1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) Microsoft Corporation. 4 * 5 * Author: 6 * Jake Oshins <jakeo@microsoft.com> 7 * 8 * This driver acts as a paravirtual front-end for PCI Express root buses. 9 * When a PCI Express function (either an entire device or an SR-IOV 10 * Virtual Function) is being passed through to the VM, this driver exposes 11 * a new bus to the guest VM. This is modeled as a root PCI bus because 12 * no bridges are being exposed to the VM. In fact, with a "Generation 2" 13 * VM within Hyper-V, there may seem to be no PCI bus at all in the VM 14 * until a device as been exposed using this driver. 15 * 16 * Each root PCI bus has its own PCI domain, which is called "Segment" in 17 * the PCI Firmware Specifications. Thus while each device passed through 18 * to the VM using this front-end will appear at "device 0", the domain will 19 * be unique. Typically, each bus will have one PCI function on it, though 20 * this driver does support more than one. 21 * 22 * In order to map the interrupts from the device through to the guest VM, 23 * this driver also implements an IRQ Domain, which handles interrupts (either 24 * MSI or MSI-X) associated with the functions on the bus. As interrupts are 25 * set up, torn down, or reaffined, this driver communicates with the 26 * underlying hypervisor to adjust the mappings in the I/O MMU so that each 27 * interrupt will be delivered to the correct virtual processor at the right 28 * vector. This driver does not support level-triggered (line-based) 29 * interrupts, and will report that the Interrupt Line register in the 30 * function's configuration space is zero. 31 * 32 * The rest of this driver mostly maps PCI concepts onto underlying Hyper-V 33 * facilities. For instance, the configuration space of a function exposed 34 * by Hyper-V is mapped into a single page of memory space, and the 35 * read and write handlers for config space must be aware of this mechanism. 36 * Similarly, device setup and teardown involves messages sent to and from 37 * the PCI back-end driver in Hyper-V. 38 */ 39 40 #include <linux/kernel.h> 41 #include <linux/module.h> 42 #include <linux/pci.h> 43 #include <linux/delay.h> 44 #include <linux/semaphore.h> 45 #include <linux/irqdomain.h> 46 #include <asm/irqdomain.h> 47 #include <asm/apic.h> 48 #include <linux/irq.h> 49 #include <linux/msi.h> 50 #include <linux/hyperv.h> 51 #include <linux/refcount.h> 52 #include <asm/mshyperv.h> 53 54 /* 55 * Protocol versions. The low word is the minor version, the high word the 56 * major version. 57 */ 58 59 #define PCI_MAKE_VERSION(major, minor) ((u32)(((major) << 16) | (minor))) 60 #define PCI_MAJOR_VERSION(version) ((u32)(version) >> 16) 61 #define PCI_MINOR_VERSION(version) ((u32)(version) & 0xff) 62 63 enum pci_protocol_version_t { 64 PCI_PROTOCOL_VERSION_1_1 = PCI_MAKE_VERSION(1, 1), /* Win10 */ 65 PCI_PROTOCOL_VERSION_1_2 = PCI_MAKE_VERSION(1, 2), /* RS1 */ 66 PCI_PROTOCOL_VERSION_1_3 = PCI_MAKE_VERSION(1, 3), /* Vibranium */ 67 }; 68 69 #define CPU_AFFINITY_ALL -1ULL 70 71 /* 72 * Supported protocol versions in the order of probing - highest go 73 * first. 74 */ 75 static enum pci_protocol_version_t pci_protocol_versions[] = { 76 PCI_PROTOCOL_VERSION_1_3, 77 PCI_PROTOCOL_VERSION_1_2, 78 PCI_PROTOCOL_VERSION_1_1, 79 }; 80 81 #define PCI_CONFIG_MMIO_LENGTH 0x2000 82 #define CFG_PAGE_OFFSET 0x1000 83 #define CFG_PAGE_SIZE (PCI_CONFIG_MMIO_LENGTH - CFG_PAGE_OFFSET) 84 85 #define MAX_SUPPORTED_MSI_MESSAGES 0x400 86 87 #define STATUS_REVISION_MISMATCH 0xC0000059 88 89 /* space for 32bit serial number as string */ 90 #define SLOT_NAME_SIZE 11 91 92 /* 93 * Message Types 94 */ 95 96 enum pci_message_type { 97 /* 98 * Version 1.1 99 */ 100 PCI_MESSAGE_BASE = 0x42490000, 101 PCI_BUS_RELATIONS = PCI_MESSAGE_BASE + 0, 102 PCI_QUERY_BUS_RELATIONS = PCI_MESSAGE_BASE + 1, 103 PCI_POWER_STATE_CHANGE = PCI_MESSAGE_BASE + 4, 104 PCI_QUERY_RESOURCE_REQUIREMENTS = PCI_MESSAGE_BASE + 5, 105 PCI_QUERY_RESOURCE_RESOURCES = PCI_MESSAGE_BASE + 6, 106 PCI_BUS_D0ENTRY = PCI_MESSAGE_BASE + 7, 107 PCI_BUS_D0EXIT = PCI_MESSAGE_BASE + 8, 108 PCI_READ_BLOCK = PCI_MESSAGE_BASE + 9, 109 PCI_WRITE_BLOCK = PCI_MESSAGE_BASE + 0xA, 110 PCI_EJECT = PCI_MESSAGE_BASE + 0xB, 111 PCI_QUERY_STOP = PCI_MESSAGE_BASE + 0xC, 112 PCI_REENABLE = PCI_MESSAGE_BASE + 0xD, 113 PCI_QUERY_STOP_FAILED = PCI_MESSAGE_BASE + 0xE, 114 PCI_EJECTION_COMPLETE = PCI_MESSAGE_BASE + 0xF, 115 PCI_RESOURCES_ASSIGNED = PCI_MESSAGE_BASE + 0x10, 116 PCI_RESOURCES_RELEASED = PCI_MESSAGE_BASE + 0x11, 117 PCI_INVALIDATE_BLOCK = PCI_MESSAGE_BASE + 0x12, 118 PCI_QUERY_PROTOCOL_VERSION = PCI_MESSAGE_BASE + 0x13, 119 PCI_CREATE_INTERRUPT_MESSAGE = PCI_MESSAGE_BASE + 0x14, 120 PCI_DELETE_INTERRUPT_MESSAGE = PCI_MESSAGE_BASE + 0x15, 121 PCI_RESOURCES_ASSIGNED2 = PCI_MESSAGE_BASE + 0x16, 122 PCI_CREATE_INTERRUPT_MESSAGE2 = PCI_MESSAGE_BASE + 0x17, 123 PCI_DELETE_INTERRUPT_MESSAGE2 = PCI_MESSAGE_BASE + 0x18, /* unused */ 124 PCI_BUS_RELATIONS2 = PCI_MESSAGE_BASE + 0x19, 125 PCI_MESSAGE_MAXIMUM 126 }; 127 128 /* 129 * Structures defining the virtual PCI Express protocol. 130 */ 131 132 union pci_version { 133 struct { 134 u16 minor_version; 135 u16 major_version; 136 } parts; 137 u32 version; 138 } __packed; 139 140 /* 141 * Function numbers are 8-bits wide on Express, as interpreted through ARI, 142 * which is all this driver does. This representation is the one used in 143 * Windows, which is what is expected when sending this back and forth with 144 * the Hyper-V parent partition. 145 */ 146 union win_slot_encoding { 147 struct { 148 u32 dev:5; 149 u32 func:3; 150 u32 reserved:24; 151 } bits; 152 u32 slot; 153 } __packed; 154 155 /* 156 * Pretty much as defined in the PCI Specifications. 157 */ 158 struct pci_function_description { 159 u16 v_id; /* vendor ID */ 160 u16 d_id; /* device ID */ 161 u8 rev; 162 u8 prog_intf; 163 u8 subclass; 164 u8 base_class; 165 u32 subsystem_id; 166 union win_slot_encoding win_slot; 167 u32 ser; /* serial number */ 168 } __packed; 169 170 enum pci_device_description_flags { 171 HV_PCI_DEVICE_FLAG_NONE = 0x0, 172 HV_PCI_DEVICE_FLAG_NUMA_AFFINITY = 0x1, 173 }; 174 175 struct pci_function_description2 { 176 u16 v_id; /* vendor ID */ 177 u16 d_id; /* device ID */ 178 u8 rev; 179 u8 prog_intf; 180 u8 subclass; 181 u8 base_class; 182 u32 subsystem_id; 183 union win_slot_encoding win_slot; 184 u32 ser; /* serial number */ 185 u32 flags; 186 u16 virtual_numa_node; 187 u16 reserved; 188 } __packed; 189 190 /** 191 * struct hv_msi_desc 192 * @vector: IDT entry 193 * @delivery_mode: As defined in Intel's Programmer's 194 * Reference Manual, Volume 3, Chapter 8. 195 * @vector_count: Number of contiguous entries in the 196 * Interrupt Descriptor Table that are 197 * occupied by this Message-Signaled 198 * Interrupt. For "MSI", as first defined 199 * in PCI 2.2, this can be between 1 and 200 * 32. For "MSI-X," as first defined in PCI 201 * 3.0, this must be 1, as each MSI-X table 202 * entry would have its own descriptor. 203 * @reserved: Empty space 204 * @cpu_mask: All the target virtual processors. 205 */ 206 struct hv_msi_desc { 207 u8 vector; 208 u8 delivery_mode; 209 u16 vector_count; 210 u32 reserved; 211 u64 cpu_mask; 212 } __packed; 213 214 /** 215 * struct hv_msi_desc2 - 1.2 version of hv_msi_desc 216 * @vector: IDT entry 217 * @delivery_mode: As defined in Intel's Programmer's 218 * Reference Manual, Volume 3, Chapter 8. 219 * @vector_count: Number of contiguous entries in the 220 * Interrupt Descriptor Table that are 221 * occupied by this Message-Signaled 222 * Interrupt. For "MSI", as first defined 223 * in PCI 2.2, this can be between 1 and 224 * 32. For "MSI-X," as first defined in PCI 225 * 3.0, this must be 1, as each MSI-X table 226 * entry would have its own descriptor. 227 * @processor_count: number of bits enabled in array. 228 * @processor_array: All the target virtual processors. 229 */ 230 struct hv_msi_desc2 { 231 u8 vector; 232 u8 delivery_mode; 233 u16 vector_count; 234 u16 processor_count; 235 u16 processor_array[32]; 236 } __packed; 237 238 /** 239 * struct tran_int_desc 240 * @reserved: unused, padding 241 * @vector_count: same as in hv_msi_desc 242 * @data: This is the "data payload" value that is 243 * written by the device when it generates 244 * a message-signaled interrupt, either MSI 245 * or MSI-X. 246 * @address: This is the address to which the data 247 * payload is written on interrupt 248 * generation. 249 */ 250 struct tran_int_desc { 251 u16 reserved; 252 u16 vector_count; 253 u32 data; 254 u64 address; 255 } __packed; 256 257 /* 258 * A generic message format for virtual PCI. 259 * Specific message formats are defined later in the file. 260 */ 261 262 struct pci_message { 263 u32 type; 264 } __packed; 265 266 struct pci_child_message { 267 struct pci_message message_type; 268 union win_slot_encoding wslot; 269 } __packed; 270 271 struct pci_incoming_message { 272 struct vmpacket_descriptor hdr; 273 struct pci_message message_type; 274 } __packed; 275 276 struct pci_response { 277 struct vmpacket_descriptor hdr; 278 s32 status; /* negative values are failures */ 279 } __packed; 280 281 struct pci_packet { 282 void (*completion_func)(void *context, struct pci_response *resp, 283 int resp_packet_size); 284 void *compl_ctxt; 285 286 struct pci_message message[]; 287 }; 288 289 /* 290 * Specific message types supporting the PCI protocol. 291 */ 292 293 /* 294 * Version negotiation message. Sent from the guest to the host. 295 * The guest is free to try different versions until the host 296 * accepts the version. 297 * 298 * pci_version: The protocol version requested. 299 * is_last_attempt: If TRUE, this is the last version guest will request. 300 * reservedz: Reserved field, set to zero. 301 */ 302 303 struct pci_version_request { 304 struct pci_message message_type; 305 u32 protocol_version; 306 } __packed; 307 308 /* 309 * Bus D0 Entry. This is sent from the guest to the host when the virtual 310 * bus (PCI Express port) is ready for action. 311 */ 312 313 struct pci_bus_d0_entry { 314 struct pci_message message_type; 315 u32 reserved; 316 u64 mmio_base; 317 } __packed; 318 319 struct pci_bus_relations { 320 struct pci_incoming_message incoming; 321 u32 device_count; 322 struct pci_function_description func[]; 323 } __packed; 324 325 struct pci_bus_relations2 { 326 struct pci_incoming_message incoming; 327 u32 device_count; 328 struct pci_function_description2 func[]; 329 } __packed; 330 331 struct pci_q_res_req_response { 332 struct vmpacket_descriptor hdr; 333 s32 status; /* negative values are failures */ 334 u32 probed_bar[PCI_STD_NUM_BARS]; 335 } __packed; 336 337 struct pci_set_power { 338 struct pci_message message_type; 339 union win_slot_encoding wslot; 340 u32 power_state; /* In Windows terms */ 341 u32 reserved; 342 } __packed; 343 344 struct pci_set_power_response { 345 struct vmpacket_descriptor hdr; 346 s32 status; /* negative values are failures */ 347 union win_slot_encoding wslot; 348 u32 resultant_state; /* In Windows terms */ 349 u32 reserved; 350 } __packed; 351 352 struct pci_resources_assigned { 353 struct pci_message message_type; 354 union win_slot_encoding wslot; 355 u8 memory_range[0x14][6]; /* not used here */ 356 u32 msi_descriptors; 357 u32 reserved[4]; 358 } __packed; 359 360 struct pci_resources_assigned2 { 361 struct pci_message message_type; 362 union win_slot_encoding wslot; 363 u8 memory_range[0x14][6]; /* not used here */ 364 u32 msi_descriptor_count; 365 u8 reserved[70]; 366 } __packed; 367 368 struct pci_create_interrupt { 369 struct pci_message message_type; 370 union win_slot_encoding wslot; 371 struct hv_msi_desc int_desc; 372 } __packed; 373 374 struct pci_create_int_response { 375 struct pci_response response; 376 u32 reserved; 377 struct tran_int_desc int_desc; 378 } __packed; 379 380 struct pci_create_interrupt2 { 381 struct pci_message message_type; 382 union win_slot_encoding wslot; 383 struct hv_msi_desc2 int_desc; 384 } __packed; 385 386 struct pci_delete_interrupt { 387 struct pci_message message_type; 388 union win_slot_encoding wslot; 389 struct tran_int_desc int_desc; 390 } __packed; 391 392 /* 393 * Note: the VM must pass a valid block id, wslot and bytes_requested. 394 */ 395 struct pci_read_block { 396 struct pci_message message_type; 397 u32 block_id; 398 union win_slot_encoding wslot; 399 u32 bytes_requested; 400 } __packed; 401 402 struct pci_read_block_response { 403 struct vmpacket_descriptor hdr; 404 u32 status; 405 u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX]; 406 } __packed; 407 408 /* 409 * Note: the VM must pass a valid block id, wslot and byte_count. 410 */ 411 struct pci_write_block { 412 struct pci_message message_type; 413 u32 block_id; 414 union win_slot_encoding wslot; 415 u32 byte_count; 416 u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX]; 417 } __packed; 418 419 struct pci_dev_inval_block { 420 struct pci_incoming_message incoming; 421 union win_slot_encoding wslot; 422 u64 block_mask; 423 } __packed; 424 425 struct pci_dev_incoming { 426 struct pci_incoming_message incoming; 427 union win_slot_encoding wslot; 428 } __packed; 429 430 struct pci_eject_response { 431 struct pci_message message_type; 432 union win_slot_encoding wslot; 433 u32 status; 434 } __packed; 435 436 static int pci_ring_size = (4 * PAGE_SIZE); 437 438 /* 439 * Driver specific state. 440 */ 441 442 enum hv_pcibus_state { 443 hv_pcibus_init = 0, 444 hv_pcibus_probed, 445 hv_pcibus_installed, 446 hv_pcibus_removing, 447 hv_pcibus_removed, 448 hv_pcibus_maximum 449 }; 450 451 struct hv_pcibus_device { 452 struct pci_sysdata sysdata; 453 /* Protocol version negotiated with the host */ 454 enum pci_protocol_version_t protocol_version; 455 enum hv_pcibus_state state; 456 refcount_t remove_lock; 457 struct hv_device *hdev; 458 resource_size_t low_mmio_space; 459 resource_size_t high_mmio_space; 460 struct resource *mem_config; 461 struct resource *low_mmio_res; 462 struct resource *high_mmio_res; 463 struct completion *survey_event; 464 struct completion remove_event; 465 struct pci_bus *pci_bus; 466 spinlock_t config_lock; /* Avoid two threads writing index page */ 467 spinlock_t device_list_lock; /* Protect lists below */ 468 void __iomem *cfg_addr; 469 470 struct list_head resources_for_children; 471 472 struct list_head children; 473 struct list_head dr_list; 474 475 struct msi_domain_info msi_info; 476 struct msi_controller msi_chip; 477 struct irq_domain *irq_domain; 478 479 spinlock_t retarget_msi_interrupt_lock; 480 481 struct workqueue_struct *wq; 482 483 /* hypercall arg, must not cross page boundary */ 484 struct hv_retarget_device_interrupt retarget_msi_interrupt_params; 485 486 /* 487 * Don't put anything here: retarget_msi_interrupt_params must be last 488 */ 489 }; 490 491 /* 492 * Tracks "Device Relations" messages from the host, which must be both 493 * processed in order and deferred so that they don't run in the context 494 * of the incoming packet callback. 495 */ 496 struct hv_dr_work { 497 struct work_struct wrk; 498 struct hv_pcibus_device *bus; 499 }; 500 501 struct hv_pcidev_description { 502 u16 v_id; /* vendor ID */ 503 u16 d_id; /* device ID */ 504 u8 rev; 505 u8 prog_intf; 506 u8 subclass; 507 u8 base_class; 508 u32 subsystem_id; 509 union win_slot_encoding win_slot; 510 u32 ser; /* serial number */ 511 u32 flags; 512 u16 virtual_numa_node; 513 }; 514 515 struct hv_dr_state { 516 struct list_head list_entry; 517 u32 device_count; 518 struct hv_pcidev_description func[]; 519 }; 520 521 enum hv_pcichild_state { 522 hv_pcichild_init = 0, 523 hv_pcichild_requirements, 524 hv_pcichild_resourced, 525 hv_pcichild_ejecting, 526 hv_pcichild_maximum 527 }; 528 529 struct hv_pci_dev { 530 /* List protected by pci_rescan_remove_lock */ 531 struct list_head list_entry; 532 refcount_t refs; 533 enum hv_pcichild_state state; 534 struct pci_slot *pci_slot; 535 struct hv_pcidev_description desc; 536 bool reported_missing; 537 struct hv_pcibus_device *hbus; 538 struct work_struct wrk; 539 540 void (*block_invalidate)(void *context, u64 block_mask); 541 void *invalidate_context; 542 543 /* 544 * What would be observed if one wrote 0xFFFFFFFF to a BAR and then 545 * read it back, for each of the BAR offsets within config space. 546 */ 547 u32 probed_bar[PCI_STD_NUM_BARS]; 548 }; 549 550 struct hv_pci_compl { 551 struct completion host_event; 552 s32 completion_status; 553 }; 554 555 static void hv_pci_onchannelcallback(void *context); 556 557 /** 558 * hv_pci_generic_compl() - Invoked for a completion packet 559 * @context: Set up by the sender of the packet. 560 * @resp: The response packet 561 * @resp_packet_size: Size in bytes of the packet 562 * 563 * This function is used to trigger an event and report status 564 * for any message for which the completion packet contains a 565 * status and nothing else. 566 */ 567 static void hv_pci_generic_compl(void *context, struct pci_response *resp, 568 int resp_packet_size) 569 { 570 struct hv_pci_compl *comp_pkt = context; 571 572 if (resp_packet_size >= offsetofend(struct pci_response, status)) 573 comp_pkt->completion_status = resp->status; 574 else 575 comp_pkt->completion_status = -1; 576 577 complete(&comp_pkt->host_event); 578 } 579 580 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus, 581 u32 wslot); 582 583 static void get_pcichild(struct hv_pci_dev *hpdev) 584 { 585 refcount_inc(&hpdev->refs); 586 } 587 588 static void put_pcichild(struct hv_pci_dev *hpdev) 589 { 590 if (refcount_dec_and_test(&hpdev->refs)) 591 kfree(hpdev); 592 } 593 594 static void get_hvpcibus(struct hv_pcibus_device *hv_pcibus); 595 static void put_hvpcibus(struct hv_pcibus_device *hv_pcibus); 596 597 /* 598 * There is no good way to get notified from vmbus_onoffer_rescind(), 599 * so let's use polling here, since this is not a hot path. 600 */ 601 static int wait_for_response(struct hv_device *hdev, 602 struct completion *comp) 603 { 604 while (true) { 605 if (hdev->channel->rescind) { 606 dev_warn_once(&hdev->device, "The device is gone.\n"); 607 return -ENODEV; 608 } 609 610 if (wait_for_completion_timeout(comp, HZ / 10)) 611 break; 612 } 613 614 return 0; 615 } 616 617 /** 618 * devfn_to_wslot() - Convert from Linux PCI slot to Windows 619 * @devfn: The Linux representation of PCI slot 620 * 621 * Windows uses a slightly different representation of PCI slot. 622 * 623 * Return: The Windows representation 624 */ 625 static u32 devfn_to_wslot(int devfn) 626 { 627 union win_slot_encoding wslot; 628 629 wslot.slot = 0; 630 wslot.bits.dev = PCI_SLOT(devfn); 631 wslot.bits.func = PCI_FUNC(devfn); 632 633 return wslot.slot; 634 } 635 636 /** 637 * wslot_to_devfn() - Convert from Windows PCI slot to Linux 638 * @wslot: The Windows representation of PCI slot 639 * 640 * Windows uses a slightly different representation of PCI slot. 641 * 642 * Return: The Linux representation 643 */ 644 static int wslot_to_devfn(u32 wslot) 645 { 646 union win_slot_encoding slot_no; 647 648 slot_no.slot = wslot; 649 return PCI_DEVFN(slot_no.bits.dev, slot_no.bits.func); 650 } 651 652 /* 653 * PCI Configuration Space for these root PCI buses is implemented as a pair 654 * of pages in memory-mapped I/O space. Writing to the first page chooses 655 * the PCI function being written or read. Once the first page has been 656 * written to, the following page maps in the entire configuration space of 657 * the function. 658 */ 659 660 /** 661 * _hv_pcifront_read_config() - Internal PCI config read 662 * @hpdev: The PCI driver's representation of the device 663 * @where: Offset within config space 664 * @size: Size of the transfer 665 * @val: Pointer to the buffer receiving the data 666 */ 667 static void _hv_pcifront_read_config(struct hv_pci_dev *hpdev, int where, 668 int size, u32 *val) 669 { 670 unsigned long flags; 671 void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where; 672 673 /* 674 * If the attempt is to read the IDs or the ROM BAR, simulate that. 675 */ 676 if (where + size <= PCI_COMMAND) { 677 memcpy(val, ((u8 *)&hpdev->desc.v_id) + where, size); 678 } else if (where >= PCI_CLASS_REVISION && where + size <= 679 PCI_CACHE_LINE_SIZE) { 680 memcpy(val, ((u8 *)&hpdev->desc.rev) + where - 681 PCI_CLASS_REVISION, size); 682 } else if (where >= PCI_SUBSYSTEM_VENDOR_ID && where + size <= 683 PCI_ROM_ADDRESS) { 684 memcpy(val, (u8 *)&hpdev->desc.subsystem_id + where - 685 PCI_SUBSYSTEM_VENDOR_ID, size); 686 } else if (where >= PCI_ROM_ADDRESS && where + size <= 687 PCI_CAPABILITY_LIST) { 688 /* ROM BARs are unimplemented */ 689 *val = 0; 690 } else if (where >= PCI_INTERRUPT_LINE && where + size <= 691 PCI_INTERRUPT_PIN) { 692 /* 693 * Interrupt Line and Interrupt PIN are hard-wired to zero 694 * because this front-end only supports message-signaled 695 * interrupts. 696 */ 697 *val = 0; 698 } else if (where + size <= CFG_PAGE_SIZE) { 699 spin_lock_irqsave(&hpdev->hbus->config_lock, flags); 700 /* Choose the function to be read. (See comment above) */ 701 writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr); 702 /* Make sure the function was chosen before we start reading. */ 703 mb(); 704 /* Read from that function's config space. */ 705 switch (size) { 706 case 1: 707 *val = readb(addr); 708 break; 709 case 2: 710 *val = readw(addr); 711 break; 712 default: 713 *val = readl(addr); 714 break; 715 } 716 /* 717 * Make sure the read was done before we release the spinlock 718 * allowing consecutive reads/writes. 719 */ 720 mb(); 721 spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags); 722 } else { 723 dev_err(&hpdev->hbus->hdev->device, 724 "Attempt to read beyond a function's config space.\n"); 725 } 726 } 727 728 static u16 hv_pcifront_get_vendor_id(struct hv_pci_dev *hpdev) 729 { 730 u16 ret; 731 unsigned long flags; 732 void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + 733 PCI_VENDOR_ID; 734 735 spin_lock_irqsave(&hpdev->hbus->config_lock, flags); 736 737 /* Choose the function to be read. (See comment above) */ 738 writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr); 739 /* Make sure the function was chosen before we start reading. */ 740 mb(); 741 /* Read from that function's config space. */ 742 ret = readw(addr); 743 /* 744 * mb() is not required here, because the spin_unlock_irqrestore() 745 * is a barrier. 746 */ 747 748 spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags); 749 750 return ret; 751 } 752 753 /** 754 * _hv_pcifront_write_config() - Internal PCI config write 755 * @hpdev: The PCI driver's representation of the device 756 * @where: Offset within config space 757 * @size: Size of the transfer 758 * @val: The data being transferred 759 */ 760 static void _hv_pcifront_write_config(struct hv_pci_dev *hpdev, int where, 761 int size, u32 val) 762 { 763 unsigned long flags; 764 void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where; 765 766 if (where >= PCI_SUBSYSTEM_VENDOR_ID && 767 where + size <= PCI_CAPABILITY_LIST) { 768 /* SSIDs and ROM BARs are read-only */ 769 } else if (where >= PCI_COMMAND && where + size <= CFG_PAGE_SIZE) { 770 spin_lock_irqsave(&hpdev->hbus->config_lock, flags); 771 /* Choose the function to be written. (See comment above) */ 772 writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr); 773 /* Make sure the function was chosen before we start writing. */ 774 wmb(); 775 /* Write to that function's config space. */ 776 switch (size) { 777 case 1: 778 writeb(val, addr); 779 break; 780 case 2: 781 writew(val, addr); 782 break; 783 default: 784 writel(val, addr); 785 break; 786 } 787 /* 788 * Make sure the write was done before we release the spinlock 789 * allowing consecutive reads/writes. 790 */ 791 mb(); 792 spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags); 793 } else { 794 dev_err(&hpdev->hbus->hdev->device, 795 "Attempt to write beyond a function's config space.\n"); 796 } 797 } 798 799 /** 800 * hv_pcifront_read_config() - Read configuration space 801 * @bus: PCI Bus structure 802 * @devfn: Device/function 803 * @where: Offset from base 804 * @size: Byte/word/dword 805 * @val: Value to be read 806 * 807 * Return: PCIBIOS_SUCCESSFUL on success 808 * PCIBIOS_DEVICE_NOT_FOUND on failure 809 */ 810 static int hv_pcifront_read_config(struct pci_bus *bus, unsigned int devfn, 811 int where, int size, u32 *val) 812 { 813 struct hv_pcibus_device *hbus = 814 container_of(bus->sysdata, struct hv_pcibus_device, sysdata); 815 struct hv_pci_dev *hpdev; 816 817 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn)); 818 if (!hpdev) 819 return PCIBIOS_DEVICE_NOT_FOUND; 820 821 _hv_pcifront_read_config(hpdev, where, size, val); 822 823 put_pcichild(hpdev); 824 return PCIBIOS_SUCCESSFUL; 825 } 826 827 /** 828 * hv_pcifront_write_config() - Write configuration space 829 * @bus: PCI Bus structure 830 * @devfn: Device/function 831 * @where: Offset from base 832 * @size: Byte/word/dword 833 * @val: Value to be written to device 834 * 835 * Return: PCIBIOS_SUCCESSFUL on success 836 * PCIBIOS_DEVICE_NOT_FOUND on failure 837 */ 838 static int hv_pcifront_write_config(struct pci_bus *bus, unsigned int devfn, 839 int where, int size, u32 val) 840 { 841 struct hv_pcibus_device *hbus = 842 container_of(bus->sysdata, struct hv_pcibus_device, sysdata); 843 struct hv_pci_dev *hpdev; 844 845 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn)); 846 if (!hpdev) 847 return PCIBIOS_DEVICE_NOT_FOUND; 848 849 _hv_pcifront_write_config(hpdev, where, size, val); 850 851 put_pcichild(hpdev); 852 return PCIBIOS_SUCCESSFUL; 853 } 854 855 /* PCIe operations */ 856 static struct pci_ops hv_pcifront_ops = { 857 .read = hv_pcifront_read_config, 858 .write = hv_pcifront_write_config, 859 }; 860 861 /* 862 * Paravirtual backchannel 863 * 864 * Hyper-V SR-IOV provides a backchannel mechanism in software for 865 * communication between a VF driver and a PF driver. These 866 * "configuration blocks" are similar in concept to PCI configuration space, 867 * but instead of doing reads and writes in 32-bit chunks through a very slow 868 * path, packets of up to 128 bytes can be sent or received asynchronously. 869 * 870 * Nearly every SR-IOV device contains just such a communications channel in 871 * hardware, so using this one in software is usually optional. Using the 872 * software channel, however, allows driver implementers to leverage software 873 * tools that fuzz the communications channel looking for vulnerabilities. 874 * 875 * The usage model for these packets puts the responsibility for reading or 876 * writing on the VF driver. The VF driver sends a read or a write packet, 877 * indicating which "block" is being referred to by number. 878 * 879 * If the PF driver wishes to initiate communication, it can "invalidate" one or 880 * more of the first 64 blocks. This invalidation is delivered via a callback 881 * supplied by the VF driver by this driver. 882 * 883 * No protocol is implied, except that supplied by the PF and VF drivers. 884 */ 885 886 struct hv_read_config_compl { 887 struct hv_pci_compl comp_pkt; 888 void *buf; 889 unsigned int len; 890 unsigned int bytes_returned; 891 }; 892 893 /** 894 * hv_pci_read_config_compl() - Invoked when a response packet 895 * for a read config block operation arrives. 896 * @context: Identifies the read config operation 897 * @resp: The response packet itself 898 * @resp_packet_size: Size in bytes of the response packet 899 */ 900 static void hv_pci_read_config_compl(void *context, struct pci_response *resp, 901 int resp_packet_size) 902 { 903 struct hv_read_config_compl *comp = context; 904 struct pci_read_block_response *read_resp = 905 (struct pci_read_block_response *)resp; 906 unsigned int data_len, hdr_len; 907 908 hdr_len = offsetof(struct pci_read_block_response, bytes); 909 if (resp_packet_size < hdr_len) { 910 comp->comp_pkt.completion_status = -1; 911 goto out; 912 } 913 914 data_len = resp_packet_size - hdr_len; 915 if (data_len > 0 && read_resp->status == 0) { 916 comp->bytes_returned = min(comp->len, data_len); 917 memcpy(comp->buf, read_resp->bytes, comp->bytes_returned); 918 } else { 919 comp->bytes_returned = 0; 920 } 921 922 comp->comp_pkt.completion_status = read_resp->status; 923 out: 924 complete(&comp->comp_pkt.host_event); 925 } 926 927 /** 928 * hv_read_config_block() - Sends a read config block request to 929 * the back-end driver running in the Hyper-V parent partition. 930 * @pdev: The PCI driver's representation for this device. 931 * @buf: Buffer into which the config block will be copied. 932 * @len: Size in bytes of buf. 933 * @block_id: Identifies the config block which has been requested. 934 * @bytes_returned: Size which came back from the back-end driver. 935 * 936 * Return: 0 on success, -errno on failure 937 */ 938 int hv_read_config_block(struct pci_dev *pdev, void *buf, unsigned int len, 939 unsigned int block_id, unsigned int *bytes_returned) 940 { 941 struct hv_pcibus_device *hbus = 942 container_of(pdev->bus->sysdata, struct hv_pcibus_device, 943 sysdata); 944 struct { 945 struct pci_packet pkt; 946 char buf[sizeof(struct pci_read_block)]; 947 } pkt; 948 struct hv_read_config_compl comp_pkt; 949 struct pci_read_block *read_blk; 950 int ret; 951 952 if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX) 953 return -EINVAL; 954 955 init_completion(&comp_pkt.comp_pkt.host_event); 956 comp_pkt.buf = buf; 957 comp_pkt.len = len; 958 959 memset(&pkt, 0, sizeof(pkt)); 960 pkt.pkt.completion_func = hv_pci_read_config_compl; 961 pkt.pkt.compl_ctxt = &comp_pkt; 962 read_blk = (struct pci_read_block *)&pkt.pkt.message; 963 read_blk->message_type.type = PCI_READ_BLOCK; 964 read_blk->wslot.slot = devfn_to_wslot(pdev->devfn); 965 read_blk->block_id = block_id; 966 read_blk->bytes_requested = len; 967 968 ret = vmbus_sendpacket(hbus->hdev->channel, read_blk, 969 sizeof(*read_blk), (unsigned long)&pkt.pkt, 970 VM_PKT_DATA_INBAND, 971 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 972 if (ret) 973 return ret; 974 975 ret = wait_for_response(hbus->hdev, &comp_pkt.comp_pkt.host_event); 976 if (ret) 977 return ret; 978 979 if (comp_pkt.comp_pkt.completion_status != 0 || 980 comp_pkt.bytes_returned == 0) { 981 dev_err(&hbus->hdev->device, 982 "Read Config Block failed: 0x%x, bytes_returned=%d\n", 983 comp_pkt.comp_pkt.completion_status, 984 comp_pkt.bytes_returned); 985 return -EIO; 986 } 987 988 *bytes_returned = comp_pkt.bytes_returned; 989 return 0; 990 } 991 992 /** 993 * hv_pci_write_config_compl() - Invoked when a response packet for a write 994 * config block operation arrives. 995 * @context: Identifies the write config operation 996 * @resp: The response packet itself 997 * @resp_packet_size: Size in bytes of the response packet 998 */ 999 static void hv_pci_write_config_compl(void *context, struct pci_response *resp, 1000 int resp_packet_size) 1001 { 1002 struct hv_pci_compl *comp_pkt = context; 1003 1004 comp_pkt->completion_status = resp->status; 1005 complete(&comp_pkt->host_event); 1006 } 1007 1008 /** 1009 * hv_write_config_block() - Sends a write config block request to the 1010 * back-end driver running in the Hyper-V parent partition. 1011 * @pdev: The PCI driver's representation for this device. 1012 * @buf: Buffer from which the config block will be copied. 1013 * @len: Size in bytes of buf. 1014 * @block_id: Identifies the config block which is being written. 1015 * 1016 * Return: 0 on success, -errno on failure 1017 */ 1018 int hv_write_config_block(struct pci_dev *pdev, void *buf, unsigned int len, 1019 unsigned int block_id) 1020 { 1021 struct hv_pcibus_device *hbus = 1022 container_of(pdev->bus->sysdata, struct hv_pcibus_device, 1023 sysdata); 1024 struct { 1025 struct pci_packet pkt; 1026 char buf[sizeof(struct pci_write_block)]; 1027 u32 reserved; 1028 } pkt; 1029 struct hv_pci_compl comp_pkt; 1030 struct pci_write_block *write_blk; 1031 u32 pkt_size; 1032 int ret; 1033 1034 if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX) 1035 return -EINVAL; 1036 1037 init_completion(&comp_pkt.host_event); 1038 1039 memset(&pkt, 0, sizeof(pkt)); 1040 pkt.pkt.completion_func = hv_pci_write_config_compl; 1041 pkt.pkt.compl_ctxt = &comp_pkt; 1042 write_blk = (struct pci_write_block *)&pkt.pkt.message; 1043 write_blk->message_type.type = PCI_WRITE_BLOCK; 1044 write_blk->wslot.slot = devfn_to_wslot(pdev->devfn); 1045 write_blk->block_id = block_id; 1046 write_blk->byte_count = len; 1047 memcpy(write_blk->bytes, buf, len); 1048 pkt_size = offsetof(struct pci_write_block, bytes) + len; 1049 /* 1050 * This quirk is required on some hosts shipped around 2018, because 1051 * these hosts don't check the pkt_size correctly (new hosts have been 1052 * fixed since early 2019). The quirk is also safe on very old hosts 1053 * and new hosts, because, on them, what really matters is the length 1054 * specified in write_blk->byte_count. 1055 */ 1056 pkt_size += sizeof(pkt.reserved); 1057 1058 ret = vmbus_sendpacket(hbus->hdev->channel, write_blk, pkt_size, 1059 (unsigned long)&pkt.pkt, VM_PKT_DATA_INBAND, 1060 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1061 if (ret) 1062 return ret; 1063 1064 ret = wait_for_response(hbus->hdev, &comp_pkt.host_event); 1065 if (ret) 1066 return ret; 1067 1068 if (comp_pkt.completion_status != 0) { 1069 dev_err(&hbus->hdev->device, 1070 "Write Config Block failed: 0x%x\n", 1071 comp_pkt.completion_status); 1072 return -EIO; 1073 } 1074 1075 return 0; 1076 } 1077 1078 /** 1079 * hv_register_block_invalidate() - Invoked when a config block invalidation 1080 * arrives from the back-end driver. 1081 * @pdev: The PCI driver's representation for this device. 1082 * @context: Identifies the device. 1083 * @block_invalidate: Identifies all of the blocks being invalidated. 1084 * 1085 * Return: 0 on success, -errno on failure 1086 */ 1087 int hv_register_block_invalidate(struct pci_dev *pdev, void *context, 1088 void (*block_invalidate)(void *context, 1089 u64 block_mask)) 1090 { 1091 struct hv_pcibus_device *hbus = 1092 container_of(pdev->bus->sysdata, struct hv_pcibus_device, 1093 sysdata); 1094 struct hv_pci_dev *hpdev; 1095 1096 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn)); 1097 if (!hpdev) 1098 return -ENODEV; 1099 1100 hpdev->block_invalidate = block_invalidate; 1101 hpdev->invalidate_context = context; 1102 1103 put_pcichild(hpdev); 1104 return 0; 1105 1106 } 1107 1108 /* Interrupt management hooks */ 1109 static void hv_int_desc_free(struct hv_pci_dev *hpdev, 1110 struct tran_int_desc *int_desc) 1111 { 1112 struct pci_delete_interrupt *int_pkt; 1113 struct { 1114 struct pci_packet pkt; 1115 u8 buffer[sizeof(struct pci_delete_interrupt)]; 1116 } ctxt; 1117 1118 memset(&ctxt, 0, sizeof(ctxt)); 1119 int_pkt = (struct pci_delete_interrupt *)&ctxt.pkt.message; 1120 int_pkt->message_type.type = 1121 PCI_DELETE_INTERRUPT_MESSAGE; 1122 int_pkt->wslot.slot = hpdev->desc.win_slot.slot; 1123 int_pkt->int_desc = *int_desc; 1124 vmbus_sendpacket(hpdev->hbus->hdev->channel, int_pkt, sizeof(*int_pkt), 1125 (unsigned long)&ctxt.pkt, VM_PKT_DATA_INBAND, 0); 1126 kfree(int_desc); 1127 } 1128 1129 /** 1130 * hv_msi_free() - Free the MSI. 1131 * @domain: The interrupt domain pointer 1132 * @info: Extra MSI-related context 1133 * @irq: Identifies the IRQ. 1134 * 1135 * The Hyper-V parent partition and hypervisor are tracking the 1136 * messages that are in use, keeping the interrupt redirection 1137 * table up to date. This callback sends a message that frees 1138 * the IRT entry and related tracking nonsense. 1139 */ 1140 static void hv_msi_free(struct irq_domain *domain, struct msi_domain_info *info, 1141 unsigned int irq) 1142 { 1143 struct hv_pcibus_device *hbus; 1144 struct hv_pci_dev *hpdev; 1145 struct pci_dev *pdev; 1146 struct tran_int_desc *int_desc; 1147 struct irq_data *irq_data = irq_domain_get_irq_data(domain, irq); 1148 struct msi_desc *msi = irq_data_get_msi_desc(irq_data); 1149 1150 pdev = msi_desc_to_pci_dev(msi); 1151 hbus = info->data; 1152 int_desc = irq_data_get_irq_chip_data(irq_data); 1153 if (!int_desc) 1154 return; 1155 1156 irq_data->chip_data = NULL; 1157 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn)); 1158 if (!hpdev) { 1159 kfree(int_desc); 1160 return; 1161 } 1162 1163 hv_int_desc_free(hpdev, int_desc); 1164 put_pcichild(hpdev); 1165 } 1166 1167 static int hv_set_affinity(struct irq_data *data, const struct cpumask *dest, 1168 bool force) 1169 { 1170 struct irq_data *parent = data->parent_data; 1171 1172 return parent->chip->irq_set_affinity(parent, dest, force); 1173 } 1174 1175 static void hv_irq_mask(struct irq_data *data) 1176 { 1177 pci_msi_mask_irq(data); 1178 } 1179 1180 /** 1181 * hv_irq_unmask() - "Unmask" the IRQ by setting its current 1182 * affinity. 1183 * @data: Describes the IRQ 1184 * 1185 * Build new a destination for the MSI and make a hypercall to 1186 * update the Interrupt Redirection Table. "Device Logical ID" 1187 * is built out of this PCI bus's instance GUID and the function 1188 * number of the device. 1189 */ 1190 static void hv_irq_unmask(struct irq_data *data) 1191 { 1192 struct msi_desc *msi_desc = irq_data_get_msi_desc(data); 1193 struct irq_cfg *cfg = irqd_cfg(data); 1194 struct hv_retarget_device_interrupt *params; 1195 struct hv_pcibus_device *hbus; 1196 struct cpumask *dest; 1197 cpumask_var_t tmp; 1198 struct pci_bus *pbus; 1199 struct pci_dev *pdev; 1200 unsigned long flags; 1201 u32 var_size = 0; 1202 int cpu, nr_bank; 1203 u64 res; 1204 1205 dest = irq_data_get_effective_affinity_mask(data); 1206 pdev = msi_desc_to_pci_dev(msi_desc); 1207 pbus = pdev->bus; 1208 hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata); 1209 1210 spin_lock_irqsave(&hbus->retarget_msi_interrupt_lock, flags); 1211 1212 params = &hbus->retarget_msi_interrupt_params; 1213 memset(params, 0, sizeof(*params)); 1214 params->partition_id = HV_PARTITION_ID_SELF; 1215 params->int_entry.source = 1; /* MSI(-X) */ 1216 hv_set_msi_entry_from_desc(¶ms->int_entry.msi_entry, msi_desc); 1217 params->device_id = (hbus->hdev->dev_instance.b[5] << 24) | 1218 (hbus->hdev->dev_instance.b[4] << 16) | 1219 (hbus->hdev->dev_instance.b[7] << 8) | 1220 (hbus->hdev->dev_instance.b[6] & 0xf8) | 1221 PCI_FUNC(pdev->devfn); 1222 params->int_target.vector = cfg->vector; 1223 1224 /* 1225 * Honoring apic->irq_delivery_mode set to dest_Fixed by 1226 * setting the HV_DEVICE_INTERRUPT_TARGET_MULTICAST flag results in a 1227 * spurious interrupt storm. Not doing so does not seem to have a 1228 * negative effect (yet?). 1229 */ 1230 1231 if (hbus->protocol_version >= PCI_PROTOCOL_VERSION_1_2) { 1232 /* 1233 * PCI_PROTOCOL_VERSION_1_2 supports the VP_SET version of the 1234 * HVCALL_RETARGET_INTERRUPT hypercall, which also coincides 1235 * with >64 VP support. 1236 * ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED 1237 * is not sufficient for this hypercall. 1238 */ 1239 params->int_target.flags |= 1240 HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET; 1241 1242 if (!alloc_cpumask_var(&tmp, GFP_ATOMIC)) { 1243 res = 1; 1244 goto exit_unlock; 1245 } 1246 1247 cpumask_and(tmp, dest, cpu_online_mask); 1248 nr_bank = cpumask_to_vpset(¶ms->int_target.vp_set, tmp); 1249 free_cpumask_var(tmp); 1250 1251 if (nr_bank <= 0) { 1252 res = 1; 1253 goto exit_unlock; 1254 } 1255 1256 /* 1257 * var-sized hypercall, var-size starts after vp_mask (thus 1258 * vp_set.format does not count, but vp_set.valid_bank_mask 1259 * does). 1260 */ 1261 var_size = 1 + nr_bank; 1262 } else { 1263 for_each_cpu_and(cpu, dest, cpu_online_mask) { 1264 params->int_target.vp_mask |= 1265 (1ULL << hv_cpu_number_to_vp_number(cpu)); 1266 } 1267 } 1268 1269 res = hv_do_hypercall(HVCALL_RETARGET_INTERRUPT | (var_size << 17), 1270 params, NULL); 1271 1272 exit_unlock: 1273 spin_unlock_irqrestore(&hbus->retarget_msi_interrupt_lock, flags); 1274 1275 if (res) { 1276 dev_err(&hbus->hdev->device, 1277 "%s() failed: %#llx", __func__, res); 1278 return; 1279 } 1280 1281 pci_msi_unmask_irq(data); 1282 } 1283 1284 struct compose_comp_ctxt { 1285 struct hv_pci_compl comp_pkt; 1286 struct tran_int_desc int_desc; 1287 }; 1288 1289 static void hv_pci_compose_compl(void *context, struct pci_response *resp, 1290 int resp_packet_size) 1291 { 1292 struct compose_comp_ctxt *comp_pkt = context; 1293 struct pci_create_int_response *int_resp = 1294 (struct pci_create_int_response *)resp; 1295 1296 comp_pkt->comp_pkt.completion_status = resp->status; 1297 comp_pkt->int_desc = int_resp->int_desc; 1298 complete(&comp_pkt->comp_pkt.host_event); 1299 } 1300 1301 static u32 hv_compose_msi_req_v1( 1302 struct pci_create_interrupt *int_pkt, struct cpumask *affinity, 1303 u32 slot, u8 vector) 1304 { 1305 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE; 1306 int_pkt->wslot.slot = slot; 1307 int_pkt->int_desc.vector = vector; 1308 int_pkt->int_desc.vector_count = 1; 1309 int_pkt->int_desc.delivery_mode = dest_Fixed; 1310 1311 /* 1312 * Create MSI w/ dummy vCPU set, overwritten by subsequent retarget in 1313 * hv_irq_unmask(). 1314 */ 1315 int_pkt->int_desc.cpu_mask = CPU_AFFINITY_ALL; 1316 1317 return sizeof(*int_pkt); 1318 } 1319 1320 static u32 hv_compose_msi_req_v2( 1321 struct pci_create_interrupt2 *int_pkt, struct cpumask *affinity, 1322 u32 slot, u8 vector) 1323 { 1324 int cpu; 1325 1326 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE2; 1327 int_pkt->wslot.slot = slot; 1328 int_pkt->int_desc.vector = vector; 1329 int_pkt->int_desc.vector_count = 1; 1330 int_pkt->int_desc.delivery_mode = dest_Fixed; 1331 1332 /* 1333 * Create MSI w/ dummy vCPU set targeting just one vCPU, overwritten 1334 * by subsequent retarget in hv_irq_unmask(). 1335 */ 1336 cpu = cpumask_first_and(affinity, cpu_online_mask); 1337 int_pkt->int_desc.processor_array[0] = 1338 hv_cpu_number_to_vp_number(cpu); 1339 int_pkt->int_desc.processor_count = 1; 1340 1341 return sizeof(*int_pkt); 1342 } 1343 1344 /** 1345 * hv_compose_msi_msg() - Supplies a valid MSI address/data 1346 * @data: Everything about this MSI 1347 * @msg: Buffer that is filled in by this function 1348 * 1349 * This function unpacks the IRQ looking for target CPU set, IDT 1350 * vector and mode and sends a message to the parent partition 1351 * asking for a mapping for that tuple in this partition. The 1352 * response supplies a data value and address to which that data 1353 * should be written to trigger that interrupt. 1354 */ 1355 static void hv_compose_msi_msg(struct irq_data *data, struct msi_msg *msg) 1356 { 1357 struct irq_cfg *cfg = irqd_cfg(data); 1358 struct hv_pcibus_device *hbus; 1359 struct hv_pci_dev *hpdev; 1360 struct pci_bus *pbus; 1361 struct pci_dev *pdev; 1362 struct cpumask *dest; 1363 unsigned long flags; 1364 struct compose_comp_ctxt comp; 1365 struct tran_int_desc *int_desc; 1366 struct { 1367 struct pci_packet pci_pkt; 1368 union { 1369 struct pci_create_interrupt v1; 1370 struct pci_create_interrupt2 v2; 1371 } int_pkts; 1372 } __packed ctxt; 1373 1374 u32 size; 1375 int ret; 1376 1377 pdev = msi_desc_to_pci_dev(irq_data_get_msi_desc(data)); 1378 dest = irq_data_get_effective_affinity_mask(data); 1379 pbus = pdev->bus; 1380 hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata); 1381 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn)); 1382 if (!hpdev) 1383 goto return_null_message; 1384 1385 /* Free any previous message that might have already been composed. */ 1386 if (data->chip_data) { 1387 int_desc = data->chip_data; 1388 data->chip_data = NULL; 1389 hv_int_desc_free(hpdev, int_desc); 1390 } 1391 1392 int_desc = kzalloc(sizeof(*int_desc), GFP_ATOMIC); 1393 if (!int_desc) 1394 goto drop_reference; 1395 1396 memset(&ctxt, 0, sizeof(ctxt)); 1397 init_completion(&comp.comp_pkt.host_event); 1398 ctxt.pci_pkt.completion_func = hv_pci_compose_compl; 1399 ctxt.pci_pkt.compl_ctxt = ∁ 1400 1401 switch (hbus->protocol_version) { 1402 case PCI_PROTOCOL_VERSION_1_1: 1403 size = hv_compose_msi_req_v1(&ctxt.int_pkts.v1, 1404 dest, 1405 hpdev->desc.win_slot.slot, 1406 cfg->vector); 1407 break; 1408 1409 case PCI_PROTOCOL_VERSION_1_2: 1410 case PCI_PROTOCOL_VERSION_1_3: 1411 size = hv_compose_msi_req_v2(&ctxt.int_pkts.v2, 1412 dest, 1413 hpdev->desc.win_slot.slot, 1414 cfg->vector); 1415 break; 1416 1417 default: 1418 /* As we only negotiate protocol versions known to this driver, 1419 * this path should never hit. However, this is it not a hot 1420 * path so we print a message to aid future updates. 1421 */ 1422 dev_err(&hbus->hdev->device, 1423 "Unexpected vPCI protocol, update driver."); 1424 goto free_int_desc; 1425 } 1426 1427 ret = vmbus_sendpacket(hpdev->hbus->hdev->channel, &ctxt.int_pkts, 1428 size, (unsigned long)&ctxt.pci_pkt, 1429 VM_PKT_DATA_INBAND, 1430 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1431 if (ret) { 1432 dev_err(&hbus->hdev->device, 1433 "Sending request for interrupt failed: 0x%x", 1434 comp.comp_pkt.completion_status); 1435 goto free_int_desc; 1436 } 1437 1438 /* 1439 * Since this function is called with IRQ locks held, can't 1440 * do normal wait for completion; instead poll. 1441 */ 1442 while (!try_wait_for_completion(&comp.comp_pkt.host_event)) { 1443 /* 0xFFFF means an invalid PCI VENDOR ID. */ 1444 if (hv_pcifront_get_vendor_id(hpdev) == 0xFFFF) { 1445 dev_err_once(&hbus->hdev->device, 1446 "the device has gone\n"); 1447 goto free_int_desc; 1448 } 1449 1450 /* 1451 * When the higher level interrupt code calls us with 1452 * interrupt disabled, we must poll the channel by calling 1453 * the channel callback directly when channel->target_cpu is 1454 * the current CPU. When the higher level interrupt code 1455 * calls us with interrupt enabled, let's add the 1456 * local_irq_save()/restore() to avoid race: 1457 * hv_pci_onchannelcallback() can also run in tasklet. 1458 */ 1459 local_irq_save(flags); 1460 1461 if (hbus->hdev->channel->target_cpu == smp_processor_id()) 1462 hv_pci_onchannelcallback(hbus); 1463 1464 local_irq_restore(flags); 1465 1466 if (hpdev->state == hv_pcichild_ejecting) { 1467 dev_err_once(&hbus->hdev->device, 1468 "the device is being ejected\n"); 1469 goto free_int_desc; 1470 } 1471 1472 udelay(100); 1473 } 1474 1475 if (comp.comp_pkt.completion_status < 0) { 1476 dev_err(&hbus->hdev->device, 1477 "Request for interrupt failed: 0x%x", 1478 comp.comp_pkt.completion_status); 1479 goto free_int_desc; 1480 } 1481 1482 /* 1483 * Record the assignment so that this can be unwound later. Using 1484 * irq_set_chip_data() here would be appropriate, but the lock it takes 1485 * is already held. 1486 */ 1487 *int_desc = comp.int_desc; 1488 data->chip_data = int_desc; 1489 1490 /* Pass up the result. */ 1491 msg->address_hi = comp.int_desc.address >> 32; 1492 msg->address_lo = comp.int_desc.address & 0xffffffff; 1493 msg->data = comp.int_desc.data; 1494 1495 put_pcichild(hpdev); 1496 return; 1497 1498 free_int_desc: 1499 kfree(int_desc); 1500 drop_reference: 1501 put_pcichild(hpdev); 1502 return_null_message: 1503 msg->address_hi = 0; 1504 msg->address_lo = 0; 1505 msg->data = 0; 1506 } 1507 1508 /* HW Interrupt Chip Descriptor */ 1509 static struct irq_chip hv_msi_irq_chip = { 1510 .name = "Hyper-V PCIe MSI", 1511 .irq_compose_msi_msg = hv_compose_msi_msg, 1512 .irq_set_affinity = hv_set_affinity, 1513 .irq_ack = irq_chip_ack_parent, 1514 .irq_mask = hv_irq_mask, 1515 .irq_unmask = hv_irq_unmask, 1516 }; 1517 1518 static irq_hw_number_t hv_msi_domain_ops_get_hwirq(struct msi_domain_info *info, 1519 msi_alloc_info_t *arg) 1520 { 1521 return arg->msi_hwirq; 1522 } 1523 1524 static struct msi_domain_ops hv_msi_ops = { 1525 .get_hwirq = hv_msi_domain_ops_get_hwirq, 1526 .msi_prepare = pci_msi_prepare, 1527 .set_desc = pci_msi_set_desc, 1528 .msi_free = hv_msi_free, 1529 }; 1530 1531 /** 1532 * hv_pcie_init_irq_domain() - Initialize IRQ domain 1533 * @hbus: The root PCI bus 1534 * 1535 * This function creates an IRQ domain which will be used for 1536 * interrupts from devices that have been passed through. These 1537 * devices only support MSI and MSI-X, not line-based interrupts 1538 * or simulations of line-based interrupts through PCIe's 1539 * fabric-layer messages. Because interrupts are remapped, we 1540 * can support multi-message MSI here. 1541 * 1542 * Return: '0' on success and error value on failure 1543 */ 1544 static int hv_pcie_init_irq_domain(struct hv_pcibus_device *hbus) 1545 { 1546 hbus->msi_info.chip = &hv_msi_irq_chip; 1547 hbus->msi_info.ops = &hv_msi_ops; 1548 hbus->msi_info.flags = (MSI_FLAG_USE_DEF_DOM_OPS | 1549 MSI_FLAG_USE_DEF_CHIP_OPS | MSI_FLAG_MULTI_PCI_MSI | 1550 MSI_FLAG_PCI_MSIX); 1551 hbus->msi_info.handler = handle_edge_irq; 1552 hbus->msi_info.handler_name = "edge"; 1553 hbus->msi_info.data = hbus; 1554 hbus->irq_domain = pci_msi_create_irq_domain(hbus->sysdata.fwnode, 1555 &hbus->msi_info, 1556 x86_vector_domain); 1557 if (!hbus->irq_domain) { 1558 dev_err(&hbus->hdev->device, 1559 "Failed to build an MSI IRQ domain\n"); 1560 return -ENODEV; 1561 } 1562 1563 return 0; 1564 } 1565 1566 /** 1567 * get_bar_size() - Get the address space consumed by a BAR 1568 * @bar_val: Value that a BAR returned after -1 was written 1569 * to it. 1570 * 1571 * This function returns the size of the BAR, rounded up to 1 1572 * page. It has to be rounded up because the hypervisor's page 1573 * table entry that maps the BAR into the VM can't specify an 1574 * offset within a page. The invariant is that the hypervisor 1575 * must place any BARs of smaller than page length at the 1576 * beginning of a page. 1577 * 1578 * Return: Size in bytes of the consumed MMIO space. 1579 */ 1580 static u64 get_bar_size(u64 bar_val) 1581 { 1582 return round_up((1 + ~(bar_val & PCI_BASE_ADDRESS_MEM_MASK)), 1583 PAGE_SIZE); 1584 } 1585 1586 /** 1587 * survey_child_resources() - Total all MMIO requirements 1588 * @hbus: Root PCI bus, as understood by this driver 1589 */ 1590 static void survey_child_resources(struct hv_pcibus_device *hbus) 1591 { 1592 struct hv_pci_dev *hpdev; 1593 resource_size_t bar_size = 0; 1594 unsigned long flags; 1595 struct completion *event; 1596 u64 bar_val; 1597 int i; 1598 1599 /* If nobody is waiting on the answer, don't compute it. */ 1600 event = xchg(&hbus->survey_event, NULL); 1601 if (!event) 1602 return; 1603 1604 /* If the answer has already been computed, go with it. */ 1605 if (hbus->low_mmio_space || hbus->high_mmio_space) { 1606 complete(event); 1607 return; 1608 } 1609 1610 spin_lock_irqsave(&hbus->device_list_lock, flags); 1611 1612 /* 1613 * Due to an interesting quirk of the PCI spec, all memory regions 1614 * for a child device are a power of 2 in size and aligned in memory, 1615 * so it's sufficient to just add them up without tracking alignment. 1616 */ 1617 list_for_each_entry(hpdev, &hbus->children, list_entry) { 1618 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 1619 if (hpdev->probed_bar[i] & PCI_BASE_ADDRESS_SPACE_IO) 1620 dev_err(&hbus->hdev->device, 1621 "There's an I/O BAR in this list!\n"); 1622 1623 if (hpdev->probed_bar[i] != 0) { 1624 /* 1625 * A probed BAR has all the upper bits set that 1626 * can be changed. 1627 */ 1628 1629 bar_val = hpdev->probed_bar[i]; 1630 if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64) 1631 bar_val |= 1632 ((u64)hpdev->probed_bar[++i] << 32); 1633 else 1634 bar_val |= 0xffffffff00000000ULL; 1635 1636 bar_size = get_bar_size(bar_val); 1637 1638 if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64) 1639 hbus->high_mmio_space += bar_size; 1640 else 1641 hbus->low_mmio_space += bar_size; 1642 } 1643 } 1644 } 1645 1646 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 1647 complete(event); 1648 } 1649 1650 /** 1651 * prepopulate_bars() - Fill in BARs with defaults 1652 * @hbus: Root PCI bus, as understood by this driver 1653 * 1654 * The core PCI driver code seems much, much happier if the BARs 1655 * for a device have values upon first scan. So fill them in. 1656 * The algorithm below works down from large sizes to small, 1657 * attempting to pack the assignments optimally. The assumption, 1658 * enforced in other parts of the code, is that the beginning of 1659 * the memory-mapped I/O space will be aligned on the largest 1660 * BAR size. 1661 */ 1662 static void prepopulate_bars(struct hv_pcibus_device *hbus) 1663 { 1664 resource_size_t high_size = 0; 1665 resource_size_t low_size = 0; 1666 resource_size_t high_base = 0; 1667 resource_size_t low_base = 0; 1668 resource_size_t bar_size; 1669 struct hv_pci_dev *hpdev; 1670 unsigned long flags; 1671 u64 bar_val; 1672 u32 command; 1673 bool high; 1674 int i; 1675 1676 if (hbus->low_mmio_space) { 1677 low_size = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space)); 1678 low_base = hbus->low_mmio_res->start; 1679 } 1680 1681 if (hbus->high_mmio_space) { 1682 high_size = 1ULL << 1683 (63 - __builtin_clzll(hbus->high_mmio_space)); 1684 high_base = hbus->high_mmio_res->start; 1685 } 1686 1687 spin_lock_irqsave(&hbus->device_list_lock, flags); 1688 1689 /* 1690 * Clear the memory enable bit, in case it's already set. This occurs 1691 * in the suspend path of hibernation, where the device is suspended, 1692 * resumed and suspended again: see hibernation_snapshot() and 1693 * hibernation_platform_enter(). 1694 * 1695 * If the memory enable bit is already set, Hyper-V sliently ignores 1696 * the below BAR updates, and the related PCI device driver can not 1697 * work, because reading from the device register(s) always returns 1698 * 0xFFFFFFFF. 1699 */ 1700 list_for_each_entry(hpdev, &hbus->children, list_entry) { 1701 _hv_pcifront_read_config(hpdev, PCI_COMMAND, 2, &command); 1702 command &= ~PCI_COMMAND_MEMORY; 1703 _hv_pcifront_write_config(hpdev, PCI_COMMAND, 2, command); 1704 } 1705 1706 /* Pick addresses for the BARs. */ 1707 do { 1708 list_for_each_entry(hpdev, &hbus->children, list_entry) { 1709 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 1710 bar_val = hpdev->probed_bar[i]; 1711 if (bar_val == 0) 1712 continue; 1713 high = bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64; 1714 if (high) { 1715 bar_val |= 1716 ((u64)hpdev->probed_bar[i + 1] 1717 << 32); 1718 } else { 1719 bar_val |= 0xffffffffULL << 32; 1720 } 1721 bar_size = get_bar_size(bar_val); 1722 if (high) { 1723 if (high_size != bar_size) { 1724 i++; 1725 continue; 1726 } 1727 _hv_pcifront_write_config(hpdev, 1728 PCI_BASE_ADDRESS_0 + (4 * i), 1729 4, 1730 (u32)(high_base & 0xffffff00)); 1731 i++; 1732 _hv_pcifront_write_config(hpdev, 1733 PCI_BASE_ADDRESS_0 + (4 * i), 1734 4, (u32)(high_base >> 32)); 1735 high_base += bar_size; 1736 } else { 1737 if (low_size != bar_size) 1738 continue; 1739 _hv_pcifront_write_config(hpdev, 1740 PCI_BASE_ADDRESS_0 + (4 * i), 1741 4, 1742 (u32)(low_base & 0xffffff00)); 1743 low_base += bar_size; 1744 } 1745 } 1746 if (high_size <= 1 && low_size <= 1) { 1747 /* Set the memory enable bit. */ 1748 _hv_pcifront_read_config(hpdev, PCI_COMMAND, 2, 1749 &command); 1750 command |= PCI_COMMAND_MEMORY; 1751 _hv_pcifront_write_config(hpdev, PCI_COMMAND, 2, 1752 command); 1753 break; 1754 } 1755 } 1756 1757 high_size >>= 1; 1758 low_size >>= 1; 1759 } while (high_size || low_size); 1760 1761 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 1762 } 1763 1764 /* 1765 * Assign entries in sysfs pci slot directory. 1766 * 1767 * Note that this function does not need to lock the children list 1768 * because it is called from pci_devices_present_work which 1769 * is serialized with hv_eject_device_work because they are on the 1770 * same ordered workqueue. Therefore hbus->children list will not change 1771 * even when pci_create_slot sleeps. 1772 */ 1773 static void hv_pci_assign_slots(struct hv_pcibus_device *hbus) 1774 { 1775 struct hv_pci_dev *hpdev; 1776 char name[SLOT_NAME_SIZE]; 1777 int slot_nr; 1778 1779 list_for_each_entry(hpdev, &hbus->children, list_entry) { 1780 if (hpdev->pci_slot) 1781 continue; 1782 1783 slot_nr = PCI_SLOT(wslot_to_devfn(hpdev->desc.win_slot.slot)); 1784 snprintf(name, SLOT_NAME_SIZE, "%u", hpdev->desc.ser); 1785 hpdev->pci_slot = pci_create_slot(hbus->pci_bus, slot_nr, 1786 name, NULL); 1787 if (IS_ERR(hpdev->pci_slot)) { 1788 pr_warn("pci_create slot %s failed\n", name); 1789 hpdev->pci_slot = NULL; 1790 } 1791 } 1792 } 1793 1794 /* 1795 * Remove entries in sysfs pci slot directory. 1796 */ 1797 static void hv_pci_remove_slots(struct hv_pcibus_device *hbus) 1798 { 1799 struct hv_pci_dev *hpdev; 1800 1801 list_for_each_entry(hpdev, &hbus->children, list_entry) { 1802 if (!hpdev->pci_slot) 1803 continue; 1804 pci_destroy_slot(hpdev->pci_slot); 1805 hpdev->pci_slot = NULL; 1806 } 1807 } 1808 1809 /* 1810 * Set NUMA node for the devices on the bus 1811 */ 1812 static void hv_pci_assign_numa_node(struct hv_pcibus_device *hbus) 1813 { 1814 struct pci_dev *dev; 1815 struct pci_bus *bus = hbus->pci_bus; 1816 struct hv_pci_dev *hv_dev; 1817 1818 list_for_each_entry(dev, &bus->devices, bus_list) { 1819 hv_dev = get_pcichild_wslot(hbus, devfn_to_wslot(dev->devfn)); 1820 if (!hv_dev) 1821 continue; 1822 1823 if (hv_dev->desc.flags & HV_PCI_DEVICE_FLAG_NUMA_AFFINITY) 1824 set_dev_node(&dev->dev, hv_dev->desc.virtual_numa_node); 1825 1826 put_pcichild(hv_dev); 1827 } 1828 } 1829 1830 /** 1831 * create_root_hv_pci_bus() - Expose a new root PCI bus 1832 * @hbus: Root PCI bus, as understood by this driver 1833 * 1834 * Return: 0 on success, -errno on failure 1835 */ 1836 static int create_root_hv_pci_bus(struct hv_pcibus_device *hbus) 1837 { 1838 /* Register the device */ 1839 hbus->pci_bus = pci_create_root_bus(&hbus->hdev->device, 1840 0, /* bus number is always zero */ 1841 &hv_pcifront_ops, 1842 &hbus->sysdata, 1843 &hbus->resources_for_children); 1844 if (!hbus->pci_bus) 1845 return -ENODEV; 1846 1847 hbus->pci_bus->msi = &hbus->msi_chip; 1848 hbus->pci_bus->msi->dev = &hbus->hdev->device; 1849 1850 pci_lock_rescan_remove(); 1851 pci_scan_child_bus(hbus->pci_bus); 1852 hv_pci_assign_numa_node(hbus); 1853 pci_bus_assign_resources(hbus->pci_bus); 1854 hv_pci_assign_slots(hbus); 1855 pci_bus_add_devices(hbus->pci_bus); 1856 pci_unlock_rescan_remove(); 1857 hbus->state = hv_pcibus_installed; 1858 return 0; 1859 } 1860 1861 struct q_res_req_compl { 1862 struct completion host_event; 1863 struct hv_pci_dev *hpdev; 1864 }; 1865 1866 /** 1867 * q_resource_requirements() - Query Resource Requirements 1868 * @context: The completion context. 1869 * @resp: The response that came from the host. 1870 * @resp_packet_size: The size in bytes of resp. 1871 * 1872 * This function is invoked on completion of a Query Resource 1873 * Requirements packet. 1874 */ 1875 static void q_resource_requirements(void *context, struct pci_response *resp, 1876 int resp_packet_size) 1877 { 1878 struct q_res_req_compl *completion = context; 1879 struct pci_q_res_req_response *q_res_req = 1880 (struct pci_q_res_req_response *)resp; 1881 int i; 1882 1883 if (resp->status < 0) { 1884 dev_err(&completion->hpdev->hbus->hdev->device, 1885 "query resource requirements failed: %x\n", 1886 resp->status); 1887 } else { 1888 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 1889 completion->hpdev->probed_bar[i] = 1890 q_res_req->probed_bar[i]; 1891 } 1892 } 1893 1894 complete(&completion->host_event); 1895 } 1896 1897 /** 1898 * new_pcichild_device() - Create a new child device 1899 * @hbus: The internal struct tracking this root PCI bus. 1900 * @desc: The information supplied so far from the host 1901 * about the device. 1902 * 1903 * This function creates the tracking structure for a new child 1904 * device and kicks off the process of figuring out what it is. 1905 * 1906 * Return: Pointer to the new tracking struct 1907 */ 1908 static struct hv_pci_dev *new_pcichild_device(struct hv_pcibus_device *hbus, 1909 struct hv_pcidev_description *desc) 1910 { 1911 struct hv_pci_dev *hpdev; 1912 struct pci_child_message *res_req; 1913 struct q_res_req_compl comp_pkt; 1914 struct { 1915 struct pci_packet init_packet; 1916 u8 buffer[sizeof(struct pci_child_message)]; 1917 } pkt; 1918 unsigned long flags; 1919 int ret; 1920 1921 hpdev = kzalloc(sizeof(*hpdev), GFP_KERNEL); 1922 if (!hpdev) 1923 return NULL; 1924 1925 hpdev->hbus = hbus; 1926 1927 memset(&pkt, 0, sizeof(pkt)); 1928 init_completion(&comp_pkt.host_event); 1929 comp_pkt.hpdev = hpdev; 1930 pkt.init_packet.compl_ctxt = &comp_pkt; 1931 pkt.init_packet.completion_func = q_resource_requirements; 1932 res_req = (struct pci_child_message *)&pkt.init_packet.message; 1933 res_req->message_type.type = PCI_QUERY_RESOURCE_REQUIREMENTS; 1934 res_req->wslot.slot = desc->win_slot.slot; 1935 1936 ret = vmbus_sendpacket(hbus->hdev->channel, res_req, 1937 sizeof(struct pci_child_message), 1938 (unsigned long)&pkt.init_packet, 1939 VM_PKT_DATA_INBAND, 1940 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1941 if (ret) 1942 goto error; 1943 1944 if (wait_for_response(hbus->hdev, &comp_pkt.host_event)) 1945 goto error; 1946 1947 hpdev->desc = *desc; 1948 refcount_set(&hpdev->refs, 1); 1949 get_pcichild(hpdev); 1950 spin_lock_irqsave(&hbus->device_list_lock, flags); 1951 1952 list_add_tail(&hpdev->list_entry, &hbus->children); 1953 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 1954 return hpdev; 1955 1956 error: 1957 kfree(hpdev); 1958 return NULL; 1959 } 1960 1961 /** 1962 * get_pcichild_wslot() - Find device from slot 1963 * @hbus: Root PCI bus, as understood by this driver 1964 * @wslot: Location on the bus 1965 * 1966 * This function looks up a PCI device and returns the internal 1967 * representation of it. It acquires a reference on it, so that 1968 * the device won't be deleted while somebody is using it. The 1969 * caller is responsible for calling put_pcichild() to release 1970 * this reference. 1971 * 1972 * Return: Internal representation of a PCI device 1973 */ 1974 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus, 1975 u32 wslot) 1976 { 1977 unsigned long flags; 1978 struct hv_pci_dev *iter, *hpdev = NULL; 1979 1980 spin_lock_irqsave(&hbus->device_list_lock, flags); 1981 list_for_each_entry(iter, &hbus->children, list_entry) { 1982 if (iter->desc.win_slot.slot == wslot) { 1983 hpdev = iter; 1984 get_pcichild(hpdev); 1985 break; 1986 } 1987 } 1988 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 1989 1990 return hpdev; 1991 } 1992 1993 /** 1994 * pci_devices_present_work() - Handle new list of child devices 1995 * @work: Work struct embedded in struct hv_dr_work 1996 * 1997 * "Bus Relations" is the Windows term for "children of this 1998 * bus." The terminology is preserved here for people trying to 1999 * debug the interaction between Hyper-V and Linux. This 2000 * function is called when the parent partition reports a list 2001 * of functions that should be observed under this PCI Express 2002 * port (bus). 2003 * 2004 * This function updates the list, and must tolerate being 2005 * called multiple times with the same information. The typical 2006 * number of child devices is one, with very atypical cases 2007 * involving three or four, so the algorithms used here can be 2008 * simple and inefficient. 2009 * 2010 * It must also treat the omission of a previously observed device as 2011 * notification that the device no longer exists. 2012 * 2013 * Note that this function is serialized with hv_eject_device_work(), 2014 * because both are pushed to the ordered workqueue hbus->wq. 2015 */ 2016 static void pci_devices_present_work(struct work_struct *work) 2017 { 2018 u32 child_no; 2019 bool found; 2020 struct hv_pcidev_description *new_desc; 2021 struct hv_pci_dev *hpdev; 2022 struct hv_pcibus_device *hbus; 2023 struct list_head removed; 2024 struct hv_dr_work *dr_wrk; 2025 struct hv_dr_state *dr = NULL; 2026 unsigned long flags; 2027 2028 dr_wrk = container_of(work, struct hv_dr_work, wrk); 2029 hbus = dr_wrk->bus; 2030 kfree(dr_wrk); 2031 2032 INIT_LIST_HEAD(&removed); 2033 2034 /* Pull this off the queue and process it if it was the last one. */ 2035 spin_lock_irqsave(&hbus->device_list_lock, flags); 2036 while (!list_empty(&hbus->dr_list)) { 2037 dr = list_first_entry(&hbus->dr_list, struct hv_dr_state, 2038 list_entry); 2039 list_del(&dr->list_entry); 2040 2041 /* Throw this away if the list still has stuff in it. */ 2042 if (!list_empty(&hbus->dr_list)) { 2043 kfree(dr); 2044 continue; 2045 } 2046 } 2047 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2048 2049 if (!dr) { 2050 put_hvpcibus(hbus); 2051 return; 2052 } 2053 2054 /* First, mark all existing children as reported missing. */ 2055 spin_lock_irqsave(&hbus->device_list_lock, flags); 2056 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2057 hpdev->reported_missing = true; 2058 } 2059 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2060 2061 /* Next, add back any reported devices. */ 2062 for (child_no = 0; child_no < dr->device_count; child_no++) { 2063 found = false; 2064 new_desc = &dr->func[child_no]; 2065 2066 spin_lock_irqsave(&hbus->device_list_lock, flags); 2067 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2068 if ((hpdev->desc.win_slot.slot == new_desc->win_slot.slot) && 2069 (hpdev->desc.v_id == new_desc->v_id) && 2070 (hpdev->desc.d_id == new_desc->d_id) && 2071 (hpdev->desc.ser == new_desc->ser)) { 2072 hpdev->reported_missing = false; 2073 found = true; 2074 } 2075 } 2076 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2077 2078 if (!found) { 2079 hpdev = new_pcichild_device(hbus, new_desc); 2080 if (!hpdev) 2081 dev_err(&hbus->hdev->device, 2082 "couldn't record a child device.\n"); 2083 } 2084 } 2085 2086 /* Move missing children to a list on the stack. */ 2087 spin_lock_irqsave(&hbus->device_list_lock, flags); 2088 do { 2089 found = false; 2090 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2091 if (hpdev->reported_missing) { 2092 found = true; 2093 put_pcichild(hpdev); 2094 list_move_tail(&hpdev->list_entry, &removed); 2095 break; 2096 } 2097 } 2098 } while (found); 2099 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2100 2101 /* Delete everything that should no longer exist. */ 2102 while (!list_empty(&removed)) { 2103 hpdev = list_first_entry(&removed, struct hv_pci_dev, 2104 list_entry); 2105 list_del(&hpdev->list_entry); 2106 2107 if (hpdev->pci_slot) 2108 pci_destroy_slot(hpdev->pci_slot); 2109 2110 put_pcichild(hpdev); 2111 } 2112 2113 switch (hbus->state) { 2114 case hv_pcibus_installed: 2115 /* 2116 * Tell the core to rescan bus 2117 * because there may have been changes. 2118 */ 2119 pci_lock_rescan_remove(); 2120 pci_scan_child_bus(hbus->pci_bus); 2121 hv_pci_assign_numa_node(hbus); 2122 hv_pci_assign_slots(hbus); 2123 pci_unlock_rescan_remove(); 2124 break; 2125 2126 case hv_pcibus_init: 2127 case hv_pcibus_probed: 2128 survey_child_resources(hbus); 2129 break; 2130 2131 default: 2132 break; 2133 } 2134 2135 put_hvpcibus(hbus); 2136 kfree(dr); 2137 } 2138 2139 /** 2140 * hv_pci_start_relations_work() - Queue work to start device discovery 2141 * @hbus: Root PCI bus, as understood by this driver 2142 * @dr: The list of children returned from host 2143 * 2144 * Return: 0 on success, -errno on failure 2145 */ 2146 static int hv_pci_start_relations_work(struct hv_pcibus_device *hbus, 2147 struct hv_dr_state *dr) 2148 { 2149 struct hv_dr_work *dr_wrk; 2150 unsigned long flags; 2151 bool pending_dr; 2152 2153 if (hbus->state == hv_pcibus_removing) { 2154 dev_info(&hbus->hdev->device, 2155 "PCI VMBus BUS_RELATIONS: ignored\n"); 2156 return -ENOENT; 2157 } 2158 2159 dr_wrk = kzalloc(sizeof(*dr_wrk), GFP_NOWAIT); 2160 if (!dr_wrk) 2161 return -ENOMEM; 2162 2163 INIT_WORK(&dr_wrk->wrk, pci_devices_present_work); 2164 dr_wrk->bus = hbus; 2165 2166 spin_lock_irqsave(&hbus->device_list_lock, flags); 2167 /* 2168 * If pending_dr is true, we have already queued a work, 2169 * which will see the new dr. Otherwise, we need to 2170 * queue a new work. 2171 */ 2172 pending_dr = !list_empty(&hbus->dr_list); 2173 list_add_tail(&dr->list_entry, &hbus->dr_list); 2174 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2175 2176 if (pending_dr) { 2177 kfree(dr_wrk); 2178 } else { 2179 get_hvpcibus(hbus); 2180 queue_work(hbus->wq, &dr_wrk->wrk); 2181 } 2182 2183 return 0; 2184 } 2185 2186 /** 2187 * hv_pci_devices_present() - Handle list of new children 2188 * @hbus: Root PCI bus, as understood by this driver 2189 * @relations: Packet from host listing children 2190 * 2191 * Process a new list of devices on the bus. The list of devices is 2192 * discovered by VSP and sent to us via VSP message PCI_BUS_RELATIONS, 2193 * whenever a new list of devices for this bus appears. 2194 */ 2195 static void hv_pci_devices_present(struct hv_pcibus_device *hbus, 2196 struct pci_bus_relations *relations) 2197 { 2198 struct hv_dr_state *dr; 2199 int i; 2200 2201 dr = kzalloc(offsetof(struct hv_dr_state, func) + 2202 (sizeof(struct hv_pcidev_description) * 2203 (relations->device_count)), GFP_NOWAIT); 2204 2205 if (!dr) 2206 return; 2207 2208 dr->device_count = relations->device_count; 2209 for (i = 0; i < dr->device_count; i++) { 2210 dr->func[i].v_id = relations->func[i].v_id; 2211 dr->func[i].d_id = relations->func[i].d_id; 2212 dr->func[i].rev = relations->func[i].rev; 2213 dr->func[i].prog_intf = relations->func[i].prog_intf; 2214 dr->func[i].subclass = relations->func[i].subclass; 2215 dr->func[i].base_class = relations->func[i].base_class; 2216 dr->func[i].subsystem_id = relations->func[i].subsystem_id; 2217 dr->func[i].win_slot = relations->func[i].win_slot; 2218 dr->func[i].ser = relations->func[i].ser; 2219 } 2220 2221 if (hv_pci_start_relations_work(hbus, dr)) 2222 kfree(dr); 2223 } 2224 2225 /** 2226 * hv_pci_devices_present2() - Handle list of new children 2227 * @hbus: Root PCI bus, as understood by this driver 2228 * @relations: Packet from host listing children 2229 * 2230 * This function is the v2 version of hv_pci_devices_present() 2231 */ 2232 static void hv_pci_devices_present2(struct hv_pcibus_device *hbus, 2233 struct pci_bus_relations2 *relations) 2234 { 2235 struct hv_dr_state *dr; 2236 int i; 2237 2238 dr = kzalloc(offsetof(struct hv_dr_state, func) + 2239 (sizeof(struct hv_pcidev_description) * 2240 (relations->device_count)), GFP_NOWAIT); 2241 2242 if (!dr) 2243 return; 2244 2245 dr->device_count = relations->device_count; 2246 for (i = 0; i < dr->device_count; i++) { 2247 dr->func[i].v_id = relations->func[i].v_id; 2248 dr->func[i].d_id = relations->func[i].d_id; 2249 dr->func[i].rev = relations->func[i].rev; 2250 dr->func[i].prog_intf = relations->func[i].prog_intf; 2251 dr->func[i].subclass = relations->func[i].subclass; 2252 dr->func[i].base_class = relations->func[i].base_class; 2253 dr->func[i].subsystem_id = relations->func[i].subsystem_id; 2254 dr->func[i].win_slot = relations->func[i].win_slot; 2255 dr->func[i].ser = relations->func[i].ser; 2256 dr->func[i].flags = relations->func[i].flags; 2257 dr->func[i].virtual_numa_node = 2258 relations->func[i].virtual_numa_node; 2259 } 2260 2261 if (hv_pci_start_relations_work(hbus, dr)) 2262 kfree(dr); 2263 } 2264 2265 /** 2266 * hv_eject_device_work() - Asynchronously handles ejection 2267 * @work: Work struct embedded in internal device struct 2268 * 2269 * This function handles ejecting a device. Windows will 2270 * attempt to gracefully eject a device, waiting 60 seconds to 2271 * hear back from the guest OS that this completed successfully. 2272 * If this timer expires, the device will be forcibly removed. 2273 */ 2274 static void hv_eject_device_work(struct work_struct *work) 2275 { 2276 struct pci_eject_response *ejct_pkt; 2277 struct hv_pcibus_device *hbus; 2278 struct hv_pci_dev *hpdev; 2279 struct pci_dev *pdev; 2280 unsigned long flags; 2281 int wslot; 2282 struct { 2283 struct pci_packet pkt; 2284 u8 buffer[sizeof(struct pci_eject_response)]; 2285 } ctxt; 2286 2287 hpdev = container_of(work, struct hv_pci_dev, wrk); 2288 hbus = hpdev->hbus; 2289 2290 WARN_ON(hpdev->state != hv_pcichild_ejecting); 2291 2292 /* 2293 * Ejection can come before or after the PCI bus has been set up, so 2294 * attempt to find it and tear down the bus state, if it exists. This 2295 * must be done without constructs like pci_domain_nr(hbus->pci_bus) 2296 * because hbus->pci_bus may not exist yet. 2297 */ 2298 wslot = wslot_to_devfn(hpdev->desc.win_slot.slot); 2299 pdev = pci_get_domain_bus_and_slot(hbus->sysdata.domain, 0, wslot); 2300 if (pdev) { 2301 pci_lock_rescan_remove(); 2302 pci_stop_and_remove_bus_device(pdev); 2303 pci_dev_put(pdev); 2304 pci_unlock_rescan_remove(); 2305 } 2306 2307 spin_lock_irqsave(&hbus->device_list_lock, flags); 2308 list_del(&hpdev->list_entry); 2309 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2310 2311 if (hpdev->pci_slot) 2312 pci_destroy_slot(hpdev->pci_slot); 2313 2314 memset(&ctxt, 0, sizeof(ctxt)); 2315 ejct_pkt = (struct pci_eject_response *)&ctxt.pkt.message; 2316 ejct_pkt->message_type.type = PCI_EJECTION_COMPLETE; 2317 ejct_pkt->wslot.slot = hpdev->desc.win_slot.slot; 2318 vmbus_sendpacket(hbus->hdev->channel, ejct_pkt, 2319 sizeof(*ejct_pkt), (unsigned long)&ctxt.pkt, 2320 VM_PKT_DATA_INBAND, 0); 2321 2322 /* For the get_pcichild() in hv_pci_eject_device() */ 2323 put_pcichild(hpdev); 2324 /* For the two refs got in new_pcichild_device() */ 2325 put_pcichild(hpdev); 2326 put_pcichild(hpdev); 2327 /* hpdev has been freed. Do not use it any more. */ 2328 2329 put_hvpcibus(hbus); 2330 } 2331 2332 /** 2333 * hv_pci_eject_device() - Handles device ejection 2334 * @hpdev: Internal device tracking struct 2335 * 2336 * This function is invoked when an ejection packet arrives. It 2337 * just schedules work so that we don't re-enter the packet 2338 * delivery code handling the ejection. 2339 */ 2340 static void hv_pci_eject_device(struct hv_pci_dev *hpdev) 2341 { 2342 struct hv_pcibus_device *hbus = hpdev->hbus; 2343 struct hv_device *hdev = hbus->hdev; 2344 2345 if (hbus->state == hv_pcibus_removing) { 2346 dev_info(&hdev->device, "PCI VMBus EJECT: ignored\n"); 2347 return; 2348 } 2349 2350 hpdev->state = hv_pcichild_ejecting; 2351 get_pcichild(hpdev); 2352 INIT_WORK(&hpdev->wrk, hv_eject_device_work); 2353 get_hvpcibus(hbus); 2354 queue_work(hbus->wq, &hpdev->wrk); 2355 } 2356 2357 /** 2358 * hv_pci_onchannelcallback() - Handles incoming packets 2359 * @context: Internal bus tracking struct 2360 * 2361 * This function is invoked whenever the host sends a packet to 2362 * this channel (which is private to this root PCI bus). 2363 */ 2364 static void hv_pci_onchannelcallback(void *context) 2365 { 2366 const int packet_size = 0x100; 2367 int ret; 2368 struct hv_pcibus_device *hbus = context; 2369 u32 bytes_recvd; 2370 u64 req_id; 2371 struct vmpacket_descriptor *desc; 2372 unsigned char *buffer; 2373 int bufferlen = packet_size; 2374 struct pci_packet *comp_packet; 2375 struct pci_response *response; 2376 struct pci_incoming_message *new_message; 2377 struct pci_bus_relations *bus_rel; 2378 struct pci_bus_relations2 *bus_rel2; 2379 struct pci_dev_inval_block *inval; 2380 struct pci_dev_incoming *dev_message; 2381 struct hv_pci_dev *hpdev; 2382 2383 buffer = kmalloc(bufferlen, GFP_ATOMIC); 2384 if (!buffer) 2385 return; 2386 2387 while (1) { 2388 ret = vmbus_recvpacket_raw(hbus->hdev->channel, buffer, 2389 bufferlen, &bytes_recvd, &req_id); 2390 2391 if (ret == -ENOBUFS) { 2392 kfree(buffer); 2393 /* Handle large packet */ 2394 bufferlen = bytes_recvd; 2395 buffer = kmalloc(bytes_recvd, GFP_ATOMIC); 2396 if (!buffer) 2397 return; 2398 continue; 2399 } 2400 2401 /* Zero length indicates there are no more packets. */ 2402 if (ret || !bytes_recvd) 2403 break; 2404 2405 /* 2406 * All incoming packets must be at least as large as a 2407 * response. 2408 */ 2409 if (bytes_recvd <= sizeof(struct pci_response)) 2410 continue; 2411 desc = (struct vmpacket_descriptor *)buffer; 2412 2413 switch (desc->type) { 2414 case VM_PKT_COMP: 2415 2416 /* 2417 * The host is trusted, and thus it's safe to interpret 2418 * this transaction ID as a pointer. 2419 */ 2420 comp_packet = (struct pci_packet *)req_id; 2421 response = (struct pci_response *)buffer; 2422 comp_packet->completion_func(comp_packet->compl_ctxt, 2423 response, 2424 bytes_recvd); 2425 break; 2426 2427 case VM_PKT_DATA_INBAND: 2428 2429 new_message = (struct pci_incoming_message *)buffer; 2430 switch (new_message->message_type.type) { 2431 case PCI_BUS_RELATIONS: 2432 2433 bus_rel = (struct pci_bus_relations *)buffer; 2434 if (bytes_recvd < 2435 offsetof(struct pci_bus_relations, func) + 2436 (sizeof(struct pci_function_description) * 2437 (bus_rel->device_count))) { 2438 dev_err(&hbus->hdev->device, 2439 "bus relations too small\n"); 2440 break; 2441 } 2442 2443 hv_pci_devices_present(hbus, bus_rel); 2444 break; 2445 2446 case PCI_BUS_RELATIONS2: 2447 2448 bus_rel2 = (struct pci_bus_relations2 *)buffer; 2449 if (bytes_recvd < 2450 offsetof(struct pci_bus_relations2, func) + 2451 (sizeof(struct pci_function_description2) * 2452 (bus_rel2->device_count))) { 2453 dev_err(&hbus->hdev->device, 2454 "bus relations v2 too small\n"); 2455 break; 2456 } 2457 2458 hv_pci_devices_present2(hbus, bus_rel2); 2459 break; 2460 2461 case PCI_EJECT: 2462 2463 dev_message = (struct pci_dev_incoming *)buffer; 2464 hpdev = get_pcichild_wslot(hbus, 2465 dev_message->wslot.slot); 2466 if (hpdev) { 2467 hv_pci_eject_device(hpdev); 2468 put_pcichild(hpdev); 2469 } 2470 break; 2471 2472 case PCI_INVALIDATE_BLOCK: 2473 2474 inval = (struct pci_dev_inval_block *)buffer; 2475 hpdev = get_pcichild_wslot(hbus, 2476 inval->wslot.slot); 2477 if (hpdev) { 2478 if (hpdev->block_invalidate) { 2479 hpdev->block_invalidate( 2480 hpdev->invalidate_context, 2481 inval->block_mask); 2482 } 2483 put_pcichild(hpdev); 2484 } 2485 break; 2486 2487 default: 2488 dev_warn(&hbus->hdev->device, 2489 "Unimplemented protocol message %x\n", 2490 new_message->message_type.type); 2491 break; 2492 } 2493 break; 2494 2495 default: 2496 dev_err(&hbus->hdev->device, 2497 "unhandled packet type %d, tid %llx len %d\n", 2498 desc->type, req_id, bytes_recvd); 2499 break; 2500 } 2501 } 2502 2503 kfree(buffer); 2504 } 2505 2506 /** 2507 * hv_pci_protocol_negotiation() - Set up protocol 2508 * @hdev: VMBus's tracking struct for this root PCI bus 2509 * 2510 * This driver is intended to support running on Windows 10 2511 * (server) and later versions. It will not run on earlier 2512 * versions, as they assume that many of the operations which 2513 * Linux needs accomplished with a spinlock held were done via 2514 * asynchronous messaging via VMBus. Windows 10 increases the 2515 * surface area of PCI emulation so that these actions can take 2516 * place by suspending a virtual processor for their duration. 2517 * 2518 * This function negotiates the channel protocol version, 2519 * failing if the host doesn't support the necessary protocol 2520 * level. 2521 */ 2522 static int hv_pci_protocol_negotiation(struct hv_device *hdev, 2523 enum pci_protocol_version_t version[], 2524 int num_version) 2525 { 2526 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 2527 struct pci_version_request *version_req; 2528 struct hv_pci_compl comp_pkt; 2529 struct pci_packet *pkt; 2530 int ret; 2531 int i; 2532 2533 /* 2534 * Initiate the handshake with the host and negotiate 2535 * a version that the host can support. We start with the 2536 * highest version number and go down if the host cannot 2537 * support it. 2538 */ 2539 pkt = kzalloc(sizeof(*pkt) + sizeof(*version_req), GFP_KERNEL); 2540 if (!pkt) 2541 return -ENOMEM; 2542 2543 init_completion(&comp_pkt.host_event); 2544 pkt->completion_func = hv_pci_generic_compl; 2545 pkt->compl_ctxt = &comp_pkt; 2546 version_req = (struct pci_version_request *)&pkt->message; 2547 version_req->message_type.type = PCI_QUERY_PROTOCOL_VERSION; 2548 2549 for (i = 0; i < num_version; i++) { 2550 version_req->protocol_version = version[i]; 2551 ret = vmbus_sendpacket(hdev->channel, version_req, 2552 sizeof(struct pci_version_request), 2553 (unsigned long)pkt, VM_PKT_DATA_INBAND, 2554 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 2555 if (!ret) 2556 ret = wait_for_response(hdev, &comp_pkt.host_event); 2557 2558 if (ret) { 2559 dev_err(&hdev->device, 2560 "PCI Pass-through VSP failed to request version: %d", 2561 ret); 2562 goto exit; 2563 } 2564 2565 if (comp_pkt.completion_status >= 0) { 2566 hbus->protocol_version = version[i]; 2567 dev_info(&hdev->device, 2568 "PCI VMBus probing: Using version %#x\n", 2569 hbus->protocol_version); 2570 goto exit; 2571 } 2572 2573 if (comp_pkt.completion_status != STATUS_REVISION_MISMATCH) { 2574 dev_err(&hdev->device, 2575 "PCI Pass-through VSP failed version request: %#x", 2576 comp_pkt.completion_status); 2577 ret = -EPROTO; 2578 goto exit; 2579 } 2580 2581 reinit_completion(&comp_pkt.host_event); 2582 } 2583 2584 dev_err(&hdev->device, 2585 "PCI pass-through VSP failed to find supported version"); 2586 ret = -EPROTO; 2587 2588 exit: 2589 kfree(pkt); 2590 return ret; 2591 } 2592 2593 /** 2594 * hv_pci_free_bridge_windows() - Release memory regions for the 2595 * bus 2596 * @hbus: Root PCI bus, as understood by this driver 2597 */ 2598 static void hv_pci_free_bridge_windows(struct hv_pcibus_device *hbus) 2599 { 2600 /* 2601 * Set the resources back to the way they looked when they 2602 * were allocated by setting IORESOURCE_BUSY again. 2603 */ 2604 2605 if (hbus->low_mmio_space && hbus->low_mmio_res) { 2606 hbus->low_mmio_res->flags |= IORESOURCE_BUSY; 2607 vmbus_free_mmio(hbus->low_mmio_res->start, 2608 resource_size(hbus->low_mmio_res)); 2609 } 2610 2611 if (hbus->high_mmio_space && hbus->high_mmio_res) { 2612 hbus->high_mmio_res->flags |= IORESOURCE_BUSY; 2613 vmbus_free_mmio(hbus->high_mmio_res->start, 2614 resource_size(hbus->high_mmio_res)); 2615 } 2616 } 2617 2618 /** 2619 * hv_pci_allocate_bridge_windows() - Allocate memory regions 2620 * for the bus 2621 * @hbus: Root PCI bus, as understood by this driver 2622 * 2623 * This function calls vmbus_allocate_mmio(), which is itself a 2624 * bit of a compromise. Ideally, we might change the pnp layer 2625 * in the kernel such that it comprehends either PCI devices 2626 * which are "grandchildren of ACPI," with some intermediate bus 2627 * node (in this case, VMBus) or change it such that it 2628 * understands VMBus. The pnp layer, however, has been declared 2629 * deprecated, and not subject to change. 2630 * 2631 * The workaround, implemented here, is to ask VMBus to allocate 2632 * MMIO space for this bus. VMBus itself knows which ranges are 2633 * appropriate by looking at its own ACPI objects. Then, after 2634 * these ranges are claimed, they're modified to look like they 2635 * would have looked if the ACPI and pnp code had allocated 2636 * bridge windows. These descriptors have to exist in this form 2637 * in order to satisfy the code which will get invoked when the 2638 * endpoint PCI function driver calls request_mem_region() or 2639 * request_mem_region_exclusive(). 2640 * 2641 * Return: 0 on success, -errno on failure 2642 */ 2643 static int hv_pci_allocate_bridge_windows(struct hv_pcibus_device *hbus) 2644 { 2645 resource_size_t align; 2646 int ret; 2647 2648 if (hbus->low_mmio_space) { 2649 align = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space)); 2650 ret = vmbus_allocate_mmio(&hbus->low_mmio_res, hbus->hdev, 0, 2651 (u64)(u32)0xffffffff, 2652 hbus->low_mmio_space, 2653 align, false); 2654 if (ret) { 2655 dev_err(&hbus->hdev->device, 2656 "Need %#llx of low MMIO space. Consider reconfiguring the VM.\n", 2657 hbus->low_mmio_space); 2658 return ret; 2659 } 2660 2661 /* Modify this resource to become a bridge window. */ 2662 hbus->low_mmio_res->flags |= IORESOURCE_WINDOW; 2663 hbus->low_mmio_res->flags &= ~IORESOURCE_BUSY; 2664 pci_add_resource(&hbus->resources_for_children, 2665 hbus->low_mmio_res); 2666 } 2667 2668 if (hbus->high_mmio_space) { 2669 align = 1ULL << (63 - __builtin_clzll(hbus->high_mmio_space)); 2670 ret = vmbus_allocate_mmio(&hbus->high_mmio_res, hbus->hdev, 2671 0x100000000, -1, 2672 hbus->high_mmio_space, align, 2673 false); 2674 if (ret) { 2675 dev_err(&hbus->hdev->device, 2676 "Need %#llx of high MMIO space. Consider reconfiguring the VM.\n", 2677 hbus->high_mmio_space); 2678 goto release_low_mmio; 2679 } 2680 2681 /* Modify this resource to become a bridge window. */ 2682 hbus->high_mmio_res->flags |= IORESOURCE_WINDOW; 2683 hbus->high_mmio_res->flags &= ~IORESOURCE_BUSY; 2684 pci_add_resource(&hbus->resources_for_children, 2685 hbus->high_mmio_res); 2686 } 2687 2688 return 0; 2689 2690 release_low_mmio: 2691 if (hbus->low_mmio_res) { 2692 vmbus_free_mmio(hbus->low_mmio_res->start, 2693 resource_size(hbus->low_mmio_res)); 2694 } 2695 2696 return ret; 2697 } 2698 2699 /** 2700 * hv_allocate_config_window() - Find MMIO space for PCI Config 2701 * @hbus: Root PCI bus, as understood by this driver 2702 * 2703 * This function claims memory-mapped I/O space for accessing 2704 * configuration space for the functions on this bus. 2705 * 2706 * Return: 0 on success, -errno on failure 2707 */ 2708 static int hv_allocate_config_window(struct hv_pcibus_device *hbus) 2709 { 2710 int ret; 2711 2712 /* 2713 * Set up a region of MMIO space to use for accessing configuration 2714 * space. 2715 */ 2716 ret = vmbus_allocate_mmio(&hbus->mem_config, hbus->hdev, 0, -1, 2717 PCI_CONFIG_MMIO_LENGTH, 0x1000, false); 2718 if (ret) 2719 return ret; 2720 2721 /* 2722 * vmbus_allocate_mmio() gets used for allocating both device endpoint 2723 * resource claims (those which cannot be overlapped) and the ranges 2724 * which are valid for the children of this bus, which are intended 2725 * to be overlapped by those children. Set the flag on this claim 2726 * meaning that this region can't be overlapped. 2727 */ 2728 2729 hbus->mem_config->flags |= IORESOURCE_BUSY; 2730 2731 return 0; 2732 } 2733 2734 static void hv_free_config_window(struct hv_pcibus_device *hbus) 2735 { 2736 vmbus_free_mmio(hbus->mem_config->start, PCI_CONFIG_MMIO_LENGTH); 2737 } 2738 2739 /** 2740 * hv_pci_enter_d0() - Bring the "bus" into the D0 power state 2741 * @hdev: VMBus's tracking struct for this root PCI bus 2742 * 2743 * Return: 0 on success, -errno on failure 2744 */ 2745 static int hv_pci_enter_d0(struct hv_device *hdev) 2746 { 2747 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 2748 struct pci_bus_d0_entry *d0_entry; 2749 struct hv_pci_compl comp_pkt; 2750 struct pci_packet *pkt; 2751 int ret; 2752 2753 /* 2754 * Tell the host that the bus is ready to use, and moved into the 2755 * powered-on state. This includes telling the host which region 2756 * of memory-mapped I/O space has been chosen for configuration space 2757 * access. 2758 */ 2759 pkt = kzalloc(sizeof(*pkt) + sizeof(*d0_entry), GFP_KERNEL); 2760 if (!pkt) 2761 return -ENOMEM; 2762 2763 init_completion(&comp_pkt.host_event); 2764 pkt->completion_func = hv_pci_generic_compl; 2765 pkt->compl_ctxt = &comp_pkt; 2766 d0_entry = (struct pci_bus_d0_entry *)&pkt->message; 2767 d0_entry->message_type.type = PCI_BUS_D0ENTRY; 2768 d0_entry->mmio_base = hbus->mem_config->start; 2769 2770 ret = vmbus_sendpacket(hdev->channel, d0_entry, sizeof(*d0_entry), 2771 (unsigned long)pkt, VM_PKT_DATA_INBAND, 2772 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 2773 if (!ret) 2774 ret = wait_for_response(hdev, &comp_pkt.host_event); 2775 2776 if (ret) 2777 goto exit; 2778 2779 if (comp_pkt.completion_status < 0) { 2780 dev_err(&hdev->device, 2781 "PCI Pass-through VSP failed D0 Entry with status %x\n", 2782 comp_pkt.completion_status); 2783 ret = -EPROTO; 2784 goto exit; 2785 } 2786 2787 ret = 0; 2788 2789 exit: 2790 kfree(pkt); 2791 return ret; 2792 } 2793 2794 /** 2795 * hv_pci_query_relations() - Ask host to send list of child 2796 * devices 2797 * @hdev: VMBus's tracking struct for this root PCI bus 2798 * 2799 * Return: 0 on success, -errno on failure 2800 */ 2801 static int hv_pci_query_relations(struct hv_device *hdev) 2802 { 2803 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 2804 struct pci_message message; 2805 struct completion comp; 2806 int ret; 2807 2808 /* Ask the host to send along the list of child devices */ 2809 init_completion(&comp); 2810 if (cmpxchg(&hbus->survey_event, NULL, &comp)) 2811 return -ENOTEMPTY; 2812 2813 memset(&message, 0, sizeof(message)); 2814 message.type = PCI_QUERY_BUS_RELATIONS; 2815 2816 ret = vmbus_sendpacket(hdev->channel, &message, sizeof(message), 2817 0, VM_PKT_DATA_INBAND, 0); 2818 if (!ret) 2819 ret = wait_for_response(hdev, &comp); 2820 2821 return ret; 2822 } 2823 2824 /** 2825 * hv_send_resources_allocated() - Report local resource choices 2826 * @hdev: VMBus's tracking struct for this root PCI bus 2827 * 2828 * The host OS is expecting to be sent a request as a message 2829 * which contains all the resources that the device will use. 2830 * The response contains those same resources, "translated" 2831 * which is to say, the values which should be used by the 2832 * hardware, when it delivers an interrupt. (MMIO resources are 2833 * used in local terms.) This is nice for Windows, and lines up 2834 * with the FDO/PDO split, which doesn't exist in Linux. Linux 2835 * is deeply expecting to scan an emulated PCI configuration 2836 * space. So this message is sent here only to drive the state 2837 * machine on the host forward. 2838 * 2839 * Return: 0 on success, -errno on failure 2840 */ 2841 static int hv_send_resources_allocated(struct hv_device *hdev) 2842 { 2843 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 2844 struct pci_resources_assigned *res_assigned; 2845 struct pci_resources_assigned2 *res_assigned2; 2846 struct hv_pci_compl comp_pkt; 2847 struct hv_pci_dev *hpdev; 2848 struct pci_packet *pkt; 2849 size_t size_res; 2850 u32 wslot; 2851 int ret; 2852 2853 size_res = (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2) 2854 ? sizeof(*res_assigned) : sizeof(*res_assigned2); 2855 2856 pkt = kmalloc(sizeof(*pkt) + size_res, GFP_KERNEL); 2857 if (!pkt) 2858 return -ENOMEM; 2859 2860 ret = 0; 2861 2862 for (wslot = 0; wslot < 256; wslot++) { 2863 hpdev = get_pcichild_wslot(hbus, wslot); 2864 if (!hpdev) 2865 continue; 2866 2867 memset(pkt, 0, sizeof(*pkt) + size_res); 2868 init_completion(&comp_pkt.host_event); 2869 pkt->completion_func = hv_pci_generic_compl; 2870 pkt->compl_ctxt = &comp_pkt; 2871 2872 if (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2) { 2873 res_assigned = 2874 (struct pci_resources_assigned *)&pkt->message; 2875 res_assigned->message_type.type = 2876 PCI_RESOURCES_ASSIGNED; 2877 res_assigned->wslot.slot = hpdev->desc.win_slot.slot; 2878 } else { 2879 res_assigned2 = 2880 (struct pci_resources_assigned2 *)&pkt->message; 2881 res_assigned2->message_type.type = 2882 PCI_RESOURCES_ASSIGNED2; 2883 res_assigned2->wslot.slot = hpdev->desc.win_slot.slot; 2884 } 2885 put_pcichild(hpdev); 2886 2887 ret = vmbus_sendpacket(hdev->channel, &pkt->message, 2888 size_res, (unsigned long)pkt, 2889 VM_PKT_DATA_INBAND, 2890 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 2891 if (!ret) 2892 ret = wait_for_response(hdev, &comp_pkt.host_event); 2893 if (ret) 2894 break; 2895 2896 if (comp_pkt.completion_status < 0) { 2897 ret = -EPROTO; 2898 dev_err(&hdev->device, 2899 "resource allocated returned 0x%x", 2900 comp_pkt.completion_status); 2901 break; 2902 } 2903 } 2904 2905 kfree(pkt); 2906 return ret; 2907 } 2908 2909 /** 2910 * hv_send_resources_released() - Report local resources 2911 * released 2912 * @hdev: VMBus's tracking struct for this root PCI bus 2913 * 2914 * Return: 0 on success, -errno on failure 2915 */ 2916 static int hv_send_resources_released(struct hv_device *hdev) 2917 { 2918 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 2919 struct pci_child_message pkt; 2920 struct hv_pci_dev *hpdev; 2921 u32 wslot; 2922 int ret; 2923 2924 for (wslot = 0; wslot < 256; wslot++) { 2925 hpdev = get_pcichild_wslot(hbus, wslot); 2926 if (!hpdev) 2927 continue; 2928 2929 memset(&pkt, 0, sizeof(pkt)); 2930 pkt.message_type.type = PCI_RESOURCES_RELEASED; 2931 pkt.wslot.slot = hpdev->desc.win_slot.slot; 2932 2933 put_pcichild(hpdev); 2934 2935 ret = vmbus_sendpacket(hdev->channel, &pkt, sizeof(pkt), 0, 2936 VM_PKT_DATA_INBAND, 0); 2937 if (ret) 2938 return ret; 2939 } 2940 2941 return 0; 2942 } 2943 2944 static void get_hvpcibus(struct hv_pcibus_device *hbus) 2945 { 2946 refcount_inc(&hbus->remove_lock); 2947 } 2948 2949 static void put_hvpcibus(struct hv_pcibus_device *hbus) 2950 { 2951 if (refcount_dec_and_test(&hbus->remove_lock)) 2952 complete(&hbus->remove_event); 2953 } 2954 2955 #define HVPCI_DOM_MAP_SIZE (64 * 1024) 2956 static DECLARE_BITMAP(hvpci_dom_map, HVPCI_DOM_MAP_SIZE); 2957 2958 /* 2959 * PCI domain number 0 is used by emulated devices on Gen1 VMs, so define 0 2960 * as invalid for passthrough PCI devices of this driver. 2961 */ 2962 #define HVPCI_DOM_INVALID 0 2963 2964 /** 2965 * hv_get_dom_num() - Get a valid PCI domain number 2966 * Check if the PCI domain number is in use, and return another number if 2967 * it is in use. 2968 * 2969 * @dom: Requested domain number 2970 * 2971 * return: domain number on success, HVPCI_DOM_INVALID on failure 2972 */ 2973 static u16 hv_get_dom_num(u16 dom) 2974 { 2975 unsigned int i; 2976 2977 if (test_and_set_bit(dom, hvpci_dom_map) == 0) 2978 return dom; 2979 2980 for_each_clear_bit(i, hvpci_dom_map, HVPCI_DOM_MAP_SIZE) { 2981 if (test_and_set_bit(i, hvpci_dom_map) == 0) 2982 return i; 2983 } 2984 2985 return HVPCI_DOM_INVALID; 2986 } 2987 2988 /** 2989 * hv_put_dom_num() - Mark the PCI domain number as free 2990 * @dom: Domain number to be freed 2991 */ 2992 static void hv_put_dom_num(u16 dom) 2993 { 2994 clear_bit(dom, hvpci_dom_map); 2995 } 2996 2997 /** 2998 * hv_pci_probe() - New VMBus channel probe, for a root PCI bus 2999 * @hdev: VMBus's tracking struct for this root PCI bus 3000 * @dev_id: Identifies the device itself 3001 * 3002 * Return: 0 on success, -errno on failure 3003 */ 3004 static int hv_pci_probe(struct hv_device *hdev, 3005 const struct hv_vmbus_device_id *dev_id) 3006 { 3007 struct hv_pcibus_device *hbus; 3008 u16 dom_req, dom; 3009 char *name; 3010 int ret; 3011 3012 /* 3013 * hv_pcibus_device contains the hypercall arguments for retargeting in 3014 * hv_irq_unmask(). Those must not cross a page boundary. 3015 */ 3016 BUILD_BUG_ON(sizeof(*hbus) > HV_HYP_PAGE_SIZE); 3017 3018 /* 3019 * With the recent 59bb47985c1d ("mm, sl[aou]b: guarantee natural 3020 * alignment for kmalloc(power-of-two)"), kzalloc() is able to allocate 3021 * a 4KB buffer that is guaranteed to be 4KB-aligned. Here the size and 3022 * alignment of hbus is important because hbus's field 3023 * retarget_msi_interrupt_params must not cross a 4KB page boundary. 3024 * 3025 * Here we prefer kzalloc to get_zeroed_page(), because a buffer 3026 * allocated by the latter is not tracked and scanned by kmemleak, and 3027 * hence kmemleak reports the pointer contained in the hbus buffer 3028 * (i.e. the hpdev struct, which is created in new_pcichild_device() and 3029 * is tracked by hbus->children) as memory leak (false positive). 3030 * 3031 * If the kernel doesn't have 59bb47985c1d, get_zeroed_page() *must* be 3032 * used to allocate the hbus buffer and we can avoid the kmemleak false 3033 * positive by using kmemleak_alloc() and kmemleak_free() to ask 3034 * kmemleak to track and scan the hbus buffer. 3035 */ 3036 hbus = kzalloc(HV_HYP_PAGE_SIZE, GFP_KERNEL); 3037 if (!hbus) 3038 return -ENOMEM; 3039 hbus->state = hv_pcibus_init; 3040 3041 /* 3042 * The PCI bus "domain" is what is called "segment" in ACPI and other 3043 * specs. Pull it from the instance ID, to get something usually 3044 * unique. In rare cases of collision, we will find out another number 3045 * not in use. 3046 * 3047 * Note that, since this code only runs in a Hyper-V VM, Hyper-V 3048 * together with this guest driver can guarantee that (1) The only 3049 * domain used by Gen1 VMs for something that looks like a physical 3050 * PCI bus (which is actually emulated by the hypervisor) is domain 0. 3051 * (2) There will be no overlap between domains (after fixing possible 3052 * collisions) in the same VM. 3053 */ 3054 dom_req = hdev->dev_instance.b[5] << 8 | hdev->dev_instance.b[4]; 3055 dom = hv_get_dom_num(dom_req); 3056 3057 if (dom == HVPCI_DOM_INVALID) { 3058 dev_err(&hdev->device, 3059 "Unable to use dom# 0x%hx or other numbers", dom_req); 3060 ret = -EINVAL; 3061 goto free_bus; 3062 } 3063 3064 if (dom != dom_req) 3065 dev_info(&hdev->device, 3066 "PCI dom# 0x%hx has collision, using 0x%hx", 3067 dom_req, dom); 3068 3069 hbus->sysdata.domain = dom; 3070 3071 hbus->hdev = hdev; 3072 refcount_set(&hbus->remove_lock, 1); 3073 INIT_LIST_HEAD(&hbus->children); 3074 INIT_LIST_HEAD(&hbus->dr_list); 3075 INIT_LIST_HEAD(&hbus->resources_for_children); 3076 spin_lock_init(&hbus->config_lock); 3077 spin_lock_init(&hbus->device_list_lock); 3078 spin_lock_init(&hbus->retarget_msi_interrupt_lock); 3079 init_completion(&hbus->remove_event); 3080 hbus->wq = alloc_ordered_workqueue("hv_pci_%x", 0, 3081 hbus->sysdata.domain); 3082 if (!hbus->wq) { 3083 ret = -ENOMEM; 3084 goto free_dom; 3085 } 3086 3087 ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0, 3088 hv_pci_onchannelcallback, hbus); 3089 if (ret) 3090 goto destroy_wq; 3091 3092 hv_set_drvdata(hdev, hbus); 3093 3094 ret = hv_pci_protocol_negotiation(hdev, pci_protocol_versions, 3095 ARRAY_SIZE(pci_protocol_versions)); 3096 if (ret) 3097 goto close; 3098 3099 ret = hv_allocate_config_window(hbus); 3100 if (ret) 3101 goto close; 3102 3103 hbus->cfg_addr = ioremap(hbus->mem_config->start, 3104 PCI_CONFIG_MMIO_LENGTH); 3105 if (!hbus->cfg_addr) { 3106 dev_err(&hdev->device, 3107 "Unable to map a virtual address for config space\n"); 3108 ret = -ENOMEM; 3109 goto free_config; 3110 } 3111 3112 name = kasprintf(GFP_KERNEL, "%pUL", &hdev->dev_instance); 3113 if (!name) { 3114 ret = -ENOMEM; 3115 goto unmap; 3116 } 3117 3118 hbus->sysdata.fwnode = irq_domain_alloc_named_fwnode(name); 3119 kfree(name); 3120 if (!hbus->sysdata.fwnode) { 3121 ret = -ENOMEM; 3122 goto unmap; 3123 } 3124 3125 ret = hv_pcie_init_irq_domain(hbus); 3126 if (ret) 3127 goto free_fwnode; 3128 3129 ret = hv_pci_query_relations(hdev); 3130 if (ret) 3131 goto free_irq_domain; 3132 3133 ret = hv_pci_enter_d0(hdev); 3134 if (ret) 3135 goto free_irq_domain; 3136 3137 ret = hv_pci_allocate_bridge_windows(hbus); 3138 if (ret) 3139 goto free_irq_domain; 3140 3141 ret = hv_send_resources_allocated(hdev); 3142 if (ret) 3143 goto free_windows; 3144 3145 prepopulate_bars(hbus); 3146 3147 hbus->state = hv_pcibus_probed; 3148 3149 ret = create_root_hv_pci_bus(hbus); 3150 if (ret) 3151 goto free_windows; 3152 3153 return 0; 3154 3155 free_windows: 3156 hv_pci_free_bridge_windows(hbus); 3157 free_irq_domain: 3158 irq_domain_remove(hbus->irq_domain); 3159 free_fwnode: 3160 irq_domain_free_fwnode(hbus->sysdata.fwnode); 3161 unmap: 3162 iounmap(hbus->cfg_addr); 3163 free_config: 3164 hv_free_config_window(hbus); 3165 close: 3166 vmbus_close(hdev->channel); 3167 destroy_wq: 3168 destroy_workqueue(hbus->wq); 3169 free_dom: 3170 hv_put_dom_num(hbus->sysdata.domain); 3171 free_bus: 3172 kfree(hbus); 3173 return ret; 3174 } 3175 3176 static int hv_pci_bus_exit(struct hv_device *hdev, bool hibernating) 3177 { 3178 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3179 struct { 3180 struct pci_packet teardown_packet; 3181 u8 buffer[sizeof(struct pci_message)]; 3182 } pkt; 3183 struct hv_dr_state *dr; 3184 struct hv_pci_compl comp_pkt; 3185 int ret; 3186 3187 /* 3188 * After the host sends the RESCIND_CHANNEL message, it doesn't 3189 * access the per-channel ringbuffer any longer. 3190 */ 3191 if (hdev->channel->rescind) 3192 return 0; 3193 3194 if (!hibernating) { 3195 /* Delete any children which might still exist. */ 3196 dr = kzalloc(sizeof(*dr), GFP_KERNEL); 3197 if (dr && hv_pci_start_relations_work(hbus, dr)) 3198 kfree(dr); 3199 } 3200 3201 ret = hv_send_resources_released(hdev); 3202 if (ret) { 3203 dev_err(&hdev->device, 3204 "Couldn't send resources released packet(s)\n"); 3205 return ret; 3206 } 3207 3208 memset(&pkt.teardown_packet, 0, sizeof(pkt.teardown_packet)); 3209 init_completion(&comp_pkt.host_event); 3210 pkt.teardown_packet.completion_func = hv_pci_generic_compl; 3211 pkt.teardown_packet.compl_ctxt = &comp_pkt; 3212 pkt.teardown_packet.message[0].type = PCI_BUS_D0EXIT; 3213 3214 ret = vmbus_sendpacket(hdev->channel, &pkt.teardown_packet.message, 3215 sizeof(struct pci_message), 3216 (unsigned long)&pkt.teardown_packet, 3217 VM_PKT_DATA_INBAND, 3218 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 3219 if (ret) 3220 return ret; 3221 3222 if (wait_for_completion_timeout(&comp_pkt.host_event, 10 * HZ) == 0) 3223 return -ETIMEDOUT; 3224 3225 return 0; 3226 } 3227 3228 /** 3229 * hv_pci_remove() - Remove routine for this VMBus channel 3230 * @hdev: VMBus's tracking struct for this root PCI bus 3231 * 3232 * Return: 0 on success, -errno on failure 3233 */ 3234 static int hv_pci_remove(struct hv_device *hdev) 3235 { 3236 struct hv_pcibus_device *hbus; 3237 int ret; 3238 3239 hbus = hv_get_drvdata(hdev); 3240 if (hbus->state == hv_pcibus_installed) { 3241 /* Remove the bus from PCI's point of view. */ 3242 pci_lock_rescan_remove(); 3243 pci_stop_root_bus(hbus->pci_bus); 3244 hv_pci_remove_slots(hbus); 3245 pci_remove_root_bus(hbus->pci_bus); 3246 pci_unlock_rescan_remove(); 3247 hbus->state = hv_pcibus_removed; 3248 } 3249 3250 ret = hv_pci_bus_exit(hdev, false); 3251 3252 vmbus_close(hdev->channel); 3253 3254 iounmap(hbus->cfg_addr); 3255 hv_free_config_window(hbus); 3256 pci_free_resource_list(&hbus->resources_for_children); 3257 hv_pci_free_bridge_windows(hbus); 3258 irq_domain_remove(hbus->irq_domain); 3259 irq_domain_free_fwnode(hbus->sysdata.fwnode); 3260 put_hvpcibus(hbus); 3261 wait_for_completion(&hbus->remove_event); 3262 destroy_workqueue(hbus->wq); 3263 3264 hv_put_dom_num(hbus->sysdata.domain); 3265 3266 kfree(hbus); 3267 return ret; 3268 } 3269 3270 static int hv_pci_suspend(struct hv_device *hdev) 3271 { 3272 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3273 enum hv_pcibus_state old_state; 3274 int ret; 3275 3276 /* 3277 * hv_pci_suspend() must make sure there are no pending work items 3278 * before calling vmbus_close(), since it runs in a process context 3279 * as a callback in dpm_suspend(). When it starts to run, the channel 3280 * callback hv_pci_onchannelcallback(), which runs in a tasklet 3281 * context, can be still running concurrently and scheduling new work 3282 * items onto hbus->wq in hv_pci_devices_present() and 3283 * hv_pci_eject_device(), and the work item handlers can access the 3284 * vmbus channel, which can be being closed by hv_pci_suspend(), e.g. 3285 * the work item handler pci_devices_present_work() -> 3286 * new_pcichild_device() writes to the vmbus channel. 3287 * 3288 * To eliminate the race, hv_pci_suspend() disables the channel 3289 * callback tasklet, sets hbus->state to hv_pcibus_removing, and 3290 * re-enables the tasklet. This way, when hv_pci_suspend() proceeds, 3291 * it knows that no new work item can be scheduled, and then it flushes 3292 * hbus->wq and safely closes the vmbus channel. 3293 */ 3294 tasklet_disable(&hdev->channel->callback_event); 3295 3296 /* Change the hbus state to prevent new work items. */ 3297 old_state = hbus->state; 3298 if (hbus->state == hv_pcibus_installed) 3299 hbus->state = hv_pcibus_removing; 3300 3301 tasklet_enable(&hdev->channel->callback_event); 3302 3303 if (old_state != hv_pcibus_installed) 3304 return -EINVAL; 3305 3306 flush_workqueue(hbus->wq); 3307 3308 ret = hv_pci_bus_exit(hdev, true); 3309 if (ret) 3310 return ret; 3311 3312 vmbus_close(hdev->channel); 3313 3314 return 0; 3315 } 3316 3317 static int hv_pci_resume(struct hv_device *hdev) 3318 { 3319 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3320 enum pci_protocol_version_t version[1]; 3321 int ret; 3322 3323 hbus->state = hv_pcibus_init; 3324 3325 ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0, 3326 hv_pci_onchannelcallback, hbus); 3327 if (ret) 3328 return ret; 3329 3330 /* Only use the version that was in use before hibernation. */ 3331 version[0] = hbus->protocol_version; 3332 ret = hv_pci_protocol_negotiation(hdev, version, 1); 3333 if (ret) 3334 goto out; 3335 3336 ret = hv_pci_query_relations(hdev); 3337 if (ret) 3338 goto out; 3339 3340 ret = hv_pci_enter_d0(hdev); 3341 if (ret) 3342 goto out; 3343 3344 ret = hv_send_resources_allocated(hdev); 3345 if (ret) 3346 goto out; 3347 3348 prepopulate_bars(hbus); 3349 3350 hbus->state = hv_pcibus_installed; 3351 return 0; 3352 out: 3353 vmbus_close(hdev->channel); 3354 return ret; 3355 } 3356 3357 static const struct hv_vmbus_device_id hv_pci_id_table[] = { 3358 /* PCI Pass-through Class ID */ 3359 /* 44C4F61D-4444-4400-9D52-802E27EDE19F */ 3360 { HV_PCIE_GUID, }, 3361 { }, 3362 }; 3363 3364 MODULE_DEVICE_TABLE(vmbus, hv_pci_id_table); 3365 3366 static struct hv_driver hv_pci_drv = { 3367 .name = "hv_pci", 3368 .id_table = hv_pci_id_table, 3369 .probe = hv_pci_probe, 3370 .remove = hv_pci_remove, 3371 .suspend = hv_pci_suspend, 3372 .resume = hv_pci_resume, 3373 }; 3374 3375 static void __exit exit_hv_pci_drv(void) 3376 { 3377 vmbus_driver_unregister(&hv_pci_drv); 3378 3379 hvpci_block_ops.read_block = NULL; 3380 hvpci_block_ops.write_block = NULL; 3381 hvpci_block_ops.reg_blk_invalidate = NULL; 3382 } 3383 3384 static int __init init_hv_pci_drv(void) 3385 { 3386 /* Set the invalid domain number's bit, so it will not be used */ 3387 set_bit(HVPCI_DOM_INVALID, hvpci_dom_map); 3388 3389 /* Initialize PCI block r/w interface */ 3390 hvpci_block_ops.read_block = hv_read_config_block; 3391 hvpci_block_ops.write_block = hv_write_config_block; 3392 hvpci_block_ops.reg_blk_invalidate = hv_register_block_invalidate; 3393 3394 return vmbus_driver_register(&hv_pci_drv); 3395 } 3396 3397 module_init(init_hv_pci_drv); 3398 module_exit(exit_hv_pci_drv); 3399 3400 MODULE_DESCRIPTION("Hyper-V PCI"); 3401 MODULE_LICENSE("GPL v2"); 3402