1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) Microsoft Corporation.
4  *
5  * Author:
6  *   Jake Oshins <jakeo@microsoft.com>
7  *
8  * This driver acts as a paravirtual front-end for PCI Express root buses.
9  * When a PCI Express function (either an entire device or an SR-IOV
10  * Virtual Function) is being passed through to the VM, this driver exposes
11  * a new bus to the guest VM.  This is modeled as a root PCI bus because
12  * no bridges are being exposed to the VM.  In fact, with a "Generation 2"
13  * VM within Hyper-V, there may seem to be no PCI bus at all in the VM
14  * until a device as been exposed using this driver.
15  *
16  * Each root PCI bus has its own PCI domain, which is called "Segment" in
17  * the PCI Firmware Specifications.  Thus while each device passed through
18  * to the VM using this front-end will appear at "device 0", the domain will
19  * be unique.  Typically, each bus will have one PCI function on it, though
20  * this driver does support more than one.
21  *
22  * In order to map the interrupts from the device through to the guest VM,
23  * this driver also implements an IRQ Domain, which handles interrupts (either
24  * MSI or MSI-X) associated with the functions on the bus.  As interrupts are
25  * set up, torn down, or reaffined, this driver communicates with the
26  * underlying hypervisor to adjust the mappings in the I/O MMU so that each
27  * interrupt will be delivered to the correct virtual processor at the right
28  * vector.  This driver does not support level-triggered (line-based)
29  * interrupts, and will report that the Interrupt Line register in the
30  * function's configuration space is zero.
31  *
32  * The rest of this driver mostly maps PCI concepts onto underlying Hyper-V
33  * facilities.  For instance, the configuration space of a function exposed
34  * by Hyper-V is mapped into a single page of memory space, and the
35  * read and write handlers for config space must be aware of this mechanism.
36  * Similarly, device setup and teardown involves messages sent to and from
37  * the PCI back-end driver in Hyper-V.
38  */
39 
40 #include <linux/kernel.h>
41 #include <linux/module.h>
42 #include <linux/pci.h>
43 #include <linux/delay.h>
44 #include <linux/semaphore.h>
45 #include <linux/irqdomain.h>
46 #include <asm/irqdomain.h>
47 #include <asm/apic.h>
48 #include <linux/irq.h>
49 #include <linux/msi.h>
50 #include <linux/hyperv.h>
51 #include <linux/refcount.h>
52 #include <asm/mshyperv.h>
53 
54 /*
55  * Protocol versions. The low word is the minor version, the high word the
56  * major version.
57  */
58 
59 #define PCI_MAKE_VERSION(major, minor) ((u32)(((major) << 16) | (minor)))
60 #define PCI_MAJOR_VERSION(version) ((u32)(version) >> 16)
61 #define PCI_MINOR_VERSION(version) ((u32)(version) & 0xff)
62 
63 enum pci_protocol_version_t {
64 	PCI_PROTOCOL_VERSION_1_1 = PCI_MAKE_VERSION(1, 1),	/* Win10 */
65 	PCI_PROTOCOL_VERSION_1_2 = PCI_MAKE_VERSION(1, 2),	/* RS1 */
66 };
67 
68 #define CPU_AFFINITY_ALL	-1ULL
69 
70 /*
71  * Supported protocol versions in the order of probing - highest go
72  * first.
73  */
74 static enum pci_protocol_version_t pci_protocol_versions[] = {
75 	PCI_PROTOCOL_VERSION_1_2,
76 	PCI_PROTOCOL_VERSION_1_1,
77 };
78 
79 /*
80  * Protocol version negotiated by hv_pci_protocol_negotiation().
81  */
82 static enum pci_protocol_version_t pci_protocol_version;
83 
84 #define PCI_CONFIG_MMIO_LENGTH	0x2000
85 #define CFG_PAGE_OFFSET 0x1000
86 #define CFG_PAGE_SIZE (PCI_CONFIG_MMIO_LENGTH - CFG_PAGE_OFFSET)
87 
88 #define MAX_SUPPORTED_MSI_MESSAGES 0x400
89 
90 #define STATUS_REVISION_MISMATCH 0xC0000059
91 
92 /* space for 32bit serial number as string */
93 #define SLOT_NAME_SIZE 11
94 
95 /*
96  * Message Types
97  */
98 
99 enum pci_message_type {
100 	/*
101 	 * Version 1.1
102 	 */
103 	PCI_MESSAGE_BASE                = 0x42490000,
104 	PCI_BUS_RELATIONS               = PCI_MESSAGE_BASE + 0,
105 	PCI_QUERY_BUS_RELATIONS         = PCI_MESSAGE_BASE + 1,
106 	PCI_POWER_STATE_CHANGE          = PCI_MESSAGE_BASE + 4,
107 	PCI_QUERY_RESOURCE_REQUIREMENTS = PCI_MESSAGE_BASE + 5,
108 	PCI_QUERY_RESOURCE_RESOURCES    = PCI_MESSAGE_BASE + 6,
109 	PCI_BUS_D0ENTRY                 = PCI_MESSAGE_BASE + 7,
110 	PCI_BUS_D0EXIT                  = PCI_MESSAGE_BASE + 8,
111 	PCI_READ_BLOCK                  = PCI_MESSAGE_BASE + 9,
112 	PCI_WRITE_BLOCK                 = PCI_MESSAGE_BASE + 0xA,
113 	PCI_EJECT                       = PCI_MESSAGE_BASE + 0xB,
114 	PCI_QUERY_STOP                  = PCI_MESSAGE_BASE + 0xC,
115 	PCI_REENABLE                    = PCI_MESSAGE_BASE + 0xD,
116 	PCI_QUERY_STOP_FAILED           = PCI_MESSAGE_BASE + 0xE,
117 	PCI_EJECTION_COMPLETE           = PCI_MESSAGE_BASE + 0xF,
118 	PCI_RESOURCES_ASSIGNED          = PCI_MESSAGE_BASE + 0x10,
119 	PCI_RESOURCES_RELEASED          = PCI_MESSAGE_BASE + 0x11,
120 	PCI_INVALIDATE_BLOCK            = PCI_MESSAGE_BASE + 0x12,
121 	PCI_QUERY_PROTOCOL_VERSION      = PCI_MESSAGE_BASE + 0x13,
122 	PCI_CREATE_INTERRUPT_MESSAGE    = PCI_MESSAGE_BASE + 0x14,
123 	PCI_DELETE_INTERRUPT_MESSAGE    = PCI_MESSAGE_BASE + 0x15,
124 	PCI_RESOURCES_ASSIGNED2		= PCI_MESSAGE_BASE + 0x16,
125 	PCI_CREATE_INTERRUPT_MESSAGE2	= PCI_MESSAGE_BASE + 0x17,
126 	PCI_DELETE_INTERRUPT_MESSAGE2	= PCI_MESSAGE_BASE + 0x18, /* unused */
127 	PCI_MESSAGE_MAXIMUM
128 };
129 
130 /*
131  * Structures defining the virtual PCI Express protocol.
132  */
133 
134 union pci_version {
135 	struct {
136 		u16 minor_version;
137 		u16 major_version;
138 	} parts;
139 	u32 version;
140 } __packed;
141 
142 /*
143  * Function numbers are 8-bits wide on Express, as interpreted through ARI,
144  * which is all this driver does.  This representation is the one used in
145  * Windows, which is what is expected when sending this back and forth with
146  * the Hyper-V parent partition.
147  */
148 union win_slot_encoding {
149 	struct {
150 		u32	dev:5;
151 		u32	func:3;
152 		u32	reserved:24;
153 	} bits;
154 	u32 slot;
155 } __packed;
156 
157 /*
158  * Pretty much as defined in the PCI Specifications.
159  */
160 struct pci_function_description {
161 	u16	v_id;	/* vendor ID */
162 	u16	d_id;	/* device ID */
163 	u8	rev;
164 	u8	prog_intf;
165 	u8	subclass;
166 	u8	base_class;
167 	u32	subsystem_id;
168 	union win_slot_encoding win_slot;
169 	u32	ser;	/* serial number */
170 } __packed;
171 
172 /**
173  * struct hv_msi_desc
174  * @vector:		IDT entry
175  * @delivery_mode:	As defined in Intel's Programmer's
176  *			Reference Manual, Volume 3, Chapter 8.
177  * @vector_count:	Number of contiguous entries in the
178  *			Interrupt Descriptor Table that are
179  *			occupied by this Message-Signaled
180  *			Interrupt. For "MSI", as first defined
181  *			in PCI 2.2, this can be between 1 and
182  *			32. For "MSI-X," as first defined in PCI
183  *			3.0, this must be 1, as each MSI-X table
184  *			entry would have its own descriptor.
185  * @reserved:		Empty space
186  * @cpu_mask:		All the target virtual processors.
187  */
188 struct hv_msi_desc {
189 	u8	vector;
190 	u8	delivery_mode;
191 	u16	vector_count;
192 	u32	reserved;
193 	u64	cpu_mask;
194 } __packed;
195 
196 /**
197  * struct hv_msi_desc2 - 1.2 version of hv_msi_desc
198  * @vector:		IDT entry
199  * @delivery_mode:	As defined in Intel's Programmer's
200  *			Reference Manual, Volume 3, Chapter 8.
201  * @vector_count:	Number of contiguous entries in the
202  *			Interrupt Descriptor Table that are
203  *			occupied by this Message-Signaled
204  *			Interrupt. For "MSI", as first defined
205  *			in PCI 2.2, this can be between 1 and
206  *			32. For "MSI-X," as first defined in PCI
207  *			3.0, this must be 1, as each MSI-X table
208  *			entry would have its own descriptor.
209  * @processor_count:	number of bits enabled in array.
210  * @processor_array:	All the target virtual processors.
211  */
212 struct hv_msi_desc2 {
213 	u8	vector;
214 	u8	delivery_mode;
215 	u16	vector_count;
216 	u16	processor_count;
217 	u16	processor_array[32];
218 } __packed;
219 
220 /**
221  * struct tran_int_desc
222  * @reserved:		unused, padding
223  * @vector_count:	same as in hv_msi_desc
224  * @data:		This is the "data payload" value that is
225  *			written by the device when it generates
226  *			a message-signaled interrupt, either MSI
227  *			or MSI-X.
228  * @address:		This is the address to which the data
229  *			payload is written on interrupt
230  *			generation.
231  */
232 struct tran_int_desc {
233 	u16	reserved;
234 	u16	vector_count;
235 	u32	data;
236 	u64	address;
237 } __packed;
238 
239 /*
240  * A generic message format for virtual PCI.
241  * Specific message formats are defined later in the file.
242  */
243 
244 struct pci_message {
245 	u32 type;
246 } __packed;
247 
248 struct pci_child_message {
249 	struct pci_message message_type;
250 	union win_slot_encoding wslot;
251 } __packed;
252 
253 struct pci_incoming_message {
254 	struct vmpacket_descriptor hdr;
255 	struct pci_message message_type;
256 } __packed;
257 
258 struct pci_response {
259 	struct vmpacket_descriptor hdr;
260 	s32 status;			/* negative values are failures */
261 } __packed;
262 
263 struct pci_packet {
264 	void (*completion_func)(void *context, struct pci_response *resp,
265 				int resp_packet_size);
266 	void *compl_ctxt;
267 
268 	struct pci_message message[0];
269 };
270 
271 /*
272  * Specific message types supporting the PCI protocol.
273  */
274 
275 /*
276  * Version negotiation message. Sent from the guest to the host.
277  * The guest is free to try different versions until the host
278  * accepts the version.
279  *
280  * pci_version: The protocol version requested.
281  * is_last_attempt: If TRUE, this is the last version guest will request.
282  * reservedz: Reserved field, set to zero.
283  */
284 
285 struct pci_version_request {
286 	struct pci_message message_type;
287 	u32 protocol_version;
288 } __packed;
289 
290 /*
291  * Bus D0 Entry.  This is sent from the guest to the host when the virtual
292  * bus (PCI Express port) is ready for action.
293  */
294 
295 struct pci_bus_d0_entry {
296 	struct pci_message message_type;
297 	u32 reserved;
298 	u64 mmio_base;
299 } __packed;
300 
301 struct pci_bus_relations {
302 	struct pci_incoming_message incoming;
303 	u32 device_count;
304 	struct pci_function_description func[0];
305 } __packed;
306 
307 struct pci_q_res_req_response {
308 	struct vmpacket_descriptor hdr;
309 	s32 status;			/* negative values are failures */
310 	u32 probed_bar[6];
311 } __packed;
312 
313 struct pci_set_power {
314 	struct pci_message message_type;
315 	union win_slot_encoding wslot;
316 	u32 power_state;		/* In Windows terms */
317 	u32 reserved;
318 } __packed;
319 
320 struct pci_set_power_response {
321 	struct vmpacket_descriptor hdr;
322 	s32 status;			/* negative values are failures */
323 	union win_slot_encoding wslot;
324 	u32 resultant_state;		/* In Windows terms */
325 	u32 reserved;
326 } __packed;
327 
328 struct pci_resources_assigned {
329 	struct pci_message message_type;
330 	union win_slot_encoding wslot;
331 	u8 memory_range[0x14][6];	/* not used here */
332 	u32 msi_descriptors;
333 	u32 reserved[4];
334 } __packed;
335 
336 struct pci_resources_assigned2 {
337 	struct pci_message message_type;
338 	union win_slot_encoding wslot;
339 	u8 memory_range[0x14][6];	/* not used here */
340 	u32 msi_descriptor_count;
341 	u8 reserved[70];
342 } __packed;
343 
344 struct pci_create_interrupt {
345 	struct pci_message message_type;
346 	union win_slot_encoding wslot;
347 	struct hv_msi_desc int_desc;
348 } __packed;
349 
350 struct pci_create_int_response {
351 	struct pci_response response;
352 	u32 reserved;
353 	struct tran_int_desc int_desc;
354 } __packed;
355 
356 struct pci_create_interrupt2 {
357 	struct pci_message message_type;
358 	union win_slot_encoding wslot;
359 	struct hv_msi_desc2 int_desc;
360 } __packed;
361 
362 struct pci_delete_interrupt {
363 	struct pci_message message_type;
364 	union win_slot_encoding wslot;
365 	struct tran_int_desc int_desc;
366 } __packed;
367 
368 /*
369  * Note: the VM must pass a valid block id, wslot and bytes_requested.
370  */
371 struct pci_read_block {
372 	struct pci_message message_type;
373 	u32 block_id;
374 	union win_slot_encoding wslot;
375 	u32 bytes_requested;
376 } __packed;
377 
378 struct pci_read_block_response {
379 	struct vmpacket_descriptor hdr;
380 	u32 status;
381 	u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX];
382 } __packed;
383 
384 /*
385  * Note: the VM must pass a valid block id, wslot and byte_count.
386  */
387 struct pci_write_block {
388 	struct pci_message message_type;
389 	u32 block_id;
390 	union win_slot_encoding wslot;
391 	u32 byte_count;
392 	u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX];
393 } __packed;
394 
395 struct pci_dev_inval_block {
396 	struct pci_incoming_message incoming;
397 	union win_slot_encoding wslot;
398 	u64 block_mask;
399 } __packed;
400 
401 struct pci_dev_incoming {
402 	struct pci_incoming_message incoming;
403 	union win_slot_encoding wslot;
404 } __packed;
405 
406 struct pci_eject_response {
407 	struct pci_message message_type;
408 	union win_slot_encoding wslot;
409 	u32 status;
410 } __packed;
411 
412 static int pci_ring_size = (4 * PAGE_SIZE);
413 
414 /*
415  * Definitions or interrupt steering hypercall.
416  */
417 #define HV_PARTITION_ID_SELF		((u64)-1)
418 #define HVCALL_RETARGET_INTERRUPT	0x7e
419 
420 struct hv_interrupt_entry {
421 	u32	source;			/* 1 for MSI(-X) */
422 	u32	reserved1;
423 	u32	address;
424 	u32	data;
425 };
426 
427 /*
428  * flags for hv_device_interrupt_target.flags
429  */
430 #define HV_DEVICE_INTERRUPT_TARGET_MULTICAST		1
431 #define HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET	2
432 
433 struct hv_device_interrupt_target {
434 	u32	vector;
435 	u32	flags;
436 	union {
437 		u64		 vp_mask;
438 		struct hv_vpset vp_set;
439 	};
440 };
441 
442 struct retarget_msi_interrupt {
443 	u64	partition_id;		/* use "self" */
444 	u64	device_id;
445 	struct hv_interrupt_entry int_entry;
446 	u64	reserved2;
447 	struct hv_device_interrupt_target int_target;
448 } __packed __aligned(8);
449 
450 /*
451  * Driver specific state.
452  */
453 
454 enum hv_pcibus_state {
455 	hv_pcibus_init = 0,
456 	hv_pcibus_probed,
457 	hv_pcibus_installed,
458 	hv_pcibus_removed,
459 	hv_pcibus_maximum
460 };
461 
462 struct hv_pcibus_device {
463 	struct pci_sysdata sysdata;
464 	enum hv_pcibus_state state;
465 	refcount_t remove_lock;
466 	struct hv_device *hdev;
467 	resource_size_t low_mmio_space;
468 	resource_size_t high_mmio_space;
469 	struct resource *mem_config;
470 	struct resource *low_mmio_res;
471 	struct resource *high_mmio_res;
472 	struct completion *survey_event;
473 	struct completion remove_event;
474 	struct pci_bus *pci_bus;
475 	spinlock_t config_lock;	/* Avoid two threads writing index page */
476 	spinlock_t device_list_lock;	/* Protect lists below */
477 	void __iomem *cfg_addr;
478 
479 	struct list_head resources_for_children;
480 
481 	struct list_head children;
482 	struct list_head dr_list;
483 
484 	struct msi_domain_info msi_info;
485 	struct msi_controller msi_chip;
486 	struct irq_domain *irq_domain;
487 
488 	spinlock_t retarget_msi_interrupt_lock;
489 
490 	struct workqueue_struct *wq;
491 
492 	/* hypercall arg, must not cross page boundary */
493 	struct retarget_msi_interrupt retarget_msi_interrupt_params;
494 
495 	/*
496 	 * Don't put anything here: retarget_msi_interrupt_params must be last
497 	 */
498 };
499 
500 /*
501  * Tracks "Device Relations" messages from the host, which must be both
502  * processed in order and deferred so that they don't run in the context
503  * of the incoming packet callback.
504  */
505 struct hv_dr_work {
506 	struct work_struct wrk;
507 	struct hv_pcibus_device *bus;
508 };
509 
510 struct hv_dr_state {
511 	struct list_head list_entry;
512 	u32 device_count;
513 	struct pci_function_description func[0];
514 };
515 
516 enum hv_pcichild_state {
517 	hv_pcichild_init = 0,
518 	hv_pcichild_requirements,
519 	hv_pcichild_resourced,
520 	hv_pcichild_ejecting,
521 	hv_pcichild_maximum
522 };
523 
524 struct hv_pci_dev {
525 	/* List protected by pci_rescan_remove_lock */
526 	struct list_head list_entry;
527 	refcount_t refs;
528 	enum hv_pcichild_state state;
529 	struct pci_slot *pci_slot;
530 	struct pci_function_description desc;
531 	bool reported_missing;
532 	struct hv_pcibus_device *hbus;
533 	struct work_struct wrk;
534 
535 	void (*block_invalidate)(void *context, u64 block_mask);
536 	void *invalidate_context;
537 
538 	/*
539 	 * What would be observed if one wrote 0xFFFFFFFF to a BAR and then
540 	 * read it back, for each of the BAR offsets within config space.
541 	 */
542 	u32 probed_bar[6];
543 };
544 
545 struct hv_pci_compl {
546 	struct completion host_event;
547 	s32 completion_status;
548 };
549 
550 static void hv_pci_onchannelcallback(void *context);
551 
552 /**
553  * hv_pci_generic_compl() - Invoked for a completion packet
554  * @context:		Set up by the sender of the packet.
555  * @resp:		The response packet
556  * @resp_packet_size:	Size in bytes of the packet
557  *
558  * This function is used to trigger an event and report status
559  * for any message for which the completion packet contains a
560  * status and nothing else.
561  */
562 static void hv_pci_generic_compl(void *context, struct pci_response *resp,
563 				 int resp_packet_size)
564 {
565 	struct hv_pci_compl *comp_pkt = context;
566 
567 	if (resp_packet_size >= offsetofend(struct pci_response, status))
568 		comp_pkt->completion_status = resp->status;
569 	else
570 		comp_pkt->completion_status = -1;
571 
572 	complete(&comp_pkt->host_event);
573 }
574 
575 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
576 						u32 wslot);
577 
578 static void get_pcichild(struct hv_pci_dev *hpdev)
579 {
580 	refcount_inc(&hpdev->refs);
581 }
582 
583 static void put_pcichild(struct hv_pci_dev *hpdev)
584 {
585 	if (refcount_dec_and_test(&hpdev->refs))
586 		kfree(hpdev);
587 }
588 
589 static void get_hvpcibus(struct hv_pcibus_device *hv_pcibus);
590 static void put_hvpcibus(struct hv_pcibus_device *hv_pcibus);
591 
592 /*
593  * There is no good way to get notified from vmbus_onoffer_rescind(),
594  * so let's use polling here, since this is not a hot path.
595  */
596 static int wait_for_response(struct hv_device *hdev,
597 			     struct completion *comp)
598 {
599 	while (true) {
600 		if (hdev->channel->rescind) {
601 			dev_warn_once(&hdev->device, "The device is gone.\n");
602 			return -ENODEV;
603 		}
604 
605 		if (wait_for_completion_timeout(comp, HZ / 10))
606 			break;
607 	}
608 
609 	return 0;
610 }
611 
612 /**
613  * devfn_to_wslot() - Convert from Linux PCI slot to Windows
614  * @devfn:	The Linux representation of PCI slot
615  *
616  * Windows uses a slightly different representation of PCI slot.
617  *
618  * Return: The Windows representation
619  */
620 static u32 devfn_to_wslot(int devfn)
621 {
622 	union win_slot_encoding wslot;
623 
624 	wslot.slot = 0;
625 	wslot.bits.dev = PCI_SLOT(devfn);
626 	wslot.bits.func = PCI_FUNC(devfn);
627 
628 	return wslot.slot;
629 }
630 
631 /**
632  * wslot_to_devfn() - Convert from Windows PCI slot to Linux
633  * @wslot:	The Windows representation of PCI slot
634  *
635  * Windows uses a slightly different representation of PCI slot.
636  *
637  * Return: The Linux representation
638  */
639 static int wslot_to_devfn(u32 wslot)
640 {
641 	union win_slot_encoding slot_no;
642 
643 	slot_no.slot = wslot;
644 	return PCI_DEVFN(slot_no.bits.dev, slot_no.bits.func);
645 }
646 
647 /*
648  * PCI Configuration Space for these root PCI buses is implemented as a pair
649  * of pages in memory-mapped I/O space.  Writing to the first page chooses
650  * the PCI function being written or read.  Once the first page has been
651  * written to, the following page maps in the entire configuration space of
652  * the function.
653  */
654 
655 /**
656  * _hv_pcifront_read_config() - Internal PCI config read
657  * @hpdev:	The PCI driver's representation of the device
658  * @where:	Offset within config space
659  * @size:	Size of the transfer
660  * @val:	Pointer to the buffer receiving the data
661  */
662 static void _hv_pcifront_read_config(struct hv_pci_dev *hpdev, int where,
663 				     int size, u32 *val)
664 {
665 	unsigned long flags;
666 	void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where;
667 
668 	/*
669 	 * If the attempt is to read the IDs or the ROM BAR, simulate that.
670 	 */
671 	if (where + size <= PCI_COMMAND) {
672 		memcpy(val, ((u8 *)&hpdev->desc.v_id) + where, size);
673 	} else if (where >= PCI_CLASS_REVISION && where + size <=
674 		   PCI_CACHE_LINE_SIZE) {
675 		memcpy(val, ((u8 *)&hpdev->desc.rev) + where -
676 		       PCI_CLASS_REVISION, size);
677 	} else if (where >= PCI_SUBSYSTEM_VENDOR_ID && where + size <=
678 		   PCI_ROM_ADDRESS) {
679 		memcpy(val, (u8 *)&hpdev->desc.subsystem_id + where -
680 		       PCI_SUBSYSTEM_VENDOR_ID, size);
681 	} else if (where >= PCI_ROM_ADDRESS && where + size <=
682 		   PCI_CAPABILITY_LIST) {
683 		/* ROM BARs are unimplemented */
684 		*val = 0;
685 	} else if (where >= PCI_INTERRUPT_LINE && where + size <=
686 		   PCI_INTERRUPT_PIN) {
687 		/*
688 		 * Interrupt Line and Interrupt PIN are hard-wired to zero
689 		 * because this front-end only supports message-signaled
690 		 * interrupts.
691 		 */
692 		*val = 0;
693 	} else if (where + size <= CFG_PAGE_SIZE) {
694 		spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
695 		/* Choose the function to be read. (See comment above) */
696 		writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
697 		/* Make sure the function was chosen before we start reading. */
698 		mb();
699 		/* Read from that function's config space. */
700 		switch (size) {
701 		case 1:
702 			*val = readb(addr);
703 			break;
704 		case 2:
705 			*val = readw(addr);
706 			break;
707 		default:
708 			*val = readl(addr);
709 			break;
710 		}
711 		/*
712 		 * Make sure the read was done before we release the spinlock
713 		 * allowing consecutive reads/writes.
714 		 */
715 		mb();
716 		spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
717 	} else {
718 		dev_err(&hpdev->hbus->hdev->device,
719 			"Attempt to read beyond a function's config space.\n");
720 	}
721 }
722 
723 static u16 hv_pcifront_get_vendor_id(struct hv_pci_dev *hpdev)
724 {
725 	u16 ret;
726 	unsigned long flags;
727 	void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET +
728 			     PCI_VENDOR_ID;
729 
730 	spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
731 
732 	/* Choose the function to be read. (See comment above) */
733 	writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
734 	/* Make sure the function was chosen before we start reading. */
735 	mb();
736 	/* Read from that function's config space. */
737 	ret = readw(addr);
738 	/*
739 	 * mb() is not required here, because the spin_unlock_irqrestore()
740 	 * is a barrier.
741 	 */
742 
743 	spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
744 
745 	return ret;
746 }
747 
748 /**
749  * _hv_pcifront_write_config() - Internal PCI config write
750  * @hpdev:	The PCI driver's representation of the device
751  * @where:	Offset within config space
752  * @size:	Size of the transfer
753  * @val:	The data being transferred
754  */
755 static void _hv_pcifront_write_config(struct hv_pci_dev *hpdev, int where,
756 				      int size, u32 val)
757 {
758 	unsigned long flags;
759 	void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where;
760 
761 	if (where >= PCI_SUBSYSTEM_VENDOR_ID &&
762 	    where + size <= PCI_CAPABILITY_LIST) {
763 		/* SSIDs and ROM BARs are read-only */
764 	} else if (where >= PCI_COMMAND && where + size <= CFG_PAGE_SIZE) {
765 		spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
766 		/* Choose the function to be written. (See comment above) */
767 		writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
768 		/* Make sure the function was chosen before we start writing. */
769 		wmb();
770 		/* Write to that function's config space. */
771 		switch (size) {
772 		case 1:
773 			writeb(val, addr);
774 			break;
775 		case 2:
776 			writew(val, addr);
777 			break;
778 		default:
779 			writel(val, addr);
780 			break;
781 		}
782 		/*
783 		 * Make sure the write was done before we release the spinlock
784 		 * allowing consecutive reads/writes.
785 		 */
786 		mb();
787 		spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
788 	} else {
789 		dev_err(&hpdev->hbus->hdev->device,
790 			"Attempt to write beyond a function's config space.\n");
791 	}
792 }
793 
794 /**
795  * hv_pcifront_read_config() - Read configuration space
796  * @bus: PCI Bus structure
797  * @devfn: Device/function
798  * @where: Offset from base
799  * @size: Byte/word/dword
800  * @val: Value to be read
801  *
802  * Return: PCIBIOS_SUCCESSFUL on success
803  *	   PCIBIOS_DEVICE_NOT_FOUND on failure
804  */
805 static int hv_pcifront_read_config(struct pci_bus *bus, unsigned int devfn,
806 				   int where, int size, u32 *val)
807 {
808 	struct hv_pcibus_device *hbus =
809 		container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
810 	struct hv_pci_dev *hpdev;
811 
812 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
813 	if (!hpdev)
814 		return PCIBIOS_DEVICE_NOT_FOUND;
815 
816 	_hv_pcifront_read_config(hpdev, where, size, val);
817 
818 	put_pcichild(hpdev);
819 	return PCIBIOS_SUCCESSFUL;
820 }
821 
822 /**
823  * hv_pcifront_write_config() - Write configuration space
824  * @bus: PCI Bus structure
825  * @devfn: Device/function
826  * @where: Offset from base
827  * @size: Byte/word/dword
828  * @val: Value to be written to device
829  *
830  * Return: PCIBIOS_SUCCESSFUL on success
831  *	   PCIBIOS_DEVICE_NOT_FOUND on failure
832  */
833 static int hv_pcifront_write_config(struct pci_bus *bus, unsigned int devfn,
834 				    int where, int size, u32 val)
835 {
836 	struct hv_pcibus_device *hbus =
837 	    container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
838 	struct hv_pci_dev *hpdev;
839 
840 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
841 	if (!hpdev)
842 		return PCIBIOS_DEVICE_NOT_FOUND;
843 
844 	_hv_pcifront_write_config(hpdev, where, size, val);
845 
846 	put_pcichild(hpdev);
847 	return PCIBIOS_SUCCESSFUL;
848 }
849 
850 /* PCIe operations */
851 static struct pci_ops hv_pcifront_ops = {
852 	.read  = hv_pcifront_read_config,
853 	.write = hv_pcifront_write_config,
854 };
855 
856 /*
857  * Paravirtual backchannel
858  *
859  * Hyper-V SR-IOV provides a backchannel mechanism in software for
860  * communication between a VF driver and a PF driver.  These
861  * "configuration blocks" are similar in concept to PCI configuration space,
862  * but instead of doing reads and writes in 32-bit chunks through a very slow
863  * path, packets of up to 128 bytes can be sent or received asynchronously.
864  *
865  * Nearly every SR-IOV device contains just such a communications channel in
866  * hardware, so using this one in software is usually optional.  Using the
867  * software channel, however, allows driver implementers to leverage software
868  * tools that fuzz the communications channel looking for vulnerabilities.
869  *
870  * The usage model for these packets puts the responsibility for reading or
871  * writing on the VF driver.  The VF driver sends a read or a write packet,
872  * indicating which "block" is being referred to by number.
873  *
874  * If the PF driver wishes to initiate communication, it can "invalidate" one or
875  * more of the first 64 blocks.  This invalidation is delivered via a callback
876  * supplied by the VF driver by this driver.
877  *
878  * No protocol is implied, except that supplied by the PF and VF drivers.
879  */
880 
881 struct hv_read_config_compl {
882 	struct hv_pci_compl comp_pkt;
883 	void *buf;
884 	unsigned int len;
885 	unsigned int bytes_returned;
886 };
887 
888 /**
889  * hv_pci_read_config_compl() - Invoked when a response packet
890  * for a read config block operation arrives.
891  * @context:		Identifies the read config operation
892  * @resp:		The response packet itself
893  * @resp_packet_size:	Size in bytes of the response packet
894  */
895 static void hv_pci_read_config_compl(void *context, struct pci_response *resp,
896 				     int resp_packet_size)
897 {
898 	struct hv_read_config_compl *comp = context;
899 	struct pci_read_block_response *read_resp =
900 		(struct pci_read_block_response *)resp;
901 	unsigned int data_len, hdr_len;
902 
903 	hdr_len = offsetof(struct pci_read_block_response, bytes);
904 	if (resp_packet_size < hdr_len) {
905 		comp->comp_pkt.completion_status = -1;
906 		goto out;
907 	}
908 
909 	data_len = resp_packet_size - hdr_len;
910 	if (data_len > 0 && read_resp->status == 0) {
911 		comp->bytes_returned = min(comp->len, data_len);
912 		memcpy(comp->buf, read_resp->bytes, comp->bytes_returned);
913 	} else {
914 		comp->bytes_returned = 0;
915 	}
916 
917 	comp->comp_pkt.completion_status = read_resp->status;
918 out:
919 	complete(&comp->comp_pkt.host_event);
920 }
921 
922 /**
923  * hv_read_config_block() - Sends a read config block request to
924  * the back-end driver running in the Hyper-V parent partition.
925  * @pdev:		The PCI driver's representation for this device.
926  * @buf:		Buffer into which the config block will be copied.
927  * @len:		Size in bytes of buf.
928  * @block_id:		Identifies the config block which has been requested.
929  * @bytes_returned:	Size which came back from the back-end driver.
930  *
931  * Return: 0 on success, -errno on failure
932  */
933 int hv_read_config_block(struct pci_dev *pdev, void *buf, unsigned int len,
934 			 unsigned int block_id, unsigned int *bytes_returned)
935 {
936 	struct hv_pcibus_device *hbus =
937 		container_of(pdev->bus->sysdata, struct hv_pcibus_device,
938 			     sysdata);
939 	struct {
940 		struct pci_packet pkt;
941 		char buf[sizeof(struct pci_read_block)];
942 	} pkt;
943 	struct hv_read_config_compl comp_pkt;
944 	struct pci_read_block *read_blk;
945 	int ret;
946 
947 	if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX)
948 		return -EINVAL;
949 
950 	init_completion(&comp_pkt.comp_pkt.host_event);
951 	comp_pkt.buf = buf;
952 	comp_pkt.len = len;
953 
954 	memset(&pkt, 0, sizeof(pkt));
955 	pkt.pkt.completion_func = hv_pci_read_config_compl;
956 	pkt.pkt.compl_ctxt = &comp_pkt;
957 	read_blk = (struct pci_read_block *)&pkt.pkt.message;
958 	read_blk->message_type.type = PCI_READ_BLOCK;
959 	read_blk->wslot.slot = devfn_to_wslot(pdev->devfn);
960 	read_blk->block_id = block_id;
961 	read_blk->bytes_requested = len;
962 
963 	ret = vmbus_sendpacket(hbus->hdev->channel, read_blk,
964 			       sizeof(*read_blk), (unsigned long)&pkt.pkt,
965 			       VM_PKT_DATA_INBAND,
966 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
967 	if (ret)
968 		return ret;
969 
970 	ret = wait_for_response(hbus->hdev, &comp_pkt.comp_pkt.host_event);
971 	if (ret)
972 		return ret;
973 
974 	if (comp_pkt.comp_pkt.completion_status != 0 ||
975 	    comp_pkt.bytes_returned == 0) {
976 		dev_err(&hbus->hdev->device,
977 			"Read Config Block failed: 0x%x, bytes_returned=%d\n",
978 			comp_pkt.comp_pkt.completion_status,
979 			comp_pkt.bytes_returned);
980 		return -EIO;
981 	}
982 
983 	*bytes_returned = comp_pkt.bytes_returned;
984 	return 0;
985 }
986 
987 /**
988  * hv_pci_write_config_compl() - Invoked when a response packet for a write
989  * config block operation arrives.
990  * @context:		Identifies the write config operation
991  * @resp:		The response packet itself
992  * @resp_packet_size:	Size in bytes of the response packet
993  */
994 static void hv_pci_write_config_compl(void *context, struct pci_response *resp,
995 				      int resp_packet_size)
996 {
997 	struct hv_pci_compl *comp_pkt = context;
998 
999 	comp_pkt->completion_status = resp->status;
1000 	complete(&comp_pkt->host_event);
1001 }
1002 
1003 /**
1004  * hv_write_config_block() - Sends a write config block request to the
1005  * back-end driver running in the Hyper-V parent partition.
1006  * @pdev:		The PCI driver's representation for this device.
1007  * @buf:		Buffer from which the config block will	be copied.
1008  * @len:		Size in bytes of buf.
1009  * @block_id:		Identifies the config block which is being written.
1010  *
1011  * Return: 0 on success, -errno on failure
1012  */
1013 int hv_write_config_block(struct pci_dev *pdev, void *buf, unsigned int len,
1014 			  unsigned int block_id)
1015 {
1016 	struct hv_pcibus_device *hbus =
1017 		container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1018 			     sysdata);
1019 	struct {
1020 		struct pci_packet pkt;
1021 		char buf[sizeof(struct pci_write_block)];
1022 		u32 reserved;
1023 	} pkt;
1024 	struct hv_pci_compl comp_pkt;
1025 	struct pci_write_block *write_blk;
1026 	u32 pkt_size;
1027 	int ret;
1028 
1029 	if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX)
1030 		return -EINVAL;
1031 
1032 	init_completion(&comp_pkt.host_event);
1033 
1034 	memset(&pkt, 0, sizeof(pkt));
1035 	pkt.pkt.completion_func = hv_pci_write_config_compl;
1036 	pkt.pkt.compl_ctxt = &comp_pkt;
1037 	write_blk = (struct pci_write_block *)&pkt.pkt.message;
1038 	write_blk->message_type.type = PCI_WRITE_BLOCK;
1039 	write_blk->wslot.slot = devfn_to_wslot(pdev->devfn);
1040 	write_blk->block_id = block_id;
1041 	write_blk->byte_count = len;
1042 	memcpy(write_blk->bytes, buf, len);
1043 	pkt_size = offsetof(struct pci_write_block, bytes) + len;
1044 	/*
1045 	 * This quirk is required on some hosts shipped around 2018, because
1046 	 * these hosts don't check the pkt_size correctly (new hosts have been
1047 	 * fixed since early 2019). The quirk is also safe on very old hosts
1048 	 * and new hosts, because, on them, what really matters is the length
1049 	 * specified in write_blk->byte_count.
1050 	 */
1051 	pkt_size += sizeof(pkt.reserved);
1052 
1053 	ret = vmbus_sendpacket(hbus->hdev->channel, write_blk, pkt_size,
1054 			       (unsigned long)&pkt.pkt, VM_PKT_DATA_INBAND,
1055 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1056 	if (ret)
1057 		return ret;
1058 
1059 	ret = wait_for_response(hbus->hdev, &comp_pkt.host_event);
1060 	if (ret)
1061 		return ret;
1062 
1063 	if (comp_pkt.completion_status != 0) {
1064 		dev_err(&hbus->hdev->device,
1065 			"Write Config Block failed: 0x%x\n",
1066 			comp_pkt.completion_status);
1067 		return -EIO;
1068 	}
1069 
1070 	return 0;
1071 }
1072 
1073 /**
1074  * hv_register_block_invalidate() - Invoked when a config block invalidation
1075  * arrives from the back-end driver.
1076  * @pdev:		The PCI driver's representation for this device.
1077  * @context:		Identifies the device.
1078  * @block_invalidate:	Identifies all of the blocks being invalidated.
1079  *
1080  * Return: 0 on success, -errno on failure
1081  */
1082 int hv_register_block_invalidate(struct pci_dev *pdev, void *context,
1083 				 void (*block_invalidate)(void *context,
1084 							  u64 block_mask))
1085 {
1086 	struct hv_pcibus_device *hbus =
1087 		container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1088 			     sysdata);
1089 	struct hv_pci_dev *hpdev;
1090 
1091 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1092 	if (!hpdev)
1093 		return -ENODEV;
1094 
1095 	hpdev->block_invalidate = block_invalidate;
1096 	hpdev->invalidate_context = context;
1097 
1098 	put_pcichild(hpdev);
1099 	return 0;
1100 
1101 }
1102 
1103 /* Interrupt management hooks */
1104 static void hv_int_desc_free(struct hv_pci_dev *hpdev,
1105 			     struct tran_int_desc *int_desc)
1106 {
1107 	struct pci_delete_interrupt *int_pkt;
1108 	struct {
1109 		struct pci_packet pkt;
1110 		u8 buffer[sizeof(struct pci_delete_interrupt)];
1111 	} ctxt;
1112 
1113 	memset(&ctxt, 0, sizeof(ctxt));
1114 	int_pkt = (struct pci_delete_interrupt *)&ctxt.pkt.message;
1115 	int_pkt->message_type.type =
1116 		PCI_DELETE_INTERRUPT_MESSAGE;
1117 	int_pkt->wslot.slot = hpdev->desc.win_slot.slot;
1118 	int_pkt->int_desc = *int_desc;
1119 	vmbus_sendpacket(hpdev->hbus->hdev->channel, int_pkt, sizeof(*int_pkt),
1120 			 (unsigned long)&ctxt.pkt, VM_PKT_DATA_INBAND, 0);
1121 	kfree(int_desc);
1122 }
1123 
1124 /**
1125  * hv_msi_free() - Free the MSI.
1126  * @domain:	The interrupt domain pointer
1127  * @info:	Extra MSI-related context
1128  * @irq:	Identifies the IRQ.
1129  *
1130  * The Hyper-V parent partition and hypervisor are tracking the
1131  * messages that are in use, keeping the interrupt redirection
1132  * table up to date.  This callback sends a message that frees
1133  * the IRT entry and related tracking nonsense.
1134  */
1135 static void hv_msi_free(struct irq_domain *domain, struct msi_domain_info *info,
1136 			unsigned int irq)
1137 {
1138 	struct hv_pcibus_device *hbus;
1139 	struct hv_pci_dev *hpdev;
1140 	struct pci_dev *pdev;
1141 	struct tran_int_desc *int_desc;
1142 	struct irq_data *irq_data = irq_domain_get_irq_data(domain, irq);
1143 	struct msi_desc *msi = irq_data_get_msi_desc(irq_data);
1144 
1145 	pdev = msi_desc_to_pci_dev(msi);
1146 	hbus = info->data;
1147 	int_desc = irq_data_get_irq_chip_data(irq_data);
1148 	if (!int_desc)
1149 		return;
1150 
1151 	irq_data->chip_data = NULL;
1152 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1153 	if (!hpdev) {
1154 		kfree(int_desc);
1155 		return;
1156 	}
1157 
1158 	hv_int_desc_free(hpdev, int_desc);
1159 	put_pcichild(hpdev);
1160 }
1161 
1162 static int hv_set_affinity(struct irq_data *data, const struct cpumask *dest,
1163 			   bool force)
1164 {
1165 	struct irq_data *parent = data->parent_data;
1166 
1167 	return parent->chip->irq_set_affinity(parent, dest, force);
1168 }
1169 
1170 static void hv_irq_mask(struct irq_data *data)
1171 {
1172 	pci_msi_mask_irq(data);
1173 }
1174 
1175 /**
1176  * hv_irq_unmask() - "Unmask" the IRQ by setting its current
1177  * affinity.
1178  * @data:	Describes the IRQ
1179  *
1180  * Build new a destination for the MSI and make a hypercall to
1181  * update the Interrupt Redirection Table. "Device Logical ID"
1182  * is built out of this PCI bus's instance GUID and the function
1183  * number of the device.
1184  */
1185 static void hv_irq_unmask(struct irq_data *data)
1186 {
1187 	struct msi_desc *msi_desc = irq_data_get_msi_desc(data);
1188 	struct irq_cfg *cfg = irqd_cfg(data);
1189 	struct retarget_msi_interrupt *params;
1190 	struct hv_pcibus_device *hbus;
1191 	struct cpumask *dest;
1192 	cpumask_var_t tmp;
1193 	struct pci_bus *pbus;
1194 	struct pci_dev *pdev;
1195 	unsigned long flags;
1196 	u32 var_size = 0;
1197 	int cpu, nr_bank;
1198 	u64 res;
1199 
1200 	dest = irq_data_get_effective_affinity_mask(data);
1201 	pdev = msi_desc_to_pci_dev(msi_desc);
1202 	pbus = pdev->bus;
1203 	hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
1204 
1205 	spin_lock_irqsave(&hbus->retarget_msi_interrupt_lock, flags);
1206 
1207 	params = &hbus->retarget_msi_interrupt_params;
1208 	memset(params, 0, sizeof(*params));
1209 	params->partition_id = HV_PARTITION_ID_SELF;
1210 	params->int_entry.source = 1; /* MSI(-X) */
1211 	params->int_entry.address = msi_desc->msg.address_lo;
1212 	params->int_entry.data = msi_desc->msg.data;
1213 	params->device_id = (hbus->hdev->dev_instance.b[5] << 24) |
1214 			   (hbus->hdev->dev_instance.b[4] << 16) |
1215 			   (hbus->hdev->dev_instance.b[7] << 8) |
1216 			   (hbus->hdev->dev_instance.b[6] & 0xf8) |
1217 			   PCI_FUNC(pdev->devfn);
1218 	params->int_target.vector = cfg->vector;
1219 
1220 	/*
1221 	 * Honoring apic->irq_delivery_mode set to dest_Fixed by
1222 	 * setting the HV_DEVICE_INTERRUPT_TARGET_MULTICAST flag results in a
1223 	 * spurious interrupt storm. Not doing so does not seem to have a
1224 	 * negative effect (yet?).
1225 	 */
1226 
1227 	if (pci_protocol_version >= PCI_PROTOCOL_VERSION_1_2) {
1228 		/*
1229 		 * PCI_PROTOCOL_VERSION_1_2 supports the VP_SET version of the
1230 		 * HVCALL_RETARGET_INTERRUPT hypercall, which also coincides
1231 		 * with >64 VP support.
1232 		 * ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED
1233 		 * is not sufficient for this hypercall.
1234 		 */
1235 		params->int_target.flags |=
1236 			HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET;
1237 
1238 		if (!alloc_cpumask_var(&tmp, GFP_ATOMIC)) {
1239 			res = 1;
1240 			goto exit_unlock;
1241 		}
1242 
1243 		cpumask_and(tmp, dest, cpu_online_mask);
1244 		nr_bank = cpumask_to_vpset(&params->int_target.vp_set, tmp);
1245 		free_cpumask_var(tmp);
1246 
1247 		if (nr_bank <= 0) {
1248 			res = 1;
1249 			goto exit_unlock;
1250 		}
1251 
1252 		/*
1253 		 * var-sized hypercall, var-size starts after vp_mask (thus
1254 		 * vp_set.format does not count, but vp_set.valid_bank_mask
1255 		 * does).
1256 		 */
1257 		var_size = 1 + nr_bank;
1258 	} else {
1259 		for_each_cpu_and(cpu, dest, cpu_online_mask) {
1260 			params->int_target.vp_mask |=
1261 				(1ULL << hv_cpu_number_to_vp_number(cpu));
1262 		}
1263 	}
1264 
1265 	res = hv_do_hypercall(HVCALL_RETARGET_INTERRUPT | (var_size << 17),
1266 			      params, NULL);
1267 
1268 exit_unlock:
1269 	spin_unlock_irqrestore(&hbus->retarget_msi_interrupt_lock, flags);
1270 
1271 	if (res) {
1272 		dev_err(&hbus->hdev->device,
1273 			"%s() failed: %#llx", __func__, res);
1274 		return;
1275 	}
1276 
1277 	pci_msi_unmask_irq(data);
1278 }
1279 
1280 struct compose_comp_ctxt {
1281 	struct hv_pci_compl comp_pkt;
1282 	struct tran_int_desc int_desc;
1283 };
1284 
1285 static void hv_pci_compose_compl(void *context, struct pci_response *resp,
1286 				 int resp_packet_size)
1287 {
1288 	struct compose_comp_ctxt *comp_pkt = context;
1289 	struct pci_create_int_response *int_resp =
1290 		(struct pci_create_int_response *)resp;
1291 
1292 	comp_pkt->comp_pkt.completion_status = resp->status;
1293 	comp_pkt->int_desc = int_resp->int_desc;
1294 	complete(&comp_pkt->comp_pkt.host_event);
1295 }
1296 
1297 static u32 hv_compose_msi_req_v1(
1298 	struct pci_create_interrupt *int_pkt, struct cpumask *affinity,
1299 	u32 slot, u8 vector)
1300 {
1301 	int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE;
1302 	int_pkt->wslot.slot = slot;
1303 	int_pkt->int_desc.vector = vector;
1304 	int_pkt->int_desc.vector_count = 1;
1305 	int_pkt->int_desc.delivery_mode = dest_Fixed;
1306 
1307 	/*
1308 	 * Create MSI w/ dummy vCPU set, overwritten by subsequent retarget in
1309 	 * hv_irq_unmask().
1310 	 */
1311 	int_pkt->int_desc.cpu_mask = CPU_AFFINITY_ALL;
1312 
1313 	return sizeof(*int_pkt);
1314 }
1315 
1316 static u32 hv_compose_msi_req_v2(
1317 	struct pci_create_interrupt2 *int_pkt, struct cpumask *affinity,
1318 	u32 slot, u8 vector)
1319 {
1320 	int cpu;
1321 
1322 	int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE2;
1323 	int_pkt->wslot.slot = slot;
1324 	int_pkt->int_desc.vector = vector;
1325 	int_pkt->int_desc.vector_count = 1;
1326 	int_pkt->int_desc.delivery_mode = dest_Fixed;
1327 
1328 	/*
1329 	 * Create MSI w/ dummy vCPU set targeting just one vCPU, overwritten
1330 	 * by subsequent retarget in hv_irq_unmask().
1331 	 */
1332 	cpu = cpumask_first_and(affinity, cpu_online_mask);
1333 	int_pkt->int_desc.processor_array[0] =
1334 		hv_cpu_number_to_vp_number(cpu);
1335 	int_pkt->int_desc.processor_count = 1;
1336 
1337 	return sizeof(*int_pkt);
1338 }
1339 
1340 /**
1341  * hv_compose_msi_msg() - Supplies a valid MSI address/data
1342  * @data:	Everything about this MSI
1343  * @msg:	Buffer that is filled in by this function
1344  *
1345  * This function unpacks the IRQ looking for target CPU set, IDT
1346  * vector and mode and sends a message to the parent partition
1347  * asking for a mapping for that tuple in this partition.  The
1348  * response supplies a data value and address to which that data
1349  * should be written to trigger that interrupt.
1350  */
1351 static void hv_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
1352 {
1353 	struct irq_cfg *cfg = irqd_cfg(data);
1354 	struct hv_pcibus_device *hbus;
1355 	struct hv_pci_dev *hpdev;
1356 	struct pci_bus *pbus;
1357 	struct pci_dev *pdev;
1358 	struct cpumask *dest;
1359 	unsigned long flags;
1360 	struct compose_comp_ctxt comp;
1361 	struct tran_int_desc *int_desc;
1362 	struct {
1363 		struct pci_packet pci_pkt;
1364 		union {
1365 			struct pci_create_interrupt v1;
1366 			struct pci_create_interrupt2 v2;
1367 		} int_pkts;
1368 	} __packed ctxt;
1369 
1370 	u32 size;
1371 	int ret;
1372 
1373 	pdev = msi_desc_to_pci_dev(irq_data_get_msi_desc(data));
1374 	dest = irq_data_get_effective_affinity_mask(data);
1375 	pbus = pdev->bus;
1376 	hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
1377 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1378 	if (!hpdev)
1379 		goto return_null_message;
1380 
1381 	/* Free any previous message that might have already been composed. */
1382 	if (data->chip_data) {
1383 		int_desc = data->chip_data;
1384 		data->chip_data = NULL;
1385 		hv_int_desc_free(hpdev, int_desc);
1386 	}
1387 
1388 	int_desc = kzalloc(sizeof(*int_desc), GFP_ATOMIC);
1389 	if (!int_desc)
1390 		goto drop_reference;
1391 
1392 	memset(&ctxt, 0, sizeof(ctxt));
1393 	init_completion(&comp.comp_pkt.host_event);
1394 	ctxt.pci_pkt.completion_func = hv_pci_compose_compl;
1395 	ctxt.pci_pkt.compl_ctxt = &comp;
1396 
1397 	switch (pci_protocol_version) {
1398 	case PCI_PROTOCOL_VERSION_1_1:
1399 		size = hv_compose_msi_req_v1(&ctxt.int_pkts.v1,
1400 					dest,
1401 					hpdev->desc.win_slot.slot,
1402 					cfg->vector);
1403 		break;
1404 
1405 	case PCI_PROTOCOL_VERSION_1_2:
1406 		size = hv_compose_msi_req_v2(&ctxt.int_pkts.v2,
1407 					dest,
1408 					hpdev->desc.win_slot.slot,
1409 					cfg->vector);
1410 		break;
1411 
1412 	default:
1413 		/* As we only negotiate protocol versions known to this driver,
1414 		 * this path should never hit. However, this is it not a hot
1415 		 * path so we print a message to aid future updates.
1416 		 */
1417 		dev_err(&hbus->hdev->device,
1418 			"Unexpected vPCI protocol, update driver.");
1419 		goto free_int_desc;
1420 	}
1421 
1422 	ret = vmbus_sendpacket(hpdev->hbus->hdev->channel, &ctxt.int_pkts,
1423 			       size, (unsigned long)&ctxt.pci_pkt,
1424 			       VM_PKT_DATA_INBAND,
1425 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1426 	if (ret) {
1427 		dev_err(&hbus->hdev->device,
1428 			"Sending request for interrupt failed: 0x%x",
1429 			comp.comp_pkt.completion_status);
1430 		goto free_int_desc;
1431 	}
1432 
1433 	/*
1434 	 * Since this function is called with IRQ locks held, can't
1435 	 * do normal wait for completion; instead poll.
1436 	 */
1437 	while (!try_wait_for_completion(&comp.comp_pkt.host_event)) {
1438 		/* 0xFFFF means an invalid PCI VENDOR ID. */
1439 		if (hv_pcifront_get_vendor_id(hpdev) == 0xFFFF) {
1440 			dev_err_once(&hbus->hdev->device,
1441 				     "the device has gone\n");
1442 			goto free_int_desc;
1443 		}
1444 
1445 		/*
1446 		 * When the higher level interrupt code calls us with
1447 		 * interrupt disabled, we must poll the channel by calling
1448 		 * the channel callback directly when channel->target_cpu is
1449 		 * the current CPU. When the higher level interrupt code
1450 		 * calls us with interrupt enabled, let's add the
1451 		 * local_irq_save()/restore() to avoid race:
1452 		 * hv_pci_onchannelcallback() can also run in tasklet.
1453 		 */
1454 		local_irq_save(flags);
1455 
1456 		if (hbus->hdev->channel->target_cpu == smp_processor_id())
1457 			hv_pci_onchannelcallback(hbus);
1458 
1459 		local_irq_restore(flags);
1460 
1461 		if (hpdev->state == hv_pcichild_ejecting) {
1462 			dev_err_once(&hbus->hdev->device,
1463 				     "the device is being ejected\n");
1464 			goto free_int_desc;
1465 		}
1466 
1467 		udelay(100);
1468 	}
1469 
1470 	if (comp.comp_pkt.completion_status < 0) {
1471 		dev_err(&hbus->hdev->device,
1472 			"Request for interrupt failed: 0x%x",
1473 			comp.comp_pkt.completion_status);
1474 		goto free_int_desc;
1475 	}
1476 
1477 	/*
1478 	 * Record the assignment so that this can be unwound later. Using
1479 	 * irq_set_chip_data() here would be appropriate, but the lock it takes
1480 	 * is already held.
1481 	 */
1482 	*int_desc = comp.int_desc;
1483 	data->chip_data = int_desc;
1484 
1485 	/* Pass up the result. */
1486 	msg->address_hi = comp.int_desc.address >> 32;
1487 	msg->address_lo = comp.int_desc.address & 0xffffffff;
1488 	msg->data = comp.int_desc.data;
1489 
1490 	put_pcichild(hpdev);
1491 	return;
1492 
1493 free_int_desc:
1494 	kfree(int_desc);
1495 drop_reference:
1496 	put_pcichild(hpdev);
1497 return_null_message:
1498 	msg->address_hi = 0;
1499 	msg->address_lo = 0;
1500 	msg->data = 0;
1501 }
1502 
1503 /* HW Interrupt Chip Descriptor */
1504 static struct irq_chip hv_msi_irq_chip = {
1505 	.name			= "Hyper-V PCIe MSI",
1506 	.irq_compose_msi_msg	= hv_compose_msi_msg,
1507 	.irq_set_affinity	= hv_set_affinity,
1508 	.irq_ack		= irq_chip_ack_parent,
1509 	.irq_mask		= hv_irq_mask,
1510 	.irq_unmask		= hv_irq_unmask,
1511 };
1512 
1513 static irq_hw_number_t hv_msi_domain_ops_get_hwirq(struct msi_domain_info *info,
1514 						   msi_alloc_info_t *arg)
1515 {
1516 	return arg->msi_hwirq;
1517 }
1518 
1519 static struct msi_domain_ops hv_msi_ops = {
1520 	.get_hwirq	= hv_msi_domain_ops_get_hwirq,
1521 	.msi_prepare	= pci_msi_prepare,
1522 	.set_desc	= pci_msi_set_desc,
1523 	.msi_free	= hv_msi_free,
1524 };
1525 
1526 /**
1527  * hv_pcie_init_irq_domain() - Initialize IRQ domain
1528  * @hbus:	The root PCI bus
1529  *
1530  * This function creates an IRQ domain which will be used for
1531  * interrupts from devices that have been passed through.  These
1532  * devices only support MSI and MSI-X, not line-based interrupts
1533  * or simulations of line-based interrupts through PCIe's
1534  * fabric-layer messages.  Because interrupts are remapped, we
1535  * can support multi-message MSI here.
1536  *
1537  * Return: '0' on success and error value on failure
1538  */
1539 static int hv_pcie_init_irq_domain(struct hv_pcibus_device *hbus)
1540 {
1541 	hbus->msi_info.chip = &hv_msi_irq_chip;
1542 	hbus->msi_info.ops = &hv_msi_ops;
1543 	hbus->msi_info.flags = (MSI_FLAG_USE_DEF_DOM_OPS |
1544 		MSI_FLAG_USE_DEF_CHIP_OPS | MSI_FLAG_MULTI_PCI_MSI |
1545 		MSI_FLAG_PCI_MSIX);
1546 	hbus->msi_info.handler = handle_edge_irq;
1547 	hbus->msi_info.handler_name = "edge";
1548 	hbus->msi_info.data = hbus;
1549 	hbus->irq_domain = pci_msi_create_irq_domain(hbus->sysdata.fwnode,
1550 						     &hbus->msi_info,
1551 						     x86_vector_domain);
1552 	if (!hbus->irq_domain) {
1553 		dev_err(&hbus->hdev->device,
1554 			"Failed to build an MSI IRQ domain\n");
1555 		return -ENODEV;
1556 	}
1557 
1558 	return 0;
1559 }
1560 
1561 /**
1562  * get_bar_size() - Get the address space consumed by a BAR
1563  * @bar_val:	Value that a BAR returned after -1 was written
1564  *              to it.
1565  *
1566  * This function returns the size of the BAR, rounded up to 1
1567  * page.  It has to be rounded up because the hypervisor's page
1568  * table entry that maps the BAR into the VM can't specify an
1569  * offset within a page.  The invariant is that the hypervisor
1570  * must place any BARs of smaller than page length at the
1571  * beginning of a page.
1572  *
1573  * Return:	Size in bytes of the consumed MMIO space.
1574  */
1575 static u64 get_bar_size(u64 bar_val)
1576 {
1577 	return round_up((1 + ~(bar_val & PCI_BASE_ADDRESS_MEM_MASK)),
1578 			PAGE_SIZE);
1579 }
1580 
1581 /**
1582  * survey_child_resources() - Total all MMIO requirements
1583  * @hbus:	Root PCI bus, as understood by this driver
1584  */
1585 static void survey_child_resources(struct hv_pcibus_device *hbus)
1586 {
1587 	struct hv_pci_dev *hpdev;
1588 	resource_size_t bar_size = 0;
1589 	unsigned long flags;
1590 	struct completion *event;
1591 	u64 bar_val;
1592 	int i;
1593 
1594 	/* If nobody is waiting on the answer, don't compute it. */
1595 	event = xchg(&hbus->survey_event, NULL);
1596 	if (!event)
1597 		return;
1598 
1599 	/* If the answer has already been computed, go with it. */
1600 	if (hbus->low_mmio_space || hbus->high_mmio_space) {
1601 		complete(event);
1602 		return;
1603 	}
1604 
1605 	spin_lock_irqsave(&hbus->device_list_lock, flags);
1606 
1607 	/*
1608 	 * Due to an interesting quirk of the PCI spec, all memory regions
1609 	 * for a child device are a power of 2 in size and aligned in memory,
1610 	 * so it's sufficient to just add them up without tracking alignment.
1611 	 */
1612 	list_for_each_entry(hpdev, &hbus->children, list_entry) {
1613 		for (i = 0; i < 6; i++) {
1614 			if (hpdev->probed_bar[i] & PCI_BASE_ADDRESS_SPACE_IO)
1615 				dev_err(&hbus->hdev->device,
1616 					"There's an I/O BAR in this list!\n");
1617 
1618 			if (hpdev->probed_bar[i] != 0) {
1619 				/*
1620 				 * A probed BAR has all the upper bits set that
1621 				 * can be changed.
1622 				 */
1623 
1624 				bar_val = hpdev->probed_bar[i];
1625 				if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
1626 					bar_val |=
1627 					((u64)hpdev->probed_bar[++i] << 32);
1628 				else
1629 					bar_val |= 0xffffffff00000000ULL;
1630 
1631 				bar_size = get_bar_size(bar_val);
1632 
1633 				if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
1634 					hbus->high_mmio_space += bar_size;
1635 				else
1636 					hbus->low_mmio_space += bar_size;
1637 			}
1638 		}
1639 	}
1640 
1641 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1642 	complete(event);
1643 }
1644 
1645 /**
1646  * prepopulate_bars() - Fill in BARs with defaults
1647  * @hbus:	Root PCI bus, as understood by this driver
1648  *
1649  * The core PCI driver code seems much, much happier if the BARs
1650  * for a device have values upon first scan. So fill them in.
1651  * The algorithm below works down from large sizes to small,
1652  * attempting to pack the assignments optimally. The assumption,
1653  * enforced in other parts of the code, is that the beginning of
1654  * the memory-mapped I/O space will be aligned on the largest
1655  * BAR size.
1656  */
1657 static void prepopulate_bars(struct hv_pcibus_device *hbus)
1658 {
1659 	resource_size_t high_size = 0;
1660 	resource_size_t low_size = 0;
1661 	resource_size_t high_base = 0;
1662 	resource_size_t low_base = 0;
1663 	resource_size_t bar_size;
1664 	struct hv_pci_dev *hpdev;
1665 	unsigned long flags;
1666 	u64 bar_val;
1667 	u32 command;
1668 	bool high;
1669 	int i;
1670 
1671 	if (hbus->low_mmio_space) {
1672 		low_size = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
1673 		low_base = hbus->low_mmio_res->start;
1674 	}
1675 
1676 	if (hbus->high_mmio_space) {
1677 		high_size = 1ULL <<
1678 			(63 - __builtin_clzll(hbus->high_mmio_space));
1679 		high_base = hbus->high_mmio_res->start;
1680 	}
1681 
1682 	spin_lock_irqsave(&hbus->device_list_lock, flags);
1683 
1684 	/* Pick addresses for the BARs. */
1685 	do {
1686 		list_for_each_entry(hpdev, &hbus->children, list_entry) {
1687 			for (i = 0; i < 6; i++) {
1688 				bar_val = hpdev->probed_bar[i];
1689 				if (bar_val == 0)
1690 					continue;
1691 				high = bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64;
1692 				if (high) {
1693 					bar_val |=
1694 						((u64)hpdev->probed_bar[i + 1]
1695 						 << 32);
1696 				} else {
1697 					bar_val |= 0xffffffffULL << 32;
1698 				}
1699 				bar_size = get_bar_size(bar_val);
1700 				if (high) {
1701 					if (high_size != bar_size) {
1702 						i++;
1703 						continue;
1704 					}
1705 					_hv_pcifront_write_config(hpdev,
1706 						PCI_BASE_ADDRESS_0 + (4 * i),
1707 						4,
1708 						(u32)(high_base & 0xffffff00));
1709 					i++;
1710 					_hv_pcifront_write_config(hpdev,
1711 						PCI_BASE_ADDRESS_0 + (4 * i),
1712 						4, (u32)(high_base >> 32));
1713 					high_base += bar_size;
1714 				} else {
1715 					if (low_size != bar_size)
1716 						continue;
1717 					_hv_pcifront_write_config(hpdev,
1718 						PCI_BASE_ADDRESS_0 + (4 * i),
1719 						4,
1720 						(u32)(low_base & 0xffffff00));
1721 					low_base += bar_size;
1722 				}
1723 			}
1724 			if (high_size <= 1 && low_size <= 1) {
1725 				/* Set the memory enable bit. */
1726 				_hv_pcifront_read_config(hpdev, PCI_COMMAND, 2,
1727 							 &command);
1728 				command |= PCI_COMMAND_MEMORY;
1729 				_hv_pcifront_write_config(hpdev, PCI_COMMAND, 2,
1730 							  command);
1731 				break;
1732 			}
1733 		}
1734 
1735 		high_size >>= 1;
1736 		low_size >>= 1;
1737 	}  while (high_size || low_size);
1738 
1739 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1740 }
1741 
1742 /*
1743  * Assign entries in sysfs pci slot directory.
1744  *
1745  * Note that this function does not need to lock the children list
1746  * because it is called from pci_devices_present_work which
1747  * is serialized with hv_eject_device_work because they are on the
1748  * same ordered workqueue. Therefore hbus->children list will not change
1749  * even when pci_create_slot sleeps.
1750  */
1751 static void hv_pci_assign_slots(struct hv_pcibus_device *hbus)
1752 {
1753 	struct hv_pci_dev *hpdev;
1754 	char name[SLOT_NAME_SIZE];
1755 	int slot_nr;
1756 
1757 	list_for_each_entry(hpdev, &hbus->children, list_entry) {
1758 		if (hpdev->pci_slot)
1759 			continue;
1760 
1761 		slot_nr = PCI_SLOT(wslot_to_devfn(hpdev->desc.win_slot.slot));
1762 		snprintf(name, SLOT_NAME_SIZE, "%u", hpdev->desc.ser);
1763 		hpdev->pci_slot = pci_create_slot(hbus->pci_bus, slot_nr,
1764 					  name, NULL);
1765 		if (IS_ERR(hpdev->pci_slot)) {
1766 			pr_warn("pci_create slot %s failed\n", name);
1767 			hpdev->pci_slot = NULL;
1768 		}
1769 	}
1770 }
1771 
1772 /*
1773  * Remove entries in sysfs pci slot directory.
1774  */
1775 static void hv_pci_remove_slots(struct hv_pcibus_device *hbus)
1776 {
1777 	struct hv_pci_dev *hpdev;
1778 
1779 	list_for_each_entry(hpdev, &hbus->children, list_entry) {
1780 		if (!hpdev->pci_slot)
1781 			continue;
1782 		pci_destroy_slot(hpdev->pci_slot);
1783 		hpdev->pci_slot = NULL;
1784 	}
1785 }
1786 
1787 /**
1788  * create_root_hv_pci_bus() - Expose a new root PCI bus
1789  * @hbus:	Root PCI bus, as understood by this driver
1790  *
1791  * Return: 0 on success, -errno on failure
1792  */
1793 static int create_root_hv_pci_bus(struct hv_pcibus_device *hbus)
1794 {
1795 	/* Register the device */
1796 	hbus->pci_bus = pci_create_root_bus(&hbus->hdev->device,
1797 					    0, /* bus number is always zero */
1798 					    &hv_pcifront_ops,
1799 					    &hbus->sysdata,
1800 					    &hbus->resources_for_children);
1801 	if (!hbus->pci_bus)
1802 		return -ENODEV;
1803 
1804 	hbus->pci_bus->msi = &hbus->msi_chip;
1805 	hbus->pci_bus->msi->dev = &hbus->hdev->device;
1806 
1807 	pci_lock_rescan_remove();
1808 	pci_scan_child_bus(hbus->pci_bus);
1809 	pci_bus_assign_resources(hbus->pci_bus);
1810 	hv_pci_assign_slots(hbus);
1811 	pci_bus_add_devices(hbus->pci_bus);
1812 	pci_unlock_rescan_remove();
1813 	hbus->state = hv_pcibus_installed;
1814 	return 0;
1815 }
1816 
1817 struct q_res_req_compl {
1818 	struct completion host_event;
1819 	struct hv_pci_dev *hpdev;
1820 };
1821 
1822 /**
1823  * q_resource_requirements() - Query Resource Requirements
1824  * @context:		The completion context.
1825  * @resp:		The response that came from the host.
1826  * @resp_packet_size:	The size in bytes of resp.
1827  *
1828  * This function is invoked on completion of a Query Resource
1829  * Requirements packet.
1830  */
1831 static void q_resource_requirements(void *context, struct pci_response *resp,
1832 				    int resp_packet_size)
1833 {
1834 	struct q_res_req_compl *completion = context;
1835 	struct pci_q_res_req_response *q_res_req =
1836 		(struct pci_q_res_req_response *)resp;
1837 	int i;
1838 
1839 	if (resp->status < 0) {
1840 		dev_err(&completion->hpdev->hbus->hdev->device,
1841 			"query resource requirements failed: %x\n",
1842 			resp->status);
1843 	} else {
1844 		for (i = 0; i < 6; i++) {
1845 			completion->hpdev->probed_bar[i] =
1846 				q_res_req->probed_bar[i];
1847 		}
1848 	}
1849 
1850 	complete(&completion->host_event);
1851 }
1852 
1853 /**
1854  * new_pcichild_device() - Create a new child device
1855  * @hbus:	The internal struct tracking this root PCI bus.
1856  * @desc:	The information supplied so far from the host
1857  *              about the device.
1858  *
1859  * This function creates the tracking structure for a new child
1860  * device and kicks off the process of figuring out what it is.
1861  *
1862  * Return: Pointer to the new tracking struct
1863  */
1864 static struct hv_pci_dev *new_pcichild_device(struct hv_pcibus_device *hbus,
1865 		struct pci_function_description *desc)
1866 {
1867 	struct hv_pci_dev *hpdev;
1868 	struct pci_child_message *res_req;
1869 	struct q_res_req_compl comp_pkt;
1870 	struct {
1871 		struct pci_packet init_packet;
1872 		u8 buffer[sizeof(struct pci_child_message)];
1873 	} pkt;
1874 	unsigned long flags;
1875 	int ret;
1876 
1877 	hpdev = kzalloc(sizeof(*hpdev), GFP_KERNEL);
1878 	if (!hpdev)
1879 		return NULL;
1880 
1881 	hpdev->hbus = hbus;
1882 
1883 	memset(&pkt, 0, sizeof(pkt));
1884 	init_completion(&comp_pkt.host_event);
1885 	comp_pkt.hpdev = hpdev;
1886 	pkt.init_packet.compl_ctxt = &comp_pkt;
1887 	pkt.init_packet.completion_func = q_resource_requirements;
1888 	res_req = (struct pci_child_message *)&pkt.init_packet.message;
1889 	res_req->message_type.type = PCI_QUERY_RESOURCE_REQUIREMENTS;
1890 	res_req->wslot.slot = desc->win_slot.slot;
1891 
1892 	ret = vmbus_sendpacket(hbus->hdev->channel, res_req,
1893 			       sizeof(struct pci_child_message),
1894 			       (unsigned long)&pkt.init_packet,
1895 			       VM_PKT_DATA_INBAND,
1896 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1897 	if (ret)
1898 		goto error;
1899 
1900 	if (wait_for_response(hbus->hdev, &comp_pkt.host_event))
1901 		goto error;
1902 
1903 	hpdev->desc = *desc;
1904 	refcount_set(&hpdev->refs, 1);
1905 	get_pcichild(hpdev);
1906 	spin_lock_irqsave(&hbus->device_list_lock, flags);
1907 
1908 	list_add_tail(&hpdev->list_entry, &hbus->children);
1909 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1910 	return hpdev;
1911 
1912 error:
1913 	kfree(hpdev);
1914 	return NULL;
1915 }
1916 
1917 /**
1918  * get_pcichild_wslot() - Find device from slot
1919  * @hbus:	Root PCI bus, as understood by this driver
1920  * @wslot:	Location on the bus
1921  *
1922  * This function looks up a PCI device and returns the internal
1923  * representation of it.  It acquires a reference on it, so that
1924  * the device won't be deleted while somebody is using it.  The
1925  * caller is responsible for calling put_pcichild() to release
1926  * this reference.
1927  *
1928  * Return:	Internal representation of a PCI device
1929  */
1930 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
1931 					     u32 wslot)
1932 {
1933 	unsigned long flags;
1934 	struct hv_pci_dev *iter, *hpdev = NULL;
1935 
1936 	spin_lock_irqsave(&hbus->device_list_lock, flags);
1937 	list_for_each_entry(iter, &hbus->children, list_entry) {
1938 		if (iter->desc.win_slot.slot == wslot) {
1939 			hpdev = iter;
1940 			get_pcichild(hpdev);
1941 			break;
1942 		}
1943 	}
1944 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1945 
1946 	return hpdev;
1947 }
1948 
1949 /**
1950  * pci_devices_present_work() - Handle new list of child devices
1951  * @work:	Work struct embedded in struct hv_dr_work
1952  *
1953  * "Bus Relations" is the Windows term for "children of this
1954  * bus."  The terminology is preserved here for people trying to
1955  * debug the interaction between Hyper-V and Linux.  This
1956  * function is called when the parent partition reports a list
1957  * of functions that should be observed under this PCI Express
1958  * port (bus).
1959  *
1960  * This function updates the list, and must tolerate being
1961  * called multiple times with the same information.  The typical
1962  * number of child devices is one, with very atypical cases
1963  * involving three or four, so the algorithms used here can be
1964  * simple and inefficient.
1965  *
1966  * It must also treat the omission of a previously observed device as
1967  * notification that the device no longer exists.
1968  *
1969  * Note that this function is serialized with hv_eject_device_work(),
1970  * because both are pushed to the ordered workqueue hbus->wq.
1971  */
1972 static void pci_devices_present_work(struct work_struct *work)
1973 {
1974 	u32 child_no;
1975 	bool found;
1976 	struct pci_function_description *new_desc;
1977 	struct hv_pci_dev *hpdev;
1978 	struct hv_pcibus_device *hbus;
1979 	struct list_head removed;
1980 	struct hv_dr_work *dr_wrk;
1981 	struct hv_dr_state *dr = NULL;
1982 	unsigned long flags;
1983 
1984 	dr_wrk = container_of(work, struct hv_dr_work, wrk);
1985 	hbus = dr_wrk->bus;
1986 	kfree(dr_wrk);
1987 
1988 	INIT_LIST_HEAD(&removed);
1989 
1990 	/* Pull this off the queue and process it if it was the last one. */
1991 	spin_lock_irqsave(&hbus->device_list_lock, flags);
1992 	while (!list_empty(&hbus->dr_list)) {
1993 		dr = list_first_entry(&hbus->dr_list, struct hv_dr_state,
1994 				      list_entry);
1995 		list_del(&dr->list_entry);
1996 
1997 		/* Throw this away if the list still has stuff in it. */
1998 		if (!list_empty(&hbus->dr_list)) {
1999 			kfree(dr);
2000 			continue;
2001 		}
2002 	}
2003 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2004 
2005 	if (!dr) {
2006 		put_hvpcibus(hbus);
2007 		return;
2008 	}
2009 
2010 	/* First, mark all existing children as reported missing. */
2011 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2012 	list_for_each_entry(hpdev, &hbus->children, list_entry) {
2013 		hpdev->reported_missing = true;
2014 	}
2015 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2016 
2017 	/* Next, add back any reported devices. */
2018 	for (child_no = 0; child_no < dr->device_count; child_no++) {
2019 		found = false;
2020 		new_desc = &dr->func[child_no];
2021 
2022 		spin_lock_irqsave(&hbus->device_list_lock, flags);
2023 		list_for_each_entry(hpdev, &hbus->children, list_entry) {
2024 			if ((hpdev->desc.win_slot.slot == new_desc->win_slot.slot) &&
2025 			    (hpdev->desc.v_id == new_desc->v_id) &&
2026 			    (hpdev->desc.d_id == new_desc->d_id) &&
2027 			    (hpdev->desc.ser == new_desc->ser)) {
2028 				hpdev->reported_missing = false;
2029 				found = true;
2030 			}
2031 		}
2032 		spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2033 
2034 		if (!found) {
2035 			hpdev = new_pcichild_device(hbus, new_desc);
2036 			if (!hpdev)
2037 				dev_err(&hbus->hdev->device,
2038 					"couldn't record a child device.\n");
2039 		}
2040 	}
2041 
2042 	/* Move missing children to a list on the stack. */
2043 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2044 	do {
2045 		found = false;
2046 		list_for_each_entry(hpdev, &hbus->children, list_entry) {
2047 			if (hpdev->reported_missing) {
2048 				found = true;
2049 				put_pcichild(hpdev);
2050 				list_move_tail(&hpdev->list_entry, &removed);
2051 				break;
2052 			}
2053 		}
2054 	} while (found);
2055 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2056 
2057 	/* Delete everything that should no longer exist. */
2058 	while (!list_empty(&removed)) {
2059 		hpdev = list_first_entry(&removed, struct hv_pci_dev,
2060 					 list_entry);
2061 		list_del(&hpdev->list_entry);
2062 
2063 		if (hpdev->pci_slot)
2064 			pci_destroy_slot(hpdev->pci_slot);
2065 
2066 		put_pcichild(hpdev);
2067 	}
2068 
2069 	switch (hbus->state) {
2070 	case hv_pcibus_installed:
2071 		/*
2072 		 * Tell the core to rescan bus
2073 		 * because there may have been changes.
2074 		 */
2075 		pci_lock_rescan_remove();
2076 		pci_scan_child_bus(hbus->pci_bus);
2077 		hv_pci_assign_slots(hbus);
2078 		pci_unlock_rescan_remove();
2079 		break;
2080 
2081 	case hv_pcibus_init:
2082 	case hv_pcibus_probed:
2083 		survey_child_resources(hbus);
2084 		break;
2085 
2086 	default:
2087 		break;
2088 	}
2089 
2090 	put_hvpcibus(hbus);
2091 	kfree(dr);
2092 }
2093 
2094 /**
2095  * hv_pci_devices_present() - Handles list of new children
2096  * @hbus:	Root PCI bus, as understood by this driver
2097  * @relations:	Packet from host listing children
2098  *
2099  * This function is invoked whenever a new list of devices for
2100  * this bus appears.
2101  */
2102 static void hv_pci_devices_present(struct hv_pcibus_device *hbus,
2103 				   struct pci_bus_relations *relations)
2104 {
2105 	struct hv_dr_state *dr;
2106 	struct hv_dr_work *dr_wrk;
2107 	unsigned long flags;
2108 	bool pending_dr;
2109 
2110 	dr_wrk = kzalloc(sizeof(*dr_wrk), GFP_NOWAIT);
2111 	if (!dr_wrk)
2112 		return;
2113 
2114 	dr = kzalloc(offsetof(struct hv_dr_state, func) +
2115 		     (sizeof(struct pci_function_description) *
2116 		      (relations->device_count)), GFP_NOWAIT);
2117 	if (!dr)  {
2118 		kfree(dr_wrk);
2119 		return;
2120 	}
2121 
2122 	INIT_WORK(&dr_wrk->wrk, pci_devices_present_work);
2123 	dr_wrk->bus = hbus;
2124 	dr->device_count = relations->device_count;
2125 	if (dr->device_count != 0) {
2126 		memcpy(dr->func, relations->func,
2127 		       sizeof(struct pci_function_description) *
2128 		       dr->device_count);
2129 	}
2130 
2131 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2132 	/*
2133 	 * If pending_dr is true, we have already queued a work,
2134 	 * which will see the new dr. Otherwise, we need to
2135 	 * queue a new work.
2136 	 */
2137 	pending_dr = !list_empty(&hbus->dr_list);
2138 	list_add_tail(&dr->list_entry, &hbus->dr_list);
2139 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2140 
2141 	if (pending_dr) {
2142 		kfree(dr_wrk);
2143 	} else {
2144 		get_hvpcibus(hbus);
2145 		queue_work(hbus->wq, &dr_wrk->wrk);
2146 	}
2147 }
2148 
2149 /**
2150  * hv_eject_device_work() - Asynchronously handles ejection
2151  * @work:	Work struct embedded in internal device struct
2152  *
2153  * This function handles ejecting a device.  Windows will
2154  * attempt to gracefully eject a device, waiting 60 seconds to
2155  * hear back from the guest OS that this completed successfully.
2156  * If this timer expires, the device will be forcibly removed.
2157  */
2158 static void hv_eject_device_work(struct work_struct *work)
2159 {
2160 	struct pci_eject_response *ejct_pkt;
2161 	struct hv_pcibus_device *hbus;
2162 	struct hv_pci_dev *hpdev;
2163 	struct pci_dev *pdev;
2164 	unsigned long flags;
2165 	int wslot;
2166 	struct {
2167 		struct pci_packet pkt;
2168 		u8 buffer[sizeof(struct pci_eject_response)];
2169 	} ctxt;
2170 
2171 	hpdev = container_of(work, struct hv_pci_dev, wrk);
2172 	hbus = hpdev->hbus;
2173 
2174 	WARN_ON(hpdev->state != hv_pcichild_ejecting);
2175 
2176 	/*
2177 	 * Ejection can come before or after the PCI bus has been set up, so
2178 	 * attempt to find it and tear down the bus state, if it exists.  This
2179 	 * must be done without constructs like pci_domain_nr(hbus->pci_bus)
2180 	 * because hbus->pci_bus may not exist yet.
2181 	 */
2182 	wslot = wslot_to_devfn(hpdev->desc.win_slot.slot);
2183 	pdev = pci_get_domain_bus_and_slot(hbus->sysdata.domain, 0, wslot);
2184 	if (pdev) {
2185 		pci_lock_rescan_remove();
2186 		pci_stop_and_remove_bus_device(pdev);
2187 		pci_dev_put(pdev);
2188 		pci_unlock_rescan_remove();
2189 	}
2190 
2191 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2192 	list_del(&hpdev->list_entry);
2193 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2194 
2195 	if (hpdev->pci_slot)
2196 		pci_destroy_slot(hpdev->pci_slot);
2197 
2198 	memset(&ctxt, 0, sizeof(ctxt));
2199 	ejct_pkt = (struct pci_eject_response *)&ctxt.pkt.message;
2200 	ejct_pkt->message_type.type = PCI_EJECTION_COMPLETE;
2201 	ejct_pkt->wslot.slot = hpdev->desc.win_slot.slot;
2202 	vmbus_sendpacket(hbus->hdev->channel, ejct_pkt,
2203 			 sizeof(*ejct_pkt), (unsigned long)&ctxt.pkt,
2204 			 VM_PKT_DATA_INBAND, 0);
2205 
2206 	/* For the get_pcichild() in hv_pci_eject_device() */
2207 	put_pcichild(hpdev);
2208 	/* For the two refs got in new_pcichild_device() */
2209 	put_pcichild(hpdev);
2210 	put_pcichild(hpdev);
2211 	/* hpdev has been freed. Do not use it any more. */
2212 
2213 	put_hvpcibus(hbus);
2214 }
2215 
2216 /**
2217  * hv_pci_eject_device() - Handles device ejection
2218  * @hpdev:	Internal device tracking struct
2219  *
2220  * This function is invoked when an ejection packet arrives.  It
2221  * just schedules work so that we don't re-enter the packet
2222  * delivery code handling the ejection.
2223  */
2224 static void hv_pci_eject_device(struct hv_pci_dev *hpdev)
2225 {
2226 	hpdev->state = hv_pcichild_ejecting;
2227 	get_pcichild(hpdev);
2228 	INIT_WORK(&hpdev->wrk, hv_eject_device_work);
2229 	get_hvpcibus(hpdev->hbus);
2230 	queue_work(hpdev->hbus->wq, &hpdev->wrk);
2231 }
2232 
2233 /**
2234  * hv_pci_onchannelcallback() - Handles incoming packets
2235  * @context:	Internal bus tracking struct
2236  *
2237  * This function is invoked whenever the host sends a packet to
2238  * this channel (which is private to this root PCI bus).
2239  */
2240 static void hv_pci_onchannelcallback(void *context)
2241 {
2242 	const int packet_size = 0x100;
2243 	int ret;
2244 	struct hv_pcibus_device *hbus = context;
2245 	u32 bytes_recvd;
2246 	u64 req_id;
2247 	struct vmpacket_descriptor *desc;
2248 	unsigned char *buffer;
2249 	int bufferlen = packet_size;
2250 	struct pci_packet *comp_packet;
2251 	struct pci_response *response;
2252 	struct pci_incoming_message *new_message;
2253 	struct pci_bus_relations *bus_rel;
2254 	struct pci_dev_inval_block *inval;
2255 	struct pci_dev_incoming *dev_message;
2256 	struct hv_pci_dev *hpdev;
2257 
2258 	buffer = kmalloc(bufferlen, GFP_ATOMIC);
2259 	if (!buffer)
2260 		return;
2261 
2262 	while (1) {
2263 		ret = vmbus_recvpacket_raw(hbus->hdev->channel, buffer,
2264 					   bufferlen, &bytes_recvd, &req_id);
2265 
2266 		if (ret == -ENOBUFS) {
2267 			kfree(buffer);
2268 			/* Handle large packet */
2269 			bufferlen = bytes_recvd;
2270 			buffer = kmalloc(bytes_recvd, GFP_ATOMIC);
2271 			if (!buffer)
2272 				return;
2273 			continue;
2274 		}
2275 
2276 		/* Zero length indicates there are no more packets. */
2277 		if (ret || !bytes_recvd)
2278 			break;
2279 
2280 		/*
2281 		 * All incoming packets must be at least as large as a
2282 		 * response.
2283 		 */
2284 		if (bytes_recvd <= sizeof(struct pci_response))
2285 			continue;
2286 		desc = (struct vmpacket_descriptor *)buffer;
2287 
2288 		switch (desc->type) {
2289 		case VM_PKT_COMP:
2290 
2291 			/*
2292 			 * The host is trusted, and thus it's safe to interpret
2293 			 * this transaction ID as a pointer.
2294 			 */
2295 			comp_packet = (struct pci_packet *)req_id;
2296 			response = (struct pci_response *)buffer;
2297 			comp_packet->completion_func(comp_packet->compl_ctxt,
2298 						     response,
2299 						     bytes_recvd);
2300 			break;
2301 
2302 		case VM_PKT_DATA_INBAND:
2303 
2304 			new_message = (struct pci_incoming_message *)buffer;
2305 			switch (new_message->message_type.type) {
2306 			case PCI_BUS_RELATIONS:
2307 
2308 				bus_rel = (struct pci_bus_relations *)buffer;
2309 				if (bytes_recvd <
2310 				    offsetof(struct pci_bus_relations, func) +
2311 				    (sizeof(struct pci_function_description) *
2312 				     (bus_rel->device_count))) {
2313 					dev_err(&hbus->hdev->device,
2314 						"bus relations too small\n");
2315 					break;
2316 				}
2317 
2318 				hv_pci_devices_present(hbus, bus_rel);
2319 				break;
2320 
2321 			case PCI_EJECT:
2322 
2323 				dev_message = (struct pci_dev_incoming *)buffer;
2324 				hpdev = get_pcichild_wslot(hbus,
2325 						      dev_message->wslot.slot);
2326 				if (hpdev) {
2327 					hv_pci_eject_device(hpdev);
2328 					put_pcichild(hpdev);
2329 				}
2330 				break;
2331 
2332 			case PCI_INVALIDATE_BLOCK:
2333 
2334 				inval = (struct pci_dev_inval_block *)buffer;
2335 				hpdev = get_pcichild_wslot(hbus,
2336 							   inval->wslot.slot);
2337 				if (hpdev) {
2338 					if (hpdev->block_invalidate) {
2339 						hpdev->block_invalidate(
2340 						    hpdev->invalidate_context,
2341 						    inval->block_mask);
2342 					}
2343 					put_pcichild(hpdev);
2344 				}
2345 				break;
2346 
2347 			default:
2348 				dev_warn(&hbus->hdev->device,
2349 					"Unimplemented protocol message %x\n",
2350 					new_message->message_type.type);
2351 				break;
2352 			}
2353 			break;
2354 
2355 		default:
2356 			dev_err(&hbus->hdev->device,
2357 				"unhandled packet type %d, tid %llx len %d\n",
2358 				desc->type, req_id, bytes_recvd);
2359 			break;
2360 		}
2361 	}
2362 
2363 	kfree(buffer);
2364 }
2365 
2366 /**
2367  * hv_pci_protocol_negotiation() - Set up protocol
2368  * @hdev:	VMBus's tracking struct for this root PCI bus
2369  *
2370  * This driver is intended to support running on Windows 10
2371  * (server) and later versions. It will not run on earlier
2372  * versions, as they assume that many of the operations which
2373  * Linux needs accomplished with a spinlock held were done via
2374  * asynchronous messaging via VMBus.  Windows 10 increases the
2375  * surface area of PCI emulation so that these actions can take
2376  * place by suspending a virtual processor for their duration.
2377  *
2378  * This function negotiates the channel protocol version,
2379  * failing if the host doesn't support the necessary protocol
2380  * level.
2381  */
2382 static int hv_pci_protocol_negotiation(struct hv_device *hdev)
2383 {
2384 	struct pci_version_request *version_req;
2385 	struct hv_pci_compl comp_pkt;
2386 	struct pci_packet *pkt;
2387 	int ret;
2388 	int i;
2389 
2390 	/*
2391 	 * Initiate the handshake with the host and negotiate
2392 	 * a version that the host can support. We start with the
2393 	 * highest version number and go down if the host cannot
2394 	 * support it.
2395 	 */
2396 	pkt = kzalloc(sizeof(*pkt) + sizeof(*version_req), GFP_KERNEL);
2397 	if (!pkt)
2398 		return -ENOMEM;
2399 
2400 	init_completion(&comp_pkt.host_event);
2401 	pkt->completion_func = hv_pci_generic_compl;
2402 	pkt->compl_ctxt = &comp_pkt;
2403 	version_req = (struct pci_version_request *)&pkt->message;
2404 	version_req->message_type.type = PCI_QUERY_PROTOCOL_VERSION;
2405 
2406 	for (i = 0; i < ARRAY_SIZE(pci_protocol_versions); i++) {
2407 		version_req->protocol_version = pci_protocol_versions[i];
2408 		ret = vmbus_sendpacket(hdev->channel, version_req,
2409 				sizeof(struct pci_version_request),
2410 				(unsigned long)pkt, VM_PKT_DATA_INBAND,
2411 				VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2412 		if (!ret)
2413 			ret = wait_for_response(hdev, &comp_pkt.host_event);
2414 
2415 		if (ret) {
2416 			dev_err(&hdev->device,
2417 				"PCI Pass-through VSP failed to request version: %d",
2418 				ret);
2419 			goto exit;
2420 		}
2421 
2422 		if (comp_pkt.completion_status >= 0) {
2423 			pci_protocol_version = pci_protocol_versions[i];
2424 			dev_info(&hdev->device,
2425 				"PCI VMBus probing: Using version %#x\n",
2426 				pci_protocol_version);
2427 			goto exit;
2428 		}
2429 
2430 		if (comp_pkt.completion_status != STATUS_REVISION_MISMATCH) {
2431 			dev_err(&hdev->device,
2432 				"PCI Pass-through VSP failed version request: %#x",
2433 				comp_pkt.completion_status);
2434 			ret = -EPROTO;
2435 			goto exit;
2436 		}
2437 
2438 		reinit_completion(&comp_pkt.host_event);
2439 	}
2440 
2441 	dev_err(&hdev->device,
2442 		"PCI pass-through VSP failed to find supported version");
2443 	ret = -EPROTO;
2444 
2445 exit:
2446 	kfree(pkt);
2447 	return ret;
2448 }
2449 
2450 /**
2451  * hv_pci_free_bridge_windows() - Release memory regions for the
2452  * bus
2453  * @hbus:	Root PCI bus, as understood by this driver
2454  */
2455 static void hv_pci_free_bridge_windows(struct hv_pcibus_device *hbus)
2456 {
2457 	/*
2458 	 * Set the resources back to the way they looked when they
2459 	 * were allocated by setting IORESOURCE_BUSY again.
2460 	 */
2461 
2462 	if (hbus->low_mmio_space && hbus->low_mmio_res) {
2463 		hbus->low_mmio_res->flags |= IORESOURCE_BUSY;
2464 		vmbus_free_mmio(hbus->low_mmio_res->start,
2465 				resource_size(hbus->low_mmio_res));
2466 	}
2467 
2468 	if (hbus->high_mmio_space && hbus->high_mmio_res) {
2469 		hbus->high_mmio_res->flags |= IORESOURCE_BUSY;
2470 		vmbus_free_mmio(hbus->high_mmio_res->start,
2471 				resource_size(hbus->high_mmio_res));
2472 	}
2473 }
2474 
2475 /**
2476  * hv_pci_allocate_bridge_windows() - Allocate memory regions
2477  * for the bus
2478  * @hbus:	Root PCI bus, as understood by this driver
2479  *
2480  * This function calls vmbus_allocate_mmio(), which is itself a
2481  * bit of a compromise.  Ideally, we might change the pnp layer
2482  * in the kernel such that it comprehends either PCI devices
2483  * which are "grandchildren of ACPI," with some intermediate bus
2484  * node (in this case, VMBus) or change it such that it
2485  * understands VMBus.  The pnp layer, however, has been declared
2486  * deprecated, and not subject to change.
2487  *
2488  * The workaround, implemented here, is to ask VMBus to allocate
2489  * MMIO space for this bus.  VMBus itself knows which ranges are
2490  * appropriate by looking at its own ACPI objects.  Then, after
2491  * these ranges are claimed, they're modified to look like they
2492  * would have looked if the ACPI and pnp code had allocated
2493  * bridge windows.  These descriptors have to exist in this form
2494  * in order to satisfy the code which will get invoked when the
2495  * endpoint PCI function driver calls request_mem_region() or
2496  * request_mem_region_exclusive().
2497  *
2498  * Return: 0 on success, -errno on failure
2499  */
2500 static int hv_pci_allocate_bridge_windows(struct hv_pcibus_device *hbus)
2501 {
2502 	resource_size_t align;
2503 	int ret;
2504 
2505 	if (hbus->low_mmio_space) {
2506 		align = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
2507 		ret = vmbus_allocate_mmio(&hbus->low_mmio_res, hbus->hdev, 0,
2508 					  (u64)(u32)0xffffffff,
2509 					  hbus->low_mmio_space,
2510 					  align, false);
2511 		if (ret) {
2512 			dev_err(&hbus->hdev->device,
2513 				"Need %#llx of low MMIO space. Consider reconfiguring the VM.\n",
2514 				hbus->low_mmio_space);
2515 			return ret;
2516 		}
2517 
2518 		/* Modify this resource to become a bridge window. */
2519 		hbus->low_mmio_res->flags |= IORESOURCE_WINDOW;
2520 		hbus->low_mmio_res->flags &= ~IORESOURCE_BUSY;
2521 		pci_add_resource(&hbus->resources_for_children,
2522 				 hbus->low_mmio_res);
2523 	}
2524 
2525 	if (hbus->high_mmio_space) {
2526 		align = 1ULL << (63 - __builtin_clzll(hbus->high_mmio_space));
2527 		ret = vmbus_allocate_mmio(&hbus->high_mmio_res, hbus->hdev,
2528 					  0x100000000, -1,
2529 					  hbus->high_mmio_space, align,
2530 					  false);
2531 		if (ret) {
2532 			dev_err(&hbus->hdev->device,
2533 				"Need %#llx of high MMIO space. Consider reconfiguring the VM.\n",
2534 				hbus->high_mmio_space);
2535 			goto release_low_mmio;
2536 		}
2537 
2538 		/* Modify this resource to become a bridge window. */
2539 		hbus->high_mmio_res->flags |= IORESOURCE_WINDOW;
2540 		hbus->high_mmio_res->flags &= ~IORESOURCE_BUSY;
2541 		pci_add_resource(&hbus->resources_for_children,
2542 				 hbus->high_mmio_res);
2543 	}
2544 
2545 	return 0;
2546 
2547 release_low_mmio:
2548 	if (hbus->low_mmio_res) {
2549 		vmbus_free_mmio(hbus->low_mmio_res->start,
2550 				resource_size(hbus->low_mmio_res));
2551 	}
2552 
2553 	return ret;
2554 }
2555 
2556 /**
2557  * hv_allocate_config_window() - Find MMIO space for PCI Config
2558  * @hbus:	Root PCI bus, as understood by this driver
2559  *
2560  * This function claims memory-mapped I/O space for accessing
2561  * configuration space for the functions on this bus.
2562  *
2563  * Return: 0 on success, -errno on failure
2564  */
2565 static int hv_allocate_config_window(struct hv_pcibus_device *hbus)
2566 {
2567 	int ret;
2568 
2569 	/*
2570 	 * Set up a region of MMIO space to use for accessing configuration
2571 	 * space.
2572 	 */
2573 	ret = vmbus_allocate_mmio(&hbus->mem_config, hbus->hdev, 0, -1,
2574 				  PCI_CONFIG_MMIO_LENGTH, 0x1000, false);
2575 	if (ret)
2576 		return ret;
2577 
2578 	/*
2579 	 * vmbus_allocate_mmio() gets used for allocating both device endpoint
2580 	 * resource claims (those which cannot be overlapped) and the ranges
2581 	 * which are valid for the children of this bus, which are intended
2582 	 * to be overlapped by those children.  Set the flag on this claim
2583 	 * meaning that this region can't be overlapped.
2584 	 */
2585 
2586 	hbus->mem_config->flags |= IORESOURCE_BUSY;
2587 
2588 	return 0;
2589 }
2590 
2591 static void hv_free_config_window(struct hv_pcibus_device *hbus)
2592 {
2593 	vmbus_free_mmio(hbus->mem_config->start, PCI_CONFIG_MMIO_LENGTH);
2594 }
2595 
2596 /**
2597  * hv_pci_enter_d0() - Bring the "bus" into the D0 power state
2598  * @hdev:	VMBus's tracking struct for this root PCI bus
2599  *
2600  * Return: 0 on success, -errno on failure
2601  */
2602 static int hv_pci_enter_d0(struct hv_device *hdev)
2603 {
2604 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2605 	struct pci_bus_d0_entry *d0_entry;
2606 	struct hv_pci_compl comp_pkt;
2607 	struct pci_packet *pkt;
2608 	int ret;
2609 
2610 	/*
2611 	 * Tell the host that the bus is ready to use, and moved into the
2612 	 * powered-on state.  This includes telling the host which region
2613 	 * of memory-mapped I/O space has been chosen for configuration space
2614 	 * access.
2615 	 */
2616 	pkt = kzalloc(sizeof(*pkt) + sizeof(*d0_entry), GFP_KERNEL);
2617 	if (!pkt)
2618 		return -ENOMEM;
2619 
2620 	init_completion(&comp_pkt.host_event);
2621 	pkt->completion_func = hv_pci_generic_compl;
2622 	pkt->compl_ctxt = &comp_pkt;
2623 	d0_entry = (struct pci_bus_d0_entry *)&pkt->message;
2624 	d0_entry->message_type.type = PCI_BUS_D0ENTRY;
2625 	d0_entry->mmio_base = hbus->mem_config->start;
2626 
2627 	ret = vmbus_sendpacket(hdev->channel, d0_entry, sizeof(*d0_entry),
2628 			       (unsigned long)pkt, VM_PKT_DATA_INBAND,
2629 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2630 	if (!ret)
2631 		ret = wait_for_response(hdev, &comp_pkt.host_event);
2632 
2633 	if (ret)
2634 		goto exit;
2635 
2636 	if (comp_pkt.completion_status < 0) {
2637 		dev_err(&hdev->device,
2638 			"PCI Pass-through VSP failed D0 Entry with status %x\n",
2639 			comp_pkt.completion_status);
2640 		ret = -EPROTO;
2641 		goto exit;
2642 	}
2643 
2644 	ret = 0;
2645 
2646 exit:
2647 	kfree(pkt);
2648 	return ret;
2649 }
2650 
2651 /**
2652  * hv_pci_query_relations() - Ask host to send list of child
2653  * devices
2654  * @hdev:	VMBus's tracking struct for this root PCI bus
2655  *
2656  * Return: 0 on success, -errno on failure
2657  */
2658 static int hv_pci_query_relations(struct hv_device *hdev)
2659 {
2660 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2661 	struct pci_message message;
2662 	struct completion comp;
2663 	int ret;
2664 
2665 	/* Ask the host to send along the list of child devices */
2666 	init_completion(&comp);
2667 	if (cmpxchg(&hbus->survey_event, NULL, &comp))
2668 		return -ENOTEMPTY;
2669 
2670 	memset(&message, 0, sizeof(message));
2671 	message.type = PCI_QUERY_BUS_RELATIONS;
2672 
2673 	ret = vmbus_sendpacket(hdev->channel, &message, sizeof(message),
2674 			       0, VM_PKT_DATA_INBAND, 0);
2675 	if (!ret)
2676 		ret = wait_for_response(hdev, &comp);
2677 
2678 	return ret;
2679 }
2680 
2681 /**
2682  * hv_send_resources_allocated() - Report local resource choices
2683  * @hdev:	VMBus's tracking struct for this root PCI bus
2684  *
2685  * The host OS is expecting to be sent a request as a message
2686  * which contains all the resources that the device will use.
2687  * The response contains those same resources, "translated"
2688  * which is to say, the values which should be used by the
2689  * hardware, when it delivers an interrupt.  (MMIO resources are
2690  * used in local terms.)  This is nice for Windows, and lines up
2691  * with the FDO/PDO split, which doesn't exist in Linux.  Linux
2692  * is deeply expecting to scan an emulated PCI configuration
2693  * space.  So this message is sent here only to drive the state
2694  * machine on the host forward.
2695  *
2696  * Return: 0 on success, -errno on failure
2697  */
2698 static int hv_send_resources_allocated(struct hv_device *hdev)
2699 {
2700 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2701 	struct pci_resources_assigned *res_assigned;
2702 	struct pci_resources_assigned2 *res_assigned2;
2703 	struct hv_pci_compl comp_pkt;
2704 	struct hv_pci_dev *hpdev;
2705 	struct pci_packet *pkt;
2706 	size_t size_res;
2707 	u32 wslot;
2708 	int ret;
2709 
2710 	size_res = (pci_protocol_version < PCI_PROTOCOL_VERSION_1_2)
2711 			? sizeof(*res_assigned) : sizeof(*res_assigned2);
2712 
2713 	pkt = kmalloc(sizeof(*pkt) + size_res, GFP_KERNEL);
2714 	if (!pkt)
2715 		return -ENOMEM;
2716 
2717 	ret = 0;
2718 
2719 	for (wslot = 0; wslot < 256; wslot++) {
2720 		hpdev = get_pcichild_wslot(hbus, wslot);
2721 		if (!hpdev)
2722 			continue;
2723 
2724 		memset(pkt, 0, sizeof(*pkt) + size_res);
2725 		init_completion(&comp_pkt.host_event);
2726 		pkt->completion_func = hv_pci_generic_compl;
2727 		pkt->compl_ctxt = &comp_pkt;
2728 
2729 		if (pci_protocol_version < PCI_PROTOCOL_VERSION_1_2) {
2730 			res_assigned =
2731 				(struct pci_resources_assigned *)&pkt->message;
2732 			res_assigned->message_type.type =
2733 				PCI_RESOURCES_ASSIGNED;
2734 			res_assigned->wslot.slot = hpdev->desc.win_slot.slot;
2735 		} else {
2736 			res_assigned2 =
2737 				(struct pci_resources_assigned2 *)&pkt->message;
2738 			res_assigned2->message_type.type =
2739 				PCI_RESOURCES_ASSIGNED2;
2740 			res_assigned2->wslot.slot = hpdev->desc.win_slot.slot;
2741 		}
2742 		put_pcichild(hpdev);
2743 
2744 		ret = vmbus_sendpacket(hdev->channel, &pkt->message,
2745 				size_res, (unsigned long)pkt,
2746 				VM_PKT_DATA_INBAND,
2747 				VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2748 		if (!ret)
2749 			ret = wait_for_response(hdev, &comp_pkt.host_event);
2750 		if (ret)
2751 			break;
2752 
2753 		if (comp_pkt.completion_status < 0) {
2754 			ret = -EPROTO;
2755 			dev_err(&hdev->device,
2756 				"resource allocated returned 0x%x",
2757 				comp_pkt.completion_status);
2758 			break;
2759 		}
2760 	}
2761 
2762 	kfree(pkt);
2763 	return ret;
2764 }
2765 
2766 /**
2767  * hv_send_resources_released() - Report local resources
2768  * released
2769  * @hdev:	VMBus's tracking struct for this root PCI bus
2770  *
2771  * Return: 0 on success, -errno on failure
2772  */
2773 static int hv_send_resources_released(struct hv_device *hdev)
2774 {
2775 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2776 	struct pci_child_message pkt;
2777 	struct hv_pci_dev *hpdev;
2778 	u32 wslot;
2779 	int ret;
2780 
2781 	for (wslot = 0; wslot < 256; wslot++) {
2782 		hpdev = get_pcichild_wslot(hbus, wslot);
2783 		if (!hpdev)
2784 			continue;
2785 
2786 		memset(&pkt, 0, sizeof(pkt));
2787 		pkt.message_type.type = PCI_RESOURCES_RELEASED;
2788 		pkt.wslot.slot = hpdev->desc.win_slot.slot;
2789 
2790 		put_pcichild(hpdev);
2791 
2792 		ret = vmbus_sendpacket(hdev->channel, &pkt, sizeof(pkt), 0,
2793 				       VM_PKT_DATA_INBAND, 0);
2794 		if (ret)
2795 			return ret;
2796 	}
2797 
2798 	return 0;
2799 }
2800 
2801 static void get_hvpcibus(struct hv_pcibus_device *hbus)
2802 {
2803 	refcount_inc(&hbus->remove_lock);
2804 }
2805 
2806 static void put_hvpcibus(struct hv_pcibus_device *hbus)
2807 {
2808 	if (refcount_dec_and_test(&hbus->remove_lock))
2809 		complete(&hbus->remove_event);
2810 }
2811 
2812 #define HVPCI_DOM_MAP_SIZE (64 * 1024)
2813 static DECLARE_BITMAP(hvpci_dom_map, HVPCI_DOM_MAP_SIZE);
2814 
2815 /*
2816  * PCI domain number 0 is used by emulated devices on Gen1 VMs, so define 0
2817  * as invalid for passthrough PCI devices of this driver.
2818  */
2819 #define HVPCI_DOM_INVALID 0
2820 
2821 /**
2822  * hv_get_dom_num() - Get a valid PCI domain number
2823  * Check if the PCI domain number is in use, and return another number if
2824  * it is in use.
2825  *
2826  * @dom: Requested domain number
2827  *
2828  * return: domain number on success, HVPCI_DOM_INVALID on failure
2829  */
2830 static u16 hv_get_dom_num(u16 dom)
2831 {
2832 	unsigned int i;
2833 
2834 	if (test_and_set_bit(dom, hvpci_dom_map) == 0)
2835 		return dom;
2836 
2837 	for_each_clear_bit(i, hvpci_dom_map, HVPCI_DOM_MAP_SIZE) {
2838 		if (test_and_set_bit(i, hvpci_dom_map) == 0)
2839 			return i;
2840 	}
2841 
2842 	return HVPCI_DOM_INVALID;
2843 }
2844 
2845 /**
2846  * hv_put_dom_num() - Mark the PCI domain number as free
2847  * @dom: Domain number to be freed
2848  */
2849 static void hv_put_dom_num(u16 dom)
2850 {
2851 	clear_bit(dom, hvpci_dom_map);
2852 }
2853 
2854 /**
2855  * hv_pci_probe() - New VMBus channel probe, for a root PCI bus
2856  * @hdev:	VMBus's tracking struct for this root PCI bus
2857  * @dev_id:	Identifies the device itself
2858  *
2859  * Return: 0 on success, -errno on failure
2860  */
2861 static int hv_pci_probe(struct hv_device *hdev,
2862 			const struct hv_vmbus_device_id *dev_id)
2863 {
2864 	struct hv_pcibus_device *hbus;
2865 	u16 dom_req, dom;
2866 	char *name;
2867 	int ret;
2868 
2869 	/*
2870 	 * hv_pcibus_device contains the hypercall arguments for retargeting in
2871 	 * hv_irq_unmask(). Those must not cross a page boundary.
2872 	 */
2873 	BUILD_BUG_ON(sizeof(*hbus) > PAGE_SIZE);
2874 
2875 	hbus = (struct hv_pcibus_device *)get_zeroed_page(GFP_KERNEL);
2876 	if (!hbus)
2877 		return -ENOMEM;
2878 	hbus->state = hv_pcibus_init;
2879 
2880 	/*
2881 	 * The PCI bus "domain" is what is called "segment" in ACPI and other
2882 	 * specs. Pull it from the instance ID, to get something usually
2883 	 * unique. In rare cases of collision, we will find out another number
2884 	 * not in use.
2885 	 *
2886 	 * Note that, since this code only runs in a Hyper-V VM, Hyper-V
2887 	 * together with this guest driver can guarantee that (1) The only
2888 	 * domain used by Gen1 VMs for something that looks like a physical
2889 	 * PCI bus (which is actually emulated by the hypervisor) is domain 0.
2890 	 * (2) There will be no overlap between domains (after fixing possible
2891 	 * collisions) in the same VM.
2892 	 */
2893 	dom_req = hdev->dev_instance.b[5] << 8 | hdev->dev_instance.b[4];
2894 	dom = hv_get_dom_num(dom_req);
2895 
2896 	if (dom == HVPCI_DOM_INVALID) {
2897 		dev_err(&hdev->device,
2898 			"Unable to use dom# 0x%hx or other numbers", dom_req);
2899 		ret = -EINVAL;
2900 		goto free_bus;
2901 	}
2902 
2903 	if (dom != dom_req)
2904 		dev_info(&hdev->device,
2905 			 "PCI dom# 0x%hx has collision, using 0x%hx",
2906 			 dom_req, dom);
2907 
2908 	hbus->sysdata.domain = dom;
2909 
2910 	hbus->hdev = hdev;
2911 	refcount_set(&hbus->remove_lock, 1);
2912 	INIT_LIST_HEAD(&hbus->children);
2913 	INIT_LIST_HEAD(&hbus->dr_list);
2914 	INIT_LIST_HEAD(&hbus->resources_for_children);
2915 	spin_lock_init(&hbus->config_lock);
2916 	spin_lock_init(&hbus->device_list_lock);
2917 	spin_lock_init(&hbus->retarget_msi_interrupt_lock);
2918 	init_completion(&hbus->remove_event);
2919 	hbus->wq = alloc_ordered_workqueue("hv_pci_%x", 0,
2920 					   hbus->sysdata.domain);
2921 	if (!hbus->wq) {
2922 		ret = -ENOMEM;
2923 		goto free_dom;
2924 	}
2925 
2926 	ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0,
2927 			 hv_pci_onchannelcallback, hbus);
2928 	if (ret)
2929 		goto destroy_wq;
2930 
2931 	hv_set_drvdata(hdev, hbus);
2932 
2933 	ret = hv_pci_protocol_negotiation(hdev);
2934 	if (ret)
2935 		goto close;
2936 
2937 	ret = hv_allocate_config_window(hbus);
2938 	if (ret)
2939 		goto close;
2940 
2941 	hbus->cfg_addr = ioremap(hbus->mem_config->start,
2942 				 PCI_CONFIG_MMIO_LENGTH);
2943 	if (!hbus->cfg_addr) {
2944 		dev_err(&hdev->device,
2945 			"Unable to map a virtual address for config space\n");
2946 		ret = -ENOMEM;
2947 		goto free_config;
2948 	}
2949 
2950 	name = kasprintf(GFP_KERNEL, "%pUL", &hdev->dev_instance);
2951 	if (!name) {
2952 		ret = -ENOMEM;
2953 		goto unmap;
2954 	}
2955 
2956 	hbus->sysdata.fwnode = irq_domain_alloc_named_fwnode(name);
2957 	kfree(name);
2958 	if (!hbus->sysdata.fwnode) {
2959 		ret = -ENOMEM;
2960 		goto unmap;
2961 	}
2962 
2963 	ret = hv_pcie_init_irq_domain(hbus);
2964 	if (ret)
2965 		goto free_fwnode;
2966 
2967 	ret = hv_pci_query_relations(hdev);
2968 	if (ret)
2969 		goto free_irq_domain;
2970 
2971 	ret = hv_pci_enter_d0(hdev);
2972 	if (ret)
2973 		goto free_irq_domain;
2974 
2975 	ret = hv_pci_allocate_bridge_windows(hbus);
2976 	if (ret)
2977 		goto free_irq_domain;
2978 
2979 	ret = hv_send_resources_allocated(hdev);
2980 	if (ret)
2981 		goto free_windows;
2982 
2983 	prepopulate_bars(hbus);
2984 
2985 	hbus->state = hv_pcibus_probed;
2986 
2987 	ret = create_root_hv_pci_bus(hbus);
2988 	if (ret)
2989 		goto free_windows;
2990 
2991 	return 0;
2992 
2993 free_windows:
2994 	hv_pci_free_bridge_windows(hbus);
2995 free_irq_domain:
2996 	irq_domain_remove(hbus->irq_domain);
2997 free_fwnode:
2998 	irq_domain_free_fwnode(hbus->sysdata.fwnode);
2999 unmap:
3000 	iounmap(hbus->cfg_addr);
3001 free_config:
3002 	hv_free_config_window(hbus);
3003 close:
3004 	vmbus_close(hdev->channel);
3005 destroy_wq:
3006 	destroy_workqueue(hbus->wq);
3007 free_dom:
3008 	hv_put_dom_num(hbus->sysdata.domain);
3009 free_bus:
3010 	free_page((unsigned long)hbus);
3011 	return ret;
3012 }
3013 
3014 static void hv_pci_bus_exit(struct hv_device *hdev)
3015 {
3016 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3017 	struct {
3018 		struct pci_packet teardown_packet;
3019 		u8 buffer[sizeof(struct pci_message)];
3020 	} pkt;
3021 	struct pci_bus_relations relations;
3022 	struct hv_pci_compl comp_pkt;
3023 	int ret;
3024 
3025 	/*
3026 	 * After the host sends the RESCIND_CHANNEL message, it doesn't
3027 	 * access the per-channel ringbuffer any longer.
3028 	 */
3029 	if (hdev->channel->rescind)
3030 		return;
3031 
3032 	/* Delete any children which might still exist. */
3033 	memset(&relations, 0, sizeof(relations));
3034 	hv_pci_devices_present(hbus, &relations);
3035 
3036 	ret = hv_send_resources_released(hdev);
3037 	if (ret)
3038 		dev_err(&hdev->device,
3039 			"Couldn't send resources released packet(s)\n");
3040 
3041 	memset(&pkt.teardown_packet, 0, sizeof(pkt.teardown_packet));
3042 	init_completion(&comp_pkt.host_event);
3043 	pkt.teardown_packet.completion_func = hv_pci_generic_compl;
3044 	pkt.teardown_packet.compl_ctxt = &comp_pkt;
3045 	pkt.teardown_packet.message[0].type = PCI_BUS_D0EXIT;
3046 
3047 	ret = vmbus_sendpacket(hdev->channel, &pkt.teardown_packet.message,
3048 			       sizeof(struct pci_message),
3049 			       (unsigned long)&pkt.teardown_packet,
3050 			       VM_PKT_DATA_INBAND,
3051 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3052 	if (!ret)
3053 		wait_for_completion_timeout(&comp_pkt.host_event, 10 * HZ);
3054 }
3055 
3056 /**
3057  * hv_pci_remove() - Remove routine for this VMBus channel
3058  * @hdev:	VMBus's tracking struct for this root PCI bus
3059  *
3060  * Return: 0 on success, -errno on failure
3061  */
3062 static int hv_pci_remove(struct hv_device *hdev)
3063 {
3064 	struct hv_pcibus_device *hbus;
3065 
3066 	hbus = hv_get_drvdata(hdev);
3067 	if (hbus->state == hv_pcibus_installed) {
3068 		/* Remove the bus from PCI's point of view. */
3069 		pci_lock_rescan_remove();
3070 		pci_stop_root_bus(hbus->pci_bus);
3071 		hv_pci_remove_slots(hbus);
3072 		pci_remove_root_bus(hbus->pci_bus);
3073 		pci_unlock_rescan_remove();
3074 		hbus->state = hv_pcibus_removed;
3075 	}
3076 
3077 	hv_pci_bus_exit(hdev);
3078 
3079 	vmbus_close(hdev->channel);
3080 
3081 	iounmap(hbus->cfg_addr);
3082 	hv_free_config_window(hbus);
3083 	pci_free_resource_list(&hbus->resources_for_children);
3084 	hv_pci_free_bridge_windows(hbus);
3085 	irq_domain_remove(hbus->irq_domain);
3086 	irq_domain_free_fwnode(hbus->sysdata.fwnode);
3087 	put_hvpcibus(hbus);
3088 	wait_for_completion(&hbus->remove_event);
3089 	destroy_workqueue(hbus->wq);
3090 
3091 	hv_put_dom_num(hbus->sysdata.domain);
3092 
3093 	free_page((unsigned long)hbus);
3094 	return 0;
3095 }
3096 
3097 static const struct hv_vmbus_device_id hv_pci_id_table[] = {
3098 	/* PCI Pass-through Class ID */
3099 	/* 44C4F61D-4444-4400-9D52-802E27EDE19F */
3100 	{ HV_PCIE_GUID, },
3101 	{ },
3102 };
3103 
3104 MODULE_DEVICE_TABLE(vmbus, hv_pci_id_table);
3105 
3106 static struct hv_driver hv_pci_drv = {
3107 	.name		= "hv_pci",
3108 	.id_table	= hv_pci_id_table,
3109 	.probe		= hv_pci_probe,
3110 	.remove		= hv_pci_remove,
3111 };
3112 
3113 static void __exit exit_hv_pci_drv(void)
3114 {
3115 	vmbus_driver_unregister(&hv_pci_drv);
3116 
3117 	hvpci_block_ops.read_block = NULL;
3118 	hvpci_block_ops.write_block = NULL;
3119 	hvpci_block_ops.reg_blk_invalidate = NULL;
3120 }
3121 
3122 static int __init init_hv_pci_drv(void)
3123 {
3124 	/* Set the invalid domain number's bit, so it will not be used */
3125 	set_bit(HVPCI_DOM_INVALID, hvpci_dom_map);
3126 
3127 	/* Initialize PCI block r/w interface */
3128 	hvpci_block_ops.read_block = hv_read_config_block;
3129 	hvpci_block_ops.write_block = hv_write_config_block;
3130 	hvpci_block_ops.reg_blk_invalidate = hv_register_block_invalidate;
3131 
3132 	return vmbus_driver_register(&hv_pci_drv);
3133 }
3134 
3135 module_init(init_hv_pci_drv);
3136 module_exit(exit_hv_pci_drv);
3137 
3138 MODULE_DESCRIPTION("Hyper-V PCI");
3139 MODULE_LICENSE("GPL v2");
3140