1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) Microsoft Corporation. 4 * 5 * Author: 6 * Jake Oshins <jakeo@microsoft.com> 7 * 8 * This driver acts as a paravirtual front-end for PCI Express root buses. 9 * When a PCI Express function (either an entire device or an SR-IOV 10 * Virtual Function) is being passed through to the VM, this driver exposes 11 * a new bus to the guest VM. This is modeled as a root PCI bus because 12 * no bridges are being exposed to the VM. In fact, with a "Generation 2" 13 * VM within Hyper-V, there may seem to be no PCI bus at all in the VM 14 * until a device as been exposed using this driver. 15 * 16 * Each root PCI bus has its own PCI domain, which is called "Segment" in 17 * the PCI Firmware Specifications. Thus while each device passed through 18 * to the VM using this front-end will appear at "device 0", the domain will 19 * be unique. Typically, each bus will have one PCI function on it, though 20 * this driver does support more than one. 21 * 22 * In order to map the interrupts from the device through to the guest VM, 23 * this driver also implements an IRQ Domain, which handles interrupts (either 24 * MSI or MSI-X) associated with the functions on the bus. As interrupts are 25 * set up, torn down, or reaffined, this driver communicates with the 26 * underlying hypervisor to adjust the mappings in the I/O MMU so that each 27 * interrupt will be delivered to the correct virtual processor at the right 28 * vector. This driver does not support level-triggered (line-based) 29 * interrupts, and will report that the Interrupt Line register in the 30 * function's configuration space is zero. 31 * 32 * The rest of this driver mostly maps PCI concepts onto underlying Hyper-V 33 * facilities. For instance, the configuration space of a function exposed 34 * by Hyper-V is mapped into a single page of memory space, and the 35 * read and write handlers for config space must be aware of this mechanism. 36 * Similarly, device setup and teardown involves messages sent to and from 37 * the PCI back-end driver in Hyper-V. 38 */ 39 40 #include <linux/kernel.h> 41 #include <linux/module.h> 42 #include <linux/pci.h> 43 #include <linux/pci-ecam.h> 44 #include <linux/delay.h> 45 #include <linux/semaphore.h> 46 #include <linux/irq.h> 47 #include <linux/msi.h> 48 #include <linux/hyperv.h> 49 #include <linux/refcount.h> 50 #include <linux/irqdomain.h> 51 #include <linux/acpi.h> 52 #include <asm/mshyperv.h> 53 54 /* 55 * Protocol versions. The low word is the minor version, the high word the 56 * major version. 57 */ 58 59 #define PCI_MAKE_VERSION(major, minor) ((u32)(((major) << 16) | (minor))) 60 #define PCI_MAJOR_VERSION(version) ((u32)(version) >> 16) 61 #define PCI_MINOR_VERSION(version) ((u32)(version) & 0xff) 62 63 enum pci_protocol_version_t { 64 PCI_PROTOCOL_VERSION_1_1 = PCI_MAKE_VERSION(1, 1), /* Win10 */ 65 PCI_PROTOCOL_VERSION_1_2 = PCI_MAKE_VERSION(1, 2), /* RS1 */ 66 PCI_PROTOCOL_VERSION_1_3 = PCI_MAKE_VERSION(1, 3), /* Vibranium */ 67 PCI_PROTOCOL_VERSION_1_4 = PCI_MAKE_VERSION(1, 4), /* WS2022 */ 68 }; 69 70 #define CPU_AFFINITY_ALL -1ULL 71 72 /* 73 * Supported protocol versions in the order of probing - highest go 74 * first. 75 */ 76 static enum pci_protocol_version_t pci_protocol_versions[] = { 77 PCI_PROTOCOL_VERSION_1_4, 78 PCI_PROTOCOL_VERSION_1_3, 79 PCI_PROTOCOL_VERSION_1_2, 80 PCI_PROTOCOL_VERSION_1_1, 81 }; 82 83 #define PCI_CONFIG_MMIO_LENGTH 0x2000 84 #define CFG_PAGE_OFFSET 0x1000 85 #define CFG_PAGE_SIZE (PCI_CONFIG_MMIO_LENGTH - CFG_PAGE_OFFSET) 86 87 #define MAX_SUPPORTED_MSI_MESSAGES 0x400 88 89 #define STATUS_REVISION_MISMATCH 0xC0000059 90 91 /* space for 32bit serial number as string */ 92 #define SLOT_NAME_SIZE 11 93 94 /* 95 * Size of requestor for VMbus; the value is based on the observation 96 * that having more than one request outstanding is 'rare', and so 64 97 * should be generous in ensuring that we don't ever run out. 98 */ 99 #define HV_PCI_RQSTOR_SIZE 64 100 101 /* 102 * Message Types 103 */ 104 105 enum pci_message_type { 106 /* 107 * Version 1.1 108 */ 109 PCI_MESSAGE_BASE = 0x42490000, 110 PCI_BUS_RELATIONS = PCI_MESSAGE_BASE + 0, 111 PCI_QUERY_BUS_RELATIONS = PCI_MESSAGE_BASE + 1, 112 PCI_POWER_STATE_CHANGE = PCI_MESSAGE_BASE + 4, 113 PCI_QUERY_RESOURCE_REQUIREMENTS = PCI_MESSAGE_BASE + 5, 114 PCI_QUERY_RESOURCE_RESOURCES = PCI_MESSAGE_BASE + 6, 115 PCI_BUS_D0ENTRY = PCI_MESSAGE_BASE + 7, 116 PCI_BUS_D0EXIT = PCI_MESSAGE_BASE + 8, 117 PCI_READ_BLOCK = PCI_MESSAGE_BASE + 9, 118 PCI_WRITE_BLOCK = PCI_MESSAGE_BASE + 0xA, 119 PCI_EJECT = PCI_MESSAGE_BASE + 0xB, 120 PCI_QUERY_STOP = PCI_MESSAGE_BASE + 0xC, 121 PCI_REENABLE = PCI_MESSAGE_BASE + 0xD, 122 PCI_QUERY_STOP_FAILED = PCI_MESSAGE_BASE + 0xE, 123 PCI_EJECTION_COMPLETE = PCI_MESSAGE_BASE + 0xF, 124 PCI_RESOURCES_ASSIGNED = PCI_MESSAGE_BASE + 0x10, 125 PCI_RESOURCES_RELEASED = PCI_MESSAGE_BASE + 0x11, 126 PCI_INVALIDATE_BLOCK = PCI_MESSAGE_BASE + 0x12, 127 PCI_QUERY_PROTOCOL_VERSION = PCI_MESSAGE_BASE + 0x13, 128 PCI_CREATE_INTERRUPT_MESSAGE = PCI_MESSAGE_BASE + 0x14, 129 PCI_DELETE_INTERRUPT_MESSAGE = PCI_MESSAGE_BASE + 0x15, 130 PCI_RESOURCES_ASSIGNED2 = PCI_MESSAGE_BASE + 0x16, 131 PCI_CREATE_INTERRUPT_MESSAGE2 = PCI_MESSAGE_BASE + 0x17, 132 PCI_DELETE_INTERRUPT_MESSAGE2 = PCI_MESSAGE_BASE + 0x18, /* unused */ 133 PCI_BUS_RELATIONS2 = PCI_MESSAGE_BASE + 0x19, 134 PCI_RESOURCES_ASSIGNED3 = PCI_MESSAGE_BASE + 0x1A, 135 PCI_CREATE_INTERRUPT_MESSAGE3 = PCI_MESSAGE_BASE + 0x1B, 136 PCI_MESSAGE_MAXIMUM 137 }; 138 139 /* 140 * Structures defining the virtual PCI Express protocol. 141 */ 142 143 union pci_version { 144 struct { 145 u16 minor_version; 146 u16 major_version; 147 } parts; 148 u32 version; 149 } __packed; 150 151 /* 152 * Function numbers are 8-bits wide on Express, as interpreted through ARI, 153 * which is all this driver does. This representation is the one used in 154 * Windows, which is what is expected when sending this back and forth with 155 * the Hyper-V parent partition. 156 */ 157 union win_slot_encoding { 158 struct { 159 u32 dev:5; 160 u32 func:3; 161 u32 reserved:24; 162 } bits; 163 u32 slot; 164 } __packed; 165 166 /* 167 * Pretty much as defined in the PCI Specifications. 168 */ 169 struct pci_function_description { 170 u16 v_id; /* vendor ID */ 171 u16 d_id; /* device ID */ 172 u8 rev; 173 u8 prog_intf; 174 u8 subclass; 175 u8 base_class; 176 u32 subsystem_id; 177 union win_slot_encoding win_slot; 178 u32 ser; /* serial number */ 179 } __packed; 180 181 enum pci_device_description_flags { 182 HV_PCI_DEVICE_FLAG_NONE = 0x0, 183 HV_PCI_DEVICE_FLAG_NUMA_AFFINITY = 0x1, 184 }; 185 186 struct pci_function_description2 { 187 u16 v_id; /* vendor ID */ 188 u16 d_id; /* device ID */ 189 u8 rev; 190 u8 prog_intf; 191 u8 subclass; 192 u8 base_class; 193 u32 subsystem_id; 194 union win_slot_encoding win_slot; 195 u32 ser; /* serial number */ 196 u32 flags; 197 u16 virtual_numa_node; 198 u16 reserved; 199 } __packed; 200 201 /** 202 * struct hv_msi_desc 203 * @vector: IDT entry 204 * @delivery_mode: As defined in Intel's Programmer's 205 * Reference Manual, Volume 3, Chapter 8. 206 * @vector_count: Number of contiguous entries in the 207 * Interrupt Descriptor Table that are 208 * occupied by this Message-Signaled 209 * Interrupt. For "MSI", as first defined 210 * in PCI 2.2, this can be between 1 and 211 * 32. For "MSI-X," as first defined in PCI 212 * 3.0, this must be 1, as each MSI-X table 213 * entry would have its own descriptor. 214 * @reserved: Empty space 215 * @cpu_mask: All the target virtual processors. 216 */ 217 struct hv_msi_desc { 218 u8 vector; 219 u8 delivery_mode; 220 u16 vector_count; 221 u32 reserved; 222 u64 cpu_mask; 223 } __packed; 224 225 /** 226 * struct hv_msi_desc2 - 1.2 version of hv_msi_desc 227 * @vector: IDT entry 228 * @delivery_mode: As defined in Intel's Programmer's 229 * Reference Manual, Volume 3, Chapter 8. 230 * @vector_count: Number of contiguous entries in the 231 * Interrupt Descriptor Table that are 232 * occupied by this Message-Signaled 233 * Interrupt. For "MSI", as first defined 234 * in PCI 2.2, this can be between 1 and 235 * 32. For "MSI-X," as first defined in PCI 236 * 3.0, this must be 1, as each MSI-X table 237 * entry would have its own descriptor. 238 * @processor_count: number of bits enabled in array. 239 * @processor_array: All the target virtual processors. 240 */ 241 struct hv_msi_desc2 { 242 u8 vector; 243 u8 delivery_mode; 244 u16 vector_count; 245 u16 processor_count; 246 u16 processor_array[32]; 247 } __packed; 248 249 /* 250 * struct hv_msi_desc3 - 1.3 version of hv_msi_desc 251 * Everything is the same as in 'hv_msi_desc2' except that the size of the 252 * 'vector' field is larger to support bigger vector values. For ex: LPI 253 * vectors on ARM. 254 */ 255 struct hv_msi_desc3 { 256 u32 vector; 257 u8 delivery_mode; 258 u8 reserved; 259 u16 vector_count; 260 u16 processor_count; 261 u16 processor_array[32]; 262 } __packed; 263 264 /** 265 * struct tran_int_desc 266 * @reserved: unused, padding 267 * @vector_count: same as in hv_msi_desc 268 * @data: This is the "data payload" value that is 269 * written by the device when it generates 270 * a message-signaled interrupt, either MSI 271 * or MSI-X. 272 * @address: This is the address to which the data 273 * payload is written on interrupt 274 * generation. 275 */ 276 struct tran_int_desc { 277 u16 reserved; 278 u16 vector_count; 279 u32 data; 280 u64 address; 281 } __packed; 282 283 /* 284 * A generic message format for virtual PCI. 285 * Specific message formats are defined later in the file. 286 */ 287 288 struct pci_message { 289 u32 type; 290 } __packed; 291 292 struct pci_child_message { 293 struct pci_message message_type; 294 union win_slot_encoding wslot; 295 } __packed; 296 297 struct pci_incoming_message { 298 struct vmpacket_descriptor hdr; 299 struct pci_message message_type; 300 } __packed; 301 302 struct pci_response { 303 struct vmpacket_descriptor hdr; 304 s32 status; /* negative values are failures */ 305 } __packed; 306 307 struct pci_packet { 308 void (*completion_func)(void *context, struct pci_response *resp, 309 int resp_packet_size); 310 void *compl_ctxt; 311 312 struct pci_message message[]; 313 }; 314 315 /* 316 * Specific message types supporting the PCI protocol. 317 */ 318 319 /* 320 * Version negotiation message. Sent from the guest to the host. 321 * The guest is free to try different versions until the host 322 * accepts the version. 323 * 324 * pci_version: The protocol version requested. 325 * is_last_attempt: If TRUE, this is the last version guest will request. 326 * reservedz: Reserved field, set to zero. 327 */ 328 329 struct pci_version_request { 330 struct pci_message message_type; 331 u32 protocol_version; 332 } __packed; 333 334 /* 335 * Bus D0 Entry. This is sent from the guest to the host when the virtual 336 * bus (PCI Express port) is ready for action. 337 */ 338 339 struct pci_bus_d0_entry { 340 struct pci_message message_type; 341 u32 reserved; 342 u64 mmio_base; 343 } __packed; 344 345 struct pci_bus_relations { 346 struct pci_incoming_message incoming; 347 u32 device_count; 348 struct pci_function_description func[]; 349 } __packed; 350 351 struct pci_bus_relations2 { 352 struct pci_incoming_message incoming; 353 u32 device_count; 354 struct pci_function_description2 func[]; 355 } __packed; 356 357 struct pci_q_res_req_response { 358 struct vmpacket_descriptor hdr; 359 s32 status; /* negative values are failures */ 360 u32 probed_bar[PCI_STD_NUM_BARS]; 361 } __packed; 362 363 struct pci_set_power { 364 struct pci_message message_type; 365 union win_slot_encoding wslot; 366 u32 power_state; /* In Windows terms */ 367 u32 reserved; 368 } __packed; 369 370 struct pci_set_power_response { 371 struct vmpacket_descriptor hdr; 372 s32 status; /* negative values are failures */ 373 union win_slot_encoding wslot; 374 u32 resultant_state; /* In Windows terms */ 375 u32 reserved; 376 } __packed; 377 378 struct pci_resources_assigned { 379 struct pci_message message_type; 380 union win_slot_encoding wslot; 381 u8 memory_range[0x14][6]; /* not used here */ 382 u32 msi_descriptors; 383 u32 reserved[4]; 384 } __packed; 385 386 struct pci_resources_assigned2 { 387 struct pci_message message_type; 388 union win_slot_encoding wslot; 389 u8 memory_range[0x14][6]; /* not used here */ 390 u32 msi_descriptor_count; 391 u8 reserved[70]; 392 } __packed; 393 394 struct pci_create_interrupt { 395 struct pci_message message_type; 396 union win_slot_encoding wslot; 397 struct hv_msi_desc int_desc; 398 } __packed; 399 400 struct pci_create_int_response { 401 struct pci_response response; 402 u32 reserved; 403 struct tran_int_desc int_desc; 404 } __packed; 405 406 struct pci_create_interrupt2 { 407 struct pci_message message_type; 408 union win_slot_encoding wslot; 409 struct hv_msi_desc2 int_desc; 410 } __packed; 411 412 struct pci_create_interrupt3 { 413 struct pci_message message_type; 414 union win_slot_encoding wslot; 415 struct hv_msi_desc3 int_desc; 416 } __packed; 417 418 struct pci_delete_interrupt { 419 struct pci_message message_type; 420 union win_slot_encoding wslot; 421 struct tran_int_desc int_desc; 422 } __packed; 423 424 /* 425 * Note: the VM must pass a valid block id, wslot and bytes_requested. 426 */ 427 struct pci_read_block { 428 struct pci_message message_type; 429 u32 block_id; 430 union win_slot_encoding wslot; 431 u32 bytes_requested; 432 } __packed; 433 434 struct pci_read_block_response { 435 struct vmpacket_descriptor hdr; 436 u32 status; 437 u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX]; 438 } __packed; 439 440 /* 441 * Note: the VM must pass a valid block id, wslot and byte_count. 442 */ 443 struct pci_write_block { 444 struct pci_message message_type; 445 u32 block_id; 446 union win_slot_encoding wslot; 447 u32 byte_count; 448 u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX]; 449 } __packed; 450 451 struct pci_dev_inval_block { 452 struct pci_incoming_message incoming; 453 union win_slot_encoding wslot; 454 u64 block_mask; 455 } __packed; 456 457 struct pci_dev_incoming { 458 struct pci_incoming_message incoming; 459 union win_slot_encoding wslot; 460 } __packed; 461 462 struct pci_eject_response { 463 struct pci_message message_type; 464 union win_slot_encoding wslot; 465 u32 status; 466 } __packed; 467 468 static int pci_ring_size = (4 * PAGE_SIZE); 469 470 /* 471 * Driver specific state. 472 */ 473 474 enum hv_pcibus_state { 475 hv_pcibus_init = 0, 476 hv_pcibus_probed, 477 hv_pcibus_installed, 478 hv_pcibus_removing, 479 hv_pcibus_maximum 480 }; 481 482 struct hv_pcibus_device { 483 #ifdef CONFIG_X86 484 struct pci_sysdata sysdata; 485 #elif defined(CONFIG_ARM64) 486 struct pci_config_window sysdata; 487 #endif 488 struct pci_host_bridge *bridge; 489 struct fwnode_handle *fwnode; 490 /* Protocol version negotiated with the host */ 491 enum pci_protocol_version_t protocol_version; 492 enum hv_pcibus_state state; 493 struct hv_device *hdev; 494 resource_size_t low_mmio_space; 495 resource_size_t high_mmio_space; 496 struct resource *mem_config; 497 struct resource *low_mmio_res; 498 struct resource *high_mmio_res; 499 struct completion *survey_event; 500 struct pci_bus *pci_bus; 501 spinlock_t config_lock; /* Avoid two threads writing index page */ 502 spinlock_t device_list_lock; /* Protect lists below */ 503 void __iomem *cfg_addr; 504 505 struct list_head children; 506 struct list_head dr_list; 507 508 struct msi_domain_info msi_info; 509 struct irq_domain *irq_domain; 510 511 spinlock_t retarget_msi_interrupt_lock; 512 513 struct workqueue_struct *wq; 514 515 /* Highest slot of child device with resources allocated */ 516 int wslot_res_allocated; 517 518 /* hypercall arg, must not cross page boundary */ 519 struct hv_retarget_device_interrupt retarget_msi_interrupt_params; 520 521 /* 522 * Don't put anything here: retarget_msi_interrupt_params must be last 523 */ 524 }; 525 526 /* 527 * Tracks "Device Relations" messages from the host, which must be both 528 * processed in order and deferred so that they don't run in the context 529 * of the incoming packet callback. 530 */ 531 struct hv_dr_work { 532 struct work_struct wrk; 533 struct hv_pcibus_device *bus; 534 }; 535 536 struct hv_pcidev_description { 537 u16 v_id; /* vendor ID */ 538 u16 d_id; /* device ID */ 539 u8 rev; 540 u8 prog_intf; 541 u8 subclass; 542 u8 base_class; 543 u32 subsystem_id; 544 union win_slot_encoding win_slot; 545 u32 ser; /* serial number */ 546 u32 flags; 547 u16 virtual_numa_node; 548 }; 549 550 struct hv_dr_state { 551 struct list_head list_entry; 552 u32 device_count; 553 struct hv_pcidev_description func[]; 554 }; 555 556 enum hv_pcichild_state { 557 hv_pcichild_init = 0, 558 hv_pcichild_requirements, 559 hv_pcichild_resourced, 560 hv_pcichild_ejecting, 561 hv_pcichild_maximum 562 }; 563 564 struct hv_pci_dev { 565 /* List protected by pci_rescan_remove_lock */ 566 struct list_head list_entry; 567 refcount_t refs; 568 enum hv_pcichild_state state; 569 struct pci_slot *pci_slot; 570 struct hv_pcidev_description desc; 571 bool reported_missing; 572 struct hv_pcibus_device *hbus; 573 struct work_struct wrk; 574 575 void (*block_invalidate)(void *context, u64 block_mask); 576 void *invalidate_context; 577 578 /* 579 * What would be observed if one wrote 0xFFFFFFFF to a BAR and then 580 * read it back, for each of the BAR offsets within config space. 581 */ 582 u32 probed_bar[PCI_STD_NUM_BARS]; 583 }; 584 585 struct hv_pci_compl { 586 struct completion host_event; 587 s32 completion_status; 588 }; 589 590 static void hv_pci_onchannelcallback(void *context); 591 592 #ifdef CONFIG_X86 593 #define DELIVERY_MODE APIC_DELIVERY_MODE_FIXED 594 #define FLOW_HANDLER handle_edge_irq 595 #define FLOW_NAME "edge" 596 597 static int hv_pci_irqchip_init(void) 598 { 599 return 0; 600 } 601 602 static struct irq_domain *hv_pci_get_root_domain(void) 603 { 604 return x86_vector_domain; 605 } 606 607 static unsigned int hv_msi_get_int_vector(struct irq_data *data) 608 { 609 struct irq_cfg *cfg = irqd_cfg(data); 610 611 return cfg->vector; 612 } 613 614 #define hv_msi_prepare pci_msi_prepare 615 616 /** 617 * hv_arch_irq_unmask() - "Unmask" the IRQ by setting its current 618 * affinity. 619 * @data: Describes the IRQ 620 * 621 * Build new a destination for the MSI and make a hypercall to 622 * update the Interrupt Redirection Table. "Device Logical ID" 623 * is built out of this PCI bus's instance GUID and the function 624 * number of the device. 625 */ 626 static void hv_arch_irq_unmask(struct irq_data *data) 627 { 628 struct msi_desc *msi_desc = irq_data_get_msi_desc(data); 629 struct hv_retarget_device_interrupt *params; 630 struct tran_int_desc *int_desc; 631 struct hv_pcibus_device *hbus; 632 const struct cpumask *dest; 633 cpumask_var_t tmp; 634 struct pci_bus *pbus; 635 struct pci_dev *pdev; 636 unsigned long flags; 637 u32 var_size = 0; 638 int cpu, nr_bank; 639 u64 res; 640 641 dest = irq_data_get_effective_affinity_mask(data); 642 pdev = msi_desc_to_pci_dev(msi_desc); 643 pbus = pdev->bus; 644 hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata); 645 int_desc = data->chip_data; 646 647 spin_lock_irqsave(&hbus->retarget_msi_interrupt_lock, flags); 648 649 params = &hbus->retarget_msi_interrupt_params; 650 memset(params, 0, sizeof(*params)); 651 params->partition_id = HV_PARTITION_ID_SELF; 652 params->int_entry.source = HV_INTERRUPT_SOURCE_MSI; 653 params->int_entry.msi_entry.address.as_uint32 = int_desc->address & 0xffffffff; 654 params->int_entry.msi_entry.data.as_uint32 = int_desc->data; 655 params->device_id = (hbus->hdev->dev_instance.b[5] << 24) | 656 (hbus->hdev->dev_instance.b[4] << 16) | 657 (hbus->hdev->dev_instance.b[7] << 8) | 658 (hbus->hdev->dev_instance.b[6] & 0xf8) | 659 PCI_FUNC(pdev->devfn); 660 params->int_target.vector = hv_msi_get_int_vector(data); 661 662 /* 663 * Honoring apic->delivery_mode set to APIC_DELIVERY_MODE_FIXED by 664 * setting the HV_DEVICE_INTERRUPT_TARGET_MULTICAST flag results in a 665 * spurious interrupt storm. Not doing so does not seem to have a 666 * negative effect (yet?). 667 */ 668 669 if (hbus->protocol_version >= PCI_PROTOCOL_VERSION_1_2) { 670 /* 671 * PCI_PROTOCOL_VERSION_1_2 supports the VP_SET version of the 672 * HVCALL_RETARGET_INTERRUPT hypercall, which also coincides 673 * with >64 VP support. 674 * ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED 675 * is not sufficient for this hypercall. 676 */ 677 params->int_target.flags |= 678 HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET; 679 680 if (!alloc_cpumask_var(&tmp, GFP_ATOMIC)) { 681 res = 1; 682 goto exit_unlock; 683 } 684 685 cpumask_and(tmp, dest, cpu_online_mask); 686 nr_bank = cpumask_to_vpset(¶ms->int_target.vp_set, tmp); 687 free_cpumask_var(tmp); 688 689 if (nr_bank <= 0) { 690 res = 1; 691 goto exit_unlock; 692 } 693 694 /* 695 * var-sized hypercall, var-size starts after vp_mask (thus 696 * vp_set.format does not count, but vp_set.valid_bank_mask 697 * does). 698 */ 699 var_size = 1 + nr_bank; 700 } else { 701 for_each_cpu_and(cpu, dest, cpu_online_mask) { 702 params->int_target.vp_mask |= 703 (1ULL << hv_cpu_number_to_vp_number(cpu)); 704 } 705 } 706 707 res = hv_do_hypercall(HVCALL_RETARGET_INTERRUPT | (var_size << 17), 708 params, NULL); 709 710 exit_unlock: 711 spin_unlock_irqrestore(&hbus->retarget_msi_interrupt_lock, flags); 712 713 /* 714 * During hibernation, when a CPU is offlined, the kernel tries 715 * to move the interrupt to the remaining CPUs that haven't 716 * been offlined yet. In this case, the below hv_do_hypercall() 717 * always fails since the vmbus channel has been closed: 718 * refer to cpu_disable_common() -> fixup_irqs() -> 719 * irq_migrate_all_off_this_cpu() -> migrate_one_irq(). 720 * 721 * Suppress the error message for hibernation because the failure 722 * during hibernation does not matter (at this time all the devices 723 * have been frozen). Note: the correct affinity info is still updated 724 * into the irqdata data structure in migrate_one_irq() -> 725 * irq_do_set_affinity(), so later when the VM resumes, 726 * hv_pci_restore_msi_state() is able to correctly restore the 727 * interrupt with the correct affinity. 728 */ 729 if (!hv_result_success(res) && hbus->state != hv_pcibus_removing) 730 dev_err(&hbus->hdev->device, 731 "%s() failed: %#llx", __func__, res); 732 } 733 #elif defined(CONFIG_ARM64) 734 /* 735 * SPI vectors to use for vPCI; arch SPIs range is [32, 1019], but leaving a bit 736 * of room at the start to allow for SPIs to be specified through ACPI and 737 * starting with a power of two to satisfy power of 2 multi-MSI requirement. 738 */ 739 #define HV_PCI_MSI_SPI_START 64 740 #define HV_PCI_MSI_SPI_NR (1020 - HV_PCI_MSI_SPI_START) 741 #define DELIVERY_MODE 0 742 #define FLOW_HANDLER NULL 743 #define FLOW_NAME NULL 744 #define hv_msi_prepare NULL 745 746 struct hv_pci_chip_data { 747 DECLARE_BITMAP(spi_map, HV_PCI_MSI_SPI_NR); 748 struct mutex map_lock; 749 }; 750 751 /* Hyper-V vPCI MSI GIC IRQ domain */ 752 static struct irq_domain *hv_msi_gic_irq_domain; 753 754 /* Hyper-V PCI MSI IRQ chip */ 755 static struct irq_chip hv_arm64_msi_irq_chip = { 756 .name = "MSI", 757 .irq_set_affinity = irq_chip_set_affinity_parent, 758 .irq_eoi = irq_chip_eoi_parent, 759 .irq_mask = irq_chip_mask_parent, 760 .irq_unmask = irq_chip_unmask_parent 761 }; 762 763 static unsigned int hv_msi_get_int_vector(struct irq_data *irqd) 764 { 765 return irqd->parent_data->hwirq; 766 } 767 768 /* 769 * @nr_bm_irqs: Indicates the number of IRQs that were allocated from 770 * the bitmap. 771 * @nr_dom_irqs: Indicates the number of IRQs that were allocated from 772 * the parent domain. 773 */ 774 static void hv_pci_vec_irq_free(struct irq_domain *domain, 775 unsigned int virq, 776 unsigned int nr_bm_irqs, 777 unsigned int nr_dom_irqs) 778 { 779 struct hv_pci_chip_data *chip_data = domain->host_data; 780 struct irq_data *d = irq_domain_get_irq_data(domain, virq); 781 int first = d->hwirq - HV_PCI_MSI_SPI_START; 782 int i; 783 784 mutex_lock(&chip_data->map_lock); 785 bitmap_release_region(chip_data->spi_map, 786 first, 787 get_count_order(nr_bm_irqs)); 788 mutex_unlock(&chip_data->map_lock); 789 for (i = 0; i < nr_dom_irqs; i++) { 790 if (i) 791 d = irq_domain_get_irq_data(domain, virq + i); 792 irq_domain_reset_irq_data(d); 793 } 794 795 irq_domain_free_irqs_parent(domain, virq, nr_dom_irqs); 796 } 797 798 static void hv_pci_vec_irq_domain_free(struct irq_domain *domain, 799 unsigned int virq, 800 unsigned int nr_irqs) 801 { 802 hv_pci_vec_irq_free(domain, virq, nr_irqs, nr_irqs); 803 } 804 805 static int hv_pci_vec_alloc_device_irq(struct irq_domain *domain, 806 unsigned int nr_irqs, 807 irq_hw_number_t *hwirq) 808 { 809 struct hv_pci_chip_data *chip_data = domain->host_data; 810 int index; 811 812 /* Find and allocate region from the SPI bitmap */ 813 mutex_lock(&chip_data->map_lock); 814 index = bitmap_find_free_region(chip_data->spi_map, 815 HV_PCI_MSI_SPI_NR, 816 get_count_order(nr_irqs)); 817 mutex_unlock(&chip_data->map_lock); 818 if (index < 0) 819 return -ENOSPC; 820 821 *hwirq = index + HV_PCI_MSI_SPI_START; 822 823 return 0; 824 } 825 826 static int hv_pci_vec_irq_gic_domain_alloc(struct irq_domain *domain, 827 unsigned int virq, 828 irq_hw_number_t hwirq) 829 { 830 struct irq_fwspec fwspec; 831 struct irq_data *d; 832 int ret; 833 834 fwspec.fwnode = domain->parent->fwnode; 835 fwspec.param_count = 2; 836 fwspec.param[0] = hwirq; 837 fwspec.param[1] = IRQ_TYPE_EDGE_RISING; 838 839 ret = irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec); 840 if (ret) 841 return ret; 842 843 /* 844 * Since the interrupt specifier is not coming from ACPI or DT, the 845 * trigger type will need to be set explicitly. Otherwise, it will be 846 * set to whatever is in the GIC configuration. 847 */ 848 d = irq_domain_get_irq_data(domain->parent, virq); 849 850 return d->chip->irq_set_type(d, IRQ_TYPE_EDGE_RISING); 851 } 852 853 static int hv_pci_vec_irq_domain_alloc(struct irq_domain *domain, 854 unsigned int virq, unsigned int nr_irqs, 855 void *args) 856 { 857 irq_hw_number_t hwirq; 858 unsigned int i; 859 int ret; 860 861 ret = hv_pci_vec_alloc_device_irq(domain, nr_irqs, &hwirq); 862 if (ret) 863 return ret; 864 865 for (i = 0; i < nr_irqs; i++) { 866 ret = hv_pci_vec_irq_gic_domain_alloc(domain, virq + i, 867 hwirq + i); 868 if (ret) { 869 hv_pci_vec_irq_free(domain, virq, nr_irqs, i); 870 return ret; 871 } 872 873 irq_domain_set_hwirq_and_chip(domain, virq + i, 874 hwirq + i, 875 &hv_arm64_msi_irq_chip, 876 domain->host_data); 877 pr_debug("pID:%d vID:%u\n", (int)(hwirq + i), virq + i); 878 } 879 880 return 0; 881 } 882 883 /* 884 * Pick the first cpu as the irq affinity that can be temporarily used for 885 * composing MSI from the hypervisor. GIC will eventually set the right 886 * affinity for the irq and the 'unmask' will retarget the interrupt to that 887 * cpu. 888 */ 889 static int hv_pci_vec_irq_domain_activate(struct irq_domain *domain, 890 struct irq_data *irqd, bool reserve) 891 { 892 int cpu = cpumask_first(cpu_present_mask); 893 894 irq_data_update_effective_affinity(irqd, cpumask_of(cpu)); 895 896 return 0; 897 } 898 899 static const struct irq_domain_ops hv_pci_domain_ops = { 900 .alloc = hv_pci_vec_irq_domain_alloc, 901 .free = hv_pci_vec_irq_domain_free, 902 .activate = hv_pci_vec_irq_domain_activate, 903 }; 904 905 static int hv_pci_irqchip_init(void) 906 { 907 static struct hv_pci_chip_data *chip_data; 908 struct fwnode_handle *fn = NULL; 909 int ret = -ENOMEM; 910 911 chip_data = kzalloc(sizeof(*chip_data), GFP_KERNEL); 912 if (!chip_data) 913 return ret; 914 915 mutex_init(&chip_data->map_lock); 916 fn = irq_domain_alloc_named_fwnode("hv_vpci_arm64"); 917 if (!fn) 918 goto free_chip; 919 920 /* 921 * IRQ domain once enabled, should not be removed since there is no 922 * way to ensure that all the corresponding devices are also gone and 923 * no interrupts will be generated. 924 */ 925 hv_msi_gic_irq_domain = acpi_irq_create_hierarchy(0, HV_PCI_MSI_SPI_NR, 926 fn, &hv_pci_domain_ops, 927 chip_data); 928 929 if (!hv_msi_gic_irq_domain) { 930 pr_err("Failed to create Hyper-V arm64 vPCI MSI IRQ domain\n"); 931 goto free_chip; 932 } 933 934 return 0; 935 936 free_chip: 937 kfree(chip_data); 938 if (fn) 939 irq_domain_free_fwnode(fn); 940 941 return ret; 942 } 943 944 static struct irq_domain *hv_pci_get_root_domain(void) 945 { 946 return hv_msi_gic_irq_domain; 947 } 948 949 /* 950 * SPIs are used for interrupts of PCI devices and SPIs is managed via GICD 951 * registers which Hyper-V already supports, so no hypercall needed. 952 */ 953 static void hv_arch_irq_unmask(struct irq_data *data) { } 954 #endif /* CONFIG_ARM64 */ 955 956 /** 957 * hv_pci_generic_compl() - Invoked for a completion packet 958 * @context: Set up by the sender of the packet. 959 * @resp: The response packet 960 * @resp_packet_size: Size in bytes of the packet 961 * 962 * This function is used to trigger an event and report status 963 * for any message for which the completion packet contains a 964 * status and nothing else. 965 */ 966 static void hv_pci_generic_compl(void *context, struct pci_response *resp, 967 int resp_packet_size) 968 { 969 struct hv_pci_compl *comp_pkt = context; 970 971 comp_pkt->completion_status = resp->status; 972 complete(&comp_pkt->host_event); 973 } 974 975 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus, 976 u32 wslot); 977 978 static void get_pcichild(struct hv_pci_dev *hpdev) 979 { 980 refcount_inc(&hpdev->refs); 981 } 982 983 static void put_pcichild(struct hv_pci_dev *hpdev) 984 { 985 if (refcount_dec_and_test(&hpdev->refs)) 986 kfree(hpdev); 987 } 988 989 /* 990 * There is no good way to get notified from vmbus_onoffer_rescind(), 991 * so let's use polling here, since this is not a hot path. 992 */ 993 static int wait_for_response(struct hv_device *hdev, 994 struct completion *comp) 995 { 996 while (true) { 997 if (hdev->channel->rescind) { 998 dev_warn_once(&hdev->device, "The device is gone.\n"); 999 return -ENODEV; 1000 } 1001 1002 if (wait_for_completion_timeout(comp, HZ / 10)) 1003 break; 1004 } 1005 1006 return 0; 1007 } 1008 1009 /** 1010 * devfn_to_wslot() - Convert from Linux PCI slot to Windows 1011 * @devfn: The Linux representation of PCI slot 1012 * 1013 * Windows uses a slightly different representation of PCI slot. 1014 * 1015 * Return: The Windows representation 1016 */ 1017 static u32 devfn_to_wslot(int devfn) 1018 { 1019 union win_slot_encoding wslot; 1020 1021 wslot.slot = 0; 1022 wslot.bits.dev = PCI_SLOT(devfn); 1023 wslot.bits.func = PCI_FUNC(devfn); 1024 1025 return wslot.slot; 1026 } 1027 1028 /** 1029 * wslot_to_devfn() - Convert from Windows PCI slot to Linux 1030 * @wslot: The Windows representation of PCI slot 1031 * 1032 * Windows uses a slightly different representation of PCI slot. 1033 * 1034 * Return: The Linux representation 1035 */ 1036 static int wslot_to_devfn(u32 wslot) 1037 { 1038 union win_slot_encoding slot_no; 1039 1040 slot_no.slot = wslot; 1041 return PCI_DEVFN(slot_no.bits.dev, slot_no.bits.func); 1042 } 1043 1044 /* 1045 * PCI Configuration Space for these root PCI buses is implemented as a pair 1046 * of pages in memory-mapped I/O space. Writing to the first page chooses 1047 * the PCI function being written or read. Once the first page has been 1048 * written to, the following page maps in the entire configuration space of 1049 * the function. 1050 */ 1051 1052 /** 1053 * _hv_pcifront_read_config() - Internal PCI config read 1054 * @hpdev: The PCI driver's representation of the device 1055 * @where: Offset within config space 1056 * @size: Size of the transfer 1057 * @val: Pointer to the buffer receiving the data 1058 */ 1059 static void _hv_pcifront_read_config(struct hv_pci_dev *hpdev, int where, 1060 int size, u32 *val) 1061 { 1062 unsigned long flags; 1063 void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where; 1064 1065 /* 1066 * If the attempt is to read the IDs or the ROM BAR, simulate that. 1067 */ 1068 if (where + size <= PCI_COMMAND) { 1069 memcpy(val, ((u8 *)&hpdev->desc.v_id) + where, size); 1070 } else if (where >= PCI_CLASS_REVISION && where + size <= 1071 PCI_CACHE_LINE_SIZE) { 1072 memcpy(val, ((u8 *)&hpdev->desc.rev) + where - 1073 PCI_CLASS_REVISION, size); 1074 } else if (where >= PCI_SUBSYSTEM_VENDOR_ID && where + size <= 1075 PCI_ROM_ADDRESS) { 1076 memcpy(val, (u8 *)&hpdev->desc.subsystem_id + where - 1077 PCI_SUBSYSTEM_VENDOR_ID, size); 1078 } else if (where >= PCI_ROM_ADDRESS && where + size <= 1079 PCI_CAPABILITY_LIST) { 1080 /* ROM BARs are unimplemented */ 1081 *val = 0; 1082 } else if (where >= PCI_INTERRUPT_LINE && where + size <= 1083 PCI_INTERRUPT_PIN) { 1084 /* 1085 * Interrupt Line and Interrupt PIN are hard-wired to zero 1086 * because this front-end only supports message-signaled 1087 * interrupts. 1088 */ 1089 *val = 0; 1090 } else if (where + size <= CFG_PAGE_SIZE) { 1091 spin_lock_irqsave(&hpdev->hbus->config_lock, flags); 1092 /* Choose the function to be read. (See comment above) */ 1093 writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr); 1094 /* Make sure the function was chosen before we start reading. */ 1095 mb(); 1096 /* Read from that function's config space. */ 1097 switch (size) { 1098 case 1: 1099 *val = readb(addr); 1100 break; 1101 case 2: 1102 *val = readw(addr); 1103 break; 1104 default: 1105 *val = readl(addr); 1106 break; 1107 } 1108 /* 1109 * Make sure the read was done before we release the spinlock 1110 * allowing consecutive reads/writes. 1111 */ 1112 mb(); 1113 spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags); 1114 } else { 1115 dev_err(&hpdev->hbus->hdev->device, 1116 "Attempt to read beyond a function's config space.\n"); 1117 } 1118 } 1119 1120 static u16 hv_pcifront_get_vendor_id(struct hv_pci_dev *hpdev) 1121 { 1122 u16 ret; 1123 unsigned long flags; 1124 void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + 1125 PCI_VENDOR_ID; 1126 1127 spin_lock_irqsave(&hpdev->hbus->config_lock, flags); 1128 1129 /* Choose the function to be read. (See comment above) */ 1130 writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr); 1131 /* Make sure the function was chosen before we start reading. */ 1132 mb(); 1133 /* Read from that function's config space. */ 1134 ret = readw(addr); 1135 /* 1136 * mb() is not required here, because the spin_unlock_irqrestore() 1137 * is a barrier. 1138 */ 1139 1140 spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags); 1141 1142 return ret; 1143 } 1144 1145 /** 1146 * _hv_pcifront_write_config() - Internal PCI config write 1147 * @hpdev: The PCI driver's representation of the device 1148 * @where: Offset within config space 1149 * @size: Size of the transfer 1150 * @val: The data being transferred 1151 */ 1152 static void _hv_pcifront_write_config(struct hv_pci_dev *hpdev, int where, 1153 int size, u32 val) 1154 { 1155 unsigned long flags; 1156 void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where; 1157 1158 if (where >= PCI_SUBSYSTEM_VENDOR_ID && 1159 where + size <= PCI_CAPABILITY_LIST) { 1160 /* SSIDs and ROM BARs are read-only */ 1161 } else if (where >= PCI_COMMAND && where + size <= CFG_PAGE_SIZE) { 1162 spin_lock_irqsave(&hpdev->hbus->config_lock, flags); 1163 /* Choose the function to be written. (See comment above) */ 1164 writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr); 1165 /* Make sure the function was chosen before we start writing. */ 1166 wmb(); 1167 /* Write to that function's config space. */ 1168 switch (size) { 1169 case 1: 1170 writeb(val, addr); 1171 break; 1172 case 2: 1173 writew(val, addr); 1174 break; 1175 default: 1176 writel(val, addr); 1177 break; 1178 } 1179 /* 1180 * Make sure the write was done before we release the spinlock 1181 * allowing consecutive reads/writes. 1182 */ 1183 mb(); 1184 spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags); 1185 } else { 1186 dev_err(&hpdev->hbus->hdev->device, 1187 "Attempt to write beyond a function's config space.\n"); 1188 } 1189 } 1190 1191 /** 1192 * hv_pcifront_read_config() - Read configuration space 1193 * @bus: PCI Bus structure 1194 * @devfn: Device/function 1195 * @where: Offset from base 1196 * @size: Byte/word/dword 1197 * @val: Value to be read 1198 * 1199 * Return: PCIBIOS_SUCCESSFUL on success 1200 * PCIBIOS_DEVICE_NOT_FOUND on failure 1201 */ 1202 static int hv_pcifront_read_config(struct pci_bus *bus, unsigned int devfn, 1203 int where, int size, u32 *val) 1204 { 1205 struct hv_pcibus_device *hbus = 1206 container_of(bus->sysdata, struct hv_pcibus_device, sysdata); 1207 struct hv_pci_dev *hpdev; 1208 1209 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn)); 1210 if (!hpdev) 1211 return PCIBIOS_DEVICE_NOT_FOUND; 1212 1213 _hv_pcifront_read_config(hpdev, where, size, val); 1214 1215 put_pcichild(hpdev); 1216 return PCIBIOS_SUCCESSFUL; 1217 } 1218 1219 /** 1220 * hv_pcifront_write_config() - Write configuration space 1221 * @bus: PCI Bus structure 1222 * @devfn: Device/function 1223 * @where: Offset from base 1224 * @size: Byte/word/dword 1225 * @val: Value to be written to device 1226 * 1227 * Return: PCIBIOS_SUCCESSFUL on success 1228 * PCIBIOS_DEVICE_NOT_FOUND on failure 1229 */ 1230 static int hv_pcifront_write_config(struct pci_bus *bus, unsigned int devfn, 1231 int where, int size, u32 val) 1232 { 1233 struct hv_pcibus_device *hbus = 1234 container_of(bus->sysdata, struct hv_pcibus_device, sysdata); 1235 struct hv_pci_dev *hpdev; 1236 1237 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn)); 1238 if (!hpdev) 1239 return PCIBIOS_DEVICE_NOT_FOUND; 1240 1241 _hv_pcifront_write_config(hpdev, where, size, val); 1242 1243 put_pcichild(hpdev); 1244 return PCIBIOS_SUCCESSFUL; 1245 } 1246 1247 /* PCIe operations */ 1248 static struct pci_ops hv_pcifront_ops = { 1249 .read = hv_pcifront_read_config, 1250 .write = hv_pcifront_write_config, 1251 }; 1252 1253 /* 1254 * Paravirtual backchannel 1255 * 1256 * Hyper-V SR-IOV provides a backchannel mechanism in software for 1257 * communication between a VF driver and a PF driver. These 1258 * "configuration blocks" are similar in concept to PCI configuration space, 1259 * but instead of doing reads and writes in 32-bit chunks through a very slow 1260 * path, packets of up to 128 bytes can be sent or received asynchronously. 1261 * 1262 * Nearly every SR-IOV device contains just such a communications channel in 1263 * hardware, so using this one in software is usually optional. Using the 1264 * software channel, however, allows driver implementers to leverage software 1265 * tools that fuzz the communications channel looking for vulnerabilities. 1266 * 1267 * The usage model for these packets puts the responsibility for reading or 1268 * writing on the VF driver. The VF driver sends a read or a write packet, 1269 * indicating which "block" is being referred to by number. 1270 * 1271 * If the PF driver wishes to initiate communication, it can "invalidate" one or 1272 * more of the first 64 blocks. This invalidation is delivered via a callback 1273 * supplied by the VF driver by this driver. 1274 * 1275 * No protocol is implied, except that supplied by the PF and VF drivers. 1276 */ 1277 1278 struct hv_read_config_compl { 1279 struct hv_pci_compl comp_pkt; 1280 void *buf; 1281 unsigned int len; 1282 unsigned int bytes_returned; 1283 }; 1284 1285 /** 1286 * hv_pci_read_config_compl() - Invoked when a response packet 1287 * for a read config block operation arrives. 1288 * @context: Identifies the read config operation 1289 * @resp: The response packet itself 1290 * @resp_packet_size: Size in bytes of the response packet 1291 */ 1292 static void hv_pci_read_config_compl(void *context, struct pci_response *resp, 1293 int resp_packet_size) 1294 { 1295 struct hv_read_config_compl *comp = context; 1296 struct pci_read_block_response *read_resp = 1297 (struct pci_read_block_response *)resp; 1298 unsigned int data_len, hdr_len; 1299 1300 hdr_len = offsetof(struct pci_read_block_response, bytes); 1301 if (resp_packet_size < hdr_len) { 1302 comp->comp_pkt.completion_status = -1; 1303 goto out; 1304 } 1305 1306 data_len = resp_packet_size - hdr_len; 1307 if (data_len > 0 && read_resp->status == 0) { 1308 comp->bytes_returned = min(comp->len, data_len); 1309 memcpy(comp->buf, read_resp->bytes, comp->bytes_returned); 1310 } else { 1311 comp->bytes_returned = 0; 1312 } 1313 1314 comp->comp_pkt.completion_status = read_resp->status; 1315 out: 1316 complete(&comp->comp_pkt.host_event); 1317 } 1318 1319 /** 1320 * hv_read_config_block() - Sends a read config block request to 1321 * the back-end driver running in the Hyper-V parent partition. 1322 * @pdev: The PCI driver's representation for this device. 1323 * @buf: Buffer into which the config block will be copied. 1324 * @len: Size in bytes of buf. 1325 * @block_id: Identifies the config block which has been requested. 1326 * @bytes_returned: Size which came back from the back-end driver. 1327 * 1328 * Return: 0 on success, -errno on failure 1329 */ 1330 static int hv_read_config_block(struct pci_dev *pdev, void *buf, 1331 unsigned int len, unsigned int block_id, 1332 unsigned int *bytes_returned) 1333 { 1334 struct hv_pcibus_device *hbus = 1335 container_of(pdev->bus->sysdata, struct hv_pcibus_device, 1336 sysdata); 1337 struct { 1338 struct pci_packet pkt; 1339 char buf[sizeof(struct pci_read_block)]; 1340 } pkt; 1341 struct hv_read_config_compl comp_pkt; 1342 struct pci_read_block *read_blk; 1343 int ret; 1344 1345 if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX) 1346 return -EINVAL; 1347 1348 init_completion(&comp_pkt.comp_pkt.host_event); 1349 comp_pkt.buf = buf; 1350 comp_pkt.len = len; 1351 1352 memset(&pkt, 0, sizeof(pkt)); 1353 pkt.pkt.completion_func = hv_pci_read_config_compl; 1354 pkt.pkt.compl_ctxt = &comp_pkt; 1355 read_blk = (struct pci_read_block *)&pkt.pkt.message; 1356 read_blk->message_type.type = PCI_READ_BLOCK; 1357 read_blk->wslot.slot = devfn_to_wslot(pdev->devfn); 1358 read_blk->block_id = block_id; 1359 read_blk->bytes_requested = len; 1360 1361 ret = vmbus_sendpacket(hbus->hdev->channel, read_blk, 1362 sizeof(*read_blk), (unsigned long)&pkt.pkt, 1363 VM_PKT_DATA_INBAND, 1364 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1365 if (ret) 1366 return ret; 1367 1368 ret = wait_for_response(hbus->hdev, &comp_pkt.comp_pkt.host_event); 1369 if (ret) 1370 return ret; 1371 1372 if (comp_pkt.comp_pkt.completion_status != 0 || 1373 comp_pkt.bytes_returned == 0) { 1374 dev_err(&hbus->hdev->device, 1375 "Read Config Block failed: 0x%x, bytes_returned=%d\n", 1376 comp_pkt.comp_pkt.completion_status, 1377 comp_pkt.bytes_returned); 1378 return -EIO; 1379 } 1380 1381 *bytes_returned = comp_pkt.bytes_returned; 1382 return 0; 1383 } 1384 1385 /** 1386 * hv_pci_write_config_compl() - Invoked when a response packet for a write 1387 * config block operation arrives. 1388 * @context: Identifies the write config operation 1389 * @resp: The response packet itself 1390 * @resp_packet_size: Size in bytes of the response packet 1391 */ 1392 static void hv_pci_write_config_compl(void *context, struct pci_response *resp, 1393 int resp_packet_size) 1394 { 1395 struct hv_pci_compl *comp_pkt = context; 1396 1397 comp_pkt->completion_status = resp->status; 1398 complete(&comp_pkt->host_event); 1399 } 1400 1401 /** 1402 * hv_write_config_block() - Sends a write config block request to the 1403 * back-end driver running in the Hyper-V parent partition. 1404 * @pdev: The PCI driver's representation for this device. 1405 * @buf: Buffer from which the config block will be copied. 1406 * @len: Size in bytes of buf. 1407 * @block_id: Identifies the config block which is being written. 1408 * 1409 * Return: 0 on success, -errno on failure 1410 */ 1411 static int hv_write_config_block(struct pci_dev *pdev, void *buf, 1412 unsigned int len, unsigned int block_id) 1413 { 1414 struct hv_pcibus_device *hbus = 1415 container_of(pdev->bus->sysdata, struct hv_pcibus_device, 1416 sysdata); 1417 struct { 1418 struct pci_packet pkt; 1419 char buf[sizeof(struct pci_write_block)]; 1420 u32 reserved; 1421 } pkt; 1422 struct hv_pci_compl comp_pkt; 1423 struct pci_write_block *write_blk; 1424 u32 pkt_size; 1425 int ret; 1426 1427 if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX) 1428 return -EINVAL; 1429 1430 init_completion(&comp_pkt.host_event); 1431 1432 memset(&pkt, 0, sizeof(pkt)); 1433 pkt.pkt.completion_func = hv_pci_write_config_compl; 1434 pkt.pkt.compl_ctxt = &comp_pkt; 1435 write_blk = (struct pci_write_block *)&pkt.pkt.message; 1436 write_blk->message_type.type = PCI_WRITE_BLOCK; 1437 write_blk->wslot.slot = devfn_to_wslot(pdev->devfn); 1438 write_blk->block_id = block_id; 1439 write_blk->byte_count = len; 1440 memcpy(write_blk->bytes, buf, len); 1441 pkt_size = offsetof(struct pci_write_block, bytes) + len; 1442 /* 1443 * This quirk is required on some hosts shipped around 2018, because 1444 * these hosts don't check the pkt_size correctly (new hosts have been 1445 * fixed since early 2019). The quirk is also safe on very old hosts 1446 * and new hosts, because, on them, what really matters is the length 1447 * specified in write_blk->byte_count. 1448 */ 1449 pkt_size += sizeof(pkt.reserved); 1450 1451 ret = vmbus_sendpacket(hbus->hdev->channel, write_blk, pkt_size, 1452 (unsigned long)&pkt.pkt, VM_PKT_DATA_INBAND, 1453 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1454 if (ret) 1455 return ret; 1456 1457 ret = wait_for_response(hbus->hdev, &comp_pkt.host_event); 1458 if (ret) 1459 return ret; 1460 1461 if (comp_pkt.completion_status != 0) { 1462 dev_err(&hbus->hdev->device, 1463 "Write Config Block failed: 0x%x\n", 1464 comp_pkt.completion_status); 1465 return -EIO; 1466 } 1467 1468 return 0; 1469 } 1470 1471 /** 1472 * hv_register_block_invalidate() - Invoked when a config block invalidation 1473 * arrives from the back-end driver. 1474 * @pdev: The PCI driver's representation for this device. 1475 * @context: Identifies the device. 1476 * @block_invalidate: Identifies all of the blocks being invalidated. 1477 * 1478 * Return: 0 on success, -errno on failure 1479 */ 1480 static int hv_register_block_invalidate(struct pci_dev *pdev, void *context, 1481 void (*block_invalidate)(void *context, 1482 u64 block_mask)) 1483 { 1484 struct hv_pcibus_device *hbus = 1485 container_of(pdev->bus->sysdata, struct hv_pcibus_device, 1486 sysdata); 1487 struct hv_pci_dev *hpdev; 1488 1489 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn)); 1490 if (!hpdev) 1491 return -ENODEV; 1492 1493 hpdev->block_invalidate = block_invalidate; 1494 hpdev->invalidate_context = context; 1495 1496 put_pcichild(hpdev); 1497 return 0; 1498 1499 } 1500 1501 /* Interrupt management hooks */ 1502 static void hv_int_desc_free(struct hv_pci_dev *hpdev, 1503 struct tran_int_desc *int_desc) 1504 { 1505 struct pci_delete_interrupt *int_pkt; 1506 struct { 1507 struct pci_packet pkt; 1508 u8 buffer[sizeof(struct pci_delete_interrupt)]; 1509 } ctxt; 1510 1511 if (!int_desc->vector_count) { 1512 kfree(int_desc); 1513 return; 1514 } 1515 memset(&ctxt, 0, sizeof(ctxt)); 1516 int_pkt = (struct pci_delete_interrupt *)&ctxt.pkt.message; 1517 int_pkt->message_type.type = 1518 PCI_DELETE_INTERRUPT_MESSAGE; 1519 int_pkt->wslot.slot = hpdev->desc.win_slot.slot; 1520 int_pkt->int_desc = *int_desc; 1521 vmbus_sendpacket(hpdev->hbus->hdev->channel, int_pkt, sizeof(*int_pkt), 1522 0, VM_PKT_DATA_INBAND, 0); 1523 kfree(int_desc); 1524 } 1525 1526 /** 1527 * hv_msi_free() - Free the MSI. 1528 * @domain: The interrupt domain pointer 1529 * @info: Extra MSI-related context 1530 * @irq: Identifies the IRQ. 1531 * 1532 * The Hyper-V parent partition and hypervisor are tracking the 1533 * messages that are in use, keeping the interrupt redirection 1534 * table up to date. This callback sends a message that frees 1535 * the IRT entry and related tracking nonsense. 1536 */ 1537 static void hv_msi_free(struct irq_domain *domain, struct msi_domain_info *info, 1538 unsigned int irq) 1539 { 1540 struct hv_pcibus_device *hbus; 1541 struct hv_pci_dev *hpdev; 1542 struct pci_dev *pdev; 1543 struct tran_int_desc *int_desc; 1544 struct irq_data *irq_data = irq_domain_get_irq_data(domain, irq); 1545 struct msi_desc *msi = irq_data_get_msi_desc(irq_data); 1546 1547 pdev = msi_desc_to_pci_dev(msi); 1548 hbus = info->data; 1549 int_desc = irq_data_get_irq_chip_data(irq_data); 1550 if (!int_desc) 1551 return; 1552 1553 irq_data->chip_data = NULL; 1554 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn)); 1555 if (!hpdev) { 1556 kfree(int_desc); 1557 return; 1558 } 1559 1560 hv_int_desc_free(hpdev, int_desc); 1561 put_pcichild(hpdev); 1562 } 1563 1564 static void hv_irq_mask(struct irq_data *data) 1565 { 1566 pci_msi_mask_irq(data); 1567 if (data->parent_data->chip->irq_mask) 1568 irq_chip_mask_parent(data); 1569 } 1570 1571 static void hv_irq_unmask(struct irq_data *data) 1572 { 1573 hv_arch_irq_unmask(data); 1574 1575 if (data->parent_data->chip->irq_unmask) 1576 irq_chip_unmask_parent(data); 1577 pci_msi_unmask_irq(data); 1578 } 1579 1580 struct compose_comp_ctxt { 1581 struct hv_pci_compl comp_pkt; 1582 struct tran_int_desc int_desc; 1583 }; 1584 1585 static void hv_pci_compose_compl(void *context, struct pci_response *resp, 1586 int resp_packet_size) 1587 { 1588 struct compose_comp_ctxt *comp_pkt = context; 1589 struct pci_create_int_response *int_resp = 1590 (struct pci_create_int_response *)resp; 1591 1592 if (resp_packet_size < sizeof(*int_resp)) { 1593 comp_pkt->comp_pkt.completion_status = -1; 1594 goto out; 1595 } 1596 comp_pkt->comp_pkt.completion_status = resp->status; 1597 comp_pkt->int_desc = int_resp->int_desc; 1598 out: 1599 complete(&comp_pkt->comp_pkt.host_event); 1600 } 1601 1602 static u32 hv_compose_msi_req_v1( 1603 struct pci_create_interrupt *int_pkt, 1604 u32 slot, u8 vector, u16 vector_count) 1605 { 1606 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE; 1607 int_pkt->wslot.slot = slot; 1608 int_pkt->int_desc.vector = vector; 1609 int_pkt->int_desc.vector_count = vector_count; 1610 int_pkt->int_desc.delivery_mode = DELIVERY_MODE; 1611 1612 /* 1613 * Create MSI w/ dummy vCPU set, overwritten by subsequent retarget in 1614 * hv_irq_unmask(). 1615 */ 1616 int_pkt->int_desc.cpu_mask = CPU_AFFINITY_ALL; 1617 1618 return sizeof(*int_pkt); 1619 } 1620 1621 /* 1622 * The vCPU selected by hv_compose_multi_msi_req_get_cpu() and 1623 * hv_compose_msi_req_get_cpu() is a "dummy" vCPU because the final vCPU to be 1624 * interrupted is specified later in hv_irq_unmask() and communicated to Hyper-V 1625 * via the HVCALL_RETARGET_INTERRUPT hypercall. But the choice of dummy vCPU is 1626 * not irrelevant because Hyper-V chooses the physical CPU to handle the 1627 * interrupts based on the vCPU specified in message sent to the vPCI VSP in 1628 * hv_compose_msi_msg(). Hyper-V's choice of pCPU is not visible to the guest, 1629 * but assigning too many vPCI device interrupts to the same pCPU can cause a 1630 * performance bottleneck. So we spread out the dummy vCPUs to influence Hyper-V 1631 * to spread out the pCPUs that it selects. 1632 * 1633 * For the single-MSI and MSI-X cases, it's OK for hv_compose_msi_req_get_cpu() 1634 * to always return the same dummy vCPU, because a second call to 1635 * hv_compose_msi_msg() contains the "real" vCPU, causing Hyper-V to choose a 1636 * new pCPU for the interrupt. But for the multi-MSI case, the second call to 1637 * hv_compose_msi_msg() exits without sending a message to the vPCI VSP, so the 1638 * original dummy vCPU is used. This dummy vCPU must be round-robin'ed so that 1639 * the pCPUs are spread out. All interrupts for a multi-MSI device end up using 1640 * the same pCPU, even though the vCPUs will be spread out by later calls 1641 * to hv_irq_unmask(), but that is the best we can do now. 1642 * 1643 * With Hyper-V in Nov 2022, the HVCALL_RETARGET_INTERRUPT hypercall does *not* 1644 * cause Hyper-V to reselect the pCPU based on the specified vCPU. Such an 1645 * enhancement is planned for a future version. With that enhancement, the 1646 * dummy vCPU selection won't matter, and interrupts for the same multi-MSI 1647 * device will be spread across multiple pCPUs. 1648 */ 1649 1650 /* 1651 * Create MSI w/ dummy vCPU set targeting just one vCPU, overwritten 1652 * by subsequent retarget in hv_irq_unmask(). 1653 */ 1654 static int hv_compose_msi_req_get_cpu(const struct cpumask *affinity) 1655 { 1656 return cpumask_first_and(affinity, cpu_online_mask); 1657 } 1658 1659 /* 1660 * Make sure the dummy vCPU values for multi-MSI don't all point to vCPU0. 1661 */ 1662 static int hv_compose_multi_msi_req_get_cpu(void) 1663 { 1664 static DEFINE_SPINLOCK(multi_msi_cpu_lock); 1665 1666 /* -1 means starting with CPU 0 */ 1667 static int cpu_next = -1; 1668 1669 unsigned long flags; 1670 int cpu; 1671 1672 spin_lock_irqsave(&multi_msi_cpu_lock, flags); 1673 1674 cpu_next = cpumask_next_wrap(cpu_next, cpu_online_mask, nr_cpu_ids, 1675 false); 1676 cpu = cpu_next; 1677 1678 spin_unlock_irqrestore(&multi_msi_cpu_lock, flags); 1679 1680 return cpu; 1681 } 1682 1683 static u32 hv_compose_msi_req_v2( 1684 struct pci_create_interrupt2 *int_pkt, int cpu, 1685 u32 slot, u8 vector, u16 vector_count) 1686 { 1687 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE2; 1688 int_pkt->wslot.slot = slot; 1689 int_pkt->int_desc.vector = vector; 1690 int_pkt->int_desc.vector_count = vector_count; 1691 int_pkt->int_desc.delivery_mode = DELIVERY_MODE; 1692 int_pkt->int_desc.processor_array[0] = 1693 hv_cpu_number_to_vp_number(cpu); 1694 int_pkt->int_desc.processor_count = 1; 1695 1696 return sizeof(*int_pkt); 1697 } 1698 1699 static u32 hv_compose_msi_req_v3( 1700 struct pci_create_interrupt3 *int_pkt, int cpu, 1701 u32 slot, u32 vector, u16 vector_count) 1702 { 1703 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE3; 1704 int_pkt->wslot.slot = slot; 1705 int_pkt->int_desc.vector = vector; 1706 int_pkt->int_desc.reserved = 0; 1707 int_pkt->int_desc.vector_count = vector_count; 1708 int_pkt->int_desc.delivery_mode = DELIVERY_MODE; 1709 int_pkt->int_desc.processor_array[0] = 1710 hv_cpu_number_to_vp_number(cpu); 1711 int_pkt->int_desc.processor_count = 1; 1712 1713 return sizeof(*int_pkt); 1714 } 1715 1716 /** 1717 * hv_compose_msi_msg() - Supplies a valid MSI address/data 1718 * @data: Everything about this MSI 1719 * @msg: Buffer that is filled in by this function 1720 * 1721 * This function unpacks the IRQ looking for target CPU set, IDT 1722 * vector and mode and sends a message to the parent partition 1723 * asking for a mapping for that tuple in this partition. The 1724 * response supplies a data value and address to which that data 1725 * should be written to trigger that interrupt. 1726 */ 1727 static void hv_compose_msi_msg(struct irq_data *data, struct msi_msg *msg) 1728 { 1729 struct hv_pcibus_device *hbus; 1730 struct vmbus_channel *channel; 1731 struct hv_pci_dev *hpdev; 1732 struct pci_bus *pbus; 1733 struct pci_dev *pdev; 1734 const struct cpumask *dest; 1735 struct compose_comp_ctxt comp; 1736 struct tran_int_desc *int_desc; 1737 struct msi_desc *msi_desc; 1738 /* 1739 * vector_count should be u16: see hv_msi_desc, hv_msi_desc2 1740 * and hv_msi_desc3. vector must be u32: see hv_msi_desc3. 1741 */ 1742 u16 vector_count; 1743 u32 vector; 1744 struct { 1745 struct pci_packet pci_pkt; 1746 union { 1747 struct pci_create_interrupt v1; 1748 struct pci_create_interrupt2 v2; 1749 struct pci_create_interrupt3 v3; 1750 } int_pkts; 1751 } __packed ctxt; 1752 bool multi_msi; 1753 u64 trans_id; 1754 u32 size; 1755 int ret; 1756 int cpu; 1757 1758 msi_desc = irq_data_get_msi_desc(data); 1759 multi_msi = !msi_desc->pci.msi_attrib.is_msix && 1760 msi_desc->nvec_used > 1; 1761 1762 /* Reuse the previous allocation */ 1763 if (data->chip_data && multi_msi) { 1764 int_desc = data->chip_data; 1765 msg->address_hi = int_desc->address >> 32; 1766 msg->address_lo = int_desc->address & 0xffffffff; 1767 msg->data = int_desc->data; 1768 return; 1769 } 1770 1771 pdev = msi_desc_to_pci_dev(msi_desc); 1772 dest = irq_data_get_effective_affinity_mask(data); 1773 pbus = pdev->bus; 1774 hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata); 1775 channel = hbus->hdev->channel; 1776 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn)); 1777 if (!hpdev) 1778 goto return_null_message; 1779 1780 /* Free any previous message that might have already been composed. */ 1781 if (data->chip_data && !multi_msi) { 1782 int_desc = data->chip_data; 1783 data->chip_data = NULL; 1784 hv_int_desc_free(hpdev, int_desc); 1785 } 1786 1787 int_desc = kzalloc(sizeof(*int_desc), GFP_ATOMIC); 1788 if (!int_desc) 1789 goto drop_reference; 1790 1791 if (multi_msi) { 1792 /* 1793 * If this is not the first MSI of Multi MSI, we already have 1794 * a mapping. Can exit early. 1795 */ 1796 if (msi_desc->irq != data->irq) { 1797 data->chip_data = int_desc; 1798 int_desc->address = msi_desc->msg.address_lo | 1799 (u64)msi_desc->msg.address_hi << 32; 1800 int_desc->data = msi_desc->msg.data + 1801 (data->irq - msi_desc->irq); 1802 msg->address_hi = msi_desc->msg.address_hi; 1803 msg->address_lo = msi_desc->msg.address_lo; 1804 msg->data = int_desc->data; 1805 put_pcichild(hpdev); 1806 return; 1807 } 1808 /* 1809 * The vector we select here is a dummy value. The correct 1810 * value gets sent to the hypervisor in unmask(). This needs 1811 * to be aligned with the count, and also not zero. Multi-msi 1812 * is powers of 2 up to 32, so 32 will always work here. 1813 */ 1814 vector = 32; 1815 vector_count = msi_desc->nvec_used; 1816 cpu = hv_compose_multi_msi_req_get_cpu(); 1817 } else { 1818 vector = hv_msi_get_int_vector(data); 1819 vector_count = 1; 1820 cpu = hv_compose_msi_req_get_cpu(dest); 1821 } 1822 1823 /* 1824 * hv_compose_msi_req_v1 and v2 are for x86 only, meaning 'vector' 1825 * can't exceed u8. Cast 'vector' down to u8 for v1/v2 explicitly 1826 * for better readability. 1827 */ 1828 memset(&ctxt, 0, sizeof(ctxt)); 1829 init_completion(&comp.comp_pkt.host_event); 1830 ctxt.pci_pkt.completion_func = hv_pci_compose_compl; 1831 ctxt.pci_pkt.compl_ctxt = ∁ 1832 1833 switch (hbus->protocol_version) { 1834 case PCI_PROTOCOL_VERSION_1_1: 1835 size = hv_compose_msi_req_v1(&ctxt.int_pkts.v1, 1836 hpdev->desc.win_slot.slot, 1837 (u8)vector, 1838 vector_count); 1839 break; 1840 1841 case PCI_PROTOCOL_VERSION_1_2: 1842 case PCI_PROTOCOL_VERSION_1_3: 1843 size = hv_compose_msi_req_v2(&ctxt.int_pkts.v2, 1844 cpu, 1845 hpdev->desc.win_slot.slot, 1846 (u8)vector, 1847 vector_count); 1848 break; 1849 1850 case PCI_PROTOCOL_VERSION_1_4: 1851 size = hv_compose_msi_req_v3(&ctxt.int_pkts.v3, 1852 cpu, 1853 hpdev->desc.win_slot.slot, 1854 vector, 1855 vector_count); 1856 break; 1857 1858 default: 1859 /* As we only negotiate protocol versions known to this driver, 1860 * this path should never hit. However, this is it not a hot 1861 * path so we print a message to aid future updates. 1862 */ 1863 dev_err(&hbus->hdev->device, 1864 "Unexpected vPCI protocol, update driver."); 1865 goto free_int_desc; 1866 } 1867 1868 ret = vmbus_sendpacket_getid(hpdev->hbus->hdev->channel, &ctxt.int_pkts, 1869 size, (unsigned long)&ctxt.pci_pkt, 1870 &trans_id, VM_PKT_DATA_INBAND, 1871 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1872 if (ret) { 1873 dev_err(&hbus->hdev->device, 1874 "Sending request for interrupt failed: 0x%x", 1875 comp.comp_pkt.completion_status); 1876 goto free_int_desc; 1877 } 1878 1879 /* 1880 * Prevents hv_pci_onchannelcallback() from running concurrently 1881 * in the tasklet. 1882 */ 1883 tasklet_disable_in_atomic(&channel->callback_event); 1884 1885 /* 1886 * Since this function is called with IRQ locks held, can't 1887 * do normal wait for completion; instead poll. 1888 */ 1889 while (!try_wait_for_completion(&comp.comp_pkt.host_event)) { 1890 unsigned long flags; 1891 1892 /* 0xFFFF means an invalid PCI VENDOR ID. */ 1893 if (hv_pcifront_get_vendor_id(hpdev) == 0xFFFF) { 1894 dev_err_once(&hbus->hdev->device, 1895 "the device has gone\n"); 1896 goto enable_tasklet; 1897 } 1898 1899 /* 1900 * Make sure that the ring buffer data structure doesn't get 1901 * freed while we dereference the ring buffer pointer. Test 1902 * for the channel's onchannel_callback being NULL within a 1903 * sched_lock critical section. See also the inline comments 1904 * in vmbus_reset_channel_cb(). 1905 */ 1906 spin_lock_irqsave(&channel->sched_lock, flags); 1907 if (unlikely(channel->onchannel_callback == NULL)) { 1908 spin_unlock_irqrestore(&channel->sched_lock, flags); 1909 goto enable_tasklet; 1910 } 1911 hv_pci_onchannelcallback(hbus); 1912 spin_unlock_irqrestore(&channel->sched_lock, flags); 1913 1914 if (hpdev->state == hv_pcichild_ejecting) { 1915 dev_err_once(&hbus->hdev->device, 1916 "the device is being ejected\n"); 1917 goto enable_tasklet; 1918 } 1919 1920 udelay(100); 1921 } 1922 1923 tasklet_enable(&channel->callback_event); 1924 1925 if (comp.comp_pkt.completion_status < 0) { 1926 dev_err(&hbus->hdev->device, 1927 "Request for interrupt failed: 0x%x", 1928 comp.comp_pkt.completion_status); 1929 goto free_int_desc; 1930 } 1931 1932 /* 1933 * Record the assignment so that this can be unwound later. Using 1934 * irq_set_chip_data() here would be appropriate, but the lock it takes 1935 * is already held. 1936 */ 1937 *int_desc = comp.int_desc; 1938 data->chip_data = int_desc; 1939 1940 /* Pass up the result. */ 1941 msg->address_hi = comp.int_desc.address >> 32; 1942 msg->address_lo = comp.int_desc.address & 0xffffffff; 1943 msg->data = comp.int_desc.data; 1944 1945 put_pcichild(hpdev); 1946 return; 1947 1948 enable_tasklet: 1949 tasklet_enable(&channel->callback_event); 1950 /* 1951 * The completion packet on the stack becomes invalid after 'return'; 1952 * remove the ID from the VMbus requestor if the identifier is still 1953 * mapped to/associated with the packet. (The identifier could have 1954 * been 're-used', i.e., already removed and (re-)mapped.) 1955 * 1956 * Cf. hv_pci_onchannelcallback(). 1957 */ 1958 vmbus_request_addr_match(channel, trans_id, (unsigned long)&ctxt.pci_pkt); 1959 free_int_desc: 1960 kfree(int_desc); 1961 drop_reference: 1962 put_pcichild(hpdev); 1963 return_null_message: 1964 msg->address_hi = 0; 1965 msg->address_lo = 0; 1966 msg->data = 0; 1967 } 1968 1969 /* HW Interrupt Chip Descriptor */ 1970 static struct irq_chip hv_msi_irq_chip = { 1971 .name = "Hyper-V PCIe MSI", 1972 .irq_compose_msi_msg = hv_compose_msi_msg, 1973 .irq_set_affinity = irq_chip_set_affinity_parent, 1974 #ifdef CONFIG_X86 1975 .irq_ack = irq_chip_ack_parent, 1976 #elif defined(CONFIG_ARM64) 1977 .irq_eoi = irq_chip_eoi_parent, 1978 #endif 1979 .irq_mask = hv_irq_mask, 1980 .irq_unmask = hv_irq_unmask, 1981 }; 1982 1983 static struct msi_domain_ops hv_msi_ops = { 1984 .msi_prepare = hv_msi_prepare, 1985 .msi_free = hv_msi_free, 1986 }; 1987 1988 /** 1989 * hv_pcie_init_irq_domain() - Initialize IRQ domain 1990 * @hbus: The root PCI bus 1991 * 1992 * This function creates an IRQ domain which will be used for 1993 * interrupts from devices that have been passed through. These 1994 * devices only support MSI and MSI-X, not line-based interrupts 1995 * or simulations of line-based interrupts through PCIe's 1996 * fabric-layer messages. Because interrupts are remapped, we 1997 * can support multi-message MSI here. 1998 * 1999 * Return: '0' on success and error value on failure 2000 */ 2001 static int hv_pcie_init_irq_domain(struct hv_pcibus_device *hbus) 2002 { 2003 hbus->msi_info.chip = &hv_msi_irq_chip; 2004 hbus->msi_info.ops = &hv_msi_ops; 2005 hbus->msi_info.flags = (MSI_FLAG_USE_DEF_DOM_OPS | 2006 MSI_FLAG_USE_DEF_CHIP_OPS | MSI_FLAG_MULTI_PCI_MSI | 2007 MSI_FLAG_PCI_MSIX); 2008 hbus->msi_info.handler = FLOW_HANDLER; 2009 hbus->msi_info.handler_name = FLOW_NAME; 2010 hbus->msi_info.data = hbus; 2011 hbus->irq_domain = pci_msi_create_irq_domain(hbus->fwnode, 2012 &hbus->msi_info, 2013 hv_pci_get_root_domain()); 2014 if (!hbus->irq_domain) { 2015 dev_err(&hbus->hdev->device, 2016 "Failed to build an MSI IRQ domain\n"); 2017 return -ENODEV; 2018 } 2019 2020 dev_set_msi_domain(&hbus->bridge->dev, hbus->irq_domain); 2021 2022 return 0; 2023 } 2024 2025 /** 2026 * get_bar_size() - Get the address space consumed by a BAR 2027 * @bar_val: Value that a BAR returned after -1 was written 2028 * to it. 2029 * 2030 * This function returns the size of the BAR, rounded up to 1 2031 * page. It has to be rounded up because the hypervisor's page 2032 * table entry that maps the BAR into the VM can't specify an 2033 * offset within a page. The invariant is that the hypervisor 2034 * must place any BARs of smaller than page length at the 2035 * beginning of a page. 2036 * 2037 * Return: Size in bytes of the consumed MMIO space. 2038 */ 2039 static u64 get_bar_size(u64 bar_val) 2040 { 2041 return round_up((1 + ~(bar_val & PCI_BASE_ADDRESS_MEM_MASK)), 2042 PAGE_SIZE); 2043 } 2044 2045 /** 2046 * survey_child_resources() - Total all MMIO requirements 2047 * @hbus: Root PCI bus, as understood by this driver 2048 */ 2049 static void survey_child_resources(struct hv_pcibus_device *hbus) 2050 { 2051 struct hv_pci_dev *hpdev; 2052 resource_size_t bar_size = 0; 2053 unsigned long flags; 2054 struct completion *event; 2055 u64 bar_val; 2056 int i; 2057 2058 /* If nobody is waiting on the answer, don't compute it. */ 2059 event = xchg(&hbus->survey_event, NULL); 2060 if (!event) 2061 return; 2062 2063 /* If the answer has already been computed, go with it. */ 2064 if (hbus->low_mmio_space || hbus->high_mmio_space) { 2065 complete(event); 2066 return; 2067 } 2068 2069 spin_lock_irqsave(&hbus->device_list_lock, flags); 2070 2071 /* 2072 * Due to an interesting quirk of the PCI spec, all memory regions 2073 * for a child device are a power of 2 in size and aligned in memory, 2074 * so it's sufficient to just add them up without tracking alignment. 2075 */ 2076 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2077 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 2078 if (hpdev->probed_bar[i] & PCI_BASE_ADDRESS_SPACE_IO) 2079 dev_err(&hbus->hdev->device, 2080 "There's an I/O BAR in this list!\n"); 2081 2082 if (hpdev->probed_bar[i] != 0) { 2083 /* 2084 * A probed BAR has all the upper bits set that 2085 * can be changed. 2086 */ 2087 2088 bar_val = hpdev->probed_bar[i]; 2089 if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64) 2090 bar_val |= 2091 ((u64)hpdev->probed_bar[++i] << 32); 2092 else 2093 bar_val |= 0xffffffff00000000ULL; 2094 2095 bar_size = get_bar_size(bar_val); 2096 2097 if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64) 2098 hbus->high_mmio_space += bar_size; 2099 else 2100 hbus->low_mmio_space += bar_size; 2101 } 2102 } 2103 } 2104 2105 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2106 complete(event); 2107 } 2108 2109 /** 2110 * prepopulate_bars() - Fill in BARs with defaults 2111 * @hbus: Root PCI bus, as understood by this driver 2112 * 2113 * The core PCI driver code seems much, much happier if the BARs 2114 * for a device have values upon first scan. So fill them in. 2115 * The algorithm below works down from large sizes to small, 2116 * attempting to pack the assignments optimally. The assumption, 2117 * enforced in other parts of the code, is that the beginning of 2118 * the memory-mapped I/O space will be aligned on the largest 2119 * BAR size. 2120 */ 2121 static void prepopulate_bars(struct hv_pcibus_device *hbus) 2122 { 2123 resource_size_t high_size = 0; 2124 resource_size_t low_size = 0; 2125 resource_size_t high_base = 0; 2126 resource_size_t low_base = 0; 2127 resource_size_t bar_size; 2128 struct hv_pci_dev *hpdev; 2129 unsigned long flags; 2130 u64 bar_val; 2131 u32 command; 2132 bool high; 2133 int i; 2134 2135 if (hbus->low_mmio_space) { 2136 low_size = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space)); 2137 low_base = hbus->low_mmio_res->start; 2138 } 2139 2140 if (hbus->high_mmio_space) { 2141 high_size = 1ULL << 2142 (63 - __builtin_clzll(hbus->high_mmio_space)); 2143 high_base = hbus->high_mmio_res->start; 2144 } 2145 2146 spin_lock_irqsave(&hbus->device_list_lock, flags); 2147 2148 /* 2149 * Clear the memory enable bit, in case it's already set. This occurs 2150 * in the suspend path of hibernation, where the device is suspended, 2151 * resumed and suspended again: see hibernation_snapshot() and 2152 * hibernation_platform_enter(). 2153 * 2154 * If the memory enable bit is already set, Hyper-V silently ignores 2155 * the below BAR updates, and the related PCI device driver can not 2156 * work, because reading from the device register(s) always returns 2157 * 0xFFFFFFFF (PCI_ERROR_RESPONSE). 2158 */ 2159 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2160 _hv_pcifront_read_config(hpdev, PCI_COMMAND, 2, &command); 2161 command &= ~PCI_COMMAND_MEMORY; 2162 _hv_pcifront_write_config(hpdev, PCI_COMMAND, 2, command); 2163 } 2164 2165 /* Pick addresses for the BARs. */ 2166 do { 2167 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2168 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 2169 bar_val = hpdev->probed_bar[i]; 2170 if (bar_val == 0) 2171 continue; 2172 high = bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64; 2173 if (high) { 2174 bar_val |= 2175 ((u64)hpdev->probed_bar[i + 1] 2176 << 32); 2177 } else { 2178 bar_val |= 0xffffffffULL << 32; 2179 } 2180 bar_size = get_bar_size(bar_val); 2181 if (high) { 2182 if (high_size != bar_size) { 2183 i++; 2184 continue; 2185 } 2186 _hv_pcifront_write_config(hpdev, 2187 PCI_BASE_ADDRESS_0 + (4 * i), 2188 4, 2189 (u32)(high_base & 0xffffff00)); 2190 i++; 2191 _hv_pcifront_write_config(hpdev, 2192 PCI_BASE_ADDRESS_0 + (4 * i), 2193 4, (u32)(high_base >> 32)); 2194 high_base += bar_size; 2195 } else { 2196 if (low_size != bar_size) 2197 continue; 2198 _hv_pcifront_write_config(hpdev, 2199 PCI_BASE_ADDRESS_0 + (4 * i), 2200 4, 2201 (u32)(low_base & 0xffffff00)); 2202 low_base += bar_size; 2203 } 2204 } 2205 if (high_size <= 1 && low_size <= 1) { 2206 /* 2207 * No need to set the PCI_COMMAND_MEMORY bit as 2208 * the core PCI driver doesn't require the bit 2209 * to be pre-set. Actually here we intentionally 2210 * keep the bit off so that the PCI BAR probing 2211 * in the core PCI driver doesn't cause Hyper-V 2212 * to unnecessarily unmap/map the virtual BARs 2213 * from/to the physical BARs multiple times. 2214 * This reduces the VM boot time significantly 2215 * if the BAR sizes are huge. 2216 */ 2217 break; 2218 } 2219 } 2220 2221 high_size >>= 1; 2222 low_size >>= 1; 2223 } while (high_size || low_size); 2224 2225 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2226 } 2227 2228 /* 2229 * Assign entries in sysfs pci slot directory. 2230 * 2231 * Note that this function does not need to lock the children list 2232 * because it is called from pci_devices_present_work which 2233 * is serialized with hv_eject_device_work because they are on the 2234 * same ordered workqueue. Therefore hbus->children list will not change 2235 * even when pci_create_slot sleeps. 2236 */ 2237 static void hv_pci_assign_slots(struct hv_pcibus_device *hbus) 2238 { 2239 struct hv_pci_dev *hpdev; 2240 char name[SLOT_NAME_SIZE]; 2241 int slot_nr; 2242 2243 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2244 if (hpdev->pci_slot) 2245 continue; 2246 2247 slot_nr = PCI_SLOT(wslot_to_devfn(hpdev->desc.win_slot.slot)); 2248 snprintf(name, SLOT_NAME_SIZE, "%u", hpdev->desc.ser); 2249 hpdev->pci_slot = pci_create_slot(hbus->bridge->bus, slot_nr, 2250 name, NULL); 2251 if (IS_ERR(hpdev->pci_slot)) { 2252 pr_warn("pci_create slot %s failed\n", name); 2253 hpdev->pci_slot = NULL; 2254 } 2255 } 2256 } 2257 2258 /* 2259 * Remove entries in sysfs pci slot directory. 2260 */ 2261 static void hv_pci_remove_slots(struct hv_pcibus_device *hbus) 2262 { 2263 struct hv_pci_dev *hpdev; 2264 2265 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2266 if (!hpdev->pci_slot) 2267 continue; 2268 pci_destroy_slot(hpdev->pci_slot); 2269 hpdev->pci_slot = NULL; 2270 } 2271 } 2272 2273 /* 2274 * Set NUMA node for the devices on the bus 2275 */ 2276 static void hv_pci_assign_numa_node(struct hv_pcibus_device *hbus) 2277 { 2278 struct pci_dev *dev; 2279 struct pci_bus *bus = hbus->bridge->bus; 2280 struct hv_pci_dev *hv_dev; 2281 2282 list_for_each_entry(dev, &bus->devices, bus_list) { 2283 hv_dev = get_pcichild_wslot(hbus, devfn_to_wslot(dev->devfn)); 2284 if (!hv_dev) 2285 continue; 2286 2287 if (hv_dev->desc.flags & HV_PCI_DEVICE_FLAG_NUMA_AFFINITY && 2288 hv_dev->desc.virtual_numa_node < num_possible_nodes()) 2289 /* 2290 * The kernel may boot with some NUMA nodes offline 2291 * (e.g. in a KDUMP kernel) or with NUMA disabled via 2292 * "numa=off". In those cases, adjust the host provided 2293 * NUMA node to a valid NUMA node used by the kernel. 2294 */ 2295 set_dev_node(&dev->dev, 2296 numa_map_to_online_node( 2297 hv_dev->desc.virtual_numa_node)); 2298 2299 put_pcichild(hv_dev); 2300 } 2301 } 2302 2303 /** 2304 * create_root_hv_pci_bus() - Expose a new root PCI bus 2305 * @hbus: Root PCI bus, as understood by this driver 2306 * 2307 * Return: 0 on success, -errno on failure 2308 */ 2309 static int create_root_hv_pci_bus(struct hv_pcibus_device *hbus) 2310 { 2311 int error; 2312 struct pci_host_bridge *bridge = hbus->bridge; 2313 2314 bridge->dev.parent = &hbus->hdev->device; 2315 bridge->sysdata = &hbus->sysdata; 2316 bridge->ops = &hv_pcifront_ops; 2317 2318 error = pci_scan_root_bus_bridge(bridge); 2319 if (error) 2320 return error; 2321 2322 pci_lock_rescan_remove(); 2323 hv_pci_assign_numa_node(hbus); 2324 pci_bus_assign_resources(bridge->bus); 2325 hv_pci_assign_slots(hbus); 2326 pci_bus_add_devices(bridge->bus); 2327 pci_unlock_rescan_remove(); 2328 hbus->state = hv_pcibus_installed; 2329 return 0; 2330 } 2331 2332 struct q_res_req_compl { 2333 struct completion host_event; 2334 struct hv_pci_dev *hpdev; 2335 }; 2336 2337 /** 2338 * q_resource_requirements() - Query Resource Requirements 2339 * @context: The completion context. 2340 * @resp: The response that came from the host. 2341 * @resp_packet_size: The size in bytes of resp. 2342 * 2343 * This function is invoked on completion of a Query Resource 2344 * Requirements packet. 2345 */ 2346 static void q_resource_requirements(void *context, struct pci_response *resp, 2347 int resp_packet_size) 2348 { 2349 struct q_res_req_compl *completion = context; 2350 struct pci_q_res_req_response *q_res_req = 2351 (struct pci_q_res_req_response *)resp; 2352 s32 status; 2353 int i; 2354 2355 status = (resp_packet_size < sizeof(*q_res_req)) ? -1 : resp->status; 2356 if (status < 0) { 2357 dev_err(&completion->hpdev->hbus->hdev->device, 2358 "query resource requirements failed: %x\n", 2359 status); 2360 } else { 2361 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 2362 completion->hpdev->probed_bar[i] = 2363 q_res_req->probed_bar[i]; 2364 } 2365 } 2366 2367 complete(&completion->host_event); 2368 } 2369 2370 /** 2371 * new_pcichild_device() - Create a new child device 2372 * @hbus: The internal struct tracking this root PCI bus. 2373 * @desc: The information supplied so far from the host 2374 * about the device. 2375 * 2376 * This function creates the tracking structure for a new child 2377 * device and kicks off the process of figuring out what it is. 2378 * 2379 * Return: Pointer to the new tracking struct 2380 */ 2381 static struct hv_pci_dev *new_pcichild_device(struct hv_pcibus_device *hbus, 2382 struct hv_pcidev_description *desc) 2383 { 2384 struct hv_pci_dev *hpdev; 2385 struct pci_child_message *res_req; 2386 struct q_res_req_compl comp_pkt; 2387 struct { 2388 struct pci_packet init_packet; 2389 u8 buffer[sizeof(struct pci_child_message)]; 2390 } pkt; 2391 unsigned long flags; 2392 int ret; 2393 2394 hpdev = kzalloc(sizeof(*hpdev), GFP_KERNEL); 2395 if (!hpdev) 2396 return NULL; 2397 2398 hpdev->hbus = hbus; 2399 2400 memset(&pkt, 0, sizeof(pkt)); 2401 init_completion(&comp_pkt.host_event); 2402 comp_pkt.hpdev = hpdev; 2403 pkt.init_packet.compl_ctxt = &comp_pkt; 2404 pkt.init_packet.completion_func = q_resource_requirements; 2405 res_req = (struct pci_child_message *)&pkt.init_packet.message; 2406 res_req->message_type.type = PCI_QUERY_RESOURCE_REQUIREMENTS; 2407 res_req->wslot.slot = desc->win_slot.slot; 2408 2409 ret = vmbus_sendpacket(hbus->hdev->channel, res_req, 2410 sizeof(struct pci_child_message), 2411 (unsigned long)&pkt.init_packet, 2412 VM_PKT_DATA_INBAND, 2413 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 2414 if (ret) 2415 goto error; 2416 2417 if (wait_for_response(hbus->hdev, &comp_pkt.host_event)) 2418 goto error; 2419 2420 hpdev->desc = *desc; 2421 refcount_set(&hpdev->refs, 1); 2422 get_pcichild(hpdev); 2423 spin_lock_irqsave(&hbus->device_list_lock, flags); 2424 2425 list_add_tail(&hpdev->list_entry, &hbus->children); 2426 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2427 return hpdev; 2428 2429 error: 2430 kfree(hpdev); 2431 return NULL; 2432 } 2433 2434 /** 2435 * get_pcichild_wslot() - Find device from slot 2436 * @hbus: Root PCI bus, as understood by this driver 2437 * @wslot: Location on the bus 2438 * 2439 * This function looks up a PCI device and returns the internal 2440 * representation of it. It acquires a reference on it, so that 2441 * the device won't be deleted while somebody is using it. The 2442 * caller is responsible for calling put_pcichild() to release 2443 * this reference. 2444 * 2445 * Return: Internal representation of a PCI device 2446 */ 2447 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus, 2448 u32 wslot) 2449 { 2450 unsigned long flags; 2451 struct hv_pci_dev *iter, *hpdev = NULL; 2452 2453 spin_lock_irqsave(&hbus->device_list_lock, flags); 2454 list_for_each_entry(iter, &hbus->children, list_entry) { 2455 if (iter->desc.win_slot.slot == wslot) { 2456 hpdev = iter; 2457 get_pcichild(hpdev); 2458 break; 2459 } 2460 } 2461 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2462 2463 return hpdev; 2464 } 2465 2466 /** 2467 * pci_devices_present_work() - Handle new list of child devices 2468 * @work: Work struct embedded in struct hv_dr_work 2469 * 2470 * "Bus Relations" is the Windows term for "children of this 2471 * bus." The terminology is preserved here for people trying to 2472 * debug the interaction between Hyper-V and Linux. This 2473 * function is called when the parent partition reports a list 2474 * of functions that should be observed under this PCI Express 2475 * port (bus). 2476 * 2477 * This function updates the list, and must tolerate being 2478 * called multiple times with the same information. The typical 2479 * number of child devices is one, with very atypical cases 2480 * involving three or four, so the algorithms used here can be 2481 * simple and inefficient. 2482 * 2483 * It must also treat the omission of a previously observed device as 2484 * notification that the device no longer exists. 2485 * 2486 * Note that this function is serialized with hv_eject_device_work(), 2487 * because both are pushed to the ordered workqueue hbus->wq. 2488 */ 2489 static void pci_devices_present_work(struct work_struct *work) 2490 { 2491 u32 child_no; 2492 bool found; 2493 struct hv_pcidev_description *new_desc; 2494 struct hv_pci_dev *hpdev; 2495 struct hv_pcibus_device *hbus; 2496 struct list_head removed; 2497 struct hv_dr_work *dr_wrk; 2498 struct hv_dr_state *dr = NULL; 2499 unsigned long flags; 2500 2501 dr_wrk = container_of(work, struct hv_dr_work, wrk); 2502 hbus = dr_wrk->bus; 2503 kfree(dr_wrk); 2504 2505 INIT_LIST_HEAD(&removed); 2506 2507 /* Pull this off the queue and process it if it was the last one. */ 2508 spin_lock_irqsave(&hbus->device_list_lock, flags); 2509 while (!list_empty(&hbus->dr_list)) { 2510 dr = list_first_entry(&hbus->dr_list, struct hv_dr_state, 2511 list_entry); 2512 list_del(&dr->list_entry); 2513 2514 /* Throw this away if the list still has stuff in it. */ 2515 if (!list_empty(&hbus->dr_list)) { 2516 kfree(dr); 2517 continue; 2518 } 2519 } 2520 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2521 2522 if (!dr) 2523 return; 2524 2525 /* First, mark all existing children as reported missing. */ 2526 spin_lock_irqsave(&hbus->device_list_lock, flags); 2527 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2528 hpdev->reported_missing = true; 2529 } 2530 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2531 2532 /* Next, add back any reported devices. */ 2533 for (child_no = 0; child_no < dr->device_count; child_no++) { 2534 found = false; 2535 new_desc = &dr->func[child_no]; 2536 2537 spin_lock_irqsave(&hbus->device_list_lock, flags); 2538 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2539 if ((hpdev->desc.win_slot.slot == new_desc->win_slot.slot) && 2540 (hpdev->desc.v_id == new_desc->v_id) && 2541 (hpdev->desc.d_id == new_desc->d_id) && 2542 (hpdev->desc.ser == new_desc->ser)) { 2543 hpdev->reported_missing = false; 2544 found = true; 2545 } 2546 } 2547 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2548 2549 if (!found) { 2550 hpdev = new_pcichild_device(hbus, new_desc); 2551 if (!hpdev) 2552 dev_err(&hbus->hdev->device, 2553 "couldn't record a child device.\n"); 2554 } 2555 } 2556 2557 /* Move missing children to a list on the stack. */ 2558 spin_lock_irqsave(&hbus->device_list_lock, flags); 2559 do { 2560 found = false; 2561 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2562 if (hpdev->reported_missing) { 2563 found = true; 2564 put_pcichild(hpdev); 2565 list_move_tail(&hpdev->list_entry, &removed); 2566 break; 2567 } 2568 } 2569 } while (found); 2570 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2571 2572 /* Delete everything that should no longer exist. */ 2573 while (!list_empty(&removed)) { 2574 hpdev = list_first_entry(&removed, struct hv_pci_dev, 2575 list_entry); 2576 list_del(&hpdev->list_entry); 2577 2578 if (hpdev->pci_slot) 2579 pci_destroy_slot(hpdev->pci_slot); 2580 2581 put_pcichild(hpdev); 2582 } 2583 2584 switch (hbus->state) { 2585 case hv_pcibus_installed: 2586 /* 2587 * Tell the core to rescan bus 2588 * because there may have been changes. 2589 */ 2590 pci_lock_rescan_remove(); 2591 pci_scan_child_bus(hbus->bridge->bus); 2592 hv_pci_assign_numa_node(hbus); 2593 hv_pci_assign_slots(hbus); 2594 pci_unlock_rescan_remove(); 2595 break; 2596 2597 case hv_pcibus_init: 2598 case hv_pcibus_probed: 2599 survey_child_resources(hbus); 2600 break; 2601 2602 default: 2603 break; 2604 } 2605 2606 kfree(dr); 2607 } 2608 2609 /** 2610 * hv_pci_start_relations_work() - Queue work to start device discovery 2611 * @hbus: Root PCI bus, as understood by this driver 2612 * @dr: The list of children returned from host 2613 * 2614 * Return: 0 on success, -errno on failure 2615 */ 2616 static int hv_pci_start_relations_work(struct hv_pcibus_device *hbus, 2617 struct hv_dr_state *dr) 2618 { 2619 struct hv_dr_work *dr_wrk; 2620 unsigned long flags; 2621 bool pending_dr; 2622 2623 if (hbus->state == hv_pcibus_removing) { 2624 dev_info(&hbus->hdev->device, 2625 "PCI VMBus BUS_RELATIONS: ignored\n"); 2626 return -ENOENT; 2627 } 2628 2629 dr_wrk = kzalloc(sizeof(*dr_wrk), GFP_NOWAIT); 2630 if (!dr_wrk) 2631 return -ENOMEM; 2632 2633 INIT_WORK(&dr_wrk->wrk, pci_devices_present_work); 2634 dr_wrk->bus = hbus; 2635 2636 spin_lock_irqsave(&hbus->device_list_lock, flags); 2637 /* 2638 * If pending_dr is true, we have already queued a work, 2639 * which will see the new dr. Otherwise, we need to 2640 * queue a new work. 2641 */ 2642 pending_dr = !list_empty(&hbus->dr_list); 2643 list_add_tail(&dr->list_entry, &hbus->dr_list); 2644 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2645 2646 if (pending_dr) 2647 kfree(dr_wrk); 2648 else 2649 queue_work(hbus->wq, &dr_wrk->wrk); 2650 2651 return 0; 2652 } 2653 2654 /** 2655 * hv_pci_devices_present() - Handle list of new children 2656 * @hbus: Root PCI bus, as understood by this driver 2657 * @relations: Packet from host listing children 2658 * 2659 * Process a new list of devices on the bus. The list of devices is 2660 * discovered by VSP and sent to us via VSP message PCI_BUS_RELATIONS, 2661 * whenever a new list of devices for this bus appears. 2662 */ 2663 static void hv_pci_devices_present(struct hv_pcibus_device *hbus, 2664 struct pci_bus_relations *relations) 2665 { 2666 struct hv_dr_state *dr; 2667 int i; 2668 2669 dr = kzalloc(struct_size(dr, func, relations->device_count), 2670 GFP_NOWAIT); 2671 if (!dr) 2672 return; 2673 2674 dr->device_count = relations->device_count; 2675 for (i = 0; i < dr->device_count; i++) { 2676 dr->func[i].v_id = relations->func[i].v_id; 2677 dr->func[i].d_id = relations->func[i].d_id; 2678 dr->func[i].rev = relations->func[i].rev; 2679 dr->func[i].prog_intf = relations->func[i].prog_intf; 2680 dr->func[i].subclass = relations->func[i].subclass; 2681 dr->func[i].base_class = relations->func[i].base_class; 2682 dr->func[i].subsystem_id = relations->func[i].subsystem_id; 2683 dr->func[i].win_slot = relations->func[i].win_slot; 2684 dr->func[i].ser = relations->func[i].ser; 2685 } 2686 2687 if (hv_pci_start_relations_work(hbus, dr)) 2688 kfree(dr); 2689 } 2690 2691 /** 2692 * hv_pci_devices_present2() - Handle list of new children 2693 * @hbus: Root PCI bus, as understood by this driver 2694 * @relations: Packet from host listing children 2695 * 2696 * This function is the v2 version of hv_pci_devices_present() 2697 */ 2698 static void hv_pci_devices_present2(struct hv_pcibus_device *hbus, 2699 struct pci_bus_relations2 *relations) 2700 { 2701 struct hv_dr_state *dr; 2702 int i; 2703 2704 dr = kzalloc(struct_size(dr, func, relations->device_count), 2705 GFP_NOWAIT); 2706 if (!dr) 2707 return; 2708 2709 dr->device_count = relations->device_count; 2710 for (i = 0; i < dr->device_count; i++) { 2711 dr->func[i].v_id = relations->func[i].v_id; 2712 dr->func[i].d_id = relations->func[i].d_id; 2713 dr->func[i].rev = relations->func[i].rev; 2714 dr->func[i].prog_intf = relations->func[i].prog_intf; 2715 dr->func[i].subclass = relations->func[i].subclass; 2716 dr->func[i].base_class = relations->func[i].base_class; 2717 dr->func[i].subsystem_id = relations->func[i].subsystem_id; 2718 dr->func[i].win_slot = relations->func[i].win_slot; 2719 dr->func[i].ser = relations->func[i].ser; 2720 dr->func[i].flags = relations->func[i].flags; 2721 dr->func[i].virtual_numa_node = 2722 relations->func[i].virtual_numa_node; 2723 } 2724 2725 if (hv_pci_start_relations_work(hbus, dr)) 2726 kfree(dr); 2727 } 2728 2729 /** 2730 * hv_eject_device_work() - Asynchronously handles ejection 2731 * @work: Work struct embedded in internal device struct 2732 * 2733 * This function handles ejecting a device. Windows will 2734 * attempt to gracefully eject a device, waiting 60 seconds to 2735 * hear back from the guest OS that this completed successfully. 2736 * If this timer expires, the device will be forcibly removed. 2737 */ 2738 static void hv_eject_device_work(struct work_struct *work) 2739 { 2740 struct pci_eject_response *ejct_pkt; 2741 struct hv_pcibus_device *hbus; 2742 struct hv_pci_dev *hpdev; 2743 struct pci_dev *pdev; 2744 unsigned long flags; 2745 int wslot; 2746 struct { 2747 struct pci_packet pkt; 2748 u8 buffer[sizeof(struct pci_eject_response)]; 2749 } ctxt; 2750 2751 hpdev = container_of(work, struct hv_pci_dev, wrk); 2752 hbus = hpdev->hbus; 2753 2754 WARN_ON(hpdev->state != hv_pcichild_ejecting); 2755 2756 /* 2757 * Ejection can come before or after the PCI bus has been set up, so 2758 * attempt to find it and tear down the bus state, if it exists. This 2759 * must be done without constructs like pci_domain_nr(hbus->bridge->bus) 2760 * because hbus->bridge->bus may not exist yet. 2761 */ 2762 wslot = wslot_to_devfn(hpdev->desc.win_slot.slot); 2763 pdev = pci_get_domain_bus_and_slot(hbus->bridge->domain_nr, 0, wslot); 2764 if (pdev) { 2765 pci_lock_rescan_remove(); 2766 pci_stop_and_remove_bus_device(pdev); 2767 pci_dev_put(pdev); 2768 pci_unlock_rescan_remove(); 2769 } 2770 2771 spin_lock_irqsave(&hbus->device_list_lock, flags); 2772 list_del(&hpdev->list_entry); 2773 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2774 2775 if (hpdev->pci_slot) 2776 pci_destroy_slot(hpdev->pci_slot); 2777 2778 memset(&ctxt, 0, sizeof(ctxt)); 2779 ejct_pkt = (struct pci_eject_response *)&ctxt.pkt.message; 2780 ejct_pkt->message_type.type = PCI_EJECTION_COMPLETE; 2781 ejct_pkt->wslot.slot = hpdev->desc.win_slot.slot; 2782 vmbus_sendpacket(hbus->hdev->channel, ejct_pkt, 2783 sizeof(*ejct_pkt), 0, 2784 VM_PKT_DATA_INBAND, 0); 2785 2786 /* For the get_pcichild() in hv_pci_eject_device() */ 2787 put_pcichild(hpdev); 2788 /* For the two refs got in new_pcichild_device() */ 2789 put_pcichild(hpdev); 2790 put_pcichild(hpdev); 2791 /* hpdev has been freed. Do not use it any more. */ 2792 } 2793 2794 /** 2795 * hv_pci_eject_device() - Handles device ejection 2796 * @hpdev: Internal device tracking struct 2797 * 2798 * This function is invoked when an ejection packet arrives. It 2799 * just schedules work so that we don't re-enter the packet 2800 * delivery code handling the ejection. 2801 */ 2802 static void hv_pci_eject_device(struct hv_pci_dev *hpdev) 2803 { 2804 struct hv_pcibus_device *hbus = hpdev->hbus; 2805 struct hv_device *hdev = hbus->hdev; 2806 2807 if (hbus->state == hv_pcibus_removing) { 2808 dev_info(&hdev->device, "PCI VMBus EJECT: ignored\n"); 2809 return; 2810 } 2811 2812 hpdev->state = hv_pcichild_ejecting; 2813 get_pcichild(hpdev); 2814 INIT_WORK(&hpdev->wrk, hv_eject_device_work); 2815 queue_work(hbus->wq, &hpdev->wrk); 2816 } 2817 2818 /** 2819 * hv_pci_onchannelcallback() - Handles incoming packets 2820 * @context: Internal bus tracking struct 2821 * 2822 * This function is invoked whenever the host sends a packet to 2823 * this channel (which is private to this root PCI bus). 2824 */ 2825 static void hv_pci_onchannelcallback(void *context) 2826 { 2827 const int packet_size = 0x100; 2828 int ret; 2829 struct hv_pcibus_device *hbus = context; 2830 struct vmbus_channel *chan = hbus->hdev->channel; 2831 u32 bytes_recvd; 2832 u64 req_id, req_addr; 2833 struct vmpacket_descriptor *desc; 2834 unsigned char *buffer; 2835 int bufferlen = packet_size; 2836 struct pci_packet *comp_packet; 2837 struct pci_response *response; 2838 struct pci_incoming_message *new_message; 2839 struct pci_bus_relations *bus_rel; 2840 struct pci_bus_relations2 *bus_rel2; 2841 struct pci_dev_inval_block *inval; 2842 struct pci_dev_incoming *dev_message; 2843 struct hv_pci_dev *hpdev; 2844 unsigned long flags; 2845 2846 buffer = kmalloc(bufferlen, GFP_ATOMIC); 2847 if (!buffer) 2848 return; 2849 2850 while (1) { 2851 ret = vmbus_recvpacket_raw(chan, buffer, bufferlen, 2852 &bytes_recvd, &req_id); 2853 2854 if (ret == -ENOBUFS) { 2855 kfree(buffer); 2856 /* Handle large packet */ 2857 bufferlen = bytes_recvd; 2858 buffer = kmalloc(bytes_recvd, GFP_ATOMIC); 2859 if (!buffer) 2860 return; 2861 continue; 2862 } 2863 2864 /* Zero length indicates there are no more packets. */ 2865 if (ret || !bytes_recvd) 2866 break; 2867 2868 /* 2869 * All incoming packets must be at least as large as a 2870 * response. 2871 */ 2872 if (bytes_recvd <= sizeof(struct pci_response)) 2873 continue; 2874 desc = (struct vmpacket_descriptor *)buffer; 2875 2876 switch (desc->type) { 2877 case VM_PKT_COMP: 2878 2879 lock_requestor(chan, flags); 2880 req_addr = __vmbus_request_addr_match(chan, req_id, 2881 VMBUS_RQST_ADDR_ANY); 2882 if (req_addr == VMBUS_RQST_ERROR) { 2883 unlock_requestor(chan, flags); 2884 dev_err(&hbus->hdev->device, 2885 "Invalid transaction ID %llx\n", 2886 req_id); 2887 break; 2888 } 2889 comp_packet = (struct pci_packet *)req_addr; 2890 response = (struct pci_response *)buffer; 2891 /* 2892 * Call ->completion_func() within the critical section to make 2893 * sure that the packet pointer is still valid during the call: 2894 * here 'valid' means that there's a task still waiting for the 2895 * completion, and that the packet data is still on the waiting 2896 * task's stack. Cf. hv_compose_msi_msg(). 2897 */ 2898 comp_packet->completion_func(comp_packet->compl_ctxt, 2899 response, 2900 bytes_recvd); 2901 unlock_requestor(chan, flags); 2902 break; 2903 2904 case VM_PKT_DATA_INBAND: 2905 2906 new_message = (struct pci_incoming_message *)buffer; 2907 switch (new_message->message_type.type) { 2908 case PCI_BUS_RELATIONS: 2909 2910 bus_rel = (struct pci_bus_relations *)buffer; 2911 if (bytes_recvd < sizeof(*bus_rel) || 2912 bytes_recvd < 2913 struct_size(bus_rel, func, 2914 bus_rel->device_count)) { 2915 dev_err(&hbus->hdev->device, 2916 "bus relations too small\n"); 2917 break; 2918 } 2919 2920 hv_pci_devices_present(hbus, bus_rel); 2921 break; 2922 2923 case PCI_BUS_RELATIONS2: 2924 2925 bus_rel2 = (struct pci_bus_relations2 *)buffer; 2926 if (bytes_recvd < sizeof(*bus_rel2) || 2927 bytes_recvd < 2928 struct_size(bus_rel2, func, 2929 bus_rel2->device_count)) { 2930 dev_err(&hbus->hdev->device, 2931 "bus relations v2 too small\n"); 2932 break; 2933 } 2934 2935 hv_pci_devices_present2(hbus, bus_rel2); 2936 break; 2937 2938 case PCI_EJECT: 2939 2940 dev_message = (struct pci_dev_incoming *)buffer; 2941 if (bytes_recvd < sizeof(*dev_message)) { 2942 dev_err(&hbus->hdev->device, 2943 "eject message too small\n"); 2944 break; 2945 } 2946 hpdev = get_pcichild_wslot(hbus, 2947 dev_message->wslot.slot); 2948 if (hpdev) { 2949 hv_pci_eject_device(hpdev); 2950 put_pcichild(hpdev); 2951 } 2952 break; 2953 2954 case PCI_INVALIDATE_BLOCK: 2955 2956 inval = (struct pci_dev_inval_block *)buffer; 2957 if (bytes_recvd < sizeof(*inval)) { 2958 dev_err(&hbus->hdev->device, 2959 "invalidate message too small\n"); 2960 break; 2961 } 2962 hpdev = get_pcichild_wslot(hbus, 2963 inval->wslot.slot); 2964 if (hpdev) { 2965 if (hpdev->block_invalidate) { 2966 hpdev->block_invalidate( 2967 hpdev->invalidate_context, 2968 inval->block_mask); 2969 } 2970 put_pcichild(hpdev); 2971 } 2972 break; 2973 2974 default: 2975 dev_warn(&hbus->hdev->device, 2976 "Unimplemented protocol message %x\n", 2977 new_message->message_type.type); 2978 break; 2979 } 2980 break; 2981 2982 default: 2983 dev_err(&hbus->hdev->device, 2984 "unhandled packet type %d, tid %llx len %d\n", 2985 desc->type, req_id, bytes_recvd); 2986 break; 2987 } 2988 } 2989 2990 kfree(buffer); 2991 } 2992 2993 /** 2994 * hv_pci_protocol_negotiation() - Set up protocol 2995 * @hdev: VMBus's tracking struct for this root PCI bus. 2996 * @version: Array of supported channel protocol versions in 2997 * the order of probing - highest go first. 2998 * @num_version: Number of elements in the version array. 2999 * 3000 * This driver is intended to support running on Windows 10 3001 * (server) and later versions. It will not run on earlier 3002 * versions, as they assume that many of the operations which 3003 * Linux needs accomplished with a spinlock held were done via 3004 * asynchronous messaging via VMBus. Windows 10 increases the 3005 * surface area of PCI emulation so that these actions can take 3006 * place by suspending a virtual processor for their duration. 3007 * 3008 * This function negotiates the channel protocol version, 3009 * failing if the host doesn't support the necessary protocol 3010 * level. 3011 */ 3012 static int hv_pci_protocol_negotiation(struct hv_device *hdev, 3013 enum pci_protocol_version_t version[], 3014 int num_version) 3015 { 3016 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3017 struct pci_version_request *version_req; 3018 struct hv_pci_compl comp_pkt; 3019 struct pci_packet *pkt; 3020 int ret; 3021 int i; 3022 3023 /* 3024 * Initiate the handshake with the host and negotiate 3025 * a version that the host can support. We start with the 3026 * highest version number and go down if the host cannot 3027 * support it. 3028 */ 3029 pkt = kzalloc(sizeof(*pkt) + sizeof(*version_req), GFP_KERNEL); 3030 if (!pkt) 3031 return -ENOMEM; 3032 3033 init_completion(&comp_pkt.host_event); 3034 pkt->completion_func = hv_pci_generic_compl; 3035 pkt->compl_ctxt = &comp_pkt; 3036 version_req = (struct pci_version_request *)&pkt->message; 3037 version_req->message_type.type = PCI_QUERY_PROTOCOL_VERSION; 3038 3039 for (i = 0; i < num_version; i++) { 3040 version_req->protocol_version = version[i]; 3041 ret = vmbus_sendpacket(hdev->channel, version_req, 3042 sizeof(struct pci_version_request), 3043 (unsigned long)pkt, VM_PKT_DATA_INBAND, 3044 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 3045 if (!ret) 3046 ret = wait_for_response(hdev, &comp_pkt.host_event); 3047 3048 if (ret) { 3049 dev_err(&hdev->device, 3050 "PCI Pass-through VSP failed to request version: %d", 3051 ret); 3052 goto exit; 3053 } 3054 3055 if (comp_pkt.completion_status >= 0) { 3056 hbus->protocol_version = version[i]; 3057 dev_info(&hdev->device, 3058 "PCI VMBus probing: Using version %#x\n", 3059 hbus->protocol_version); 3060 goto exit; 3061 } 3062 3063 if (comp_pkt.completion_status != STATUS_REVISION_MISMATCH) { 3064 dev_err(&hdev->device, 3065 "PCI Pass-through VSP failed version request: %#x", 3066 comp_pkt.completion_status); 3067 ret = -EPROTO; 3068 goto exit; 3069 } 3070 3071 reinit_completion(&comp_pkt.host_event); 3072 } 3073 3074 dev_err(&hdev->device, 3075 "PCI pass-through VSP failed to find supported version"); 3076 ret = -EPROTO; 3077 3078 exit: 3079 kfree(pkt); 3080 return ret; 3081 } 3082 3083 /** 3084 * hv_pci_free_bridge_windows() - Release memory regions for the 3085 * bus 3086 * @hbus: Root PCI bus, as understood by this driver 3087 */ 3088 static void hv_pci_free_bridge_windows(struct hv_pcibus_device *hbus) 3089 { 3090 /* 3091 * Set the resources back to the way they looked when they 3092 * were allocated by setting IORESOURCE_BUSY again. 3093 */ 3094 3095 if (hbus->low_mmio_space && hbus->low_mmio_res) { 3096 hbus->low_mmio_res->flags |= IORESOURCE_BUSY; 3097 vmbus_free_mmio(hbus->low_mmio_res->start, 3098 resource_size(hbus->low_mmio_res)); 3099 } 3100 3101 if (hbus->high_mmio_space && hbus->high_mmio_res) { 3102 hbus->high_mmio_res->flags |= IORESOURCE_BUSY; 3103 vmbus_free_mmio(hbus->high_mmio_res->start, 3104 resource_size(hbus->high_mmio_res)); 3105 } 3106 } 3107 3108 /** 3109 * hv_pci_allocate_bridge_windows() - Allocate memory regions 3110 * for the bus 3111 * @hbus: Root PCI bus, as understood by this driver 3112 * 3113 * This function calls vmbus_allocate_mmio(), which is itself a 3114 * bit of a compromise. Ideally, we might change the pnp layer 3115 * in the kernel such that it comprehends either PCI devices 3116 * which are "grandchildren of ACPI," with some intermediate bus 3117 * node (in this case, VMBus) or change it such that it 3118 * understands VMBus. The pnp layer, however, has been declared 3119 * deprecated, and not subject to change. 3120 * 3121 * The workaround, implemented here, is to ask VMBus to allocate 3122 * MMIO space for this bus. VMBus itself knows which ranges are 3123 * appropriate by looking at its own ACPI objects. Then, after 3124 * these ranges are claimed, they're modified to look like they 3125 * would have looked if the ACPI and pnp code had allocated 3126 * bridge windows. These descriptors have to exist in this form 3127 * in order to satisfy the code which will get invoked when the 3128 * endpoint PCI function driver calls request_mem_region() or 3129 * request_mem_region_exclusive(). 3130 * 3131 * Return: 0 on success, -errno on failure 3132 */ 3133 static int hv_pci_allocate_bridge_windows(struct hv_pcibus_device *hbus) 3134 { 3135 resource_size_t align; 3136 int ret; 3137 3138 if (hbus->low_mmio_space) { 3139 align = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space)); 3140 ret = vmbus_allocate_mmio(&hbus->low_mmio_res, hbus->hdev, 0, 3141 (u64)(u32)0xffffffff, 3142 hbus->low_mmio_space, 3143 align, false); 3144 if (ret) { 3145 dev_err(&hbus->hdev->device, 3146 "Need %#llx of low MMIO space. Consider reconfiguring the VM.\n", 3147 hbus->low_mmio_space); 3148 return ret; 3149 } 3150 3151 /* Modify this resource to become a bridge window. */ 3152 hbus->low_mmio_res->flags |= IORESOURCE_WINDOW; 3153 hbus->low_mmio_res->flags &= ~IORESOURCE_BUSY; 3154 pci_add_resource(&hbus->bridge->windows, hbus->low_mmio_res); 3155 } 3156 3157 if (hbus->high_mmio_space) { 3158 align = 1ULL << (63 - __builtin_clzll(hbus->high_mmio_space)); 3159 ret = vmbus_allocate_mmio(&hbus->high_mmio_res, hbus->hdev, 3160 0x100000000, -1, 3161 hbus->high_mmio_space, align, 3162 false); 3163 if (ret) { 3164 dev_err(&hbus->hdev->device, 3165 "Need %#llx of high MMIO space. Consider reconfiguring the VM.\n", 3166 hbus->high_mmio_space); 3167 goto release_low_mmio; 3168 } 3169 3170 /* Modify this resource to become a bridge window. */ 3171 hbus->high_mmio_res->flags |= IORESOURCE_WINDOW; 3172 hbus->high_mmio_res->flags &= ~IORESOURCE_BUSY; 3173 pci_add_resource(&hbus->bridge->windows, hbus->high_mmio_res); 3174 } 3175 3176 return 0; 3177 3178 release_low_mmio: 3179 if (hbus->low_mmio_res) { 3180 vmbus_free_mmio(hbus->low_mmio_res->start, 3181 resource_size(hbus->low_mmio_res)); 3182 } 3183 3184 return ret; 3185 } 3186 3187 /** 3188 * hv_allocate_config_window() - Find MMIO space for PCI Config 3189 * @hbus: Root PCI bus, as understood by this driver 3190 * 3191 * This function claims memory-mapped I/O space for accessing 3192 * configuration space for the functions on this bus. 3193 * 3194 * Return: 0 on success, -errno on failure 3195 */ 3196 static int hv_allocate_config_window(struct hv_pcibus_device *hbus) 3197 { 3198 int ret; 3199 3200 /* 3201 * Set up a region of MMIO space to use for accessing configuration 3202 * space. 3203 */ 3204 ret = vmbus_allocate_mmio(&hbus->mem_config, hbus->hdev, 0, -1, 3205 PCI_CONFIG_MMIO_LENGTH, 0x1000, false); 3206 if (ret) 3207 return ret; 3208 3209 /* 3210 * vmbus_allocate_mmio() gets used for allocating both device endpoint 3211 * resource claims (those which cannot be overlapped) and the ranges 3212 * which are valid for the children of this bus, which are intended 3213 * to be overlapped by those children. Set the flag on this claim 3214 * meaning that this region can't be overlapped. 3215 */ 3216 3217 hbus->mem_config->flags |= IORESOURCE_BUSY; 3218 3219 return 0; 3220 } 3221 3222 static void hv_free_config_window(struct hv_pcibus_device *hbus) 3223 { 3224 vmbus_free_mmio(hbus->mem_config->start, PCI_CONFIG_MMIO_LENGTH); 3225 } 3226 3227 static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs); 3228 3229 /** 3230 * hv_pci_enter_d0() - Bring the "bus" into the D0 power state 3231 * @hdev: VMBus's tracking struct for this root PCI bus 3232 * 3233 * Return: 0 on success, -errno on failure 3234 */ 3235 static int hv_pci_enter_d0(struct hv_device *hdev) 3236 { 3237 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3238 struct pci_bus_d0_entry *d0_entry; 3239 struct hv_pci_compl comp_pkt; 3240 struct pci_packet *pkt; 3241 int ret; 3242 3243 /* 3244 * Tell the host that the bus is ready to use, and moved into the 3245 * powered-on state. This includes telling the host which region 3246 * of memory-mapped I/O space has been chosen for configuration space 3247 * access. 3248 */ 3249 pkt = kzalloc(sizeof(*pkt) + sizeof(*d0_entry), GFP_KERNEL); 3250 if (!pkt) 3251 return -ENOMEM; 3252 3253 init_completion(&comp_pkt.host_event); 3254 pkt->completion_func = hv_pci_generic_compl; 3255 pkt->compl_ctxt = &comp_pkt; 3256 d0_entry = (struct pci_bus_d0_entry *)&pkt->message; 3257 d0_entry->message_type.type = PCI_BUS_D0ENTRY; 3258 d0_entry->mmio_base = hbus->mem_config->start; 3259 3260 ret = vmbus_sendpacket(hdev->channel, d0_entry, sizeof(*d0_entry), 3261 (unsigned long)pkt, VM_PKT_DATA_INBAND, 3262 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 3263 if (!ret) 3264 ret = wait_for_response(hdev, &comp_pkt.host_event); 3265 3266 if (ret) 3267 goto exit; 3268 3269 if (comp_pkt.completion_status < 0) { 3270 dev_err(&hdev->device, 3271 "PCI Pass-through VSP failed D0 Entry with status %x\n", 3272 comp_pkt.completion_status); 3273 ret = -EPROTO; 3274 goto exit; 3275 } 3276 3277 ret = 0; 3278 3279 exit: 3280 kfree(pkt); 3281 return ret; 3282 } 3283 3284 /** 3285 * hv_pci_query_relations() - Ask host to send list of child 3286 * devices 3287 * @hdev: VMBus's tracking struct for this root PCI bus 3288 * 3289 * Return: 0 on success, -errno on failure 3290 */ 3291 static int hv_pci_query_relations(struct hv_device *hdev) 3292 { 3293 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3294 struct pci_message message; 3295 struct completion comp; 3296 int ret; 3297 3298 /* Ask the host to send along the list of child devices */ 3299 init_completion(&comp); 3300 if (cmpxchg(&hbus->survey_event, NULL, &comp)) 3301 return -ENOTEMPTY; 3302 3303 memset(&message, 0, sizeof(message)); 3304 message.type = PCI_QUERY_BUS_RELATIONS; 3305 3306 ret = vmbus_sendpacket(hdev->channel, &message, sizeof(message), 3307 0, VM_PKT_DATA_INBAND, 0); 3308 if (!ret) 3309 ret = wait_for_response(hdev, &comp); 3310 3311 return ret; 3312 } 3313 3314 /** 3315 * hv_send_resources_allocated() - Report local resource choices 3316 * @hdev: VMBus's tracking struct for this root PCI bus 3317 * 3318 * The host OS is expecting to be sent a request as a message 3319 * which contains all the resources that the device will use. 3320 * The response contains those same resources, "translated" 3321 * which is to say, the values which should be used by the 3322 * hardware, when it delivers an interrupt. (MMIO resources are 3323 * used in local terms.) This is nice for Windows, and lines up 3324 * with the FDO/PDO split, which doesn't exist in Linux. Linux 3325 * is deeply expecting to scan an emulated PCI configuration 3326 * space. So this message is sent here only to drive the state 3327 * machine on the host forward. 3328 * 3329 * Return: 0 on success, -errno on failure 3330 */ 3331 static int hv_send_resources_allocated(struct hv_device *hdev) 3332 { 3333 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3334 struct pci_resources_assigned *res_assigned; 3335 struct pci_resources_assigned2 *res_assigned2; 3336 struct hv_pci_compl comp_pkt; 3337 struct hv_pci_dev *hpdev; 3338 struct pci_packet *pkt; 3339 size_t size_res; 3340 int wslot; 3341 int ret; 3342 3343 size_res = (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2) 3344 ? sizeof(*res_assigned) : sizeof(*res_assigned2); 3345 3346 pkt = kmalloc(sizeof(*pkt) + size_res, GFP_KERNEL); 3347 if (!pkt) 3348 return -ENOMEM; 3349 3350 ret = 0; 3351 3352 for (wslot = 0; wslot < 256; wslot++) { 3353 hpdev = get_pcichild_wslot(hbus, wslot); 3354 if (!hpdev) 3355 continue; 3356 3357 memset(pkt, 0, sizeof(*pkt) + size_res); 3358 init_completion(&comp_pkt.host_event); 3359 pkt->completion_func = hv_pci_generic_compl; 3360 pkt->compl_ctxt = &comp_pkt; 3361 3362 if (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2) { 3363 res_assigned = 3364 (struct pci_resources_assigned *)&pkt->message; 3365 res_assigned->message_type.type = 3366 PCI_RESOURCES_ASSIGNED; 3367 res_assigned->wslot.slot = hpdev->desc.win_slot.slot; 3368 } else { 3369 res_assigned2 = 3370 (struct pci_resources_assigned2 *)&pkt->message; 3371 res_assigned2->message_type.type = 3372 PCI_RESOURCES_ASSIGNED2; 3373 res_assigned2->wslot.slot = hpdev->desc.win_slot.slot; 3374 } 3375 put_pcichild(hpdev); 3376 3377 ret = vmbus_sendpacket(hdev->channel, &pkt->message, 3378 size_res, (unsigned long)pkt, 3379 VM_PKT_DATA_INBAND, 3380 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 3381 if (!ret) 3382 ret = wait_for_response(hdev, &comp_pkt.host_event); 3383 if (ret) 3384 break; 3385 3386 if (comp_pkt.completion_status < 0) { 3387 ret = -EPROTO; 3388 dev_err(&hdev->device, 3389 "resource allocated returned 0x%x", 3390 comp_pkt.completion_status); 3391 break; 3392 } 3393 3394 hbus->wslot_res_allocated = wslot; 3395 } 3396 3397 kfree(pkt); 3398 return ret; 3399 } 3400 3401 /** 3402 * hv_send_resources_released() - Report local resources 3403 * released 3404 * @hdev: VMBus's tracking struct for this root PCI bus 3405 * 3406 * Return: 0 on success, -errno on failure 3407 */ 3408 static int hv_send_resources_released(struct hv_device *hdev) 3409 { 3410 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3411 struct pci_child_message pkt; 3412 struct hv_pci_dev *hpdev; 3413 int wslot; 3414 int ret; 3415 3416 for (wslot = hbus->wslot_res_allocated; wslot >= 0; wslot--) { 3417 hpdev = get_pcichild_wslot(hbus, wslot); 3418 if (!hpdev) 3419 continue; 3420 3421 memset(&pkt, 0, sizeof(pkt)); 3422 pkt.message_type.type = PCI_RESOURCES_RELEASED; 3423 pkt.wslot.slot = hpdev->desc.win_slot.slot; 3424 3425 put_pcichild(hpdev); 3426 3427 ret = vmbus_sendpacket(hdev->channel, &pkt, sizeof(pkt), 0, 3428 VM_PKT_DATA_INBAND, 0); 3429 if (ret) 3430 return ret; 3431 3432 hbus->wslot_res_allocated = wslot - 1; 3433 } 3434 3435 hbus->wslot_res_allocated = -1; 3436 3437 return 0; 3438 } 3439 3440 #define HVPCI_DOM_MAP_SIZE (64 * 1024) 3441 static DECLARE_BITMAP(hvpci_dom_map, HVPCI_DOM_MAP_SIZE); 3442 3443 /* 3444 * PCI domain number 0 is used by emulated devices on Gen1 VMs, so define 0 3445 * as invalid for passthrough PCI devices of this driver. 3446 */ 3447 #define HVPCI_DOM_INVALID 0 3448 3449 /** 3450 * hv_get_dom_num() - Get a valid PCI domain number 3451 * Check if the PCI domain number is in use, and return another number if 3452 * it is in use. 3453 * 3454 * @dom: Requested domain number 3455 * 3456 * return: domain number on success, HVPCI_DOM_INVALID on failure 3457 */ 3458 static u16 hv_get_dom_num(u16 dom) 3459 { 3460 unsigned int i; 3461 3462 if (test_and_set_bit(dom, hvpci_dom_map) == 0) 3463 return dom; 3464 3465 for_each_clear_bit(i, hvpci_dom_map, HVPCI_DOM_MAP_SIZE) { 3466 if (test_and_set_bit(i, hvpci_dom_map) == 0) 3467 return i; 3468 } 3469 3470 return HVPCI_DOM_INVALID; 3471 } 3472 3473 /** 3474 * hv_put_dom_num() - Mark the PCI domain number as free 3475 * @dom: Domain number to be freed 3476 */ 3477 static void hv_put_dom_num(u16 dom) 3478 { 3479 clear_bit(dom, hvpci_dom_map); 3480 } 3481 3482 /** 3483 * hv_pci_probe() - New VMBus channel probe, for a root PCI bus 3484 * @hdev: VMBus's tracking struct for this root PCI bus 3485 * @dev_id: Identifies the device itself 3486 * 3487 * Return: 0 on success, -errno on failure 3488 */ 3489 static int hv_pci_probe(struct hv_device *hdev, 3490 const struct hv_vmbus_device_id *dev_id) 3491 { 3492 struct pci_host_bridge *bridge; 3493 struct hv_pcibus_device *hbus; 3494 u16 dom_req, dom; 3495 char *name; 3496 bool enter_d0_retry = true; 3497 int ret; 3498 3499 /* 3500 * hv_pcibus_device contains the hypercall arguments for retargeting in 3501 * hv_irq_unmask(). Those must not cross a page boundary. 3502 */ 3503 BUILD_BUG_ON(sizeof(*hbus) > HV_HYP_PAGE_SIZE); 3504 3505 bridge = devm_pci_alloc_host_bridge(&hdev->device, 0); 3506 if (!bridge) 3507 return -ENOMEM; 3508 3509 /* 3510 * With the recent 59bb47985c1d ("mm, sl[aou]b: guarantee natural 3511 * alignment for kmalloc(power-of-two)"), kzalloc() is able to allocate 3512 * a 4KB buffer that is guaranteed to be 4KB-aligned. Here the size and 3513 * alignment of hbus is important because hbus's field 3514 * retarget_msi_interrupt_params must not cross a 4KB page boundary. 3515 * 3516 * Here we prefer kzalloc to get_zeroed_page(), because a buffer 3517 * allocated by the latter is not tracked and scanned by kmemleak, and 3518 * hence kmemleak reports the pointer contained in the hbus buffer 3519 * (i.e. the hpdev struct, which is created in new_pcichild_device() and 3520 * is tracked by hbus->children) as memory leak (false positive). 3521 * 3522 * If the kernel doesn't have 59bb47985c1d, get_zeroed_page() *must* be 3523 * used to allocate the hbus buffer and we can avoid the kmemleak false 3524 * positive by using kmemleak_alloc() and kmemleak_free() to ask 3525 * kmemleak to track and scan the hbus buffer. 3526 */ 3527 hbus = kzalloc(HV_HYP_PAGE_SIZE, GFP_KERNEL); 3528 if (!hbus) 3529 return -ENOMEM; 3530 3531 hbus->bridge = bridge; 3532 hbus->state = hv_pcibus_init; 3533 hbus->wslot_res_allocated = -1; 3534 3535 /* 3536 * The PCI bus "domain" is what is called "segment" in ACPI and other 3537 * specs. Pull it from the instance ID, to get something usually 3538 * unique. In rare cases of collision, we will find out another number 3539 * not in use. 3540 * 3541 * Note that, since this code only runs in a Hyper-V VM, Hyper-V 3542 * together with this guest driver can guarantee that (1) The only 3543 * domain used by Gen1 VMs for something that looks like a physical 3544 * PCI bus (which is actually emulated by the hypervisor) is domain 0. 3545 * (2) There will be no overlap between domains (after fixing possible 3546 * collisions) in the same VM. 3547 */ 3548 dom_req = hdev->dev_instance.b[5] << 8 | hdev->dev_instance.b[4]; 3549 dom = hv_get_dom_num(dom_req); 3550 3551 if (dom == HVPCI_DOM_INVALID) { 3552 dev_err(&hdev->device, 3553 "Unable to use dom# 0x%x or other numbers", dom_req); 3554 ret = -EINVAL; 3555 goto free_bus; 3556 } 3557 3558 if (dom != dom_req) 3559 dev_info(&hdev->device, 3560 "PCI dom# 0x%x has collision, using 0x%x", 3561 dom_req, dom); 3562 3563 hbus->bridge->domain_nr = dom; 3564 #ifdef CONFIG_X86 3565 hbus->sysdata.domain = dom; 3566 #elif defined(CONFIG_ARM64) 3567 /* 3568 * Set the PCI bus parent to be the corresponding VMbus 3569 * device. Then the VMbus device will be assigned as the 3570 * ACPI companion in pcibios_root_bridge_prepare() and 3571 * pci_dma_configure() will propagate device coherence 3572 * information to devices created on the bus. 3573 */ 3574 hbus->sysdata.parent = hdev->device.parent; 3575 #endif 3576 3577 hbus->hdev = hdev; 3578 INIT_LIST_HEAD(&hbus->children); 3579 INIT_LIST_HEAD(&hbus->dr_list); 3580 spin_lock_init(&hbus->config_lock); 3581 spin_lock_init(&hbus->device_list_lock); 3582 spin_lock_init(&hbus->retarget_msi_interrupt_lock); 3583 hbus->wq = alloc_ordered_workqueue("hv_pci_%x", 0, 3584 hbus->bridge->domain_nr); 3585 if (!hbus->wq) { 3586 ret = -ENOMEM; 3587 goto free_dom; 3588 } 3589 3590 hdev->channel->next_request_id_callback = vmbus_next_request_id; 3591 hdev->channel->request_addr_callback = vmbus_request_addr; 3592 hdev->channel->rqstor_size = HV_PCI_RQSTOR_SIZE; 3593 3594 ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0, 3595 hv_pci_onchannelcallback, hbus); 3596 if (ret) 3597 goto destroy_wq; 3598 3599 hv_set_drvdata(hdev, hbus); 3600 3601 ret = hv_pci_protocol_negotiation(hdev, pci_protocol_versions, 3602 ARRAY_SIZE(pci_protocol_versions)); 3603 if (ret) 3604 goto close; 3605 3606 ret = hv_allocate_config_window(hbus); 3607 if (ret) 3608 goto close; 3609 3610 hbus->cfg_addr = ioremap(hbus->mem_config->start, 3611 PCI_CONFIG_MMIO_LENGTH); 3612 if (!hbus->cfg_addr) { 3613 dev_err(&hdev->device, 3614 "Unable to map a virtual address for config space\n"); 3615 ret = -ENOMEM; 3616 goto free_config; 3617 } 3618 3619 name = kasprintf(GFP_KERNEL, "%pUL", &hdev->dev_instance); 3620 if (!name) { 3621 ret = -ENOMEM; 3622 goto unmap; 3623 } 3624 3625 hbus->fwnode = irq_domain_alloc_named_fwnode(name); 3626 kfree(name); 3627 if (!hbus->fwnode) { 3628 ret = -ENOMEM; 3629 goto unmap; 3630 } 3631 3632 ret = hv_pcie_init_irq_domain(hbus); 3633 if (ret) 3634 goto free_fwnode; 3635 3636 retry: 3637 ret = hv_pci_query_relations(hdev); 3638 if (ret) 3639 goto free_irq_domain; 3640 3641 ret = hv_pci_enter_d0(hdev); 3642 /* 3643 * In certain case (Kdump) the pci device of interest was 3644 * not cleanly shut down and resource is still held on host 3645 * side, the host could return invalid device status. 3646 * We need to explicitly request host to release the resource 3647 * and try to enter D0 again. 3648 * Since the hv_pci_bus_exit() call releases structures 3649 * of all its child devices, we need to start the retry from 3650 * hv_pci_query_relations() call, requesting host to send 3651 * the synchronous child device relations message before this 3652 * information is needed in hv_send_resources_allocated() 3653 * call later. 3654 */ 3655 if (ret == -EPROTO && enter_d0_retry) { 3656 enter_d0_retry = false; 3657 3658 dev_err(&hdev->device, "Retrying D0 Entry\n"); 3659 3660 /* 3661 * Hv_pci_bus_exit() calls hv_send_resources_released() 3662 * to free up resources of its child devices. 3663 * In the kdump kernel we need to set the 3664 * wslot_res_allocated to 255 so it scans all child 3665 * devices to release resources allocated in the 3666 * normal kernel before panic happened. 3667 */ 3668 hbus->wslot_res_allocated = 255; 3669 ret = hv_pci_bus_exit(hdev, true); 3670 3671 if (ret == 0) 3672 goto retry; 3673 3674 dev_err(&hdev->device, 3675 "Retrying D0 failed with ret %d\n", ret); 3676 } 3677 if (ret) 3678 goto free_irq_domain; 3679 3680 ret = hv_pci_allocate_bridge_windows(hbus); 3681 if (ret) 3682 goto exit_d0; 3683 3684 ret = hv_send_resources_allocated(hdev); 3685 if (ret) 3686 goto free_windows; 3687 3688 prepopulate_bars(hbus); 3689 3690 hbus->state = hv_pcibus_probed; 3691 3692 ret = create_root_hv_pci_bus(hbus); 3693 if (ret) 3694 goto free_windows; 3695 3696 return 0; 3697 3698 free_windows: 3699 hv_pci_free_bridge_windows(hbus); 3700 exit_d0: 3701 (void) hv_pci_bus_exit(hdev, true); 3702 free_irq_domain: 3703 irq_domain_remove(hbus->irq_domain); 3704 free_fwnode: 3705 irq_domain_free_fwnode(hbus->fwnode); 3706 unmap: 3707 iounmap(hbus->cfg_addr); 3708 free_config: 3709 hv_free_config_window(hbus); 3710 close: 3711 vmbus_close(hdev->channel); 3712 destroy_wq: 3713 destroy_workqueue(hbus->wq); 3714 free_dom: 3715 hv_put_dom_num(hbus->bridge->domain_nr); 3716 free_bus: 3717 kfree(hbus); 3718 return ret; 3719 } 3720 3721 static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs) 3722 { 3723 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3724 struct vmbus_channel *chan = hdev->channel; 3725 struct { 3726 struct pci_packet teardown_packet; 3727 u8 buffer[sizeof(struct pci_message)]; 3728 } pkt; 3729 struct hv_pci_compl comp_pkt; 3730 struct hv_pci_dev *hpdev, *tmp; 3731 unsigned long flags; 3732 u64 trans_id; 3733 int ret; 3734 3735 /* 3736 * After the host sends the RESCIND_CHANNEL message, it doesn't 3737 * access the per-channel ringbuffer any longer. 3738 */ 3739 if (chan->rescind) 3740 return 0; 3741 3742 if (!keep_devs) { 3743 struct list_head removed; 3744 3745 /* Move all present children to the list on stack */ 3746 INIT_LIST_HEAD(&removed); 3747 spin_lock_irqsave(&hbus->device_list_lock, flags); 3748 list_for_each_entry_safe(hpdev, tmp, &hbus->children, list_entry) 3749 list_move_tail(&hpdev->list_entry, &removed); 3750 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 3751 3752 /* Remove all children in the list */ 3753 list_for_each_entry_safe(hpdev, tmp, &removed, list_entry) { 3754 list_del(&hpdev->list_entry); 3755 if (hpdev->pci_slot) 3756 pci_destroy_slot(hpdev->pci_slot); 3757 /* For the two refs got in new_pcichild_device() */ 3758 put_pcichild(hpdev); 3759 put_pcichild(hpdev); 3760 } 3761 } 3762 3763 ret = hv_send_resources_released(hdev); 3764 if (ret) { 3765 dev_err(&hdev->device, 3766 "Couldn't send resources released packet(s)\n"); 3767 return ret; 3768 } 3769 3770 memset(&pkt.teardown_packet, 0, sizeof(pkt.teardown_packet)); 3771 init_completion(&comp_pkt.host_event); 3772 pkt.teardown_packet.completion_func = hv_pci_generic_compl; 3773 pkt.teardown_packet.compl_ctxt = &comp_pkt; 3774 pkt.teardown_packet.message[0].type = PCI_BUS_D0EXIT; 3775 3776 ret = vmbus_sendpacket_getid(chan, &pkt.teardown_packet.message, 3777 sizeof(struct pci_message), 3778 (unsigned long)&pkt.teardown_packet, 3779 &trans_id, VM_PKT_DATA_INBAND, 3780 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 3781 if (ret) 3782 return ret; 3783 3784 if (wait_for_completion_timeout(&comp_pkt.host_event, 10 * HZ) == 0) { 3785 /* 3786 * The completion packet on the stack becomes invalid after 3787 * 'return'; remove the ID from the VMbus requestor if the 3788 * identifier is still mapped to/associated with the packet. 3789 * 3790 * Cf. hv_pci_onchannelcallback(). 3791 */ 3792 vmbus_request_addr_match(chan, trans_id, 3793 (unsigned long)&pkt.teardown_packet); 3794 return -ETIMEDOUT; 3795 } 3796 3797 return 0; 3798 } 3799 3800 /** 3801 * hv_pci_remove() - Remove routine for this VMBus channel 3802 * @hdev: VMBus's tracking struct for this root PCI bus 3803 */ 3804 static void hv_pci_remove(struct hv_device *hdev) 3805 { 3806 struct hv_pcibus_device *hbus; 3807 3808 hbus = hv_get_drvdata(hdev); 3809 if (hbus->state == hv_pcibus_installed) { 3810 tasklet_disable(&hdev->channel->callback_event); 3811 hbus->state = hv_pcibus_removing; 3812 tasklet_enable(&hdev->channel->callback_event); 3813 destroy_workqueue(hbus->wq); 3814 hbus->wq = NULL; 3815 /* 3816 * At this point, no work is running or can be scheduled 3817 * on hbus-wq. We can't race with hv_pci_devices_present() 3818 * or hv_pci_eject_device(), it's safe to proceed. 3819 */ 3820 3821 /* Remove the bus from PCI's point of view. */ 3822 pci_lock_rescan_remove(); 3823 pci_stop_root_bus(hbus->bridge->bus); 3824 hv_pci_remove_slots(hbus); 3825 pci_remove_root_bus(hbus->bridge->bus); 3826 pci_unlock_rescan_remove(); 3827 } 3828 3829 hv_pci_bus_exit(hdev, false); 3830 3831 vmbus_close(hdev->channel); 3832 3833 iounmap(hbus->cfg_addr); 3834 hv_free_config_window(hbus); 3835 hv_pci_free_bridge_windows(hbus); 3836 irq_domain_remove(hbus->irq_domain); 3837 irq_domain_free_fwnode(hbus->fwnode); 3838 3839 hv_put_dom_num(hbus->bridge->domain_nr); 3840 3841 kfree(hbus); 3842 } 3843 3844 static int hv_pci_suspend(struct hv_device *hdev) 3845 { 3846 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3847 enum hv_pcibus_state old_state; 3848 int ret; 3849 3850 /* 3851 * hv_pci_suspend() must make sure there are no pending work items 3852 * before calling vmbus_close(), since it runs in a process context 3853 * as a callback in dpm_suspend(). When it starts to run, the channel 3854 * callback hv_pci_onchannelcallback(), which runs in a tasklet 3855 * context, can be still running concurrently and scheduling new work 3856 * items onto hbus->wq in hv_pci_devices_present() and 3857 * hv_pci_eject_device(), and the work item handlers can access the 3858 * vmbus channel, which can be being closed by hv_pci_suspend(), e.g. 3859 * the work item handler pci_devices_present_work() -> 3860 * new_pcichild_device() writes to the vmbus channel. 3861 * 3862 * To eliminate the race, hv_pci_suspend() disables the channel 3863 * callback tasklet, sets hbus->state to hv_pcibus_removing, and 3864 * re-enables the tasklet. This way, when hv_pci_suspend() proceeds, 3865 * it knows that no new work item can be scheduled, and then it flushes 3866 * hbus->wq and safely closes the vmbus channel. 3867 */ 3868 tasklet_disable(&hdev->channel->callback_event); 3869 3870 /* Change the hbus state to prevent new work items. */ 3871 old_state = hbus->state; 3872 if (hbus->state == hv_pcibus_installed) 3873 hbus->state = hv_pcibus_removing; 3874 3875 tasklet_enable(&hdev->channel->callback_event); 3876 3877 if (old_state != hv_pcibus_installed) 3878 return -EINVAL; 3879 3880 flush_workqueue(hbus->wq); 3881 3882 ret = hv_pci_bus_exit(hdev, true); 3883 if (ret) 3884 return ret; 3885 3886 vmbus_close(hdev->channel); 3887 3888 return 0; 3889 } 3890 3891 static int hv_pci_restore_msi_msg(struct pci_dev *pdev, void *arg) 3892 { 3893 struct irq_data *irq_data; 3894 struct msi_desc *entry; 3895 int ret = 0; 3896 3897 msi_lock_descs(&pdev->dev); 3898 msi_for_each_desc(entry, &pdev->dev, MSI_DESC_ASSOCIATED) { 3899 irq_data = irq_get_irq_data(entry->irq); 3900 if (WARN_ON_ONCE(!irq_data)) { 3901 ret = -EINVAL; 3902 break; 3903 } 3904 3905 hv_compose_msi_msg(irq_data, &entry->msg); 3906 } 3907 msi_unlock_descs(&pdev->dev); 3908 3909 return ret; 3910 } 3911 3912 /* 3913 * Upon resume, pci_restore_msi_state() -> ... -> __pci_write_msi_msg() 3914 * directly writes the MSI/MSI-X registers via MMIO, but since Hyper-V 3915 * doesn't trap and emulate the MMIO accesses, here hv_compose_msi_msg() 3916 * must be used to ask Hyper-V to re-create the IOMMU Interrupt Remapping 3917 * Table entries. 3918 */ 3919 static void hv_pci_restore_msi_state(struct hv_pcibus_device *hbus) 3920 { 3921 pci_walk_bus(hbus->bridge->bus, hv_pci_restore_msi_msg, NULL); 3922 } 3923 3924 static int hv_pci_resume(struct hv_device *hdev) 3925 { 3926 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3927 enum pci_protocol_version_t version[1]; 3928 int ret; 3929 3930 hbus->state = hv_pcibus_init; 3931 3932 hdev->channel->next_request_id_callback = vmbus_next_request_id; 3933 hdev->channel->request_addr_callback = vmbus_request_addr; 3934 hdev->channel->rqstor_size = HV_PCI_RQSTOR_SIZE; 3935 3936 ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0, 3937 hv_pci_onchannelcallback, hbus); 3938 if (ret) 3939 return ret; 3940 3941 /* Only use the version that was in use before hibernation. */ 3942 version[0] = hbus->protocol_version; 3943 ret = hv_pci_protocol_negotiation(hdev, version, 1); 3944 if (ret) 3945 goto out; 3946 3947 ret = hv_pci_query_relations(hdev); 3948 if (ret) 3949 goto out; 3950 3951 ret = hv_pci_enter_d0(hdev); 3952 if (ret) 3953 goto out; 3954 3955 ret = hv_send_resources_allocated(hdev); 3956 if (ret) 3957 goto out; 3958 3959 prepopulate_bars(hbus); 3960 3961 hv_pci_restore_msi_state(hbus); 3962 3963 hbus->state = hv_pcibus_installed; 3964 return 0; 3965 out: 3966 vmbus_close(hdev->channel); 3967 return ret; 3968 } 3969 3970 static const struct hv_vmbus_device_id hv_pci_id_table[] = { 3971 /* PCI Pass-through Class ID */ 3972 /* 44C4F61D-4444-4400-9D52-802E27EDE19F */ 3973 { HV_PCIE_GUID, }, 3974 { }, 3975 }; 3976 3977 MODULE_DEVICE_TABLE(vmbus, hv_pci_id_table); 3978 3979 static struct hv_driver hv_pci_drv = { 3980 .name = "hv_pci", 3981 .id_table = hv_pci_id_table, 3982 .probe = hv_pci_probe, 3983 .remove = hv_pci_remove, 3984 .suspend = hv_pci_suspend, 3985 .resume = hv_pci_resume, 3986 }; 3987 3988 static void __exit exit_hv_pci_drv(void) 3989 { 3990 vmbus_driver_unregister(&hv_pci_drv); 3991 3992 hvpci_block_ops.read_block = NULL; 3993 hvpci_block_ops.write_block = NULL; 3994 hvpci_block_ops.reg_blk_invalidate = NULL; 3995 } 3996 3997 static int __init init_hv_pci_drv(void) 3998 { 3999 int ret; 4000 4001 if (!hv_is_hyperv_initialized()) 4002 return -ENODEV; 4003 4004 ret = hv_pci_irqchip_init(); 4005 if (ret) 4006 return ret; 4007 4008 /* Set the invalid domain number's bit, so it will not be used */ 4009 set_bit(HVPCI_DOM_INVALID, hvpci_dom_map); 4010 4011 /* Initialize PCI block r/w interface */ 4012 hvpci_block_ops.read_block = hv_read_config_block; 4013 hvpci_block_ops.write_block = hv_write_config_block; 4014 hvpci_block_ops.reg_blk_invalidate = hv_register_block_invalidate; 4015 4016 return vmbus_driver_register(&hv_pci_drv); 4017 } 4018 4019 module_init(init_hv_pci_drv); 4020 module_exit(exit_hv_pci_drv); 4021 4022 MODULE_DESCRIPTION("Hyper-V PCI"); 4023 MODULE_LICENSE("GPL v2"); 4024