelcallback(hbus);
1545 		spin_unlock_irqrestore(&channel->sched_lock, flags);
1546 
1547 		if (hpdev->state == hv_pcichild_ejecting) {
1548 			dev_err_once(&hbus->hdev->device,
1549 				     "the device is being ejected\n");
1550 			goto enable_tasklet;
1551 		}
1552 
1553 		udelay(100);
1554 	}
1555 
1556 	tasklet_enable(&channel->callback_event);
1557 
1558 	if (comp.comp_pkt.completion_status < 0) {
1559 		dev_err(&hbus->hdev->device,
1560 			"Request for interrupt failed: 0x%x",
1561 			comp.comp_pkt.completion_status);
1562 		goto free_int_desc;
1563 	}
1564 
1565 	/*
1566 	 * Record the assignment so that this can be unwound later. Using
1567 	 * irq_set_chip_data() here would be appropriate, but the lock it takes
1568 	 * is already held.
1569 	 */
1570 	*int_desc = comp.int_desc;
1571 	data->chip_data = int_desc;
1572 
1573 	/* Pass up the result. */
1574 	msg->address_hi = comp.int_desc.address >> 32;
1575 	msg->address_lo = comp.int_desc.address & 0xffffffff;
1576 	msg->data = comp.int_desc.data;
1577 
1578 	put_pcichild(hpdev);
1579 	return;
1580 
1581 enable_tasklet:
1582 	tasklet_enable(&channel->callback_event);
1583 free_int_desc:
1584 	kfree(int_desc);
1585 drop_reference:
1586 	put_pcichild(hpdev);
1587 return_null_message:
1588 	msg->address_hi = 0;
1589 	msg->address_lo = 0;
1590 	msg->data = 0;
1591 }
1592 
1593 /* HW Interrupt Chip Descriptor */
1594 static struct irq_chip hv_msi_irq_chip = {
1595 	.name			= "Hyper-V PCIe MSI",
1596 	.irq_compose_msi_msg	= hv_compose_msi_msg,
1597 	.irq_set_affinity	= hv_set_affinity,
1598 	.irq_ack		= irq_chip_ack_parent,
1599 	.irq_mask		= hv_irq_mask,
1600 	.irq_unmask		= hv_irq_unmask,
1601 };
1602 
1603 static struct msi_domain_ops hv_msi_ops = {
1604 	.msi_prepare	= pci_msi_prepare,
1605 	.msi_free	= hv_msi_free,
1606 };
1607 
1608 /**
1609  * hv_pcie_init_irq_domain() - Initialize IRQ domain
1610  * @hbus:	The root PCI bus
1611  *
1612  * This function creates an IRQ domain which will be used for
1613  * interrupts from devices that have been passed through.  These
1614  * devices only support MSI and MSI-X, not line-based interrupts
1615  * or simulations of line-based interrupts through PCIe's
1616  * fabric-layer messages.  Because interrupts are remapped, we
1617  * can support multi-message MSI here.
1618  *
1619  * Return: '0' on success and error value on failure
1620  */
1621 static int hv_pcie_init_irq_domain(struct hv_pcibus_device *hbus)
1622 {
1623 	hbus->msi_info.chip = &hv_msi_irq_chip;
1624 	hbus->msi_info.ops = &hv_msi_ops;
1625 	hbus->msi_info.flags = (MSI_FLAG_USE_DEF_DOM_OPS |
1626 		MSI_FLAG_USE_DEF_CHIP_OPS | MSI_FLAG_MULTI_PCI_MSI |
1627 		MSI_FLAG_PCI_MSIX);
1628 	hbus->msi_info.handler = handle_edge_irq;
1629 	hbus->msi_info.handler_name = "edge";
1630 	hbus->msi_info.data = hbus;
1631 	hbus->irq_domain = pci_msi_create_irq_domain(hbus->fwnode,
1632 						     &hbus->msi_info,
1633 						     x86_vector_domain);
1634 	if (!hbus->irq_domain) {
1635 		dev_err(&hbus->hdev->device,
1636 			"Failed to build an MSI IRQ domain\n");
1637 		return -ENODEV;
1638 	}
1639 
1640 	dev_set_msi_domain(&hbus->bridge->dev, hbus->irq_domain);
1641 
1642 	return 0;
1643 }
1644 
1645 /**
1646  * get_bar_size() - Get the address space consumed by a BAR
1647  * @bar_val:	Value that a BAR returned after -1 was written
1648  *              to it.
1649  *
1650  * This function returns the size of the BAR, rounded up to 1
1651  * page.  It has to be rounded up because the hypervisor's page
1652  * table entry that maps the BAR into the VM can't specify an
1653  * offset within a page.  The invariant is that the hypervisor
1654  * must place any BARs of smaller than page length at the
1655  * beginning of a page.
1656  *
1657  * Return:	Size in bytes of the consumed MMIO space.
1658  */
1659 static u64 get_bar_size(u64 bar_val)
1660 {
1661 	return round_up((1 + ~(bar_val & PCI_BASE_ADDRESS_MEM_MASK)),
1662 			PAGE_SIZE);
1663 }
1664 
1665 /**
1666  * survey_child_resources() - Total all MMIO requirements
1667  * @hbus:	Root PCI bus, as understood by this driver
1668  */
1669 static void survey_child_resources(struct hv_pcibus_device *hbus)
1670 {
1671 	struct hv_pci_dev *hpdev;
1672 	resource_size_t bar_size = 0;
1673 	unsigned long flags;
1674 	struct completion *event;
1675 	u64 bar_val;
1676 	int i;
1677 
1678 	/* If nobody is waiting on the answer, don't compute it. */
1679 	event = xchg(&hbus->survey_event, NULL);
1680 	if (!event)
1681 		return;
1682 
1683 	/* If the answer has already been computed, go with it. */
1684 	if (hbus->low_mmio_space || hbus->high_mmio_space) {
1685 		complete(event);
1686 		return;
1687 	}
1688 
1689 	spin_lock_irqsave(&hbus->device_list_lock, flags);
1690 
1691 	/*
1692 	 * Due to an interesting quirk of the PCI spec, all memory regions
1693 	 * for a child device are a power of 2 in size and aligned in memory,
1694 	 * so it's sufficient to just add them up without tracking alignment.
1695 	 */
1696 	list_for_each_entry(hpdev, &hbus->children, list_entry) {
1697 		for (i = 0; i < PCI_STD_NUM_BARS; i++) {
1698 			if (hpdev->probed_bar[i] & PCI_BASE_ADDRESS_SPACE_IO)
1699 				dev_err(&hbus->hdev->device,
1700 					"There's an I/O BAR in this list!\n");
1701 
1702 			if (hpdev->probed_bar[i] != 0) {
1703 				/*
1704 				 * A probed BAR has all the upper bits set that
1705 				 * can be changed.
1706 				 */
1707 
1708 				bar_val = hpdev->probed_bar[i];
1709 				if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
1710 					bar_val |=
1711 					((u64)hpdev->probed_bar[++i] << 32);
1712 				else
1713 					bar_val |= 0xffffffff00000000ULL;
1714 
1715 				bar_size = get_bar_size(bar_val);
1716 
1717 				if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
1718 					hbus->high_mmio_space += bar_size;
1719 				else
1720 					hbus->low_mmio_space += bar_size;
1721 			}
1722 		}
1723 	}
1724 
1725 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1726 	complete(event);
1727 }
1728 
1729 /**
1730  * prepopulate_bars() - Fill in BARs with defaults
1731  * @hbus:	Root PCI bus, as understood by this driver
1732  *
1733  * The core PCI driver code seems much, much happier if the BARs
1734  * for a device have values upon first scan. So fill them in.
1735  * The algorithm below works down from large sizes to small,
1736  * attempting to pack the assignments optimally. The assumption,
1737  * enforced in other parts of the code, is that the beginning of
1738  * the memory-mapped I/O space will be aligned on the largest
1739  * BAR size.
1740  */
1741 static void prepopulate_bars(struct hv_pcibus_device *hbus)
1742 {
1743 	resource_size_t high_size = 0;
1744 	resource_size_t low_size = 0;
1745 	resource_size_t high_base = 0;
1746 	resource_size_t low_base = 0;
1747 	resource_size_t bar_size;
1748 	struct hv_pci_dev *hpdev;
1749 	unsigned long flags;
1750 	u64 bar_val;
1751 	u32 command;
1752 	bool high;
1753 	int i;
1754 
1755 	if (hbus->low_mmio_space) {
1756 		low_size = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
1757 		low_base = hbus->low_mmio_res->start;
1758 	}
1759 
1760 	if (hbus->high_mmio_space) {
1761 		high_size = 1ULL <<
1762 			(63 - __builtin_clzll(hbus->high_mmio_space));
1763 		high_base = hbus->high_mmio_res->start;
1764 	}
1765 
1766 	spin_lock_irqsave(&hbus->device_list_lock, flags);
1767 
1768 	/*
1769 	 * Clear the memory enable bit, in case it's already set. This occurs
1770 	 * in the suspend path of hibernation, where the device is suspended,
1771 	 * resumed and suspended again: see hibernation_snapshot() and
1772 	 * hibernation_platform_enter().
1773 	 *
1774 	 * If the memory enable bit is already set, Hyper-V silently ignores
1775 	 * the below BAR updates, and the related PCI device driver can not
1776 	 * work, because reading from the device register(s) always returns
1777 	 * 0xFFFFFFFF.
1778 	 */
1779 	list_for_each_entry(hpdev, &hbus->children, list_entry) {
1780 		_hv_pcifront_read_config(hpdev, PCI_COMMAND, 2, &command);
1781 		command &= ~PCI_COMMAND_MEMORY;
1782 		_hv_pcifront_write_config(hpdev, PCI_COMMAND, 2, command);
1783 	}
1784 
1785 	/* Pick addresses for the BARs. */
1786 	do {
1787 		list_for_each_entry(hpdev, &hbus->children, list_entry) {
1788 			for (i = 0; i < PCI_STD_NUM_BARS; i++) {
1789 				bar_val = hpdev->probed_bar[i];
1790 				if (bar_val == 0)
1791 					continue;
1792 				high = bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64;
1793 				if (high) {
1794 					bar_val |=
1795 						((u64)hpdev->probed_bar[i + 1]
1796 						 << 32);
1797 				} else {
1798 					bar_val |= 0xffffffffULL << 32;
1799 				}
1800 				bar_size = get_bar_size(bar_val);
1801 				if (high) {
1802 					if (high_size != bar_size) {
1803 						i++;
1804 						continue;
1805 					}
1806 					_hv_pcifront_write_config(hpdev,
1807 						PCI_BASE_ADDRESS_0 + (4 * i),
1808 						4,
1809 						(u32)(high_base & 0xffffff00));
1810 					i++;
1811 					_hv_pcifront_write_config(hpdev,
1812 						PCI_BASE_ADDRESS_0 + (4 * i),
1813 						4, (u32)(high_base >> 32));
1814 					high_base += bar_size;
1815 				} else {
1816 					if (low_size != bar_size)
1817 						continue;
1818 					_hv_pcifront_write_config(hpdev,
1819 						PCI_BASE_ADDRESS_0 + (4 * i),
1820 						4,
1821 						(u32)(low_base & 0xffffff00));
1822 					low_base += bar_size;
1823 				}
1824 			}
1825 			if (high_size <= 1 && low_size <= 1) {
1826 				/* Set the memory enable bit. */
1827 				_hv_pcifront_read_config(hpdev, PCI_COMMAND, 2,
1828 							 &command);
1829 				command |= PCI_COMMAND_MEMORY;
1830 				_hv_pcifront_write_config(hpdev, PCI_COMMAND, 2,
1831 							  command);
1832 				break;
1833 			}
1834 		}
1835 
1836 		high_size >>= 1;
1837 		low_size >>= 1;
1838 	}  while (high_size || low_size);
1839 
1840 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1841 }
1842 
1843 /*
1844  * Assign entries in sysfs pci slot directory.
1845  *
1846  * Note that this function does not need to lock the children list
1847  * because it is called from pci_devices_present_work which
1848  * is serialized with hv_eject_device_work because they are on the
1849  * same ordered workqueue. Therefore hbus->children list will not change
1850  * even when pci_create_slot sleeps.
1851  */
1852 static void hv_pci_assign_slots(struct hv_pcibus_device *hbus)
1853 {
1854 	struct hv_pci_dev *hpdev;
1855 	char name[SLOT_NAME_SIZE];
1856 	int slot_nr;
1857 
1858 	list_for_each_entry(hpdev, &hbus->children, list_entry) {
1859 		if (hpdev->pci_slot)
1860 			continue;
1861 
1862 		slot_nr = PCI_SLOT(wslot_to_devfn(hpdev->desc.win_slot.slot));
1863 		snprintf(name, SLOT_NAME_SIZE, "%u", hpdev->desc.ser);
1864 		hpdev->pci_slot = pci_create_slot(hbus->bridge->bus, slot_nr,
1865 					  name, NULL);
1866 		if (IS_ERR(hpdev->pci_slot)) {
1867 			pr_warn("pci_create slot %s failed\n", name);
1868 			hpdev->pci_slot = NULL;
1869 		}
1870 	}
1871 }
1872 
1873 /*
1874  * Remove entries in sysfs pci slot directory.
1875  */
1876 static void hv_pci_remove_slots(struct hv_pcibus_device *hbus)
1877 {
1878 	struct hv_pci_dev *hpdev;
1879 
1880 	list_for_each_entry(hpdev, &hbus->children, list_entry) {
1881 		if (!hpdev->pci_slot)
1882 			continue;
1883 		pci_destroy_slot(hpdev->pci_slot);
1884 		hpdev->pci_slot = NULL;
1885 	}
1886 }
1887 
1888 /*
1889  * Set NUMA node for the devices on the bus
1890  */
1891 static void hv_pci_assign_numa_node(struct hv_pcibus_device *hbus)
1892 {
1893 	struct pci_dev *dev;
1894 	struct pci_bus *bus = hbus->bridge->bus;
1895 	struct hv_pci_dev *hv_dev;
1896 
1897 	list_for_each_entry(dev, &bus->devices, bus_list) {
1898 		hv_dev = get_pcichild_wslot(hbus, devfn_to_wslot(dev->devfn));
1899 		if (!hv_dev)
1900 			continue;
1901 
1902 		if (hv_dev->desc.flags & HV_PCI_DEVICE_FLAG_NUMA_AFFINITY)
1903 			set_dev_node(&dev->dev, hv_dev->desc.virtual_numa_node);
1904 
1905 		put_pcichild(hv_dev);
1906 	}
1907 }
1908 
1909 /**
1910  * create_root_hv_pci_bus() - Expose a new root PCI bus
1911  * @hbus:	Root PCI bus, as understood by this driver
1912  *
1913  * Return: 0 on success, -errno on failure
1914  */
1915 static int create_root_hv_pci_bus(struct hv_pcibus_device *hbus)
1916 {
1917 	int error;
1918 	struct pci_host_bridge *bridge = hbus->bridge;
1919 
1920 	bridge->dev.parent = &hbus->hdev->device;
1921 	bridge->sysdata = &hbus->sysdata;
1922 	bridge->ops = &hv_pcifront_ops;
1923 
1924 	error = pci_scan_root_bus_bridge(bridge);
1925 	if (error)
1926 		return error;
1927 
1928 	pci_lock_rescan_remove();
1929 	hv_pci_assign_numa_node(hbus);
1930 	pci_bus_assign_resources(bridge->bus);
1931 	hv_pci_assign_slots(hbus);
1932 	pci_bus_add_devices(bridge->bus);
1933 	pci_unlock_rescan_remove();
1934 	hbus->state = hv_pcibus_installed;
1935 	return 0;
1936 }
1937 
1938 struct q_res_req_compl {
1939 	struct completion host_event;
1940 	struct hv_pci_dev *hpdev;
1941 };
1942 
1943 /**
1944  * q_resource_requirements() - Query Resource Requirements
1945  * @context:		The completion context.
1946  * @resp:		The response that came from the host.
1947  * @resp_packet_size:	The size in bytes of resp.
1948  *
1949  * This function is invoked on completion of a Query Resource
1950  * Requirements packet.
1951  */
1952 static void q_resource_requirements(void *context, struct pci_response *resp,
1953 				    int resp_packet_size)
1954 {
1955 	struct q_res_req_compl *completion = context;
1956 	struct pci_q_res_req_response *q_res_req =
1957 		(struct pci_q_res_req_response *)resp;
1958 	int i;
1959 
1960 	if (resp->status < 0) {
1961 		dev_err(&completion->hpdev->hbus->hdev->device,
1962 			"query resource requirements failed: %x\n",
1963 			resp->status);
1964 	} else {
1965 		for (i = 0; i < PCI_STD_NUM_BARS; i++) {
1966 			completion->hpdev->probed_bar[i] =
1967 				q_res_req->probed_bar[i];
1968 		}
1969 	}
1970 
1971 	complete(&completion->host_event);
1972 }
1973 
1974 /**
1975  * new_pcichild_device() - Create a new child device
1976  * @hbus:	The internal struct tracking this root PCI bus.
1977  * @desc:	The information supplied so far from the host
1978  *              about the device.
1979  *
1980  * This function creates the tracking structure for a new child
1981  * device and kicks off the process of figuring out what it is.
1982  *
1983  * Return: Pointer to the new tracking struct
1984  */
1985 static struct hv_pci_dev *new_pcichild_device(struct hv_pcibus_device *hbus,
1986 		struct hv_pcidev_description *desc)
1987 {
1988 	struct hv_pci_dev *hpdev;
1989 	struct pci_child_message *res_req;
1990 	struct q_res_req_compl comp_pkt;
1991 	struct {
1992 		struct pci_packet init_packet;
1993 		u8 buffer[sizeof(struct pci_child_message)];
1994 	} pkt;
1995 	unsigned long flags;
1996 	int ret;
1997 
1998 	hpdev = kzalloc(sizeof(*hpdev), GFP_KERNEL);
1999 	if (!hpdev)
2000 		return NULL;
2001 
2002 	hpdev->hbus = hbus;
2003 
2004 	memset(&pkt, 0, sizeof(pkt));
2005 	init_completion(&comp_pkt.host_event);
2006 	comp_pkt.hpdev = hpdev;
2007 	pkt.init_packet.compl_ctxt = &comp_pkt;
2008 	pkt.init_packet.completion_func = q_resource_requirements;
2009 	res_req = (struct pci_child_message *)&pkt.init_packet.message;
2010 	res_req->message_type.type = PCI_QUERY_RESOURCE_REQUIREMENTS;
2011 	res_req->wslot.slot = desc->win_slot.slot;
2012 
2013 	ret = vmbus_sendpacket(hbus->hdev->channel, res_req,
2014 			       sizeof(struct pci_child_message),
2015 			       (unsigned long)&pkt.init_packet,
2016 			       VM_PKT_DATA_INBAND,
2017 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2018 	if (ret)
2019 		goto error;
2020 
2021 	if (wait_for_response(hbus->hdev, &comp_pkt.host_event))
2022 		goto error;
2023 
2024 	hpdev->desc = *desc;
2025 	refcount_set(&hpdev->refs, 1);
2026 	get_pcichild(hpdev);
2027 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2028 
2029 	list_add_tail(&hpdev->list_entry, &hbus->children);
2030 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2031 	return hpdev;
2032 
2033 error:
2034 	kfree(hpdev);
2035 	return NULL;
2036 }
2037 
2038 /**
2039  * get_pcichild_wslot() - Find device from slot
2040  * @hbus:	Root PCI bus, as understood by this driver
2041  * @wslot:	Location on the bus
2042  *
2043  * This function looks up a PCI device and returns the internal
2044  * representation of it.  It acquires a reference on it, so that
2045  * the device won't be deleted while somebody is using it.  The
2046  * caller is responsible for calling put_pcichild() to release
2047  * this reference.
2048  *
2049  * Return:	Internal representation of a PCI device
2050  */
2051 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
2052 					     u32 wslot)
2053 {
2054 	unsigned long flags;
2055 	struct hv_pci_dev *iter, *hpdev = NULL;
2056 
2057 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2058 	list_for_each_entry(iter, &hbus->children, list_entry) {
2059 		if (iter->desc.win_slot.slot == wslot) {
2060 			hpdev = iter;
2061 			get_pcichild(hpdev);
2062 			break;
2063 		}
2064 	}
2065 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2066 
2067 	return hpdev;
2068 }
2069 
2070 /**
2071  * pci_devices_present_work() - Handle new list of child devices
2072  * @work:	Work struct embedded in struct hv_dr_work
2073  *
2074  * "Bus Relations" is the Windows term for "children of this
2075  * bus."  The terminology is preserved here for people trying to
2076  * debug the interaction between Hyper-V and Linux.  This
2077  * function is called when the parent partition reports a list
2078  * of functions that should be observed under this PCI Express
2079  * port (bus).
2080  *
2081  * This function updates the list, and must tolerate being
2082  * called multiple times with the same information.  The typical
2083  * number of child devices is one, with very atypical cases
2084  * involving three or four, so the algorithms used here can be
2085  * simple and inefficient.
2086  *
2087  * It must also treat the omission of a previously observed device as
2088  * notification that the device no longer exists.
2089  *
2090  * Note that this function is serialized with hv_eject_device_work(),
2091  * because both are pushed to the ordered workqueue hbus->wq.
2092  */
2093 static void pci_devices_present_work(struct work_struct *work)
2094 {
2095 	u32 child_no;
2096 	bool found;
2097 	struct hv_pcidev_description *new_desc;
2098 	struct hv_pci_dev *hpdev;
2099 	struct hv_pcibus_device *hbus;
2100 	struct list_head removed;
2101 	struct hv_dr_work *dr_wrk;
2102 	struct hv_dr_state *dr = NULL;
2103 	unsigned long flags;
2104 
2105 	dr_wrk = container_of(work, struct hv_dr_work, wrk);
2106 	hbus = dr_wrk->bus;
2107 	kfree(dr_wrk);
2108 
2109 	INIT_LIST_HEAD(&removed);
2110 
2111 	/* Pull this off the queue and process it if it was the last one. */
2112 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2113 	while (!list_empty(&hbus->dr_list)) {
2114 		dr = list_first_entry(&hbus->dr_list, struct hv_dr_state,
2115 				      list_entry);
2116 		list_del(&dr->list_entry);
2117 
2118 		/* Throw this away if the list still has stuff in it. */
2119 		if (!list_empty(&hbus->dr_list)) {
2120 			kfree(dr);
2121 			continue;
2122 		}
2123 	}
2124 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2125 
2126 	if (!dr)
2127 		return;
2128 
2129 	/* First, mark all existing children as reported missing. */
2130 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2131 	list_for_each_entry(hpdev, &hbus->children, list_entry) {
2132 		hpdev->reported_missing = true;
2133 	}
2134 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2135 
2136 	/* Next, add back any reported devices. */
2137 	for (child_no = 0; child_no < dr->device_count; child_no++) {
2138 		found = false;
2139 		new_desc = &dr->func[child_no];
2140 
2141 		spin_lock_irqsave(&hbus->device_list_lock, flags);
2142 		list_for_each_entry(hpdev, &hbus->children, list_entry) {
2143 			if ((hpdev->desc.win_slot.slot == new_desc->win_slot.slot) &&
2144 			    (hpdev->desc.v_id == new_desc->v_id) &&
2145 			    (hpdev->desc.d_id == new_desc->d_id) &&
2146 			    (hpdev->desc.ser == new_desc->ser)) {
2147 				hpdev->reported_missing = false;
2148 				found = true;
2149 			}
2150 		}
2151 		spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2152 
2153 		if (!found) {
2154 			hpdev = new_pcichild_device(hbus, new_desc);
2155 			if (!hpdev)
2156 				dev_err(&hbus->hdev->device,
2157 					"couldn't record a child device.\n");
2158 		}
2159 	}
2160 
2161 	/* Move missing children to a list on the stack. */
2162 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2163 	do {
2164 		found = false;
2165 		list_for_each_entry(hpdev, &hbus->children, list_entry) {
2166 			if (hpdev->reported_missing) {
2167 				found = true;
2168 				put_pcichild(hpdev);
2169 				list_move_tail(&hpdev->list_entry, &removed);
2170 				break;
2171 			}
2172 		}
2173 	} while (found);
2174 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2175 
2176 	/* Delete everything that should no longer exist. */
2177 	while (!list_empty(&removed)) {
2178 		hpdev = list_first_entry(&removed, struct hv_pci_dev,
2179 					 list_entry);
2180 		list_del(&hpdev->list_entry);
2181 
2182 		if (hpdev->pci_slot)
2183 			pci_destroy_slot(hpdev->pci_slot);
2184 
2185 		put_pcichild(hpdev);
2186 	}
2187 
2188 	switch (hbus->state) {
2189 	case hv_pcibus_installed:
2190 		/*
2191 		 * Tell the core to rescan bus
2192 		 * because there may have been changes.
2193 		 */
2194 		pci_lock_rescan_remove();
2195 		pci_scan_child_bus(hbus->bridge->bus);
2196 		hv_pci_assign_numa_node(hbus);
2197 		hv_pci_assign_slots(hbus);
2198 		pci_unlock_rescan_remove();
2199 		break;
2200 
2201 	case hv_pcibus_init:
2202 	case hv_pcibus_probed:
2203 		survey_child_resources(hbus);
2204 		break;
2205 
2206 	default:
2207 		break;
2208 	}
2209 
2210 	kfree(dr);
2211 }
2212 
2213 /**
2214  * hv_pci_start_relations_work() - Queue work to start device discovery
2215  * @hbus:	Root PCI bus, as understood by this driver
2216  * @dr:		The list of children returned from host
2217  *
2218  * Return:  0 on success, -errno on failure
2219  */
2220 static int hv_pci_start_relations_work(struct hv_pcibus_device *hbus,
2221 				       struct hv_dr_state *dr)
2222 {
2223 	struct hv_dr_work *dr_wrk;
2224 	unsigned long flags;
2225 	bool pending_dr;
2226 
2227 	if (hbus->state == hv_pcibus_removing) {
2228 		dev_info(&hbus->hdev->device,
2229 			 "PCI VMBus BUS_RELATIONS: ignored\n");
2230 		return -ENOENT;
2231 	}
2232 
2233 	dr_wrk = kzalloc(sizeof(*dr_wrk), GFP_NOWAIT);
2234 	if (!dr_wrk)
2235 		return -ENOMEM;
2236 
2237 	INIT_WORK(&dr_wrk->wrk, pci_devices_present_work);
2238 	dr_wrk->bus = hbus;
2239 
2240 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2241 	/*
2242 	 * If pending_dr is true, we have already queued a work,
2243 	 * which will see the new dr. Otherwise, we need to
2244 	 * queue a new work.
2245 	 */
2246 	pending_dr = !list_empty(&hbus->dr_list);
2247 	list_add_tail(&dr->list_entry, &hbus->dr_list);
2248 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2249 
2250 	if (pending_dr)
2251 		kfree(dr_wrk);
2252 	else
2253 		queue_work(hbus->wq, &dr_wrk->wrk);
2254 
2255 	return 0;
2256 }
2257 
2258 /**
2259  * hv_pci_devices_present() - Handle list of new children
2260  * @hbus:      Root PCI bus, as understood by this driver
2261  * @relations: Packet from host listing children
2262  *
2263  * Process a new list of devices on the bus. The list of devices is
2264  * discovered by VSP and sent to us via VSP message PCI_BUS_RELATIONS,
2265  * whenever a new list of devices for this bus appears.
2266  */
2267 static void hv_pci_devices_present(struct hv_pcibus_device *hbus,
2268 				   struct pci_bus_relations *relations)
2269 {
2270 	struct hv_dr_state *dr;
2271 	int i;
2272 
2273 	dr = kzalloc(struct_size(dr, func, relations->device_count),
2274 		     GFP_NOWAIT);
2275 	if (!dr)
2276 		return;
2277 
2278 	dr->device_count = relations->device_count;
2279 	for (i = 0; i < dr->device_count; i++) {
2280 		dr->func[i].v_id = relations->func[i].v_id;
2281 		dr->func[i].d_id = relations->func[i].d_id;
2282 		dr->func[i].rev = relations->func[i].rev;
2283 		dr->func[i].prog_intf = relations->func[i].prog_intf;
2284 		dr->func[i].subclass = relations->func[i].subclass;
2285 		dr->func[i].base_class = relations->func[i].base_class;
2286 		dr->func[i].subsystem_id = relations->func[i].subsystem_id;
2287 		dr->func[i].win_slot = relations->func[i].win_slot;
2288 		dr->func[i].ser = relations->func[i].ser;
2289 	}
2290 
2291 	if (hv_pci_start_relations_work(hbus, dr))
2292 		kfree(dr);
2293 }
2294 
2295 /**
2296  * hv_pci_devices_present2() - Handle list of new children
2297  * @hbus:	Root PCI bus, as understood by this driver
2298  * @relations:	Packet from host listing children
2299  *
2300  * This function is the v2 version of hv_pci_devices_present()
2301  */
2302 static void hv_pci_devices_present2(struct hv_pcibus_device *hbus,
2303 				    struct pci_bus_relations2 *relations)
2304 {
2305 	struct hv_dr_state *dr;
2306 	int i;
2307 
2308 	dr = kzalloc(struct_size(dr, func, relations->device_count),
2309 		     GFP_NOWAIT);
2310 	if (!dr)
2311 		return;
2312 
2313 	dr->device_count = relations->device_count;
2314 	for (i = 0; i < dr->device_count; i++) {
2315 		dr->func[i].v_id = relations->func[i].v_id;
2316 		dr->func[i].d_id = relations->func[i].d_id;
2317 		dr->func[i].rev = relations->func[i].rev;
2318 		dr->func[i].prog_intf = relations->func[i].prog_intf;
2319 		dr->func[i].subclass = relations->func[i].subclass;
2320 		dr->func[i].base_class = relations->func[i].base_class;
2321 		dr->func[i].subsystem_id = relations->func[i].subsystem_id;
2322 		dr->func[i].win_slot = relations->func[i].win_slot;
2323 		dr->func[i].ser = relations->func[i].ser;
2324 		dr->func[i].flags = relations->func[i].flags;
2325 		dr->func[i].virtual_numa_node =
2326 			relations->func[i].virtual_numa_node;
2327 	}
2328 
2329 	if (hv_pci_start_relations_work(hbus, dr))
2330 		kfree(dr);
2331 }
2332 
2333 /**
2334  * hv_eject_device_work() - Asynchronously handles ejection
2335  * @work:	Work struct embedded in internal device struct
2336  *
2337  * This function handles ejecting a device.  Windows will
2338  * attempt to gracefully eject a device, waiting 60 seconds to
2339  * hear back from the guest OS that this completed successfully.
2340  * If this timer expires, the device will be forcibly removed.
2341  */
2342 static void hv_eject_device_work(struct work_struct *work)
2343 {
2344 	struct pci_eject_response *ejct_pkt;
2345 	struct hv_pcibus_device *hbus;
2346 	struct hv_pci_dev *hpdev;
2347 	struct pci_dev *pdev;
2348 	unsigned long flags;
2349 	int wslot;
2350 	struct {
2351 		struct pci_packet pkt;
2352 		u8 buffer[sizeof(struct pci_eject_response)];
2353 	} ctxt;
2354 
2355 	hpdev = container_of(work, struct hv_pci_dev, wrk);
2356 	hbus = hpdev->hbus;
2357 
2358 	WARN_ON(hpdev->state != hv_pcichild_ejecting);
2359 
2360 	/*
2361 	 * Ejection can come before or after the PCI bus has been set up, so
2362 	 * attempt to find it and tear down the bus state, if it exists.  This
2363 	 * must be done without constructs like pci_domain_nr(hbus->bridge->bus)
2364 	 * because hbus->bridge->bus may not exist yet.
2365 	 */
2366 	wslot = wslot_to_devfn(hpdev->desc.win_slot.slot);
2367 	pdev = pci_get_domain_bus_and_slot(hbus->bridge->domain_nr, 0, wslot);
2368 	if (pdev) {
2369 		pci_lock_rescan_remove();
2370 		pci_stop_and_remove_bus_device(pdev);
2371 		pci_dev_put(pdev);
2372 		pci_unlock_rescan_remove();
2373 	}
2374 
2375 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2376 	list_del(&hpdev->list_entry);
2377 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2378 
2379 	if (hpdev->pci_slot)
2380 		pci_destroy_slot(hpdev->pci_slot);
2381 
2382 	memset(&ctxt, 0, sizeof(ctxt));
2383 	ejct_pkt = (struct pci_eject_response *)&ctxt.pkt.message;
2384 	ejct_pkt->message_type.type = PCI_EJECTION_COMPLETE;
2385 	ejct_pkt->wslot.slot = hpdev->desc.win_slot.slot;
2386 	vmbus_sendpacket(hbus->hdev->channel, ejct_pkt,
2387 			 sizeof(*ejct_pkt), (unsigned long)&ctxt.pkt,
2388 			 VM_PKT_DATA_INBAND, 0);
2389 
2390 	/* For the get_pcichild() in hv_pci_eject_device() */
2391 	put_pcichild(hpdev);
2392 	/* For the two refs got in new_pcichild_device() */
2393 	put_pcichild(hpdev);
2394 	put_pcichild(hpdev);
2395 	/* hpdev has been freed. Do not use it any more. */
2396 }
2397 
2398 /**
2399  * hv_pci_eject_device() - Handles device ejection
2400  * @hpdev:	Internal device tracking struct
2401  *
2402  * This function is invoked when an ejection packet arrives.  It
2403  * just schedules work so that we don't re-enter the packet
2404  * delivery code handling the ejection.
2405  */
2406 static void hv_pci_eject_device(struct hv_pci_dev *hpdev)
2407 {
2408 	struct hv_pcibus_device *hbus = hpdev->hbus;
2409 	struct hv_device *hdev = hbus->hdev;
2410 
2411 	if (hbus->state == hv_pcibus_removing) {
2412 		dev_info(&hdev->device, "PCI VMBus EJECT: ignored\n");
2413 		return;
2414 	}
2415 
2416 	hpdev->state = hv_pcichild_ejecting;
2417 	get_pcichild(hpdev);
2418 	INIT_WORK(&hpdev->wrk, hv_eject_device_work);
2419 	queue_work(hbus->wq, &hpdev->wrk);
2420 }
2421 
2422 /**
2423  * hv_pci_onchannelcallback() - Handles incoming packets
2424  * @context:	Internal bus tracking struct
2425  *
2426  * This function is invoked whenever the host sends a packet to
2427  * this channel (which is private to this root PCI bus).
2428  */
2429 static void hv_pci_onchannelcallback(void *context)
2430 {
2431 	const int packet_size = 0x100;
2432 	int ret;
2433 	struct hv_pcibus_device *hbus = context;
2434 	u32 bytes_recvd;
2435 	u64 req_id;
2436 	struct vmpacket_descriptor *desc;
2437 	unsigned char *buffer;
2438 	int bufferlen = packet_size;
2439 	struct pci_packet *comp_packet;
2440 	struct pci_response *response;
2441 	struct pci_incoming_message *new_message;
2442 	struct pci_bus_relations *bus_rel;
2443 	struct pci_bus_relations2 *bus_rel2;
2444 	struct pci_dev_inval_block *inval;
2445 	struct pci_dev_incoming *dev_message;
2446 	struct hv_pci_dev *hpdev;
2447 
2448 	buffer = kmalloc(bufferlen, GFP_ATOMIC);
2449 	if (!buffer)
2450 		return;
2451 
2452 	while (1) {
2453 		ret = vmbus_recvpacket_raw(hbus->hdev->channel, buffer,
2454 					   bufferlen, &bytes_recvd, &req_id);
2455 
2456 		if (ret == -ENOBUFS) {
2457 			kfree(buffer);
2458 			/* Handle large packet */
2459 			bufferlen = bytes_recvd;
2460 			buffer = kmalloc(bytes_recvd, GFP_ATOMIC);
2461 			if (!buffer)
2462 				return;
2463 			continue;
2464 		}
2465 
2466 		/* Zero length indicates there are no more packets. */
2467 		if (ret || !bytes_recvd)
2468 			break;
2469 
2470 		/*
2471 		 * All incoming packets must be at least as large as a
2472 		 * response.
2473 		 */
2474 		if (bytes_recvd <= sizeof(struct pci_response))
2475 			continue;
2476 		desc = (struct vmpacket_descriptor *)buffer;
2477 
2478 		switch (desc->type) {
2479 		case VM_PKT_COMP:
2480 
2481 			/*
2482 			 * The host is trusted, and thus it's safe to interpret
2483 			 * this transaction ID as a pointer.
2484 			 */
2485 			comp_packet = (struct pci_packet *)req_id;
2486 			response = (struct pci_response *)buffer;
2487 			comp_packet->completion_func(comp_packet->compl_ctxt,
2488 						     response,
2489 						     bytes_recvd);
2490 			break;
2491 
2492 		case VM_PKT_DATA_INBAND:
2493 
2494 			new_message = (struct pci_incoming_message *)buffer;
2495 			switch (new_message->message_type.type) {
2496 			case PCI_BUS_RELATIONS:
2497 
2498 				bus_rel = (struct pci_bus_relations *)buffer;
2499 				if (bytes_recvd <
2500 					struct_size(bus_rel, func,
2501 						    bus_rel->device_count)) {
2502 					dev_err(&hbus->hdev->device,
2503 						"bus relations too small\n");
2504 					break;
2505 				}
2506 
2507 				hv_pci_devices_present(hbus, bus_rel);
2508 				break;
2509 
2510 			case PCI_BUS_RELATIONS2:
2511 
2512 				bus_rel2 = (struct pci_bus_relations2 *)buffer;
2513 				if (bytes_recvd <
2514 					struct_size(bus_rel2, func,
2515 						    bus_rel2->device_count)) {
2516 					dev_err(&hbus->hdev->device,
2517 						"bus relations v2 too small\n");
2518 					break;
2519 				}
2520 
2521 				hv_pci_devices_present2(hbus, bus_rel2);
2522 				break;
2523 
2524 			case PCI_EJECT:
2525 
2526 				dev_message = (struct pci_dev_incoming *)buffer;
2527 				hpdev = get_pcichild_wslot(hbus,
2528 						      dev_message->wslot.slot);
2529 				if (hpdev) {
2530 					hv_pci_eject_device(hpdev);
2531 					put_pcichild(hpdev);
2532 				}
2533 				break;
2534 
2535 			case PCI_INVALIDATE_BLOCK:
2536 
2537 				inval = (struct pci_dev_inval_block *)buffer;
2538 				hpdev = get_pcichild_wslot(hbus,
2539 							   inval->wslot.slot);
2540 				if (hpdev) {
2541 					if (hpdev->block_invalidate) {
2542 						hpdev->block_invalidate(
2543 						    hpdev->invalidate_context,
2544 						    inval->block_mask);
2545 					}
2546 					put_pcichild(hpdev);
2547 				}
2548 				break;
2549 
2550 			default:
2551 				dev_warn(&hbus->hdev->device,
2552 					"Unimplemented protocol message %x\n",
2553 					new_message->message_type.type);
2554 				break;
2555 			}
2556 			break;
2557 
2558 		default:
2559 			dev_err(&hbus->hdev->device,
2560 				"unhandled packet type %d, tid %llx len %d\n",
2561 				desc->type, req_id, bytes_recvd);
2562 			break;
2563 		}
2564 	}
2565 
2566 	kfree(buffer);
2567 }
2568 
2569 /**
2570  * hv_pci_protocol_negotiation() - Set up protocol
2571  * @hdev:		VMBus's tracking struct for this root PCI bus.
2572  * @version:		Array of supported channel protocol versions in
2573  *			the order of probing - highest go first.
2574  * @num_version:	Number of elements in the version array.
2575  *
2576  * This driver is intended to support running on Windows 10
2577  * (server) and later versions. It will not run on earlier
2578  * versions, as they assume that many of the operations which
2579  * Linux needs accomplished with a spinlock held were done via
2580  * asynchronous messaging via VMBus.  Windows 10 increases the
2581  * surface area of PCI emulation so that these actions can take
2582  * place by suspending a virtual processor for their duration.
2583  *
2584  * This function negotiates the channel protocol version,
2585  * failing if the host doesn't support the necessary protocol
2586  * level.
2587  */
2588 static int hv_pci_protocol_negotiation(struct hv_device *hdev,
2589 				       enum pci_protocol_version_t version[],
2590 				       int num_version)
2591 {
2592 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2593 	struct pci_version_request *version_req;
2594 	struct hv_pci_compl comp_pkt;
2595 	struct pci_packet *pkt;
2596 	int ret;
2597 	int i;
2598 
2599 	/*
2600 	 * Initiate the handshake with the host and negotiate
2601 	 * a version that the host can support. We start with the
2602 	 * highest version number and go down if the host cannot
2603 	 * support it.
2604 	 */
2605 	pkt = kzalloc(sizeof(*pkt) + sizeof(*version_req), GFP_KERNEL);
2606 	if (!pkt)
2607 		return -ENOMEM;
2608 
2609 	init_completion(&comp_pkt.host_event);
2610 	pkt->completion_func = hv_pci_generic_compl;
2611 	pkt->compl_ctxt = &comp_pkt;
2612 	version_req = (struct pci_version_request *)&pkt->message;
2613 	version_req->message_type.type = PCI_QUERY_PROTOCOL_VERSION;
2614 
2615 	for (i = 0; i < num_version; i++) {
2616 		version_req->protocol_version = version[i];
2617 		ret = vmbus_sendpacket(hdev->channel, version_req,
2618 				sizeof(struct pci_version_request),
2619 				(unsigned long)pkt, VM_PKT_DATA_INBAND,
2620 				VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2621 		if (!ret)
2622 			ret = wait_for_response(hdev, &comp_pkt.host_event);
2623 
2624 		if (ret) {
2625 			dev_err(&hdev->device,
2626 				"PCI Pass-through VSP failed to request version: %d",
2627 				ret);
2628 			goto exit;
2629 		}
2630 
2631 		if (comp_pkt.completion_status >= 0) {
2632 			hbus->protocol_version = version[i];
2633 			dev_info(&hdev->device,
2634 				"PCI VMBus probing: Using version %#x\n",
2635 				hbus->protocol_version);
2636 			goto exit;
2637 		}
2638 
2639 		if (comp_pkt.completion_status != STATUS_REVISION_MISMATCH) {
2640 			dev_err(&hdev->device,
2641 				"PCI Pass-through VSP failed version request: %#x",
2642 				comp_pkt.completion_status);
2643 			ret = -EPROTO;
2644 			goto exit;
2645 		}
2646 
2647 		reinit_completion(&comp_pkt.host_event);
2648 	}
2649 
2650 	dev_err(&hdev->device,
2651 		"PCI pass-through VSP failed to find supported version");
2652 	ret = -EPROTO;
2653 
2654 exit:
2655 	kfree(pkt);
2656 	return ret;
2657 }
2658 
2659 /**
2660  * hv_pci_free_bridge_windows() - Release memory regions for the
2661  * bus
2662  * @hbus:	Root PCI bus, as understood by this driver
2663  */
2664 static void hv_pci_free_bridge_windows(struct hv_pcibus_device *hbus)
2665 {
2666 	/*
2667 	 * Set the resources back to the way they looked when they
2668 	 * were allocated by setting IORESOURCE_BUSY again.
2669 	 */
2670 
2671 	if (hbus->low_mmio_space && hbus->low_mmio_res) {
2672 		hbus->low_mmio_res->flags |= IORESOURCE_BUSY;
2673 		vmbus_free_mmio(hbus->low_mmio_res->start,
2674 				resource_size(hbus->low_mmio_res));
2675 	}
2676 
2677 	if (hbus->high_mmio_space && hbus->high_mmio_res) {
2678 		hbus->high_mmio_res->flags |= IORESOURCE_BUSY;
2679 		vmbus_free_mmio(hbus->high_mmio_res->start,
2680 				resource_size(hbus->high_mmio_res));
2681 	}
2682 }
2683 
2684 /**
2685  * hv_pci_allocate_bridge_windows() - Allocate memory regions
2686  * for the bus
2687  * @hbus:	Root PCI bus, as understood by this driver
2688  *
2689  * This function calls vmbus_allocate_mmio(), which is itself a
2690  * bit of a compromise.  Ideally, we might change the pnp layer
2691  * in the kernel such that it comprehends either PCI devices
2692  * which are "grandchildren of ACPI," with some intermediate bus
2693  * node (in this case, VMBus) or change it such that it
2694  * understands VMBus.  The pnp layer, however, has been declared
2695  * deprecated, and not subject to change.
2696  *
2697  * The workaround, implemented here, is to ask VMBus to allocate
2698  * MMIO space for this bus.  VMBus itself knows which ranges are
2699  * appropriate by looking at its own ACPI objects.  Then, after
2700  * these ranges are claimed, they're modified to look like they
2701  * would have looked if the ACPI and pnp code had allocated
2702  * bridge windows.  These descriptors have to exist in this form
2703  * in order to satisfy the code which will get invoked when the
2704  * endpoint PCI function driver calls request_mem_region() or
2705  * request_mem_region_exclusive().
2706  *
2707  * Return: 0 on success, -errno on failure
2708  */
2709 static int hv_pci_allocate_bridge_windows(struct hv_pcibus_device *hbus)
2710 {
2711 	resource_size_t align;
2712 	int ret;
2713 
2714 	if (hbus->low_mmio_space) {
2715 		align = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
2716 		ret = vmbus_allocate_mmio(&hbus->low_mmio_res, hbus->hdev, 0,
2717 					  (u64)(u32)0xffffffff,
2718 					  hbus->low_mmio_space,
2719 					  align, false);
2720 		if (ret) {
2721 			dev_err(&hbus->hdev->device,
2722 				"Need %#llx of low MMIO space. Consider reconfiguring the VM.\n",
2723 				hbus->low_mmio_space);
2724 			return ret;
2725 		}
2726 
2727 		/* Modify this resource to become a bridge window. */
2728 		hbus->low_mmio_res->flags |= IORESOURCE_WINDOW;
2729 		hbus->low_mmio_res->flags &= ~IORESOURCE_BUSY;
2730 		pci_add_resource(&hbus->bridge->windows, hbus->low_mmio_res);
2731 	}
2732 
2733 	if (hbus->high_mmio_space) {
2734 		align = 1ULL << (63 - __builtin_clzll(hbus->high_mmio_space));
2735 		ret = vmbus_allocate_mmio(&hbus->high_mmio_res, hbus->hdev,
2736 					  0x100000000, -1,
2737 					  hbus->high_mmio_space, align,
2738 					  false);
2739 		if (ret) {
2740 			dev_err(&hbus->hdev->device,
2741 				"Need %#llx of high MMIO space. Consider reconfiguring the VM.\n",
2742 				hbus->high_mmio_space);
2743 			goto release_low_mmio;
2744 		}
2745 
2746 		/* Modify this resource to become a bridge window. */
2747 		hbus->high_mmio_res->flags |= IORESOURCE_WINDOW;
2748 		hbus->high_mmio_res->flags &= ~IORESOURCE_BUSY;
2749 		pci_add_resource(&hbus->bridge->windows, hbus->high_mmio_res);
2750 	}
2751 
2752 	return 0;
2753 
2754 release_low_mmio:
2755 	if (hbus->low_mmio_res) {
2756 		vmbus_free_mmio(hbus->low_mmio_res->start,
2757 				resource_size(hbus->low_mmio_res));
2758 	}
2759 
2760 	return ret;
2761 }
2762 
2763 /**
2764  * hv_allocate_config_window() - Find MMIO space for PCI Config
2765  * @hbus:	Root PCI bus, as understood by this driver
2766  *
2767  * This function claims memory-mapped I/O space for accessing
2768  * configuration space for the functions on this bus.
2769  *
2770  * Return: 0 on success, -errno on failure
2771  */
2772 static int hv_allocate_config_window(struct hv_pcibus_device *hbus)
2773 {
2774 	int ret;
2775 
2776 	/*
2777 	 * Set up a region of MMIO space to use for accessing configuration
2778 	 * space.
2779 	 */
2780 	ret = vmbus_allocate_mmio(&hbus->mem_config, hbus->hdev, 0, -1,
2781 				  PCI_CONFIG_MMIO_LENGTH, 0x1000, false);
2782 	if (ret)
2783 		return ret;
2784 
2785 	/*
2786 	 * vmbus_allocate_mmio() gets used for allocating both device endpoint
2787 	 * resource claims (those which cannot be overlapped) and the ranges
2788 	 * which are valid for the children of this bus, which are intended
2789 	 * to be overlapped by those children.  Set the flag on this claim
2790 	 * meaning that this region can't be overlapped.
2791 	 */
2792 
2793 	hbus->mem_config->flags |= IORESOURCE_BUSY;
2794 
2795 	return 0;
2796 }
2797 
2798 static void hv_free_config_window(struct hv_pcibus_device *hbus)
2799 {
2800 	vmbus_free_mmio(hbus->mem_config->start, PCI_CONFIG_MMIO_LENGTH);
2801 }
2802 
2803 static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs);
2804 
2805 /**
2806  * hv_pci_enter_d0() - Bring the "bus" into the D0 power state
2807  * @hdev:	VMBus's tracking struct for this root PCI bus
2808  *
2809  * Return: 0 on success, -errno on failure
2810  */
2811 static int hv_pci_enter_d0(struct hv_device *hdev)
2812 {
2813 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2814 	struct pci_bus_d0_entry *d0_entry;
2815 	struct hv_pci_compl comp_pkt;
2816 	struct pci_packet *pkt;
2817 	int ret;
2818 
2819 	/*
2820 	 * Tell the host that the bus is ready to use, and moved into the
2821 	 * powered-on state.  This includes telling the host which region
2822 	 * of memory-mapped I/O space has been chosen for configuration space
2823 	 * access.
2824 	 */
2825 	pkt = kzalloc(sizeof(*pkt) + sizeof(*d0_entry), GFP_KERNEL);
2826 	if (!pkt)
2827 		return -ENOMEM;
2828 
2829 	init_completion(&comp_pkt.host_event);
2830 	pkt->completion_func = hv_pci_generic_compl;
2831 	pkt->compl_ctxt = &comp_pkt;
2832 	d0_entry = (struct pci_bus_d0_entry *)&pkt->message;
2833 	d0_entry->message_type.type = PCI_BUS_D0ENTRY;
2834 	d0_entry->mmio_base = hbus->mem_config->start;
2835 
2836 	ret = vmbus_sendpacket(hdev->channel, d0_entry, sizeof(*d0_entry),
2837 			       (unsigned long)pkt, VM_PKT_DATA_INBAND,
2838 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2839 	if (!ret)
2840 		ret = wait_for_response(hdev, &comp_pkt.host_event);
2841 
2842 	if (ret)
2843 		goto exit;
2844 
2845 	if (comp_pkt.completion_status < 0) {
2846 		dev_err(&hdev->device,
2847 			"PCI Pass-through VSP failed D0 Entry with status %x\n",
2848 			comp_pkt.completion_status);
2849 		ret = -EPROTO;
2850 		goto exit;
2851 	}
2852 
2853 	ret = 0;
2854 
2855 exit:
2856 	kfree(pkt);
2857 	return ret;
2858 }
2859 
2860 /**
2861  * hv_pci_query_relations() - Ask host to send list of child
2862  * devices
2863  * @hdev:	VMBus's tracking struct for this root PCI bus
2864  *
2865  * Return: 0 on success, -errno on failure
2866  */
2867 static int hv_pci_query_relations(struct hv_device *hdev)
2868 {
2869 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2870 	struct pci_message message;
2871 	struct completion comp;
2872 	int ret;
2873 
2874 	/* Ask the host to send along the list of child devices */
2875 	init_completion(&comp);
2876 	if (cmpxchg(&hbus->survey_event, NULL, &comp))
2877 		return -ENOTEMPTY;
2878 
2879 	memset(&message, 0, sizeof(message));
2880 	message.type = PCI_QUERY_BUS_RELATIONS;
2881 
2882 	ret = vmbus_sendpacket(hdev->channel, &message, sizeof(message),
2883 			       0, VM_PKT_DATA_INBAND, 0);
2884 	if (!ret)
2885 		ret = wait_for_response(hdev, &comp);
2886 
2887 	return ret;
2888 }
2889 
2890 /**
2891  * hv_send_resources_allocated() - Report local resource choices
2892  * @hdev:	VMBus's tracking struct for this root PCI bus
2893  *
2894  * The host OS is expecting to be sent a request as a message
2895  * which contains all the resources that the device will use.
2896  * The response contains those same resources, "translated"
2897  * which is to say, the values which should be used by the
2898  * hardware, when it delivers an interrupt.  (MMIO resources are
2899  * used in local terms.)  This is nice for Windows, and lines up
2900  * with the FDO/PDO split, which doesn't exist in Linux.  Linux
2901  * is deeply expecting to scan an emulated PCI configuration
2902  * space.  So this message is sent here only to drive the state
2903  * machine on the host forward.
2904  *
2905  * Return: 0 on success, -errno on failure
2906  */
2907 static int hv_send_resources_allocated(struct hv_device *hdev)
2908 {
2909 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2910 	struct pci_resources_assigned *res_assigned;
2911 	struct pci_resources_assigned2 *res_assigned2;
2912 	struct hv_pci_compl comp_pkt;
2913 	struct hv_pci_dev *hpdev;
2914 	struct pci_packet *pkt;
2915 	size_t size_res;
2916 	int wslot;
2917 	int ret;
2918 
2919 	size_res = (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2)
2920 			? sizeof(*res_assigned) : sizeof(*res_assigned2);
2921 
2922 	pkt = kmalloc(sizeof(*pkt) + size_res, GFP_KERNEL);
2923 	if (!pkt)
2924 		return -ENOMEM;
2925 
2926 	ret = 0;
2927 
2928 	for (wslot = 0; wslot < 256; wslot++) {
2929 		hpdev = get_pcichild_wslot(hbus, wslot);
2930 		if (!hpdev)
2931 			continue;
2932 
2933 		memset(pkt, 0, sizeof(*pkt) + size_res);
2934 		init_completion(&comp_pkt.host_event);
2935 		pkt->completion_func = hv_pci_generic_compl;
2936 		pkt->compl_ctxt = &comp_pkt;
2937 
2938 		if (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2) {
2939 			res_assigned =
2940 				(struct pci_resources_assigned *)&pkt->message;
2941 			res_assigned->message_type.type =
2942 				PCI_RESOURCES_ASSIGNED;
2943 			res_assigned->wslot.slot = hpdev->desc.win_slot.slot;
2944 		} else {
2945 			res_assigned2 =
2946 				(struct pci_resources_assigned2 *)&pkt->message;
2947 			res_assigned2->message_type.type =
2948 				PCI_RESOURCES_ASSIGNED2;
2949 			res_assigned2->wslot.slot = hpdev->desc.win_slot.slot;
2950 		}
2951 		put_pcichild(hpdev);
2952 
2953 		ret = vmbus_sendpacket(hdev->channel, &pkt->message,
2954 				size_res, (unsigned long)pkt,
2955 				VM_PKT_DATA_INBAND,
2956 				VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2957 		if (!ret)
2958 			ret = wait_for_response(hdev, &comp_pkt.host_event);
2959 		if (ret)
2960 			break;
2961 
2962 		if (comp_pkt.completion_status < 0) {
2963 			ret = -EPROTO;
2964 			dev_err(&hdev->device,
2965 				"resource allocated returned 0x%x",
2966 				comp_pkt.completion_status);
2967 			break;
2968 		}
2969 
2970 		hbus->wslot_res_allocated = wslot;
2971 	}
2972 
2973 	kfree(pkt);
2974 	return ret;
2975 }
2976 
2977 /**
2978  * hv_send_resources_released() - Report local resources
2979  * released
2980  * @hdev:	VMBus's tracking struct for this root PCI bus
2981  *
2982  * Return: 0 on success, -errno on failure
2983  */
2984 static int hv_send_resources_released(struct hv_device *hdev)
2985 {
2986 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2987 	struct pci_child_message pkt;
2988 	struct hv_pci_dev *hpdev;
2989 	int wslot;
2990 	int ret;
2991 
2992 	for (wslot = hbus->wslot_res_allocated; wslot >= 0; wslot--) {
2993 		hpdev = get_pcichild_wslot(hbus, wslot);
2994 		if (!hpdev)
2995 			continue;
2996 
2997 		memset(&pkt, 0, sizeof(pkt));
2998 		pkt.message_type.type = PCI_RESOURCES_RELEASED;
2999 		pkt.wslot.slot = hpdev->desc.win_slot.slot;
3000 
3001 		put_pcichild(hpdev);
3002 
3003 		ret = vmbus_sendpacket(hdev->channel, &pkt, sizeof(pkt), 0,
3004 				       VM_PKT_DATA_INBAND, 0);
3005 		if (ret)
3006 			return ret;
3007 
3008 		hbus->wslot_res_allocated = wslot - 1;
3009 	}
3010 
3011 	hbus->wslot_res_allocated = -1;
3012 
3013 	return 0;
3014 }
3015 
3016 #define HVPCI_DOM_MAP_SIZE (64 * 1024)
3017 static DECLARE_BITMAP(hvpci_dom_map, HVPCI_DOM_MAP_SIZE);
3018 
3019 /*
3020  * PCI domain number 0 is used by emulated devices on Gen1 VMs, so define 0
3021  * as invalid for passthrough PCI devices of this driver.
3022  */
3023 #define HVPCI_DOM_INVALID 0
3024 
3025 /**
3026  * hv_get_dom_num() - Get a valid PCI domain number
3027  * Check if the PCI domain number is in use, and return another number if
3028  * it is in use.
3029  *
3030  * @dom: Requested domain number
3031  *
3032  * return: domain number on success, HVPCI_DOM_INVALID on failure
3033  */
3034 static u16 hv_get_dom_num(u16 dom)
3035 {
3036 	unsigned int i;
3037 
3038 	if (test_and_set_bit(dom, hvpci_dom_map) == 0)
3039 		return dom;
3040 
3041 	for_each_clear_bit(i, hvpci_dom_map, HVPCI_DOM_MAP_SIZE) {
3042 		if (test_and_set_bit(i, hvpci_dom_map) == 0)
3043 			return i;
3044 	}
3045 
3046 	return HVPCI_DOM_INVALID;
3047 }
3048 
3049 /**
3050  * hv_put_dom_num() - Mark the PCI domain number as free
3051  * @dom: Domain number to be freed
3052  */
3053 static void hv_put_dom_num(u16 dom)
3054 {
3055 	clear_bit(dom, hvpci_dom_map);
3056 }
3057 
3058 /**
3059  * hv_pci_probe() - New VMBus channel probe, for a root PCI bus
3060  * @hdev:	VMBus's tracking struct for this root PCI bus
3061  * @dev_id:	Identifies the device itself
3062  *
3063  * Return: 0 on success, -errno on failure
3064  */
3065 static int hv_pci_probe(struct hv_device *hdev,
3066 			const struct hv_vmbus_device_id *dev_id)
3067 {
3068 	struct pci_host_bridge *bridge;
3069 	struct hv_pcibus_device *hbus;
3070 	u16 dom_req, dom;
3071 	char *name;
3072 	bool enter_d0_retry = true;
3073 	int ret;
3074 
3075 	/*
3076 	 * hv_pcibus_device contains the hypercall arguments for retargeting in
3077 	 * hv_irq_unmask(). Those must not cross a page boundary.
3078 	 */
3079 	BUILD_BUG_ON(sizeof(*hbus) > HV_HYP_PAGE_SIZE);
3080 
3081 	bridge = devm_pci_alloc_host_bridge(&hdev->device, 0);
3082 	if (!bridge)
3083 		return -ENOMEM;
3084 
3085 	/*
3086 	 * With the recent 59bb47985c1d ("mm, sl[aou]b: guarantee natural
3087 	 * alignment for kmalloc(power-of-two)"), kzalloc() is able to allocate
3088 	 * a 4KB buffer that is guaranteed to be 4KB-aligned. Here the size and
3089 	 * alignment of hbus is important because hbus's field
3090 	 * retarget_msi_interrupt_params must not cross a 4KB page boundary.
3091 	 *
3092 	 * Here we prefer kzalloc to get_zeroed_page(), because a buffer
3093 	 * allocated by the latter is not tracked and scanned by kmemleak, and
3094 	 * hence kmemleak reports the pointer contained in the hbus buffer
3095 	 * (i.e. the hpdev struct, which is created in new_pcichild_device() and
3096 	 * is tracked by hbus->children) as memory leak (false positive).
3097 	 *
3098 	 * If the kernel doesn't have 59bb47985c1d, get_zeroed_page() *must* be
3099 	 * used to allocate the hbus buffer and we can avoid the kmemleak false
3100 	 * positive by using kmemleak_alloc() and kmemleak_free() to ask
3101 	 * kmemleak to track and scan the hbus buffer.
3102 	 */
3103 	hbus = kzalloc(HV_HYP_PAGE_SIZE, GFP_KERNEL);
3104 	if (!hbus)
3105 		return -ENOMEM;
3106 
3107 	hbus->bridge = bridge;
3108 	hbus->state = hv_pcibus_init;
3109 	hbus->wslot_res_allocated = -1;
3110 
3111 	/*
3112 	 * The PCI bus "domain" is what is called "segment" in ACPI and other
3113 	 * specs. Pull it from the instance ID, to get something usually
3114 	 * unique. In rare cases of collision, we will find out another number
3115 	 * not in use.
3116 	 *
3117 	 * Note that, since this code only runs in a Hyper-V VM, Hyper-V
3118 	 * together with this guest driver can guarantee that (1) The only
3119 	 * domain used by Gen1 VMs for something that looks like a physical
3120 	 * PCI bus (which is actually emulated by the hypervisor) is domain 0.
3121 	 * (2) There will be no overlap between domains (after fixing possible
3122 	 * collisions) in the same VM.
3123 	 */
3124 	dom_req = hdev->dev_instance.b[5] << 8 | hdev->dev_instance.b[4];
3125 	dom = hv_get_dom_num(dom_req);
3126 
3127 	if (dom == HVPCI_DOM_INVALID) {
3128 		dev_err(&hdev->device,
3129 			"Unable to use dom# 0x%x or other numbers", dom_req);
3130 		ret = -EINVAL;
3131 		goto free_bus;
3132 	}
3133 
3134 	if (dom != dom_req)
3135 		dev_info(&hdev->device,
3136 			 "PCI dom# 0x%x has collision, using 0x%x",
3137 			 dom_req, dom);
3138 
3139 	hbus->bridge->domain_nr = dom;
3140 #ifdef CONFIG_X86
3141 	hbus->sysdata.domain = dom;
3142 #endif
3143 
3144 	hbus->hdev = hdev;
3145 	INIT_LIST_HEAD(&hbus->children);
3146 	INIT_LIST_HEAD(&hbus->dr_list);
3147 	spin_lock_init(&hbus->config_lock);
3148 	spin_lock_init(&hbus->device_list_lock);
3149 	spin_lock_init(&hbus->retarget_msi_interrupt_lock);
3150 	hbus->wq = alloc_ordered_workqueue("hv_pci_%x", 0,
3151 					   hbus->bridge->domain_nr);
3152 	if (!hbus->wq) {
3153 		ret = -ENOMEM;
3154 		goto free_dom;
3155 	}
3156 
3157 	ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0,
3158 			 hv_pci_onchannelcallback, hbus);
3159 	if (ret)
3160 		goto destroy_wq;
3161 
3162 	hv_set_drvdata(hdev, hbus);
3163 
3164 	ret = hv_pci_protocol_negotiation(hdev, pci_protocol_versions,
3165 					  ARRAY_SIZE(pci_protocol_versions));
3166 	if (ret)
3167 		goto close;
3168 
3169 	ret = hv_allocate_config_window(hbus);
3170 	if (ret)
3171 		goto close;
3172 
3173 	hbus->cfg_addr = ioremap(hbus->mem_config->start,
3174 				 PCI_CONFIG_MMIO_LENGTH);
3175 	if (!hbus->cfg_addr) {
3176 		dev_err(&hdev->device,
3177 			"Unable to map a virtual address for config space\n");
3178 		ret = -ENOMEM;
3179 		goto free_config;
3180 	}
3181 
3182 	name = kasprintf(GFP_KERNEL, "%pUL", &hdev->dev_instance);
3183 	if (!name) {
3184 		ret = -ENOMEM;
3185 		goto unmap;
3186 	}
3187 
3188 	hbus->fwnode = irq_domain_alloc_named_fwnode(name);
3189 	kfree(name);
3190 	if (!hbus->fwnode) {
3191 		ret = -ENOMEM;
3192 		goto unmap;
3193 	}
3194 
3195 	ret = hv_pcie_init_irq_domain(hbus);
3196 	if (ret)
3197 		goto free_fwnode;
3198 
3199 retry:
3200 	ret = hv_pci_query_relations(hdev);
3201 	if (ret)
3202 		goto free_irq_domain;
3203 
3204 	ret = hv_pci_enter_d0(hdev);
3205 	/*
3206 	 * In certain case (Kdump) the pci device of interest was
3207 	 * not cleanly shut down and resource is still held on host
3208 	 * side, the host could return invalid device status.
3209 	 * We need to explicitly request host to release the resource
3210 	 * and try to enter D0 again.
3211 	 * Since the hv_pci_bus_exit() call releases structures
3212 	 * of all its child devices, we need to start the retry from
3213 	 * hv_pci_query_relations() call, requesting host to send
3214 	 * the synchronous child device relations message before this
3215 	 * information is needed in hv_send_resources_allocated()
3216 	 * call later.
3217 	 */
3218 	if (ret == -EPROTO && enter_d0_retry) {
3219 		enter_d0_retry = false;
3220 
3221 		dev_err(&hdev->device, "Retrying D0 Entry\n");
3222 
3223 		/*
3224 		 * Hv_pci_bus_exit() calls hv_send_resources_released()
3225 		 * to free up resources of its child devices.
3226 		 * In the kdump kernel we need to set the
3227 		 * wslot_res_allocated to 255 so it scans all child
3228 		 * devices to release resources allocated in the
3229 		 * normal kernel before panic happened.
3230 		 */
3231 		hbus->wslot_res_allocated = 255;
3232 		ret = hv_pci_bus_exit(hdev, true);
3233 
3234 		if (ret == 0)
3235 			goto retry;
3236 
3237 		dev_err(&hdev->device,
3238 			"Retrying D0 failed with ret %d\n", ret);
3239 	}
3240 	if (ret)
3241 		goto free_irq_domain;
3242 
3243 	ret = hv_pci_allocate_bridge_windows(hbus);
3244 	if (ret)
3245 		goto exit_d0;
3246 
3247 	ret = hv_send_resources_allocated(hdev);
3248 	if (ret)
3249 		goto free_windows;
3250 
3251 	prepopulate_bars(hbus);
3252 
3253 	hbus->state = hv_pcibus_probed;
3254 
3255 	ret = create_root_hv_pci_bus(hbus);
3256 	if (ret)
3257 		goto free_windows;
3258 
3259 	return 0;
3260 
3261 free_windows:
3262 	hv_pci_free_bridge_windows(hbus);
3263 exit_d0:
3264 	(void) hv_pci_bus_exit(hdev, true);
3265 free_irq_domain:
3266 	irq_domain_remove(hbus->irq_domain);
3267 free_fwnode:
3268 	irq_domain_free_fwnode(hbus->fwnode);
3269 unmap:
3270 	iounmap(hbus->cfg_addr);
3271 free_config:
3272 	hv_free_config_window(hbus);
3273 close:
3274 	vmbus_close(hdev->channel);
3275 destroy_wq:
3276 	destroy_workqueue(hbus->wq);
3277 free_dom:
3278 	hv_put_dom_num(hbus->bridge->domain_nr);
3279 free_bus:
3280 	kfree(hbus);
3281 	return ret;
3282 }
3283 
3284 static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs)
3285 {
3286 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3287 	struct {
3288 		struct pci_packet teardown_packet;
3289 		u8 buffer[sizeof(struct pci_message)];
3290 	} pkt;
3291 	struct hv_pci_compl comp_pkt;
3292 	struct hv_pci_dev *hpdev, *tmp;
3293 	unsigned long flags;
3294 	int ret;
3295 
3296 	/*
3297 	 * After the host sends the RESCIND_CHANNEL message, it doesn't
3298 	 * access the per-channel ringbuffer any longer.
3299 	 */
3300 	if (hdev->channel->rescind)
3301 		return 0;
3302 
3303 	if (!keep_devs) {
3304 		struct list_head removed;
3305 
3306 		/* Move all present children to the list on stack */
3307 		INIT_LIST_HEAD(&removed);
3308 		spin_lock_irqsave(&hbus->device_list_lock, flags);
3309 		list_for_each_entry_safe(hpdev, tmp, &hbus->children, list_entry)
3310 			list_move_tail(&hpdev->list_entry, &removed);
3311 		spin_unlock_irqrestore(&hbus->device_list_lock, flags);
3312 
3313 		/* Remove all children in the list */
3314 		list_for_each_entry_safe(hpdev, tmp, &removed, list_entry) {
3315 			list_del(&hpdev->list_entry);
3316 			if (hpdev->pci_slot)
3317 				pci_destroy_slot(hpdev->pci_slot);
3318 			/* For the two refs got in new_pcichild_device() */
3319 			put_pcichild(hpdev);
3320 			put_pcichild(hpdev);
3321 		}
3322 	}
3323 
3324 	ret = hv_send_resources_released(hdev);
3325 	if (ret) {
3326 		dev_err(&hdev->device,
3327 			"Couldn't send resources released packet(s)\n");
3328 		return ret;
3329 	}
3330 
3331 	memset(&pkt.teardown_packet, 0, sizeof(pkt.teardown_packet));
3332 	init_completion(&comp_pkt.host_event);
3333 	pkt.teardown_packet.completion_func = hv_pci_generic_compl;
3334 	pkt.teardown_packet.compl_ctxt = &comp_pkt;
3335 	pkt.teardown_packet.message[0].type = PCI_BUS_D0EXIT;
3336 
3337 	ret = vmbus_sendpacket(hdev->channel, &pkt.teardown_packet.message,
3338 			       sizeof(struct pci_message),
3339 			       (unsigned long)&pkt.teardown_packet,
3340 			       VM_PKT_DATA_INBAND,
3341 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3342 	if (ret)
3343 		return ret;
3344 
3345 	if (wait_for_completion_timeout(&comp_pkt.host_event, 10 * HZ) == 0)
3346 		return -ETIMEDOUT;
3347 
3348 	return 0;
3349 }
3350 
3351 /**
3352  * hv_pci_remove() - Remove routine for this VMBus channel
3353  * @hdev:	VMBus's tracking struct for this root PCI bus
3354  *
3355  * Return: 0 on success, -errno on failure
3356  */
3357 static int hv_pci_remove(struct hv_device *hdev)
3358 {
3359 	struct hv_pcibus_device *hbus;
3360 	int ret;
3361 
3362 	hbus = hv_get_drvdata(hdev);
3363 	if (hbus->state == hv_pcibus_installed) {
3364 		tasklet_disable(&hdev->channel->callback_event);
3365 		hbus->state = hv_pcibus_removing;
3366 		tasklet_enable(&hdev->channel->callback_event);
3367 		destroy_workqueue(hbus->wq);
3368 		hbus->wq = NULL;
3369 		/*
3370 		 * At this point, no work is running or can be scheduled
3371 		 * on hbus-wq. We can't race with hv_pci_devices_present()
3372 		 * or hv_pci_eject_device(), it's safe to proceed.
3373 		 */
3374 
3375 		/* Remove the bus from PCI's point of view. */
3376 		pci_lock_rescan_remove();
3377 		pci_stop_root_bus(hbus->bridge->bus);
3378 		hv_pci_remove_slots(hbus);
3379 		pci_remove_root_bus(hbus->bridge->bus);
3380 		pci_unlock_rescan_remove();
3381 	}
3382 
3383 	ret = hv_pci_bus_exit(hdev, false);
3384 
3385 	vmbus_close(hdev->channel);
3386 
3387 	iounmap(hbus->cfg_addr);
3388 	hv_free_config_window(hbus);
3389 	hv_pci_free_bridge_windows(hbus);
3390 	irq_domain_remove(hbus->irq_domain);
3391 	irq_domain_free_fwnode(hbus->fwnode);
3392 
3393 	hv_put_dom_num(hbus->bridge->domain_nr);
3394 
3395 	kfree(hbus);
3396 	return ret;
3397 }
3398 
3399 static int hv_pci_suspend(struct hv_device *hdev)
3400 {
3401 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3402 	enum hv_pcibus_state old_state;
3403 	int ret;
3404 
3405 	/*
3406 	 * hv_pci_suspend() must make sure there are no pending work items
3407 	 * before calling vmbus_close(), since it runs in a process context
3408 	 * as a callback in dpm_suspend().  When it starts to run, the channel
3409 	 * callback hv_pci_onchannelcallback(), which runs in a tasklet
3410 	 * context, can be still running concurrently and scheduling new work
3411 	 * items onto hbus->wq in hv_pci_devices_present() and
3412 	 * hv_pci_eject_device(), and the work item handlers can access the
3413 	 * vmbus channel, which can be being closed by hv_pci_suspend(), e.g.
3414 	 * the work item handler pci_devices_present_work() ->
3415 	 * new_pcichild_device() writes to the vmbus channel.
3416 	 *
3417 	 * To eliminate the race, hv_pci_suspend() disables the channel
3418 	 * callback tasklet, sets hbus->state to hv_pcibus_removing, and
3419 	 * re-enables the tasklet. This way, when hv_pci_suspend() proceeds,
3420 	 * it knows that no new work item can be scheduled, and then it flushes
3421 	 * hbus->wq and safely closes the vmbus channel.
3422 	 */
3423 	tasklet_disable(&hdev->channel->callback_event);
3424 
3425 	/* Change the hbus state to prevent new work items. */
3426 	old_state = hbus->state;
3427 	if (hbus->state == hv_pcibus_installed)
3428 		hbus->state = hv_pcibus_removing;
3429 
3430 	tasklet_enable(&hdev->channel->callback_event);
3431 
3432 	if (old_state != hv_pcibus_installed)
3433 		return -EINVAL;
3434 
3435 	flush_workqueue(hbus->wq);
3436 
3437 	ret = hv_pci_bus_exit(hdev, true);
3438 	if (ret)
3439 		return ret;
3440 
3441 	vmbus_close(hdev->channel);
3442 
3443 	return 0;
3444 }
3445 
3446 static int hv_pci_restore_msi_msg(struct pci_dev *pdev, void *arg)
3447 {
3448 	struct msi_desc *entry;
3449 	struct irq_data *irq_data;
3450 
3451 	for_each_pci_msi_entry(entry, pdev) {
3452 		irq_data = irq_get_irq_data(entry->irq);
3453 		if (WARN_ON_ONCE(!irq_data))
3454 			return -EINVAL;
3455 
3456 		hv_compose_msi_msg(irq_data, &entry->msg);
3457 	}
3458 
3459 	return 0;
3460 }
3461 
3462 /*
3463  * Upon resume, pci_restore_msi_state() -> ... ->  __pci_write_msi_msg()
3464  * directly writes the MSI/MSI-X registers via MMIO, but since Hyper-V
3465  * doesn't trap and emulate the MMIO accesses, here hv_compose_msi_msg()
3466  * must be used to ask Hyper-V to re-create the IOMMU Interrupt Remapping
3467  * Table entries.
3468  */
3469 static void hv_pci_restore_msi_state(struct hv_pcibus_device *hbus)
3470 {
3471 	pci_walk_bus(hbus->bridge->bus, hv_pci_restore_msi_msg, NULL);
3472 }
3473 
3474 static int hv_pci_resume(struct hv_device *hdev)
3475 {
3476 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3477 	enum pci_protocol_version_t version[1];
3478 	int ret;
3479 
3480 	hbus->state = hv_pcibus_init;
3481 
3482 	ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0,
3483 			 hv_pci_onchannelcallback, hbus);
3484 	if (ret)
3485 		return ret;
3486 
3487 	/* Only use the version that was in use before hibernation. */
3488 	version[0] = hbus->protocol_version;
3489 	ret = hv_pci_protocol_negotiation(hdev, version, 1);
3490 	if (ret)
3491 		goto out;
3492 
3493 	ret = hv_pci_query_relations(hdev);
3494 	if (ret)
3495 		goto out;
3496 
3497 	ret = hv_pci_enter_d0(hdev);
3498 	if (ret)
3499 		goto out;
3500 
3501 	ret = hv_send_resources_allocated(hdev);
3502 	if (ret)
3503 		goto out;
3504 
3505 	prepopulate_bars(hbus);
3506 
3507 	hv_pci_restore_msi_state(hbus);
3508 
3509 	hbus->state = hv_pcibus_installed;
3510 	return 0;
3511 out:
3512 	vmbus_close(hdev->channel);
3513 	return ret;
3514 }
3515 
3516 static const struct hv_vmbus_device_id hv_pci_id_table[] = {
3517 	/* PCI Pass-through Class ID */
3518 	/* 44C4F61D-4444-4400-9D52-802E27EDE19F */
3519 	{ HV_PCIE_GUID, },
3520 	{ },
3521 };
3522 
3523 MODULE_DEVICE_TABLE(vmbus, hv_pci_id_table);
3524 
3525 static struct hv_driver hv_pci_drv = {
3526 	.name		= "hv_pci",
3527 	.id_table	= hv_pci_id_table,
3528 	.probe		= hv_pci_probe,
3529 	.remove		= hv_pci_remove,
3530 	.suspend	= hv_pci_suspend,
3531 	.resume		= hv_pci_resume,
3532 };
3533 
3534 static void __exit exit_hv_pci_drv(void)
3535 {
3536 	vmbus_driver_unregister(&hv_pci_drv);
3537 
3538 	hvpci_block_ops.read_block = NULL;
3539 	hvpci_block_ops.write_block = NULL;
3540 	hvpci_block_ops.reg_blk_invalidate = NULL;
3541 }
3542 
3543 static int __init init_hv_pci_drv(void)
3544 {
3545 	if (!hv_is_hyperv_initialized())
3546 		return -ENODEV;
3547 
3548 	/* Set the invalid domain number's bit, so it will not be used */
3549 	set_bit(HVPCI_DOM_INVALID, hvpci_dom_map);
3550 
3551 	/* Initialize PCI block r/w interface */
3552 	hvpci_block_ops.read_block = hv_read_config_block;
3553 	hvpci_block_ops.write_block = hv_write_config_block;
3554 	hvpci_block_ops.reg_blk_invalidate = hv_register_block_invalidate;
3555 
3556 	return vmbus_driver_register(&hv_pci_drv);
3557 }
3558 
3559 module_init(init_hv_pci_drv);
3560 module_exit(exit_hv_pci_drv);
3561 
3562 MODULE_DESCRIPTION("Hyper-V PCI");
3563 MODULE_LICENSE("GPL v2");
3564