1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) Microsoft Corporation.
4  *
5  * Author:
6  *   Jake Oshins <jakeo@microsoft.com>
7  *
8  * This driver acts as a paravirtual front-end for PCI Express root buses.
9  * When a PCI Express function (either an entire device or an SR-IOV
10  * Virtual Function) is being passed through to the VM, this driver exposes
11  * a new bus to the guest VM.  This is modeled as a root PCI bus because
12  * no bridges are being exposed to the VM.  In fact, with a "Generation 2"
13  * VM within Hyper-V, there may seem to be no PCI bus at all in the VM
14  * until a device as been exposed using this driver.
15  *
16  * Each root PCI bus has its own PCI domain, which is called "Segment" in
17  * the PCI Firmware Specifications.  Thus while each device passed through
18  * to the VM using this front-end will appear at "device 0", the domain will
19  * be unique.  Typically, each bus will have one PCI function on it, though
20  * this driver does support more than one.
21  *
22  * In order to map the interrupts from the device through to the guest VM,
23  * this driver also implements an IRQ Domain, which handles interrupts (either
24  * MSI or MSI-X) associated with the functions on the bus.  As interrupts are
25  * set up, torn down, or reaffined, this driver communicates with the
26  * underlying hypervisor to adjust the mappings in the I/O MMU so that each
27  * interrupt will be delivered to the correct virtual processor at the right
28  * vector.  This driver does not support level-triggered (line-based)
29  * interrupts, and will report that the Interrupt Line register in the
30  * function's configuration space is zero.
31  *
32  * The rest of this driver mostly maps PCI concepts onto underlying Hyper-V
33  * facilities.  For instance, the configuration space of a function exposed
34  * by Hyper-V is mapped into a single page of memory space, and the
35  * read and write handlers for config space must be aware of this mechanism.
36  * Similarly, device setup and teardown involves messages sent to and from
37  * the PCI back-end driver in Hyper-V.
38  */
39 
40 #include <linux/kernel.h>
41 #include <linux/module.h>
42 #include <linux/pci.h>
43 #include <linux/pci-ecam.h>
44 #include <linux/delay.h>
45 #include <linux/semaphore.h>
46 #include <linux/irq.h>
47 #include <linux/msi.h>
48 #include <linux/hyperv.h>
49 #include <linux/refcount.h>
50 #include <linux/irqdomain.h>
51 #include <linux/acpi.h>
52 #include <asm/mshyperv.h>
53 
54 /*
55  * Protocol versions. The low word is the minor version, the high word the
56  * major version.
57  */
58 
59 #define PCI_MAKE_VERSION(major, minor) ((u32)(((major) << 16) | (minor)))
60 #define PCI_MAJOR_VERSION(version) ((u32)(version) >> 16)
61 #define PCI_MINOR_VERSION(version) ((u32)(version) & 0xff)
62 
63 enum pci_protocol_version_t {
64 	PCI_PROTOCOL_VERSION_1_1 = PCI_MAKE_VERSION(1, 1),	/* Win10 */
65 	PCI_PROTOCOL_VERSION_1_2 = PCI_MAKE_VERSION(1, 2),	/* RS1 */
66 	PCI_PROTOCOL_VERSION_1_3 = PCI_MAKE_VERSION(1, 3),	/* Vibranium */
67 	PCI_PROTOCOL_VERSION_1_4 = PCI_MAKE_VERSION(1, 4),	/* WS2022 */
68 };
69 
70 #define CPU_AFFINITY_ALL	-1ULL
71 
72 /*
73  * Supported protocol versions in the order of probing - highest go
74  * first.
75  */
76 static enum pci_protocol_version_t pci_protocol_versions[] = {
77 	PCI_PROTOCOL_VERSION_1_4,
78 	PCI_PROTOCOL_VERSION_1_3,
79 	PCI_PROTOCOL_VERSION_1_2,
80 	PCI_PROTOCOL_VERSION_1_1,
81 };
82 
83 #define PCI_CONFIG_MMIO_LENGTH	0x2000
84 #define CFG_PAGE_OFFSET 0x1000
85 #define CFG_PAGE_SIZE (PCI_CONFIG_MMIO_LENGTH - CFG_PAGE_OFFSET)
86 
87 #define MAX_SUPPORTED_MSI_MESSAGES 0x400
88 
89 #define STATUS_REVISION_MISMATCH 0xC0000059
90 
91 /* space for 32bit serial number as string */
92 #define SLOT_NAME_SIZE 11
93 
94 /*
95  * Size of requestor for VMbus; the value is based on the observation
96  * that having more than one request outstanding is 'rare', and so 64
97  * should be generous in ensuring that we don't ever run out.
98  */
99 #define HV_PCI_RQSTOR_SIZE 64
100 
101 /*
102  * Message Types
103  */
104 
105 enum pci_message_type {
106 	/*
107 	 * Version 1.1
108 	 */
109 	PCI_MESSAGE_BASE                = 0x42490000,
110 	PCI_BUS_RELATIONS               = PCI_MESSAGE_BASE + 0,
111 	PCI_QUERY_BUS_RELATIONS         = PCI_MESSAGE_BASE + 1,
112 	PCI_POWER_STATE_CHANGE          = PCI_MESSAGE_BASE + 4,
113 	PCI_QUERY_RESOURCE_REQUIREMENTS = PCI_MESSAGE_BASE + 5,
114 	PCI_QUERY_RESOURCE_RESOURCES    = PCI_MESSAGE_BASE + 6,
115 	PCI_BUS_D0ENTRY                 = PCI_MESSAGE_BASE + 7,
116 	PCI_BUS_D0EXIT                  = PCI_MESSAGE_BASE + 8,
117 	PCI_READ_BLOCK                  = PCI_MESSAGE_BASE + 9,
118 	PCI_WRITE_BLOCK                 = PCI_MESSAGE_BASE + 0xA,
119 	PCI_EJECT                       = PCI_MESSAGE_BASE + 0xB,
120 	PCI_QUERY_STOP                  = PCI_MESSAGE_BASE + 0xC,
121 	PCI_REENABLE                    = PCI_MESSAGE_BASE + 0xD,
122 	PCI_QUERY_STOP_FAILED           = PCI_MESSAGE_BASE + 0xE,
123 	PCI_EJECTION_COMPLETE           = PCI_MESSAGE_BASE + 0xF,
124 	PCI_RESOURCES_ASSIGNED          = PCI_MESSAGE_BASE + 0x10,
125 	PCI_RESOURCES_RELEASED          = PCI_MESSAGE_BASE + 0x11,
126 	PCI_INVALIDATE_BLOCK            = PCI_MESSAGE_BASE + 0x12,
127 	PCI_QUERY_PROTOCOL_VERSION      = PCI_MESSAGE_BASE + 0x13,
128 	PCI_CREATE_INTERRUPT_MESSAGE    = PCI_MESSAGE_BASE + 0x14,
129 	PCI_DELETE_INTERRUPT_MESSAGE    = PCI_MESSAGE_BASE + 0x15,
130 	PCI_RESOURCES_ASSIGNED2		= PCI_MESSAGE_BASE + 0x16,
131 	PCI_CREATE_INTERRUPT_MESSAGE2	= PCI_MESSAGE_BASE + 0x17,
132 	PCI_DELETE_INTERRUPT_MESSAGE2	= PCI_MESSAGE_BASE + 0x18, /* unused */
133 	PCI_BUS_RELATIONS2		= PCI_MESSAGE_BASE + 0x19,
134 	PCI_RESOURCES_ASSIGNED3         = PCI_MESSAGE_BASE + 0x1A,
135 	PCI_CREATE_INTERRUPT_MESSAGE3   = PCI_MESSAGE_BASE + 0x1B,
136 	PCI_MESSAGE_MAXIMUM
137 };
138 
139 /*
140  * Structures defining the virtual PCI Express protocol.
141  */
142 
143 union pci_version {
144 	struct {
145 		u16 minor_version;
146 		u16 major_version;
147 	} parts;
148 	u32 version;
149 } __packed;
150 
151 /*
152  * Function numbers are 8-bits wide on Express, as interpreted through ARI,
153  * which is all this driver does.  This representation is the one used in
154  * Windows, which is what is expected when sending this back and forth with
155  * the Hyper-V parent partition.
156  */
157 union win_slot_encoding {
158 	struct {
159 		u32	dev:5;
160 		u32	func:3;
161 		u32	reserved:24;
162 	} bits;
163 	u32 slot;
164 } __packed;
165 
166 /*
167  * Pretty much as defined in the PCI Specifications.
168  */
169 struct pci_function_description {
170 	u16	v_id;	/* vendor ID */
171 	u16	d_id;	/* device ID */
172 	u8	rev;
173 	u8	prog_intf;
174 	u8	subclass;
175 	u8	base_class;
176 	u32	subsystem_id;
177 	union win_slot_encoding win_slot;
178 	u32	ser;	/* serial number */
179 } __packed;
180 
181 enum pci_device_description_flags {
182 	HV_PCI_DEVICE_FLAG_NONE			= 0x0,
183 	HV_PCI_DEVICE_FLAG_NUMA_AFFINITY	= 0x1,
184 };
185 
186 struct pci_function_description2 {
187 	u16	v_id;	/* vendor ID */
188 	u16	d_id;	/* device ID */
189 	u8	rev;
190 	u8	prog_intf;
191 	u8	subclass;
192 	u8	base_class;
193 	u32	subsystem_id;
194 	union	win_slot_encoding win_slot;
195 	u32	ser;	/* serial number */
196 	u32	flags;
197 	u16	virtual_numa_node;
198 	u16	reserved;
199 } __packed;
200 
201 /**
202  * struct hv_msi_desc
203  * @vector:		IDT entry
204  * @delivery_mode:	As defined in Intel's Programmer's
205  *			Reference Manual, Volume 3, Chapter 8.
206  * @vector_count:	Number of contiguous entries in the
207  *			Interrupt Descriptor Table that are
208  *			occupied by this Message-Signaled
209  *			Interrupt. For "MSI", as first defined
210  *			in PCI 2.2, this can be between 1 and
211  *			32. For "MSI-X," as first defined in PCI
212  *			3.0, this must be 1, as each MSI-X table
213  *			entry would have its own descriptor.
214  * @reserved:		Empty space
215  * @cpu_mask:		All the target virtual processors.
216  */
217 struct hv_msi_desc {
218 	u8	vector;
219 	u8	delivery_mode;
220 	u16	vector_count;
221 	u32	reserved;
222 	u64	cpu_mask;
223 } __packed;
224 
225 /**
226  * struct hv_msi_desc2 - 1.2 version of hv_msi_desc
227  * @vector:		IDT entry
228  * @delivery_mode:	As defined in Intel's Programmer's
229  *			Reference Manual, Volume 3, Chapter 8.
230  * @vector_count:	Number of contiguous entries in the
231  *			Interrupt Descriptor Table that are
232  *			occupied by this Message-Signaled
233  *			Interrupt. For "MSI", as first defined
234  *			in PCI 2.2, this can be between 1 and
235  *			32. For "MSI-X," as first defined in PCI
236  *			3.0, this must be 1, as each MSI-X table
237  *			entry would have its own descriptor.
238  * @processor_count:	number of bits enabled in array.
239  * @processor_array:	All the target virtual processors.
240  */
241 struct hv_msi_desc2 {
242 	u8	vector;
243 	u8	delivery_mode;
244 	u16	vector_count;
245 	u16	processor_count;
246 	u16	processor_array[32];
247 } __packed;
248 
249 /*
250  * struct hv_msi_desc3 - 1.3 version of hv_msi_desc
251  *	Everything is the same as in 'hv_msi_desc2' except that the size of the
252  *	'vector' field is larger to support bigger vector values. For ex: LPI
253  *	vectors on ARM.
254  */
255 struct hv_msi_desc3 {
256 	u32	vector;
257 	u8	delivery_mode;
258 	u8	reserved;
259 	u16	vector_count;
260 	u16	processor_count;
261 	u16	processor_array[32];
262 } __packed;
263 
264 /**
265  * struct tran_int_desc
266  * @reserved:		unused, padding
267  * @vector_count:	same as in hv_msi_desc
268  * @data:		This is the "data payload" value that is
269  *			written by the device when it generates
270  *			a message-signaled interrupt, either MSI
271  *			or MSI-X.
272  * @address:		This is the address to which the data
273  *			payload is written on interrupt
274  *			generation.
275  */
276 struct tran_int_desc {
277 	u16	reserved;
278 	u16	vector_count;
279 	u32	data;
280 	u64	address;
281 } __packed;
282 
283 /*
284  * A generic message format for virtual PCI.
285  * Specific message formats are defined later in the file.
286  */
287 
288 struct pci_message {
289 	u32 type;
290 } __packed;
291 
292 struct pci_child_message {
293 	struct pci_message message_type;
294 	union win_slot_encoding wslot;
295 } __packed;
296 
297 struct pci_incoming_message {
298 	struct vmpacket_descriptor hdr;
299 	struct pci_message message_type;
300 } __packed;
301 
302 struct pci_response {
303 	struct vmpacket_descriptor hdr;
304 	s32 status;			/* negative values are failures */
305 } __packed;
306 
307 struct pci_packet {
308 	void (*completion_func)(void *context, struct pci_response *resp,
309 				int resp_packet_size);
310 	void *compl_ctxt;
311 
312 	struct pci_message message[];
313 };
314 
315 /*
316  * Specific message types supporting the PCI protocol.
317  */
318 
319 /*
320  * Version negotiation message. Sent from the guest to the host.
321  * The guest is free to try different versions until the host
322  * accepts the version.
323  *
324  * pci_version: The protocol version requested.
325  * is_last_attempt: If TRUE, this is the last version guest will request.
326  * reservedz: Reserved field, set to zero.
327  */
328 
329 struct pci_version_request {
330 	struct pci_message message_type;
331 	u32 protocol_version;
332 } __packed;
333 
334 /*
335  * Bus D0 Entry.  This is sent from the guest to the host when the virtual
336  * bus (PCI Express port) is ready for action.
337  */
338 
339 struct pci_bus_d0_entry {
340 	struct pci_message message_type;
341 	u32 reserved;
342 	u64 mmio_base;
343 } __packed;
344 
345 struct pci_bus_relations {
346 	struct pci_incoming_message incoming;
347 	u32 device_count;
348 	struct pci_function_description func[];
349 } __packed;
350 
351 struct pci_bus_relations2 {
352 	struct pci_incoming_message incoming;
353 	u32 device_count;
354 	struct pci_function_description2 func[];
355 } __packed;
356 
357 struct pci_q_res_req_response {
358 	struct vmpacket_descriptor hdr;
359 	s32 status;			/* negative values are failures */
360 	u32 probed_bar[PCI_STD_NUM_BARS];
361 } __packed;
362 
363 struct pci_set_power {
364 	struct pci_message message_type;
365 	union win_slot_encoding wslot;
366 	u32 power_state;		/* In Windows terms */
367 	u32 reserved;
368 } __packed;
369 
370 struct pci_set_power_response {
371 	struct vmpacket_descriptor hdr;
372 	s32 status;			/* negative values are failures */
373 	union win_slot_encoding wslot;
374 	u32 resultant_state;		/* In Windows terms */
375 	u32 reserved;
376 } __packed;
377 
378 struct pci_resources_assigned {
379 	struct pci_message message_type;
380 	union win_slot_encoding wslot;
381 	u8 memory_range[0x14][6];	/* not used here */
382 	u32 msi_descriptors;
383 	u32 reserved[4];
384 } __packed;
385 
386 struct pci_resources_assigned2 {
387 	struct pci_message message_type;
388 	union win_slot_encoding wslot;
389 	u8 memory_range[0x14][6];	/* not used here */
390 	u32 msi_descriptor_count;
391 	u8 reserved[70];
392 } __packed;
393 
394 struct pci_create_interrupt {
395 	struct pci_message message_type;
396 	union win_slot_encoding wslot;
397 	struct hv_msi_desc int_desc;
398 } __packed;
399 
400 struct pci_create_int_response {
401 	struct pci_response response;
402 	u32 reserved;
403 	struct tran_int_desc int_desc;
404 } __packed;
405 
406 struct pci_create_interrupt2 {
407 	struct pci_message message_type;
408 	union win_slot_encoding wslot;
409 	struct hv_msi_desc2 int_desc;
410 } __packed;
411 
412 struct pci_create_interrupt3 {
413 	struct pci_message message_type;
414 	union win_slot_encoding wslot;
415 	struct hv_msi_desc3 int_desc;
416 } __packed;
417 
418 struct pci_delete_interrupt {
419 	struct pci_message message_type;
420 	union win_slot_encoding wslot;
421 	struct tran_int_desc int_desc;
422 } __packed;
423 
424 /*
425  * Note: the VM must pass a valid block id, wslot and bytes_requested.
426  */
427 struct pci_read_block {
428 	struct pci_message message_type;
429 	u32 block_id;
430 	union win_slot_encoding wslot;
431 	u32 bytes_requested;
432 } __packed;
433 
434 struct pci_read_block_response {
435 	struct vmpacket_descriptor hdr;
436 	u32 status;
437 	u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX];
438 } __packed;
439 
440 /*
441  * Note: the VM must pass a valid block id, wslot and byte_count.
442  */
443 struct pci_write_block {
444 	struct pci_message message_type;
445 	u32 block_id;
446 	union win_slot_encoding wslot;
447 	u32 byte_count;
448 	u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX];
449 } __packed;
450 
451 struct pci_dev_inval_block {
452 	struct pci_incoming_message incoming;
453 	union win_slot_encoding wslot;
454 	u64 block_mask;
455 } __packed;
456 
457 struct pci_dev_incoming {
458 	struct pci_incoming_message incoming;
459 	union win_slot_encoding wslot;
460 } __packed;
461 
462 struct pci_eject_response {
463 	struct pci_message message_type;
464 	union win_slot_encoding wslot;
465 	u32 status;
466 } __packed;
467 
468 static int pci_ring_size = (4 * PAGE_SIZE);
469 
470 /*
471  * Driver specific state.
472  */
473 
474 enum hv_pcibus_state {
475 	hv_pcibus_init = 0,
476 	hv_pcibus_probed,
477 	hv_pcibus_installed,
478 	hv_pcibus_removing,
479 	hv_pcibus_maximum
480 };
481 
482 struct hv_pcibus_device {
483 #ifdef CONFIG_X86
484 	struct pci_sysdata sysdata;
485 #elif defined(CONFIG_ARM64)
486 	struct pci_config_window sysdata;
487 #endif
488 	struct pci_host_bridge *bridge;
489 	struct fwnode_handle *fwnode;
490 	/* Protocol version negotiated with the host */
491 	enum pci_protocol_version_t protocol_version;
492 	enum hv_pcibus_state state;
493 	struct hv_device *hdev;
494 	resource_size_t low_mmio_space;
495 	resource_size_t high_mmio_space;
496 	struct resource *mem_config;
497 	struct resource *low_mmio_res;
498 	struct resource *high_mmio_res;
499 	struct completion *survey_event;
500 	struct pci_bus *pci_bus;
501 	spinlock_t config_lock;	/* Avoid two threads writing index page */
502 	spinlock_t device_list_lock;	/* Protect lists below */
503 	void __iomem *cfg_addr;
504 
505 	struct list_head children;
506 	struct list_head dr_list;
507 
508 	struct msi_domain_info msi_info;
509 	struct irq_domain *irq_domain;
510 
511 	struct workqueue_struct *wq;
512 
513 	/* Highest slot of child device with resources allocated */
514 	int wslot_res_allocated;
515 	bool use_calls; /* Use hypercalls to access mmio cfg space */
516 };
517 
518 /*
519  * Tracks "Device Relations" messages from the host, which must be both
520  * processed in order and deferred so that they don't run in the context
521  * of the incoming packet callback.
522  */
523 struct hv_dr_work {
524 	struct work_struct wrk;
525 	struct hv_pcibus_device *bus;
526 };
527 
528 struct hv_pcidev_description {
529 	u16	v_id;	/* vendor ID */
530 	u16	d_id;	/* device ID */
531 	u8	rev;
532 	u8	prog_intf;
533 	u8	subclass;
534 	u8	base_class;
535 	u32	subsystem_id;
536 	union	win_slot_encoding win_slot;
537 	u32	ser;	/* serial number */
538 	u32	flags;
539 	u16	virtual_numa_node;
540 };
541 
542 struct hv_dr_state {
543 	struct list_head list_entry;
544 	u32 device_count;
545 	struct hv_pcidev_description func[];
546 };
547 
548 enum hv_pcichild_state {
549 	hv_pcichild_init = 0,
550 	hv_pcichild_requirements,
551 	hv_pcichild_resourced,
552 	hv_pcichild_ejecting,
553 	hv_pcichild_maximum
554 };
555 
556 struct hv_pci_dev {
557 	/* List protected by pci_rescan_remove_lock */
558 	struct list_head list_entry;
559 	refcount_t refs;
560 	enum hv_pcichild_state state;
561 	struct pci_slot *pci_slot;
562 	struct hv_pcidev_description desc;
563 	bool reported_missing;
564 	struct hv_pcibus_device *hbus;
565 	struct work_struct wrk;
566 
567 	void (*block_invalidate)(void *context, u64 block_mask);
568 	void *invalidate_context;
569 
570 	/*
571 	 * What would be observed if one wrote 0xFFFFFFFF to a BAR and then
572 	 * read it back, for each of the BAR offsets within config space.
573 	 */
574 	u32 probed_bar[PCI_STD_NUM_BARS];
575 };
576 
577 struct hv_pci_compl {
578 	struct completion host_event;
579 	s32 completion_status;
580 };
581 
582 static void hv_pci_onchannelcallback(void *context);
583 
584 #ifdef CONFIG_X86
585 #define DELIVERY_MODE	APIC_DELIVERY_MODE_FIXED
586 #define FLOW_HANDLER	handle_edge_irq
587 #define FLOW_NAME	"edge"
588 
589 static int hv_pci_irqchip_init(void)
590 {
591 	return 0;
592 }
593 
594 static struct irq_domain *hv_pci_get_root_domain(void)
595 {
596 	return x86_vector_domain;
597 }
598 
599 static unsigned int hv_msi_get_int_vector(struct irq_data *data)
600 {
601 	struct irq_cfg *cfg = irqd_cfg(data);
602 
603 	return cfg->vector;
604 }
605 
606 #define hv_msi_prepare		pci_msi_prepare
607 
608 /**
609  * hv_arch_irq_unmask() - "Unmask" the IRQ by setting its current
610  * affinity.
611  * @data:	Describes the IRQ
612  *
613  * Build new a destination for the MSI and make a hypercall to
614  * update the Interrupt Redirection Table. "Device Logical ID"
615  * is built out of this PCI bus's instance GUID and the function
616  * number of the device.
617  */
618 static void hv_arch_irq_unmask(struct irq_data *data)
619 {
620 	struct msi_desc *msi_desc = irq_data_get_msi_desc(data);
621 	struct hv_retarget_device_interrupt *params;
622 	struct tran_int_desc *int_desc;
623 	struct hv_pcibus_device *hbus;
624 	const struct cpumask *dest;
625 	cpumask_var_t tmp;
626 	struct pci_bus *pbus;
627 	struct pci_dev *pdev;
628 	unsigned long flags;
629 	u32 var_size = 0;
630 	int cpu, nr_bank;
631 	u64 res;
632 
633 	dest = irq_data_get_effective_affinity_mask(data);
634 	pdev = msi_desc_to_pci_dev(msi_desc);
635 	pbus = pdev->bus;
636 	hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
637 	int_desc = data->chip_data;
638 
639 	local_irq_save(flags);
640 
641 	params = *this_cpu_ptr(hyperv_pcpu_input_arg);
642 	memset(params, 0, sizeof(*params));
643 	params->partition_id = HV_PARTITION_ID_SELF;
644 	params->int_entry.source = HV_INTERRUPT_SOURCE_MSI;
645 	params->int_entry.msi_entry.address.as_uint32 = int_desc->address & 0xffffffff;
646 	params->int_entry.msi_entry.data.as_uint32 = int_desc->data;
647 	params->device_id = (hbus->hdev->dev_instance.b[5] << 24) |
648 			   (hbus->hdev->dev_instance.b[4] << 16) |
649 			   (hbus->hdev->dev_instance.b[7] << 8) |
650 			   (hbus->hdev->dev_instance.b[6] & 0xf8) |
651 			   PCI_FUNC(pdev->devfn);
652 	params->int_target.vector = hv_msi_get_int_vector(data);
653 
654 	/*
655 	 * Honoring apic->delivery_mode set to APIC_DELIVERY_MODE_FIXED by
656 	 * setting the HV_DEVICE_INTERRUPT_TARGET_MULTICAST flag results in a
657 	 * spurious interrupt storm. Not doing so does not seem to have a
658 	 * negative effect (yet?).
659 	 */
660 
661 	if (hbus->protocol_version >= PCI_PROTOCOL_VERSION_1_2) {
662 		/*
663 		 * PCI_PROTOCOL_VERSION_1_2 supports the VP_SET version of the
664 		 * HVCALL_RETARGET_INTERRUPT hypercall, which also coincides
665 		 * with >64 VP support.
666 		 * ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED
667 		 * is not sufficient for this hypercall.
668 		 */
669 		params->int_target.flags |=
670 			HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET;
671 
672 		if (!alloc_cpumask_var(&tmp, GFP_ATOMIC)) {
673 			res = 1;
674 			goto out;
675 		}
676 
677 		cpumask_and(tmp, dest, cpu_online_mask);
678 		nr_bank = cpumask_to_vpset(&params->int_target.vp_set, tmp);
679 		free_cpumask_var(tmp);
680 
681 		if (nr_bank <= 0) {
682 			res = 1;
683 			goto out;
684 		}
685 
686 		/*
687 		 * var-sized hypercall, var-size starts after vp_mask (thus
688 		 * vp_set.format does not count, but vp_set.valid_bank_mask
689 		 * does).
690 		 */
691 		var_size = 1 + nr_bank;
692 	} else {
693 		for_each_cpu_and(cpu, dest, cpu_online_mask) {
694 			params->int_target.vp_mask |=
695 				(1ULL << hv_cpu_number_to_vp_number(cpu));
696 		}
697 	}
698 
699 	res = hv_do_hypercall(HVCALL_RETARGET_INTERRUPT | (var_size << 17),
700 			      params, NULL);
701 
702 out:
703 	local_irq_restore(flags);
704 
705 	/*
706 	 * During hibernation, when a CPU is offlined, the kernel tries
707 	 * to move the interrupt to the remaining CPUs that haven't
708 	 * been offlined yet. In this case, the below hv_do_hypercall()
709 	 * always fails since the vmbus channel has been closed:
710 	 * refer to cpu_disable_common() -> fixup_irqs() ->
711 	 * irq_migrate_all_off_this_cpu() -> migrate_one_irq().
712 	 *
713 	 * Suppress the error message for hibernation because the failure
714 	 * during hibernation does not matter (at this time all the devices
715 	 * have been frozen). Note: the correct affinity info is still updated
716 	 * into the irqdata data structure in migrate_one_irq() ->
717 	 * irq_do_set_affinity(), so later when the VM resumes,
718 	 * hv_pci_restore_msi_state() is able to correctly restore the
719 	 * interrupt with the correct affinity.
720 	 */
721 	if (!hv_result_success(res) && hbus->state != hv_pcibus_removing)
722 		dev_err(&hbus->hdev->device,
723 			"%s() failed: %#llx", __func__, res);
724 }
725 #elif defined(CONFIG_ARM64)
726 /*
727  * SPI vectors to use for vPCI; arch SPIs range is [32, 1019], but leaving a bit
728  * of room at the start to allow for SPIs to be specified through ACPI and
729  * starting with a power of two to satisfy power of 2 multi-MSI requirement.
730  */
731 #define HV_PCI_MSI_SPI_START	64
732 #define HV_PCI_MSI_SPI_NR	(1020 - HV_PCI_MSI_SPI_START)
733 #define DELIVERY_MODE		0
734 #define FLOW_HANDLER		NULL
735 #define FLOW_NAME		NULL
736 #define hv_msi_prepare		NULL
737 
738 struct hv_pci_chip_data {
739 	DECLARE_BITMAP(spi_map, HV_PCI_MSI_SPI_NR);
740 	struct mutex	map_lock;
741 };
742 
743 /* Hyper-V vPCI MSI GIC IRQ domain */
744 static struct irq_domain *hv_msi_gic_irq_domain;
745 
746 /* Hyper-V PCI MSI IRQ chip */
747 static struct irq_chip hv_arm64_msi_irq_chip = {
748 	.name = "MSI",
749 	.irq_set_affinity = irq_chip_set_affinity_parent,
750 	.irq_eoi = irq_chip_eoi_parent,
751 	.irq_mask = irq_chip_mask_parent,
752 	.irq_unmask = irq_chip_unmask_parent
753 };
754 
755 static unsigned int hv_msi_get_int_vector(struct irq_data *irqd)
756 {
757 	return irqd->parent_data->hwirq;
758 }
759 
760 /*
761  * @nr_bm_irqs:		Indicates the number of IRQs that were allocated from
762  *			the bitmap.
763  * @nr_dom_irqs:	Indicates the number of IRQs that were allocated from
764  *			the parent domain.
765  */
766 static void hv_pci_vec_irq_free(struct irq_domain *domain,
767 				unsigned int virq,
768 				unsigned int nr_bm_irqs,
769 				unsigned int nr_dom_irqs)
770 {
771 	struct hv_pci_chip_data *chip_data = domain->host_data;
772 	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
773 	int first = d->hwirq - HV_PCI_MSI_SPI_START;
774 	int i;
775 
776 	mutex_lock(&chip_data->map_lock);
777 	bitmap_release_region(chip_data->spi_map,
778 			      first,
779 			      get_count_order(nr_bm_irqs));
780 	mutex_unlock(&chip_data->map_lock);
781 	for (i = 0; i < nr_dom_irqs; i++) {
782 		if (i)
783 			d = irq_domain_get_irq_data(domain, virq + i);
784 		irq_domain_reset_irq_data(d);
785 	}
786 
787 	irq_domain_free_irqs_parent(domain, virq, nr_dom_irqs);
788 }
789 
790 static void hv_pci_vec_irq_domain_free(struct irq_domain *domain,
791 				       unsigned int virq,
792 				       unsigned int nr_irqs)
793 {
794 	hv_pci_vec_irq_free(domain, virq, nr_irqs, nr_irqs);
795 }
796 
797 static int hv_pci_vec_alloc_device_irq(struct irq_domain *domain,
798 				       unsigned int nr_irqs,
799 				       irq_hw_number_t *hwirq)
800 {
801 	struct hv_pci_chip_data *chip_data = domain->host_data;
802 	int index;
803 
804 	/* Find and allocate region from the SPI bitmap */
805 	mutex_lock(&chip_data->map_lock);
806 	index = bitmap_find_free_region(chip_data->spi_map,
807 					HV_PCI_MSI_SPI_NR,
808 					get_count_order(nr_irqs));
809 	mutex_unlock(&chip_data->map_lock);
810 	if (index < 0)
811 		return -ENOSPC;
812 
813 	*hwirq = index + HV_PCI_MSI_SPI_START;
814 
815 	return 0;
816 }
817 
818 static int hv_pci_vec_irq_gic_domain_alloc(struct irq_domain *domain,
819 					   unsigned int virq,
820 					   irq_hw_number_t hwirq)
821 {
822 	struct irq_fwspec fwspec;
823 	struct irq_data *d;
824 	int ret;
825 
826 	fwspec.fwnode = domain->parent->fwnode;
827 	fwspec.param_count = 2;
828 	fwspec.param[0] = hwirq;
829 	fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
830 
831 	ret = irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
832 	if (ret)
833 		return ret;
834 
835 	/*
836 	 * Since the interrupt specifier is not coming from ACPI or DT, the
837 	 * trigger type will need to be set explicitly. Otherwise, it will be
838 	 * set to whatever is in the GIC configuration.
839 	 */
840 	d = irq_domain_get_irq_data(domain->parent, virq);
841 
842 	return d->chip->irq_set_type(d, IRQ_TYPE_EDGE_RISING);
843 }
844 
845 static int hv_pci_vec_irq_domain_alloc(struct irq_domain *domain,
846 				       unsigned int virq, unsigned int nr_irqs,
847 				       void *args)
848 {
849 	irq_hw_number_t hwirq;
850 	unsigned int i;
851 	int ret;
852 
853 	ret = hv_pci_vec_alloc_device_irq(domain, nr_irqs, &hwirq);
854 	if (ret)
855 		return ret;
856 
857 	for (i = 0; i < nr_irqs; i++) {
858 		ret = hv_pci_vec_irq_gic_domain_alloc(domain, virq + i,
859 						      hwirq + i);
860 		if (ret) {
861 			hv_pci_vec_irq_free(domain, virq, nr_irqs, i);
862 			return ret;
863 		}
864 
865 		irq_domain_set_hwirq_and_chip(domain, virq + i,
866 					      hwirq + i,
867 					      &hv_arm64_msi_irq_chip,
868 					      domain->host_data);
869 		pr_debug("pID:%d vID:%u\n", (int)(hwirq + i), virq + i);
870 	}
871 
872 	return 0;
873 }
874 
875 /*
876  * Pick the first cpu as the irq affinity that can be temporarily used for
877  * composing MSI from the hypervisor. GIC will eventually set the right
878  * affinity for the irq and the 'unmask' will retarget the interrupt to that
879  * cpu.
880  */
881 static int hv_pci_vec_irq_domain_activate(struct irq_domain *domain,
882 					  struct irq_data *irqd, bool reserve)
883 {
884 	int cpu = cpumask_first(cpu_present_mask);
885 
886 	irq_data_update_effective_affinity(irqd, cpumask_of(cpu));
887 
888 	return 0;
889 }
890 
891 static const struct irq_domain_ops hv_pci_domain_ops = {
892 	.alloc	= hv_pci_vec_irq_domain_alloc,
893 	.free	= hv_pci_vec_irq_domain_free,
894 	.activate = hv_pci_vec_irq_domain_activate,
895 };
896 
897 static int hv_pci_irqchip_init(void)
898 {
899 	static struct hv_pci_chip_data *chip_data;
900 	struct fwnode_handle *fn = NULL;
901 	int ret = -ENOMEM;
902 
903 	chip_data = kzalloc(sizeof(*chip_data), GFP_KERNEL);
904 	if (!chip_data)
905 		return ret;
906 
907 	mutex_init(&chip_data->map_lock);
908 	fn = irq_domain_alloc_named_fwnode("hv_vpci_arm64");
909 	if (!fn)
910 		goto free_chip;
911 
912 	/*
913 	 * IRQ domain once enabled, should not be removed since there is no
914 	 * way to ensure that all the corresponding devices are also gone and
915 	 * no interrupts will be generated.
916 	 */
917 	hv_msi_gic_irq_domain = acpi_irq_create_hierarchy(0, HV_PCI_MSI_SPI_NR,
918 							  fn, &hv_pci_domain_ops,
919 							  chip_data);
920 
921 	if (!hv_msi_gic_irq_domain) {
922 		pr_err("Failed to create Hyper-V arm64 vPCI MSI IRQ domain\n");
923 		goto free_chip;
924 	}
925 
926 	return 0;
927 
928 free_chip:
929 	kfree(chip_data);
930 	if (fn)
931 		irq_domain_free_fwnode(fn);
932 
933 	return ret;
934 }
935 
936 static struct irq_domain *hv_pci_get_root_domain(void)
937 {
938 	return hv_msi_gic_irq_domain;
939 }
940 
941 /*
942  * SPIs are used for interrupts of PCI devices and SPIs is managed via GICD
943  * registers which Hyper-V already supports, so no hypercall needed.
944  */
945 static void hv_arch_irq_unmask(struct irq_data *data) { }
946 #endif /* CONFIG_ARM64 */
947 
948 /**
949  * hv_pci_generic_compl() - Invoked for a completion packet
950  * @context:		Set up by the sender of the packet.
951  * @resp:		The response packet
952  * @resp_packet_size:	Size in bytes of the packet
953  *
954  * This function is used to trigger an event and report status
955  * for any message for which the completion packet contains a
956  * status and nothing else.
957  */
958 static void hv_pci_generic_compl(void *context, struct pci_response *resp,
959 				 int resp_packet_size)
960 {
961 	struct hv_pci_compl *comp_pkt = context;
962 
963 	comp_pkt->completion_status = resp->status;
964 	complete(&comp_pkt->host_event);
965 }
966 
967 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
968 						u32 wslot);
969 
970 static void get_pcichild(struct hv_pci_dev *hpdev)
971 {
972 	refcount_inc(&hpdev->refs);
973 }
974 
975 static void put_pcichild(struct hv_pci_dev *hpdev)
976 {
977 	if (refcount_dec_and_test(&hpdev->refs))
978 		kfree(hpdev);
979 }
980 
981 /*
982  * There is no good way to get notified from vmbus_onoffer_rescind(),
983  * so let's use polling here, since this is not a hot path.
984  */
985 static int wait_for_response(struct hv_device *hdev,
986 			     struct completion *comp)
987 {
988 	while (true) {
989 		if (hdev->channel->rescind) {
990 			dev_warn_once(&hdev->device, "The device is gone.\n");
991 			return -ENODEV;
992 		}
993 
994 		if (wait_for_completion_timeout(comp, HZ / 10))
995 			break;
996 	}
997 
998 	return 0;
999 }
1000 
1001 /**
1002  * devfn_to_wslot() - Convert from Linux PCI slot to Windows
1003  * @devfn:	The Linux representation of PCI slot
1004  *
1005  * Windows uses a slightly different representation of PCI slot.
1006  *
1007  * Return: The Windows representation
1008  */
1009 static u32 devfn_to_wslot(int devfn)
1010 {
1011 	union win_slot_encoding wslot;
1012 
1013 	wslot.slot = 0;
1014 	wslot.bits.dev = PCI_SLOT(devfn);
1015 	wslot.bits.func = PCI_FUNC(devfn);
1016 
1017 	return wslot.slot;
1018 }
1019 
1020 /**
1021  * wslot_to_devfn() - Convert from Windows PCI slot to Linux
1022  * @wslot:	The Windows representation of PCI slot
1023  *
1024  * Windows uses a slightly different representation of PCI slot.
1025  *
1026  * Return: The Linux representation
1027  */
1028 static int wslot_to_devfn(u32 wslot)
1029 {
1030 	union win_slot_encoding slot_no;
1031 
1032 	slot_no.slot = wslot;
1033 	return PCI_DEVFN(slot_no.bits.dev, slot_no.bits.func);
1034 }
1035 
1036 static void hv_pci_read_mmio(struct device *dev, phys_addr_t gpa, int size, u32 *val)
1037 {
1038 	struct hv_mmio_read_input *in;
1039 	struct hv_mmio_read_output *out;
1040 	u64 ret;
1041 
1042 	/*
1043 	 * Must be called with interrupts disabled so it is safe
1044 	 * to use the per-cpu input argument page.  Use it for
1045 	 * both input and output.
1046 	 */
1047 	in = *this_cpu_ptr(hyperv_pcpu_input_arg);
1048 	out = *this_cpu_ptr(hyperv_pcpu_input_arg) + sizeof(*in);
1049 	in->gpa = gpa;
1050 	in->size = size;
1051 
1052 	ret = hv_do_hypercall(HVCALL_MMIO_READ, in, out);
1053 	if (hv_result_success(ret)) {
1054 		switch (size) {
1055 		case 1:
1056 			*val = *(u8 *)(out->data);
1057 			break;
1058 		case 2:
1059 			*val = *(u16 *)(out->data);
1060 			break;
1061 		default:
1062 			*val = *(u32 *)(out->data);
1063 			break;
1064 		}
1065 	} else
1066 		dev_err(dev, "MMIO read hypercall error %llx addr %llx size %d\n",
1067 				ret, gpa, size);
1068 }
1069 
1070 static void hv_pci_write_mmio(struct device *dev, phys_addr_t gpa, int size, u32 val)
1071 {
1072 	struct hv_mmio_write_input *in;
1073 	u64 ret;
1074 
1075 	/*
1076 	 * Must be called with interrupts disabled so it is safe
1077 	 * to use the per-cpu input argument memory.
1078 	 */
1079 	in = *this_cpu_ptr(hyperv_pcpu_input_arg);
1080 	in->gpa = gpa;
1081 	in->size = size;
1082 	switch (size) {
1083 	case 1:
1084 		*(u8 *)(in->data) = val;
1085 		break;
1086 	case 2:
1087 		*(u16 *)(in->data) = val;
1088 		break;
1089 	default:
1090 		*(u32 *)(in->data) = val;
1091 		break;
1092 	}
1093 
1094 	ret = hv_do_hypercall(HVCALL_MMIO_WRITE, in, NULL);
1095 	if (!hv_result_success(ret))
1096 		dev_err(dev, "MMIO write hypercall error %llx addr %llx size %d\n",
1097 				ret, gpa, size);
1098 }
1099 
1100 /*
1101  * PCI Configuration Space for these root PCI buses is implemented as a pair
1102  * of pages in memory-mapped I/O space.  Writing to the first page chooses
1103  * the PCI function being written or read.  Once the first page has been
1104  * written to, the following page maps in the entire configuration space of
1105  * the function.
1106  */
1107 
1108 /**
1109  * _hv_pcifront_read_config() - Internal PCI config read
1110  * @hpdev:	The PCI driver's representation of the device
1111  * @where:	Offset within config space
1112  * @size:	Size of the transfer
1113  * @val:	Pointer to the buffer receiving the data
1114  */
1115 static void _hv_pcifront_read_config(struct hv_pci_dev *hpdev, int where,
1116 				     int size, u32 *val)
1117 {
1118 	struct hv_pcibus_device *hbus = hpdev->hbus;
1119 	struct device *dev = &hbus->hdev->device;
1120 	int offset = where + CFG_PAGE_OFFSET;
1121 	unsigned long flags;
1122 
1123 	/*
1124 	 * If the attempt is to read the IDs or the ROM BAR, simulate that.
1125 	 */
1126 	if (where + size <= PCI_COMMAND) {
1127 		memcpy(val, ((u8 *)&hpdev->desc.v_id) + where, size);
1128 	} else if (where >= PCI_CLASS_REVISION && where + size <=
1129 		   PCI_CACHE_LINE_SIZE) {
1130 		memcpy(val, ((u8 *)&hpdev->desc.rev) + where -
1131 		       PCI_CLASS_REVISION, size);
1132 	} else if (where >= PCI_SUBSYSTEM_VENDOR_ID && where + size <=
1133 		   PCI_ROM_ADDRESS) {
1134 		memcpy(val, (u8 *)&hpdev->desc.subsystem_id + where -
1135 		       PCI_SUBSYSTEM_VENDOR_ID, size);
1136 	} else if (where >= PCI_ROM_ADDRESS && where + size <=
1137 		   PCI_CAPABILITY_LIST) {
1138 		/* ROM BARs are unimplemented */
1139 		*val = 0;
1140 	} else if (where >= PCI_INTERRUPT_LINE && where + size <=
1141 		   PCI_INTERRUPT_PIN) {
1142 		/*
1143 		 * Interrupt Line and Interrupt PIN are hard-wired to zero
1144 		 * because this front-end only supports message-signaled
1145 		 * interrupts.
1146 		 */
1147 		*val = 0;
1148 	} else if (where + size <= CFG_PAGE_SIZE) {
1149 
1150 		spin_lock_irqsave(&hbus->config_lock, flags);
1151 		if (hbus->use_calls) {
1152 			phys_addr_t addr = hbus->mem_config->start + offset;
1153 
1154 			hv_pci_write_mmio(dev, hbus->mem_config->start, 4,
1155 						hpdev->desc.win_slot.slot);
1156 			hv_pci_read_mmio(dev, addr, size, val);
1157 		} else {
1158 			void __iomem *addr = hbus->cfg_addr + offset;
1159 
1160 			/* Choose the function to be read. (See comment above) */
1161 			writel(hpdev->desc.win_slot.slot, hbus->cfg_addr);
1162 			/* Make sure the function was chosen before reading. */
1163 			mb();
1164 			/* Read from that function's config space. */
1165 			switch (size) {
1166 			case 1:
1167 				*val = readb(addr);
1168 				break;
1169 			case 2:
1170 				*val = readw(addr);
1171 				break;
1172 			default:
1173 				*val = readl(addr);
1174 				break;
1175 			}
1176 			/*
1177 			 * Make sure the read was done before we release the
1178 			 * spinlock allowing consecutive reads/writes.
1179 			 */
1180 			mb();
1181 		}
1182 		spin_unlock_irqrestore(&hbus->config_lock, flags);
1183 	} else {
1184 		dev_err(dev, "Attempt to read beyond a function's config space.\n");
1185 	}
1186 }
1187 
1188 static u16 hv_pcifront_get_vendor_id(struct hv_pci_dev *hpdev)
1189 {
1190 	struct hv_pcibus_device *hbus = hpdev->hbus;
1191 	struct device *dev = &hbus->hdev->device;
1192 	u32 val;
1193 	u16 ret;
1194 	unsigned long flags;
1195 
1196 	spin_lock_irqsave(&hbus->config_lock, flags);
1197 
1198 	if (hbus->use_calls) {
1199 		phys_addr_t addr = hbus->mem_config->start +
1200 					 CFG_PAGE_OFFSET + PCI_VENDOR_ID;
1201 
1202 		hv_pci_write_mmio(dev, hbus->mem_config->start, 4,
1203 					hpdev->desc.win_slot.slot);
1204 		hv_pci_read_mmio(dev, addr, 2, &val);
1205 		ret = val;  /* Truncates to 16 bits */
1206 	} else {
1207 		void __iomem *addr = hbus->cfg_addr + CFG_PAGE_OFFSET +
1208 					     PCI_VENDOR_ID;
1209 		/* Choose the function to be read. (See comment above) */
1210 		writel(hpdev->desc.win_slot.slot, hbus->cfg_addr);
1211 		/* Make sure the function was chosen before we start reading. */
1212 		mb();
1213 		/* Read from that function's config space. */
1214 		ret = readw(addr);
1215 		/*
1216 		 * mb() is not required here, because the
1217 		 * spin_unlock_irqrestore() is a barrier.
1218 		 */
1219 	}
1220 
1221 	spin_unlock_irqrestore(&hbus->config_lock, flags);
1222 
1223 	return ret;
1224 }
1225 
1226 /**
1227  * _hv_pcifront_write_config() - Internal PCI config write
1228  * @hpdev:	The PCI driver's representation of the device
1229  * @where:	Offset within config space
1230  * @size:	Size of the transfer
1231  * @val:	The data being transferred
1232  */
1233 static void _hv_pcifront_write_config(struct hv_pci_dev *hpdev, int where,
1234 				      int size, u32 val)
1235 {
1236 	struct hv_pcibus_device *hbus = hpdev->hbus;
1237 	struct device *dev = &hbus->hdev->device;
1238 	int offset = where + CFG_PAGE_OFFSET;
1239 	unsigned long flags;
1240 
1241 	if (where >= PCI_SUBSYSTEM_VENDOR_ID &&
1242 	    where + size <= PCI_CAPABILITY_LIST) {
1243 		/* SSIDs and ROM BARs are read-only */
1244 	} else if (where >= PCI_COMMAND && where + size <= CFG_PAGE_SIZE) {
1245 		spin_lock_irqsave(&hbus->config_lock, flags);
1246 
1247 		if (hbus->use_calls) {
1248 			phys_addr_t addr = hbus->mem_config->start + offset;
1249 
1250 			hv_pci_write_mmio(dev, hbus->mem_config->start, 4,
1251 						hpdev->desc.win_slot.slot);
1252 			hv_pci_write_mmio(dev, addr, size, val);
1253 		} else {
1254 			void __iomem *addr = hbus->cfg_addr + offset;
1255 
1256 			/* Choose the function to write. (See comment above) */
1257 			writel(hpdev->desc.win_slot.slot, hbus->cfg_addr);
1258 			/* Make sure the function was chosen before writing. */
1259 			wmb();
1260 			/* Write to that function's config space. */
1261 			switch (size) {
1262 			case 1:
1263 				writeb(val, addr);
1264 				break;
1265 			case 2:
1266 				writew(val, addr);
1267 				break;
1268 			default:
1269 				writel(val, addr);
1270 				break;
1271 			}
1272 			/*
1273 			 * Make sure the write was done before we release the
1274 			 * spinlock allowing consecutive reads/writes.
1275 			 */
1276 			mb();
1277 		}
1278 		spin_unlock_irqrestore(&hbus->config_lock, flags);
1279 	} else {
1280 		dev_err(dev, "Attempt to write beyond a function's config space.\n");
1281 	}
1282 }
1283 
1284 /**
1285  * hv_pcifront_read_config() - Read configuration space
1286  * @bus: PCI Bus structure
1287  * @devfn: Device/function
1288  * @where: Offset from base
1289  * @size: Byte/word/dword
1290  * @val: Value to be read
1291  *
1292  * Return: PCIBIOS_SUCCESSFUL on success
1293  *	   PCIBIOS_DEVICE_NOT_FOUND on failure
1294  */
1295 static int hv_pcifront_read_config(struct pci_bus *bus, unsigned int devfn,
1296 				   int where, int size, u32 *val)
1297 {
1298 	struct hv_pcibus_device *hbus =
1299 		container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
1300 	struct hv_pci_dev *hpdev;
1301 
1302 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
1303 	if (!hpdev)
1304 		return PCIBIOS_DEVICE_NOT_FOUND;
1305 
1306 	_hv_pcifront_read_config(hpdev, where, size, val);
1307 
1308 	put_pcichild(hpdev);
1309 	return PCIBIOS_SUCCESSFUL;
1310 }
1311 
1312 /**
1313  * hv_pcifront_write_config() - Write configuration space
1314  * @bus: PCI Bus structure
1315  * @devfn: Device/function
1316  * @where: Offset from base
1317  * @size: Byte/word/dword
1318  * @val: Value to be written to device
1319  *
1320  * Return: PCIBIOS_SUCCESSFUL on success
1321  *	   PCIBIOS_DEVICE_NOT_FOUND on failure
1322  */
1323 static int hv_pcifront_write_config(struct pci_bus *bus, unsigned int devfn,
1324 				    int where, int size, u32 val)
1325 {
1326 	struct hv_pcibus_device *hbus =
1327 	    container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
1328 	struct hv_pci_dev *hpdev;
1329 
1330 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
1331 	if (!hpdev)
1332 		return PCIBIOS_DEVICE_NOT_FOUND;
1333 
1334 	_hv_pcifront_write_config(hpdev, where, size, val);
1335 
1336 	put_pcichild(hpdev);
1337 	return PCIBIOS_SUCCESSFUL;
1338 }
1339 
1340 /* PCIe operations */
1341 static struct pci_ops hv_pcifront_ops = {
1342 	.read  = hv_pcifront_read_config,
1343 	.write = hv_pcifront_write_config,
1344 };
1345 
1346 /*
1347  * Paravirtual backchannel
1348  *
1349  * Hyper-V SR-IOV provides a backchannel mechanism in software for
1350  * communication between a VF driver and a PF driver.  These
1351  * "configuration blocks" are similar in concept to PCI configuration space,
1352  * but instead of doing reads and writes in 32-bit chunks through a very slow
1353  * path, packets of up to 128 bytes can be sent or received asynchronously.
1354  *
1355  * Nearly every SR-IOV device contains just such a communications channel in
1356  * hardware, so using this one in software is usually optional.  Using the
1357  * software channel, however, allows driver implementers to leverage software
1358  * tools that fuzz the communications channel looking for vulnerabilities.
1359  *
1360  * The usage model for these packets puts the responsibility for reading or
1361  * writing on the VF driver.  The VF driver sends a read or a write packet,
1362  * indicating which "block" is being referred to by number.
1363  *
1364  * If the PF driver wishes to initiate communication, it can "invalidate" one or
1365  * more of the first 64 blocks.  This invalidation is delivered via a callback
1366  * supplied by the VF driver by this driver.
1367  *
1368  * No protocol is implied, except that supplied by the PF and VF drivers.
1369  */
1370 
1371 struct hv_read_config_compl {
1372 	struct hv_pci_compl comp_pkt;
1373 	void *buf;
1374 	unsigned int len;
1375 	unsigned int bytes_returned;
1376 };
1377 
1378 /**
1379  * hv_pci_read_config_compl() - Invoked when a response packet
1380  * for a read config block operation arrives.
1381  * @context:		Identifies the read config operation
1382  * @resp:		The response packet itself
1383  * @resp_packet_size:	Size in bytes of the response packet
1384  */
1385 static void hv_pci_read_config_compl(void *context, struct pci_response *resp,
1386 				     int resp_packet_size)
1387 {
1388 	struct hv_read_config_compl *comp = context;
1389 	struct pci_read_block_response *read_resp =
1390 		(struct pci_read_block_response *)resp;
1391 	unsigned int data_len, hdr_len;
1392 
1393 	hdr_len = offsetof(struct pci_read_block_response, bytes);
1394 	if (resp_packet_size < hdr_len) {
1395 		comp->comp_pkt.completion_status = -1;
1396 		goto out;
1397 	}
1398 
1399 	data_len = resp_packet_size - hdr_len;
1400 	if (data_len > 0 && read_resp->status == 0) {
1401 		comp->bytes_returned = min(comp->len, data_len);
1402 		memcpy(comp->buf, read_resp->bytes, comp->bytes_returned);
1403 	} else {
1404 		comp->bytes_returned = 0;
1405 	}
1406 
1407 	comp->comp_pkt.completion_status = read_resp->status;
1408 out:
1409 	complete(&comp->comp_pkt.host_event);
1410 }
1411 
1412 /**
1413  * hv_read_config_block() - Sends a read config block request to
1414  * the back-end driver running in the Hyper-V parent partition.
1415  * @pdev:		The PCI driver's representation for this device.
1416  * @buf:		Buffer into which the config block will be copied.
1417  * @len:		Size in bytes of buf.
1418  * @block_id:		Identifies the config block which has been requested.
1419  * @bytes_returned:	Size which came back from the back-end driver.
1420  *
1421  * Return: 0 on success, -errno on failure
1422  */
1423 static int hv_read_config_block(struct pci_dev *pdev, void *buf,
1424 				unsigned int len, unsigned int block_id,
1425 				unsigned int *bytes_returned)
1426 {
1427 	struct hv_pcibus_device *hbus =
1428 		container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1429 			     sysdata);
1430 	struct {
1431 		struct pci_packet pkt;
1432 		char buf[sizeof(struct pci_read_block)];
1433 	} pkt;
1434 	struct hv_read_config_compl comp_pkt;
1435 	struct pci_read_block *read_blk;
1436 	int ret;
1437 
1438 	if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX)
1439 		return -EINVAL;
1440 
1441 	init_completion(&comp_pkt.comp_pkt.host_event);
1442 	comp_pkt.buf = buf;
1443 	comp_pkt.len = len;
1444 
1445 	memset(&pkt, 0, sizeof(pkt));
1446 	pkt.pkt.completion_func = hv_pci_read_config_compl;
1447 	pkt.pkt.compl_ctxt = &comp_pkt;
1448 	read_blk = (struct pci_read_block *)&pkt.pkt.message;
1449 	read_blk->message_type.type = PCI_READ_BLOCK;
1450 	read_blk->wslot.slot = devfn_to_wslot(pdev->devfn);
1451 	read_blk->block_id = block_id;
1452 	read_blk->bytes_requested = len;
1453 
1454 	ret = vmbus_sendpacket(hbus->hdev->channel, read_blk,
1455 			       sizeof(*read_blk), (unsigned long)&pkt.pkt,
1456 			       VM_PKT_DATA_INBAND,
1457 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1458 	if (ret)
1459 		return ret;
1460 
1461 	ret = wait_for_response(hbus->hdev, &comp_pkt.comp_pkt.host_event);
1462 	if (ret)
1463 		return ret;
1464 
1465 	if (comp_pkt.comp_pkt.completion_status != 0 ||
1466 	    comp_pkt.bytes_returned == 0) {
1467 		dev_err(&hbus->hdev->device,
1468 			"Read Config Block failed: 0x%x, bytes_returned=%d\n",
1469 			comp_pkt.comp_pkt.completion_status,
1470 			comp_pkt.bytes_returned);
1471 		return -EIO;
1472 	}
1473 
1474 	*bytes_returned = comp_pkt.bytes_returned;
1475 	return 0;
1476 }
1477 
1478 /**
1479  * hv_pci_write_config_compl() - Invoked when a response packet for a write
1480  * config block operation arrives.
1481  * @context:		Identifies the write config operation
1482  * @resp:		The response packet itself
1483  * @resp_packet_size:	Size in bytes of the response packet
1484  */
1485 static void hv_pci_write_config_compl(void *context, struct pci_response *resp,
1486 				      int resp_packet_size)
1487 {
1488 	struct hv_pci_compl *comp_pkt = context;
1489 
1490 	comp_pkt->completion_status = resp->status;
1491 	complete(&comp_pkt->host_event);
1492 }
1493 
1494 /**
1495  * hv_write_config_block() - Sends a write config block request to the
1496  * back-end driver running in the Hyper-V parent partition.
1497  * @pdev:		The PCI driver's representation for this device.
1498  * @buf:		Buffer from which the config block will	be copied.
1499  * @len:		Size in bytes of buf.
1500  * @block_id:		Identifies the config block which is being written.
1501  *
1502  * Return: 0 on success, -errno on failure
1503  */
1504 static int hv_write_config_block(struct pci_dev *pdev, void *buf,
1505 				unsigned int len, unsigned int block_id)
1506 {
1507 	struct hv_pcibus_device *hbus =
1508 		container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1509 			     sysdata);
1510 	struct {
1511 		struct pci_packet pkt;
1512 		char buf[sizeof(struct pci_write_block)];
1513 		u32 reserved;
1514 	} pkt;
1515 	struct hv_pci_compl comp_pkt;
1516 	struct pci_write_block *write_blk;
1517 	u32 pkt_size;
1518 	int ret;
1519 
1520 	if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX)
1521 		return -EINVAL;
1522 
1523 	init_completion(&comp_pkt.host_event);
1524 
1525 	memset(&pkt, 0, sizeof(pkt));
1526 	pkt.pkt.completion_func = hv_pci_write_config_compl;
1527 	pkt.pkt.compl_ctxt = &comp_pkt;
1528 	write_blk = (struct pci_write_block *)&pkt.pkt.message;
1529 	write_blk->message_type.type = PCI_WRITE_BLOCK;
1530 	write_blk->wslot.slot = devfn_to_wslot(pdev->devfn);
1531 	write_blk->block_id = block_id;
1532 	write_blk->byte_count = len;
1533 	memcpy(write_blk->bytes, buf, len);
1534 	pkt_size = offsetof(struct pci_write_block, bytes) + len;
1535 	/*
1536 	 * This quirk is required on some hosts shipped around 2018, because
1537 	 * these hosts don't check the pkt_size correctly (new hosts have been
1538 	 * fixed since early 2019). The quirk is also safe on very old hosts
1539 	 * and new hosts, because, on them, what really matters is the length
1540 	 * specified in write_blk->byte_count.
1541 	 */
1542 	pkt_size += sizeof(pkt.reserved);
1543 
1544 	ret = vmbus_sendpacket(hbus->hdev->channel, write_blk, pkt_size,
1545 			       (unsigned long)&pkt.pkt, VM_PKT_DATA_INBAND,
1546 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1547 	if (ret)
1548 		return ret;
1549 
1550 	ret = wait_for_response(hbus->hdev, &comp_pkt.host_event);
1551 	if (ret)
1552 		return ret;
1553 
1554 	if (comp_pkt.completion_status != 0) {
1555 		dev_err(&hbus->hdev->device,
1556 			"Write Config Block failed: 0x%x\n",
1557 			comp_pkt.completion_status);
1558 		return -EIO;
1559 	}
1560 
1561 	return 0;
1562 }
1563 
1564 /**
1565  * hv_register_block_invalidate() - Invoked when a config block invalidation
1566  * arrives from the back-end driver.
1567  * @pdev:		The PCI driver's representation for this device.
1568  * @context:		Identifies the device.
1569  * @block_invalidate:	Identifies all of the blocks being invalidated.
1570  *
1571  * Return: 0 on success, -errno on failure
1572  */
1573 static int hv_register_block_invalidate(struct pci_dev *pdev, void *context,
1574 					void (*block_invalidate)(void *context,
1575 								 u64 block_mask))
1576 {
1577 	struct hv_pcibus_device *hbus =
1578 		container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1579 			     sysdata);
1580 	struct hv_pci_dev *hpdev;
1581 
1582 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1583 	if (!hpdev)
1584 		return -ENODEV;
1585 
1586 	hpdev->block_invalidate = block_invalidate;
1587 	hpdev->invalidate_context = context;
1588 
1589 	put_pcichild(hpdev);
1590 	return 0;
1591 
1592 }
1593 
1594 /* Interrupt management hooks */
1595 static void hv_int_desc_free(struct hv_pci_dev *hpdev,
1596 			     struct tran_int_desc *int_desc)
1597 {
1598 	struct pci_delete_interrupt *int_pkt;
1599 	struct {
1600 		struct pci_packet pkt;
1601 		u8 buffer[sizeof(struct pci_delete_interrupt)];
1602 	} ctxt;
1603 
1604 	if (!int_desc->vector_count) {
1605 		kfree(int_desc);
1606 		return;
1607 	}
1608 	memset(&ctxt, 0, sizeof(ctxt));
1609 	int_pkt = (struct pci_delete_interrupt *)&ctxt.pkt.message;
1610 	int_pkt->message_type.type =
1611 		PCI_DELETE_INTERRUPT_MESSAGE;
1612 	int_pkt->wslot.slot = hpdev->desc.win_slot.slot;
1613 	int_pkt->int_desc = *int_desc;
1614 	vmbus_sendpacket(hpdev->hbus->hdev->channel, int_pkt, sizeof(*int_pkt),
1615 			 0, VM_PKT_DATA_INBAND, 0);
1616 	kfree(int_desc);
1617 }
1618 
1619 /**
1620  * hv_msi_free() - Free the MSI.
1621  * @domain:	The interrupt domain pointer
1622  * @info:	Extra MSI-related context
1623  * @irq:	Identifies the IRQ.
1624  *
1625  * The Hyper-V parent partition and hypervisor are tracking the
1626  * messages that are in use, keeping the interrupt redirection
1627  * table up to date.  This callback sends a message that frees
1628  * the IRT entry and related tracking nonsense.
1629  */
1630 static void hv_msi_free(struct irq_domain *domain, struct msi_domain_info *info,
1631 			unsigned int irq)
1632 {
1633 	struct hv_pcibus_device *hbus;
1634 	struct hv_pci_dev *hpdev;
1635 	struct pci_dev *pdev;
1636 	struct tran_int_desc *int_desc;
1637 	struct irq_data *irq_data = irq_domain_get_irq_data(domain, irq);
1638 	struct msi_desc *msi = irq_data_get_msi_desc(irq_data);
1639 
1640 	pdev = msi_desc_to_pci_dev(msi);
1641 	hbus = info->data;
1642 	int_desc = irq_data_get_irq_chip_data(irq_data);
1643 	if (!int_desc)
1644 		return;
1645 
1646 	irq_data->chip_data = NULL;
1647 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1648 	if (!hpdev) {
1649 		kfree(int_desc);
1650 		return;
1651 	}
1652 
1653 	hv_int_desc_free(hpdev, int_desc);
1654 	put_pcichild(hpdev);
1655 }
1656 
1657 static void hv_irq_mask(struct irq_data *data)
1658 {
1659 	pci_msi_mask_irq(data);
1660 	if (data->parent_data->chip->irq_mask)
1661 		irq_chip_mask_parent(data);
1662 }
1663 
1664 static void hv_irq_unmask(struct irq_data *data)
1665 {
1666 	hv_arch_irq_unmask(data);
1667 
1668 	if (data->parent_data->chip->irq_unmask)
1669 		irq_chip_unmask_parent(data);
1670 	pci_msi_unmask_irq(data);
1671 }
1672 
1673 struct compose_comp_ctxt {
1674 	struct hv_pci_compl comp_pkt;
1675 	struct tran_int_desc int_desc;
1676 };
1677 
1678 static void hv_pci_compose_compl(void *context, struct pci_response *resp,
1679 				 int resp_packet_size)
1680 {
1681 	struct compose_comp_ctxt *comp_pkt = context;
1682 	struct pci_create_int_response *int_resp =
1683 		(struct pci_create_int_response *)resp;
1684 
1685 	if (resp_packet_size < sizeof(*int_resp)) {
1686 		comp_pkt->comp_pkt.completion_status = -1;
1687 		goto out;
1688 	}
1689 	comp_pkt->comp_pkt.completion_status = resp->status;
1690 	comp_pkt->int_desc = int_resp->int_desc;
1691 out:
1692 	complete(&comp_pkt->comp_pkt.host_event);
1693 }
1694 
1695 static u32 hv_compose_msi_req_v1(
1696 	struct pci_create_interrupt *int_pkt,
1697 	u32 slot, u8 vector, u16 vector_count)
1698 {
1699 	int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE;
1700 	int_pkt->wslot.slot = slot;
1701 	int_pkt->int_desc.vector = vector;
1702 	int_pkt->int_desc.vector_count = vector_count;
1703 	int_pkt->int_desc.delivery_mode = DELIVERY_MODE;
1704 
1705 	/*
1706 	 * Create MSI w/ dummy vCPU set, overwritten by subsequent retarget in
1707 	 * hv_irq_unmask().
1708 	 */
1709 	int_pkt->int_desc.cpu_mask = CPU_AFFINITY_ALL;
1710 
1711 	return sizeof(*int_pkt);
1712 }
1713 
1714 /*
1715  * The vCPU selected by hv_compose_multi_msi_req_get_cpu() and
1716  * hv_compose_msi_req_get_cpu() is a "dummy" vCPU because the final vCPU to be
1717  * interrupted is specified later in hv_irq_unmask() and communicated to Hyper-V
1718  * via the HVCALL_RETARGET_INTERRUPT hypercall. But the choice of dummy vCPU is
1719  * not irrelevant because Hyper-V chooses the physical CPU to handle the
1720  * interrupts based on the vCPU specified in message sent to the vPCI VSP in
1721  * hv_compose_msi_msg(). Hyper-V's choice of pCPU is not visible to the guest,
1722  * but assigning too many vPCI device interrupts to the same pCPU can cause a
1723  * performance bottleneck. So we spread out the dummy vCPUs to influence Hyper-V
1724  * to spread out the pCPUs that it selects.
1725  *
1726  * For the single-MSI and MSI-X cases, it's OK for hv_compose_msi_req_get_cpu()
1727  * to always return the same dummy vCPU, because a second call to
1728  * hv_compose_msi_msg() contains the "real" vCPU, causing Hyper-V to choose a
1729  * new pCPU for the interrupt. But for the multi-MSI case, the second call to
1730  * hv_compose_msi_msg() exits without sending a message to the vPCI VSP, so the
1731  * original dummy vCPU is used. This dummy vCPU must be round-robin'ed so that
1732  * the pCPUs are spread out. All interrupts for a multi-MSI device end up using
1733  * the same pCPU, even though the vCPUs will be spread out by later calls
1734  * to hv_irq_unmask(), but that is the best we can do now.
1735  *
1736  * With Hyper-V in Nov 2022, the HVCALL_RETARGET_INTERRUPT hypercall does *not*
1737  * cause Hyper-V to reselect the pCPU based on the specified vCPU. Such an
1738  * enhancement is planned for a future version. With that enhancement, the
1739  * dummy vCPU selection won't matter, and interrupts for the same multi-MSI
1740  * device will be spread across multiple pCPUs.
1741  */
1742 
1743 /*
1744  * Create MSI w/ dummy vCPU set targeting just one vCPU, overwritten
1745  * by subsequent retarget in hv_irq_unmask().
1746  */
1747 static int hv_compose_msi_req_get_cpu(const struct cpumask *affinity)
1748 {
1749 	return cpumask_first_and(affinity, cpu_online_mask);
1750 }
1751 
1752 /*
1753  * Make sure the dummy vCPU values for multi-MSI don't all point to vCPU0.
1754  */
1755 static int hv_compose_multi_msi_req_get_cpu(void)
1756 {
1757 	static DEFINE_SPINLOCK(multi_msi_cpu_lock);
1758 
1759 	/* -1 means starting with CPU 0 */
1760 	static int cpu_next = -1;
1761 
1762 	unsigned long flags;
1763 	int cpu;
1764 
1765 	spin_lock_irqsave(&multi_msi_cpu_lock, flags);
1766 
1767 	cpu_next = cpumask_next_wrap(cpu_next, cpu_online_mask, nr_cpu_ids,
1768 				     false);
1769 	cpu = cpu_next;
1770 
1771 	spin_unlock_irqrestore(&multi_msi_cpu_lock, flags);
1772 
1773 	return cpu;
1774 }
1775 
1776 static u32 hv_compose_msi_req_v2(
1777 	struct pci_create_interrupt2 *int_pkt, int cpu,
1778 	u32 slot, u8 vector, u16 vector_count)
1779 {
1780 	int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE2;
1781 	int_pkt->wslot.slot = slot;
1782 	int_pkt->int_desc.vector = vector;
1783 	int_pkt->int_desc.vector_count = vector_count;
1784 	int_pkt->int_desc.delivery_mode = DELIVERY_MODE;
1785 	int_pkt->int_desc.processor_array[0] =
1786 		hv_cpu_number_to_vp_number(cpu);
1787 	int_pkt->int_desc.processor_count = 1;
1788 
1789 	return sizeof(*int_pkt);
1790 }
1791 
1792 static u32 hv_compose_msi_req_v3(
1793 	struct pci_create_interrupt3 *int_pkt, int cpu,
1794 	u32 slot, u32 vector, u16 vector_count)
1795 {
1796 	int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE3;
1797 	int_pkt->wslot.slot = slot;
1798 	int_pkt->int_desc.vector = vector;
1799 	int_pkt->int_desc.reserved = 0;
1800 	int_pkt->int_desc.vector_count = vector_count;
1801 	int_pkt->int_desc.delivery_mode = DELIVERY_MODE;
1802 	int_pkt->int_desc.processor_array[0] =
1803 		hv_cpu_number_to_vp_number(cpu);
1804 	int_pkt->int_desc.processor_count = 1;
1805 
1806 	return sizeof(*int_pkt);
1807 }
1808 
1809 /**
1810  * hv_compose_msi_msg() - Supplies a valid MSI address/data
1811  * @data:	Everything about this MSI
1812  * @msg:	Buffer that is filled in by this function
1813  *
1814  * This function unpacks the IRQ looking for target CPU set, IDT
1815  * vector and mode and sends a message to the parent partition
1816  * asking for a mapping for that tuple in this partition.  The
1817  * response supplies a data value and address to which that data
1818  * should be written to trigger that interrupt.
1819  */
1820 static void hv_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
1821 {
1822 	struct hv_pcibus_device *hbus;
1823 	struct vmbus_channel *channel;
1824 	struct hv_pci_dev *hpdev;
1825 	struct pci_bus *pbus;
1826 	struct pci_dev *pdev;
1827 	const struct cpumask *dest;
1828 	struct compose_comp_ctxt comp;
1829 	struct tran_int_desc *int_desc;
1830 	struct msi_desc *msi_desc;
1831 	/*
1832 	 * vector_count should be u16: see hv_msi_desc, hv_msi_desc2
1833 	 * and hv_msi_desc3. vector must be u32: see hv_msi_desc3.
1834 	 */
1835 	u16 vector_count;
1836 	u32 vector;
1837 	struct {
1838 		struct pci_packet pci_pkt;
1839 		union {
1840 			struct pci_create_interrupt v1;
1841 			struct pci_create_interrupt2 v2;
1842 			struct pci_create_interrupt3 v3;
1843 		} int_pkts;
1844 	} __packed ctxt;
1845 	bool multi_msi;
1846 	u64 trans_id;
1847 	u32 size;
1848 	int ret;
1849 	int cpu;
1850 
1851 	msi_desc  = irq_data_get_msi_desc(data);
1852 	multi_msi = !msi_desc->pci.msi_attrib.is_msix &&
1853 		    msi_desc->nvec_used > 1;
1854 
1855 	/* Reuse the previous allocation */
1856 	if (data->chip_data && multi_msi) {
1857 		int_desc = data->chip_data;
1858 		msg->address_hi = int_desc->address >> 32;
1859 		msg->address_lo = int_desc->address & 0xffffffff;
1860 		msg->data = int_desc->data;
1861 		return;
1862 	}
1863 
1864 	pdev = msi_desc_to_pci_dev(msi_desc);
1865 	dest = irq_data_get_effective_affinity_mask(data);
1866 	pbus = pdev->bus;
1867 	hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
1868 	channel = hbus->hdev->channel;
1869 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1870 	if (!hpdev)
1871 		goto return_null_message;
1872 
1873 	/* Free any previous message that might have already been composed. */
1874 	if (data->chip_data && !multi_msi) {
1875 		int_desc = data->chip_data;
1876 		data->chip_data = NULL;
1877 		hv_int_desc_free(hpdev, int_desc);
1878 	}
1879 
1880 	int_desc = kzalloc(sizeof(*int_desc), GFP_ATOMIC);
1881 	if (!int_desc)
1882 		goto drop_reference;
1883 
1884 	if (multi_msi) {
1885 		/*
1886 		 * If this is not the first MSI of Multi MSI, we already have
1887 		 * a mapping.  Can exit early.
1888 		 */
1889 		if (msi_desc->irq != data->irq) {
1890 			data->chip_data = int_desc;
1891 			int_desc->address = msi_desc->msg.address_lo |
1892 					    (u64)msi_desc->msg.address_hi << 32;
1893 			int_desc->data = msi_desc->msg.data +
1894 					 (data->irq - msi_desc->irq);
1895 			msg->address_hi = msi_desc->msg.address_hi;
1896 			msg->address_lo = msi_desc->msg.address_lo;
1897 			msg->data = int_desc->data;
1898 			put_pcichild(hpdev);
1899 			return;
1900 		}
1901 		/*
1902 		 * The vector we select here is a dummy value.  The correct
1903 		 * value gets sent to the hypervisor in unmask().  This needs
1904 		 * to be aligned with the count, and also not zero.  Multi-msi
1905 		 * is powers of 2 up to 32, so 32 will always work here.
1906 		 */
1907 		vector = 32;
1908 		vector_count = msi_desc->nvec_used;
1909 		cpu = hv_compose_multi_msi_req_get_cpu();
1910 	} else {
1911 		vector = hv_msi_get_int_vector(data);
1912 		vector_count = 1;
1913 		cpu = hv_compose_msi_req_get_cpu(dest);
1914 	}
1915 
1916 	/*
1917 	 * hv_compose_msi_req_v1 and v2 are for x86 only, meaning 'vector'
1918 	 * can't exceed u8. Cast 'vector' down to u8 for v1/v2 explicitly
1919 	 * for better readability.
1920 	 */
1921 	memset(&ctxt, 0, sizeof(ctxt));
1922 	init_completion(&comp.comp_pkt.host_event);
1923 	ctxt.pci_pkt.completion_func = hv_pci_compose_compl;
1924 	ctxt.pci_pkt.compl_ctxt = &comp;
1925 
1926 	switch (hbus->protocol_version) {
1927 	case PCI_PROTOCOL_VERSION_1_1:
1928 		size = hv_compose_msi_req_v1(&ctxt.int_pkts.v1,
1929 					hpdev->desc.win_slot.slot,
1930 					(u8)vector,
1931 					vector_count);
1932 		break;
1933 
1934 	case PCI_PROTOCOL_VERSION_1_2:
1935 	case PCI_PROTOCOL_VERSION_1_3:
1936 		size = hv_compose_msi_req_v2(&ctxt.int_pkts.v2,
1937 					cpu,
1938 					hpdev->desc.win_slot.slot,
1939 					(u8)vector,
1940 					vector_count);
1941 		break;
1942 
1943 	case PCI_PROTOCOL_VERSION_1_4:
1944 		size = hv_compose_msi_req_v3(&ctxt.int_pkts.v3,
1945 					cpu,
1946 					hpdev->desc.win_slot.slot,
1947 					vector,
1948 					vector_count);
1949 		break;
1950 
1951 	default:
1952 		/* As we only negotiate protocol versions known to this driver,
1953 		 * this path should never hit. However, this is it not a hot
1954 		 * path so we print a message to aid future updates.
1955 		 */
1956 		dev_err(&hbus->hdev->device,
1957 			"Unexpected vPCI protocol, update driver.");
1958 		goto free_int_desc;
1959 	}
1960 
1961 	ret = vmbus_sendpacket_getid(hpdev->hbus->hdev->channel, &ctxt.int_pkts,
1962 				     size, (unsigned long)&ctxt.pci_pkt,
1963 				     &trans_id, VM_PKT_DATA_INBAND,
1964 				     VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1965 	if (ret) {
1966 		dev_err(&hbus->hdev->device,
1967 			"Sending request for interrupt failed: 0x%x",
1968 			comp.comp_pkt.completion_status);
1969 		goto free_int_desc;
1970 	}
1971 
1972 	/*
1973 	 * Prevents hv_pci_onchannelcallback() from running concurrently
1974 	 * in the tasklet.
1975 	 */
1976 	tasklet_disable_in_atomic(&channel->callback_event);
1977 
1978 	/*
1979 	 * Since this function is called with IRQ locks held, can't
1980 	 * do normal wait for completion; instead poll.
1981 	 */
1982 	while (!try_wait_for_completion(&comp.comp_pkt.host_event)) {
1983 		unsigned long flags;
1984 
1985 		/* 0xFFFF means an invalid PCI VENDOR ID. */
1986 		if (hv_pcifront_get_vendor_id(hpdev) == 0xFFFF) {
1987 			dev_err_once(&hbus->hdev->device,
1988 				     "the device has gone\n");
1989 			goto enable_tasklet;
1990 		}
1991 
1992 		/*
1993 		 * Make sure that the ring buffer data structure doesn't get
1994 		 * freed while we dereference the ring buffer pointer.  Test
1995 		 * for the channel's onchannel_callback being NULL within a
1996 		 * sched_lock critical section.  See also the inline comments
1997 		 * in vmbus_reset_channel_cb().
1998 		 */
1999 		spin_lock_irqsave(&channel->sched_lock, flags);
2000 		if (unlikely(channel->onchannel_callback == NULL)) {
2001 			spin_unlock_irqrestore(&channel->sched_lock, flags);
2002 			goto enable_tasklet;
2003 		}
2004 		hv_pci_onchannelcallback(hbus);
2005 		spin_unlock_irqrestore(&channel->sched_lock, flags);
2006 
2007 		if (hpdev->state == hv_pcichild_ejecting) {
2008 			dev_err_once(&hbus->hdev->device,
2009 				     "the device is being ejected\n");
2010 			goto enable_tasklet;
2011 		}
2012 
2013 		udelay(100);
2014 	}
2015 
2016 	tasklet_enable(&channel->callback_event);
2017 
2018 	if (comp.comp_pkt.completion_status < 0) {
2019 		dev_err(&hbus->hdev->device,
2020 			"Request for interrupt failed: 0x%x",
2021 			comp.comp_pkt.completion_status);
2022 		goto free_int_desc;
2023 	}
2024 
2025 	/*
2026 	 * Record the assignment so that this can be unwound later. Using
2027 	 * irq_set_chip_data() here would be appropriate, but the lock it takes
2028 	 * is already held.
2029 	 */
2030 	*int_desc = comp.int_desc;
2031 	data->chip_data = int_desc;
2032 
2033 	/* Pass up the result. */
2034 	msg->address_hi = comp.int_desc.address >> 32;
2035 	msg->address_lo = comp.int_desc.address & 0xffffffff;
2036 	msg->data = comp.int_desc.data;
2037 
2038 	put_pcichild(hpdev);
2039 	return;
2040 
2041 enable_tasklet:
2042 	tasklet_enable(&channel->callback_event);
2043 	/*
2044 	 * The completion packet on the stack becomes invalid after 'return';
2045 	 * remove the ID from the VMbus requestor if the identifier is still
2046 	 * mapped to/associated with the packet.  (The identifier could have
2047 	 * been 're-used', i.e., already removed and (re-)mapped.)
2048 	 *
2049 	 * Cf. hv_pci_onchannelcallback().
2050 	 */
2051 	vmbus_request_addr_match(channel, trans_id, (unsigned long)&ctxt.pci_pkt);
2052 free_int_desc:
2053 	kfree(int_desc);
2054 drop_reference:
2055 	put_pcichild(hpdev);
2056 return_null_message:
2057 	msg->address_hi = 0;
2058 	msg->address_lo = 0;
2059 	msg->data = 0;
2060 }
2061 
2062 /* HW Interrupt Chip Descriptor */
2063 static struct irq_chip hv_msi_irq_chip = {
2064 	.name			= "Hyper-V PCIe MSI",
2065 	.irq_compose_msi_msg	= hv_compose_msi_msg,
2066 	.irq_set_affinity	= irq_chip_set_affinity_parent,
2067 #ifdef CONFIG_X86
2068 	.irq_ack		= irq_chip_ack_parent,
2069 #elif defined(CONFIG_ARM64)
2070 	.irq_eoi		= irq_chip_eoi_parent,
2071 #endif
2072 	.irq_mask		= hv_irq_mask,
2073 	.irq_unmask		= hv_irq_unmask,
2074 };
2075 
2076 static struct msi_domain_ops hv_msi_ops = {
2077 	.msi_prepare	= hv_msi_prepare,
2078 	.msi_free	= hv_msi_free,
2079 };
2080 
2081 /**
2082  * hv_pcie_init_irq_domain() - Initialize IRQ domain
2083  * @hbus:	The root PCI bus
2084  *
2085  * This function creates an IRQ domain which will be used for
2086  * interrupts from devices that have been passed through.  These
2087  * devices only support MSI and MSI-X, not line-based interrupts
2088  * or simulations of line-based interrupts through PCIe's
2089  * fabric-layer messages.  Because interrupts are remapped, we
2090  * can support multi-message MSI here.
2091  *
2092  * Return: '0' on success and error value on failure
2093  */
2094 static int hv_pcie_init_irq_domain(struct hv_pcibus_device *hbus)
2095 {
2096 	hbus->msi_info.chip = &hv_msi_irq_chip;
2097 	hbus->msi_info.ops = &hv_msi_ops;
2098 	hbus->msi_info.flags = (MSI_FLAG_USE_DEF_DOM_OPS |
2099 		MSI_FLAG_USE_DEF_CHIP_OPS | MSI_FLAG_MULTI_PCI_MSI |
2100 		MSI_FLAG_PCI_MSIX);
2101 	hbus->msi_info.handler = FLOW_HANDLER;
2102 	hbus->msi_info.handler_name = FLOW_NAME;
2103 	hbus->msi_info.data = hbus;
2104 	hbus->irq_domain = pci_msi_create_irq_domain(hbus->fwnode,
2105 						     &hbus->msi_info,
2106 						     hv_pci_get_root_domain());
2107 	if (!hbus->irq_domain) {
2108 		dev_err(&hbus->hdev->device,
2109 			"Failed to build an MSI IRQ domain\n");
2110 		return -ENODEV;
2111 	}
2112 
2113 	dev_set_msi_domain(&hbus->bridge->dev, hbus->irq_domain);
2114 
2115 	return 0;
2116 }
2117 
2118 /**
2119  * get_bar_size() - Get the address space consumed by a BAR
2120  * @bar_val:	Value that a BAR returned after -1 was written
2121  *              to it.
2122  *
2123  * This function returns the size of the BAR, rounded up to 1
2124  * page.  It has to be rounded up because the hypervisor's page
2125  * table entry that maps the BAR into the VM can't specify an
2126  * offset within a page.  The invariant is that the hypervisor
2127  * must place any BARs of smaller than page length at the
2128  * beginning of a page.
2129  *
2130  * Return:	Size in bytes of the consumed MMIO space.
2131  */
2132 static u64 get_bar_size(u64 bar_val)
2133 {
2134 	return round_up((1 + ~(bar_val & PCI_BASE_ADDRESS_MEM_MASK)),
2135 			PAGE_SIZE);
2136 }
2137 
2138 /**
2139  * survey_child_resources() - Total all MMIO requirements
2140  * @hbus:	Root PCI bus, as understood by this driver
2141  */
2142 static void survey_child_resources(struct hv_pcibus_device *hbus)
2143 {
2144 	struct hv_pci_dev *hpdev;
2145 	resource_size_t bar_size = 0;
2146 	unsigned long flags;
2147 	struct completion *event;
2148 	u64 bar_val;
2149 	int i;
2150 
2151 	/* If nobody is waiting on the answer, don't compute it. */
2152 	event = xchg(&hbus->survey_event, NULL);
2153 	if (!event)
2154 		return;
2155 
2156 	/* If the answer has already been computed, go with it. */
2157 	if (hbus->low_mmio_space || hbus->high_mmio_space) {
2158 		complete(event);
2159 		return;
2160 	}
2161 
2162 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2163 
2164 	/*
2165 	 * Due to an interesting quirk of the PCI spec, all memory regions
2166 	 * for a child device are a power of 2 in size and aligned in memory,
2167 	 * so it's sufficient to just add them up without tracking alignment.
2168 	 */
2169 	list_for_each_entry(hpdev, &hbus->children, list_entry) {
2170 		for (i = 0; i < PCI_STD_NUM_BARS; i++) {
2171 			if (hpdev->probed_bar[i] & PCI_BASE_ADDRESS_SPACE_IO)
2172 				dev_err(&hbus->hdev->device,
2173 					"There's an I/O BAR in this list!\n");
2174 
2175 			if (hpdev->probed_bar[i] != 0) {
2176 				/*
2177 				 * A probed BAR has all the upper bits set that
2178 				 * can be changed.
2179 				 */
2180 
2181 				bar_val = hpdev->probed_bar[i];
2182 				if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
2183 					bar_val |=
2184 					((u64)hpdev->probed_bar[++i] << 32);
2185 				else
2186 					bar_val |= 0xffffffff00000000ULL;
2187 
2188 				bar_size = get_bar_size(bar_val);
2189 
2190 				if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
2191 					hbus->high_mmio_space += bar_size;
2192 				else
2193 					hbus->low_mmio_space += bar_size;
2194 			}
2195 		}
2196 	}
2197 
2198 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2199 	complete(event);
2200 }
2201 
2202 /**
2203  * prepopulate_bars() - Fill in BARs with defaults
2204  * @hbus:	Root PCI bus, as understood by this driver
2205  *
2206  * The core PCI driver code seems much, much happier if the BARs
2207  * for a device have values upon first scan. So fill them in.
2208  * The algorithm below works down from large sizes to small,
2209  * attempting to pack the assignments optimally. The assumption,
2210  * enforced in other parts of the code, is that the beginning of
2211  * the memory-mapped I/O space will be aligned on the largest
2212  * BAR size.
2213  */
2214 static void prepopulate_bars(struct hv_pcibus_device *hbus)
2215 {
2216 	resource_size_t high_size = 0;
2217 	resource_size_t low_size = 0;
2218 	resource_size_t high_base = 0;
2219 	resource_size_t low_base = 0;
2220 	resource_size_t bar_size;
2221 	struct hv_pci_dev *hpdev;
2222 	unsigned long flags;
2223 	u64 bar_val;
2224 	u32 command;
2225 	bool high;
2226 	int i;
2227 
2228 	if (hbus->low_mmio_space) {
2229 		low_size = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
2230 		low_base = hbus->low_mmio_res->start;
2231 	}
2232 
2233 	if (hbus->high_mmio_space) {
2234 		high_size = 1ULL <<
2235 			(63 - __builtin_clzll(hbus->high_mmio_space));
2236 		high_base = hbus->high_mmio_res->start;
2237 	}
2238 
2239 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2240 
2241 	/*
2242 	 * Clear the memory enable bit, in case it's already set. This occurs
2243 	 * in the suspend path of hibernation, where the device is suspended,
2244 	 * resumed and suspended again: see hibernation_snapshot() and
2245 	 * hibernation_platform_enter().
2246 	 *
2247 	 * If the memory enable bit is already set, Hyper-V silently ignores
2248 	 * the below BAR updates, and the related PCI device driver can not
2249 	 * work, because reading from the device register(s) always returns
2250 	 * 0xFFFFFFFF (PCI_ERROR_RESPONSE).
2251 	 */
2252 	list_for_each_entry(hpdev, &hbus->children, list_entry) {
2253 		_hv_pcifront_read_config(hpdev, PCI_COMMAND, 2, &command);
2254 		command &= ~PCI_COMMAND_MEMORY;
2255 		_hv_pcifront_write_config(hpdev, PCI_COMMAND, 2, command);
2256 	}
2257 
2258 	/* Pick addresses for the BARs. */
2259 	do {
2260 		list_for_each_entry(hpdev, &hbus->children, list_entry) {
2261 			for (i = 0; i < PCI_STD_NUM_BARS; i++) {
2262 				bar_val = hpdev->probed_bar[i];
2263 				if (bar_val == 0)
2264 					continue;
2265 				high = bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64;
2266 				if (high) {
2267 					bar_val |=
2268 						((u64)hpdev->probed_bar[i + 1]
2269 						 << 32);
2270 				} else {
2271 					bar_val |= 0xffffffffULL << 32;
2272 				}
2273 				bar_size = get_bar_size(bar_val);
2274 				if (high) {
2275 					if (high_size != bar_size) {
2276 						i++;
2277 						continue;
2278 					}
2279 					_hv_pcifront_write_config(hpdev,
2280 						PCI_BASE_ADDRESS_0 + (4 * i),
2281 						4,
2282 						(u32)(high_base & 0xffffff00));
2283 					i++;
2284 					_hv_pcifront_write_config(hpdev,
2285 						PCI_BASE_ADDRESS_0 + (4 * i),
2286 						4, (u32)(high_base >> 32));
2287 					high_base += bar_size;
2288 				} else {
2289 					if (low_size != bar_size)
2290 						continue;
2291 					_hv_pcifront_write_config(hpdev,
2292 						PCI_BASE_ADDRESS_0 + (4 * i),
2293 						4,
2294 						(u32)(low_base & 0xffffff00));
2295 					low_base += bar_size;
2296 				}
2297 			}
2298 			if (high_size <= 1 && low_size <= 1) {
2299 				/*
2300 				 * No need to set the PCI_COMMAND_MEMORY bit as
2301 				 * the core PCI driver doesn't require the bit
2302 				 * to be pre-set. Actually here we intentionally
2303 				 * keep the bit off so that the PCI BAR probing
2304 				 * in the core PCI driver doesn't cause Hyper-V
2305 				 * to unnecessarily unmap/map the virtual BARs
2306 				 * from/to the physical BARs multiple times.
2307 				 * This reduces the VM boot time significantly
2308 				 * if the BAR sizes are huge.
2309 				 */
2310 				break;
2311 			}
2312 		}
2313 
2314 		high_size >>= 1;
2315 		low_size >>= 1;
2316 	}  while (high_size || low_size);
2317 
2318 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2319 }
2320 
2321 /*
2322  * Assign entries in sysfs pci slot directory.
2323  *
2324  * Note that this function does not need to lock the children list
2325  * because it is called from pci_devices_present_work which
2326  * is serialized with hv_eject_device_work because they are on the
2327  * same ordered workqueue. Therefore hbus->children list will not change
2328  * even when pci_create_slot sleeps.
2329  */
2330 static void hv_pci_assign_slots(struct hv_pcibus_device *hbus)
2331 {
2332 	struct hv_pci_dev *hpdev;
2333 	char name[SLOT_NAME_SIZE];
2334 	int slot_nr;
2335 
2336 	list_for_each_entry(hpdev, &hbus->children, list_entry) {
2337 		if (hpdev->pci_slot)
2338 			continue;
2339 
2340 		slot_nr = PCI_SLOT(wslot_to_devfn(hpdev->desc.win_slot.slot));
2341 		snprintf(name, SLOT_NAME_SIZE, "%u", hpdev->desc.ser);
2342 		hpdev->pci_slot = pci_create_slot(hbus->bridge->bus, slot_nr,
2343 					  name, NULL);
2344 		if (IS_ERR(hpdev->pci_slot)) {
2345 			pr_warn("pci_create slot %s failed\n", name);
2346 			hpdev->pci_slot = NULL;
2347 		}
2348 	}
2349 }
2350 
2351 /*
2352  * Remove entries in sysfs pci slot directory.
2353  */
2354 static void hv_pci_remove_slots(struct hv_pcibus_device *hbus)
2355 {
2356 	struct hv_pci_dev *hpdev;
2357 
2358 	list_for_each_entry(hpdev, &hbus->children, list_entry) {
2359 		if (!hpdev->pci_slot)
2360 			continue;
2361 		pci_destroy_slot(hpdev->pci_slot);
2362 		hpdev->pci_slot = NULL;
2363 	}
2364 }
2365 
2366 /*
2367  * Set NUMA node for the devices on the bus
2368  */
2369 static void hv_pci_assign_numa_node(struct hv_pcibus_device *hbus)
2370 {
2371 	struct pci_dev *dev;
2372 	struct pci_bus *bus = hbus->bridge->bus;
2373 	struct hv_pci_dev *hv_dev;
2374 
2375 	list_for_each_entry(dev, &bus->devices, bus_list) {
2376 		hv_dev = get_pcichild_wslot(hbus, devfn_to_wslot(dev->devfn));
2377 		if (!hv_dev)
2378 			continue;
2379 
2380 		if (hv_dev->desc.flags & HV_PCI_DEVICE_FLAG_NUMA_AFFINITY &&
2381 		    hv_dev->desc.virtual_numa_node < num_possible_nodes())
2382 			/*
2383 			 * The kernel may boot with some NUMA nodes offline
2384 			 * (e.g. in a KDUMP kernel) or with NUMA disabled via
2385 			 * "numa=off". In those cases, adjust the host provided
2386 			 * NUMA node to a valid NUMA node used by the kernel.
2387 			 */
2388 			set_dev_node(&dev->dev,
2389 				     numa_map_to_online_node(
2390 					     hv_dev->desc.virtual_numa_node));
2391 
2392 		put_pcichild(hv_dev);
2393 	}
2394 }
2395 
2396 /**
2397  * create_root_hv_pci_bus() - Expose a new root PCI bus
2398  * @hbus:	Root PCI bus, as understood by this driver
2399  *
2400  * Return: 0 on success, -errno on failure
2401  */
2402 static int create_root_hv_pci_bus(struct hv_pcibus_device *hbus)
2403 {
2404 	int error;
2405 	struct pci_host_bridge *bridge = hbus->bridge;
2406 
2407 	bridge->dev.parent = &hbus->hdev->device;
2408 	bridge->sysdata = &hbus->sysdata;
2409 	bridge->ops = &hv_pcifront_ops;
2410 
2411 	error = pci_scan_root_bus_bridge(bridge);
2412 	if (error)
2413 		return error;
2414 
2415 	pci_lock_rescan_remove();
2416 	hv_pci_assign_numa_node(hbus);
2417 	pci_bus_assign_resources(bridge->bus);
2418 	hv_pci_assign_slots(hbus);
2419 	pci_bus_add_devices(bridge->bus);
2420 	pci_unlock_rescan_remove();
2421 	hbus->state = hv_pcibus_installed;
2422 	return 0;
2423 }
2424 
2425 struct q_res_req_compl {
2426 	struct completion host_event;
2427 	struct hv_pci_dev *hpdev;
2428 };
2429 
2430 /**
2431  * q_resource_requirements() - Query Resource Requirements
2432  * @context:		The completion context.
2433  * @resp:		The response that came from the host.
2434  * @resp_packet_size:	The size in bytes of resp.
2435  *
2436  * This function is invoked on completion of a Query Resource
2437  * Requirements packet.
2438  */
2439 static void q_resource_requirements(void *context, struct pci_response *resp,
2440 				    int resp_packet_size)
2441 {
2442 	struct q_res_req_compl *completion = context;
2443 	struct pci_q_res_req_response *q_res_req =
2444 		(struct pci_q_res_req_response *)resp;
2445 	s32 status;
2446 	int i;
2447 
2448 	status = (resp_packet_size < sizeof(*q_res_req)) ? -1 : resp->status;
2449 	if (status < 0) {
2450 		dev_err(&completion->hpdev->hbus->hdev->device,
2451 			"query resource requirements failed: %x\n",
2452 			status);
2453 	} else {
2454 		for (i = 0; i < PCI_STD_NUM_BARS; i++) {
2455 			completion->hpdev->probed_bar[i] =
2456 				q_res_req->probed_bar[i];
2457 		}
2458 	}
2459 
2460 	complete(&completion->host_event);
2461 }
2462 
2463 /**
2464  * new_pcichild_device() - Create a new child device
2465  * @hbus:	The internal struct tracking this root PCI bus.
2466  * @desc:	The information supplied so far from the host
2467  *              about the device.
2468  *
2469  * This function creates the tracking structure for a new child
2470  * device and kicks off the process of figuring out what it is.
2471  *
2472  * Return: Pointer to the new tracking struct
2473  */
2474 static struct hv_pci_dev *new_pcichild_device(struct hv_pcibus_device *hbus,
2475 		struct hv_pcidev_description *desc)
2476 {
2477 	struct hv_pci_dev *hpdev;
2478 	struct pci_child_message *res_req;
2479 	struct q_res_req_compl comp_pkt;
2480 	struct {
2481 		struct pci_packet init_packet;
2482 		u8 buffer[sizeof(struct pci_child_message)];
2483 	} pkt;
2484 	unsigned long flags;
2485 	int ret;
2486 
2487 	hpdev = kzalloc(sizeof(*hpdev), GFP_KERNEL);
2488 	if (!hpdev)
2489 		return NULL;
2490 
2491 	hpdev->hbus = hbus;
2492 
2493 	memset(&pkt, 0, sizeof(pkt));
2494 	init_completion(&comp_pkt.host_event);
2495 	comp_pkt.hpdev = hpdev;
2496 	pkt.init_packet.compl_ctxt = &comp_pkt;
2497 	pkt.init_packet.completion_func = q_resource_requirements;
2498 	res_req = (struct pci_child_message *)&pkt.init_packet.message;
2499 	res_req->message_type.type = PCI_QUERY_RESOURCE_REQUIREMENTS;
2500 	res_req->wslot.slot = desc->win_slot.slot;
2501 
2502 	ret = vmbus_sendpacket(hbus->hdev->channel, res_req,
2503 			       sizeof(struct pci_child_message),
2504 			       (unsigned long)&pkt.init_packet,
2505 			       VM_PKT_DATA_INBAND,
2506 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2507 	if (ret)
2508 		goto error;
2509 
2510 	if (wait_for_response(hbus->hdev, &comp_pkt.host_event))
2511 		goto error;
2512 
2513 	hpdev->desc = *desc;
2514 	refcount_set(&hpdev->refs, 1);
2515 	get_pcichild(hpdev);
2516 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2517 
2518 	list_add_tail(&hpdev->list_entry, &hbus->children);
2519 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2520 	return hpdev;
2521 
2522 error:
2523 	kfree(hpdev);
2524 	return NULL;
2525 }
2526 
2527 /**
2528  * get_pcichild_wslot() - Find device from slot
2529  * @hbus:	Root PCI bus, as understood by this driver
2530  * @wslot:	Location on the bus
2531  *
2532  * This function looks up a PCI device and returns the internal
2533  * representation of it.  It acquires a reference on it, so that
2534  * the device won't be deleted while somebody is using it.  The
2535  * caller is responsible for calling put_pcichild() to release
2536  * this reference.
2537  *
2538  * Return:	Internal representation of a PCI device
2539  */
2540 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
2541 					     u32 wslot)
2542 {
2543 	unsigned long flags;
2544 	struct hv_pci_dev *iter, *hpdev = NULL;
2545 
2546 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2547 	list_for_each_entry(iter, &hbus->children, list_entry) {
2548 		if (iter->desc.win_slot.slot == wslot) {
2549 			hpdev = iter;
2550 			get_pcichild(hpdev);
2551 			break;
2552 		}
2553 	}
2554 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2555 
2556 	return hpdev;
2557 }
2558 
2559 /**
2560  * pci_devices_present_work() - Handle new list of child devices
2561  * @work:	Work struct embedded in struct hv_dr_work
2562  *
2563  * "Bus Relations" is the Windows term for "children of this
2564  * bus."  The terminology is preserved here for people trying to
2565  * debug the interaction between Hyper-V and Linux.  This
2566  * function is called when the parent partition reports a list
2567  * of functions that should be observed under this PCI Express
2568  * port (bus).
2569  *
2570  * This function updates the list, and must tolerate being
2571  * called multiple times with the same information.  The typical
2572  * number of child devices is one, with very atypical cases
2573  * involving three or four, so the algorithms used here can be
2574  * simple and inefficient.
2575  *
2576  * It must also treat the omission of a previously observed device as
2577  * notification that the device no longer exists.
2578  *
2579  * Note that this function is serialized with hv_eject_device_work(),
2580  * because both are pushed to the ordered workqueue hbus->wq.
2581  */
2582 static void pci_devices_present_work(struct work_struct *work)
2583 {
2584 	u32 child_no;
2585 	bool found;
2586 	struct hv_pcidev_description *new_desc;
2587 	struct hv_pci_dev *hpdev;
2588 	struct hv_pcibus_device *hbus;
2589 	struct list_head removed;
2590 	struct hv_dr_work *dr_wrk;
2591 	struct hv_dr_state *dr = NULL;
2592 	unsigned long flags;
2593 
2594 	dr_wrk = container_of(work, struct hv_dr_work, wrk);
2595 	hbus = dr_wrk->bus;
2596 	kfree(dr_wrk);
2597 
2598 	INIT_LIST_HEAD(&removed);
2599 
2600 	/* Pull this off the queue and process it if it was the last one. */
2601 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2602 	while (!list_empty(&hbus->dr_list)) {
2603 		dr = list_first_entry(&hbus->dr_list, struct hv_dr_state,
2604 				      list_entry);
2605 		list_del(&dr->list_entry);
2606 
2607 		/* Throw this away if the list still has stuff in it. */
2608 		if (!list_empty(&hbus->dr_list)) {
2609 			kfree(dr);
2610 			continue;
2611 		}
2612 	}
2613 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2614 
2615 	if (!dr)
2616 		return;
2617 
2618 	/* First, mark all existing children as reported missing. */
2619 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2620 	list_for_each_entry(hpdev, &hbus->children, list_entry) {
2621 		hpdev->reported_missing = true;
2622 	}
2623 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2624 
2625 	/* Next, add back any reported devices. */
2626 	for (child_no = 0; child_no < dr->device_count; child_no++) {
2627 		found = false;
2628 		new_desc = &dr->func[child_no];
2629 
2630 		spin_lock_irqsave(&hbus->device_list_lock, flags);
2631 		list_for_each_entry(hpdev, &hbus->children, list_entry) {
2632 			if ((hpdev->desc.win_slot.slot == new_desc->win_slot.slot) &&
2633 			    (hpdev->desc.v_id == new_desc->v_id) &&
2634 			    (hpdev->desc.d_id == new_desc->d_id) &&
2635 			    (hpdev->desc.ser == new_desc->ser)) {
2636 				hpdev->reported_missing = false;
2637 				found = true;
2638 			}
2639 		}
2640 		spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2641 
2642 		if (!found) {
2643 			hpdev = new_pcichild_device(hbus, new_desc);
2644 			if (!hpdev)
2645 				dev_err(&hbus->hdev->device,
2646 					"couldn't record a child device.\n");
2647 		}
2648 	}
2649 
2650 	/* Move missing children to a list on the stack. */
2651 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2652 	do {
2653 		found = false;
2654 		list_for_each_entry(hpdev, &hbus->children, list_entry) {
2655 			if (hpdev->reported_missing) {
2656 				found = true;
2657 				put_pcichild(hpdev);
2658 				list_move_tail(&hpdev->list_entry, &removed);
2659 				break;
2660 			}
2661 		}
2662 	} while (found);
2663 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2664 
2665 	/* Delete everything that should no longer exist. */
2666 	while (!list_empty(&removed)) {
2667 		hpdev = list_first_entry(&removed, struct hv_pci_dev,
2668 					 list_entry);
2669 		list_del(&hpdev->list_entry);
2670 
2671 		if (hpdev->pci_slot)
2672 			pci_destroy_slot(hpdev->pci_slot);
2673 
2674 		put_pcichild(hpdev);
2675 	}
2676 
2677 	switch (hbus->state) {
2678 	case hv_pcibus_installed:
2679 		/*
2680 		 * Tell the core to rescan bus
2681 		 * because there may have been changes.
2682 		 */
2683 		pci_lock_rescan_remove();
2684 		pci_scan_child_bus(hbus->bridge->bus);
2685 		hv_pci_assign_numa_node(hbus);
2686 		hv_pci_assign_slots(hbus);
2687 		pci_unlock_rescan_remove();
2688 		break;
2689 
2690 	case hv_pcibus_init:
2691 	case hv_pcibus_probed:
2692 		survey_child_resources(hbus);
2693 		break;
2694 
2695 	default:
2696 		break;
2697 	}
2698 
2699 	kfree(dr);
2700 }
2701 
2702 /**
2703  * hv_pci_start_relations_work() - Queue work to start device discovery
2704  * @hbus:	Root PCI bus, as understood by this driver
2705  * @dr:		The list of children returned from host
2706  *
2707  * Return:  0 on success, -errno on failure
2708  */
2709 static int hv_pci_start_relations_work(struct hv_pcibus_device *hbus,
2710 				       struct hv_dr_state *dr)
2711 {
2712 	struct hv_dr_work *dr_wrk;
2713 	unsigned long flags;
2714 	bool pending_dr;
2715 
2716 	if (hbus->state == hv_pcibus_removing) {
2717 		dev_info(&hbus->hdev->device,
2718 			 "PCI VMBus BUS_RELATIONS: ignored\n");
2719 		return -ENOENT;
2720 	}
2721 
2722 	dr_wrk = kzalloc(sizeof(*dr_wrk), GFP_NOWAIT);
2723 	if (!dr_wrk)
2724 		return -ENOMEM;
2725 
2726 	INIT_WORK(&dr_wrk->wrk, pci_devices_present_work);
2727 	dr_wrk->bus = hbus;
2728 
2729 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2730 	/*
2731 	 * If pending_dr is true, we have already queued a work,
2732 	 * which will see the new dr. Otherwise, we need to
2733 	 * queue a new work.
2734 	 */
2735 	pending_dr = !list_empty(&hbus->dr_list);
2736 	list_add_tail(&dr->list_entry, &hbus->dr_list);
2737 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2738 
2739 	if (pending_dr)
2740 		kfree(dr_wrk);
2741 	else
2742 		queue_work(hbus->wq, &dr_wrk->wrk);
2743 
2744 	return 0;
2745 }
2746 
2747 /**
2748  * hv_pci_devices_present() - Handle list of new children
2749  * @hbus:      Root PCI bus, as understood by this driver
2750  * @relations: Packet from host listing children
2751  *
2752  * Process a new list of devices on the bus. The list of devices is
2753  * discovered by VSP and sent to us via VSP message PCI_BUS_RELATIONS,
2754  * whenever a new list of devices for this bus appears.
2755  */
2756 static void hv_pci_devices_present(struct hv_pcibus_device *hbus,
2757 				   struct pci_bus_relations *relations)
2758 {
2759 	struct hv_dr_state *dr;
2760 	int i;
2761 
2762 	dr = kzalloc(struct_size(dr, func, relations->device_count),
2763 		     GFP_NOWAIT);
2764 	if (!dr)
2765 		return;
2766 
2767 	dr->device_count = relations->device_count;
2768 	for (i = 0; i < dr->device_count; i++) {
2769 		dr->func[i].v_id = relations->func[i].v_id;
2770 		dr->func[i].d_id = relations->func[i].d_id;
2771 		dr->func[i].rev = relations->func[i].rev;
2772 		dr->func[i].prog_intf = relations->func[i].prog_intf;
2773 		dr->func[i].subclass = relations->func[i].subclass;
2774 		dr->func[i].base_class = relations->func[i].base_class;
2775 		dr->func[i].subsystem_id = relations->func[i].subsystem_id;
2776 		dr->func[i].win_slot = relations->func[i].win_slot;
2777 		dr->func[i].ser = relations->func[i].ser;
2778 	}
2779 
2780 	if (hv_pci_start_relations_work(hbus, dr))
2781 		kfree(dr);
2782 }
2783 
2784 /**
2785  * hv_pci_devices_present2() - Handle list of new children
2786  * @hbus:	Root PCI bus, as understood by this driver
2787  * @relations:	Packet from host listing children
2788  *
2789  * This function is the v2 version of hv_pci_devices_present()
2790  */
2791 static void hv_pci_devices_present2(struct hv_pcibus_device *hbus,
2792 				    struct pci_bus_relations2 *relations)
2793 {
2794 	struct hv_dr_state *dr;
2795 	int i;
2796 
2797 	dr = kzalloc(struct_size(dr, func, relations->device_count),
2798 		     GFP_NOWAIT);
2799 	if (!dr)
2800 		return;
2801 
2802 	dr->device_count = relations->device_count;
2803 	for (i = 0; i < dr->device_count; i++) {
2804 		dr->func[i].v_id = relations->func[i].v_id;
2805 		dr->func[i].d_id = relations->func[i].d_id;
2806 		dr->func[i].rev = relations->func[i].rev;
2807 		dr->func[i].prog_intf = relations->func[i].prog_intf;
2808 		dr->func[i].subclass = relations->func[i].subclass;
2809 		dr->func[i].base_class = relations->func[i].base_class;
2810 		dr->func[i].subsystem_id = relations->func[i].subsystem_id;
2811 		dr->func[i].win_slot = relations->func[i].win_slot;
2812 		dr->func[i].ser = relations->func[i].ser;
2813 		dr->func[i].flags = relations->func[i].flags;
2814 		dr->func[i].virtual_numa_node =
2815 			relations->func[i].virtual_numa_node;
2816 	}
2817 
2818 	if (hv_pci_start_relations_work(hbus, dr))
2819 		kfree(dr);
2820 }
2821 
2822 /**
2823  * hv_eject_device_work() - Asynchronously handles ejection
2824  * @work:	Work struct embedded in internal device struct
2825  *
2826  * This function handles ejecting a device.  Windows will
2827  * attempt to gracefully eject a device, waiting 60 seconds to
2828  * hear back from the guest OS that this completed successfully.
2829  * If this timer expires, the device will be forcibly removed.
2830  */
2831 static void hv_eject_device_work(struct work_struct *work)
2832 {
2833 	struct pci_eject_response *ejct_pkt;
2834 	struct hv_pcibus_device *hbus;
2835 	struct hv_pci_dev *hpdev;
2836 	struct pci_dev *pdev;
2837 	unsigned long flags;
2838 	int wslot;
2839 	struct {
2840 		struct pci_packet pkt;
2841 		u8 buffer[sizeof(struct pci_eject_response)];
2842 	} ctxt;
2843 
2844 	hpdev = container_of(work, struct hv_pci_dev, wrk);
2845 	hbus = hpdev->hbus;
2846 
2847 	WARN_ON(hpdev->state != hv_pcichild_ejecting);
2848 
2849 	/*
2850 	 * Ejection can come before or after the PCI bus has been set up, so
2851 	 * attempt to find it and tear down the bus state, if it exists.  This
2852 	 * must be done without constructs like pci_domain_nr(hbus->bridge->bus)
2853 	 * because hbus->bridge->bus may not exist yet.
2854 	 */
2855 	wslot = wslot_to_devfn(hpdev->desc.win_slot.slot);
2856 	pdev = pci_get_domain_bus_and_slot(hbus->bridge->domain_nr, 0, wslot);
2857 	if (pdev) {
2858 		pci_lock_rescan_remove();
2859 		pci_stop_and_remove_bus_device(pdev);
2860 		pci_dev_put(pdev);
2861 		pci_unlock_rescan_remove();
2862 	}
2863 
2864 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2865 	list_del(&hpdev->list_entry);
2866 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2867 
2868 	if (hpdev->pci_slot)
2869 		pci_destroy_slot(hpdev->pci_slot);
2870 
2871 	memset(&ctxt, 0, sizeof(ctxt));
2872 	ejct_pkt = (struct pci_eject_response *)&ctxt.pkt.message;
2873 	ejct_pkt->message_type.type = PCI_EJECTION_COMPLETE;
2874 	ejct_pkt->wslot.slot = hpdev->desc.win_slot.slot;
2875 	vmbus_sendpacket(hbus->hdev->channel, ejct_pkt,
2876 			 sizeof(*ejct_pkt), 0,
2877 			 VM_PKT_DATA_INBAND, 0);
2878 
2879 	/* For the get_pcichild() in hv_pci_eject_device() */
2880 	put_pcichild(hpdev);
2881 	/* For the two refs got in new_pcichild_device() */
2882 	put_pcichild(hpdev);
2883 	put_pcichild(hpdev);
2884 	/* hpdev has been freed. Do not use it any more. */
2885 }
2886 
2887 /**
2888  * hv_pci_eject_device() - Handles device ejection
2889  * @hpdev:	Internal device tracking struct
2890  *
2891  * This function is invoked when an ejection packet arrives.  It
2892  * just schedules work so that we don't re-enter the packet
2893  * delivery code handling the ejection.
2894  */
2895 static void hv_pci_eject_device(struct hv_pci_dev *hpdev)
2896 {
2897 	struct hv_pcibus_device *hbus = hpdev->hbus;
2898 	struct hv_device *hdev = hbus->hdev;
2899 
2900 	if (hbus->state == hv_pcibus_removing) {
2901 		dev_info(&hdev->device, "PCI VMBus EJECT: ignored\n");
2902 		return;
2903 	}
2904 
2905 	hpdev->state = hv_pcichild_ejecting;
2906 	get_pcichild(hpdev);
2907 	INIT_WORK(&hpdev->wrk, hv_eject_device_work);
2908 	queue_work(hbus->wq, &hpdev->wrk);
2909 }
2910 
2911 /**
2912  * hv_pci_onchannelcallback() - Handles incoming packets
2913  * @context:	Internal bus tracking struct
2914  *
2915  * This function is invoked whenever the host sends a packet to
2916  * this channel (which is private to this root PCI bus).
2917  */
2918 static void hv_pci_onchannelcallback(void *context)
2919 {
2920 	const int packet_size = 0x100;
2921 	int ret;
2922 	struct hv_pcibus_device *hbus = context;
2923 	struct vmbus_channel *chan = hbus->hdev->channel;
2924 	u32 bytes_recvd;
2925 	u64 req_id, req_addr;
2926 	struct vmpacket_descriptor *desc;
2927 	unsigned char *buffer;
2928 	int bufferlen = packet_size;
2929 	struct pci_packet *comp_packet;
2930 	struct pci_response *response;
2931 	struct pci_incoming_message *new_message;
2932 	struct pci_bus_relations *bus_rel;
2933 	struct pci_bus_relations2 *bus_rel2;
2934 	struct pci_dev_inval_block *inval;
2935 	struct pci_dev_incoming *dev_message;
2936 	struct hv_pci_dev *hpdev;
2937 	unsigned long flags;
2938 
2939 	buffer = kmalloc(bufferlen, GFP_ATOMIC);
2940 	if (!buffer)
2941 		return;
2942 
2943 	while (1) {
2944 		ret = vmbus_recvpacket_raw(chan, buffer, bufferlen,
2945 					   &bytes_recvd, &req_id);
2946 
2947 		if (ret == -ENOBUFS) {
2948 			kfree(buffer);
2949 			/* Handle large packet */
2950 			bufferlen = bytes_recvd;
2951 			buffer = kmalloc(bytes_recvd, GFP_ATOMIC);
2952 			if (!buffer)
2953 				return;
2954 			continue;
2955 		}
2956 
2957 		/* Zero length indicates there are no more packets. */
2958 		if (ret || !bytes_recvd)
2959 			break;
2960 
2961 		/*
2962 		 * All incoming packets must be at least as large as a
2963 		 * response.
2964 		 */
2965 		if (bytes_recvd <= sizeof(struct pci_response))
2966 			continue;
2967 		desc = (struct vmpacket_descriptor *)buffer;
2968 
2969 		switch (desc->type) {
2970 		case VM_PKT_COMP:
2971 
2972 			lock_requestor(chan, flags);
2973 			req_addr = __vmbus_request_addr_match(chan, req_id,
2974 							      VMBUS_RQST_ADDR_ANY);
2975 			if (req_addr == VMBUS_RQST_ERROR) {
2976 				unlock_requestor(chan, flags);
2977 				dev_err(&hbus->hdev->device,
2978 					"Invalid transaction ID %llx\n",
2979 					req_id);
2980 				break;
2981 			}
2982 			comp_packet = (struct pci_packet *)req_addr;
2983 			response = (struct pci_response *)buffer;
2984 			/*
2985 			 * Call ->completion_func() within the critical section to make
2986 			 * sure that the packet pointer is still valid during the call:
2987 			 * here 'valid' means that there's a task still waiting for the
2988 			 * completion, and that the packet data is still on the waiting
2989 			 * task's stack.  Cf. hv_compose_msi_msg().
2990 			 */
2991 			comp_packet->completion_func(comp_packet->compl_ctxt,
2992 						     response,
2993 						     bytes_recvd);
2994 			unlock_requestor(chan, flags);
2995 			break;
2996 
2997 		case VM_PKT_DATA_INBAND:
2998 
2999 			new_message = (struct pci_incoming_message *)buffer;
3000 			switch (new_message->message_type.type) {
3001 			case PCI_BUS_RELATIONS:
3002 
3003 				bus_rel = (struct pci_bus_relations *)buffer;
3004 				if (bytes_recvd < sizeof(*bus_rel) ||
3005 				    bytes_recvd <
3006 					struct_size(bus_rel, func,
3007 						    bus_rel->device_count)) {
3008 					dev_err(&hbus->hdev->device,
3009 						"bus relations too small\n");
3010 					break;
3011 				}
3012 
3013 				hv_pci_devices_present(hbus, bus_rel);
3014 				break;
3015 
3016 			case PCI_BUS_RELATIONS2:
3017 
3018 				bus_rel2 = (struct pci_bus_relations2 *)buffer;
3019 				if (bytes_recvd < sizeof(*bus_rel2) ||
3020 				    bytes_recvd <
3021 					struct_size(bus_rel2, func,
3022 						    bus_rel2->device_count)) {
3023 					dev_err(&hbus->hdev->device,
3024 						"bus relations v2 too small\n");
3025 					break;
3026 				}
3027 
3028 				hv_pci_devices_present2(hbus, bus_rel2);
3029 				break;
3030 
3031 			case PCI_EJECT:
3032 
3033 				dev_message = (struct pci_dev_incoming *)buffer;
3034 				if (bytes_recvd < sizeof(*dev_message)) {
3035 					dev_err(&hbus->hdev->device,
3036 						"eject message too small\n");
3037 					break;
3038 				}
3039 				hpdev = get_pcichild_wslot(hbus,
3040 						      dev_message->wslot.slot);
3041 				if (hpdev) {
3042 					hv_pci_eject_device(hpdev);
3043 					put_pcichild(hpdev);
3044 				}
3045 				break;
3046 
3047 			case PCI_INVALIDATE_BLOCK:
3048 
3049 				inval = (struct pci_dev_inval_block *)buffer;
3050 				if (bytes_recvd < sizeof(*inval)) {
3051 					dev_err(&hbus->hdev->device,
3052 						"invalidate message too small\n");
3053 					break;
3054 				}
3055 				hpdev = get_pcichild_wslot(hbus,
3056 							   inval->wslot.slot);
3057 				if (hpdev) {
3058 					if (hpdev->block_invalidate) {
3059 						hpdev->block_invalidate(
3060 						    hpdev->invalidate_context,
3061 						    inval->block_mask);
3062 					}
3063 					put_pcichild(hpdev);
3064 				}
3065 				break;
3066 
3067 			default:
3068 				dev_warn(&hbus->hdev->device,
3069 					"Unimplemented protocol message %x\n",
3070 					new_message->message_type.type);
3071 				break;
3072 			}
3073 			break;
3074 
3075 		default:
3076 			dev_err(&hbus->hdev->device,
3077 				"unhandled packet type %d, tid %llx len %d\n",
3078 				desc->type, req_id, bytes_recvd);
3079 			break;
3080 		}
3081 	}
3082 
3083 	kfree(buffer);
3084 }
3085 
3086 /**
3087  * hv_pci_protocol_negotiation() - Set up protocol
3088  * @hdev:		VMBus's tracking struct for this root PCI bus.
3089  * @version:		Array of supported channel protocol versions in
3090  *			the order of probing - highest go first.
3091  * @num_version:	Number of elements in the version array.
3092  *
3093  * This driver is intended to support running on Windows 10
3094  * (server) and later versions. It will not run on earlier
3095  * versions, as they assume that many of the operations which
3096  * Linux needs accomplished with a spinlock held were done via
3097  * asynchronous messaging via VMBus.  Windows 10 increases the
3098  * surface area of PCI emulation so that these actions can take
3099  * place by suspending a virtual processor for their duration.
3100  *
3101  * This function negotiates the channel protocol version,
3102  * failing if the host doesn't support the necessary protocol
3103  * level.
3104  */
3105 static int hv_pci_protocol_negotiation(struct hv_device *hdev,
3106 				       enum pci_protocol_version_t version[],
3107 				       int num_version)
3108 {
3109 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3110 	struct pci_version_request *version_req;
3111 	struct hv_pci_compl comp_pkt;
3112 	struct pci_packet *pkt;
3113 	int ret;
3114 	int i;
3115 
3116 	/*
3117 	 * Initiate the handshake with the host and negotiate
3118 	 * a version that the host can support. We start with the
3119 	 * highest version number and go down if the host cannot
3120 	 * support it.
3121 	 */
3122 	pkt = kzalloc(sizeof(*pkt) + sizeof(*version_req), GFP_KERNEL);
3123 	if (!pkt)
3124 		return -ENOMEM;
3125 
3126 	init_completion(&comp_pkt.host_event);
3127 	pkt->completion_func = hv_pci_generic_compl;
3128 	pkt->compl_ctxt = &comp_pkt;
3129 	version_req = (struct pci_version_request *)&pkt->message;
3130 	version_req->message_type.type = PCI_QUERY_PROTOCOL_VERSION;
3131 
3132 	for (i = 0; i < num_version; i++) {
3133 		version_req->protocol_version = version[i];
3134 		ret = vmbus_sendpacket(hdev->channel, version_req,
3135 				sizeof(struct pci_version_request),
3136 				(unsigned long)pkt, VM_PKT_DATA_INBAND,
3137 				VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3138 		if (!ret)
3139 			ret = wait_for_response(hdev, &comp_pkt.host_event);
3140 
3141 		if (ret) {
3142 			dev_err(&hdev->device,
3143 				"PCI Pass-through VSP failed to request version: %d",
3144 				ret);
3145 			goto exit;
3146 		}
3147 
3148 		if (comp_pkt.completion_status >= 0) {
3149 			hbus->protocol_version = version[i];
3150 			dev_info(&hdev->device,
3151 				"PCI VMBus probing: Using version %#x\n",
3152 				hbus->protocol_version);
3153 			goto exit;
3154 		}
3155 
3156 		if (comp_pkt.completion_status != STATUS_REVISION_MISMATCH) {
3157 			dev_err(&hdev->device,
3158 				"PCI Pass-through VSP failed version request: %#x",
3159 				comp_pkt.completion_status);
3160 			ret = -EPROTO;
3161 			goto exit;
3162 		}
3163 
3164 		reinit_completion(&comp_pkt.host_event);
3165 	}
3166 
3167 	dev_err(&hdev->device,
3168 		"PCI pass-through VSP failed to find supported version");
3169 	ret = -EPROTO;
3170 
3171 exit:
3172 	kfree(pkt);
3173 	return ret;
3174 }
3175 
3176 /**
3177  * hv_pci_free_bridge_windows() - Release memory regions for the
3178  * bus
3179  * @hbus:	Root PCI bus, as understood by this driver
3180  */
3181 static void hv_pci_free_bridge_windows(struct hv_pcibus_device *hbus)
3182 {
3183 	/*
3184 	 * Set the resources back to the way they looked when they
3185 	 * were allocated by setting IORESOURCE_BUSY again.
3186 	 */
3187 
3188 	if (hbus->low_mmio_space && hbus->low_mmio_res) {
3189 		hbus->low_mmio_res->flags |= IORESOURCE_BUSY;
3190 		vmbus_free_mmio(hbus->low_mmio_res->start,
3191 				resource_size(hbus->low_mmio_res));
3192 	}
3193 
3194 	if (hbus->high_mmio_space && hbus->high_mmio_res) {
3195 		hbus->high_mmio_res->flags |= IORESOURCE_BUSY;
3196 		vmbus_free_mmio(hbus->high_mmio_res->start,
3197 				resource_size(hbus->high_mmio_res));
3198 	}
3199 }
3200 
3201 /**
3202  * hv_pci_allocate_bridge_windows() - Allocate memory regions
3203  * for the bus
3204  * @hbus:	Root PCI bus, as understood by this driver
3205  *
3206  * This function calls vmbus_allocate_mmio(), which is itself a
3207  * bit of a compromise.  Ideally, we might change the pnp layer
3208  * in the kernel such that it comprehends either PCI devices
3209  * which are "grandchildren of ACPI," with some intermediate bus
3210  * node (in this case, VMBus) or change it such that it
3211  * understands VMBus.  The pnp layer, however, has been declared
3212  * deprecated, and not subject to change.
3213  *
3214  * The workaround, implemented here, is to ask VMBus to allocate
3215  * MMIO space for this bus.  VMBus itself knows which ranges are
3216  * appropriate by looking at its own ACPI objects.  Then, after
3217  * these ranges are claimed, they're modified to look like they
3218  * would have looked if the ACPI and pnp code had allocated
3219  * bridge windows.  These descriptors have to exist in this form
3220  * in order to satisfy the code which will get invoked when the
3221  * endpoint PCI function driver calls request_mem_region() or
3222  * request_mem_region_exclusive().
3223  *
3224  * Return: 0 on success, -errno on failure
3225  */
3226 static int hv_pci_allocate_bridge_windows(struct hv_pcibus_device *hbus)
3227 {
3228 	resource_size_t align;
3229 	int ret;
3230 
3231 	if (hbus->low_mmio_space) {
3232 		align = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
3233 		ret = vmbus_allocate_mmio(&hbus->low_mmio_res, hbus->hdev, 0,
3234 					  (u64)(u32)0xffffffff,
3235 					  hbus->low_mmio_space,
3236 					  align, false);
3237 		if (ret) {
3238 			dev_err(&hbus->hdev->device,
3239 				"Need %#llx of low MMIO space. Consider reconfiguring the VM.\n",
3240 				hbus->low_mmio_space);
3241 			return ret;
3242 		}
3243 
3244 		/* Modify this resource to become a bridge window. */
3245 		hbus->low_mmio_res->flags |= IORESOURCE_WINDOW;
3246 		hbus->low_mmio_res->flags &= ~IORESOURCE_BUSY;
3247 		pci_add_resource(&hbus->bridge->windows, hbus->low_mmio_res);
3248 	}
3249 
3250 	if (hbus->high_mmio_space) {
3251 		align = 1ULL << (63 - __builtin_clzll(hbus->high_mmio_space));
3252 		ret = vmbus_allocate_mmio(&hbus->high_mmio_res, hbus->hdev,
3253 					  0x100000000, -1,
3254 					  hbus->high_mmio_space, align,
3255 					  false);
3256 		if (ret) {
3257 			dev_err(&hbus->hdev->device,
3258 				"Need %#llx of high MMIO space. Consider reconfiguring the VM.\n",
3259 				hbus->high_mmio_space);
3260 			goto release_low_mmio;
3261 		}
3262 
3263 		/* Modify this resource to become a bridge window. */
3264 		hbus->high_mmio_res->flags |= IORESOURCE_WINDOW;
3265 		hbus->high_mmio_res->flags &= ~IORESOURCE_BUSY;
3266 		pci_add_resource(&hbus->bridge->windows, hbus->high_mmio_res);
3267 	}
3268 
3269 	return 0;
3270 
3271 release_low_mmio:
3272 	if (hbus->low_mmio_res) {
3273 		vmbus_free_mmio(hbus->low_mmio_res->start,
3274 				resource_size(hbus->low_mmio_res));
3275 	}
3276 
3277 	return ret;
3278 }
3279 
3280 /**
3281  * hv_allocate_config_window() - Find MMIO space for PCI Config
3282  * @hbus:	Root PCI bus, as understood by this driver
3283  *
3284  * This function claims memory-mapped I/O space for accessing
3285  * configuration space for the functions on this bus.
3286  *
3287  * Return: 0 on success, -errno on failure
3288  */
3289 static int hv_allocate_config_window(struct hv_pcibus_device *hbus)
3290 {
3291 	int ret;
3292 
3293 	/*
3294 	 * Set up a region of MMIO space to use for accessing configuration
3295 	 * space.
3296 	 */
3297 	ret = vmbus_allocate_mmio(&hbus->mem_config, hbus->hdev, 0, -1,
3298 				  PCI_CONFIG_MMIO_LENGTH, 0x1000, false);
3299 	if (ret)
3300 		return ret;
3301 
3302 	/*
3303 	 * vmbus_allocate_mmio() gets used for allocating both device endpoint
3304 	 * resource claims (those which cannot be overlapped) and the ranges
3305 	 * which are valid for the children of this bus, which are intended
3306 	 * to be overlapped by those children.  Set the flag on this claim
3307 	 * meaning that this region can't be overlapped.
3308 	 */
3309 
3310 	hbus->mem_config->flags |= IORESOURCE_BUSY;
3311 
3312 	return 0;
3313 }
3314 
3315 static void hv_free_config_window(struct hv_pcibus_device *hbus)
3316 {
3317 	vmbus_free_mmio(hbus->mem_config->start, PCI_CONFIG_MMIO_LENGTH);
3318 }
3319 
3320 static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs);
3321 
3322 /**
3323  * hv_pci_enter_d0() - Bring the "bus" into the D0 power state
3324  * @hdev:	VMBus's tracking struct for this root PCI bus
3325  *
3326  * Return: 0 on success, -errno on failure
3327  */
3328 static int hv_pci_enter_d0(struct hv_device *hdev)
3329 {
3330 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3331 	struct pci_bus_d0_entry *d0_entry;
3332 	struct hv_pci_compl comp_pkt;
3333 	struct pci_packet *pkt;
3334 	int ret;
3335 
3336 	/*
3337 	 * Tell the host that the bus is ready to use, and moved into the
3338 	 * powered-on state.  This includes telling the host which region
3339 	 * of memory-mapped I/O space has been chosen for configuration space
3340 	 * access.
3341 	 */
3342 	pkt = kzalloc(sizeof(*pkt) + sizeof(*d0_entry), GFP_KERNEL);
3343 	if (!pkt)
3344 		return -ENOMEM;
3345 
3346 	init_completion(&comp_pkt.host_event);
3347 	pkt->completion_func = hv_pci_generic_compl;
3348 	pkt->compl_ctxt = &comp_pkt;
3349 	d0_entry = (struct pci_bus_d0_entry *)&pkt->message;
3350 	d0_entry->message_type.type = PCI_BUS_D0ENTRY;
3351 	d0_entry->mmio_base = hbus->mem_config->start;
3352 
3353 	ret = vmbus_sendpacket(hdev->channel, d0_entry, sizeof(*d0_entry),
3354 			       (unsigned long)pkt, VM_PKT_DATA_INBAND,
3355 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3356 	if (!ret)
3357 		ret = wait_for_response(hdev, &comp_pkt.host_event);
3358 
3359 	if (ret)
3360 		goto exit;
3361 
3362 	if (comp_pkt.completion_status < 0) {
3363 		dev_err(&hdev->device,
3364 			"PCI Pass-through VSP failed D0 Entry with status %x\n",
3365 			comp_pkt.completion_status);
3366 		ret = -EPROTO;
3367 		goto exit;
3368 	}
3369 
3370 	ret = 0;
3371 
3372 exit:
3373 	kfree(pkt);
3374 	return ret;
3375 }
3376 
3377 /**
3378  * hv_pci_query_relations() - Ask host to send list of child
3379  * devices
3380  * @hdev:	VMBus's tracking struct for this root PCI bus
3381  *
3382  * Return: 0 on success, -errno on failure
3383  */
3384 static int hv_pci_query_relations(struct hv_device *hdev)
3385 {
3386 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3387 	struct pci_message message;
3388 	struct completion comp;
3389 	int ret;
3390 
3391 	/* Ask the host to send along the list of child devices */
3392 	init_completion(&comp);
3393 	if (cmpxchg(&hbus->survey_event, NULL, &comp))
3394 		return -ENOTEMPTY;
3395 
3396 	memset(&message, 0, sizeof(message));
3397 	message.type = PCI_QUERY_BUS_RELATIONS;
3398 
3399 	ret = vmbus_sendpacket(hdev->channel, &message, sizeof(message),
3400 			       0, VM_PKT_DATA_INBAND, 0);
3401 	if (!ret)
3402 		ret = wait_for_response(hdev, &comp);
3403 
3404 	return ret;
3405 }
3406 
3407 /**
3408  * hv_send_resources_allocated() - Report local resource choices
3409  * @hdev:	VMBus's tracking struct for this root PCI bus
3410  *
3411  * The host OS is expecting to be sent a request as a message
3412  * which contains all the resources that the device will use.
3413  * The response contains those same resources, "translated"
3414  * which is to say, the values which should be used by the
3415  * hardware, when it delivers an interrupt.  (MMIO resources are
3416  * used in local terms.)  This is nice for Windows, and lines up
3417  * with the FDO/PDO split, which doesn't exist in Linux.  Linux
3418  * is deeply expecting to scan an emulated PCI configuration
3419  * space.  So this message is sent here only to drive the state
3420  * machine on the host forward.
3421  *
3422  * Return: 0 on success, -errno on failure
3423  */
3424 static int hv_send_resources_allocated(struct hv_device *hdev)
3425 {
3426 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3427 	struct pci_resources_assigned *res_assigned;
3428 	struct pci_resources_assigned2 *res_assigned2;
3429 	struct hv_pci_compl comp_pkt;
3430 	struct hv_pci_dev *hpdev;
3431 	struct pci_packet *pkt;
3432 	size_t size_res;
3433 	int wslot;
3434 	int ret;
3435 
3436 	size_res = (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2)
3437 			? sizeof(*res_assigned) : sizeof(*res_assigned2);
3438 
3439 	pkt = kmalloc(sizeof(*pkt) + size_res, GFP_KERNEL);
3440 	if (!pkt)
3441 		return -ENOMEM;
3442 
3443 	ret = 0;
3444 
3445 	for (wslot = 0; wslot < 256; wslot++) {
3446 		hpdev = get_pcichild_wslot(hbus, wslot);
3447 		if (!hpdev)
3448 			continue;
3449 
3450 		memset(pkt, 0, sizeof(*pkt) + size_res);
3451 		init_completion(&comp_pkt.host_event);
3452 		pkt->completion_func = hv_pci_generic_compl;
3453 		pkt->compl_ctxt = &comp_pkt;
3454 
3455 		if (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2) {
3456 			res_assigned =
3457 				(struct pci_resources_assigned *)&pkt->message;
3458 			res_assigned->message_type.type =
3459 				PCI_RESOURCES_ASSIGNED;
3460 			res_assigned->wslot.slot = hpdev->desc.win_slot.slot;
3461 		} else {
3462 			res_assigned2 =
3463 				(struct pci_resources_assigned2 *)&pkt->message;
3464 			res_assigned2->message_type.type =
3465 				PCI_RESOURCES_ASSIGNED2;
3466 			res_assigned2->wslot.slot = hpdev->desc.win_slot.slot;
3467 		}
3468 		put_pcichild(hpdev);
3469 
3470 		ret = vmbus_sendpacket(hdev->channel, &pkt->message,
3471 				size_res, (unsigned long)pkt,
3472 				VM_PKT_DATA_INBAND,
3473 				VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3474 		if (!ret)
3475 			ret = wait_for_response(hdev, &comp_pkt.host_event);
3476 		if (ret)
3477 			break;
3478 
3479 		if (comp_pkt.completion_status < 0) {
3480 			ret = -EPROTO;
3481 			dev_err(&hdev->device,
3482 				"resource allocated returned 0x%x",
3483 				comp_pkt.completion_status);
3484 			break;
3485 		}
3486 
3487 		hbus->wslot_res_allocated = wslot;
3488 	}
3489 
3490 	kfree(pkt);
3491 	return ret;
3492 }
3493 
3494 /**
3495  * hv_send_resources_released() - Report local resources
3496  * released
3497  * @hdev:	VMBus's tracking struct for this root PCI bus
3498  *
3499  * Return: 0 on success, -errno on failure
3500  */
3501 static int hv_send_resources_released(struct hv_device *hdev)
3502 {
3503 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3504 	struct pci_child_message pkt;
3505 	struct hv_pci_dev *hpdev;
3506 	int wslot;
3507 	int ret;
3508 
3509 	for (wslot = hbus->wslot_res_allocated; wslot >= 0; wslot--) {
3510 		hpdev = get_pcichild_wslot(hbus, wslot);
3511 		if (!hpdev)
3512 			continue;
3513 
3514 		memset(&pkt, 0, sizeof(pkt));
3515 		pkt.message_type.type = PCI_RESOURCES_RELEASED;
3516 		pkt.wslot.slot = hpdev->desc.win_slot.slot;
3517 
3518 		put_pcichild(hpdev);
3519 
3520 		ret = vmbus_sendpacket(hdev->channel, &pkt, sizeof(pkt), 0,
3521 				       VM_PKT_DATA_INBAND, 0);
3522 		if (ret)
3523 			return ret;
3524 
3525 		hbus->wslot_res_allocated = wslot - 1;
3526 	}
3527 
3528 	hbus->wslot_res_allocated = -1;
3529 
3530 	return 0;
3531 }
3532 
3533 #define HVPCI_DOM_MAP_SIZE (64 * 1024)
3534 static DECLARE_BITMAP(hvpci_dom_map, HVPCI_DOM_MAP_SIZE);
3535 
3536 /*
3537  * PCI domain number 0 is used by emulated devices on Gen1 VMs, so define 0
3538  * as invalid for passthrough PCI devices of this driver.
3539  */
3540 #define HVPCI_DOM_INVALID 0
3541 
3542 /**
3543  * hv_get_dom_num() - Get a valid PCI domain number
3544  * Check if the PCI domain number is in use, and return another number if
3545  * it is in use.
3546  *
3547  * @dom: Requested domain number
3548  *
3549  * return: domain number on success, HVPCI_DOM_INVALID on failure
3550  */
3551 static u16 hv_get_dom_num(u16 dom)
3552 {
3553 	unsigned int i;
3554 
3555 	if (test_and_set_bit(dom, hvpci_dom_map) == 0)
3556 		return dom;
3557 
3558 	for_each_clear_bit(i, hvpci_dom_map, HVPCI_DOM_MAP_SIZE) {
3559 		if (test_and_set_bit(i, hvpci_dom_map) == 0)
3560 			return i;
3561 	}
3562 
3563 	return HVPCI_DOM_INVALID;
3564 }
3565 
3566 /**
3567  * hv_put_dom_num() - Mark the PCI domain number as free
3568  * @dom: Domain number to be freed
3569  */
3570 static void hv_put_dom_num(u16 dom)
3571 {
3572 	clear_bit(dom, hvpci_dom_map);
3573 }
3574 
3575 /**
3576  * hv_pci_probe() - New VMBus channel probe, for a root PCI bus
3577  * @hdev:	VMBus's tracking struct for this root PCI bus
3578  * @dev_id:	Identifies the device itself
3579  *
3580  * Return: 0 on success, -errno on failure
3581  */
3582 static int hv_pci_probe(struct hv_device *hdev,
3583 			const struct hv_vmbus_device_id *dev_id)
3584 {
3585 	struct pci_host_bridge *bridge;
3586 	struct hv_pcibus_device *hbus;
3587 	u16 dom_req, dom;
3588 	char *name;
3589 	bool enter_d0_retry = true;
3590 	int ret;
3591 
3592 	bridge = devm_pci_alloc_host_bridge(&hdev->device, 0);
3593 	if (!bridge)
3594 		return -ENOMEM;
3595 
3596 	hbus = kzalloc(sizeof(*hbus), GFP_KERNEL);
3597 	if (!hbus)
3598 		return -ENOMEM;
3599 
3600 	hbus->bridge = bridge;
3601 	hbus->state = hv_pcibus_init;
3602 	hbus->wslot_res_allocated = -1;
3603 
3604 	/*
3605 	 * The PCI bus "domain" is what is called "segment" in ACPI and other
3606 	 * specs. Pull it from the instance ID, to get something usually
3607 	 * unique. In rare cases of collision, we will find out another number
3608 	 * not in use.
3609 	 *
3610 	 * Note that, since this code only runs in a Hyper-V VM, Hyper-V
3611 	 * together with this guest driver can guarantee that (1) The only
3612 	 * domain used by Gen1 VMs for something that looks like a physical
3613 	 * PCI bus (which is actually emulated by the hypervisor) is domain 0.
3614 	 * (2) There will be no overlap between domains (after fixing possible
3615 	 * collisions) in the same VM.
3616 	 */
3617 	dom_req = hdev->dev_instance.b[5] << 8 | hdev->dev_instance.b[4];
3618 	dom = hv_get_dom_num(dom_req);
3619 
3620 	if (dom == HVPCI_DOM_INVALID) {
3621 		dev_err(&hdev->device,
3622 			"Unable to use dom# 0x%x or other numbers", dom_req);
3623 		ret = -EINVAL;
3624 		goto free_bus;
3625 	}
3626 
3627 	if (dom != dom_req)
3628 		dev_info(&hdev->device,
3629 			 "PCI dom# 0x%x has collision, using 0x%x",
3630 			 dom_req, dom);
3631 
3632 	hbus->bridge->domain_nr = dom;
3633 #ifdef CONFIG_X86
3634 	hbus->sysdata.domain = dom;
3635 	hbus->use_calls = !!(ms_hyperv.hints & HV_X64_USE_MMIO_HYPERCALLS);
3636 #elif defined(CONFIG_ARM64)
3637 	/*
3638 	 * Set the PCI bus parent to be the corresponding VMbus
3639 	 * device. Then the VMbus device will be assigned as the
3640 	 * ACPI companion in pcibios_root_bridge_prepare() and
3641 	 * pci_dma_configure() will propagate device coherence
3642 	 * information to devices created on the bus.
3643 	 */
3644 	hbus->sysdata.parent = hdev->device.parent;
3645 	hbus->use_calls = false;
3646 #endif
3647 
3648 	hbus->hdev = hdev;
3649 	INIT_LIST_HEAD(&hbus->children);
3650 	INIT_LIST_HEAD(&hbus->dr_list);
3651 	spin_lock_init(&hbus->config_lock);
3652 	spin_lock_init(&hbus->device_list_lock);
3653 	hbus->wq = alloc_ordered_workqueue("hv_pci_%x", 0,
3654 					   hbus->bridge->domain_nr);
3655 	if (!hbus->wq) {
3656 		ret = -ENOMEM;
3657 		goto free_dom;
3658 	}
3659 
3660 	hdev->channel->next_request_id_callback = vmbus_next_request_id;
3661 	hdev->channel->request_addr_callback = vmbus_request_addr;
3662 	hdev->channel->rqstor_size = HV_PCI_RQSTOR_SIZE;
3663 
3664 	ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0,
3665 			 hv_pci_onchannelcallback, hbus);
3666 	if (ret)
3667 		goto destroy_wq;
3668 
3669 	hv_set_drvdata(hdev, hbus);
3670 
3671 	ret = hv_pci_protocol_negotiation(hdev, pci_protocol_versions,
3672 					  ARRAY_SIZE(pci_protocol_versions));
3673 	if (ret)
3674 		goto close;
3675 
3676 	ret = hv_allocate_config_window(hbus);
3677 	if (ret)
3678 		goto close;
3679 
3680 	hbus->cfg_addr = ioremap(hbus->mem_config->start,
3681 				 PCI_CONFIG_MMIO_LENGTH);
3682 	if (!hbus->cfg_addr) {
3683 		dev_err(&hdev->device,
3684 			"Unable to map a virtual address for config space\n");
3685 		ret = -ENOMEM;
3686 		goto free_config;
3687 	}
3688 
3689 	name = kasprintf(GFP_KERNEL, "%pUL", &hdev->dev_instance);
3690 	if (!name) {
3691 		ret = -ENOMEM;
3692 		goto unmap;
3693 	}
3694 
3695 	hbus->fwnode = irq_domain_alloc_named_fwnode(name);
3696 	kfree(name);
3697 	if (!hbus->fwnode) {
3698 		ret = -ENOMEM;
3699 		goto unmap;
3700 	}
3701 
3702 	ret = hv_pcie_init_irq_domain(hbus);
3703 	if (ret)
3704 		goto free_fwnode;
3705 
3706 retry:
3707 	ret = hv_pci_query_relations(hdev);
3708 	if (ret)
3709 		goto free_irq_domain;
3710 
3711 	ret = hv_pci_enter_d0(hdev);
3712 	/*
3713 	 * In certain case (Kdump) the pci device of interest was
3714 	 * not cleanly shut down and resource is still held on host
3715 	 * side, the host could return invalid device status.
3716 	 * We need to explicitly request host to release the resource
3717 	 * and try to enter D0 again.
3718 	 * Since the hv_pci_bus_exit() call releases structures
3719 	 * of all its child devices, we need to start the retry from
3720 	 * hv_pci_query_relations() call, requesting host to send
3721 	 * the synchronous child device relations message before this
3722 	 * information is needed in hv_send_resources_allocated()
3723 	 * call later.
3724 	 */
3725 	if (ret == -EPROTO && enter_d0_retry) {
3726 		enter_d0_retry = false;
3727 
3728 		dev_err(&hdev->device, "Retrying D0 Entry\n");
3729 
3730 		/*
3731 		 * Hv_pci_bus_exit() calls hv_send_resources_released()
3732 		 * to free up resources of its child devices.
3733 		 * In the kdump kernel we need to set the
3734 		 * wslot_res_allocated to 255 so it scans all child
3735 		 * devices to release resources allocated in the
3736 		 * normal kernel before panic happened.
3737 		 */
3738 		hbus->wslot_res_allocated = 255;
3739 		ret = hv_pci_bus_exit(hdev, true);
3740 
3741 		if (ret == 0)
3742 			goto retry;
3743 
3744 		dev_err(&hdev->device,
3745 			"Retrying D0 failed with ret %d\n", ret);
3746 	}
3747 	if (ret)
3748 		goto free_irq_domain;
3749 
3750 	ret = hv_pci_allocate_bridge_windows(hbus);
3751 	if (ret)
3752 		goto exit_d0;
3753 
3754 	ret = hv_send_resources_allocated(hdev);
3755 	if (ret)
3756 		goto free_windows;
3757 
3758 	prepopulate_bars(hbus);
3759 
3760 	hbus->state = hv_pcibus_probed;
3761 
3762 	ret = create_root_hv_pci_bus(hbus);
3763 	if (ret)
3764 		goto free_windows;
3765 
3766 	return 0;
3767 
3768 free_windows:
3769 	hv_pci_free_bridge_windows(hbus);
3770 exit_d0:
3771 	(void) hv_pci_bus_exit(hdev, true);
3772 free_irq_domain:
3773 	irq_domain_remove(hbus->irq_domain);
3774 free_fwnode:
3775 	irq_domain_free_fwnode(hbus->fwnode);
3776 unmap:
3777 	iounmap(hbus->cfg_addr);
3778 free_config:
3779 	hv_free_config_window(hbus);
3780 close:
3781 	vmbus_close(hdev->channel);
3782 destroy_wq:
3783 	destroy_workqueue(hbus->wq);
3784 free_dom:
3785 	hv_put_dom_num(hbus->bridge->domain_nr);
3786 free_bus:
3787 	kfree(hbus);
3788 	return ret;
3789 }
3790 
3791 static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs)
3792 {
3793 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3794 	struct vmbus_channel *chan = hdev->channel;
3795 	struct {
3796 		struct pci_packet teardown_packet;
3797 		u8 buffer[sizeof(struct pci_message)];
3798 	} pkt;
3799 	struct hv_pci_compl comp_pkt;
3800 	struct hv_pci_dev *hpdev, *tmp;
3801 	unsigned long flags;
3802 	u64 trans_id;
3803 	int ret;
3804 
3805 	/*
3806 	 * After the host sends the RESCIND_CHANNEL message, it doesn't
3807 	 * access the per-channel ringbuffer any longer.
3808 	 */
3809 	if (chan->rescind)
3810 		return 0;
3811 
3812 	if (!keep_devs) {
3813 		struct list_head removed;
3814 
3815 		/* Move all present children to the list on stack */
3816 		INIT_LIST_HEAD(&removed);
3817 		spin_lock_irqsave(&hbus->device_list_lock, flags);
3818 		list_for_each_entry_safe(hpdev, tmp, &hbus->children, list_entry)
3819 			list_move_tail(&hpdev->list_entry, &removed);
3820 		spin_unlock_irqrestore(&hbus->device_list_lock, flags);
3821 
3822 		/* Remove all children in the list */
3823 		list_for_each_entry_safe(hpdev, tmp, &removed, list_entry) {
3824 			list_del(&hpdev->list_entry);
3825 			if (hpdev->pci_slot)
3826 				pci_destroy_slot(hpdev->pci_slot);
3827 			/* For the two refs got in new_pcichild_device() */
3828 			put_pcichild(hpdev);
3829 			put_pcichild(hpdev);
3830 		}
3831 	}
3832 
3833 	ret = hv_send_resources_released(hdev);
3834 	if (ret) {
3835 		dev_err(&hdev->device,
3836 			"Couldn't send resources released packet(s)\n");
3837 		return ret;
3838 	}
3839 
3840 	memset(&pkt.teardown_packet, 0, sizeof(pkt.teardown_packet));
3841 	init_completion(&comp_pkt.host_event);
3842 	pkt.teardown_packet.completion_func = hv_pci_generic_compl;
3843 	pkt.teardown_packet.compl_ctxt = &comp_pkt;
3844 	pkt.teardown_packet.message[0].type = PCI_BUS_D0EXIT;
3845 
3846 	ret = vmbus_sendpacket_getid(chan, &pkt.teardown_packet.message,
3847 				     sizeof(struct pci_message),
3848 				     (unsigned long)&pkt.teardown_packet,
3849 				     &trans_id, VM_PKT_DATA_INBAND,
3850 				     VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3851 	if (ret)
3852 		return ret;
3853 
3854 	if (wait_for_completion_timeout(&comp_pkt.host_event, 10 * HZ) == 0) {
3855 		/*
3856 		 * The completion packet on the stack becomes invalid after
3857 		 * 'return'; remove the ID from the VMbus requestor if the
3858 		 * identifier is still mapped to/associated with the packet.
3859 		 *
3860 		 * Cf. hv_pci_onchannelcallback().
3861 		 */
3862 		vmbus_request_addr_match(chan, trans_id,
3863 					 (unsigned long)&pkt.teardown_packet);
3864 		return -ETIMEDOUT;
3865 	}
3866 
3867 	return 0;
3868 }
3869 
3870 /**
3871  * hv_pci_remove() - Remove routine for this VMBus channel
3872  * @hdev:	VMBus's tracking struct for this root PCI bus
3873  */
3874 static void hv_pci_remove(struct hv_device *hdev)
3875 {
3876 	struct hv_pcibus_device *hbus;
3877 
3878 	hbus = hv_get_drvdata(hdev);
3879 	if (hbus->state == hv_pcibus_installed) {
3880 		tasklet_disable(&hdev->channel->callback_event);
3881 		hbus->state = hv_pcibus_removing;
3882 		tasklet_enable(&hdev->channel->callback_event);
3883 		destroy_workqueue(hbus->wq);
3884 		hbus->wq = NULL;
3885 		/*
3886 		 * At this point, no work is running or can be scheduled
3887 		 * on hbus-wq. We can't race with hv_pci_devices_present()
3888 		 * or hv_pci_eject_device(), it's safe to proceed.
3889 		 */
3890 
3891 		/* Remove the bus from PCI's point of view. */
3892 		pci_lock_rescan_remove();
3893 		pci_stop_root_bus(hbus->bridge->bus);
3894 		hv_pci_remove_slots(hbus);
3895 		pci_remove_root_bus(hbus->bridge->bus);
3896 		pci_unlock_rescan_remove();
3897 	}
3898 
3899 	hv_pci_bus_exit(hdev, false);
3900 
3901 	vmbus_close(hdev->channel);
3902 
3903 	iounmap(hbus->cfg_addr);
3904 	hv_free_config_window(hbus);
3905 	hv_pci_free_bridge_windows(hbus);
3906 	irq_domain_remove(hbus->irq_domain);
3907 	irq_domain_free_fwnode(hbus->fwnode);
3908 
3909 	hv_put_dom_num(hbus->bridge->domain_nr);
3910 
3911 	kfree(hbus);
3912 }
3913 
3914 static int hv_pci_suspend(struct hv_device *hdev)
3915 {
3916 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3917 	enum hv_pcibus_state old_state;
3918 	int ret;
3919 
3920 	/*
3921 	 * hv_pci_suspend() must make sure there are no pending work items
3922 	 * before calling vmbus_close(), since it runs in a process context
3923 	 * as a callback in dpm_suspend().  When it starts to run, the channel
3924 	 * callback hv_pci_onchannelcallback(), which runs in a tasklet
3925 	 * context, can be still running concurrently and scheduling new work
3926 	 * items onto hbus->wq in hv_pci_devices_present() and
3927 	 * hv_pci_eject_device(), and the work item handlers can access the
3928 	 * vmbus channel, which can be being closed by hv_pci_suspend(), e.g.
3929 	 * the work item handler pci_devices_present_work() ->
3930 	 * new_pcichild_device() writes to the vmbus channel.
3931 	 *
3932 	 * To eliminate the race, hv_pci_suspend() disables the channel
3933 	 * callback tasklet, sets hbus->state to hv_pcibus_removing, and
3934 	 * re-enables the tasklet. This way, when hv_pci_suspend() proceeds,
3935 	 * it knows that no new work item can be scheduled, and then it flushes
3936 	 * hbus->wq and safely closes the vmbus channel.
3937 	 */
3938 	tasklet_disable(&hdev->channel->callback_event);
3939 
3940 	/* Change the hbus state to prevent new work items. */
3941 	old_state = hbus->state;
3942 	if (hbus->state == hv_pcibus_installed)
3943 		hbus->state = hv_pcibus_removing;
3944 
3945 	tasklet_enable(&hdev->channel->callback_event);
3946 
3947 	if (old_state != hv_pcibus_installed)
3948 		return -EINVAL;
3949 
3950 	flush_workqueue(hbus->wq);
3951 
3952 	ret = hv_pci_bus_exit(hdev, true);
3953 	if (ret)
3954 		return ret;
3955 
3956 	vmbus_close(hdev->channel);
3957 
3958 	return 0;
3959 }
3960 
3961 static int hv_pci_restore_msi_msg(struct pci_dev *pdev, void *arg)
3962 {
3963 	struct irq_data *irq_data;
3964 	struct msi_desc *entry;
3965 	int ret = 0;
3966 
3967 	msi_lock_descs(&pdev->dev);
3968 	msi_for_each_desc(entry, &pdev->dev, MSI_DESC_ASSOCIATED) {
3969 		irq_data = irq_get_irq_data(entry->irq);
3970 		if (WARN_ON_ONCE(!irq_data)) {
3971 			ret = -EINVAL;
3972 			break;
3973 		}
3974 
3975 		hv_compose_msi_msg(irq_data, &entry->msg);
3976 	}
3977 	msi_unlock_descs(&pdev->dev);
3978 
3979 	return ret;
3980 }
3981 
3982 /*
3983  * Upon resume, pci_restore_msi_state() -> ... ->  __pci_write_msi_msg()
3984  * directly writes the MSI/MSI-X registers via MMIO, but since Hyper-V
3985  * doesn't trap and emulate the MMIO accesses, here hv_compose_msi_msg()
3986  * must be used to ask Hyper-V to re-create the IOMMU Interrupt Remapping
3987  * Table entries.
3988  */
3989 static void hv_pci_restore_msi_state(struct hv_pcibus_device *hbus)
3990 {
3991 	pci_walk_bus(hbus->bridge->bus, hv_pci_restore_msi_msg, NULL);
3992 }
3993 
3994 static int hv_pci_resume(struct hv_device *hdev)
3995 {
3996 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3997 	enum pci_protocol_version_t version[1];
3998 	int ret;
3999 
4000 	hbus->state = hv_pcibus_init;
4001 
4002 	hdev->channel->next_request_id_callback = vmbus_next_request_id;
4003 	hdev->channel->request_addr_callback = vmbus_request_addr;
4004 	hdev->channel->rqstor_size = HV_PCI_RQSTOR_SIZE;
4005 
4006 	ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0,
4007 			 hv_pci_onchannelcallback, hbus);
4008 	if (ret)
4009 		return ret;
4010 
4011 	/* Only use the version that was in use before hibernation. */
4012 	version[0] = hbus->protocol_version;
4013 	ret = hv_pci_protocol_negotiation(hdev, version, 1);
4014 	if (ret)
4015 		goto out;
4016 
4017 	ret = hv_pci_query_relations(hdev);
4018 	if (ret)
4019 		goto out;
4020 
4021 	ret = hv_pci_enter_d0(hdev);
4022 	if (ret)
4023 		goto out;
4024 
4025 	ret = hv_send_resources_allocated(hdev);
4026 	if (ret)
4027 		goto out;
4028 
4029 	prepopulate_bars(hbus);
4030 
4031 	hv_pci_restore_msi_state(hbus);
4032 
4033 	hbus->state = hv_pcibus_installed;
4034 	return 0;
4035 out:
4036 	vmbus_close(hdev->channel);
4037 	return ret;
4038 }
4039 
4040 static const struct hv_vmbus_device_id hv_pci_id_table[] = {
4041 	/* PCI Pass-through Class ID */
4042 	/* 44C4F61D-4444-4400-9D52-802E27EDE19F */
4043 	{ HV_PCIE_GUID, },
4044 	{ },
4045 };
4046 
4047 MODULE_DEVICE_TABLE(vmbus, hv_pci_id_table);
4048 
4049 static struct hv_driver hv_pci_drv = {
4050 	.name		= "hv_pci",
4051 	.id_table	= hv_pci_id_table,
4052 	.probe		= hv_pci_probe,
4053 	.remove		= hv_pci_remove,
4054 	.suspend	= hv_pci_suspend,
4055 	.resume		= hv_pci_resume,
4056 };
4057 
4058 static void __exit exit_hv_pci_drv(void)
4059 {
4060 	vmbus_driver_unregister(&hv_pci_drv);
4061 
4062 	hvpci_block_ops.read_block = NULL;
4063 	hvpci_block_ops.write_block = NULL;
4064 	hvpci_block_ops.reg_blk_invalidate = NULL;
4065 }
4066 
4067 static int __init init_hv_pci_drv(void)
4068 {
4069 	int ret;
4070 
4071 	if (!hv_is_hyperv_initialized())
4072 		return -ENODEV;
4073 
4074 	ret = hv_pci_irqchip_init();
4075 	if (ret)
4076 		return ret;
4077 
4078 	/* Set the invalid domain number's bit, so it will not be used */
4079 	set_bit(HVPCI_DOM_INVALID, hvpci_dom_map);
4080 
4081 	/* Initialize PCI block r/w interface */
4082 	hvpci_block_ops.read_block = hv_read_config_block;
4083 	hvpci_block_ops.write_block = hv_write_config_block;
4084 	hvpci_block_ops.reg_blk_invalidate = hv_register_block_invalidate;
4085 
4086 	return vmbus_driver_register(&hv_pci_drv);
4087 }
4088 
4089 module_init(init_hv_pci_drv);
4090 module_exit(exit_hv_pci_drv);
4091 
4092 MODULE_DESCRIPTION("Hyper-V PCI");
4093 MODULE_LICENSE("GPL v2");
4094