1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) Microsoft Corporation. 4 * 5 * Author: 6 * Jake Oshins <jakeo@microsoft.com> 7 * 8 * This driver acts as a paravirtual front-end for PCI Express root buses. 9 * When a PCI Express function (either an entire device or an SR-IOV 10 * Virtual Function) is being passed through to the VM, this driver exposes 11 * a new bus to the guest VM. This is modeled as a root PCI bus because 12 * no bridges are being exposed to the VM. In fact, with a "Generation 2" 13 * VM within Hyper-V, there may seem to be no PCI bus at all in the VM 14 * until a device as been exposed using this driver. 15 * 16 * Each root PCI bus has its own PCI domain, which is called "Segment" in 17 * the PCI Firmware Specifications. Thus while each device passed through 18 * to the VM using this front-end will appear at "device 0", the domain will 19 * be unique. Typically, each bus will have one PCI function on it, though 20 * this driver does support more than one. 21 * 22 * In order to map the interrupts from the device through to the guest VM, 23 * this driver also implements an IRQ Domain, which handles interrupts (either 24 * MSI or MSI-X) associated with the functions on the bus. As interrupts are 25 * set up, torn down, or reaffined, this driver communicates with the 26 * underlying hypervisor to adjust the mappings in the I/O MMU so that each 27 * interrupt will be delivered to the correct virtual processor at the right 28 * vector. This driver does not support level-triggered (line-based) 29 * interrupts, and will report that the Interrupt Line register in the 30 * function's configuration space is zero. 31 * 32 * The rest of this driver mostly maps PCI concepts onto underlying Hyper-V 33 * facilities. For instance, the configuration space of a function exposed 34 * by Hyper-V is mapped into a single page of memory space, and the 35 * read and write handlers for config space must be aware of this mechanism. 36 * Similarly, device setup and teardown involves messages sent to and from 37 * the PCI back-end driver in Hyper-V. 38 */ 39 40 #include <linux/kernel.h> 41 #include <linux/module.h> 42 #include <linux/pci.h> 43 #include <linux/delay.h> 44 #include <linux/semaphore.h> 45 #include <linux/irqdomain.h> 46 #include <asm/irqdomain.h> 47 #include <asm/apic.h> 48 #include <linux/irq.h> 49 #include <linux/msi.h> 50 #include <linux/hyperv.h> 51 #include <linux/refcount.h> 52 #include <asm/mshyperv.h> 53 54 /* 55 * Protocol versions. The low word is the minor version, the high word the 56 * major version. 57 */ 58 59 #define PCI_MAKE_VERSION(major, minor) ((u32)(((major) << 16) | (minor))) 60 #define PCI_MAJOR_VERSION(version) ((u32)(version) >> 16) 61 #define PCI_MINOR_VERSION(version) ((u32)(version) & 0xff) 62 63 enum pci_protocol_version_t { 64 PCI_PROTOCOL_VERSION_1_1 = PCI_MAKE_VERSION(1, 1), /* Win10 */ 65 PCI_PROTOCOL_VERSION_1_2 = PCI_MAKE_VERSION(1, 2), /* RS1 */ 66 }; 67 68 #define CPU_AFFINITY_ALL -1ULL 69 70 /* 71 * Supported protocol versions in the order of probing - highest go 72 * first. 73 */ 74 static enum pci_protocol_version_t pci_protocol_versions[] = { 75 PCI_PROTOCOL_VERSION_1_2, 76 PCI_PROTOCOL_VERSION_1_1, 77 }; 78 79 /* 80 * Protocol version negotiated by hv_pci_protocol_negotiation(). 81 */ 82 static enum pci_protocol_version_t pci_protocol_version; 83 84 #define PCI_CONFIG_MMIO_LENGTH 0x2000 85 #define CFG_PAGE_OFFSET 0x1000 86 #define CFG_PAGE_SIZE (PCI_CONFIG_MMIO_LENGTH - CFG_PAGE_OFFSET) 87 88 #define MAX_SUPPORTED_MSI_MESSAGES 0x400 89 90 #define STATUS_REVISION_MISMATCH 0xC0000059 91 92 /* 93 * Message Types 94 */ 95 96 enum pci_message_type { 97 /* 98 * Version 1.1 99 */ 100 PCI_MESSAGE_BASE = 0x42490000, 101 PCI_BUS_RELATIONS = PCI_MESSAGE_BASE + 0, 102 PCI_QUERY_BUS_RELATIONS = PCI_MESSAGE_BASE + 1, 103 PCI_POWER_STATE_CHANGE = PCI_MESSAGE_BASE + 4, 104 PCI_QUERY_RESOURCE_REQUIREMENTS = PCI_MESSAGE_BASE + 5, 105 PCI_QUERY_RESOURCE_RESOURCES = PCI_MESSAGE_BASE + 6, 106 PCI_BUS_D0ENTRY = PCI_MESSAGE_BASE + 7, 107 PCI_BUS_D0EXIT = PCI_MESSAGE_BASE + 8, 108 PCI_READ_BLOCK = PCI_MESSAGE_BASE + 9, 109 PCI_WRITE_BLOCK = PCI_MESSAGE_BASE + 0xA, 110 PCI_EJECT = PCI_MESSAGE_BASE + 0xB, 111 PCI_QUERY_STOP = PCI_MESSAGE_BASE + 0xC, 112 PCI_REENABLE = PCI_MESSAGE_BASE + 0xD, 113 PCI_QUERY_STOP_FAILED = PCI_MESSAGE_BASE + 0xE, 114 PCI_EJECTION_COMPLETE = PCI_MESSAGE_BASE + 0xF, 115 PCI_RESOURCES_ASSIGNED = PCI_MESSAGE_BASE + 0x10, 116 PCI_RESOURCES_RELEASED = PCI_MESSAGE_BASE + 0x11, 117 PCI_INVALIDATE_BLOCK = PCI_MESSAGE_BASE + 0x12, 118 PCI_QUERY_PROTOCOL_VERSION = PCI_MESSAGE_BASE + 0x13, 119 PCI_CREATE_INTERRUPT_MESSAGE = PCI_MESSAGE_BASE + 0x14, 120 PCI_DELETE_INTERRUPT_MESSAGE = PCI_MESSAGE_BASE + 0x15, 121 PCI_RESOURCES_ASSIGNED2 = PCI_MESSAGE_BASE + 0x16, 122 PCI_CREATE_INTERRUPT_MESSAGE2 = PCI_MESSAGE_BASE + 0x17, 123 PCI_DELETE_INTERRUPT_MESSAGE2 = PCI_MESSAGE_BASE + 0x18, /* unused */ 124 PCI_MESSAGE_MAXIMUM 125 }; 126 127 /* 128 * Structures defining the virtual PCI Express protocol. 129 */ 130 131 union pci_version { 132 struct { 133 u16 minor_version; 134 u16 major_version; 135 } parts; 136 u32 version; 137 } __packed; 138 139 /* 140 * Function numbers are 8-bits wide on Express, as interpreted through ARI, 141 * which is all this driver does. This representation is the one used in 142 * Windows, which is what is expected when sending this back and forth with 143 * the Hyper-V parent partition. 144 */ 145 union win_slot_encoding { 146 struct { 147 u32 dev:5; 148 u32 func:3; 149 u32 reserved:24; 150 } bits; 151 u32 slot; 152 } __packed; 153 154 /* 155 * Pretty much as defined in the PCI Specifications. 156 */ 157 struct pci_function_description { 158 u16 v_id; /* vendor ID */ 159 u16 d_id; /* device ID */ 160 u8 rev; 161 u8 prog_intf; 162 u8 subclass; 163 u8 base_class; 164 u32 subsystem_id; 165 union win_slot_encoding win_slot; 166 u32 ser; /* serial number */ 167 } __packed; 168 169 /** 170 * struct hv_msi_desc 171 * @vector: IDT entry 172 * @delivery_mode: As defined in Intel's Programmer's 173 * Reference Manual, Volume 3, Chapter 8. 174 * @vector_count: Number of contiguous entries in the 175 * Interrupt Descriptor Table that are 176 * occupied by this Message-Signaled 177 * Interrupt. For "MSI", as first defined 178 * in PCI 2.2, this can be between 1 and 179 * 32. For "MSI-X," as first defined in PCI 180 * 3.0, this must be 1, as each MSI-X table 181 * entry would have its own descriptor. 182 * @reserved: Empty space 183 * @cpu_mask: All the target virtual processors. 184 */ 185 struct hv_msi_desc { 186 u8 vector; 187 u8 delivery_mode; 188 u16 vector_count; 189 u32 reserved; 190 u64 cpu_mask; 191 } __packed; 192 193 /** 194 * struct hv_msi_desc2 - 1.2 version of hv_msi_desc 195 * @vector: IDT entry 196 * @delivery_mode: As defined in Intel's Programmer's 197 * Reference Manual, Volume 3, Chapter 8. 198 * @vector_count: Number of contiguous entries in the 199 * Interrupt Descriptor Table that are 200 * occupied by this Message-Signaled 201 * Interrupt. For "MSI", as first defined 202 * in PCI 2.2, this can be between 1 and 203 * 32. For "MSI-X," as first defined in PCI 204 * 3.0, this must be 1, as each MSI-X table 205 * entry would have its own descriptor. 206 * @processor_count: number of bits enabled in array. 207 * @processor_array: All the target virtual processors. 208 */ 209 struct hv_msi_desc2 { 210 u8 vector; 211 u8 delivery_mode; 212 u16 vector_count; 213 u16 processor_count; 214 u16 processor_array[32]; 215 } __packed; 216 217 /** 218 * struct tran_int_desc 219 * @reserved: unused, padding 220 * @vector_count: same as in hv_msi_desc 221 * @data: This is the "data payload" value that is 222 * written by the device when it generates 223 * a message-signaled interrupt, either MSI 224 * or MSI-X. 225 * @address: This is the address to which the data 226 * payload is written on interrupt 227 * generation. 228 */ 229 struct tran_int_desc { 230 u16 reserved; 231 u16 vector_count; 232 u32 data; 233 u64 address; 234 } __packed; 235 236 /* 237 * A generic message format for virtual PCI. 238 * Specific message formats are defined later in the file. 239 */ 240 241 struct pci_message { 242 u32 type; 243 } __packed; 244 245 struct pci_child_message { 246 struct pci_message message_type; 247 union win_slot_encoding wslot; 248 } __packed; 249 250 struct pci_incoming_message { 251 struct vmpacket_descriptor hdr; 252 struct pci_message message_type; 253 } __packed; 254 255 struct pci_response { 256 struct vmpacket_descriptor hdr; 257 s32 status; /* negative values are failures */ 258 } __packed; 259 260 struct pci_packet { 261 void (*completion_func)(void *context, struct pci_response *resp, 262 int resp_packet_size); 263 void *compl_ctxt; 264 265 struct pci_message message[0]; 266 }; 267 268 /* 269 * Specific message types supporting the PCI protocol. 270 */ 271 272 /* 273 * Version negotiation message. Sent from the guest to the host. 274 * The guest is free to try different versions until the host 275 * accepts the version. 276 * 277 * pci_version: The protocol version requested. 278 * is_last_attempt: If TRUE, this is the last version guest will request. 279 * reservedz: Reserved field, set to zero. 280 */ 281 282 struct pci_version_request { 283 struct pci_message message_type; 284 u32 protocol_version; 285 } __packed; 286 287 /* 288 * Bus D0 Entry. This is sent from the guest to the host when the virtual 289 * bus (PCI Express port) is ready for action. 290 */ 291 292 struct pci_bus_d0_entry { 293 struct pci_message message_type; 294 u32 reserved; 295 u64 mmio_base; 296 } __packed; 297 298 struct pci_bus_relations { 299 struct pci_incoming_message incoming; 300 u32 device_count; 301 struct pci_function_description func[0]; 302 } __packed; 303 304 struct pci_q_res_req_response { 305 struct vmpacket_descriptor hdr; 306 s32 status; /* negative values are failures */ 307 u32 probed_bar[6]; 308 } __packed; 309 310 struct pci_set_power { 311 struct pci_message message_type; 312 union win_slot_encoding wslot; 313 u32 power_state; /* In Windows terms */ 314 u32 reserved; 315 } __packed; 316 317 struct pci_set_power_response { 318 struct vmpacket_descriptor hdr; 319 s32 status; /* negative values are failures */ 320 union win_slot_encoding wslot; 321 u32 resultant_state; /* In Windows terms */ 322 u32 reserved; 323 } __packed; 324 325 struct pci_resources_assigned { 326 struct pci_message message_type; 327 union win_slot_encoding wslot; 328 u8 memory_range[0x14][6]; /* not used here */ 329 u32 msi_descriptors; 330 u32 reserved[4]; 331 } __packed; 332 333 struct pci_resources_assigned2 { 334 struct pci_message message_type; 335 union win_slot_encoding wslot; 336 u8 memory_range[0x14][6]; /* not used here */ 337 u32 msi_descriptor_count; 338 u8 reserved[70]; 339 } __packed; 340 341 struct pci_create_interrupt { 342 struct pci_message message_type; 343 union win_slot_encoding wslot; 344 struct hv_msi_desc int_desc; 345 } __packed; 346 347 struct pci_create_int_response { 348 struct pci_response response; 349 u32 reserved; 350 struct tran_int_desc int_desc; 351 } __packed; 352 353 struct pci_create_interrupt2 { 354 struct pci_message message_type; 355 union win_slot_encoding wslot; 356 struct hv_msi_desc2 int_desc; 357 } __packed; 358 359 struct pci_delete_interrupt { 360 struct pci_message message_type; 361 union win_slot_encoding wslot; 362 struct tran_int_desc int_desc; 363 } __packed; 364 365 struct pci_dev_incoming { 366 struct pci_incoming_message incoming; 367 union win_slot_encoding wslot; 368 } __packed; 369 370 struct pci_eject_response { 371 struct pci_message message_type; 372 union win_slot_encoding wslot; 373 u32 status; 374 } __packed; 375 376 static int pci_ring_size = (4 * PAGE_SIZE); 377 378 /* 379 * Definitions or interrupt steering hypercall. 380 */ 381 #define HV_PARTITION_ID_SELF ((u64)-1) 382 #define HVCALL_RETARGET_INTERRUPT 0x7e 383 384 struct hv_interrupt_entry { 385 u32 source; /* 1 for MSI(-X) */ 386 u32 reserved1; 387 u32 address; 388 u32 data; 389 }; 390 391 #define HV_VP_SET_BANK_COUNT_MAX 5 /* current implementation limit */ 392 393 struct hv_vp_set { 394 u64 format; /* 0 (HvGenericSetSparse4k) */ 395 u64 valid_banks; 396 u64 masks[HV_VP_SET_BANK_COUNT_MAX]; 397 }; 398 399 /* 400 * flags for hv_device_interrupt_target.flags 401 */ 402 #define HV_DEVICE_INTERRUPT_TARGET_MULTICAST 1 403 #define HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET 2 404 405 struct hv_device_interrupt_target { 406 u32 vector; 407 u32 flags; 408 union { 409 u64 vp_mask; 410 struct hv_vp_set vp_set; 411 }; 412 }; 413 414 struct retarget_msi_interrupt { 415 u64 partition_id; /* use "self" */ 416 u64 device_id; 417 struct hv_interrupt_entry int_entry; 418 u64 reserved2; 419 struct hv_device_interrupt_target int_target; 420 } __packed; 421 422 /* 423 * Driver specific state. 424 */ 425 426 enum hv_pcibus_state { 427 hv_pcibus_init = 0, 428 hv_pcibus_probed, 429 hv_pcibus_installed, 430 hv_pcibus_removed, 431 hv_pcibus_maximum 432 }; 433 434 struct hv_pcibus_device { 435 struct pci_sysdata sysdata; 436 enum hv_pcibus_state state; 437 refcount_t remove_lock; 438 struct hv_device *hdev; 439 resource_size_t low_mmio_space; 440 resource_size_t high_mmio_space; 441 struct resource *mem_config; 442 struct resource *low_mmio_res; 443 struct resource *high_mmio_res; 444 struct completion *survey_event; 445 struct completion remove_event; 446 struct pci_bus *pci_bus; 447 spinlock_t config_lock; /* Avoid two threads writing index page */ 448 spinlock_t device_list_lock; /* Protect lists below */ 449 void __iomem *cfg_addr; 450 451 struct list_head resources_for_children; 452 453 struct list_head children; 454 struct list_head dr_list; 455 456 struct msi_domain_info msi_info; 457 struct msi_controller msi_chip; 458 struct irq_domain *irq_domain; 459 460 /* hypercall arg, must not cross page boundary */ 461 struct retarget_msi_interrupt retarget_msi_interrupt_params; 462 463 spinlock_t retarget_msi_interrupt_lock; 464 465 struct workqueue_struct *wq; 466 }; 467 468 /* 469 * Tracks "Device Relations" messages from the host, which must be both 470 * processed in order and deferred so that they don't run in the context 471 * of the incoming packet callback. 472 */ 473 struct hv_dr_work { 474 struct work_struct wrk; 475 struct hv_pcibus_device *bus; 476 }; 477 478 struct hv_dr_state { 479 struct list_head list_entry; 480 u32 device_count; 481 struct pci_function_description func[0]; 482 }; 483 484 enum hv_pcichild_state { 485 hv_pcichild_init = 0, 486 hv_pcichild_requirements, 487 hv_pcichild_resourced, 488 hv_pcichild_ejecting, 489 hv_pcichild_maximum 490 }; 491 492 struct hv_pci_dev { 493 /* List protected by pci_rescan_remove_lock */ 494 struct list_head list_entry; 495 refcount_t refs; 496 enum hv_pcichild_state state; 497 struct pci_function_description desc; 498 bool reported_missing; 499 struct hv_pcibus_device *hbus; 500 struct work_struct wrk; 501 502 /* 503 * What would be observed if one wrote 0xFFFFFFFF to a BAR and then 504 * read it back, for each of the BAR offsets within config space. 505 */ 506 u32 probed_bar[6]; 507 }; 508 509 struct hv_pci_compl { 510 struct completion host_event; 511 s32 completion_status; 512 }; 513 514 static void hv_pci_onchannelcallback(void *context); 515 516 /** 517 * hv_pci_generic_compl() - Invoked for a completion packet 518 * @context: Set up by the sender of the packet. 519 * @resp: The response packet 520 * @resp_packet_size: Size in bytes of the packet 521 * 522 * This function is used to trigger an event and report status 523 * for any message for which the completion packet contains a 524 * status and nothing else. 525 */ 526 static void hv_pci_generic_compl(void *context, struct pci_response *resp, 527 int resp_packet_size) 528 { 529 struct hv_pci_compl *comp_pkt = context; 530 531 if (resp_packet_size >= offsetofend(struct pci_response, status)) 532 comp_pkt->completion_status = resp->status; 533 else 534 comp_pkt->completion_status = -1; 535 536 complete(&comp_pkt->host_event); 537 } 538 539 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus, 540 u32 wslot); 541 542 static void get_pcichild(struct hv_pci_dev *hpdev) 543 { 544 refcount_inc(&hpdev->refs); 545 } 546 547 static void put_pcichild(struct hv_pci_dev *hpdev) 548 { 549 if (refcount_dec_and_test(&hpdev->refs)) 550 kfree(hpdev); 551 } 552 553 static void get_hvpcibus(struct hv_pcibus_device *hv_pcibus); 554 static void put_hvpcibus(struct hv_pcibus_device *hv_pcibus); 555 556 /* 557 * There is no good way to get notified from vmbus_onoffer_rescind(), 558 * so let's use polling here, since this is not a hot path. 559 */ 560 static int wait_for_response(struct hv_device *hdev, 561 struct completion *comp) 562 { 563 while (true) { 564 if (hdev->channel->rescind) { 565 dev_warn_once(&hdev->device, "The device is gone.\n"); 566 return -ENODEV; 567 } 568 569 if (wait_for_completion_timeout(comp, HZ / 10)) 570 break; 571 } 572 573 return 0; 574 } 575 576 /** 577 * devfn_to_wslot() - Convert from Linux PCI slot to Windows 578 * @devfn: The Linux representation of PCI slot 579 * 580 * Windows uses a slightly different representation of PCI slot. 581 * 582 * Return: The Windows representation 583 */ 584 static u32 devfn_to_wslot(int devfn) 585 { 586 union win_slot_encoding wslot; 587 588 wslot.slot = 0; 589 wslot.bits.dev = PCI_SLOT(devfn); 590 wslot.bits.func = PCI_FUNC(devfn); 591 592 return wslot.slot; 593 } 594 595 /** 596 * wslot_to_devfn() - Convert from Windows PCI slot to Linux 597 * @wslot: The Windows representation of PCI slot 598 * 599 * Windows uses a slightly different representation of PCI slot. 600 * 601 * Return: The Linux representation 602 */ 603 static int wslot_to_devfn(u32 wslot) 604 { 605 union win_slot_encoding slot_no; 606 607 slot_no.slot = wslot; 608 return PCI_DEVFN(slot_no.bits.dev, slot_no.bits.func); 609 } 610 611 /* 612 * PCI Configuration Space for these root PCI buses is implemented as a pair 613 * of pages in memory-mapped I/O space. Writing to the first page chooses 614 * the PCI function being written or read. Once the first page has been 615 * written to, the following page maps in the entire configuration space of 616 * the function. 617 */ 618 619 /** 620 * _hv_pcifront_read_config() - Internal PCI config read 621 * @hpdev: The PCI driver's representation of the device 622 * @where: Offset within config space 623 * @size: Size of the transfer 624 * @val: Pointer to the buffer receiving the data 625 */ 626 static void _hv_pcifront_read_config(struct hv_pci_dev *hpdev, int where, 627 int size, u32 *val) 628 { 629 unsigned long flags; 630 void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where; 631 632 /* 633 * If the attempt is to read the IDs or the ROM BAR, simulate that. 634 */ 635 if (where + size <= PCI_COMMAND) { 636 memcpy(val, ((u8 *)&hpdev->desc.v_id) + where, size); 637 } else if (where >= PCI_CLASS_REVISION && where + size <= 638 PCI_CACHE_LINE_SIZE) { 639 memcpy(val, ((u8 *)&hpdev->desc.rev) + where - 640 PCI_CLASS_REVISION, size); 641 } else if (where >= PCI_SUBSYSTEM_VENDOR_ID && where + size <= 642 PCI_ROM_ADDRESS) { 643 memcpy(val, (u8 *)&hpdev->desc.subsystem_id + where - 644 PCI_SUBSYSTEM_VENDOR_ID, size); 645 } else if (where >= PCI_ROM_ADDRESS && where + size <= 646 PCI_CAPABILITY_LIST) { 647 /* ROM BARs are unimplemented */ 648 *val = 0; 649 } else if (where >= PCI_INTERRUPT_LINE && where + size <= 650 PCI_INTERRUPT_PIN) { 651 /* 652 * Interrupt Line and Interrupt PIN are hard-wired to zero 653 * because this front-end only supports message-signaled 654 * interrupts. 655 */ 656 *val = 0; 657 } else if (where + size <= CFG_PAGE_SIZE) { 658 spin_lock_irqsave(&hpdev->hbus->config_lock, flags); 659 /* Choose the function to be read. (See comment above) */ 660 writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr); 661 /* Make sure the function was chosen before we start reading. */ 662 mb(); 663 /* Read from that function's config space. */ 664 switch (size) { 665 case 1: 666 *val = readb(addr); 667 break; 668 case 2: 669 *val = readw(addr); 670 break; 671 default: 672 *val = readl(addr); 673 break; 674 } 675 /* 676 * Make sure the read was done before we release the spinlock 677 * allowing consecutive reads/writes. 678 */ 679 mb(); 680 spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags); 681 } else { 682 dev_err(&hpdev->hbus->hdev->device, 683 "Attempt to read beyond a function's config space.\n"); 684 } 685 } 686 687 static u16 hv_pcifront_get_vendor_id(struct hv_pci_dev *hpdev) 688 { 689 u16 ret; 690 unsigned long flags; 691 void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + 692 PCI_VENDOR_ID; 693 694 spin_lock_irqsave(&hpdev->hbus->config_lock, flags); 695 696 /* Choose the function to be read. (See comment above) */ 697 writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr); 698 /* Make sure the function was chosen before we start reading. */ 699 mb(); 700 /* Read from that function's config space. */ 701 ret = readw(addr); 702 /* 703 * mb() is not required here, because the spin_unlock_irqrestore() 704 * is a barrier. 705 */ 706 707 spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags); 708 709 return ret; 710 } 711 712 /** 713 * _hv_pcifront_write_config() - Internal PCI config write 714 * @hpdev: The PCI driver's representation of the device 715 * @where: Offset within config space 716 * @size: Size of the transfer 717 * @val: The data being transferred 718 */ 719 static void _hv_pcifront_write_config(struct hv_pci_dev *hpdev, int where, 720 int size, u32 val) 721 { 722 unsigned long flags; 723 void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where; 724 725 if (where >= PCI_SUBSYSTEM_VENDOR_ID && 726 where + size <= PCI_CAPABILITY_LIST) { 727 /* SSIDs and ROM BARs are read-only */ 728 } else if (where >= PCI_COMMAND && where + size <= CFG_PAGE_SIZE) { 729 spin_lock_irqsave(&hpdev->hbus->config_lock, flags); 730 /* Choose the function to be written. (See comment above) */ 731 writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr); 732 /* Make sure the function was chosen before we start writing. */ 733 wmb(); 734 /* Write to that function's config space. */ 735 switch (size) { 736 case 1: 737 writeb(val, addr); 738 break; 739 case 2: 740 writew(val, addr); 741 break; 742 default: 743 writel(val, addr); 744 break; 745 } 746 /* 747 * Make sure the write was done before we release the spinlock 748 * allowing consecutive reads/writes. 749 */ 750 mb(); 751 spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags); 752 } else { 753 dev_err(&hpdev->hbus->hdev->device, 754 "Attempt to write beyond a function's config space.\n"); 755 } 756 } 757 758 /** 759 * hv_pcifront_read_config() - Read configuration space 760 * @bus: PCI Bus structure 761 * @devfn: Device/function 762 * @where: Offset from base 763 * @size: Byte/word/dword 764 * @val: Value to be read 765 * 766 * Return: PCIBIOS_SUCCESSFUL on success 767 * PCIBIOS_DEVICE_NOT_FOUND on failure 768 */ 769 static int hv_pcifront_read_config(struct pci_bus *bus, unsigned int devfn, 770 int where, int size, u32 *val) 771 { 772 struct hv_pcibus_device *hbus = 773 container_of(bus->sysdata, struct hv_pcibus_device, sysdata); 774 struct hv_pci_dev *hpdev; 775 776 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn)); 777 if (!hpdev) 778 return PCIBIOS_DEVICE_NOT_FOUND; 779 780 _hv_pcifront_read_config(hpdev, where, size, val); 781 782 put_pcichild(hpdev); 783 return PCIBIOS_SUCCESSFUL; 784 } 785 786 /** 787 * hv_pcifront_write_config() - Write configuration space 788 * @bus: PCI Bus structure 789 * @devfn: Device/function 790 * @where: Offset from base 791 * @size: Byte/word/dword 792 * @val: Value to be written to device 793 * 794 * Return: PCIBIOS_SUCCESSFUL on success 795 * PCIBIOS_DEVICE_NOT_FOUND on failure 796 */ 797 static int hv_pcifront_write_config(struct pci_bus *bus, unsigned int devfn, 798 int where, int size, u32 val) 799 { 800 struct hv_pcibus_device *hbus = 801 container_of(bus->sysdata, struct hv_pcibus_device, sysdata); 802 struct hv_pci_dev *hpdev; 803 804 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn)); 805 if (!hpdev) 806 return PCIBIOS_DEVICE_NOT_FOUND; 807 808 _hv_pcifront_write_config(hpdev, where, size, val); 809 810 put_pcichild(hpdev); 811 return PCIBIOS_SUCCESSFUL; 812 } 813 814 /* PCIe operations */ 815 static struct pci_ops hv_pcifront_ops = { 816 .read = hv_pcifront_read_config, 817 .write = hv_pcifront_write_config, 818 }; 819 820 /* Interrupt management hooks */ 821 static void hv_int_desc_free(struct hv_pci_dev *hpdev, 822 struct tran_int_desc *int_desc) 823 { 824 struct pci_delete_interrupt *int_pkt; 825 struct { 826 struct pci_packet pkt; 827 u8 buffer[sizeof(struct pci_delete_interrupt)]; 828 } ctxt; 829 830 memset(&ctxt, 0, sizeof(ctxt)); 831 int_pkt = (struct pci_delete_interrupt *)&ctxt.pkt.message; 832 int_pkt->message_type.type = 833 PCI_DELETE_INTERRUPT_MESSAGE; 834 int_pkt->wslot.slot = hpdev->desc.win_slot.slot; 835 int_pkt->int_desc = *int_desc; 836 vmbus_sendpacket(hpdev->hbus->hdev->channel, int_pkt, sizeof(*int_pkt), 837 (unsigned long)&ctxt.pkt, VM_PKT_DATA_INBAND, 0); 838 kfree(int_desc); 839 } 840 841 /** 842 * hv_msi_free() - Free the MSI. 843 * @domain: The interrupt domain pointer 844 * @info: Extra MSI-related context 845 * @irq: Identifies the IRQ. 846 * 847 * The Hyper-V parent partition and hypervisor are tracking the 848 * messages that are in use, keeping the interrupt redirection 849 * table up to date. This callback sends a message that frees 850 * the IRT entry and related tracking nonsense. 851 */ 852 static void hv_msi_free(struct irq_domain *domain, struct msi_domain_info *info, 853 unsigned int irq) 854 { 855 struct hv_pcibus_device *hbus; 856 struct hv_pci_dev *hpdev; 857 struct pci_dev *pdev; 858 struct tran_int_desc *int_desc; 859 struct irq_data *irq_data = irq_domain_get_irq_data(domain, irq); 860 struct msi_desc *msi = irq_data_get_msi_desc(irq_data); 861 862 pdev = msi_desc_to_pci_dev(msi); 863 hbus = info->data; 864 int_desc = irq_data_get_irq_chip_data(irq_data); 865 if (!int_desc) 866 return; 867 868 irq_data->chip_data = NULL; 869 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn)); 870 if (!hpdev) { 871 kfree(int_desc); 872 return; 873 } 874 875 hv_int_desc_free(hpdev, int_desc); 876 put_pcichild(hpdev); 877 } 878 879 static int hv_set_affinity(struct irq_data *data, const struct cpumask *dest, 880 bool force) 881 { 882 struct irq_data *parent = data->parent_data; 883 884 return parent->chip->irq_set_affinity(parent, dest, force); 885 } 886 887 static void hv_irq_mask(struct irq_data *data) 888 { 889 pci_msi_mask_irq(data); 890 } 891 892 /** 893 * hv_irq_unmask() - "Unmask" the IRQ by setting its current 894 * affinity. 895 * @data: Describes the IRQ 896 * 897 * Build new a destination for the MSI and make a hypercall to 898 * update the Interrupt Redirection Table. "Device Logical ID" 899 * is built out of this PCI bus's instance GUID and the function 900 * number of the device. 901 */ 902 static void hv_irq_unmask(struct irq_data *data) 903 { 904 struct msi_desc *msi_desc = irq_data_get_msi_desc(data); 905 struct irq_cfg *cfg = irqd_cfg(data); 906 struct retarget_msi_interrupt *params; 907 struct hv_pcibus_device *hbus; 908 struct cpumask *dest; 909 struct pci_bus *pbus; 910 struct pci_dev *pdev; 911 unsigned long flags; 912 u32 var_size = 0; 913 int cpu_vmbus; 914 int cpu; 915 u64 res; 916 917 dest = irq_data_get_effective_affinity_mask(data); 918 pdev = msi_desc_to_pci_dev(msi_desc); 919 pbus = pdev->bus; 920 hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata); 921 922 spin_lock_irqsave(&hbus->retarget_msi_interrupt_lock, flags); 923 924 params = &hbus->retarget_msi_interrupt_params; 925 memset(params, 0, sizeof(*params)); 926 params->partition_id = HV_PARTITION_ID_SELF; 927 params->int_entry.source = 1; /* MSI(-X) */ 928 params->int_entry.address = msi_desc->msg.address_lo; 929 params->int_entry.data = msi_desc->msg.data; 930 params->device_id = (hbus->hdev->dev_instance.b[5] << 24) | 931 (hbus->hdev->dev_instance.b[4] << 16) | 932 (hbus->hdev->dev_instance.b[7] << 8) | 933 (hbus->hdev->dev_instance.b[6] & 0xf8) | 934 PCI_FUNC(pdev->devfn); 935 params->int_target.vector = cfg->vector; 936 937 /* 938 * Honoring apic->irq_delivery_mode set to dest_Fixed by 939 * setting the HV_DEVICE_INTERRUPT_TARGET_MULTICAST flag results in a 940 * spurious interrupt storm. Not doing so does not seem to have a 941 * negative effect (yet?). 942 */ 943 944 if (pci_protocol_version >= PCI_PROTOCOL_VERSION_1_2) { 945 /* 946 * PCI_PROTOCOL_VERSION_1_2 supports the VP_SET version of the 947 * HVCALL_RETARGET_INTERRUPT hypercall, which also coincides 948 * with >64 VP support. 949 * ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED 950 * is not sufficient for this hypercall. 951 */ 952 params->int_target.flags |= 953 HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET; 954 params->int_target.vp_set.valid_banks = 955 (1ull << HV_VP_SET_BANK_COUNT_MAX) - 1; 956 957 /* 958 * var-sized hypercall, var-size starts after vp_mask (thus 959 * vp_set.format does not count, but vp_set.valid_banks does). 960 */ 961 var_size = 1 + HV_VP_SET_BANK_COUNT_MAX; 962 963 for_each_cpu_and(cpu, dest, cpu_online_mask) { 964 cpu_vmbus = hv_cpu_number_to_vp_number(cpu); 965 966 if (cpu_vmbus >= HV_VP_SET_BANK_COUNT_MAX * 64) { 967 dev_err(&hbus->hdev->device, 968 "too high CPU %d", cpu_vmbus); 969 res = 1; 970 goto exit_unlock; 971 } 972 973 params->int_target.vp_set.masks[cpu_vmbus / 64] |= 974 (1ULL << (cpu_vmbus & 63)); 975 } 976 } else { 977 for_each_cpu_and(cpu, dest, cpu_online_mask) { 978 params->int_target.vp_mask |= 979 (1ULL << hv_cpu_number_to_vp_number(cpu)); 980 } 981 } 982 983 res = hv_do_hypercall(HVCALL_RETARGET_INTERRUPT | (var_size << 17), 984 params, NULL); 985 986 exit_unlock: 987 spin_unlock_irqrestore(&hbus->retarget_msi_interrupt_lock, flags); 988 989 if (res) { 990 dev_err(&hbus->hdev->device, 991 "%s() failed: %#llx", __func__, res); 992 return; 993 } 994 995 pci_msi_unmask_irq(data); 996 } 997 998 struct compose_comp_ctxt { 999 struct hv_pci_compl comp_pkt; 1000 struct tran_int_desc int_desc; 1001 }; 1002 1003 static void hv_pci_compose_compl(void *context, struct pci_response *resp, 1004 int resp_packet_size) 1005 { 1006 struct compose_comp_ctxt *comp_pkt = context; 1007 struct pci_create_int_response *int_resp = 1008 (struct pci_create_int_response *)resp; 1009 1010 comp_pkt->comp_pkt.completion_status = resp->status; 1011 comp_pkt->int_desc = int_resp->int_desc; 1012 complete(&comp_pkt->comp_pkt.host_event); 1013 } 1014 1015 static u32 hv_compose_msi_req_v1( 1016 struct pci_create_interrupt *int_pkt, struct cpumask *affinity, 1017 u32 slot, u8 vector) 1018 { 1019 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE; 1020 int_pkt->wslot.slot = slot; 1021 int_pkt->int_desc.vector = vector; 1022 int_pkt->int_desc.vector_count = 1; 1023 int_pkt->int_desc.delivery_mode = dest_Fixed; 1024 1025 /* 1026 * Create MSI w/ dummy vCPU set, overwritten by subsequent retarget in 1027 * hv_irq_unmask(). 1028 */ 1029 int_pkt->int_desc.cpu_mask = CPU_AFFINITY_ALL; 1030 1031 return sizeof(*int_pkt); 1032 } 1033 1034 static u32 hv_compose_msi_req_v2( 1035 struct pci_create_interrupt2 *int_pkt, struct cpumask *affinity, 1036 u32 slot, u8 vector) 1037 { 1038 int cpu; 1039 1040 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE2; 1041 int_pkt->wslot.slot = slot; 1042 int_pkt->int_desc.vector = vector; 1043 int_pkt->int_desc.vector_count = 1; 1044 int_pkt->int_desc.delivery_mode = dest_Fixed; 1045 1046 /* 1047 * Create MSI w/ dummy vCPU set targeting just one vCPU, overwritten 1048 * by subsequent retarget in hv_irq_unmask(). 1049 */ 1050 cpu = cpumask_first_and(affinity, cpu_online_mask); 1051 int_pkt->int_desc.processor_array[0] = 1052 hv_cpu_number_to_vp_number(cpu); 1053 int_pkt->int_desc.processor_count = 1; 1054 1055 return sizeof(*int_pkt); 1056 } 1057 1058 /** 1059 * hv_compose_msi_msg() - Supplies a valid MSI address/data 1060 * @data: Everything about this MSI 1061 * @msg: Buffer that is filled in by this function 1062 * 1063 * This function unpacks the IRQ looking for target CPU set, IDT 1064 * vector and mode and sends a message to the parent partition 1065 * asking for a mapping for that tuple in this partition. The 1066 * response supplies a data value and address to which that data 1067 * should be written to trigger that interrupt. 1068 */ 1069 static void hv_compose_msi_msg(struct irq_data *data, struct msi_msg *msg) 1070 { 1071 struct irq_cfg *cfg = irqd_cfg(data); 1072 struct hv_pcibus_device *hbus; 1073 struct hv_pci_dev *hpdev; 1074 struct pci_bus *pbus; 1075 struct pci_dev *pdev; 1076 struct cpumask *dest; 1077 unsigned long flags; 1078 struct compose_comp_ctxt comp; 1079 struct tran_int_desc *int_desc; 1080 struct { 1081 struct pci_packet pci_pkt; 1082 union { 1083 struct pci_create_interrupt v1; 1084 struct pci_create_interrupt2 v2; 1085 } int_pkts; 1086 } __packed ctxt; 1087 1088 u32 size; 1089 int ret; 1090 1091 pdev = msi_desc_to_pci_dev(irq_data_get_msi_desc(data)); 1092 dest = irq_data_get_effective_affinity_mask(data); 1093 pbus = pdev->bus; 1094 hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata); 1095 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn)); 1096 if (!hpdev) 1097 goto return_null_message; 1098 1099 /* Free any previous message that might have already been composed. */ 1100 if (data->chip_data) { 1101 int_desc = data->chip_data; 1102 data->chip_data = NULL; 1103 hv_int_desc_free(hpdev, int_desc); 1104 } 1105 1106 int_desc = kzalloc(sizeof(*int_desc), GFP_ATOMIC); 1107 if (!int_desc) 1108 goto drop_reference; 1109 1110 memset(&ctxt, 0, sizeof(ctxt)); 1111 init_completion(&comp.comp_pkt.host_event); 1112 ctxt.pci_pkt.completion_func = hv_pci_compose_compl; 1113 ctxt.pci_pkt.compl_ctxt = ∁ 1114 1115 switch (pci_protocol_version) { 1116 case PCI_PROTOCOL_VERSION_1_1: 1117 size = hv_compose_msi_req_v1(&ctxt.int_pkts.v1, 1118 dest, 1119 hpdev->desc.win_slot.slot, 1120 cfg->vector); 1121 break; 1122 1123 case PCI_PROTOCOL_VERSION_1_2: 1124 size = hv_compose_msi_req_v2(&ctxt.int_pkts.v2, 1125 dest, 1126 hpdev->desc.win_slot.slot, 1127 cfg->vector); 1128 break; 1129 1130 default: 1131 /* As we only negotiate protocol versions known to this driver, 1132 * this path should never hit. However, this is it not a hot 1133 * path so we print a message to aid future updates. 1134 */ 1135 dev_err(&hbus->hdev->device, 1136 "Unexpected vPCI protocol, update driver."); 1137 goto free_int_desc; 1138 } 1139 1140 ret = vmbus_sendpacket(hpdev->hbus->hdev->channel, &ctxt.int_pkts, 1141 size, (unsigned long)&ctxt.pci_pkt, 1142 VM_PKT_DATA_INBAND, 1143 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1144 if (ret) { 1145 dev_err(&hbus->hdev->device, 1146 "Sending request for interrupt failed: 0x%x", 1147 comp.comp_pkt.completion_status); 1148 goto free_int_desc; 1149 } 1150 1151 /* 1152 * Since this function is called with IRQ locks held, can't 1153 * do normal wait for completion; instead poll. 1154 */ 1155 while (!try_wait_for_completion(&comp.comp_pkt.host_event)) { 1156 /* 0xFFFF means an invalid PCI VENDOR ID. */ 1157 if (hv_pcifront_get_vendor_id(hpdev) == 0xFFFF) { 1158 dev_err_once(&hbus->hdev->device, 1159 "the device has gone\n"); 1160 goto free_int_desc; 1161 } 1162 1163 /* 1164 * When the higher level interrupt code calls us with 1165 * interrupt disabled, we must poll the channel by calling 1166 * the channel callback directly when channel->target_cpu is 1167 * the current CPU. When the higher level interrupt code 1168 * calls us with interrupt enabled, let's add the 1169 * local_irq_save()/restore() to avoid race: 1170 * hv_pci_onchannelcallback() can also run in tasklet. 1171 */ 1172 local_irq_save(flags); 1173 1174 if (hbus->hdev->channel->target_cpu == smp_processor_id()) 1175 hv_pci_onchannelcallback(hbus); 1176 1177 local_irq_restore(flags); 1178 1179 if (hpdev->state == hv_pcichild_ejecting) { 1180 dev_err_once(&hbus->hdev->device, 1181 "the device is being ejected\n"); 1182 goto free_int_desc; 1183 } 1184 1185 udelay(100); 1186 } 1187 1188 if (comp.comp_pkt.completion_status < 0) { 1189 dev_err(&hbus->hdev->device, 1190 "Request for interrupt failed: 0x%x", 1191 comp.comp_pkt.completion_status); 1192 goto free_int_desc; 1193 } 1194 1195 /* 1196 * Record the assignment so that this can be unwound later. Using 1197 * irq_set_chip_data() here would be appropriate, but the lock it takes 1198 * is already held. 1199 */ 1200 *int_desc = comp.int_desc; 1201 data->chip_data = int_desc; 1202 1203 /* Pass up the result. */ 1204 msg->address_hi = comp.int_desc.address >> 32; 1205 msg->address_lo = comp.int_desc.address & 0xffffffff; 1206 msg->data = comp.int_desc.data; 1207 1208 put_pcichild(hpdev); 1209 return; 1210 1211 free_int_desc: 1212 kfree(int_desc); 1213 drop_reference: 1214 put_pcichild(hpdev); 1215 return_null_message: 1216 msg->address_hi = 0; 1217 msg->address_lo = 0; 1218 msg->data = 0; 1219 } 1220 1221 /* HW Interrupt Chip Descriptor */ 1222 static struct irq_chip hv_msi_irq_chip = { 1223 .name = "Hyper-V PCIe MSI", 1224 .irq_compose_msi_msg = hv_compose_msi_msg, 1225 .irq_set_affinity = hv_set_affinity, 1226 .irq_ack = irq_chip_ack_parent, 1227 .irq_mask = hv_irq_mask, 1228 .irq_unmask = hv_irq_unmask, 1229 }; 1230 1231 static irq_hw_number_t hv_msi_domain_ops_get_hwirq(struct msi_domain_info *info, 1232 msi_alloc_info_t *arg) 1233 { 1234 return arg->msi_hwirq; 1235 } 1236 1237 static struct msi_domain_ops hv_msi_ops = { 1238 .get_hwirq = hv_msi_domain_ops_get_hwirq, 1239 .msi_prepare = pci_msi_prepare, 1240 .set_desc = pci_msi_set_desc, 1241 .msi_free = hv_msi_free, 1242 }; 1243 1244 /** 1245 * hv_pcie_init_irq_domain() - Initialize IRQ domain 1246 * @hbus: The root PCI bus 1247 * 1248 * This function creates an IRQ domain which will be used for 1249 * interrupts from devices that have been passed through. These 1250 * devices only support MSI and MSI-X, not line-based interrupts 1251 * or simulations of line-based interrupts through PCIe's 1252 * fabric-layer messages. Because interrupts are remapped, we 1253 * can support multi-message MSI here. 1254 * 1255 * Return: '0' on success and error value on failure 1256 */ 1257 static int hv_pcie_init_irq_domain(struct hv_pcibus_device *hbus) 1258 { 1259 hbus->msi_info.chip = &hv_msi_irq_chip; 1260 hbus->msi_info.ops = &hv_msi_ops; 1261 hbus->msi_info.flags = (MSI_FLAG_USE_DEF_DOM_OPS | 1262 MSI_FLAG_USE_DEF_CHIP_OPS | MSI_FLAG_MULTI_PCI_MSI | 1263 MSI_FLAG_PCI_MSIX); 1264 hbus->msi_info.handler = handle_edge_irq; 1265 hbus->msi_info.handler_name = "edge"; 1266 hbus->msi_info.data = hbus; 1267 hbus->irq_domain = pci_msi_create_irq_domain(hbus->sysdata.fwnode, 1268 &hbus->msi_info, 1269 x86_vector_domain); 1270 if (!hbus->irq_domain) { 1271 dev_err(&hbus->hdev->device, 1272 "Failed to build an MSI IRQ domain\n"); 1273 return -ENODEV; 1274 } 1275 1276 return 0; 1277 } 1278 1279 /** 1280 * get_bar_size() - Get the address space consumed by a BAR 1281 * @bar_val: Value that a BAR returned after -1 was written 1282 * to it. 1283 * 1284 * This function returns the size of the BAR, rounded up to 1 1285 * page. It has to be rounded up because the hypervisor's page 1286 * table entry that maps the BAR into the VM can't specify an 1287 * offset within a page. The invariant is that the hypervisor 1288 * must place any BARs of smaller than page length at the 1289 * beginning of a page. 1290 * 1291 * Return: Size in bytes of the consumed MMIO space. 1292 */ 1293 static u64 get_bar_size(u64 bar_val) 1294 { 1295 return round_up((1 + ~(bar_val & PCI_BASE_ADDRESS_MEM_MASK)), 1296 PAGE_SIZE); 1297 } 1298 1299 /** 1300 * survey_child_resources() - Total all MMIO requirements 1301 * @hbus: Root PCI bus, as understood by this driver 1302 */ 1303 static void survey_child_resources(struct hv_pcibus_device *hbus) 1304 { 1305 struct hv_pci_dev *hpdev; 1306 resource_size_t bar_size = 0; 1307 unsigned long flags; 1308 struct completion *event; 1309 u64 bar_val; 1310 int i; 1311 1312 /* If nobody is waiting on the answer, don't compute it. */ 1313 event = xchg(&hbus->survey_event, NULL); 1314 if (!event) 1315 return; 1316 1317 /* If the answer has already been computed, go with it. */ 1318 if (hbus->low_mmio_space || hbus->high_mmio_space) { 1319 complete(event); 1320 return; 1321 } 1322 1323 spin_lock_irqsave(&hbus->device_list_lock, flags); 1324 1325 /* 1326 * Due to an interesting quirk of the PCI spec, all memory regions 1327 * for a child device are a power of 2 in size and aligned in memory, 1328 * so it's sufficient to just add them up without tracking alignment. 1329 */ 1330 list_for_each_entry(hpdev, &hbus->children, list_entry) { 1331 for (i = 0; i < 6; i++) { 1332 if (hpdev->probed_bar[i] & PCI_BASE_ADDRESS_SPACE_IO) 1333 dev_err(&hbus->hdev->device, 1334 "There's an I/O BAR in this list!\n"); 1335 1336 if (hpdev->probed_bar[i] != 0) { 1337 /* 1338 * A probed BAR has all the upper bits set that 1339 * can be changed. 1340 */ 1341 1342 bar_val = hpdev->probed_bar[i]; 1343 if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64) 1344 bar_val |= 1345 ((u64)hpdev->probed_bar[++i] << 32); 1346 else 1347 bar_val |= 0xffffffff00000000ULL; 1348 1349 bar_size = get_bar_size(bar_val); 1350 1351 if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64) 1352 hbus->high_mmio_space += bar_size; 1353 else 1354 hbus->low_mmio_space += bar_size; 1355 } 1356 } 1357 } 1358 1359 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 1360 complete(event); 1361 } 1362 1363 /** 1364 * prepopulate_bars() - Fill in BARs with defaults 1365 * @hbus: Root PCI bus, as understood by this driver 1366 * 1367 * The core PCI driver code seems much, much happier if the BARs 1368 * for a device have values upon first scan. So fill them in. 1369 * The algorithm below works down from large sizes to small, 1370 * attempting to pack the assignments optimally. The assumption, 1371 * enforced in other parts of the code, is that the beginning of 1372 * the memory-mapped I/O space will be aligned on the largest 1373 * BAR size. 1374 */ 1375 static void prepopulate_bars(struct hv_pcibus_device *hbus) 1376 { 1377 resource_size_t high_size = 0; 1378 resource_size_t low_size = 0; 1379 resource_size_t high_base = 0; 1380 resource_size_t low_base = 0; 1381 resource_size_t bar_size; 1382 struct hv_pci_dev *hpdev; 1383 unsigned long flags; 1384 u64 bar_val; 1385 u32 command; 1386 bool high; 1387 int i; 1388 1389 if (hbus->low_mmio_space) { 1390 low_size = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space)); 1391 low_base = hbus->low_mmio_res->start; 1392 } 1393 1394 if (hbus->high_mmio_space) { 1395 high_size = 1ULL << 1396 (63 - __builtin_clzll(hbus->high_mmio_space)); 1397 high_base = hbus->high_mmio_res->start; 1398 } 1399 1400 spin_lock_irqsave(&hbus->device_list_lock, flags); 1401 1402 /* Pick addresses for the BARs. */ 1403 do { 1404 list_for_each_entry(hpdev, &hbus->children, list_entry) { 1405 for (i = 0; i < 6; i++) { 1406 bar_val = hpdev->probed_bar[i]; 1407 if (bar_val == 0) 1408 continue; 1409 high = bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64; 1410 if (high) { 1411 bar_val |= 1412 ((u64)hpdev->probed_bar[i + 1] 1413 << 32); 1414 } else { 1415 bar_val |= 0xffffffffULL << 32; 1416 } 1417 bar_size = get_bar_size(bar_val); 1418 if (high) { 1419 if (high_size != bar_size) { 1420 i++; 1421 continue; 1422 } 1423 _hv_pcifront_write_config(hpdev, 1424 PCI_BASE_ADDRESS_0 + (4 * i), 1425 4, 1426 (u32)(high_base & 0xffffff00)); 1427 i++; 1428 _hv_pcifront_write_config(hpdev, 1429 PCI_BASE_ADDRESS_0 + (4 * i), 1430 4, (u32)(high_base >> 32)); 1431 high_base += bar_size; 1432 } else { 1433 if (low_size != bar_size) 1434 continue; 1435 _hv_pcifront_write_config(hpdev, 1436 PCI_BASE_ADDRESS_0 + (4 * i), 1437 4, 1438 (u32)(low_base & 0xffffff00)); 1439 low_base += bar_size; 1440 } 1441 } 1442 if (high_size <= 1 && low_size <= 1) { 1443 /* Set the memory enable bit. */ 1444 _hv_pcifront_read_config(hpdev, PCI_COMMAND, 2, 1445 &command); 1446 command |= PCI_COMMAND_MEMORY; 1447 _hv_pcifront_write_config(hpdev, PCI_COMMAND, 2, 1448 command); 1449 break; 1450 } 1451 } 1452 1453 high_size >>= 1; 1454 low_size >>= 1; 1455 } while (high_size || low_size); 1456 1457 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 1458 } 1459 1460 /** 1461 * create_root_hv_pci_bus() - Expose a new root PCI bus 1462 * @hbus: Root PCI bus, as understood by this driver 1463 * 1464 * Return: 0 on success, -errno on failure 1465 */ 1466 static int create_root_hv_pci_bus(struct hv_pcibus_device *hbus) 1467 { 1468 /* Register the device */ 1469 hbus->pci_bus = pci_create_root_bus(&hbus->hdev->device, 1470 0, /* bus number is always zero */ 1471 &hv_pcifront_ops, 1472 &hbus->sysdata, 1473 &hbus->resources_for_children); 1474 if (!hbus->pci_bus) 1475 return -ENODEV; 1476 1477 hbus->pci_bus->msi = &hbus->msi_chip; 1478 hbus->pci_bus->msi->dev = &hbus->hdev->device; 1479 1480 pci_lock_rescan_remove(); 1481 pci_scan_child_bus(hbus->pci_bus); 1482 pci_bus_assign_resources(hbus->pci_bus); 1483 pci_bus_add_devices(hbus->pci_bus); 1484 pci_unlock_rescan_remove(); 1485 hbus->state = hv_pcibus_installed; 1486 return 0; 1487 } 1488 1489 struct q_res_req_compl { 1490 struct completion host_event; 1491 struct hv_pci_dev *hpdev; 1492 }; 1493 1494 /** 1495 * q_resource_requirements() - Query Resource Requirements 1496 * @context: The completion context. 1497 * @resp: The response that came from the host. 1498 * @resp_packet_size: The size in bytes of resp. 1499 * 1500 * This function is invoked on completion of a Query Resource 1501 * Requirements packet. 1502 */ 1503 static void q_resource_requirements(void *context, struct pci_response *resp, 1504 int resp_packet_size) 1505 { 1506 struct q_res_req_compl *completion = context; 1507 struct pci_q_res_req_response *q_res_req = 1508 (struct pci_q_res_req_response *)resp; 1509 int i; 1510 1511 if (resp->status < 0) { 1512 dev_err(&completion->hpdev->hbus->hdev->device, 1513 "query resource requirements failed: %x\n", 1514 resp->status); 1515 } else { 1516 for (i = 0; i < 6; i++) { 1517 completion->hpdev->probed_bar[i] = 1518 q_res_req->probed_bar[i]; 1519 } 1520 } 1521 1522 complete(&completion->host_event); 1523 } 1524 1525 /** 1526 * new_pcichild_device() - Create a new child device 1527 * @hbus: The internal struct tracking this root PCI bus. 1528 * @desc: The information supplied so far from the host 1529 * about the device. 1530 * 1531 * This function creates the tracking structure for a new child 1532 * device and kicks off the process of figuring out what it is. 1533 * 1534 * Return: Pointer to the new tracking struct 1535 */ 1536 static struct hv_pci_dev *new_pcichild_device(struct hv_pcibus_device *hbus, 1537 struct pci_function_description *desc) 1538 { 1539 struct hv_pci_dev *hpdev; 1540 struct pci_child_message *res_req; 1541 struct q_res_req_compl comp_pkt; 1542 struct { 1543 struct pci_packet init_packet; 1544 u8 buffer[sizeof(struct pci_child_message)]; 1545 } pkt; 1546 unsigned long flags; 1547 int ret; 1548 1549 hpdev = kzalloc(sizeof(*hpdev), GFP_KERNEL); 1550 if (!hpdev) 1551 return NULL; 1552 1553 hpdev->hbus = hbus; 1554 1555 memset(&pkt, 0, sizeof(pkt)); 1556 init_completion(&comp_pkt.host_event); 1557 comp_pkt.hpdev = hpdev; 1558 pkt.init_packet.compl_ctxt = &comp_pkt; 1559 pkt.init_packet.completion_func = q_resource_requirements; 1560 res_req = (struct pci_child_message *)&pkt.init_packet.message; 1561 res_req->message_type.type = PCI_QUERY_RESOURCE_REQUIREMENTS; 1562 res_req->wslot.slot = desc->win_slot.slot; 1563 1564 ret = vmbus_sendpacket(hbus->hdev->channel, res_req, 1565 sizeof(struct pci_child_message), 1566 (unsigned long)&pkt.init_packet, 1567 VM_PKT_DATA_INBAND, 1568 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1569 if (ret) 1570 goto error; 1571 1572 if (wait_for_response(hbus->hdev, &comp_pkt.host_event)) 1573 goto error; 1574 1575 hpdev->desc = *desc; 1576 refcount_set(&hpdev->refs, 1); 1577 get_pcichild(hpdev); 1578 spin_lock_irqsave(&hbus->device_list_lock, flags); 1579 1580 list_add_tail(&hpdev->list_entry, &hbus->children); 1581 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 1582 return hpdev; 1583 1584 error: 1585 kfree(hpdev); 1586 return NULL; 1587 } 1588 1589 /** 1590 * get_pcichild_wslot() - Find device from slot 1591 * @hbus: Root PCI bus, as understood by this driver 1592 * @wslot: Location on the bus 1593 * 1594 * This function looks up a PCI device and returns the internal 1595 * representation of it. It acquires a reference on it, so that 1596 * the device won't be deleted while somebody is using it. The 1597 * caller is responsible for calling put_pcichild() to release 1598 * this reference. 1599 * 1600 * Return: Internal representation of a PCI device 1601 */ 1602 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus, 1603 u32 wslot) 1604 { 1605 unsigned long flags; 1606 struct hv_pci_dev *iter, *hpdev = NULL; 1607 1608 spin_lock_irqsave(&hbus->device_list_lock, flags); 1609 list_for_each_entry(iter, &hbus->children, list_entry) { 1610 if (iter->desc.win_slot.slot == wslot) { 1611 hpdev = iter; 1612 get_pcichild(hpdev); 1613 break; 1614 } 1615 } 1616 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 1617 1618 return hpdev; 1619 } 1620 1621 /** 1622 * pci_devices_present_work() - Handle new list of child devices 1623 * @work: Work struct embedded in struct hv_dr_work 1624 * 1625 * "Bus Relations" is the Windows term for "children of this 1626 * bus." The terminology is preserved here for people trying to 1627 * debug the interaction between Hyper-V and Linux. This 1628 * function is called when the parent partition reports a list 1629 * of functions that should be observed under this PCI Express 1630 * port (bus). 1631 * 1632 * This function updates the list, and must tolerate being 1633 * called multiple times with the same information. The typical 1634 * number of child devices is one, with very atypical cases 1635 * involving three or four, so the algorithms used here can be 1636 * simple and inefficient. 1637 * 1638 * It must also treat the omission of a previously observed device as 1639 * notification that the device no longer exists. 1640 * 1641 * Note that this function is serialized with hv_eject_device_work(), 1642 * because both are pushed to the ordered workqueue hbus->wq. 1643 */ 1644 static void pci_devices_present_work(struct work_struct *work) 1645 { 1646 u32 child_no; 1647 bool found; 1648 struct pci_function_description *new_desc; 1649 struct hv_pci_dev *hpdev; 1650 struct hv_pcibus_device *hbus; 1651 struct list_head removed; 1652 struct hv_dr_work *dr_wrk; 1653 struct hv_dr_state *dr = NULL; 1654 unsigned long flags; 1655 1656 dr_wrk = container_of(work, struct hv_dr_work, wrk); 1657 hbus = dr_wrk->bus; 1658 kfree(dr_wrk); 1659 1660 INIT_LIST_HEAD(&removed); 1661 1662 /* Pull this off the queue and process it if it was the last one. */ 1663 spin_lock_irqsave(&hbus->device_list_lock, flags); 1664 while (!list_empty(&hbus->dr_list)) { 1665 dr = list_first_entry(&hbus->dr_list, struct hv_dr_state, 1666 list_entry); 1667 list_del(&dr->list_entry); 1668 1669 /* Throw this away if the list still has stuff in it. */ 1670 if (!list_empty(&hbus->dr_list)) { 1671 kfree(dr); 1672 continue; 1673 } 1674 } 1675 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 1676 1677 if (!dr) { 1678 put_hvpcibus(hbus); 1679 return; 1680 } 1681 1682 /* First, mark all existing children as reported missing. */ 1683 spin_lock_irqsave(&hbus->device_list_lock, flags); 1684 list_for_each_entry(hpdev, &hbus->children, list_entry) { 1685 hpdev->reported_missing = true; 1686 } 1687 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 1688 1689 /* Next, add back any reported devices. */ 1690 for (child_no = 0; child_no < dr->device_count; child_no++) { 1691 found = false; 1692 new_desc = &dr->func[child_no]; 1693 1694 spin_lock_irqsave(&hbus->device_list_lock, flags); 1695 list_for_each_entry(hpdev, &hbus->children, list_entry) { 1696 if ((hpdev->desc.win_slot.slot == new_desc->win_slot.slot) && 1697 (hpdev->desc.v_id == new_desc->v_id) && 1698 (hpdev->desc.d_id == new_desc->d_id) && 1699 (hpdev->desc.ser == new_desc->ser)) { 1700 hpdev->reported_missing = false; 1701 found = true; 1702 } 1703 } 1704 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 1705 1706 if (!found) { 1707 hpdev = new_pcichild_device(hbus, new_desc); 1708 if (!hpdev) 1709 dev_err(&hbus->hdev->device, 1710 "couldn't record a child device.\n"); 1711 } 1712 } 1713 1714 /* Move missing children to a list on the stack. */ 1715 spin_lock_irqsave(&hbus->device_list_lock, flags); 1716 do { 1717 found = false; 1718 list_for_each_entry(hpdev, &hbus->children, list_entry) { 1719 if (hpdev->reported_missing) { 1720 found = true; 1721 put_pcichild(hpdev); 1722 list_move_tail(&hpdev->list_entry, &removed); 1723 break; 1724 } 1725 } 1726 } while (found); 1727 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 1728 1729 /* Delete everything that should no longer exist. */ 1730 while (!list_empty(&removed)) { 1731 hpdev = list_first_entry(&removed, struct hv_pci_dev, 1732 list_entry); 1733 list_del(&hpdev->list_entry); 1734 put_pcichild(hpdev); 1735 } 1736 1737 switch (hbus->state) { 1738 case hv_pcibus_installed: 1739 /* 1740 * Tell the core to rescan bus 1741 * because there may have been changes. 1742 */ 1743 pci_lock_rescan_remove(); 1744 pci_scan_child_bus(hbus->pci_bus); 1745 pci_unlock_rescan_remove(); 1746 break; 1747 1748 case hv_pcibus_init: 1749 case hv_pcibus_probed: 1750 survey_child_resources(hbus); 1751 break; 1752 1753 default: 1754 break; 1755 } 1756 1757 put_hvpcibus(hbus); 1758 kfree(dr); 1759 } 1760 1761 /** 1762 * hv_pci_devices_present() - Handles list of new children 1763 * @hbus: Root PCI bus, as understood by this driver 1764 * @relations: Packet from host listing children 1765 * 1766 * This function is invoked whenever a new list of devices for 1767 * this bus appears. 1768 */ 1769 static void hv_pci_devices_present(struct hv_pcibus_device *hbus, 1770 struct pci_bus_relations *relations) 1771 { 1772 struct hv_dr_state *dr; 1773 struct hv_dr_work *dr_wrk; 1774 unsigned long flags; 1775 bool pending_dr; 1776 1777 dr_wrk = kzalloc(sizeof(*dr_wrk), GFP_NOWAIT); 1778 if (!dr_wrk) 1779 return; 1780 1781 dr = kzalloc(offsetof(struct hv_dr_state, func) + 1782 (sizeof(struct pci_function_description) * 1783 (relations->device_count)), GFP_NOWAIT); 1784 if (!dr) { 1785 kfree(dr_wrk); 1786 return; 1787 } 1788 1789 INIT_WORK(&dr_wrk->wrk, pci_devices_present_work); 1790 dr_wrk->bus = hbus; 1791 dr->device_count = relations->device_count; 1792 if (dr->device_count != 0) { 1793 memcpy(dr->func, relations->func, 1794 sizeof(struct pci_function_description) * 1795 dr->device_count); 1796 } 1797 1798 spin_lock_irqsave(&hbus->device_list_lock, flags); 1799 /* 1800 * If pending_dr is true, we have already queued a work, 1801 * which will see the new dr. Otherwise, we need to 1802 * queue a new work. 1803 */ 1804 pending_dr = !list_empty(&hbus->dr_list); 1805 list_add_tail(&dr->list_entry, &hbus->dr_list); 1806 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 1807 1808 if (pending_dr) { 1809 kfree(dr_wrk); 1810 } else { 1811 get_hvpcibus(hbus); 1812 queue_work(hbus->wq, &dr_wrk->wrk); 1813 } 1814 } 1815 1816 /** 1817 * hv_eject_device_work() - Asynchronously handles ejection 1818 * @work: Work struct embedded in internal device struct 1819 * 1820 * This function handles ejecting a device. Windows will 1821 * attempt to gracefully eject a device, waiting 60 seconds to 1822 * hear back from the guest OS that this completed successfully. 1823 * If this timer expires, the device will be forcibly removed. 1824 */ 1825 static void hv_eject_device_work(struct work_struct *work) 1826 { 1827 struct pci_eject_response *ejct_pkt; 1828 struct hv_pci_dev *hpdev; 1829 struct pci_dev *pdev; 1830 unsigned long flags; 1831 int wslot; 1832 struct { 1833 struct pci_packet pkt; 1834 u8 buffer[sizeof(struct pci_eject_response)]; 1835 } ctxt; 1836 1837 hpdev = container_of(work, struct hv_pci_dev, wrk); 1838 1839 WARN_ON(hpdev->state != hv_pcichild_ejecting); 1840 1841 /* 1842 * Ejection can come before or after the PCI bus has been set up, so 1843 * attempt to find it and tear down the bus state, if it exists. This 1844 * must be done without constructs like pci_domain_nr(hbus->pci_bus) 1845 * because hbus->pci_bus may not exist yet. 1846 */ 1847 wslot = wslot_to_devfn(hpdev->desc.win_slot.slot); 1848 pdev = pci_get_domain_bus_and_slot(hpdev->hbus->sysdata.domain, 0, 1849 wslot); 1850 if (pdev) { 1851 pci_lock_rescan_remove(); 1852 pci_stop_and_remove_bus_device(pdev); 1853 pci_dev_put(pdev); 1854 pci_unlock_rescan_remove(); 1855 } 1856 1857 spin_lock_irqsave(&hpdev->hbus->device_list_lock, flags); 1858 list_del(&hpdev->list_entry); 1859 spin_unlock_irqrestore(&hpdev->hbus->device_list_lock, flags); 1860 1861 memset(&ctxt, 0, sizeof(ctxt)); 1862 ejct_pkt = (struct pci_eject_response *)&ctxt.pkt.message; 1863 ejct_pkt->message_type.type = PCI_EJECTION_COMPLETE; 1864 ejct_pkt->wslot.slot = hpdev->desc.win_slot.slot; 1865 vmbus_sendpacket(hpdev->hbus->hdev->channel, ejct_pkt, 1866 sizeof(*ejct_pkt), (unsigned long)&ctxt.pkt, 1867 VM_PKT_DATA_INBAND, 0); 1868 1869 put_pcichild(hpdev); 1870 put_pcichild(hpdev); 1871 put_hvpcibus(hpdev->hbus); 1872 } 1873 1874 /** 1875 * hv_pci_eject_device() - Handles device ejection 1876 * @hpdev: Internal device tracking struct 1877 * 1878 * This function is invoked when an ejection packet arrives. It 1879 * just schedules work so that we don't re-enter the packet 1880 * delivery code handling the ejection. 1881 */ 1882 static void hv_pci_eject_device(struct hv_pci_dev *hpdev) 1883 { 1884 hpdev->state = hv_pcichild_ejecting; 1885 get_pcichild(hpdev); 1886 INIT_WORK(&hpdev->wrk, hv_eject_device_work); 1887 get_hvpcibus(hpdev->hbus); 1888 queue_work(hpdev->hbus->wq, &hpdev->wrk); 1889 } 1890 1891 /** 1892 * hv_pci_onchannelcallback() - Handles incoming packets 1893 * @context: Internal bus tracking struct 1894 * 1895 * This function is invoked whenever the host sends a packet to 1896 * this channel (which is private to this root PCI bus). 1897 */ 1898 static void hv_pci_onchannelcallback(void *context) 1899 { 1900 const int packet_size = 0x100; 1901 int ret; 1902 struct hv_pcibus_device *hbus = context; 1903 u32 bytes_recvd; 1904 u64 req_id; 1905 struct vmpacket_descriptor *desc; 1906 unsigned char *buffer; 1907 int bufferlen = packet_size; 1908 struct pci_packet *comp_packet; 1909 struct pci_response *response; 1910 struct pci_incoming_message *new_message; 1911 struct pci_bus_relations *bus_rel; 1912 struct pci_dev_incoming *dev_message; 1913 struct hv_pci_dev *hpdev; 1914 1915 buffer = kmalloc(bufferlen, GFP_ATOMIC); 1916 if (!buffer) 1917 return; 1918 1919 while (1) { 1920 ret = vmbus_recvpacket_raw(hbus->hdev->channel, buffer, 1921 bufferlen, &bytes_recvd, &req_id); 1922 1923 if (ret == -ENOBUFS) { 1924 kfree(buffer); 1925 /* Handle large packet */ 1926 bufferlen = bytes_recvd; 1927 buffer = kmalloc(bytes_recvd, GFP_ATOMIC); 1928 if (!buffer) 1929 return; 1930 continue; 1931 } 1932 1933 /* Zero length indicates there are no more packets. */ 1934 if (ret || !bytes_recvd) 1935 break; 1936 1937 /* 1938 * All incoming packets must be at least as large as a 1939 * response. 1940 */ 1941 if (bytes_recvd <= sizeof(struct pci_response)) 1942 continue; 1943 desc = (struct vmpacket_descriptor *)buffer; 1944 1945 switch (desc->type) { 1946 case VM_PKT_COMP: 1947 1948 /* 1949 * The host is trusted, and thus it's safe to interpret 1950 * this transaction ID as a pointer. 1951 */ 1952 comp_packet = (struct pci_packet *)req_id; 1953 response = (struct pci_response *)buffer; 1954 comp_packet->completion_func(comp_packet->compl_ctxt, 1955 response, 1956 bytes_recvd); 1957 break; 1958 1959 case VM_PKT_DATA_INBAND: 1960 1961 new_message = (struct pci_incoming_message *)buffer; 1962 switch (new_message->message_type.type) { 1963 case PCI_BUS_RELATIONS: 1964 1965 bus_rel = (struct pci_bus_relations *)buffer; 1966 if (bytes_recvd < 1967 offsetof(struct pci_bus_relations, func) + 1968 (sizeof(struct pci_function_description) * 1969 (bus_rel->device_count))) { 1970 dev_err(&hbus->hdev->device, 1971 "bus relations too small\n"); 1972 break; 1973 } 1974 1975 hv_pci_devices_present(hbus, bus_rel); 1976 break; 1977 1978 case PCI_EJECT: 1979 1980 dev_message = (struct pci_dev_incoming *)buffer; 1981 hpdev = get_pcichild_wslot(hbus, 1982 dev_message->wslot.slot); 1983 if (hpdev) { 1984 hv_pci_eject_device(hpdev); 1985 put_pcichild(hpdev); 1986 } 1987 break; 1988 1989 default: 1990 dev_warn(&hbus->hdev->device, 1991 "Unimplemented protocol message %x\n", 1992 new_message->message_type.type); 1993 break; 1994 } 1995 break; 1996 1997 default: 1998 dev_err(&hbus->hdev->device, 1999 "unhandled packet type %d, tid %llx len %d\n", 2000 desc->type, req_id, bytes_recvd); 2001 break; 2002 } 2003 } 2004 2005 kfree(buffer); 2006 } 2007 2008 /** 2009 * hv_pci_protocol_negotiation() - Set up protocol 2010 * @hdev: VMBus's tracking struct for this root PCI bus 2011 * 2012 * This driver is intended to support running on Windows 10 2013 * (server) and later versions. It will not run on earlier 2014 * versions, as they assume that many of the operations which 2015 * Linux needs accomplished with a spinlock held were done via 2016 * asynchronous messaging via VMBus. Windows 10 increases the 2017 * surface area of PCI emulation so that these actions can take 2018 * place by suspending a virtual processor for their duration. 2019 * 2020 * This function negotiates the channel protocol version, 2021 * failing if the host doesn't support the necessary protocol 2022 * level. 2023 */ 2024 static int hv_pci_protocol_negotiation(struct hv_device *hdev) 2025 { 2026 struct pci_version_request *version_req; 2027 struct hv_pci_compl comp_pkt; 2028 struct pci_packet *pkt; 2029 int ret; 2030 int i; 2031 2032 /* 2033 * Initiate the handshake with the host and negotiate 2034 * a version that the host can support. We start with the 2035 * highest version number and go down if the host cannot 2036 * support it. 2037 */ 2038 pkt = kzalloc(sizeof(*pkt) + sizeof(*version_req), GFP_KERNEL); 2039 if (!pkt) 2040 return -ENOMEM; 2041 2042 init_completion(&comp_pkt.host_event); 2043 pkt->completion_func = hv_pci_generic_compl; 2044 pkt->compl_ctxt = &comp_pkt; 2045 version_req = (struct pci_version_request *)&pkt->message; 2046 version_req->message_type.type = PCI_QUERY_PROTOCOL_VERSION; 2047 2048 for (i = 0; i < ARRAY_SIZE(pci_protocol_versions); i++) { 2049 version_req->protocol_version = pci_protocol_versions[i]; 2050 ret = vmbus_sendpacket(hdev->channel, version_req, 2051 sizeof(struct pci_version_request), 2052 (unsigned long)pkt, VM_PKT_DATA_INBAND, 2053 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 2054 if (!ret) 2055 ret = wait_for_response(hdev, &comp_pkt.host_event); 2056 2057 if (ret) { 2058 dev_err(&hdev->device, 2059 "PCI Pass-through VSP failed to request version: %d", 2060 ret); 2061 goto exit; 2062 } 2063 2064 if (comp_pkt.completion_status >= 0) { 2065 pci_protocol_version = pci_protocol_versions[i]; 2066 dev_info(&hdev->device, 2067 "PCI VMBus probing: Using version %#x\n", 2068 pci_protocol_version); 2069 goto exit; 2070 } 2071 2072 if (comp_pkt.completion_status != STATUS_REVISION_MISMATCH) { 2073 dev_err(&hdev->device, 2074 "PCI Pass-through VSP failed version request: %#x", 2075 comp_pkt.completion_status); 2076 ret = -EPROTO; 2077 goto exit; 2078 } 2079 2080 reinit_completion(&comp_pkt.host_event); 2081 } 2082 2083 dev_err(&hdev->device, 2084 "PCI pass-through VSP failed to find supported version"); 2085 ret = -EPROTO; 2086 2087 exit: 2088 kfree(pkt); 2089 return ret; 2090 } 2091 2092 /** 2093 * hv_pci_free_bridge_windows() - Release memory regions for the 2094 * bus 2095 * @hbus: Root PCI bus, as understood by this driver 2096 */ 2097 static void hv_pci_free_bridge_windows(struct hv_pcibus_device *hbus) 2098 { 2099 /* 2100 * Set the resources back to the way they looked when they 2101 * were allocated by setting IORESOURCE_BUSY again. 2102 */ 2103 2104 if (hbus->low_mmio_space && hbus->low_mmio_res) { 2105 hbus->low_mmio_res->flags |= IORESOURCE_BUSY; 2106 vmbus_free_mmio(hbus->low_mmio_res->start, 2107 resource_size(hbus->low_mmio_res)); 2108 } 2109 2110 if (hbus->high_mmio_space && hbus->high_mmio_res) { 2111 hbus->high_mmio_res->flags |= IORESOURCE_BUSY; 2112 vmbus_free_mmio(hbus->high_mmio_res->start, 2113 resource_size(hbus->high_mmio_res)); 2114 } 2115 } 2116 2117 /** 2118 * hv_pci_allocate_bridge_windows() - Allocate memory regions 2119 * for the bus 2120 * @hbus: Root PCI bus, as understood by this driver 2121 * 2122 * This function calls vmbus_allocate_mmio(), which is itself a 2123 * bit of a compromise. Ideally, we might change the pnp layer 2124 * in the kernel such that it comprehends either PCI devices 2125 * which are "grandchildren of ACPI," with some intermediate bus 2126 * node (in this case, VMBus) or change it such that it 2127 * understands VMBus. The pnp layer, however, has been declared 2128 * deprecated, and not subject to change. 2129 * 2130 * The workaround, implemented here, is to ask VMBus to allocate 2131 * MMIO space for this bus. VMBus itself knows which ranges are 2132 * appropriate by looking at its own ACPI objects. Then, after 2133 * these ranges are claimed, they're modified to look like they 2134 * would have looked if the ACPI and pnp code had allocated 2135 * bridge windows. These descriptors have to exist in this form 2136 * in order to satisfy the code which will get invoked when the 2137 * endpoint PCI function driver calls request_mem_region() or 2138 * request_mem_region_exclusive(). 2139 * 2140 * Return: 0 on success, -errno on failure 2141 */ 2142 static int hv_pci_allocate_bridge_windows(struct hv_pcibus_device *hbus) 2143 { 2144 resource_size_t align; 2145 int ret; 2146 2147 if (hbus->low_mmio_space) { 2148 align = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space)); 2149 ret = vmbus_allocate_mmio(&hbus->low_mmio_res, hbus->hdev, 0, 2150 (u64)(u32)0xffffffff, 2151 hbus->low_mmio_space, 2152 align, false); 2153 if (ret) { 2154 dev_err(&hbus->hdev->device, 2155 "Need %#llx of low MMIO space. Consider reconfiguring the VM.\n", 2156 hbus->low_mmio_space); 2157 return ret; 2158 } 2159 2160 /* Modify this resource to become a bridge window. */ 2161 hbus->low_mmio_res->flags |= IORESOURCE_WINDOW; 2162 hbus->low_mmio_res->flags &= ~IORESOURCE_BUSY; 2163 pci_add_resource(&hbus->resources_for_children, 2164 hbus->low_mmio_res); 2165 } 2166 2167 if (hbus->high_mmio_space) { 2168 align = 1ULL << (63 - __builtin_clzll(hbus->high_mmio_space)); 2169 ret = vmbus_allocate_mmio(&hbus->high_mmio_res, hbus->hdev, 2170 0x100000000, -1, 2171 hbus->high_mmio_space, align, 2172 false); 2173 if (ret) { 2174 dev_err(&hbus->hdev->device, 2175 "Need %#llx of high MMIO space. Consider reconfiguring the VM.\n", 2176 hbus->high_mmio_space); 2177 goto release_low_mmio; 2178 } 2179 2180 /* Modify this resource to become a bridge window. */ 2181 hbus->high_mmio_res->flags |= IORESOURCE_WINDOW; 2182 hbus->high_mmio_res->flags &= ~IORESOURCE_BUSY; 2183 pci_add_resource(&hbus->resources_for_children, 2184 hbus->high_mmio_res); 2185 } 2186 2187 return 0; 2188 2189 release_low_mmio: 2190 if (hbus->low_mmio_res) { 2191 vmbus_free_mmio(hbus->low_mmio_res->start, 2192 resource_size(hbus->low_mmio_res)); 2193 } 2194 2195 return ret; 2196 } 2197 2198 /** 2199 * hv_allocate_config_window() - Find MMIO space for PCI Config 2200 * @hbus: Root PCI bus, as understood by this driver 2201 * 2202 * This function claims memory-mapped I/O space for accessing 2203 * configuration space for the functions on this bus. 2204 * 2205 * Return: 0 on success, -errno on failure 2206 */ 2207 static int hv_allocate_config_window(struct hv_pcibus_device *hbus) 2208 { 2209 int ret; 2210 2211 /* 2212 * Set up a region of MMIO space to use for accessing configuration 2213 * space. 2214 */ 2215 ret = vmbus_allocate_mmio(&hbus->mem_config, hbus->hdev, 0, -1, 2216 PCI_CONFIG_MMIO_LENGTH, 0x1000, false); 2217 if (ret) 2218 return ret; 2219 2220 /* 2221 * vmbus_allocate_mmio() gets used for allocating both device endpoint 2222 * resource claims (those which cannot be overlapped) and the ranges 2223 * which are valid for the children of this bus, which are intended 2224 * to be overlapped by those children. Set the flag on this claim 2225 * meaning that this region can't be overlapped. 2226 */ 2227 2228 hbus->mem_config->flags |= IORESOURCE_BUSY; 2229 2230 return 0; 2231 } 2232 2233 static void hv_free_config_window(struct hv_pcibus_device *hbus) 2234 { 2235 vmbus_free_mmio(hbus->mem_config->start, PCI_CONFIG_MMIO_LENGTH); 2236 } 2237 2238 /** 2239 * hv_pci_enter_d0() - Bring the "bus" into the D0 power state 2240 * @hdev: VMBus's tracking struct for this root PCI bus 2241 * 2242 * Return: 0 on success, -errno on failure 2243 */ 2244 static int hv_pci_enter_d0(struct hv_device *hdev) 2245 { 2246 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 2247 struct pci_bus_d0_entry *d0_entry; 2248 struct hv_pci_compl comp_pkt; 2249 struct pci_packet *pkt; 2250 int ret; 2251 2252 /* 2253 * Tell the host that the bus is ready to use, and moved into the 2254 * powered-on state. This includes telling the host which region 2255 * of memory-mapped I/O space has been chosen for configuration space 2256 * access. 2257 */ 2258 pkt = kzalloc(sizeof(*pkt) + sizeof(*d0_entry), GFP_KERNEL); 2259 if (!pkt) 2260 return -ENOMEM; 2261 2262 init_completion(&comp_pkt.host_event); 2263 pkt->completion_func = hv_pci_generic_compl; 2264 pkt->compl_ctxt = &comp_pkt; 2265 d0_entry = (struct pci_bus_d0_entry *)&pkt->message; 2266 d0_entry->message_type.type = PCI_BUS_D0ENTRY; 2267 d0_entry->mmio_base = hbus->mem_config->start; 2268 2269 ret = vmbus_sendpacket(hdev->channel, d0_entry, sizeof(*d0_entry), 2270 (unsigned long)pkt, VM_PKT_DATA_INBAND, 2271 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 2272 if (!ret) 2273 ret = wait_for_response(hdev, &comp_pkt.host_event); 2274 2275 if (ret) 2276 goto exit; 2277 2278 if (comp_pkt.completion_status < 0) { 2279 dev_err(&hdev->device, 2280 "PCI Pass-through VSP failed D0 Entry with status %x\n", 2281 comp_pkt.completion_status); 2282 ret = -EPROTO; 2283 goto exit; 2284 } 2285 2286 ret = 0; 2287 2288 exit: 2289 kfree(pkt); 2290 return ret; 2291 } 2292 2293 /** 2294 * hv_pci_query_relations() - Ask host to send list of child 2295 * devices 2296 * @hdev: VMBus's tracking struct for this root PCI bus 2297 * 2298 * Return: 0 on success, -errno on failure 2299 */ 2300 static int hv_pci_query_relations(struct hv_device *hdev) 2301 { 2302 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 2303 struct pci_message message; 2304 struct completion comp; 2305 int ret; 2306 2307 /* Ask the host to send along the list of child devices */ 2308 init_completion(&comp); 2309 if (cmpxchg(&hbus->survey_event, NULL, &comp)) 2310 return -ENOTEMPTY; 2311 2312 memset(&message, 0, sizeof(message)); 2313 message.type = PCI_QUERY_BUS_RELATIONS; 2314 2315 ret = vmbus_sendpacket(hdev->channel, &message, sizeof(message), 2316 0, VM_PKT_DATA_INBAND, 0); 2317 if (!ret) 2318 ret = wait_for_response(hdev, &comp); 2319 2320 return ret; 2321 } 2322 2323 /** 2324 * hv_send_resources_allocated() - Report local resource choices 2325 * @hdev: VMBus's tracking struct for this root PCI bus 2326 * 2327 * The host OS is expecting to be sent a request as a message 2328 * which contains all the resources that the device will use. 2329 * The response contains those same resources, "translated" 2330 * which is to say, the values which should be used by the 2331 * hardware, when it delivers an interrupt. (MMIO resources are 2332 * used in local terms.) This is nice for Windows, and lines up 2333 * with the FDO/PDO split, which doesn't exist in Linux. Linux 2334 * is deeply expecting to scan an emulated PCI configuration 2335 * space. So this message is sent here only to drive the state 2336 * machine on the host forward. 2337 * 2338 * Return: 0 on success, -errno on failure 2339 */ 2340 static int hv_send_resources_allocated(struct hv_device *hdev) 2341 { 2342 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 2343 struct pci_resources_assigned *res_assigned; 2344 struct pci_resources_assigned2 *res_assigned2; 2345 struct hv_pci_compl comp_pkt; 2346 struct hv_pci_dev *hpdev; 2347 struct pci_packet *pkt; 2348 size_t size_res; 2349 u32 wslot; 2350 int ret; 2351 2352 size_res = (pci_protocol_version < PCI_PROTOCOL_VERSION_1_2) 2353 ? sizeof(*res_assigned) : sizeof(*res_assigned2); 2354 2355 pkt = kmalloc(sizeof(*pkt) + size_res, GFP_KERNEL); 2356 if (!pkt) 2357 return -ENOMEM; 2358 2359 ret = 0; 2360 2361 for (wslot = 0; wslot < 256; wslot++) { 2362 hpdev = get_pcichild_wslot(hbus, wslot); 2363 if (!hpdev) 2364 continue; 2365 2366 memset(pkt, 0, sizeof(*pkt) + size_res); 2367 init_completion(&comp_pkt.host_event); 2368 pkt->completion_func = hv_pci_generic_compl; 2369 pkt->compl_ctxt = &comp_pkt; 2370 2371 if (pci_protocol_version < PCI_PROTOCOL_VERSION_1_2) { 2372 res_assigned = 2373 (struct pci_resources_assigned *)&pkt->message; 2374 res_assigned->message_type.type = 2375 PCI_RESOURCES_ASSIGNED; 2376 res_assigned->wslot.slot = hpdev->desc.win_slot.slot; 2377 } else { 2378 res_assigned2 = 2379 (struct pci_resources_assigned2 *)&pkt->message; 2380 res_assigned2->message_type.type = 2381 PCI_RESOURCES_ASSIGNED2; 2382 res_assigned2->wslot.slot = hpdev->desc.win_slot.slot; 2383 } 2384 put_pcichild(hpdev); 2385 2386 ret = vmbus_sendpacket(hdev->channel, &pkt->message, 2387 size_res, (unsigned long)pkt, 2388 VM_PKT_DATA_INBAND, 2389 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 2390 if (!ret) 2391 ret = wait_for_response(hdev, &comp_pkt.host_event); 2392 if (ret) 2393 break; 2394 2395 if (comp_pkt.completion_status < 0) { 2396 ret = -EPROTO; 2397 dev_err(&hdev->device, 2398 "resource allocated returned 0x%x", 2399 comp_pkt.completion_status); 2400 break; 2401 } 2402 } 2403 2404 kfree(pkt); 2405 return ret; 2406 } 2407 2408 /** 2409 * hv_send_resources_released() - Report local resources 2410 * released 2411 * @hdev: VMBus's tracking struct for this root PCI bus 2412 * 2413 * Return: 0 on success, -errno on failure 2414 */ 2415 static int hv_send_resources_released(struct hv_device *hdev) 2416 { 2417 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 2418 struct pci_child_message pkt; 2419 struct hv_pci_dev *hpdev; 2420 u32 wslot; 2421 int ret; 2422 2423 for (wslot = 0; wslot < 256; wslot++) { 2424 hpdev = get_pcichild_wslot(hbus, wslot); 2425 if (!hpdev) 2426 continue; 2427 2428 memset(&pkt, 0, sizeof(pkt)); 2429 pkt.message_type.type = PCI_RESOURCES_RELEASED; 2430 pkt.wslot.slot = hpdev->desc.win_slot.slot; 2431 2432 put_pcichild(hpdev); 2433 2434 ret = vmbus_sendpacket(hdev->channel, &pkt, sizeof(pkt), 0, 2435 VM_PKT_DATA_INBAND, 0); 2436 if (ret) 2437 return ret; 2438 } 2439 2440 return 0; 2441 } 2442 2443 static void get_hvpcibus(struct hv_pcibus_device *hbus) 2444 { 2445 refcount_inc(&hbus->remove_lock); 2446 } 2447 2448 static void put_hvpcibus(struct hv_pcibus_device *hbus) 2449 { 2450 if (refcount_dec_and_test(&hbus->remove_lock)) 2451 complete(&hbus->remove_event); 2452 } 2453 2454 /** 2455 * hv_pci_probe() - New VMBus channel probe, for a root PCI bus 2456 * @hdev: VMBus's tracking struct for this root PCI bus 2457 * @dev_id: Identifies the device itself 2458 * 2459 * Return: 0 on success, -errno on failure 2460 */ 2461 static int hv_pci_probe(struct hv_device *hdev, 2462 const struct hv_vmbus_device_id *dev_id) 2463 { 2464 struct hv_pcibus_device *hbus; 2465 int ret; 2466 2467 /* 2468 * hv_pcibus_device contains the hypercall arguments for retargeting in 2469 * hv_irq_unmask(). Those must not cross a page boundary. 2470 */ 2471 BUILD_BUG_ON(sizeof(*hbus) > PAGE_SIZE); 2472 2473 hbus = (struct hv_pcibus_device *)get_zeroed_page(GFP_KERNEL); 2474 if (!hbus) 2475 return -ENOMEM; 2476 hbus->state = hv_pcibus_init; 2477 2478 /* 2479 * The PCI bus "domain" is what is called "segment" in ACPI and 2480 * other specs. Pull it from the instance ID, to get something 2481 * unique. Bytes 8 and 9 are what is used in Windows guests, so 2482 * do the same thing for consistency. Note that, since this code 2483 * only runs in a Hyper-V VM, Hyper-V can (and does) guarantee 2484 * that (1) the only domain in use for something that looks like 2485 * a physical PCI bus (which is actually emulated by the 2486 * hypervisor) is domain 0 and (2) there will be no overlap 2487 * between domains derived from these instance IDs in the same 2488 * VM. 2489 */ 2490 hbus->sysdata.domain = hdev->dev_instance.b[9] | 2491 hdev->dev_instance.b[8] << 8; 2492 2493 hbus->hdev = hdev; 2494 refcount_set(&hbus->remove_lock, 1); 2495 INIT_LIST_HEAD(&hbus->children); 2496 INIT_LIST_HEAD(&hbus->dr_list); 2497 INIT_LIST_HEAD(&hbus->resources_for_children); 2498 spin_lock_init(&hbus->config_lock); 2499 spin_lock_init(&hbus->device_list_lock); 2500 spin_lock_init(&hbus->retarget_msi_interrupt_lock); 2501 init_completion(&hbus->remove_event); 2502 hbus->wq = alloc_ordered_workqueue("hv_pci_%x", 0, 2503 hbus->sysdata.domain); 2504 if (!hbus->wq) { 2505 ret = -ENOMEM; 2506 goto free_bus; 2507 } 2508 2509 ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0, 2510 hv_pci_onchannelcallback, hbus); 2511 if (ret) 2512 goto destroy_wq; 2513 2514 hv_set_drvdata(hdev, hbus); 2515 2516 ret = hv_pci_protocol_negotiation(hdev); 2517 if (ret) 2518 goto close; 2519 2520 ret = hv_allocate_config_window(hbus); 2521 if (ret) 2522 goto close; 2523 2524 hbus->cfg_addr = ioremap(hbus->mem_config->start, 2525 PCI_CONFIG_MMIO_LENGTH); 2526 if (!hbus->cfg_addr) { 2527 dev_err(&hdev->device, 2528 "Unable to map a virtual address for config space\n"); 2529 ret = -ENOMEM; 2530 goto free_config; 2531 } 2532 2533 hbus->sysdata.fwnode = irq_domain_alloc_fwnode(hbus); 2534 if (!hbus->sysdata.fwnode) { 2535 ret = -ENOMEM; 2536 goto unmap; 2537 } 2538 2539 ret = hv_pcie_init_irq_domain(hbus); 2540 if (ret) 2541 goto free_fwnode; 2542 2543 ret = hv_pci_query_relations(hdev); 2544 if (ret) 2545 goto free_irq_domain; 2546 2547 ret = hv_pci_enter_d0(hdev); 2548 if (ret) 2549 goto free_irq_domain; 2550 2551 ret = hv_pci_allocate_bridge_windows(hbus); 2552 if (ret) 2553 goto free_irq_domain; 2554 2555 ret = hv_send_resources_allocated(hdev); 2556 if (ret) 2557 goto free_windows; 2558 2559 prepopulate_bars(hbus); 2560 2561 hbus->state = hv_pcibus_probed; 2562 2563 ret = create_root_hv_pci_bus(hbus); 2564 if (ret) 2565 goto free_windows; 2566 2567 return 0; 2568 2569 free_windows: 2570 hv_pci_free_bridge_windows(hbus); 2571 free_irq_domain: 2572 irq_domain_remove(hbus->irq_domain); 2573 free_fwnode: 2574 irq_domain_free_fwnode(hbus->sysdata.fwnode); 2575 unmap: 2576 iounmap(hbus->cfg_addr); 2577 free_config: 2578 hv_free_config_window(hbus); 2579 close: 2580 vmbus_close(hdev->channel); 2581 destroy_wq: 2582 destroy_workqueue(hbus->wq); 2583 free_bus: 2584 free_page((unsigned long)hbus); 2585 return ret; 2586 } 2587 2588 static void hv_pci_bus_exit(struct hv_device *hdev) 2589 { 2590 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 2591 struct { 2592 struct pci_packet teardown_packet; 2593 u8 buffer[sizeof(struct pci_message)]; 2594 } pkt; 2595 struct pci_bus_relations relations; 2596 struct hv_pci_compl comp_pkt; 2597 int ret; 2598 2599 /* 2600 * After the host sends the RESCIND_CHANNEL message, it doesn't 2601 * access the per-channel ringbuffer any longer. 2602 */ 2603 if (hdev->channel->rescind) 2604 return; 2605 2606 /* Delete any children which might still exist. */ 2607 memset(&relations, 0, sizeof(relations)); 2608 hv_pci_devices_present(hbus, &relations); 2609 2610 ret = hv_send_resources_released(hdev); 2611 if (ret) 2612 dev_err(&hdev->device, 2613 "Couldn't send resources released packet(s)\n"); 2614 2615 memset(&pkt.teardown_packet, 0, sizeof(pkt.teardown_packet)); 2616 init_completion(&comp_pkt.host_event); 2617 pkt.teardown_packet.completion_func = hv_pci_generic_compl; 2618 pkt.teardown_packet.compl_ctxt = &comp_pkt; 2619 pkt.teardown_packet.message[0].type = PCI_BUS_D0EXIT; 2620 2621 ret = vmbus_sendpacket(hdev->channel, &pkt.teardown_packet.message, 2622 sizeof(struct pci_message), 2623 (unsigned long)&pkt.teardown_packet, 2624 VM_PKT_DATA_INBAND, 2625 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 2626 if (!ret) 2627 wait_for_completion_timeout(&comp_pkt.host_event, 10 * HZ); 2628 } 2629 2630 /** 2631 * hv_pci_remove() - Remove routine for this VMBus channel 2632 * @hdev: VMBus's tracking struct for this root PCI bus 2633 * 2634 * Return: 0 on success, -errno on failure 2635 */ 2636 static int hv_pci_remove(struct hv_device *hdev) 2637 { 2638 struct hv_pcibus_device *hbus; 2639 2640 hbus = hv_get_drvdata(hdev); 2641 if (hbus->state == hv_pcibus_installed) { 2642 /* Remove the bus from PCI's point of view. */ 2643 pci_lock_rescan_remove(); 2644 pci_stop_root_bus(hbus->pci_bus); 2645 pci_remove_root_bus(hbus->pci_bus); 2646 pci_unlock_rescan_remove(); 2647 hbus->state = hv_pcibus_removed; 2648 } 2649 2650 hv_pci_bus_exit(hdev); 2651 2652 vmbus_close(hdev->channel); 2653 2654 iounmap(hbus->cfg_addr); 2655 hv_free_config_window(hbus); 2656 pci_free_resource_list(&hbus->resources_for_children); 2657 hv_pci_free_bridge_windows(hbus); 2658 irq_domain_remove(hbus->irq_domain); 2659 irq_domain_free_fwnode(hbus->sysdata.fwnode); 2660 put_hvpcibus(hbus); 2661 wait_for_completion(&hbus->remove_event); 2662 destroy_workqueue(hbus->wq); 2663 free_page((unsigned long)hbus); 2664 return 0; 2665 } 2666 2667 static const struct hv_vmbus_device_id hv_pci_id_table[] = { 2668 /* PCI Pass-through Class ID */ 2669 /* 44C4F61D-4444-4400-9D52-802E27EDE19F */ 2670 { HV_PCIE_GUID, }, 2671 { }, 2672 }; 2673 2674 MODULE_DEVICE_TABLE(vmbus, hv_pci_id_table); 2675 2676 static struct hv_driver hv_pci_drv = { 2677 .name = "hv_pci", 2678 .id_table = hv_pci_id_table, 2679 .probe = hv_pci_probe, 2680 .remove = hv_pci_remove, 2681 }; 2682 2683 static void __exit exit_hv_pci_drv(void) 2684 { 2685 vmbus_driver_unregister(&hv_pci_drv); 2686 } 2687 2688 static int __init init_hv_pci_drv(void) 2689 { 2690 return vmbus_driver_register(&hv_pci_drv); 2691 } 2692 2693 module_init(init_hv_pci_drv); 2694 module_exit(exit_hv_pci_drv); 2695 2696 MODULE_DESCRIPTION("Hyper-V PCI"); 2697 MODULE_LICENSE("GPL v2"); 2698