1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) Microsoft Corporation. 4 * 5 * Author: 6 * Jake Oshins <jakeo@microsoft.com> 7 * 8 * This driver acts as a paravirtual front-end for PCI Express root buses. 9 * When a PCI Express function (either an entire device or an SR-IOV 10 * Virtual Function) is being passed through to the VM, this driver exposes 11 * a new bus to the guest VM. This is modeled as a root PCI bus because 12 * no bridges are being exposed to the VM. In fact, with a "Generation 2" 13 * VM within Hyper-V, there may seem to be no PCI bus at all in the VM 14 * until a device as been exposed using this driver. 15 * 16 * Each root PCI bus has its own PCI domain, which is called "Segment" in 17 * the PCI Firmware Specifications. Thus while each device passed through 18 * to the VM using this front-end will appear at "device 0", the domain will 19 * be unique. Typically, each bus will have one PCI function on it, though 20 * this driver does support more than one. 21 * 22 * In order to map the interrupts from the device through to the guest VM, 23 * this driver also implements an IRQ Domain, which handles interrupts (either 24 * MSI or MSI-X) associated with the functions on the bus. As interrupts are 25 * set up, torn down, or reaffined, this driver communicates with the 26 * underlying hypervisor to adjust the mappings in the I/O MMU so that each 27 * interrupt will be delivered to the correct virtual processor at the right 28 * vector. This driver does not support level-triggered (line-based) 29 * interrupts, and will report that the Interrupt Line register in the 30 * function's configuration space is zero. 31 * 32 * The rest of this driver mostly maps PCI concepts onto underlying Hyper-V 33 * facilities. For instance, the configuration space of a function exposed 34 * by Hyper-V is mapped into a single page of memory space, and the 35 * read and write handlers for config space must be aware of this mechanism. 36 * Similarly, device setup and teardown involves messages sent to and from 37 * the PCI back-end driver in Hyper-V. 38 */ 39 40 #include <linux/kernel.h> 41 #include <linux/module.h> 42 #include <linux/pci.h> 43 #include <linux/pci-ecam.h> 44 #include <linux/delay.h> 45 #include <linux/semaphore.h> 46 #include <linux/irq.h> 47 #include <linux/msi.h> 48 #include <linux/hyperv.h> 49 #include <linux/refcount.h> 50 #include <linux/irqdomain.h> 51 #include <linux/acpi.h> 52 #include <asm/mshyperv.h> 53 54 /* 55 * Protocol versions. The low word is the minor version, the high word the 56 * major version. 57 */ 58 59 #define PCI_MAKE_VERSION(major, minor) ((u32)(((major) << 16) | (minor))) 60 #define PCI_MAJOR_VERSION(version) ((u32)(version) >> 16) 61 #define PCI_MINOR_VERSION(version) ((u32)(version) & 0xff) 62 63 enum pci_protocol_version_t { 64 PCI_PROTOCOL_VERSION_1_1 = PCI_MAKE_VERSION(1, 1), /* Win10 */ 65 PCI_PROTOCOL_VERSION_1_2 = PCI_MAKE_VERSION(1, 2), /* RS1 */ 66 PCI_PROTOCOL_VERSION_1_3 = PCI_MAKE_VERSION(1, 3), /* Vibranium */ 67 PCI_PROTOCOL_VERSION_1_4 = PCI_MAKE_VERSION(1, 4), /* WS2022 */ 68 }; 69 70 #define CPU_AFFINITY_ALL -1ULL 71 72 /* 73 * Supported protocol versions in the order of probing - highest go 74 * first. 75 */ 76 static enum pci_protocol_version_t pci_protocol_versions[] = { 77 PCI_PROTOCOL_VERSION_1_4, 78 PCI_PROTOCOL_VERSION_1_3, 79 PCI_PROTOCOL_VERSION_1_2, 80 PCI_PROTOCOL_VERSION_1_1, 81 }; 82 83 #define PCI_CONFIG_MMIO_LENGTH 0x2000 84 #define CFG_PAGE_OFFSET 0x1000 85 #define CFG_PAGE_SIZE (PCI_CONFIG_MMIO_LENGTH - CFG_PAGE_OFFSET) 86 87 #define MAX_SUPPORTED_MSI_MESSAGES 0x400 88 89 #define STATUS_REVISION_MISMATCH 0xC0000059 90 91 /* space for 32bit serial number as string */ 92 #define SLOT_NAME_SIZE 11 93 94 /* 95 * Message Types 96 */ 97 98 enum pci_message_type { 99 /* 100 * Version 1.1 101 */ 102 PCI_MESSAGE_BASE = 0x42490000, 103 PCI_BUS_RELATIONS = PCI_MESSAGE_BASE + 0, 104 PCI_QUERY_BUS_RELATIONS = PCI_MESSAGE_BASE + 1, 105 PCI_POWER_STATE_CHANGE = PCI_MESSAGE_BASE + 4, 106 PCI_QUERY_RESOURCE_REQUIREMENTS = PCI_MESSAGE_BASE + 5, 107 PCI_QUERY_RESOURCE_RESOURCES = PCI_MESSAGE_BASE + 6, 108 PCI_BUS_D0ENTRY = PCI_MESSAGE_BASE + 7, 109 PCI_BUS_D0EXIT = PCI_MESSAGE_BASE + 8, 110 PCI_READ_BLOCK = PCI_MESSAGE_BASE + 9, 111 PCI_WRITE_BLOCK = PCI_MESSAGE_BASE + 0xA, 112 PCI_EJECT = PCI_MESSAGE_BASE + 0xB, 113 PCI_QUERY_STOP = PCI_MESSAGE_BASE + 0xC, 114 PCI_REENABLE = PCI_MESSAGE_BASE + 0xD, 115 PCI_QUERY_STOP_FAILED = PCI_MESSAGE_BASE + 0xE, 116 PCI_EJECTION_COMPLETE = PCI_MESSAGE_BASE + 0xF, 117 PCI_RESOURCES_ASSIGNED = PCI_MESSAGE_BASE + 0x10, 118 PCI_RESOURCES_RELEASED = PCI_MESSAGE_BASE + 0x11, 119 PCI_INVALIDATE_BLOCK = PCI_MESSAGE_BASE + 0x12, 120 PCI_QUERY_PROTOCOL_VERSION = PCI_MESSAGE_BASE + 0x13, 121 PCI_CREATE_INTERRUPT_MESSAGE = PCI_MESSAGE_BASE + 0x14, 122 PCI_DELETE_INTERRUPT_MESSAGE = PCI_MESSAGE_BASE + 0x15, 123 PCI_RESOURCES_ASSIGNED2 = PCI_MESSAGE_BASE + 0x16, 124 PCI_CREATE_INTERRUPT_MESSAGE2 = PCI_MESSAGE_BASE + 0x17, 125 PCI_DELETE_INTERRUPT_MESSAGE2 = PCI_MESSAGE_BASE + 0x18, /* unused */ 126 PCI_BUS_RELATIONS2 = PCI_MESSAGE_BASE + 0x19, 127 PCI_RESOURCES_ASSIGNED3 = PCI_MESSAGE_BASE + 0x1A, 128 PCI_CREATE_INTERRUPT_MESSAGE3 = PCI_MESSAGE_BASE + 0x1B, 129 PCI_MESSAGE_MAXIMUM 130 }; 131 132 /* 133 * Structures defining the virtual PCI Express protocol. 134 */ 135 136 union pci_version { 137 struct { 138 u16 minor_version; 139 u16 major_version; 140 } parts; 141 u32 version; 142 } __packed; 143 144 /* 145 * Function numbers are 8-bits wide on Express, as interpreted through ARI, 146 * which is all this driver does. This representation is the one used in 147 * Windows, which is what is expected when sending this back and forth with 148 * the Hyper-V parent partition. 149 */ 150 union win_slot_encoding { 151 struct { 152 u32 dev:5; 153 u32 func:3; 154 u32 reserved:24; 155 } bits; 156 u32 slot; 157 } __packed; 158 159 /* 160 * Pretty much as defined in the PCI Specifications. 161 */ 162 struct pci_function_description { 163 u16 v_id; /* vendor ID */ 164 u16 d_id; /* device ID */ 165 u8 rev; 166 u8 prog_intf; 167 u8 subclass; 168 u8 base_class; 169 u32 subsystem_id; 170 union win_slot_encoding win_slot; 171 u32 ser; /* serial number */ 172 } __packed; 173 174 enum pci_device_description_flags { 175 HV_PCI_DEVICE_FLAG_NONE = 0x0, 176 HV_PCI_DEVICE_FLAG_NUMA_AFFINITY = 0x1, 177 }; 178 179 struct pci_function_description2 { 180 u16 v_id; /* vendor ID */ 181 u16 d_id; /* device ID */ 182 u8 rev; 183 u8 prog_intf; 184 u8 subclass; 185 u8 base_class; 186 u32 subsystem_id; 187 union win_slot_encoding win_slot; 188 u32 ser; /* serial number */ 189 u32 flags; 190 u16 virtual_numa_node; 191 u16 reserved; 192 } __packed; 193 194 /** 195 * struct hv_msi_desc 196 * @vector: IDT entry 197 * @delivery_mode: As defined in Intel's Programmer's 198 * Reference Manual, Volume 3, Chapter 8. 199 * @vector_count: Number of contiguous entries in the 200 * Interrupt Descriptor Table that are 201 * occupied by this Message-Signaled 202 * Interrupt. For "MSI", as first defined 203 * in PCI 2.2, this can be between 1 and 204 * 32. For "MSI-X," as first defined in PCI 205 * 3.0, this must be 1, as each MSI-X table 206 * entry would have its own descriptor. 207 * @reserved: Empty space 208 * @cpu_mask: All the target virtual processors. 209 */ 210 struct hv_msi_desc { 211 u8 vector; 212 u8 delivery_mode; 213 u16 vector_count; 214 u32 reserved; 215 u64 cpu_mask; 216 } __packed; 217 218 /** 219 * struct hv_msi_desc2 - 1.2 version of hv_msi_desc 220 * @vector: IDT entry 221 * @delivery_mode: As defined in Intel's Programmer's 222 * Reference Manual, Volume 3, Chapter 8. 223 * @vector_count: Number of contiguous entries in the 224 * Interrupt Descriptor Table that are 225 * occupied by this Message-Signaled 226 * Interrupt. For "MSI", as first defined 227 * in PCI 2.2, this can be between 1 and 228 * 32. For "MSI-X," as first defined in PCI 229 * 3.0, this must be 1, as each MSI-X table 230 * entry would have its own descriptor. 231 * @processor_count: number of bits enabled in array. 232 * @processor_array: All the target virtual processors. 233 */ 234 struct hv_msi_desc2 { 235 u8 vector; 236 u8 delivery_mode; 237 u16 vector_count; 238 u16 processor_count; 239 u16 processor_array[32]; 240 } __packed; 241 242 /* 243 * struct hv_msi_desc3 - 1.3 version of hv_msi_desc 244 * Everything is the same as in 'hv_msi_desc2' except that the size of the 245 * 'vector' field is larger to support bigger vector values. For ex: LPI 246 * vectors on ARM. 247 */ 248 struct hv_msi_desc3 { 249 u32 vector; 250 u8 delivery_mode; 251 u8 reserved; 252 u16 vector_count; 253 u16 processor_count; 254 u16 processor_array[32]; 255 } __packed; 256 257 /** 258 * struct tran_int_desc 259 * @reserved: unused, padding 260 * @vector_count: same as in hv_msi_desc 261 * @data: This is the "data payload" value that is 262 * written by the device when it generates 263 * a message-signaled interrupt, either MSI 264 * or MSI-X. 265 * @address: This is the address to which the data 266 * payload is written on interrupt 267 * generation. 268 */ 269 struct tran_int_desc { 270 u16 reserved; 271 u16 vector_count; 272 u32 data; 273 u64 address; 274 } __packed; 275 276 /* 277 * A generic message format for virtual PCI. 278 * Specific message formats are defined later in the file. 279 */ 280 281 struct pci_message { 282 u32 type; 283 } __packed; 284 285 struct pci_child_message { 286 struct pci_message message_type; 287 union win_slot_encoding wslot; 288 } __packed; 289 290 struct pci_incoming_message { 291 struct vmpacket_descriptor hdr; 292 struct pci_message message_type; 293 } __packed; 294 295 struct pci_response { 296 struct vmpacket_descriptor hdr; 297 s32 status; /* negative values are failures */ 298 } __packed; 299 300 struct pci_packet { 301 void (*completion_func)(void *context, struct pci_response *resp, 302 int resp_packet_size); 303 void *compl_ctxt; 304 305 struct pci_message message[]; 306 }; 307 308 /* 309 * Specific message types supporting the PCI protocol. 310 */ 311 312 /* 313 * Version negotiation message. Sent from the guest to the host. 314 * The guest is free to try different versions until the host 315 * accepts the version. 316 * 317 * pci_version: The protocol version requested. 318 * is_last_attempt: If TRUE, this is the last version guest will request. 319 * reservedz: Reserved field, set to zero. 320 */ 321 322 struct pci_version_request { 323 struct pci_message message_type; 324 u32 protocol_version; 325 } __packed; 326 327 /* 328 * Bus D0 Entry. This is sent from the guest to the host when the virtual 329 * bus (PCI Express port) is ready for action. 330 */ 331 332 struct pci_bus_d0_entry { 333 struct pci_message message_type; 334 u32 reserved; 335 u64 mmio_base; 336 } __packed; 337 338 struct pci_bus_relations { 339 struct pci_incoming_message incoming; 340 u32 device_count; 341 struct pci_function_description func[]; 342 } __packed; 343 344 struct pci_bus_relations2 { 345 struct pci_incoming_message incoming; 346 u32 device_count; 347 struct pci_function_description2 func[]; 348 } __packed; 349 350 struct pci_q_res_req_response { 351 struct vmpacket_descriptor hdr; 352 s32 status; /* negative values are failures */ 353 u32 probed_bar[PCI_STD_NUM_BARS]; 354 } __packed; 355 356 struct pci_set_power { 357 struct pci_message message_type; 358 union win_slot_encoding wslot; 359 u32 power_state; /* In Windows terms */ 360 u32 reserved; 361 } __packed; 362 363 struct pci_set_power_response { 364 struct vmpacket_descriptor hdr; 365 s32 status; /* negative values are failures */ 366 union win_slot_encoding wslot; 367 u32 resultant_state; /* In Windows terms */ 368 u32 reserved; 369 } __packed; 370 371 struct pci_resources_assigned { 372 struct pci_message message_type; 373 union win_slot_encoding wslot; 374 u8 memory_range[0x14][6]; /* not used here */ 375 u32 msi_descriptors; 376 u32 reserved[4]; 377 } __packed; 378 379 struct pci_resources_assigned2 { 380 struct pci_message message_type; 381 union win_slot_encoding wslot; 382 u8 memory_range[0x14][6]; /* not used here */ 383 u32 msi_descriptor_count; 384 u8 reserved[70]; 385 } __packed; 386 387 struct pci_create_interrupt { 388 struct pci_message message_type; 389 union win_slot_encoding wslot; 390 struct hv_msi_desc int_desc; 391 } __packed; 392 393 struct pci_create_int_response { 394 struct pci_response response; 395 u32 reserved; 396 struct tran_int_desc int_desc; 397 } __packed; 398 399 struct pci_create_interrupt2 { 400 struct pci_message message_type; 401 union win_slot_encoding wslot; 402 struct hv_msi_desc2 int_desc; 403 } __packed; 404 405 struct pci_create_interrupt3 { 406 struct pci_message message_type; 407 union win_slot_encoding wslot; 408 struct hv_msi_desc3 int_desc; 409 } __packed; 410 411 struct pci_delete_interrupt { 412 struct pci_message message_type; 413 union win_slot_encoding wslot; 414 struct tran_int_desc int_desc; 415 } __packed; 416 417 /* 418 * Note: the VM must pass a valid block id, wslot and bytes_requested. 419 */ 420 struct pci_read_block { 421 struct pci_message message_type; 422 u32 block_id; 423 union win_slot_encoding wslot; 424 u32 bytes_requested; 425 } __packed; 426 427 struct pci_read_block_response { 428 struct vmpacket_descriptor hdr; 429 u32 status; 430 u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX]; 431 } __packed; 432 433 /* 434 * Note: the VM must pass a valid block id, wslot and byte_count. 435 */ 436 struct pci_write_block { 437 struct pci_message message_type; 438 u32 block_id; 439 union win_slot_encoding wslot; 440 u32 byte_count; 441 u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX]; 442 } __packed; 443 444 struct pci_dev_inval_block { 445 struct pci_incoming_message incoming; 446 union win_slot_encoding wslot; 447 u64 block_mask; 448 } __packed; 449 450 struct pci_dev_incoming { 451 struct pci_incoming_message incoming; 452 union win_slot_encoding wslot; 453 } __packed; 454 455 struct pci_eject_response { 456 struct pci_message message_type; 457 union win_slot_encoding wslot; 458 u32 status; 459 } __packed; 460 461 static int pci_ring_size = (4 * PAGE_SIZE); 462 463 /* 464 * Driver specific state. 465 */ 466 467 enum hv_pcibus_state { 468 hv_pcibus_init = 0, 469 hv_pcibus_probed, 470 hv_pcibus_installed, 471 hv_pcibus_removing, 472 hv_pcibus_maximum 473 }; 474 475 struct hv_pcibus_device { 476 #ifdef CONFIG_X86 477 struct pci_sysdata sysdata; 478 #elif defined(CONFIG_ARM64) 479 struct pci_config_window sysdata; 480 #endif 481 struct pci_host_bridge *bridge; 482 struct fwnode_handle *fwnode; 483 /* Protocol version negotiated with the host */ 484 enum pci_protocol_version_t protocol_version; 485 enum hv_pcibus_state state; 486 struct hv_device *hdev; 487 resource_size_t low_mmio_space; 488 resource_size_t high_mmio_space; 489 struct resource *mem_config; 490 struct resource *low_mmio_res; 491 struct resource *high_mmio_res; 492 struct completion *survey_event; 493 struct pci_bus *pci_bus; 494 spinlock_t config_lock; /* Avoid two threads writing index page */ 495 spinlock_t device_list_lock; /* Protect lists below */ 496 void __iomem *cfg_addr; 497 498 struct list_head children; 499 struct list_head dr_list; 500 501 struct msi_domain_info msi_info; 502 struct irq_domain *irq_domain; 503 504 spinlock_t retarget_msi_interrupt_lock; 505 506 struct workqueue_struct *wq; 507 508 /* Highest slot of child device with resources allocated */ 509 int wslot_res_allocated; 510 511 /* hypercall arg, must not cross page boundary */ 512 struct hv_retarget_device_interrupt retarget_msi_interrupt_params; 513 514 /* 515 * Don't put anything here: retarget_msi_interrupt_params must be last 516 */ 517 }; 518 519 /* 520 * Tracks "Device Relations" messages from the host, which must be both 521 * processed in order and deferred so that they don't run in the context 522 * of the incoming packet callback. 523 */ 524 struct hv_dr_work { 525 struct work_struct wrk; 526 struct hv_pcibus_device *bus; 527 }; 528 529 struct hv_pcidev_description { 530 u16 v_id; /* vendor ID */ 531 u16 d_id; /* device ID */ 532 u8 rev; 533 u8 prog_intf; 534 u8 subclass; 535 u8 base_class; 536 u32 subsystem_id; 537 union win_slot_encoding win_slot; 538 u32 ser; /* serial number */ 539 u32 flags; 540 u16 virtual_numa_node; 541 }; 542 543 struct hv_dr_state { 544 struct list_head list_entry; 545 u32 device_count; 546 struct hv_pcidev_description func[]; 547 }; 548 549 enum hv_pcichild_state { 550 hv_pcichild_init = 0, 551 hv_pcichild_requirements, 552 hv_pcichild_resourced, 553 hv_pcichild_ejecting, 554 hv_pcichild_maximum 555 }; 556 557 struct hv_pci_dev { 558 /* List protected by pci_rescan_remove_lock */ 559 struct list_head list_entry; 560 refcount_t refs; 561 enum hv_pcichild_state state; 562 struct pci_slot *pci_slot; 563 struct hv_pcidev_description desc; 564 bool reported_missing; 565 struct hv_pcibus_device *hbus; 566 struct work_struct wrk; 567 568 void (*block_invalidate)(void *context, u64 block_mask); 569 void *invalidate_context; 570 571 /* 572 * What would be observed if one wrote 0xFFFFFFFF to a BAR and then 573 * read it back, for each of the BAR offsets within config space. 574 */ 575 u32 probed_bar[PCI_STD_NUM_BARS]; 576 }; 577 578 struct hv_pci_compl { 579 struct completion host_event; 580 s32 completion_status; 581 }; 582 583 static void hv_pci_onchannelcallback(void *context); 584 585 #ifdef CONFIG_X86 586 #define DELIVERY_MODE APIC_DELIVERY_MODE_FIXED 587 #define FLOW_HANDLER handle_edge_irq 588 #define FLOW_NAME "edge" 589 590 static int hv_pci_irqchip_init(void) 591 { 592 return 0; 593 } 594 595 static struct irq_domain *hv_pci_get_root_domain(void) 596 { 597 return x86_vector_domain; 598 } 599 600 static unsigned int hv_msi_get_int_vector(struct irq_data *data) 601 { 602 struct irq_cfg *cfg = irqd_cfg(data); 603 604 return cfg->vector; 605 } 606 607 static void hv_set_msi_entry_from_desc(union hv_msi_entry *msi_entry, 608 struct msi_desc *msi_desc) 609 { 610 msi_entry->address.as_uint32 = msi_desc->msg.address_lo; 611 msi_entry->data.as_uint32 = msi_desc->msg.data; 612 } 613 614 static int hv_msi_prepare(struct irq_domain *domain, struct device *dev, 615 int nvec, msi_alloc_info_t *info) 616 { 617 return pci_msi_prepare(domain, dev, nvec, info); 618 } 619 #elif defined(CONFIG_ARM64) 620 /* 621 * SPI vectors to use for vPCI; arch SPIs range is [32, 1019], but leaving a bit 622 * of room at the start to allow for SPIs to be specified through ACPI and 623 * starting with a power of two to satisfy power of 2 multi-MSI requirement. 624 */ 625 #define HV_PCI_MSI_SPI_START 64 626 #define HV_PCI_MSI_SPI_NR (1020 - HV_PCI_MSI_SPI_START) 627 #define DELIVERY_MODE 0 628 #define FLOW_HANDLER NULL 629 #define FLOW_NAME NULL 630 #define hv_msi_prepare NULL 631 632 struct hv_pci_chip_data { 633 DECLARE_BITMAP(spi_map, HV_PCI_MSI_SPI_NR); 634 struct mutex map_lock; 635 }; 636 637 /* Hyper-V vPCI MSI GIC IRQ domain */ 638 static struct irq_domain *hv_msi_gic_irq_domain; 639 640 /* Hyper-V PCI MSI IRQ chip */ 641 static struct irq_chip hv_arm64_msi_irq_chip = { 642 .name = "MSI", 643 .irq_set_affinity = irq_chip_set_affinity_parent, 644 .irq_eoi = irq_chip_eoi_parent, 645 .irq_mask = irq_chip_mask_parent, 646 .irq_unmask = irq_chip_unmask_parent 647 }; 648 649 static unsigned int hv_msi_get_int_vector(struct irq_data *irqd) 650 { 651 return irqd->parent_data->hwirq; 652 } 653 654 static void hv_set_msi_entry_from_desc(union hv_msi_entry *msi_entry, 655 struct msi_desc *msi_desc) 656 { 657 msi_entry->address = ((u64)msi_desc->msg.address_hi << 32) | 658 msi_desc->msg.address_lo; 659 msi_entry->data = msi_desc->msg.data; 660 } 661 662 /* 663 * @nr_bm_irqs: Indicates the number of IRQs that were allocated from 664 * the bitmap. 665 * @nr_dom_irqs: Indicates the number of IRQs that were allocated from 666 * the parent domain. 667 */ 668 static void hv_pci_vec_irq_free(struct irq_domain *domain, 669 unsigned int virq, 670 unsigned int nr_bm_irqs, 671 unsigned int nr_dom_irqs) 672 { 673 struct hv_pci_chip_data *chip_data = domain->host_data; 674 struct irq_data *d = irq_domain_get_irq_data(domain, virq); 675 int first = d->hwirq - HV_PCI_MSI_SPI_START; 676 int i; 677 678 mutex_lock(&chip_data->map_lock); 679 bitmap_release_region(chip_data->spi_map, 680 first, 681 get_count_order(nr_bm_irqs)); 682 mutex_unlock(&chip_data->map_lock); 683 for (i = 0; i < nr_dom_irqs; i++) { 684 if (i) 685 d = irq_domain_get_irq_data(domain, virq + i); 686 irq_domain_reset_irq_data(d); 687 } 688 689 irq_domain_free_irqs_parent(domain, virq, nr_dom_irqs); 690 } 691 692 static void hv_pci_vec_irq_domain_free(struct irq_domain *domain, 693 unsigned int virq, 694 unsigned int nr_irqs) 695 { 696 hv_pci_vec_irq_free(domain, virq, nr_irqs, nr_irqs); 697 } 698 699 static int hv_pci_vec_alloc_device_irq(struct irq_domain *domain, 700 unsigned int nr_irqs, 701 irq_hw_number_t *hwirq) 702 { 703 struct hv_pci_chip_data *chip_data = domain->host_data; 704 int index; 705 706 /* Find and allocate region from the SPI bitmap */ 707 mutex_lock(&chip_data->map_lock); 708 index = bitmap_find_free_region(chip_data->spi_map, 709 HV_PCI_MSI_SPI_NR, 710 get_count_order(nr_irqs)); 711 mutex_unlock(&chip_data->map_lock); 712 if (index < 0) 713 return -ENOSPC; 714 715 *hwirq = index + HV_PCI_MSI_SPI_START; 716 717 return 0; 718 } 719 720 static int hv_pci_vec_irq_gic_domain_alloc(struct irq_domain *domain, 721 unsigned int virq, 722 irq_hw_number_t hwirq) 723 { 724 struct irq_fwspec fwspec; 725 struct irq_data *d; 726 int ret; 727 728 fwspec.fwnode = domain->parent->fwnode; 729 fwspec.param_count = 2; 730 fwspec.param[0] = hwirq; 731 fwspec.param[1] = IRQ_TYPE_EDGE_RISING; 732 733 ret = irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec); 734 if (ret) 735 return ret; 736 737 /* 738 * Since the interrupt specifier is not coming from ACPI or DT, the 739 * trigger type will need to be set explicitly. Otherwise, it will be 740 * set to whatever is in the GIC configuration. 741 */ 742 d = irq_domain_get_irq_data(domain->parent, virq); 743 744 return d->chip->irq_set_type(d, IRQ_TYPE_EDGE_RISING); 745 } 746 747 static int hv_pci_vec_irq_domain_alloc(struct irq_domain *domain, 748 unsigned int virq, unsigned int nr_irqs, 749 void *args) 750 { 751 irq_hw_number_t hwirq; 752 unsigned int i; 753 int ret; 754 755 ret = hv_pci_vec_alloc_device_irq(domain, nr_irqs, &hwirq); 756 if (ret) 757 return ret; 758 759 for (i = 0; i < nr_irqs; i++) { 760 ret = hv_pci_vec_irq_gic_domain_alloc(domain, virq + i, 761 hwirq + i); 762 if (ret) { 763 hv_pci_vec_irq_free(domain, virq, nr_irqs, i); 764 return ret; 765 } 766 767 irq_domain_set_hwirq_and_chip(domain, virq + i, 768 hwirq + i, 769 &hv_arm64_msi_irq_chip, 770 domain->host_data); 771 pr_debug("pID:%d vID:%u\n", (int)(hwirq + i), virq + i); 772 } 773 774 return 0; 775 } 776 777 /* 778 * Pick the first cpu as the irq affinity that can be temporarily used for 779 * composing MSI from the hypervisor. GIC will eventually set the right 780 * affinity for the irq and the 'unmask' will retarget the interrupt to that 781 * cpu. 782 */ 783 static int hv_pci_vec_irq_domain_activate(struct irq_domain *domain, 784 struct irq_data *irqd, bool reserve) 785 { 786 int cpu = cpumask_first(cpu_present_mask); 787 788 irq_data_update_effective_affinity(irqd, cpumask_of(cpu)); 789 790 return 0; 791 } 792 793 static const struct irq_domain_ops hv_pci_domain_ops = { 794 .alloc = hv_pci_vec_irq_domain_alloc, 795 .free = hv_pci_vec_irq_domain_free, 796 .activate = hv_pci_vec_irq_domain_activate, 797 }; 798 799 static int hv_pci_irqchip_init(void) 800 { 801 static struct hv_pci_chip_data *chip_data; 802 struct fwnode_handle *fn = NULL; 803 int ret = -ENOMEM; 804 805 chip_data = kzalloc(sizeof(*chip_data), GFP_KERNEL); 806 if (!chip_data) 807 return ret; 808 809 mutex_init(&chip_data->map_lock); 810 fn = irq_domain_alloc_named_fwnode("hv_vpci_arm64"); 811 if (!fn) 812 goto free_chip; 813 814 /* 815 * IRQ domain once enabled, should not be removed since there is no 816 * way to ensure that all the corresponding devices are also gone and 817 * no interrupts will be generated. 818 */ 819 hv_msi_gic_irq_domain = acpi_irq_create_hierarchy(0, HV_PCI_MSI_SPI_NR, 820 fn, &hv_pci_domain_ops, 821 chip_data); 822 823 if (!hv_msi_gic_irq_domain) { 824 pr_err("Failed to create Hyper-V arm64 vPCI MSI IRQ domain\n"); 825 goto free_chip; 826 } 827 828 return 0; 829 830 free_chip: 831 kfree(chip_data); 832 if (fn) 833 irq_domain_free_fwnode(fn); 834 835 return ret; 836 } 837 838 static struct irq_domain *hv_pci_get_root_domain(void) 839 { 840 return hv_msi_gic_irq_domain; 841 } 842 #endif /* CONFIG_ARM64 */ 843 844 /** 845 * hv_pci_generic_compl() - Invoked for a completion packet 846 * @context: Set up by the sender of the packet. 847 * @resp: The response packet 848 * @resp_packet_size: Size in bytes of the packet 849 * 850 * This function is used to trigger an event and report status 851 * for any message for which the completion packet contains a 852 * status and nothing else. 853 */ 854 static void hv_pci_generic_compl(void *context, struct pci_response *resp, 855 int resp_packet_size) 856 { 857 struct hv_pci_compl *comp_pkt = context; 858 859 if (resp_packet_size >= offsetofend(struct pci_response, status)) 860 comp_pkt->completion_status = resp->status; 861 else 862 comp_pkt->completion_status = -1; 863 864 complete(&comp_pkt->host_event); 865 } 866 867 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus, 868 u32 wslot); 869 870 static void get_pcichild(struct hv_pci_dev *hpdev) 871 { 872 refcount_inc(&hpdev->refs); 873 } 874 875 static void put_pcichild(struct hv_pci_dev *hpdev) 876 { 877 if (refcount_dec_and_test(&hpdev->refs)) 878 kfree(hpdev); 879 } 880 881 /* 882 * There is no good way to get notified from vmbus_onoffer_rescind(), 883 * so let's use polling here, since this is not a hot path. 884 */ 885 static int wait_for_response(struct hv_device *hdev, 886 struct completion *comp) 887 { 888 while (true) { 889 if (hdev->channel->rescind) { 890 dev_warn_once(&hdev->device, "The device is gone.\n"); 891 return -ENODEV; 892 } 893 894 if (wait_for_completion_timeout(comp, HZ / 10)) 895 break; 896 } 897 898 return 0; 899 } 900 901 /** 902 * devfn_to_wslot() - Convert from Linux PCI slot to Windows 903 * @devfn: The Linux representation of PCI slot 904 * 905 * Windows uses a slightly different representation of PCI slot. 906 * 907 * Return: The Windows representation 908 */ 909 static u32 devfn_to_wslot(int devfn) 910 { 911 union win_slot_encoding wslot; 912 913 wslot.slot = 0; 914 wslot.bits.dev = PCI_SLOT(devfn); 915 wslot.bits.func = PCI_FUNC(devfn); 916 917 return wslot.slot; 918 } 919 920 /** 921 * wslot_to_devfn() - Convert from Windows PCI slot to Linux 922 * @wslot: The Windows representation of PCI slot 923 * 924 * Windows uses a slightly different representation of PCI slot. 925 * 926 * Return: The Linux representation 927 */ 928 static int wslot_to_devfn(u32 wslot) 929 { 930 union win_slot_encoding slot_no; 931 932 slot_no.slot = wslot; 933 return PCI_DEVFN(slot_no.bits.dev, slot_no.bits.func); 934 } 935 936 /* 937 * PCI Configuration Space for these root PCI buses is implemented as a pair 938 * of pages in memory-mapped I/O space. Writing to the first page chooses 939 * the PCI function being written or read. Once the first page has been 940 * written to, the following page maps in the entire configuration space of 941 * the function. 942 */ 943 944 /** 945 * _hv_pcifront_read_config() - Internal PCI config read 946 * @hpdev: The PCI driver's representation of the device 947 * @where: Offset within config space 948 * @size: Size of the transfer 949 * @val: Pointer to the buffer receiving the data 950 */ 951 static void _hv_pcifront_read_config(struct hv_pci_dev *hpdev, int where, 952 int size, u32 *val) 953 { 954 unsigned long flags; 955 void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where; 956 957 /* 958 * If the attempt is to read the IDs or the ROM BAR, simulate that. 959 */ 960 if (where + size <= PCI_COMMAND) { 961 memcpy(val, ((u8 *)&hpdev->desc.v_id) + where, size); 962 } else if (where >= PCI_CLASS_REVISION && where + size <= 963 PCI_CACHE_LINE_SIZE) { 964 memcpy(val, ((u8 *)&hpdev->desc.rev) + where - 965 PCI_CLASS_REVISION, size); 966 } else if (where >= PCI_SUBSYSTEM_VENDOR_ID && where + size <= 967 PCI_ROM_ADDRESS) { 968 memcpy(val, (u8 *)&hpdev->desc.subsystem_id + where - 969 PCI_SUBSYSTEM_VENDOR_ID, size); 970 } else if (where >= PCI_ROM_ADDRESS && where + size <= 971 PCI_CAPABILITY_LIST) { 972 /* ROM BARs are unimplemented */ 973 *val = 0; 974 } else if (where >= PCI_INTERRUPT_LINE && where + size <= 975 PCI_INTERRUPT_PIN) { 976 /* 977 * Interrupt Line and Interrupt PIN are hard-wired to zero 978 * because this front-end only supports message-signaled 979 * interrupts. 980 */ 981 *val = 0; 982 } else if (where + size <= CFG_PAGE_SIZE) { 983 spin_lock_irqsave(&hpdev->hbus->config_lock, flags); 984 /* Choose the function to be read. (See comment above) */ 985 writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr); 986 /* Make sure the function was chosen before we start reading. */ 987 mb(); 988 /* Read from that function's config space. */ 989 switch (size) { 990 case 1: 991 *val = readb(addr); 992 break; 993 case 2: 994 *val = readw(addr); 995 break; 996 default: 997 *val = readl(addr); 998 break; 999 } 1000 /* 1001 * Make sure the read was done before we release the spinlock 1002 * allowing consecutive reads/writes. 1003 */ 1004 mb(); 1005 spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags); 1006 } else { 1007 dev_err(&hpdev->hbus->hdev->device, 1008 "Attempt to read beyond a function's config space.\n"); 1009 } 1010 } 1011 1012 static u16 hv_pcifront_get_vendor_id(struct hv_pci_dev *hpdev) 1013 { 1014 u16 ret; 1015 unsigned long flags; 1016 void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + 1017 PCI_VENDOR_ID; 1018 1019 spin_lock_irqsave(&hpdev->hbus->config_lock, flags); 1020 1021 /* Choose the function to be read. (See comment above) */ 1022 writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr); 1023 /* Make sure the function was chosen before we start reading. */ 1024 mb(); 1025 /* Read from that function's config space. */ 1026 ret = readw(addr); 1027 /* 1028 * mb() is not required here, because the spin_unlock_irqrestore() 1029 * is a barrier. 1030 */ 1031 1032 spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags); 1033 1034 return ret; 1035 } 1036 1037 /** 1038 * _hv_pcifront_write_config() - Internal PCI config write 1039 * @hpdev: The PCI driver's representation of the device 1040 * @where: Offset within config space 1041 * @size: Size of the transfer 1042 * @val: The data being transferred 1043 */ 1044 static void _hv_pcifront_write_config(struct hv_pci_dev *hpdev, int where, 1045 int size, u32 val) 1046 { 1047 unsigned long flags; 1048 void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where; 1049 1050 if (where >= PCI_SUBSYSTEM_VENDOR_ID && 1051 where + size <= PCI_CAPABILITY_LIST) { 1052 /* SSIDs and ROM BARs are read-only */ 1053 } else if (where >= PCI_COMMAND && where + size <= CFG_PAGE_SIZE) { 1054 spin_lock_irqsave(&hpdev->hbus->config_lock, flags); 1055 /* Choose the function to be written. (See comment above) */ 1056 writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr); 1057 /* Make sure the function was chosen before we start writing. */ 1058 wmb(); 1059 /* Write to that function's config space. */ 1060 switch (size) { 1061 case 1: 1062 writeb(val, addr); 1063 break; 1064 case 2: 1065 writew(val, addr); 1066 break; 1067 default: 1068 writel(val, addr); 1069 break; 1070 } 1071 /* 1072 * Make sure the write was done before we release the spinlock 1073 * allowing consecutive reads/writes. 1074 */ 1075 mb(); 1076 spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags); 1077 } else { 1078 dev_err(&hpdev->hbus->hdev->device, 1079 "Attempt to write beyond a function's config space.\n"); 1080 } 1081 } 1082 1083 /** 1084 * hv_pcifront_read_config() - Read configuration space 1085 * @bus: PCI Bus structure 1086 * @devfn: Device/function 1087 * @where: Offset from base 1088 * @size: Byte/word/dword 1089 * @val: Value to be read 1090 * 1091 * Return: PCIBIOS_SUCCESSFUL on success 1092 * PCIBIOS_DEVICE_NOT_FOUND on failure 1093 */ 1094 static int hv_pcifront_read_config(struct pci_bus *bus, unsigned int devfn, 1095 int where, int size, u32 *val) 1096 { 1097 struct hv_pcibus_device *hbus = 1098 container_of(bus->sysdata, struct hv_pcibus_device, sysdata); 1099 struct hv_pci_dev *hpdev; 1100 1101 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn)); 1102 if (!hpdev) 1103 return PCIBIOS_DEVICE_NOT_FOUND; 1104 1105 _hv_pcifront_read_config(hpdev, where, size, val); 1106 1107 put_pcichild(hpdev); 1108 return PCIBIOS_SUCCESSFUL; 1109 } 1110 1111 /** 1112 * hv_pcifront_write_config() - Write configuration space 1113 * @bus: PCI Bus structure 1114 * @devfn: Device/function 1115 * @where: Offset from base 1116 * @size: Byte/word/dword 1117 * @val: Value to be written to device 1118 * 1119 * Return: PCIBIOS_SUCCESSFUL on success 1120 * PCIBIOS_DEVICE_NOT_FOUND on failure 1121 */ 1122 static int hv_pcifront_write_config(struct pci_bus *bus, unsigned int devfn, 1123 int where, int size, u32 val) 1124 { 1125 struct hv_pcibus_device *hbus = 1126 container_of(bus->sysdata, struct hv_pcibus_device, sysdata); 1127 struct hv_pci_dev *hpdev; 1128 1129 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn)); 1130 if (!hpdev) 1131 return PCIBIOS_DEVICE_NOT_FOUND; 1132 1133 _hv_pcifront_write_config(hpdev, where, size, val); 1134 1135 put_pcichild(hpdev); 1136 return PCIBIOS_SUCCESSFUL; 1137 } 1138 1139 /* PCIe operations */ 1140 static struct pci_ops hv_pcifront_ops = { 1141 .read = hv_pcifront_read_config, 1142 .write = hv_pcifront_write_config, 1143 }; 1144 1145 /* 1146 * Paravirtual backchannel 1147 * 1148 * Hyper-V SR-IOV provides a backchannel mechanism in software for 1149 * communication between a VF driver and a PF driver. These 1150 * "configuration blocks" are similar in concept to PCI configuration space, 1151 * but instead of doing reads and writes in 32-bit chunks through a very slow 1152 * path, packets of up to 128 bytes can be sent or received asynchronously. 1153 * 1154 * Nearly every SR-IOV device contains just such a communications channel in 1155 * hardware, so using this one in software is usually optional. Using the 1156 * software channel, however, allows driver implementers to leverage software 1157 * tools that fuzz the communications channel looking for vulnerabilities. 1158 * 1159 * The usage model for these packets puts the responsibility for reading or 1160 * writing on the VF driver. The VF driver sends a read or a write packet, 1161 * indicating which "block" is being referred to by number. 1162 * 1163 * If the PF driver wishes to initiate communication, it can "invalidate" one or 1164 * more of the first 64 blocks. This invalidation is delivered via a callback 1165 * supplied by the VF driver by this driver. 1166 * 1167 * No protocol is implied, except that supplied by the PF and VF drivers. 1168 */ 1169 1170 struct hv_read_config_compl { 1171 struct hv_pci_compl comp_pkt; 1172 void *buf; 1173 unsigned int len; 1174 unsigned int bytes_returned; 1175 }; 1176 1177 /** 1178 * hv_pci_read_config_compl() - Invoked when a response packet 1179 * for a read config block operation arrives. 1180 * @context: Identifies the read config operation 1181 * @resp: The response packet itself 1182 * @resp_packet_size: Size in bytes of the response packet 1183 */ 1184 static void hv_pci_read_config_compl(void *context, struct pci_response *resp, 1185 int resp_packet_size) 1186 { 1187 struct hv_read_config_compl *comp = context; 1188 struct pci_read_block_response *read_resp = 1189 (struct pci_read_block_response *)resp; 1190 unsigned int data_len, hdr_len; 1191 1192 hdr_len = offsetof(struct pci_read_block_response, bytes); 1193 if (resp_packet_size < hdr_len) { 1194 comp->comp_pkt.completion_status = -1; 1195 goto out; 1196 } 1197 1198 data_len = resp_packet_size - hdr_len; 1199 if (data_len > 0 && read_resp->status == 0) { 1200 comp->bytes_returned = min(comp->len, data_len); 1201 memcpy(comp->buf, read_resp->bytes, comp->bytes_returned); 1202 } else { 1203 comp->bytes_returned = 0; 1204 } 1205 1206 comp->comp_pkt.completion_status = read_resp->status; 1207 out: 1208 complete(&comp->comp_pkt.host_event); 1209 } 1210 1211 /** 1212 * hv_read_config_block() - Sends a read config block request to 1213 * the back-end driver running in the Hyper-V parent partition. 1214 * @pdev: The PCI driver's representation for this device. 1215 * @buf: Buffer into which the config block will be copied. 1216 * @len: Size in bytes of buf. 1217 * @block_id: Identifies the config block which has been requested. 1218 * @bytes_returned: Size which came back from the back-end driver. 1219 * 1220 * Return: 0 on success, -errno on failure 1221 */ 1222 static int hv_read_config_block(struct pci_dev *pdev, void *buf, 1223 unsigned int len, unsigned int block_id, 1224 unsigned int *bytes_returned) 1225 { 1226 struct hv_pcibus_device *hbus = 1227 container_of(pdev->bus->sysdata, struct hv_pcibus_device, 1228 sysdata); 1229 struct { 1230 struct pci_packet pkt; 1231 char buf[sizeof(struct pci_read_block)]; 1232 } pkt; 1233 struct hv_read_config_compl comp_pkt; 1234 struct pci_read_block *read_blk; 1235 int ret; 1236 1237 if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX) 1238 return -EINVAL; 1239 1240 init_completion(&comp_pkt.comp_pkt.host_event); 1241 comp_pkt.buf = buf; 1242 comp_pkt.len = len; 1243 1244 memset(&pkt, 0, sizeof(pkt)); 1245 pkt.pkt.completion_func = hv_pci_read_config_compl; 1246 pkt.pkt.compl_ctxt = &comp_pkt; 1247 read_blk = (struct pci_read_block *)&pkt.pkt.message; 1248 read_blk->message_type.type = PCI_READ_BLOCK; 1249 read_blk->wslot.slot = devfn_to_wslot(pdev->devfn); 1250 read_blk->block_id = block_id; 1251 read_blk->bytes_requested = len; 1252 1253 ret = vmbus_sendpacket(hbus->hdev->channel, read_blk, 1254 sizeof(*read_blk), (unsigned long)&pkt.pkt, 1255 VM_PKT_DATA_INBAND, 1256 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1257 if (ret) 1258 return ret; 1259 1260 ret = wait_for_response(hbus->hdev, &comp_pkt.comp_pkt.host_event); 1261 if (ret) 1262 return ret; 1263 1264 if (comp_pkt.comp_pkt.completion_status != 0 || 1265 comp_pkt.bytes_returned == 0) { 1266 dev_err(&hbus->hdev->device, 1267 "Read Config Block failed: 0x%x, bytes_returned=%d\n", 1268 comp_pkt.comp_pkt.completion_status, 1269 comp_pkt.bytes_returned); 1270 return -EIO; 1271 } 1272 1273 *bytes_returned = comp_pkt.bytes_returned; 1274 return 0; 1275 } 1276 1277 /** 1278 * hv_pci_write_config_compl() - Invoked when a response packet for a write 1279 * config block operation arrives. 1280 * @context: Identifies the write config operation 1281 * @resp: The response packet itself 1282 * @resp_packet_size: Size in bytes of the response packet 1283 */ 1284 static void hv_pci_write_config_compl(void *context, struct pci_response *resp, 1285 int resp_packet_size) 1286 { 1287 struct hv_pci_compl *comp_pkt = context; 1288 1289 comp_pkt->completion_status = resp->status; 1290 complete(&comp_pkt->host_event); 1291 } 1292 1293 /** 1294 * hv_write_config_block() - Sends a write config block request to the 1295 * back-end driver running in the Hyper-V parent partition. 1296 * @pdev: The PCI driver's representation for this device. 1297 * @buf: Buffer from which the config block will be copied. 1298 * @len: Size in bytes of buf. 1299 * @block_id: Identifies the config block which is being written. 1300 * 1301 * Return: 0 on success, -errno on failure 1302 */ 1303 static int hv_write_config_block(struct pci_dev *pdev, void *buf, 1304 unsigned int len, unsigned int block_id) 1305 { 1306 struct hv_pcibus_device *hbus = 1307 container_of(pdev->bus->sysdata, struct hv_pcibus_device, 1308 sysdata); 1309 struct { 1310 struct pci_packet pkt; 1311 char buf[sizeof(struct pci_write_block)]; 1312 u32 reserved; 1313 } pkt; 1314 struct hv_pci_compl comp_pkt; 1315 struct pci_write_block *write_blk; 1316 u32 pkt_size; 1317 int ret; 1318 1319 if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX) 1320 return -EINVAL; 1321 1322 init_completion(&comp_pkt.host_event); 1323 1324 memset(&pkt, 0, sizeof(pkt)); 1325 pkt.pkt.completion_func = hv_pci_write_config_compl; 1326 pkt.pkt.compl_ctxt = &comp_pkt; 1327 write_blk = (struct pci_write_block *)&pkt.pkt.message; 1328 write_blk->message_type.type = PCI_WRITE_BLOCK; 1329 write_blk->wslot.slot = devfn_to_wslot(pdev->devfn); 1330 write_blk->block_id = block_id; 1331 write_blk->byte_count = len; 1332 memcpy(write_blk->bytes, buf, len); 1333 pkt_size = offsetof(struct pci_write_block, bytes) + len; 1334 /* 1335 * This quirk is required on some hosts shipped around 2018, because 1336 * these hosts don't check the pkt_size correctly (new hosts have been 1337 * fixed since early 2019). The quirk is also safe on very old hosts 1338 * and new hosts, because, on them, what really matters is the length 1339 * specified in write_blk->byte_count. 1340 */ 1341 pkt_size += sizeof(pkt.reserved); 1342 1343 ret = vmbus_sendpacket(hbus->hdev->channel, write_blk, pkt_size, 1344 (unsigned long)&pkt.pkt, VM_PKT_DATA_INBAND, 1345 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1346 if (ret) 1347 return ret; 1348 1349 ret = wait_for_response(hbus->hdev, &comp_pkt.host_event); 1350 if (ret) 1351 return ret; 1352 1353 if (comp_pkt.completion_status != 0) { 1354 dev_err(&hbus->hdev->device, 1355 "Write Config Block failed: 0x%x\n", 1356 comp_pkt.completion_status); 1357 return -EIO; 1358 } 1359 1360 return 0; 1361 } 1362 1363 /** 1364 * hv_register_block_invalidate() - Invoked when a config block invalidation 1365 * arrives from the back-end driver. 1366 * @pdev: The PCI driver's representation for this device. 1367 * @context: Identifies the device. 1368 * @block_invalidate: Identifies all of the blocks being invalidated. 1369 * 1370 * Return: 0 on success, -errno on failure 1371 */ 1372 static int hv_register_block_invalidate(struct pci_dev *pdev, void *context, 1373 void (*block_invalidate)(void *context, 1374 u64 block_mask)) 1375 { 1376 struct hv_pcibus_device *hbus = 1377 container_of(pdev->bus->sysdata, struct hv_pcibus_device, 1378 sysdata); 1379 struct hv_pci_dev *hpdev; 1380 1381 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn)); 1382 if (!hpdev) 1383 return -ENODEV; 1384 1385 hpdev->block_invalidate = block_invalidate; 1386 hpdev->invalidate_context = context; 1387 1388 put_pcichild(hpdev); 1389 return 0; 1390 1391 } 1392 1393 /* Interrupt management hooks */ 1394 static void hv_int_desc_free(struct hv_pci_dev *hpdev, 1395 struct tran_int_desc *int_desc) 1396 { 1397 struct pci_delete_interrupt *int_pkt; 1398 struct { 1399 struct pci_packet pkt; 1400 u8 buffer[sizeof(struct pci_delete_interrupt)]; 1401 } ctxt; 1402 1403 memset(&ctxt, 0, sizeof(ctxt)); 1404 int_pkt = (struct pci_delete_interrupt *)&ctxt.pkt.message; 1405 int_pkt->message_type.type = 1406 PCI_DELETE_INTERRUPT_MESSAGE; 1407 int_pkt->wslot.slot = hpdev->desc.win_slot.slot; 1408 int_pkt->int_desc = *int_desc; 1409 vmbus_sendpacket(hpdev->hbus->hdev->channel, int_pkt, sizeof(*int_pkt), 1410 (unsigned long)&ctxt.pkt, VM_PKT_DATA_INBAND, 0); 1411 kfree(int_desc); 1412 } 1413 1414 /** 1415 * hv_msi_free() - Free the MSI. 1416 * @domain: The interrupt domain pointer 1417 * @info: Extra MSI-related context 1418 * @irq: Identifies the IRQ. 1419 * 1420 * The Hyper-V parent partition and hypervisor are tracking the 1421 * messages that are in use, keeping the interrupt redirection 1422 * table up to date. This callback sends a message that frees 1423 * the IRT entry and related tracking nonsense. 1424 */ 1425 static void hv_msi_free(struct irq_domain *domain, struct msi_domain_info *info, 1426 unsigned int irq) 1427 { 1428 struct hv_pcibus_device *hbus; 1429 struct hv_pci_dev *hpdev; 1430 struct pci_dev *pdev; 1431 struct tran_int_desc *int_desc; 1432 struct irq_data *irq_data = irq_domain_get_irq_data(domain, irq); 1433 struct msi_desc *msi = irq_data_get_msi_desc(irq_data); 1434 1435 pdev = msi_desc_to_pci_dev(msi); 1436 hbus = info->data; 1437 int_desc = irq_data_get_irq_chip_data(irq_data); 1438 if (!int_desc) 1439 return; 1440 1441 irq_data->chip_data = NULL; 1442 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn)); 1443 if (!hpdev) { 1444 kfree(int_desc); 1445 return; 1446 } 1447 1448 hv_int_desc_free(hpdev, int_desc); 1449 put_pcichild(hpdev); 1450 } 1451 1452 static void hv_irq_mask(struct irq_data *data) 1453 { 1454 pci_msi_mask_irq(data); 1455 if (data->parent_data->chip->irq_mask) 1456 irq_chip_mask_parent(data); 1457 } 1458 1459 /** 1460 * hv_irq_unmask() - "Unmask" the IRQ by setting its current 1461 * affinity. 1462 * @data: Describes the IRQ 1463 * 1464 * Build new a destination for the MSI and make a hypercall to 1465 * update the Interrupt Redirection Table. "Device Logical ID" 1466 * is built out of this PCI bus's instance GUID and the function 1467 * number of the device. 1468 */ 1469 static void hv_irq_unmask(struct irq_data *data) 1470 { 1471 struct msi_desc *msi_desc = irq_data_get_msi_desc(data); 1472 struct hv_retarget_device_interrupt *params; 1473 struct hv_pcibus_device *hbus; 1474 struct cpumask *dest; 1475 cpumask_var_t tmp; 1476 struct pci_bus *pbus; 1477 struct pci_dev *pdev; 1478 unsigned long flags; 1479 u32 var_size = 0; 1480 int cpu, nr_bank; 1481 u64 res; 1482 1483 dest = irq_data_get_effective_affinity_mask(data); 1484 pdev = msi_desc_to_pci_dev(msi_desc); 1485 pbus = pdev->bus; 1486 hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata); 1487 1488 spin_lock_irqsave(&hbus->retarget_msi_interrupt_lock, flags); 1489 1490 params = &hbus->retarget_msi_interrupt_params; 1491 memset(params, 0, sizeof(*params)); 1492 params->partition_id = HV_PARTITION_ID_SELF; 1493 params->int_entry.source = HV_INTERRUPT_SOURCE_MSI; 1494 hv_set_msi_entry_from_desc(¶ms->int_entry.msi_entry, msi_desc); 1495 params->device_id = (hbus->hdev->dev_instance.b[5] << 24) | 1496 (hbus->hdev->dev_instance.b[4] << 16) | 1497 (hbus->hdev->dev_instance.b[7] << 8) | 1498 (hbus->hdev->dev_instance.b[6] & 0xf8) | 1499 PCI_FUNC(pdev->devfn); 1500 params->int_target.vector = hv_msi_get_int_vector(data); 1501 1502 /* 1503 * Honoring apic->delivery_mode set to APIC_DELIVERY_MODE_FIXED by 1504 * setting the HV_DEVICE_INTERRUPT_TARGET_MULTICAST flag results in a 1505 * spurious interrupt storm. Not doing so does not seem to have a 1506 * negative effect (yet?). 1507 */ 1508 1509 if (hbus->protocol_version >= PCI_PROTOCOL_VERSION_1_2) { 1510 /* 1511 * PCI_PROTOCOL_VERSION_1_2 supports the VP_SET version of the 1512 * HVCALL_RETARGET_INTERRUPT hypercall, which also coincides 1513 * with >64 VP support. 1514 * ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED 1515 * is not sufficient for this hypercall. 1516 */ 1517 params->int_target.flags |= 1518 HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET; 1519 1520 if (!alloc_cpumask_var(&tmp, GFP_ATOMIC)) { 1521 res = 1; 1522 goto exit_unlock; 1523 } 1524 1525 cpumask_and(tmp, dest, cpu_online_mask); 1526 nr_bank = cpumask_to_vpset(¶ms->int_target.vp_set, tmp); 1527 free_cpumask_var(tmp); 1528 1529 if (nr_bank <= 0) { 1530 res = 1; 1531 goto exit_unlock; 1532 } 1533 1534 /* 1535 * var-sized hypercall, var-size starts after vp_mask (thus 1536 * vp_set.format does not count, but vp_set.valid_bank_mask 1537 * does). 1538 */ 1539 var_size = 1 + nr_bank; 1540 } else { 1541 for_each_cpu_and(cpu, dest, cpu_online_mask) { 1542 params->int_target.vp_mask |= 1543 (1ULL << hv_cpu_number_to_vp_number(cpu)); 1544 } 1545 } 1546 1547 res = hv_do_hypercall(HVCALL_RETARGET_INTERRUPT | (var_size << 17), 1548 params, NULL); 1549 1550 exit_unlock: 1551 spin_unlock_irqrestore(&hbus->retarget_msi_interrupt_lock, flags); 1552 1553 /* 1554 * During hibernation, when a CPU is offlined, the kernel tries 1555 * to move the interrupt to the remaining CPUs that haven't 1556 * been offlined yet. In this case, the below hv_do_hypercall() 1557 * always fails since the vmbus channel has been closed: 1558 * refer to cpu_disable_common() -> fixup_irqs() -> 1559 * irq_migrate_all_off_this_cpu() -> migrate_one_irq(). 1560 * 1561 * Suppress the error message for hibernation because the failure 1562 * during hibernation does not matter (at this time all the devices 1563 * have been frozen). Note: the correct affinity info is still updated 1564 * into the irqdata data structure in migrate_one_irq() -> 1565 * irq_do_set_affinity() -> hv_set_affinity(), so later when the VM 1566 * resumes, hv_pci_restore_msi_state() is able to correctly restore 1567 * the interrupt with the correct affinity. 1568 */ 1569 if (!hv_result_success(res) && hbus->state != hv_pcibus_removing) 1570 dev_err(&hbus->hdev->device, 1571 "%s() failed: %#llx", __func__, res); 1572 1573 if (data->parent_data->chip->irq_unmask) 1574 irq_chip_unmask_parent(data); 1575 pci_msi_unmask_irq(data); 1576 } 1577 1578 struct compose_comp_ctxt { 1579 struct hv_pci_compl comp_pkt; 1580 struct tran_int_desc int_desc; 1581 }; 1582 1583 static void hv_pci_compose_compl(void *context, struct pci_response *resp, 1584 int resp_packet_size) 1585 { 1586 struct compose_comp_ctxt *comp_pkt = context; 1587 struct pci_create_int_response *int_resp = 1588 (struct pci_create_int_response *)resp; 1589 1590 comp_pkt->comp_pkt.completion_status = resp->status; 1591 comp_pkt->int_desc = int_resp->int_desc; 1592 complete(&comp_pkt->comp_pkt.host_event); 1593 } 1594 1595 static u32 hv_compose_msi_req_v1( 1596 struct pci_create_interrupt *int_pkt, struct cpumask *affinity, 1597 u32 slot, u8 vector) 1598 { 1599 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE; 1600 int_pkt->wslot.slot = slot; 1601 int_pkt->int_desc.vector = vector; 1602 int_pkt->int_desc.vector_count = 1; 1603 int_pkt->int_desc.delivery_mode = DELIVERY_MODE; 1604 1605 /* 1606 * Create MSI w/ dummy vCPU set, overwritten by subsequent retarget in 1607 * hv_irq_unmask(). 1608 */ 1609 int_pkt->int_desc.cpu_mask = CPU_AFFINITY_ALL; 1610 1611 return sizeof(*int_pkt); 1612 } 1613 1614 /* 1615 * Create MSI w/ dummy vCPU set targeting just one vCPU, overwritten 1616 * by subsequent retarget in hv_irq_unmask(). 1617 */ 1618 static int hv_compose_msi_req_get_cpu(struct cpumask *affinity) 1619 { 1620 return cpumask_first_and(affinity, cpu_online_mask); 1621 } 1622 1623 static u32 hv_compose_msi_req_v2( 1624 struct pci_create_interrupt2 *int_pkt, struct cpumask *affinity, 1625 u32 slot, u8 vector) 1626 { 1627 int cpu; 1628 1629 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE2; 1630 int_pkt->wslot.slot = slot; 1631 int_pkt->int_desc.vector = vector; 1632 int_pkt->int_desc.vector_count = 1; 1633 int_pkt->int_desc.delivery_mode = DELIVERY_MODE; 1634 cpu = hv_compose_msi_req_get_cpu(affinity); 1635 int_pkt->int_desc.processor_array[0] = 1636 hv_cpu_number_to_vp_number(cpu); 1637 int_pkt->int_desc.processor_count = 1; 1638 1639 return sizeof(*int_pkt); 1640 } 1641 1642 static u32 hv_compose_msi_req_v3( 1643 struct pci_create_interrupt3 *int_pkt, struct cpumask *affinity, 1644 u32 slot, u32 vector) 1645 { 1646 int cpu; 1647 1648 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE3; 1649 int_pkt->wslot.slot = slot; 1650 int_pkt->int_desc.vector = vector; 1651 int_pkt->int_desc.reserved = 0; 1652 int_pkt->int_desc.vector_count = 1; 1653 int_pkt->int_desc.delivery_mode = DELIVERY_MODE; 1654 cpu = hv_compose_msi_req_get_cpu(affinity); 1655 int_pkt->int_desc.processor_array[0] = 1656 hv_cpu_number_to_vp_number(cpu); 1657 int_pkt->int_desc.processor_count = 1; 1658 1659 return sizeof(*int_pkt); 1660 } 1661 1662 /** 1663 * hv_compose_msi_msg() - Supplies a valid MSI address/data 1664 * @data: Everything about this MSI 1665 * @msg: Buffer that is filled in by this function 1666 * 1667 * This function unpacks the IRQ looking for target CPU set, IDT 1668 * vector and mode and sends a message to the parent partition 1669 * asking for a mapping for that tuple in this partition. The 1670 * response supplies a data value and address to which that data 1671 * should be written to trigger that interrupt. 1672 */ 1673 static void hv_compose_msi_msg(struct irq_data *data, struct msi_msg *msg) 1674 { 1675 struct hv_pcibus_device *hbus; 1676 struct vmbus_channel *channel; 1677 struct hv_pci_dev *hpdev; 1678 struct pci_bus *pbus; 1679 struct pci_dev *pdev; 1680 struct cpumask *dest; 1681 struct compose_comp_ctxt comp; 1682 struct tran_int_desc *int_desc; 1683 struct { 1684 struct pci_packet pci_pkt; 1685 union { 1686 struct pci_create_interrupt v1; 1687 struct pci_create_interrupt2 v2; 1688 struct pci_create_interrupt3 v3; 1689 } int_pkts; 1690 } __packed ctxt; 1691 1692 u32 size; 1693 int ret; 1694 1695 pdev = msi_desc_to_pci_dev(irq_data_get_msi_desc(data)); 1696 dest = irq_data_get_effective_affinity_mask(data); 1697 pbus = pdev->bus; 1698 hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata); 1699 channel = hbus->hdev->channel; 1700 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn)); 1701 if (!hpdev) 1702 goto return_null_message; 1703 1704 /* Free any previous message that might have already been composed. */ 1705 if (data->chip_data) { 1706 int_desc = data->chip_data; 1707 data->chip_data = NULL; 1708 hv_int_desc_free(hpdev, int_desc); 1709 } 1710 1711 int_desc = kzalloc(sizeof(*int_desc), GFP_ATOMIC); 1712 if (!int_desc) 1713 goto drop_reference; 1714 1715 memset(&ctxt, 0, sizeof(ctxt)); 1716 init_completion(&comp.comp_pkt.host_event); 1717 ctxt.pci_pkt.completion_func = hv_pci_compose_compl; 1718 ctxt.pci_pkt.compl_ctxt = ∁ 1719 1720 switch (hbus->protocol_version) { 1721 case PCI_PROTOCOL_VERSION_1_1: 1722 size = hv_compose_msi_req_v1(&ctxt.int_pkts.v1, 1723 dest, 1724 hpdev->desc.win_slot.slot, 1725 hv_msi_get_int_vector(data)); 1726 break; 1727 1728 case PCI_PROTOCOL_VERSION_1_2: 1729 case PCI_PROTOCOL_VERSION_1_3: 1730 size = hv_compose_msi_req_v2(&ctxt.int_pkts.v2, 1731 dest, 1732 hpdev->desc.win_slot.slot, 1733 hv_msi_get_int_vector(data)); 1734 break; 1735 1736 case PCI_PROTOCOL_VERSION_1_4: 1737 size = hv_compose_msi_req_v3(&ctxt.int_pkts.v3, 1738 dest, 1739 hpdev->desc.win_slot.slot, 1740 hv_msi_get_int_vector(data)); 1741 break; 1742 1743 default: 1744 /* As we only negotiate protocol versions known to this driver, 1745 * this path should never hit. However, this is it not a hot 1746 * path so we print a message to aid future updates. 1747 */ 1748 dev_err(&hbus->hdev->device, 1749 "Unexpected vPCI protocol, update driver."); 1750 goto free_int_desc; 1751 } 1752 1753 ret = vmbus_sendpacket(hpdev->hbus->hdev->channel, &ctxt.int_pkts, 1754 size, (unsigned long)&ctxt.pci_pkt, 1755 VM_PKT_DATA_INBAND, 1756 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1757 if (ret) { 1758 dev_err(&hbus->hdev->device, 1759 "Sending request for interrupt failed: 0x%x", 1760 comp.comp_pkt.completion_status); 1761 goto free_int_desc; 1762 } 1763 1764 /* 1765 * Prevents hv_pci_onchannelcallback() from running concurrently 1766 * in the tasklet. 1767 */ 1768 tasklet_disable_in_atomic(&channel->callback_event); 1769 1770 /* 1771 * Since this function is called with IRQ locks held, can't 1772 * do normal wait for completion; instead poll. 1773 */ 1774 while (!try_wait_for_completion(&comp.comp_pkt.host_event)) { 1775 unsigned long flags; 1776 1777 /* 0xFFFF means an invalid PCI VENDOR ID. */ 1778 if (hv_pcifront_get_vendor_id(hpdev) == 0xFFFF) { 1779 dev_err_once(&hbus->hdev->device, 1780 "the device has gone\n"); 1781 goto enable_tasklet; 1782 } 1783 1784 /* 1785 * Make sure that the ring buffer data structure doesn't get 1786 * freed while we dereference the ring buffer pointer. Test 1787 * for the channel's onchannel_callback being NULL within a 1788 * sched_lock critical section. See also the inline comments 1789 * in vmbus_reset_channel_cb(). 1790 */ 1791 spin_lock_irqsave(&channel->sched_lock, flags); 1792 if (unlikely(channel->onchannel_callback == NULL)) { 1793 spin_unlock_irqrestore(&channel->sched_lock, flags); 1794 goto enable_tasklet; 1795 } 1796 hv_pci_onchannelcallback(hbus); 1797 spin_unlock_irqrestore(&channel->sched_lock, flags); 1798 1799 if (hpdev->state == hv_pcichild_ejecting) { 1800 dev_err_once(&hbus->hdev->device, 1801 "the device is being ejected\n"); 1802 goto enable_tasklet; 1803 } 1804 1805 udelay(100); 1806 } 1807 1808 tasklet_enable(&channel->callback_event); 1809 1810 if (comp.comp_pkt.completion_status < 0) { 1811 dev_err(&hbus->hdev->device, 1812 "Request for interrupt failed: 0x%x", 1813 comp.comp_pkt.completion_status); 1814 goto free_int_desc; 1815 } 1816 1817 /* 1818 * Record the assignment so that this can be unwound later. Using 1819 * irq_set_chip_data() here would be appropriate, but the lock it takes 1820 * is already held. 1821 */ 1822 *int_desc = comp.int_desc; 1823 data->chip_data = int_desc; 1824 1825 /* Pass up the result. */ 1826 msg->address_hi = comp.int_desc.address >> 32; 1827 msg->address_lo = comp.int_desc.address & 0xffffffff; 1828 msg->data = comp.int_desc.data; 1829 1830 put_pcichild(hpdev); 1831 return; 1832 1833 enable_tasklet: 1834 tasklet_enable(&channel->callback_event); 1835 free_int_desc: 1836 kfree(int_desc); 1837 drop_reference: 1838 put_pcichild(hpdev); 1839 return_null_message: 1840 msg->address_hi = 0; 1841 msg->address_lo = 0; 1842 msg->data = 0; 1843 } 1844 1845 /* HW Interrupt Chip Descriptor */ 1846 static struct irq_chip hv_msi_irq_chip = { 1847 .name = "Hyper-V PCIe MSI", 1848 .irq_compose_msi_msg = hv_compose_msi_msg, 1849 .irq_set_affinity = irq_chip_set_affinity_parent, 1850 #ifdef CONFIG_X86 1851 .irq_ack = irq_chip_ack_parent, 1852 #elif defined(CONFIG_ARM64) 1853 .irq_eoi = irq_chip_eoi_parent, 1854 #endif 1855 .irq_mask = hv_irq_mask, 1856 .irq_unmask = hv_irq_unmask, 1857 }; 1858 1859 static struct msi_domain_ops hv_msi_ops = { 1860 .msi_prepare = hv_msi_prepare, 1861 .msi_free = hv_msi_free, 1862 }; 1863 1864 /** 1865 * hv_pcie_init_irq_domain() - Initialize IRQ domain 1866 * @hbus: The root PCI bus 1867 * 1868 * This function creates an IRQ domain which will be used for 1869 * interrupts from devices that have been passed through. These 1870 * devices only support MSI and MSI-X, not line-based interrupts 1871 * or simulations of line-based interrupts through PCIe's 1872 * fabric-layer messages. Because interrupts are remapped, we 1873 * can support multi-message MSI here. 1874 * 1875 * Return: '0' on success and error value on failure 1876 */ 1877 static int hv_pcie_init_irq_domain(struct hv_pcibus_device *hbus) 1878 { 1879 hbus->msi_info.chip = &hv_msi_irq_chip; 1880 hbus->msi_info.ops = &hv_msi_ops; 1881 hbus->msi_info.flags = (MSI_FLAG_USE_DEF_DOM_OPS | 1882 MSI_FLAG_USE_DEF_CHIP_OPS | MSI_FLAG_MULTI_PCI_MSI | 1883 MSI_FLAG_PCI_MSIX); 1884 hbus->msi_info.handler = FLOW_HANDLER; 1885 hbus->msi_info.handler_name = FLOW_NAME; 1886 hbus->msi_info.data = hbus; 1887 hbus->irq_domain = pci_msi_create_irq_domain(hbus->fwnode, 1888 &hbus->msi_info, 1889 hv_pci_get_root_domain()); 1890 if (!hbus->irq_domain) { 1891 dev_err(&hbus->hdev->device, 1892 "Failed to build an MSI IRQ domain\n"); 1893 return -ENODEV; 1894 } 1895 1896 dev_set_msi_domain(&hbus->bridge->dev, hbus->irq_domain); 1897 1898 return 0; 1899 } 1900 1901 /** 1902 * get_bar_size() - Get the address space consumed by a BAR 1903 * @bar_val: Value that a BAR returned after -1 was written 1904 * to it. 1905 * 1906 * This function returns the size of the BAR, rounded up to 1 1907 * page. It has to be rounded up because the hypervisor's page 1908 * table entry that maps the BAR into the VM can't specify an 1909 * offset within a page. The invariant is that the hypervisor 1910 * must place any BARs of smaller than page length at the 1911 * beginning of a page. 1912 * 1913 * Return: Size in bytes of the consumed MMIO space. 1914 */ 1915 static u64 get_bar_size(u64 bar_val) 1916 { 1917 return round_up((1 + ~(bar_val & PCI_BASE_ADDRESS_MEM_MASK)), 1918 PAGE_SIZE); 1919 } 1920 1921 /** 1922 * survey_child_resources() - Total all MMIO requirements 1923 * @hbus: Root PCI bus, as understood by this driver 1924 */ 1925 static void survey_child_resources(struct hv_pcibus_device *hbus) 1926 { 1927 struct hv_pci_dev *hpdev; 1928 resource_size_t bar_size = 0; 1929 unsigned long flags; 1930 struct completion *event; 1931 u64 bar_val; 1932 int i; 1933 1934 /* If nobody is waiting on the answer, don't compute it. */ 1935 event = xchg(&hbus->survey_event, NULL); 1936 if (!event) 1937 return; 1938 1939 /* If the answer has already been computed, go with it. */ 1940 if (hbus->low_mmio_space || hbus->high_mmio_space) { 1941 complete(event); 1942 return; 1943 } 1944 1945 spin_lock_irqsave(&hbus->device_list_lock, flags); 1946 1947 /* 1948 * Due to an interesting quirk of the PCI spec, all memory regions 1949 * for a child device are a power of 2 in size and aligned in memory, 1950 * so it's sufficient to just add them up without tracking alignment. 1951 */ 1952 list_for_each_entry(hpdev, &hbus->children, list_entry) { 1953 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 1954 if (hpdev->probed_bar[i] & PCI_BASE_ADDRESS_SPACE_IO) 1955 dev_err(&hbus->hdev->device, 1956 "There's an I/O BAR in this list!\n"); 1957 1958 if (hpdev->probed_bar[i] != 0) { 1959 /* 1960 * A probed BAR has all the upper bits set that 1961 * can be changed. 1962 */ 1963 1964 bar_val = hpdev->probed_bar[i]; 1965 if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64) 1966 bar_val |= 1967 ((u64)hpdev->probed_bar[++i] << 32); 1968 else 1969 bar_val |= 0xffffffff00000000ULL; 1970 1971 bar_size = get_bar_size(bar_val); 1972 1973 if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64) 1974 hbus->high_mmio_space += bar_size; 1975 else 1976 hbus->low_mmio_space += bar_size; 1977 } 1978 } 1979 } 1980 1981 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 1982 complete(event); 1983 } 1984 1985 /** 1986 * prepopulate_bars() - Fill in BARs with defaults 1987 * @hbus: Root PCI bus, as understood by this driver 1988 * 1989 * The core PCI driver code seems much, much happier if the BARs 1990 * for a device have values upon first scan. So fill them in. 1991 * The algorithm below works down from large sizes to small, 1992 * attempting to pack the assignments optimally. The assumption, 1993 * enforced in other parts of the code, is that the beginning of 1994 * the memory-mapped I/O space will be aligned on the largest 1995 * BAR size. 1996 */ 1997 static void prepopulate_bars(struct hv_pcibus_device *hbus) 1998 { 1999 resource_size_t high_size = 0; 2000 resource_size_t low_size = 0; 2001 resource_size_t high_base = 0; 2002 resource_size_t low_base = 0; 2003 resource_size_t bar_size; 2004 struct hv_pci_dev *hpdev; 2005 unsigned long flags; 2006 u64 bar_val; 2007 u32 command; 2008 bool high; 2009 int i; 2010 2011 if (hbus->low_mmio_space) { 2012 low_size = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space)); 2013 low_base = hbus->low_mmio_res->start; 2014 } 2015 2016 if (hbus->high_mmio_space) { 2017 high_size = 1ULL << 2018 (63 - __builtin_clzll(hbus->high_mmio_space)); 2019 high_base = hbus->high_mmio_res->start; 2020 } 2021 2022 spin_lock_irqsave(&hbus->device_list_lock, flags); 2023 2024 /* 2025 * Clear the memory enable bit, in case it's already set. This occurs 2026 * in the suspend path of hibernation, where the device is suspended, 2027 * resumed and suspended again: see hibernation_snapshot() and 2028 * hibernation_platform_enter(). 2029 * 2030 * If the memory enable bit is already set, Hyper-V silently ignores 2031 * the below BAR updates, and the related PCI device driver can not 2032 * work, because reading from the device register(s) always returns 2033 * 0xFFFFFFFF (PCI_ERROR_RESPONSE). 2034 */ 2035 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2036 _hv_pcifront_read_config(hpdev, PCI_COMMAND, 2, &command); 2037 command &= ~PCI_COMMAND_MEMORY; 2038 _hv_pcifront_write_config(hpdev, PCI_COMMAND, 2, command); 2039 } 2040 2041 /* Pick addresses for the BARs. */ 2042 do { 2043 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2044 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 2045 bar_val = hpdev->probed_bar[i]; 2046 if (bar_val == 0) 2047 continue; 2048 high = bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64; 2049 if (high) { 2050 bar_val |= 2051 ((u64)hpdev->probed_bar[i + 1] 2052 << 32); 2053 } else { 2054 bar_val |= 0xffffffffULL << 32; 2055 } 2056 bar_size = get_bar_size(bar_val); 2057 if (high) { 2058 if (high_size != bar_size) { 2059 i++; 2060 continue; 2061 } 2062 _hv_pcifront_write_config(hpdev, 2063 PCI_BASE_ADDRESS_0 + (4 * i), 2064 4, 2065 (u32)(high_base & 0xffffff00)); 2066 i++; 2067 _hv_pcifront_write_config(hpdev, 2068 PCI_BASE_ADDRESS_0 + (4 * i), 2069 4, (u32)(high_base >> 32)); 2070 high_base += bar_size; 2071 } else { 2072 if (low_size != bar_size) 2073 continue; 2074 _hv_pcifront_write_config(hpdev, 2075 PCI_BASE_ADDRESS_0 + (4 * i), 2076 4, 2077 (u32)(low_base & 0xffffff00)); 2078 low_base += bar_size; 2079 } 2080 } 2081 if (high_size <= 1 && low_size <= 1) { 2082 /* Set the memory enable bit. */ 2083 _hv_pcifront_read_config(hpdev, PCI_COMMAND, 2, 2084 &command); 2085 command |= PCI_COMMAND_MEMORY; 2086 _hv_pcifront_write_config(hpdev, PCI_COMMAND, 2, 2087 command); 2088 break; 2089 } 2090 } 2091 2092 high_size >>= 1; 2093 low_size >>= 1; 2094 } while (high_size || low_size); 2095 2096 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2097 } 2098 2099 /* 2100 * Assign entries in sysfs pci slot directory. 2101 * 2102 * Note that this function does not need to lock the children list 2103 * because it is called from pci_devices_present_work which 2104 * is serialized with hv_eject_device_work because they are on the 2105 * same ordered workqueue. Therefore hbus->children list will not change 2106 * even when pci_create_slot sleeps. 2107 */ 2108 static void hv_pci_assign_slots(struct hv_pcibus_device *hbus) 2109 { 2110 struct hv_pci_dev *hpdev; 2111 char name[SLOT_NAME_SIZE]; 2112 int slot_nr; 2113 2114 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2115 if (hpdev->pci_slot) 2116 continue; 2117 2118 slot_nr = PCI_SLOT(wslot_to_devfn(hpdev->desc.win_slot.slot)); 2119 snprintf(name, SLOT_NAME_SIZE, "%u", hpdev->desc.ser); 2120 hpdev->pci_slot = pci_create_slot(hbus->bridge->bus, slot_nr, 2121 name, NULL); 2122 if (IS_ERR(hpdev->pci_slot)) { 2123 pr_warn("pci_create slot %s failed\n", name); 2124 hpdev->pci_slot = NULL; 2125 } 2126 } 2127 } 2128 2129 /* 2130 * Remove entries in sysfs pci slot directory. 2131 */ 2132 static void hv_pci_remove_slots(struct hv_pcibus_device *hbus) 2133 { 2134 struct hv_pci_dev *hpdev; 2135 2136 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2137 if (!hpdev->pci_slot) 2138 continue; 2139 pci_destroy_slot(hpdev->pci_slot); 2140 hpdev->pci_slot = NULL; 2141 } 2142 } 2143 2144 /* 2145 * Set NUMA node for the devices on the bus 2146 */ 2147 static void hv_pci_assign_numa_node(struct hv_pcibus_device *hbus) 2148 { 2149 struct pci_dev *dev; 2150 struct pci_bus *bus = hbus->bridge->bus; 2151 struct hv_pci_dev *hv_dev; 2152 2153 list_for_each_entry(dev, &bus->devices, bus_list) { 2154 hv_dev = get_pcichild_wslot(hbus, devfn_to_wslot(dev->devfn)); 2155 if (!hv_dev) 2156 continue; 2157 2158 if (hv_dev->desc.flags & HV_PCI_DEVICE_FLAG_NUMA_AFFINITY && 2159 hv_dev->desc.virtual_numa_node < num_possible_nodes()) 2160 /* 2161 * The kernel may boot with some NUMA nodes offline 2162 * (e.g. in a KDUMP kernel) or with NUMA disabled via 2163 * "numa=off". In those cases, adjust the host provided 2164 * NUMA node to a valid NUMA node used by the kernel. 2165 */ 2166 set_dev_node(&dev->dev, 2167 numa_map_to_online_node( 2168 hv_dev->desc.virtual_numa_node)); 2169 2170 put_pcichild(hv_dev); 2171 } 2172 } 2173 2174 /** 2175 * create_root_hv_pci_bus() - Expose a new root PCI bus 2176 * @hbus: Root PCI bus, as understood by this driver 2177 * 2178 * Return: 0 on success, -errno on failure 2179 */ 2180 static int create_root_hv_pci_bus(struct hv_pcibus_device *hbus) 2181 { 2182 int error; 2183 struct pci_host_bridge *bridge = hbus->bridge; 2184 2185 bridge->dev.parent = &hbus->hdev->device; 2186 bridge->sysdata = &hbus->sysdata; 2187 bridge->ops = &hv_pcifront_ops; 2188 2189 error = pci_scan_root_bus_bridge(bridge); 2190 if (error) 2191 return error; 2192 2193 pci_lock_rescan_remove(); 2194 hv_pci_assign_numa_node(hbus); 2195 pci_bus_assign_resources(bridge->bus); 2196 hv_pci_assign_slots(hbus); 2197 pci_bus_add_devices(bridge->bus); 2198 pci_unlock_rescan_remove(); 2199 hbus->state = hv_pcibus_installed; 2200 return 0; 2201 } 2202 2203 struct q_res_req_compl { 2204 struct completion host_event; 2205 struct hv_pci_dev *hpdev; 2206 }; 2207 2208 /** 2209 * q_resource_requirements() - Query Resource Requirements 2210 * @context: The completion context. 2211 * @resp: The response that came from the host. 2212 * @resp_packet_size: The size in bytes of resp. 2213 * 2214 * This function is invoked on completion of a Query Resource 2215 * Requirements packet. 2216 */ 2217 static void q_resource_requirements(void *context, struct pci_response *resp, 2218 int resp_packet_size) 2219 { 2220 struct q_res_req_compl *completion = context; 2221 struct pci_q_res_req_response *q_res_req = 2222 (struct pci_q_res_req_response *)resp; 2223 int i; 2224 2225 if (resp->status < 0) { 2226 dev_err(&completion->hpdev->hbus->hdev->device, 2227 "query resource requirements failed: %x\n", 2228 resp->status); 2229 } else { 2230 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 2231 completion->hpdev->probed_bar[i] = 2232 q_res_req->probed_bar[i]; 2233 } 2234 } 2235 2236 complete(&completion->host_event); 2237 } 2238 2239 /** 2240 * new_pcichild_device() - Create a new child device 2241 * @hbus: The internal struct tracking this root PCI bus. 2242 * @desc: The information supplied so far from the host 2243 * about the device. 2244 * 2245 * This function creates the tracking structure for a new child 2246 * device and kicks off the process of figuring out what it is. 2247 * 2248 * Return: Pointer to the new tracking struct 2249 */ 2250 static struct hv_pci_dev *new_pcichild_device(struct hv_pcibus_device *hbus, 2251 struct hv_pcidev_description *desc) 2252 { 2253 struct hv_pci_dev *hpdev; 2254 struct pci_child_message *res_req; 2255 struct q_res_req_compl comp_pkt; 2256 struct { 2257 struct pci_packet init_packet; 2258 u8 buffer[sizeof(struct pci_child_message)]; 2259 } pkt; 2260 unsigned long flags; 2261 int ret; 2262 2263 hpdev = kzalloc(sizeof(*hpdev), GFP_KERNEL); 2264 if (!hpdev) 2265 return NULL; 2266 2267 hpdev->hbus = hbus; 2268 2269 memset(&pkt, 0, sizeof(pkt)); 2270 init_completion(&comp_pkt.host_event); 2271 comp_pkt.hpdev = hpdev; 2272 pkt.init_packet.compl_ctxt = &comp_pkt; 2273 pkt.init_packet.completion_func = q_resource_requirements; 2274 res_req = (struct pci_child_message *)&pkt.init_packet.message; 2275 res_req->message_type.type = PCI_QUERY_RESOURCE_REQUIREMENTS; 2276 res_req->wslot.slot = desc->win_slot.slot; 2277 2278 ret = vmbus_sendpacket(hbus->hdev->channel, res_req, 2279 sizeof(struct pci_child_message), 2280 (unsigned long)&pkt.init_packet, 2281 VM_PKT_DATA_INBAND, 2282 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 2283 if (ret) 2284 goto error; 2285 2286 if (wait_for_response(hbus->hdev, &comp_pkt.host_event)) 2287 goto error; 2288 2289 hpdev->desc = *desc; 2290 refcount_set(&hpdev->refs, 1); 2291 get_pcichild(hpdev); 2292 spin_lock_irqsave(&hbus->device_list_lock, flags); 2293 2294 list_add_tail(&hpdev->list_entry, &hbus->children); 2295 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2296 return hpdev; 2297 2298 error: 2299 kfree(hpdev); 2300 return NULL; 2301 } 2302 2303 /** 2304 * get_pcichild_wslot() - Find device from slot 2305 * @hbus: Root PCI bus, as understood by this driver 2306 * @wslot: Location on the bus 2307 * 2308 * This function looks up a PCI device and returns the internal 2309 * representation of it. It acquires a reference on it, so that 2310 * the device won't be deleted while somebody is using it. The 2311 * caller is responsible for calling put_pcichild() to release 2312 * this reference. 2313 * 2314 * Return: Internal representation of a PCI device 2315 */ 2316 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus, 2317 u32 wslot) 2318 { 2319 unsigned long flags; 2320 struct hv_pci_dev *iter, *hpdev = NULL; 2321 2322 spin_lock_irqsave(&hbus->device_list_lock, flags); 2323 list_for_each_entry(iter, &hbus->children, list_entry) { 2324 if (iter->desc.win_slot.slot == wslot) { 2325 hpdev = iter; 2326 get_pcichild(hpdev); 2327 break; 2328 } 2329 } 2330 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2331 2332 return hpdev; 2333 } 2334 2335 /** 2336 * pci_devices_present_work() - Handle new list of child devices 2337 * @work: Work struct embedded in struct hv_dr_work 2338 * 2339 * "Bus Relations" is the Windows term for "children of this 2340 * bus." The terminology is preserved here for people trying to 2341 * debug the interaction between Hyper-V and Linux. This 2342 * function is called when the parent partition reports a list 2343 * of functions that should be observed under this PCI Express 2344 * port (bus). 2345 * 2346 * This function updates the list, and must tolerate being 2347 * called multiple times with the same information. The typical 2348 * number of child devices is one, with very atypical cases 2349 * involving three or four, so the algorithms used here can be 2350 * simple and inefficient. 2351 * 2352 * It must also treat the omission of a previously observed device as 2353 * notification that the device no longer exists. 2354 * 2355 * Note that this function is serialized with hv_eject_device_work(), 2356 * because both are pushed to the ordered workqueue hbus->wq. 2357 */ 2358 static void pci_devices_present_work(struct work_struct *work) 2359 { 2360 u32 child_no; 2361 bool found; 2362 struct hv_pcidev_description *new_desc; 2363 struct hv_pci_dev *hpdev; 2364 struct hv_pcibus_device *hbus; 2365 struct list_head removed; 2366 struct hv_dr_work *dr_wrk; 2367 struct hv_dr_state *dr = NULL; 2368 unsigned long flags; 2369 2370 dr_wrk = container_of(work, struct hv_dr_work, wrk); 2371 hbus = dr_wrk->bus; 2372 kfree(dr_wrk); 2373 2374 INIT_LIST_HEAD(&removed); 2375 2376 /* Pull this off the queue and process it if it was the last one. */ 2377 spin_lock_irqsave(&hbus->device_list_lock, flags); 2378 while (!list_empty(&hbus->dr_list)) { 2379 dr = list_first_entry(&hbus->dr_list, struct hv_dr_state, 2380 list_entry); 2381 list_del(&dr->list_entry); 2382 2383 /* Throw this away if the list still has stuff in it. */ 2384 if (!list_empty(&hbus->dr_list)) { 2385 kfree(dr); 2386 continue; 2387 } 2388 } 2389 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2390 2391 if (!dr) 2392 return; 2393 2394 /* First, mark all existing children as reported missing. */ 2395 spin_lock_irqsave(&hbus->device_list_lock, flags); 2396 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2397 hpdev->reported_missing = true; 2398 } 2399 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2400 2401 /* Next, add back any reported devices. */ 2402 for (child_no = 0; child_no < dr->device_count; child_no++) { 2403 found = false; 2404 new_desc = &dr->func[child_no]; 2405 2406 spin_lock_irqsave(&hbus->device_list_lock, flags); 2407 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2408 if ((hpdev->desc.win_slot.slot == new_desc->win_slot.slot) && 2409 (hpdev->desc.v_id == new_desc->v_id) && 2410 (hpdev->desc.d_id == new_desc->d_id) && 2411 (hpdev->desc.ser == new_desc->ser)) { 2412 hpdev->reported_missing = false; 2413 found = true; 2414 } 2415 } 2416 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2417 2418 if (!found) { 2419 hpdev = new_pcichild_device(hbus, new_desc); 2420 if (!hpdev) 2421 dev_err(&hbus->hdev->device, 2422 "couldn't record a child device.\n"); 2423 } 2424 } 2425 2426 /* Move missing children to a list on the stack. */ 2427 spin_lock_irqsave(&hbus->device_list_lock, flags); 2428 do { 2429 found = false; 2430 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2431 if (hpdev->reported_missing) { 2432 found = true; 2433 put_pcichild(hpdev); 2434 list_move_tail(&hpdev->list_entry, &removed); 2435 break; 2436 } 2437 } 2438 } while (found); 2439 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2440 2441 /* Delete everything that should no longer exist. */ 2442 while (!list_empty(&removed)) { 2443 hpdev = list_first_entry(&removed, struct hv_pci_dev, 2444 list_entry); 2445 list_del(&hpdev->list_entry); 2446 2447 if (hpdev->pci_slot) 2448 pci_destroy_slot(hpdev->pci_slot); 2449 2450 put_pcichild(hpdev); 2451 } 2452 2453 switch (hbus->state) { 2454 case hv_pcibus_installed: 2455 /* 2456 * Tell the core to rescan bus 2457 * because there may have been changes. 2458 */ 2459 pci_lock_rescan_remove(); 2460 pci_scan_child_bus(hbus->bridge->bus); 2461 hv_pci_assign_numa_node(hbus); 2462 hv_pci_assign_slots(hbus); 2463 pci_unlock_rescan_remove(); 2464 break; 2465 2466 case hv_pcibus_init: 2467 case hv_pcibus_probed: 2468 survey_child_resources(hbus); 2469 break; 2470 2471 default: 2472 break; 2473 } 2474 2475 kfree(dr); 2476 } 2477 2478 /** 2479 * hv_pci_start_relations_work() - Queue work to start device discovery 2480 * @hbus: Root PCI bus, as understood by this driver 2481 * @dr: The list of children returned from host 2482 * 2483 * Return: 0 on success, -errno on failure 2484 */ 2485 static int hv_pci_start_relations_work(struct hv_pcibus_device *hbus, 2486 struct hv_dr_state *dr) 2487 { 2488 struct hv_dr_work *dr_wrk; 2489 unsigned long flags; 2490 bool pending_dr; 2491 2492 if (hbus->state == hv_pcibus_removing) { 2493 dev_info(&hbus->hdev->device, 2494 "PCI VMBus BUS_RELATIONS: ignored\n"); 2495 return -ENOENT; 2496 } 2497 2498 dr_wrk = kzalloc(sizeof(*dr_wrk), GFP_NOWAIT); 2499 if (!dr_wrk) 2500 return -ENOMEM; 2501 2502 INIT_WORK(&dr_wrk->wrk, pci_devices_present_work); 2503 dr_wrk->bus = hbus; 2504 2505 spin_lock_irqsave(&hbus->device_list_lock, flags); 2506 /* 2507 * If pending_dr is true, we have already queued a work, 2508 * which will see the new dr. Otherwise, we need to 2509 * queue a new work. 2510 */ 2511 pending_dr = !list_empty(&hbus->dr_list); 2512 list_add_tail(&dr->list_entry, &hbus->dr_list); 2513 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2514 2515 if (pending_dr) 2516 kfree(dr_wrk); 2517 else 2518 queue_work(hbus->wq, &dr_wrk->wrk); 2519 2520 return 0; 2521 } 2522 2523 /** 2524 * hv_pci_devices_present() - Handle list of new children 2525 * @hbus: Root PCI bus, as understood by this driver 2526 * @relations: Packet from host listing children 2527 * 2528 * Process a new list of devices on the bus. The list of devices is 2529 * discovered by VSP and sent to us via VSP message PCI_BUS_RELATIONS, 2530 * whenever a new list of devices for this bus appears. 2531 */ 2532 static void hv_pci_devices_present(struct hv_pcibus_device *hbus, 2533 struct pci_bus_relations *relations) 2534 { 2535 struct hv_dr_state *dr; 2536 int i; 2537 2538 dr = kzalloc(struct_size(dr, func, relations->device_count), 2539 GFP_NOWAIT); 2540 if (!dr) 2541 return; 2542 2543 dr->device_count = relations->device_count; 2544 for (i = 0; i < dr->device_count; i++) { 2545 dr->func[i].v_id = relations->func[i].v_id; 2546 dr->func[i].d_id = relations->func[i].d_id; 2547 dr->func[i].rev = relations->func[i].rev; 2548 dr->func[i].prog_intf = relations->func[i].prog_intf; 2549 dr->func[i].subclass = relations->func[i].subclass; 2550 dr->func[i].base_class = relations->func[i].base_class; 2551 dr->func[i].subsystem_id = relations->func[i].subsystem_id; 2552 dr->func[i].win_slot = relations->func[i].win_slot; 2553 dr->func[i].ser = relations->func[i].ser; 2554 } 2555 2556 if (hv_pci_start_relations_work(hbus, dr)) 2557 kfree(dr); 2558 } 2559 2560 /** 2561 * hv_pci_devices_present2() - Handle list of new children 2562 * @hbus: Root PCI bus, as understood by this driver 2563 * @relations: Packet from host listing children 2564 * 2565 * This function is the v2 version of hv_pci_devices_present() 2566 */ 2567 static void hv_pci_devices_present2(struct hv_pcibus_device *hbus, 2568 struct pci_bus_relations2 *relations) 2569 { 2570 struct hv_dr_state *dr; 2571 int i; 2572 2573 dr = kzalloc(struct_size(dr, func, relations->device_count), 2574 GFP_NOWAIT); 2575 if (!dr) 2576 return; 2577 2578 dr->device_count = relations->device_count; 2579 for (i = 0; i < dr->device_count; i++) { 2580 dr->func[i].v_id = relations->func[i].v_id; 2581 dr->func[i].d_id = relations->func[i].d_id; 2582 dr->func[i].rev = relations->func[i].rev; 2583 dr->func[i].prog_intf = relations->func[i].prog_intf; 2584 dr->func[i].subclass = relations->func[i].subclass; 2585 dr->func[i].base_class = relations->func[i].base_class; 2586 dr->func[i].subsystem_id = relations->func[i].subsystem_id; 2587 dr->func[i].win_slot = relations->func[i].win_slot; 2588 dr->func[i].ser = relations->func[i].ser; 2589 dr->func[i].flags = relations->func[i].flags; 2590 dr->func[i].virtual_numa_node = 2591 relations->func[i].virtual_numa_node; 2592 } 2593 2594 if (hv_pci_start_relations_work(hbus, dr)) 2595 kfree(dr); 2596 } 2597 2598 /** 2599 * hv_eject_device_work() - Asynchronously handles ejection 2600 * @work: Work struct embedded in internal device struct 2601 * 2602 * This function handles ejecting a device. Windows will 2603 * attempt to gracefully eject a device, waiting 60 seconds to 2604 * hear back from the guest OS that this completed successfully. 2605 * If this timer expires, the device will be forcibly removed. 2606 */ 2607 static void hv_eject_device_work(struct work_struct *work) 2608 { 2609 struct pci_eject_response *ejct_pkt; 2610 struct hv_pcibus_device *hbus; 2611 struct hv_pci_dev *hpdev; 2612 struct pci_dev *pdev; 2613 unsigned long flags; 2614 int wslot; 2615 struct { 2616 struct pci_packet pkt; 2617 u8 buffer[sizeof(struct pci_eject_response)]; 2618 } ctxt; 2619 2620 hpdev = container_of(work, struct hv_pci_dev, wrk); 2621 hbus = hpdev->hbus; 2622 2623 WARN_ON(hpdev->state != hv_pcichild_ejecting); 2624 2625 /* 2626 * Ejection can come before or after the PCI bus has been set up, so 2627 * attempt to find it and tear down the bus state, if it exists. This 2628 * must be done without constructs like pci_domain_nr(hbus->bridge->bus) 2629 * because hbus->bridge->bus may not exist yet. 2630 */ 2631 wslot = wslot_to_devfn(hpdev->desc.win_slot.slot); 2632 pdev = pci_get_domain_bus_and_slot(hbus->bridge->domain_nr, 0, wslot); 2633 if (pdev) { 2634 pci_lock_rescan_remove(); 2635 pci_stop_and_remove_bus_device(pdev); 2636 pci_dev_put(pdev); 2637 pci_unlock_rescan_remove(); 2638 } 2639 2640 spin_lock_irqsave(&hbus->device_list_lock, flags); 2641 list_del(&hpdev->list_entry); 2642 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2643 2644 if (hpdev->pci_slot) 2645 pci_destroy_slot(hpdev->pci_slot); 2646 2647 memset(&ctxt, 0, sizeof(ctxt)); 2648 ejct_pkt = (struct pci_eject_response *)&ctxt.pkt.message; 2649 ejct_pkt->message_type.type = PCI_EJECTION_COMPLETE; 2650 ejct_pkt->wslot.slot = hpdev->desc.win_slot.slot; 2651 vmbus_sendpacket(hbus->hdev->channel, ejct_pkt, 2652 sizeof(*ejct_pkt), (unsigned long)&ctxt.pkt, 2653 VM_PKT_DATA_INBAND, 0); 2654 2655 /* For the get_pcichild() in hv_pci_eject_device() */ 2656 put_pcichild(hpdev); 2657 /* For the two refs got in new_pcichild_device() */ 2658 put_pcichild(hpdev); 2659 put_pcichild(hpdev); 2660 /* hpdev has been freed. Do not use it any more. */ 2661 } 2662 2663 /** 2664 * hv_pci_eject_device() - Handles device ejection 2665 * @hpdev: Internal device tracking struct 2666 * 2667 * This function is invoked when an ejection packet arrives. It 2668 * just schedules work so that we don't re-enter the packet 2669 * delivery code handling the ejection. 2670 */ 2671 static void hv_pci_eject_device(struct hv_pci_dev *hpdev) 2672 { 2673 struct hv_pcibus_device *hbus = hpdev->hbus; 2674 struct hv_device *hdev = hbus->hdev; 2675 2676 if (hbus->state == hv_pcibus_removing) { 2677 dev_info(&hdev->device, "PCI VMBus EJECT: ignored\n"); 2678 return; 2679 } 2680 2681 hpdev->state = hv_pcichild_ejecting; 2682 get_pcichild(hpdev); 2683 INIT_WORK(&hpdev->wrk, hv_eject_device_work); 2684 queue_work(hbus->wq, &hpdev->wrk); 2685 } 2686 2687 /** 2688 * hv_pci_onchannelcallback() - Handles incoming packets 2689 * @context: Internal bus tracking struct 2690 * 2691 * This function is invoked whenever the host sends a packet to 2692 * this channel (which is private to this root PCI bus). 2693 */ 2694 static void hv_pci_onchannelcallback(void *context) 2695 { 2696 const int packet_size = 0x100; 2697 int ret; 2698 struct hv_pcibus_device *hbus = context; 2699 u32 bytes_recvd; 2700 u64 req_id; 2701 struct vmpacket_descriptor *desc; 2702 unsigned char *buffer; 2703 int bufferlen = packet_size; 2704 struct pci_packet *comp_packet; 2705 struct pci_response *response; 2706 struct pci_incoming_message *new_message; 2707 struct pci_bus_relations *bus_rel; 2708 struct pci_bus_relations2 *bus_rel2; 2709 struct pci_dev_inval_block *inval; 2710 struct pci_dev_incoming *dev_message; 2711 struct hv_pci_dev *hpdev; 2712 2713 buffer = kmalloc(bufferlen, GFP_ATOMIC); 2714 if (!buffer) 2715 return; 2716 2717 while (1) { 2718 ret = vmbus_recvpacket_raw(hbus->hdev->channel, buffer, 2719 bufferlen, &bytes_recvd, &req_id); 2720 2721 if (ret == -ENOBUFS) { 2722 kfree(buffer); 2723 /* Handle large packet */ 2724 bufferlen = bytes_recvd; 2725 buffer = kmalloc(bytes_recvd, GFP_ATOMIC); 2726 if (!buffer) 2727 return; 2728 continue; 2729 } 2730 2731 /* Zero length indicates there are no more packets. */ 2732 if (ret || !bytes_recvd) 2733 break; 2734 2735 /* 2736 * All incoming packets must be at least as large as a 2737 * response. 2738 */ 2739 if (bytes_recvd <= sizeof(struct pci_response)) 2740 continue; 2741 desc = (struct vmpacket_descriptor *)buffer; 2742 2743 switch (desc->type) { 2744 case VM_PKT_COMP: 2745 2746 /* 2747 * The host is trusted, and thus it's safe to interpret 2748 * this transaction ID as a pointer. 2749 */ 2750 comp_packet = (struct pci_packet *)req_id; 2751 response = (struct pci_response *)buffer; 2752 comp_packet->completion_func(comp_packet->compl_ctxt, 2753 response, 2754 bytes_recvd); 2755 break; 2756 2757 case VM_PKT_DATA_INBAND: 2758 2759 new_message = (struct pci_incoming_message *)buffer; 2760 switch (new_message->message_type.type) { 2761 case PCI_BUS_RELATIONS: 2762 2763 bus_rel = (struct pci_bus_relations *)buffer; 2764 if (bytes_recvd < 2765 struct_size(bus_rel, func, 2766 bus_rel->device_count)) { 2767 dev_err(&hbus->hdev->device, 2768 "bus relations too small\n"); 2769 break; 2770 } 2771 2772 hv_pci_devices_present(hbus, bus_rel); 2773 break; 2774 2775 case PCI_BUS_RELATIONS2: 2776 2777 bus_rel2 = (struct pci_bus_relations2 *)buffer; 2778 if (bytes_recvd < 2779 struct_size(bus_rel2, func, 2780 bus_rel2->device_count)) { 2781 dev_err(&hbus->hdev->device, 2782 "bus relations v2 too small\n"); 2783 break; 2784 } 2785 2786 hv_pci_devices_present2(hbus, bus_rel2); 2787 break; 2788 2789 case PCI_EJECT: 2790 2791 dev_message = (struct pci_dev_incoming *)buffer; 2792 hpdev = get_pcichild_wslot(hbus, 2793 dev_message->wslot.slot); 2794 if (hpdev) { 2795 hv_pci_eject_device(hpdev); 2796 put_pcichild(hpdev); 2797 } 2798 break; 2799 2800 case PCI_INVALIDATE_BLOCK: 2801 2802 inval = (struct pci_dev_inval_block *)buffer; 2803 hpdev = get_pcichild_wslot(hbus, 2804 inval->wslot.slot); 2805 if (hpdev) { 2806 if (hpdev->block_invalidate) { 2807 hpdev->block_invalidate( 2808 hpdev->invalidate_context, 2809 inval->block_mask); 2810 } 2811 put_pcichild(hpdev); 2812 } 2813 break; 2814 2815 default: 2816 dev_warn(&hbus->hdev->device, 2817 "Unimplemented protocol message %x\n", 2818 new_message->message_type.type); 2819 break; 2820 } 2821 break; 2822 2823 default: 2824 dev_err(&hbus->hdev->device, 2825 "unhandled packet type %d, tid %llx len %d\n", 2826 desc->type, req_id, bytes_recvd); 2827 break; 2828 } 2829 } 2830 2831 kfree(buffer); 2832 } 2833 2834 /** 2835 * hv_pci_protocol_negotiation() - Set up protocol 2836 * @hdev: VMBus's tracking struct for this root PCI bus. 2837 * @version: Array of supported channel protocol versions in 2838 * the order of probing - highest go first. 2839 * @num_version: Number of elements in the version array. 2840 * 2841 * This driver is intended to support running on Windows 10 2842 * (server) and later versions. It will not run on earlier 2843 * versions, as they assume that many of the operations which 2844 * Linux needs accomplished with a spinlock held were done via 2845 * asynchronous messaging via VMBus. Windows 10 increases the 2846 * surface area of PCI emulation so that these actions can take 2847 * place by suspending a virtual processor for their duration. 2848 * 2849 * This function negotiates the channel protocol version, 2850 * failing if the host doesn't support the necessary protocol 2851 * level. 2852 */ 2853 static int hv_pci_protocol_negotiation(struct hv_device *hdev, 2854 enum pci_protocol_version_t version[], 2855 int num_version) 2856 { 2857 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 2858 struct pci_version_request *version_req; 2859 struct hv_pci_compl comp_pkt; 2860 struct pci_packet *pkt; 2861 int ret; 2862 int i; 2863 2864 /* 2865 * Initiate the handshake with the host and negotiate 2866 * a version that the host can support. We start with the 2867 * highest version number and go down if the host cannot 2868 * support it. 2869 */ 2870 pkt = kzalloc(sizeof(*pkt) + sizeof(*version_req), GFP_KERNEL); 2871 if (!pkt) 2872 return -ENOMEM; 2873 2874 init_completion(&comp_pkt.host_event); 2875 pkt->completion_func = hv_pci_generic_compl; 2876 pkt->compl_ctxt = &comp_pkt; 2877 version_req = (struct pci_version_request *)&pkt->message; 2878 version_req->message_type.type = PCI_QUERY_PROTOCOL_VERSION; 2879 2880 for (i = 0; i < num_version; i++) { 2881 version_req->protocol_version = version[i]; 2882 ret = vmbus_sendpacket(hdev->channel, version_req, 2883 sizeof(struct pci_version_request), 2884 (unsigned long)pkt, VM_PKT_DATA_INBAND, 2885 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 2886 if (!ret) 2887 ret = wait_for_response(hdev, &comp_pkt.host_event); 2888 2889 if (ret) { 2890 dev_err(&hdev->device, 2891 "PCI Pass-through VSP failed to request version: %d", 2892 ret); 2893 goto exit; 2894 } 2895 2896 if (comp_pkt.completion_status >= 0) { 2897 hbus->protocol_version = version[i]; 2898 dev_info(&hdev->device, 2899 "PCI VMBus probing: Using version %#x\n", 2900 hbus->protocol_version); 2901 goto exit; 2902 } 2903 2904 if (comp_pkt.completion_status != STATUS_REVISION_MISMATCH) { 2905 dev_err(&hdev->device, 2906 "PCI Pass-through VSP failed version request: %#x", 2907 comp_pkt.completion_status); 2908 ret = -EPROTO; 2909 goto exit; 2910 } 2911 2912 reinit_completion(&comp_pkt.host_event); 2913 } 2914 2915 dev_err(&hdev->device, 2916 "PCI pass-through VSP failed to find supported version"); 2917 ret = -EPROTO; 2918 2919 exit: 2920 kfree(pkt); 2921 return ret; 2922 } 2923 2924 /** 2925 * hv_pci_free_bridge_windows() - Release memory regions for the 2926 * bus 2927 * @hbus: Root PCI bus, as understood by this driver 2928 */ 2929 static void hv_pci_free_bridge_windows(struct hv_pcibus_device *hbus) 2930 { 2931 /* 2932 * Set the resources back to the way they looked when they 2933 * were allocated by setting IORESOURCE_BUSY again. 2934 */ 2935 2936 if (hbus->low_mmio_space && hbus->low_mmio_res) { 2937 hbus->low_mmio_res->flags |= IORESOURCE_BUSY; 2938 vmbus_free_mmio(hbus->low_mmio_res->start, 2939 resource_size(hbus->low_mmio_res)); 2940 } 2941 2942 if (hbus->high_mmio_space && hbus->high_mmio_res) { 2943 hbus->high_mmio_res->flags |= IORESOURCE_BUSY; 2944 vmbus_free_mmio(hbus->high_mmio_res->start, 2945 resource_size(hbus->high_mmio_res)); 2946 } 2947 } 2948 2949 /** 2950 * hv_pci_allocate_bridge_windows() - Allocate memory regions 2951 * for the bus 2952 * @hbus: Root PCI bus, as understood by this driver 2953 * 2954 * This function calls vmbus_allocate_mmio(), which is itself a 2955 * bit of a compromise. Ideally, we might change the pnp layer 2956 * in the kernel such that it comprehends either PCI devices 2957 * which are "grandchildren of ACPI," with some intermediate bus 2958 * node (in this case, VMBus) or change it such that it 2959 * understands VMBus. The pnp layer, however, has been declared 2960 * deprecated, and not subject to change. 2961 * 2962 * The workaround, implemented here, is to ask VMBus to allocate 2963 * MMIO space for this bus. VMBus itself knows which ranges are 2964 * appropriate by looking at its own ACPI objects. Then, after 2965 * these ranges are claimed, they're modified to look like they 2966 * would have looked if the ACPI and pnp code had allocated 2967 * bridge windows. These descriptors have to exist in this form 2968 * in order to satisfy the code which will get invoked when the 2969 * endpoint PCI function driver calls request_mem_region() or 2970 * request_mem_region_exclusive(). 2971 * 2972 * Return: 0 on success, -errno on failure 2973 */ 2974 static int hv_pci_allocate_bridge_windows(struct hv_pcibus_device *hbus) 2975 { 2976 resource_size_t align; 2977 int ret; 2978 2979 if (hbus->low_mmio_space) { 2980 align = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space)); 2981 ret = vmbus_allocate_mmio(&hbus->low_mmio_res, hbus->hdev, 0, 2982 (u64)(u32)0xffffffff, 2983 hbus->low_mmio_space, 2984 align, false); 2985 if (ret) { 2986 dev_err(&hbus->hdev->device, 2987 "Need %#llx of low MMIO space. Consider reconfiguring the VM.\n", 2988 hbus->low_mmio_space); 2989 return ret; 2990 } 2991 2992 /* Modify this resource to become a bridge window. */ 2993 hbus->low_mmio_res->flags |= IORESOURCE_WINDOW; 2994 hbus->low_mmio_res->flags &= ~IORESOURCE_BUSY; 2995 pci_add_resource(&hbus->bridge->windows, hbus->low_mmio_res); 2996 } 2997 2998 if (hbus->high_mmio_space) { 2999 align = 1ULL << (63 - __builtin_clzll(hbus->high_mmio_space)); 3000 ret = vmbus_allocate_mmio(&hbus->high_mmio_res, hbus->hdev, 3001 0x100000000, -1, 3002 hbus->high_mmio_space, align, 3003 false); 3004 if (ret) { 3005 dev_err(&hbus->hdev->device, 3006 "Need %#llx of high MMIO space. Consider reconfiguring the VM.\n", 3007 hbus->high_mmio_space); 3008 goto release_low_mmio; 3009 } 3010 3011 /* Modify this resource to become a bridge window. */ 3012 hbus->high_mmio_res->flags |= IORESOURCE_WINDOW; 3013 hbus->high_mmio_res->flags &= ~IORESOURCE_BUSY; 3014 pci_add_resource(&hbus->bridge->windows, hbus->high_mmio_res); 3015 } 3016 3017 return 0; 3018 3019 release_low_mmio: 3020 if (hbus->low_mmio_res) { 3021 vmbus_free_mmio(hbus->low_mmio_res->start, 3022 resource_size(hbus->low_mmio_res)); 3023 } 3024 3025 return ret; 3026 } 3027 3028 /** 3029 * hv_allocate_config_window() - Find MMIO space for PCI Config 3030 * @hbus: Root PCI bus, as understood by this driver 3031 * 3032 * This function claims memory-mapped I/O space for accessing 3033 * configuration space for the functions on this bus. 3034 * 3035 * Return: 0 on success, -errno on failure 3036 */ 3037 static int hv_allocate_config_window(struct hv_pcibus_device *hbus) 3038 { 3039 int ret; 3040 3041 /* 3042 * Set up a region of MMIO space to use for accessing configuration 3043 * space. 3044 */ 3045 ret = vmbus_allocate_mmio(&hbus->mem_config, hbus->hdev, 0, -1, 3046 PCI_CONFIG_MMIO_LENGTH, 0x1000, false); 3047 if (ret) 3048 return ret; 3049 3050 /* 3051 * vmbus_allocate_mmio() gets used for allocating both device endpoint 3052 * resource claims (those which cannot be overlapped) and the ranges 3053 * which are valid for the children of this bus, which are intended 3054 * to be overlapped by those children. Set the flag on this claim 3055 * meaning that this region can't be overlapped. 3056 */ 3057 3058 hbus->mem_config->flags |= IORESOURCE_BUSY; 3059 3060 return 0; 3061 } 3062 3063 static void hv_free_config_window(struct hv_pcibus_device *hbus) 3064 { 3065 vmbus_free_mmio(hbus->mem_config->start, PCI_CONFIG_MMIO_LENGTH); 3066 } 3067 3068 static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs); 3069 3070 /** 3071 * hv_pci_enter_d0() - Bring the "bus" into the D0 power state 3072 * @hdev: VMBus's tracking struct for this root PCI bus 3073 * 3074 * Return: 0 on success, -errno on failure 3075 */ 3076 static int hv_pci_enter_d0(struct hv_device *hdev) 3077 { 3078 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3079 struct pci_bus_d0_entry *d0_entry; 3080 struct hv_pci_compl comp_pkt; 3081 struct pci_packet *pkt; 3082 int ret; 3083 3084 /* 3085 * Tell the host that the bus is ready to use, and moved into the 3086 * powered-on state. This includes telling the host which region 3087 * of memory-mapped I/O space has been chosen for configuration space 3088 * access. 3089 */ 3090 pkt = kzalloc(sizeof(*pkt) + sizeof(*d0_entry), GFP_KERNEL); 3091 if (!pkt) 3092 return -ENOMEM; 3093 3094 init_completion(&comp_pkt.host_event); 3095 pkt->completion_func = hv_pci_generic_compl; 3096 pkt->compl_ctxt = &comp_pkt; 3097 d0_entry = (struct pci_bus_d0_entry *)&pkt->message; 3098 d0_entry->message_type.type = PCI_BUS_D0ENTRY; 3099 d0_entry->mmio_base = hbus->mem_config->start; 3100 3101 ret = vmbus_sendpacket(hdev->channel, d0_entry, sizeof(*d0_entry), 3102 (unsigned long)pkt, VM_PKT_DATA_INBAND, 3103 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 3104 if (!ret) 3105 ret = wait_for_response(hdev, &comp_pkt.host_event); 3106 3107 if (ret) 3108 goto exit; 3109 3110 if (comp_pkt.completion_status < 0) { 3111 dev_err(&hdev->device, 3112 "PCI Pass-through VSP failed D0 Entry with status %x\n", 3113 comp_pkt.completion_status); 3114 ret = -EPROTO; 3115 goto exit; 3116 } 3117 3118 ret = 0; 3119 3120 exit: 3121 kfree(pkt); 3122 return ret; 3123 } 3124 3125 /** 3126 * hv_pci_query_relations() - Ask host to send list of child 3127 * devices 3128 * @hdev: VMBus's tracking struct for this root PCI bus 3129 * 3130 * Return: 0 on success, -errno on failure 3131 */ 3132 static int hv_pci_query_relations(struct hv_device *hdev) 3133 { 3134 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3135 struct pci_message message; 3136 struct completion comp; 3137 int ret; 3138 3139 /* Ask the host to send along the list of child devices */ 3140 init_completion(&comp); 3141 if (cmpxchg(&hbus->survey_event, NULL, &comp)) 3142 return -ENOTEMPTY; 3143 3144 memset(&message, 0, sizeof(message)); 3145 message.type = PCI_QUERY_BUS_RELATIONS; 3146 3147 ret = vmbus_sendpacket(hdev->channel, &message, sizeof(message), 3148 0, VM_PKT_DATA_INBAND, 0); 3149 if (!ret) 3150 ret = wait_for_response(hdev, &comp); 3151 3152 return ret; 3153 } 3154 3155 /** 3156 * hv_send_resources_allocated() - Report local resource choices 3157 * @hdev: VMBus's tracking struct for this root PCI bus 3158 * 3159 * The host OS is expecting to be sent a request as a message 3160 * which contains all the resources that the device will use. 3161 * The response contains those same resources, "translated" 3162 * which is to say, the values which should be used by the 3163 * hardware, when it delivers an interrupt. (MMIO resources are 3164 * used in local terms.) This is nice for Windows, and lines up 3165 * with the FDO/PDO split, which doesn't exist in Linux. Linux 3166 * is deeply expecting to scan an emulated PCI configuration 3167 * space. So this message is sent here only to drive the state 3168 * machine on the host forward. 3169 * 3170 * Return: 0 on success, -errno on failure 3171 */ 3172 static int hv_send_resources_allocated(struct hv_device *hdev) 3173 { 3174 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3175 struct pci_resources_assigned *res_assigned; 3176 struct pci_resources_assigned2 *res_assigned2; 3177 struct hv_pci_compl comp_pkt; 3178 struct hv_pci_dev *hpdev; 3179 struct pci_packet *pkt; 3180 size_t size_res; 3181 int wslot; 3182 int ret; 3183 3184 size_res = (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2) 3185 ? sizeof(*res_assigned) : sizeof(*res_assigned2); 3186 3187 pkt = kmalloc(sizeof(*pkt) + size_res, GFP_KERNEL); 3188 if (!pkt) 3189 return -ENOMEM; 3190 3191 ret = 0; 3192 3193 for (wslot = 0; wslot < 256; wslot++) { 3194 hpdev = get_pcichild_wslot(hbus, wslot); 3195 if (!hpdev) 3196 continue; 3197 3198 memset(pkt, 0, sizeof(*pkt) + size_res); 3199 init_completion(&comp_pkt.host_event); 3200 pkt->completion_func = hv_pci_generic_compl; 3201 pkt->compl_ctxt = &comp_pkt; 3202 3203 if (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2) { 3204 res_assigned = 3205 (struct pci_resources_assigned *)&pkt->message; 3206 res_assigned->message_type.type = 3207 PCI_RESOURCES_ASSIGNED; 3208 res_assigned->wslot.slot = hpdev->desc.win_slot.slot; 3209 } else { 3210 res_assigned2 = 3211 (struct pci_resources_assigned2 *)&pkt->message; 3212 res_assigned2->message_type.type = 3213 PCI_RESOURCES_ASSIGNED2; 3214 res_assigned2->wslot.slot = hpdev->desc.win_slot.slot; 3215 } 3216 put_pcichild(hpdev); 3217 3218 ret = vmbus_sendpacket(hdev->channel, &pkt->message, 3219 size_res, (unsigned long)pkt, 3220 VM_PKT_DATA_INBAND, 3221 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 3222 if (!ret) 3223 ret = wait_for_response(hdev, &comp_pkt.host_event); 3224 if (ret) 3225 break; 3226 3227 if (comp_pkt.completion_status < 0) { 3228 ret = -EPROTO; 3229 dev_err(&hdev->device, 3230 "resource allocated returned 0x%x", 3231 comp_pkt.completion_status); 3232 break; 3233 } 3234 3235 hbus->wslot_res_allocated = wslot; 3236 } 3237 3238 kfree(pkt); 3239 return ret; 3240 } 3241 3242 /** 3243 * hv_send_resources_released() - Report local resources 3244 * released 3245 * @hdev: VMBus's tracking struct for this root PCI bus 3246 * 3247 * Return: 0 on success, -errno on failure 3248 */ 3249 static int hv_send_resources_released(struct hv_device *hdev) 3250 { 3251 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3252 struct pci_child_message pkt; 3253 struct hv_pci_dev *hpdev; 3254 int wslot; 3255 int ret; 3256 3257 for (wslot = hbus->wslot_res_allocated; wslot >= 0; wslot--) { 3258 hpdev = get_pcichild_wslot(hbus, wslot); 3259 if (!hpdev) 3260 continue; 3261 3262 memset(&pkt, 0, sizeof(pkt)); 3263 pkt.message_type.type = PCI_RESOURCES_RELEASED; 3264 pkt.wslot.slot = hpdev->desc.win_slot.slot; 3265 3266 put_pcichild(hpdev); 3267 3268 ret = vmbus_sendpacket(hdev->channel, &pkt, sizeof(pkt), 0, 3269 VM_PKT_DATA_INBAND, 0); 3270 if (ret) 3271 return ret; 3272 3273 hbus->wslot_res_allocated = wslot - 1; 3274 } 3275 3276 hbus->wslot_res_allocated = -1; 3277 3278 return 0; 3279 } 3280 3281 #define HVPCI_DOM_MAP_SIZE (64 * 1024) 3282 static DECLARE_BITMAP(hvpci_dom_map, HVPCI_DOM_MAP_SIZE); 3283 3284 /* 3285 * PCI domain number 0 is used by emulated devices on Gen1 VMs, so define 0 3286 * as invalid for passthrough PCI devices of this driver. 3287 */ 3288 #define HVPCI_DOM_INVALID 0 3289 3290 /** 3291 * hv_get_dom_num() - Get a valid PCI domain number 3292 * Check if the PCI domain number is in use, and return another number if 3293 * it is in use. 3294 * 3295 * @dom: Requested domain number 3296 * 3297 * return: domain number on success, HVPCI_DOM_INVALID on failure 3298 */ 3299 static u16 hv_get_dom_num(u16 dom) 3300 { 3301 unsigned int i; 3302 3303 if (test_and_set_bit(dom, hvpci_dom_map) == 0) 3304 return dom; 3305 3306 for_each_clear_bit(i, hvpci_dom_map, HVPCI_DOM_MAP_SIZE) { 3307 if (test_and_set_bit(i, hvpci_dom_map) == 0) 3308 return i; 3309 } 3310 3311 return HVPCI_DOM_INVALID; 3312 } 3313 3314 /** 3315 * hv_put_dom_num() - Mark the PCI domain number as free 3316 * @dom: Domain number to be freed 3317 */ 3318 static void hv_put_dom_num(u16 dom) 3319 { 3320 clear_bit(dom, hvpci_dom_map); 3321 } 3322 3323 /** 3324 * hv_pci_probe() - New VMBus channel probe, for a root PCI bus 3325 * @hdev: VMBus's tracking struct for this root PCI bus 3326 * @dev_id: Identifies the device itself 3327 * 3328 * Return: 0 on success, -errno on failure 3329 */ 3330 static int hv_pci_probe(struct hv_device *hdev, 3331 const struct hv_vmbus_device_id *dev_id) 3332 { 3333 struct pci_host_bridge *bridge; 3334 struct hv_pcibus_device *hbus; 3335 u16 dom_req, dom; 3336 char *name; 3337 bool enter_d0_retry = true; 3338 int ret; 3339 3340 /* 3341 * hv_pcibus_device contains the hypercall arguments for retargeting in 3342 * hv_irq_unmask(). Those must not cross a page boundary. 3343 */ 3344 BUILD_BUG_ON(sizeof(*hbus) > HV_HYP_PAGE_SIZE); 3345 3346 bridge = devm_pci_alloc_host_bridge(&hdev->device, 0); 3347 if (!bridge) 3348 return -ENOMEM; 3349 3350 /* 3351 * With the recent 59bb47985c1d ("mm, sl[aou]b: guarantee natural 3352 * alignment for kmalloc(power-of-two)"), kzalloc() is able to allocate 3353 * a 4KB buffer that is guaranteed to be 4KB-aligned. Here the size and 3354 * alignment of hbus is important because hbus's field 3355 * retarget_msi_interrupt_params must not cross a 4KB page boundary. 3356 * 3357 * Here we prefer kzalloc to get_zeroed_page(), because a buffer 3358 * allocated by the latter is not tracked and scanned by kmemleak, and 3359 * hence kmemleak reports the pointer contained in the hbus buffer 3360 * (i.e. the hpdev struct, which is created in new_pcichild_device() and 3361 * is tracked by hbus->children) as memory leak (false positive). 3362 * 3363 * If the kernel doesn't have 59bb47985c1d, get_zeroed_page() *must* be 3364 * used to allocate the hbus buffer and we can avoid the kmemleak false 3365 * positive by using kmemleak_alloc() and kmemleak_free() to ask 3366 * kmemleak to track and scan the hbus buffer. 3367 */ 3368 hbus = kzalloc(HV_HYP_PAGE_SIZE, GFP_KERNEL); 3369 if (!hbus) 3370 return -ENOMEM; 3371 3372 hbus->bridge = bridge; 3373 hbus->state = hv_pcibus_init; 3374 hbus->wslot_res_allocated = -1; 3375 3376 /* 3377 * The PCI bus "domain" is what is called "segment" in ACPI and other 3378 * specs. Pull it from the instance ID, to get something usually 3379 * unique. In rare cases of collision, we will find out another number 3380 * not in use. 3381 * 3382 * Note that, since this code only runs in a Hyper-V VM, Hyper-V 3383 * together with this guest driver can guarantee that (1) The only 3384 * domain used by Gen1 VMs for something that looks like a physical 3385 * PCI bus (which is actually emulated by the hypervisor) is domain 0. 3386 * (2) There will be no overlap between domains (after fixing possible 3387 * collisions) in the same VM. 3388 */ 3389 dom_req = hdev->dev_instance.b[5] << 8 | hdev->dev_instance.b[4]; 3390 dom = hv_get_dom_num(dom_req); 3391 3392 if (dom == HVPCI_DOM_INVALID) { 3393 dev_err(&hdev->device, 3394 "Unable to use dom# 0x%x or other numbers", dom_req); 3395 ret = -EINVAL; 3396 goto free_bus; 3397 } 3398 3399 if (dom != dom_req) 3400 dev_info(&hdev->device, 3401 "PCI dom# 0x%x has collision, using 0x%x", 3402 dom_req, dom); 3403 3404 hbus->bridge->domain_nr = dom; 3405 #ifdef CONFIG_X86 3406 hbus->sysdata.domain = dom; 3407 #endif 3408 3409 hbus->hdev = hdev; 3410 INIT_LIST_HEAD(&hbus->children); 3411 INIT_LIST_HEAD(&hbus->dr_list); 3412 spin_lock_init(&hbus->config_lock); 3413 spin_lock_init(&hbus->device_list_lock); 3414 spin_lock_init(&hbus->retarget_msi_interrupt_lock); 3415 hbus->wq = alloc_ordered_workqueue("hv_pci_%x", 0, 3416 hbus->bridge->domain_nr); 3417 if (!hbus->wq) { 3418 ret = -ENOMEM; 3419 goto free_dom; 3420 } 3421 3422 ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0, 3423 hv_pci_onchannelcallback, hbus); 3424 if (ret) 3425 goto destroy_wq; 3426 3427 hv_set_drvdata(hdev, hbus); 3428 3429 ret = hv_pci_protocol_negotiation(hdev, pci_protocol_versions, 3430 ARRAY_SIZE(pci_protocol_versions)); 3431 if (ret) 3432 goto close; 3433 3434 ret = hv_allocate_config_window(hbus); 3435 if (ret) 3436 goto close; 3437 3438 hbus->cfg_addr = ioremap(hbus->mem_config->start, 3439 PCI_CONFIG_MMIO_LENGTH); 3440 if (!hbus->cfg_addr) { 3441 dev_err(&hdev->device, 3442 "Unable to map a virtual address for config space\n"); 3443 ret = -ENOMEM; 3444 goto free_config; 3445 } 3446 3447 name = kasprintf(GFP_KERNEL, "%pUL", &hdev->dev_instance); 3448 if (!name) { 3449 ret = -ENOMEM; 3450 goto unmap; 3451 } 3452 3453 hbus->fwnode = irq_domain_alloc_named_fwnode(name); 3454 kfree(name); 3455 if (!hbus->fwnode) { 3456 ret = -ENOMEM; 3457 goto unmap; 3458 } 3459 3460 ret = hv_pcie_init_irq_domain(hbus); 3461 if (ret) 3462 goto free_fwnode; 3463 3464 retry: 3465 ret = hv_pci_query_relations(hdev); 3466 if (ret) 3467 goto free_irq_domain; 3468 3469 ret = hv_pci_enter_d0(hdev); 3470 /* 3471 * In certain case (Kdump) the pci device of interest was 3472 * not cleanly shut down and resource is still held on host 3473 * side, the host could return invalid device status. 3474 * We need to explicitly request host to release the resource 3475 * and try to enter D0 again. 3476 * Since the hv_pci_bus_exit() call releases structures 3477 * of all its child devices, we need to start the retry from 3478 * hv_pci_query_relations() call, requesting host to send 3479 * the synchronous child device relations message before this 3480 * information is needed in hv_send_resources_allocated() 3481 * call later. 3482 */ 3483 if (ret == -EPROTO && enter_d0_retry) { 3484 enter_d0_retry = false; 3485 3486 dev_err(&hdev->device, "Retrying D0 Entry\n"); 3487 3488 /* 3489 * Hv_pci_bus_exit() calls hv_send_resources_released() 3490 * to free up resources of its child devices. 3491 * In the kdump kernel we need to set the 3492 * wslot_res_allocated to 255 so it scans all child 3493 * devices to release resources allocated in the 3494 * normal kernel before panic happened. 3495 */ 3496 hbus->wslot_res_allocated = 255; 3497 ret = hv_pci_bus_exit(hdev, true); 3498 3499 if (ret == 0) 3500 goto retry; 3501 3502 dev_err(&hdev->device, 3503 "Retrying D0 failed with ret %d\n", ret); 3504 } 3505 if (ret) 3506 goto free_irq_domain; 3507 3508 ret = hv_pci_allocate_bridge_windows(hbus); 3509 if (ret) 3510 goto exit_d0; 3511 3512 ret = hv_send_resources_allocated(hdev); 3513 if (ret) 3514 goto free_windows; 3515 3516 prepopulate_bars(hbus); 3517 3518 hbus->state = hv_pcibus_probed; 3519 3520 ret = create_root_hv_pci_bus(hbus); 3521 if (ret) 3522 goto free_windows; 3523 3524 return 0; 3525 3526 free_windows: 3527 hv_pci_free_bridge_windows(hbus); 3528 exit_d0: 3529 (void) hv_pci_bus_exit(hdev, true); 3530 free_irq_domain: 3531 irq_domain_remove(hbus->irq_domain); 3532 free_fwnode: 3533 irq_domain_free_fwnode(hbus->fwnode); 3534 unmap: 3535 iounmap(hbus->cfg_addr); 3536 free_config: 3537 hv_free_config_window(hbus); 3538 close: 3539 vmbus_close(hdev->channel); 3540 destroy_wq: 3541 destroy_workqueue(hbus->wq); 3542 free_dom: 3543 hv_put_dom_num(hbus->bridge->domain_nr); 3544 free_bus: 3545 kfree(hbus); 3546 return ret; 3547 } 3548 3549 static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs) 3550 { 3551 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3552 struct { 3553 struct pci_packet teardown_packet; 3554 u8 buffer[sizeof(struct pci_message)]; 3555 } pkt; 3556 struct hv_pci_compl comp_pkt; 3557 struct hv_pci_dev *hpdev, *tmp; 3558 unsigned long flags; 3559 int ret; 3560 3561 /* 3562 * After the host sends the RESCIND_CHANNEL message, it doesn't 3563 * access the per-channel ringbuffer any longer. 3564 */ 3565 if (hdev->channel->rescind) 3566 return 0; 3567 3568 if (!keep_devs) { 3569 struct list_head removed; 3570 3571 /* Move all present children to the list on stack */ 3572 INIT_LIST_HEAD(&removed); 3573 spin_lock_irqsave(&hbus->device_list_lock, flags); 3574 list_for_each_entry_safe(hpdev, tmp, &hbus->children, list_entry) 3575 list_move_tail(&hpdev->list_entry, &removed); 3576 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 3577 3578 /* Remove all children in the list */ 3579 list_for_each_entry_safe(hpdev, tmp, &removed, list_entry) { 3580 list_del(&hpdev->list_entry); 3581 if (hpdev->pci_slot) 3582 pci_destroy_slot(hpdev->pci_slot); 3583 /* For the two refs got in new_pcichild_device() */ 3584 put_pcichild(hpdev); 3585 put_pcichild(hpdev); 3586 } 3587 } 3588 3589 ret = hv_send_resources_released(hdev); 3590 if (ret) { 3591 dev_err(&hdev->device, 3592 "Couldn't send resources released packet(s)\n"); 3593 return ret; 3594 } 3595 3596 memset(&pkt.teardown_packet, 0, sizeof(pkt.teardown_packet)); 3597 init_completion(&comp_pkt.host_event); 3598 pkt.teardown_packet.completion_func = hv_pci_generic_compl; 3599 pkt.teardown_packet.compl_ctxt = &comp_pkt; 3600 pkt.teardown_packet.message[0].type = PCI_BUS_D0EXIT; 3601 3602 ret = vmbus_sendpacket(hdev->channel, &pkt.teardown_packet.message, 3603 sizeof(struct pci_message), 3604 (unsigned long)&pkt.teardown_packet, 3605 VM_PKT_DATA_INBAND, 3606 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 3607 if (ret) 3608 return ret; 3609 3610 if (wait_for_completion_timeout(&comp_pkt.host_event, 10 * HZ) == 0) 3611 return -ETIMEDOUT; 3612 3613 return 0; 3614 } 3615 3616 /** 3617 * hv_pci_remove() - Remove routine for this VMBus channel 3618 * @hdev: VMBus's tracking struct for this root PCI bus 3619 * 3620 * Return: 0 on success, -errno on failure 3621 */ 3622 static int hv_pci_remove(struct hv_device *hdev) 3623 { 3624 struct hv_pcibus_device *hbus; 3625 int ret; 3626 3627 hbus = hv_get_drvdata(hdev); 3628 if (hbus->state == hv_pcibus_installed) { 3629 tasklet_disable(&hdev->channel->callback_event); 3630 hbus->state = hv_pcibus_removing; 3631 tasklet_enable(&hdev->channel->callback_event); 3632 destroy_workqueue(hbus->wq); 3633 hbus->wq = NULL; 3634 /* 3635 * At this point, no work is running or can be scheduled 3636 * on hbus-wq. We can't race with hv_pci_devices_present() 3637 * or hv_pci_eject_device(), it's safe to proceed. 3638 */ 3639 3640 /* Remove the bus from PCI's point of view. */ 3641 pci_lock_rescan_remove(); 3642 pci_stop_root_bus(hbus->bridge->bus); 3643 hv_pci_remove_slots(hbus); 3644 pci_remove_root_bus(hbus->bridge->bus); 3645 pci_unlock_rescan_remove(); 3646 } 3647 3648 ret = hv_pci_bus_exit(hdev, false); 3649 3650 vmbus_close(hdev->channel); 3651 3652 iounmap(hbus->cfg_addr); 3653 hv_free_config_window(hbus); 3654 hv_pci_free_bridge_windows(hbus); 3655 irq_domain_remove(hbus->irq_domain); 3656 irq_domain_free_fwnode(hbus->fwnode); 3657 3658 hv_put_dom_num(hbus->bridge->domain_nr); 3659 3660 kfree(hbus); 3661 return ret; 3662 } 3663 3664 static int hv_pci_suspend(struct hv_device *hdev) 3665 { 3666 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3667 enum hv_pcibus_state old_state; 3668 int ret; 3669 3670 /* 3671 * hv_pci_suspend() must make sure there are no pending work items 3672 * before calling vmbus_close(), since it runs in a process context 3673 * as a callback in dpm_suspend(). When it starts to run, the channel 3674 * callback hv_pci_onchannelcallback(), which runs in a tasklet 3675 * context, can be still running concurrently and scheduling new work 3676 * items onto hbus->wq in hv_pci_devices_present() and 3677 * hv_pci_eject_device(), and the work item handlers can access the 3678 * vmbus channel, which can be being closed by hv_pci_suspend(), e.g. 3679 * the work item handler pci_devices_present_work() -> 3680 * new_pcichild_device() writes to the vmbus channel. 3681 * 3682 * To eliminate the race, hv_pci_suspend() disables the channel 3683 * callback tasklet, sets hbus->state to hv_pcibus_removing, and 3684 * re-enables the tasklet. This way, when hv_pci_suspend() proceeds, 3685 * it knows that no new work item can be scheduled, and then it flushes 3686 * hbus->wq and safely closes the vmbus channel. 3687 */ 3688 tasklet_disable(&hdev->channel->callback_event); 3689 3690 /* Change the hbus state to prevent new work items. */ 3691 old_state = hbus->state; 3692 if (hbus->state == hv_pcibus_installed) 3693 hbus->state = hv_pcibus_removing; 3694 3695 tasklet_enable(&hdev->channel->callback_event); 3696 3697 if (old_state != hv_pcibus_installed) 3698 return -EINVAL; 3699 3700 flush_workqueue(hbus->wq); 3701 3702 ret = hv_pci_bus_exit(hdev, true); 3703 if (ret) 3704 return ret; 3705 3706 vmbus_close(hdev->channel); 3707 3708 return 0; 3709 } 3710 3711 static int hv_pci_restore_msi_msg(struct pci_dev *pdev, void *arg) 3712 { 3713 struct irq_data *irq_data; 3714 struct msi_desc *entry; 3715 int ret = 0; 3716 3717 msi_lock_descs(&pdev->dev); 3718 msi_for_each_desc(entry, &pdev->dev, MSI_DESC_ASSOCIATED) { 3719 irq_data = irq_get_irq_data(entry->irq); 3720 if (WARN_ON_ONCE(!irq_data)) { 3721 ret = -EINVAL; 3722 break; 3723 } 3724 3725 hv_compose_msi_msg(irq_data, &entry->msg); 3726 } 3727 msi_unlock_descs(&pdev->dev); 3728 3729 return ret; 3730 } 3731 3732 /* 3733 * Upon resume, pci_restore_msi_state() -> ... -> __pci_write_msi_msg() 3734 * directly writes the MSI/MSI-X registers via MMIO, but since Hyper-V 3735 * doesn't trap and emulate the MMIO accesses, here hv_compose_msi_msg() 3736 * must be used to ask Hyper-V to re-create the IOMMU Interrupt Remapping 3737 * Table entries. 3738 */ 3739 static void hv_pci_restore_msi_state(struct hv_pcibus_device *hbus) 3740 { 3741 pci_walk_bus(hbus->bridge->bus, hv_pci_restore_msi_msg, NULL); 3742 } 3743 3744 static int hv_pci_resume(struct hv_device *hdev) 3745 { 3746 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3747 enum pci_protocol_version_t version[1]; 3748 int ret; 3749 3750 hbus->state = hv_pcibus_init; 3751 3752 ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0, 3753 hv_pci_onchannelcallback, hbus); 3754 if (ret) 3755 return ret; 3756 3757 /* Only use the version that was in use before hibernation. */ 3758 version[0] = hbus->protocol_version; 3759 ret = hv_pci_protocol_negotiation(hdev, version, 1); 3760 if (ret) 3761 goto out; 3762 3763 ret = hv_pci_query_relations(hdev); 3764 if (ret) 3765 goto out; 3766 3767 ret = hv_pci_enter_d0(hdev); 3768 if (ret) 3769 goto out; 3770 3771 ret = hv_send_resources_allocated(hdev); 3772 if (ret) 3773 goto out; 3774 3775 prepopulate_bars(hbus); 3776 3777 hv_pci_restore_msi_state(hbus); 3778 3779 hbus->state = hv_pcibus_installed; 3780 return 0; 3781 out: 3782 vmbus_close(hdev->channel); 3783 return ret; 3784 } 3785 3786 static const struct hv_vmbus_device_id hv_pci_id_table[] = { 3787 /* PCI Pass-through Class ID */ 3788 /* 44C4F61D-4444-4400-9D52-802E27EDE19F */ 3789 { HV_PCIE_GUID, }, 3790 { }, 3791 }; 3792 3793 MODULE_DEVICE_TABLE(vmbus, hv_pci_id_table); 3794 3795 static struct hv_driver hv_pci_drv = { 3796 .name = "hv_pci", 3797 .id_table = hv_pci_id_table, 3798 .probe = hv_pci_probe, 3799 .remove = hv_pci_remove, 3800 .suspend = hv_pci_suspend, 3801 .resume = hv_pci_resume, 3802 }; 3803 3804 static void __exit exit_hv_pci_drv(void) 3805 { 3806 vmbus_driver_unregister(&hv_pci_drv); 3807 3808 hvpci_block_ops.read_block = NULL; 3809 hvpci_block_ops.write_block = NULL; 3810 hvpci_block_ops.reg_blk_invalidate = NULL; 3811 } 3812 3813 static int __init init_hv_pci_drv(void) 3814 { 3815 int ret; 3816 3817 if (!hv_is_hyperv_initialized()) 3818 return -ENODEV; 3819 3820 ret = hv_pci_irqchip_init(); 3821 if (ret) 3822 return ret; 3823 3824 /* Set the invalid domain number's bit, so it will not be used */ 3825 set_bit(HVPCI_DOM_INVALID, hvpci_dom_map); 3826 3827 /* Initialize PCI block r/w interface */ 3828 hvpci_block_ops.read_block = hv_read_config_block; 3829 hvpci_block_ops.write_block = hv_write_config_block; 3830 hvpci_block_ops.reg_blk_invalidate = hv_register_block_invalidate; 3831 3832 return vmbus_driver_register(&hv_pci_drv); 3833 } 3834 3835 module_init(init_hv_pci_drv); 3836 module_exit(exit_hv_pci_drv); 3837 3838 MODULE_DESCRIPTION("Hyper-V PCI"); 3839 MODULE_LICENSE("GPL v2"); 3840