1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) Microsoft Corporation. 4 * 5 * Author: 6 * Jake Oshins <jakeo@microsoft.com> 7 * 8 * This driver acts as a paravirtual front-end for PCI Express root buses. 9 * When a PCI Express function (either an entire device or an SR-IOV 10 * Virtual Function) is being passed through to the VM, this driver exposes 11 * a new bus to the guest VM. This is modeled as a root PCI bus because 12 * no bridges are being exposed to the VM. In fact, with a "Generation 2" 13 * VM within Hyper-V, there may seem to be no PCI bus at all in the VM 14 * until a device as been exposed using this driver. 15 * 16 * Each root PCI bus has its own PCI domain, which is called "Segment" in 17 * the PCI Firmware Specifications. Thus while each device passed through 18 * to the VM using this front-end will appear at "device 0", the domain will 19 * be unique. Typically, each bus will have one PCI function on it, though 20 * this driver does support more than one. 21 * 22 * In order to map the interrupts from the device through to the guest VM, 23 * this driver also implements an IRQ Domain, which handles interrupts (either 24 * MSI or MSI-X) associated with the functions on the bus. As interrupts are 25 * set up, torn down, or reaffined, this driver communicates with the 26 * underlying hypervisor to adjust the mappings in the I/O MMU so that each 27 * interrupt will be delivered to the correct virtual processor at the right 28 * vector. This driver does not support level-triggered (line-based) 29 * interrupts, and will report that the Interrupt Line register in the 30 * function's configuration space is zero. 31 * 32 * The rest of this driver mostly maps PCI concepts onto underlying Hyper-V 33 * facilities. For instance, the configuration space of a function exposed 34 * by Hyper-V is mapped into a single page of memory space, and the 35 * read and write handlers for config space must be aware of this mechanism. 36 * Similarly, device setup and teardown involves messages sent to and from 37 * the PCI back-end driver in Hyper-V. 38 */ 39 40 #include <linux/kernel.h> 41 #include <linux/module.h> 42 #include <linux/pci.h> 43 #include <linux/delay.h> 44 #include <linux/semaphore.h> 45 #include <linux/irqdomain.h> 46 #include <asm/irqdomain.h> 47 #include <asm/apic.h> 48 #include <linux/irq.h> 49 #include <linux/msi.h> 50 #include <linux/hyperv.h> 51 #include <linux/refcount.h> 52 #include <asm/mshyperv.h> 53 54 /* 55 * Protocol versions. The low word is the minor version, the high word the 56 * major version. 57 */ 58 59 #define PCI_MAKE_VERSION(major, minor) ((u32)(((major) << 16) | (minor))) 60 #define PCI_MAJOR_VERSION(version) ((u32)(version) >> 16) 61 #define PCI_MINOR_VERSION(version) ((u32)(version) & 0xff) 62 63 enum pci_protocol_version_t { 64 PCI_PROTOCOL_VERSION_1_1 = PCI_MAKE_VERSION(1, 1), /* Win10 */ 65 PCI_PROTOCOL_VERSION_1_2 = PCI_MAKE_VERSION(1, 2), /* RS1 */ 66 }; 67 68 #define CPU_AFFINITY_ALL -1ULL 69 70 /* 71 * Supported protocol versions in the order of probing - highest go 72 * first. 73 */ 74 static enum pci_protocol_version_t pci_protocol_versions[] = { 75 PCI_PROTOCOL_VERSION_1_2, 76 PCI_PROTOCOL_VERSION_1_1, 77 }; 78 79 /* 80 * Protocol version negotiated by hv_pci_protocol_negotiation(). 81 */ 82 static enum pci_protocol_version_t pci_protocol_version; 83 84 #define PCI_CONFIG_MMIO_LENGTH 0x2000 85 #define CFG_PAGE_OFFSET 0x1000 86 #define CFG_PAGE_SIZE (PCI_CONFIG_MMIO_LENGTH - CFG_PAGE_OFFSET) 87 88 #define MAX_SUPPORTED_MSI_MESSAGES 0x400 89 90 #define STATUS_REVISION_MISMATCH 0xC0000059 91 92 /* space for 32bit serial number as string */ 93 #define SLOT_NAME_SIZE 11 94 95 /* 96 * Message Types 97 */ 98 99 enum pci_message_type { 100 /* 101 * Version 1.1 102 */ 103 PCI_MESSAGE_BASE = 0x42490000, 104 PCI_BUS_RELATIONS = PCI_MESSAGE_BASE + 0, 105 PCI_QUERY_BUS_RELATIONS = PCI_MESSAGE_BASE + 1, 106 PCI_POWER_STATE_CHANGE = PCI_MESSAGE_BASE + 4, 107 PCI_QUERY_RESOURCE_REQUIREMENTS = PCI_MESSAGE_BASE + 5, 108 PCI_QUERY_RESOURCE_RESOURCES = PCI_MESSAGE_BASE + 6, 109 PCI_BUS_D0ENTRY = PCI_MESSAGE_BASE + 7, 110 PCI_BUS_D0EXIT = PCI_MESSAGE_BASE + 8, 111 PCI_READ_BLOCK = PCI_MESSAGE_BASE + 9, 112 PCI_WRITE_BLOCK = PCI_MESSAGE_BASE + 0xA, 113 PCI_EJECT = PCI_MESSAGE_BASE + 0xB, 114 PCI_QUERY_STOP = PCI_MESSAGE_BASE + 0xC, 115 PCI_REENABLE = PCI_MESSAGE_BASE + 0xD, 116 PCI_QUERY_STOP_FAILED = PCI_MESSAGE_BASE + 0xE, 117 PCI_EJECTION_COMPLETE = PCI_MESSAGE_BASE + 0xF, 118 PCI_RESOURCES_ASSIGNED = PCI_MESSAGE_BASE + 0x10, 119 PCI_RESOURCES_RELEASED = PCI_MESSAGE_BASE + 0x11, 120 PCI_INVALIDATE_BLOCK = PCI_MESSAGE_BASE + 0x12, 121 PCI_QUERY_PROTOCOL_VERSION = PCI_MESSAGE_BASE + 0x13, 122 PCI_CREATE_INTERRUPT_MESSAGE = PCI_MESSAGE_BASE + 0x14, 123 PCI_DELETE_INTERRUPT_MESSAGE = PCI_MESSAGE_BASE + 0x15, 124 PCI_RESOURCES_ASSIGNED2 = PCI_MESSAGE_BASE + 0x16, 125 PCI_CREATE_INTERRUPT_MESSAGE2 = PCI_MESSAGE_BASE + 0x17, 126 PCI_DELETE_INTERRUPT_MESSAGE2 = PCI_MESSAGE_BASE + 0x18, /* unused */ 127 PCI_MESSAGE_MAXIMUM 128 }; 129 130 /* 131 * Structures defining the virtual PCI Express protocol. 132 */ 133 134 union pci_version { 135 struct { 136 u16 minor_version; 137 u16 major_version; 138 } parts; 139 u32 version; 140 } __packed; 141 142 /* 143 * Function numbers are 8-bits wide on Express, as interpreted through ARI, 144 * which is all this driver does. This representation is the one used in 145 * Windows, which is what is expected when sending this back and forth with 146 * the Hyper-V parent partition. 147 */ 148 union win_slot_encoding { 149 struct { 150 u32 dev:5; 151 u32 func:3; 152 u32 reserved:24; 153 } bits; 154 u32 slot; 155 } __packed; 156 157 /* 158 * Pretty much as defined in the PCI Specifications. 159 */ 160 struct pci_function_description { 161 u16 v_id; /* vendor ID */ 162 u16 d_id; /* device ID */ 163 u8 rev; 164 u8 prog_intf; 165 u8 subclass; 166 u8 base_class; 167 u32 subsystem_id; 168 union win_slot_encoding win_slot; 169 u32 ser; /* serial number */ 170 } __packed; 171 172 /** 173 * struct hv_msi_desc 174 * @vector: IDT entry 175 * @delivery_mode: As defined in Intel's Programmer's 176 * Reference Manual, Volume 3, Chapter 8. 177 * @vector_count: Number of contiguous entries in the 178 * Interrupt Descriptor Table that are 179 * occupied by this Message-Signaled 180 * Interrupt. For "MSI", as first defined 181 * in PCI 2.2, this can be between 1 and 182 * 32. For "MSI-X," as first defined in PCI 183 * 3.0, this must be 1, as each MSI-X table 184 * entry would have its own descriptor. 185 * @reserved: Empty space 186 * @cpu_mask: All the target virtual processors. 187 */ 188 struct hv_msi_desc { 189 u8 vector; 190 u8 delivery_mode; 191 u16 vector_count; 192 u32 reserved; 193 u64 cpu_mask; 194 } __packed; 195 196 /** 197 * struct hv_msi_desc2 - 1.2 version of hv_msi_desc 198 * @vector: IDT entry 199 * @delivery_mode: As defined in Intel's Programmer's 200 * Reference Manual, Volume 3, Chapter 8. 201 * @vector_count: Number of contiguous entries in the 202 * Interrupt Descriptor Table that are 203 * occupied by this Message-Signaled 204 * Interrupt. For "MSI", as first defined 205 * in PCI 2.2, this can be between 1 and 206 * 32. For "MSI-X," as first defined in PCI 207 * 3.0, this must be 1, as each MSI-X table 208 * entry would have its own descriptor. 209 * @processor_count: number of bits enabled in array. 210 * @processor_array: All the target virtual processors. 211 */ 212 struct hv_msi_desc2 { 213 u8 vector; 214 u8 delivery_mode; 215 u16 vector_count; 216 u16 processor_count; 217 u16 processor_array[32]; 218 } __packed; 219 220 /** 221 * struct tran_int_desc 222 * @reserved: unused, padding 223 * @vector_count: same as in hv_msi_desc 224 * @data: This is the "data payload" value that is 225 * written by the device when it generates 226 * a message-signaled interrupt, either MSI 227 * or MSI-X. 228 * @address: This is the address to which the data 229 * payload is written on interrupt 230 * generation. 231 */ 232 struct tran_int_desc { 233 u16 reserved; 234 u16 vector_count; 235 u32 data; 236 u64 address; 237 } __packed; 238 239 /* 240 * A generic message format for virtual PCI. 241 * Specific message formats are defined later in the file. 242 */ 243 244 struct pci_message { 245 u32 type; 246 } __packed; 247 248 struct pci_child_message { 249 struct pci_message message_type; 250 union win_slot_encoding wslot; 251 } __packed; 252 253 struct pci_incoming_message { 254 struct vmpacket_descriptor hdr; 255 struct pci_message message_type; 256 } __packed; 257 258 struct pci_response { 259 struct vmpacket_descriptor hdr; 260 s32 status; /* negative values are failures */ 261 } __packed; 262 263 struct pci_packet { 264 void (*completion_func)(void *context, struct pci_response *resp, 265 int resp_packet_size); 266 void *compl_ctxt; 267 268 struct pci_message message[0]; 269 }; 270 271 /* 272 * Specific message types supporting the PCI protocol. 273 */ 274 275 /* 276 * Version negotiation message. Sent from the guest to the host. 277 * The guest is free to try different versions until the host 278 * accepts the version. 279 * 280 * pci_version: The protocol version requested. 281 * is_last_attempt: If TRUE, this is the last version guest will request. 282 * reservedz: Reserved field, set to zero. 283 */ 284 285 struct pci_version_request { 286 struct pci_message message_type; 287 u32 protocol_version; 288 } __packed; 289 290 /* 291 * Bus D0 Entry. This is sent from the guest to the host when the virtual 292 * bus (PCI Express port) is ready for action. 293 */ 294 295 struct pci_bus_d0_entry { 296 struct pci_message message_type; 297 u32 reserved; 298 u64 mmio_base; 299 } __packed; 300 301 struct pci_bus_relations { 302 struct pci_incoming_message incoming; 303 u32 device_count; 304 struct pci_function_description func[0]; 305 } __packed; 306 307 struct pci_q_res_req_response { 308 struct vmpacket_descriptor hdr; 309 s32 status; /* negative values are failures */ 310 u32 probed_bar[6]; 311 } __packed; 312 313 struct pci_set_power { 314 struct pci_message message_type; 315 union win_slot_encoding wslot; 316 u32 power_state; /* In Windows terms */ 317 u32 reserved; 318 } __packed; 319 320 struct pci_set_power_response { 321 struct vmpacket_descriptor hdr; 322 s32 status; /* negative values are failures */ 323 union win_slot_encoding wslot; 324 u32 resultant_state; /* In Windows terms */ 325 u32 reserved; 326 } __packed; 327 328 struct pci_resources_assigned { 329 struct pci_message message_type; 330 union win_slot_encoding wslot; 331 u8 memory_range[0x14][6]; /* not used here */ 332 u32 msi_descriptors; 333 u32 reserved[4]; 334 } __packed; 335 336 struct pci_resources_assigned2 { 337 struct pci_message message_type; 338 union win_slot_encoding wslot; 339 u8 memory_range[0x14][6]; /* not used here */ 340 u32 msi_descriptor_count; 341 u8 reserved[70]; 342 } __packed; 343 344 struct pci_create_interrupt { 345 struct pci_message message_type; 346 union win_slot_encoding wslot; 347 struct hv_msi_desc int_desc; 348 } __packed; 349 350 struct pci_create_int_response { 351 struct pci_response response; 352 u32 reserved; 353 struct tran_int_desc int_desc; 354 } __packed; 355 356 struct pci_create_interrupt2 { 357 struct pci_message message_type; 358 union win_slot_encoding wslot; 359 struct hv_msi_desc2 int_desc; 360 } __packed; 361 362 struct pci_delete_interrupt { 363 struct pci_message message_type; 364 union win_slot_encoding wslot; 365 struct tran_int_desc int_desc; 366 } __packed; 367 368 /* 369 * Note: the VM must pass a valid block id, wslot and bytes_requested. 370 */ 371 struct pci_read_block { 372 struct pci_message message_type; 373 u32 block_id; 374 union win_slot_encoding wslot; 375 u32 bytes_requested; 376 } __packed; 377 378 struct pci_read_block_response { 379 struct vmpacket_descriptor hdr; 380 u32 status; 381 u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX]; 382 } __packed; 383 384 /* 385 * Note: the VM must pass a valid block id, wslot and byte_count. 386 */ 387 struct pci_write_block { 388 struct pci_message message_type; 389 u32 block_id; 390 union win_slot_encoding wslot; 391 u32 byte_count; 392 u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX]; 393 } __packed; 394 395 struct pci_dev_inval_block { 396 struct pci_incoming_message incoming; 397 union win_slot_encoding wslot; 398 u64 block_mask; 399 } __packed; 400 401 struct pci_dev_incoming { 402 struct pci_incoming_message incoming; 403 union win_slot_encoding wslot; 404 } __packed; 405 406 struct pci_eject_response { 407 struct pci_message message_type; 408 union win_slot_encoding wslot; 409 u32 status; 410 } __packed; 411 412 static int pci_ring_size = (4 * PAGE_SIZE); 413 414 /* 415 * Definitions or interrupt steering hypercall. 416 */ 417 #define HV_PARTITION_ID_SELF ((u64)-1) 418 #define HVCALL_RETARGET_INTERRUPT 0x7e 419 420 struct hv_interrupt_entry { 421 u32 source; /* 1 for MSI(-X) */ 422 u32 reserved1; 423 u32 address; 424 u32 data; 425 }; 426 427 /* 428 * flags for hv_device_interrupt_target.flags 429 */ 430 #define HV_DEVICE_INTERRUPT_TARGET_MULTICAST 1 431 #define HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET 2 432 433 struct hv_device_interrupt_target { 434 u32 vector; 435 u32 flags; 436 union { 437 u64 vp_mask; 438 struct hv_vpset vp_set; 439 }; 440 }; 441 442 struct retarget_msi_interrupt { 443 u64 partition_id; /* use "self" */ 444 u64 device_id; 445 struct hv_interrupt_entry int_entry; 446 u64 reserved2; 447 struct hv_device_interrupt_target int_target; 448 } __packed __aligned(8); 449 450 /* 451 * Driver specific state. 452 */ 453 454 enum hv_pcibus_state { 455 hv_pcibus_init = 0, 456 hv_pcibus_probed, 457 hv_pcibus_installed, 458 hv_pcibus_removed, 459 hv_pcibus_maximum 460 }; 461 462 struct hv_pcibus_device { 463 struct pci_sysdata sysdata; 464 enum hv_pcibus_state state; 465 refcount_t remove_lock; 466 struct hv_device *hdev; 467 resource_size_t low_mmio_space; 468 resource_size_t high_mmio_space; 469 struct resource *mem_config; 470 struct resource *low_mmio_res; 471 struct resource *high_mmio_res; 472 struct completion *survey_event; 473 struct completion remove_event; 474 struct pci_bus *pci_bus; 475 spinlock_t config_lock; /* Avoid two threads writing index page */ 476 spinlock_t device_list_lock; /* Protect lists below */ 477 void __iomem *cfg_addr; 478 479 struct list_head resources_for_children; 480 481 struct list_head children; 482 struct list_head dr_list; 483 484 struct msi_domain_info msi_info; 485 struct msi_controller msi_chip; 486 struct irq_domain *irq_domain; 487 488 spinlock_t retarget_msi_interrupt_lock; 489 490 struct workqueue_struct *wq; 491 492 /* hypercall arg, must not cross page boundary */ 493 struct retarget_msi_interrupt retarget_msi_interrupt_params; 494 495 /* 496 * Don't put anything here: retarget_msi_interrupt_params must be last 497 */ 498 }; 499 500 /* 501 * Tracks "Device Relations" messages from the host, which must be both 502 * processed in order and deferred so that they don't run in the context 503 * of the incoming packet callback. 504 */ 505 struct hv_dr_work { 506 struct work_struct wrk; 507 struct hv_pcibus_device *bus; 508 }; 509 510 struct hv_dr_state { 511 struct list_head list_entry; 512 u32 device_count; 513 struct pci_function_description func[0]; 514 }; 515 516 enum hv_pcichild_state { 517 hv_pcichild_init = 0, 518 hv_pcichild_requirements, 519 hv_pcichild_resourced, 520 hv_pcichild_ejecting, 521 hv_pcichild_maximum 522 }; 523 524 struct hv_pci_dev { 525 /* List protected by pci_rescan_remove_lock */ 526 struct list_head list_entry; 527 refcount_t refs; 528 enum hv_pcichild_state state; 529 struct pci_slot *pci_slot; 530 struct pci_function_description desc; 531 bool reported_missing; 532 struct hv_pcibus_device *hbus; 533 struct work_struct wrk; 534 535 void (*block_invalidate)(void *context, u64 block_mask); 536 void *invalidate_context; 537 538 /* 539 * What would be observed if one wrote 0xFFFFFFFF to a BAR and then 540 * read it back, for each of the BAR offsets within config space. 541 */ 542 u32 probed_bar[6]; 543 }; 544 545 struct hv_pci_compl { 546 struct completion host_event; 547 s32 completion_status; 548 }; 549 550 static void hv_pci_onchannelcallback(void *context); 551 552 /** 553 * hv_pci_generic_compl() - Invoked for a completion packet 554 * @context: Set up by the sender of the packet. 555 * @resp: The response packet 556 * @resp_packet_size: Size in bytes of the packet 557 * 558 * This function is used to trigger an event and report status 559 * for any message for which the completion packet contains a 560 * status and nothing else. 561 */ 562 static void hv_pci_generic_compl(void *context, struct pci_response *resp, 563 int resp_packet_size) 564 { 565 struct hv_pci_compl *comp_pkt = context; 566 567 if (resp_packet_size >= offsetofend(struct pci_response, status)) 568 comp_pkt->completion_status = resp->status; 569 else 570 comp_pkt->completion_status = -1; 571 572 complete(&comp_pkt->host_event); 573 } 574 575 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus, 576 u32 wslot); 577 578 static void get_pcichild(struct hv_pci_dev *hpdev) 579 { 580 refcount_inc(&hpdev->refs); 581 } 582 583 static void put_pcichild(struct hv_pci_dev *hpdev) 584 { 585 if (refcount_dec_and_test(&hpdev->refs)) 586 kfree(hpdev); 587 } 588 589 static void get_hvpcibus(struct hv_pcibus_device *hv_pcibus); 590 static void put_hvpcibus(struct hv_pcibus_device *hv_pcibus); 591 592 /* 593 * There is no good way to get notified from vmbus_onoffer_rescind(), 594 * so let's use polling here, since this is not a hot path. 595 */ 596 static int wait_for_response(struct hv_device *hdev, 597 struct completion *comp) 598 { 599 while (true) { 600 if (hdev->channel->rescind) { 601 dev_warn_once(&hdev->device, "The device is gone.\n"); 602 return -ENODEV; 603 } 604 605 if (wait_for_completion_timeout(comp, HZ / 10)) 606 break; 607 } 608 609 return 0; 610 } 611 612 /** 613 * devfn_to_wslot() - Convert from Linux PCI slot to Windows 614 * @devfn: The Linux representation of PCI slot 615 * 616 * Windows uses a slightly different representation of PCI slot. 617 * 618 * Return: The Windows representation 619 */ 620 static u32 devfn_to_wslot(int devfn) 621 { 622 union win_slot_encoding wslot; 623 624 wslot.slot = 0; 625 wslot.bits.dev = PCI_SLOT(devfn); 626 wslot.bits.func = PCI_FUNC(devfn); 627 628 return wslot.slot; 629 } 630 631 /** 632 * wslot_to_devfn() - Convert from Windows PCI slot to Linux 633 * @wslot: The Windows representation of PCI slot 634 * 635 * Windows uses a slightly different representation of PCI slot. 636 * 637 * Return: The Linux representation 638 */ 639 static int wslot_to_devfn(u32 wslot) 640 { 641 union win_slot_encoding slot_no; 642 643 slot_no.slot = wslot; 644 return PCI_DEVFN(slot_no.bits.dev, slot_no.bits.func); 645 } 646 647 /* 648 * PCI Configuration Space for these root PCI buses is implemented as a pair 649 * of pages in memory-mapped I/O space. Writing to the first page chooses 650 * the PCI function being written or read. Once the first page has been 651 * written to, the following page maps in the entire configuration space of 652 * the function. 653 */ 654 655 /** 656 * _hv_pcifront_read_config() - Internal PCI config read 657 * @hpdev: The PCI driver's representation of the device 658 * @where: Offset within config space 659 * @size: Size of the transfer 660 * @val: Pointer to the buffer receiving the data 661 */ 662 static void _hv_pcifront_read_config(struct hv_pci_dev *hpdev, int where, 663 int size, u32 *val) 664 { 665 unsigned long flags; 666 void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where; 667 668 /* 669 * If the attempt is to read the IDs or the ROM BAR, simulate that. 670 */ 671 if (where + size <= PCI_COMMAND) { 672 memcpy(val, ((u8 *)&hpdev->desc.v_id) + where, size); 673 } else if (where >= PCI_CLASS_REVISION && where + size <= 674 PCI_CACHE_LINE_SIZE) { 675 memcpy(val, ((u8 *)&hpdev->desc.rev) + where - 676 PCI_CLASS_REVISION, size); 677 } else if (where >= PCI_SUBSYSTEM_VENDOR_ID && where + size <= 678 PCI_ROM_ADDRESS) { 679 memcpy(val, (u8 *)&hpdev->desc.subsystem_id + where - 680 PCI_SUBSYSTEM_VENDOR_ID, size); 681 } else if (where >= PCI_ROM_ADDRESS && where + size <= 682 PCI_CAPABILITY_LIST) { 683 /* ROM BARs are unimplemented */ 684 *val = 0; 685 } else if (where >= PCI_INTERRUPT_LINE && where + size <= 686 PCI_INTERRUPT_PIN) { 687 /* 688 * Interrupt Line and Interrupt PIN are hard-wired to zero 689 * because this front-end only supports message-signaled 690 * interrupts. 691 */ 692 *val = 0; 693 } else if (where + size <= CFG_PAGE_SIZE) { 694 spin_lock_irqsave(&hpdev->hbus->config_lock, flags); 695 /* Choose the function to be read. (See comment above) */ 696 writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr); 697 /* Make sure the function was chosen before we start reading. */ 698 mb(); 699 /* Read from that function's config space. */ 700 switch (size) { 701 case 1: 702 *val = readb(addr); 703 break; 704 case 2: 705 *val = readw(addr); 706 break; 707 default: 708 *val = readl(addr); 709 break; 710 } 711 /* 712 * Make sure the read was done before we release the spinlock 713 * allowing consecutive reads/writes. 714 */ 715 mb(); 716 spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags); 717 } else { 718 dev_err(&hpdev->hbus->hdev->device, 719 "Attempt to read beyond a function's config space.\n"); 720 } 721 } 722 723 static u16 hv_pcifront_get_vendor_id(struct hv_pci_dev *hpdev) 724 { 725 u16 ret; 726 unsigned long flags; 727 void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + 728 PCI_VENDOR_ID; 729 730 spin_lock_irqsave(&hpdev->hbus->config_lock, flags); 731 732 /* Choose the function to be read. (See comment above) */ 733 writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr); 734 /* Make sure the function was chosen before we start reading. */ 735 mb(); 736 /* Read from that function's config space. */ 737 ret = readw(addr); 738 /* 739 * mb() is not required here, because the spin_unlock_irqrestore() 740 * is a barrier. 741 */ 742 743 spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags); 744 745 return ret; 746 } 747 748 /** 749 * _hv_pcifront_write_config() - Internal PCI config write 750 * @hpdev: The PCI driver's representation of the device 751 * @where: Offset within config space 752 * @size: Size of the transfer 753 * @val: The data being transferred 754 */ 755 static void _hv_pcifront_write_config(struct hv_pci_dev *hpdev, int where, 756 int size, u32 val) 757 { 758 unsigned long flags; 759 void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where; 760 761 if (where >= PCI_SUBSYSTEM_VENDOR_ID && 762 where + size <= PCI_CAPABILITY_LIST) { 763 /* SSIDs and ROM BARs are read-only */ 764 } else if (where >= PCI_COMMAND && where + size <= CFG_PAGE_SIZE) { 765 spin_lock_irqsave(&hpdev->hbus->config_lock, flags); 766 /* Choose the function to be written. (See comment above) */ 767 writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr); 768 /* Make sure the function was chosen before we start writing. */ 769 wmb(); 770 /* Write to that function's config space. */ 771 switch (size) { 772 case 1: 773 writeb(val, addr); 774 break; 775 case 2: 776 writew(val, addr); 777 break; 778 default: 779 writel(val, addr); 780 break; 781 } 782 /* 783 * Make sure the write was done before we release the spinlock 784 * allowing consecutive reads/writes. 785 */ 786 mb(); 787 spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags); 788 } else { 789 dev_err(&hpdev->hbus->hdev->device, 790 "Attempt to write beyond a function's config space.\n"); 791 } 792 } 793 794 /** 795 * hv_pcifront_read_config() - Read configuration space 796 * @bus: PCI Bus structure 797 * @devfn: Device/function 798 * @where: Offset from base 799 * @size: Byte/word/dword 800 * @val: Value to be read 801 * 802 * Return: PCIBIOS_SUCCESSFUL on success 803 * PCIBIOS_DEVICE_NOT_FOUND on failure 804 */ 805 static int hv_pcifront_read_config(struct pci_bus *bus, unsigned int devfn, 806 int where, int size, u32 *val) 807 { 808 struct hv_pcibus_device *hbus = 809 container_of(bus->sysdata, struct hv_pcibus_device, sysdata); 810 struct hv_pci_dev *hpdev; 811 812 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn)); 813 if (!hpdev) 814 return PCIBIOS_DEVICE_NOT_FOUND; 815 816 _hv_pcifront_read_config(hpdev, where, size, val); 817 818 put_pcichild(hpdev); 819 return PCIBIOS_SUCCESSFUL; 820 } 821 822 /** 823 * hv_pcifront_write_config() - Write configuration space 824 * @bus: PCI Bus structure 825 * @devfn: Device/function 826 * @where: Offset from base 827 * @size: Byte/word/dword 828 * @val: Value to be written to device 829 * 830 * Return: PCIBIOS_SUCCESSFUL on success 831 * PCIBIOS_DEVICE_NOT_FOUND on failure 832 */ 833 static int hv_pcifront_write_config(struct pci_bus *bus, unsigned int devfn, 834 int where, int size, u32 val) 835 { 836 struct hv_pcibus_device *hbus = 837 container_of(bus->sysdata, struct hv_pcibus_device, sysdata); 838 struct hv_pci_dev *hpdev; 839 840 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn)); 841 if (!hpdev) 842 return PCIBIOS_DEVICE_NOT_FOUND; 843 844 _hv_pcifront_write_config(hpdev, where, size, val); 845 846 put_pcichild(hpdev); 847 return PCIBIOS_SUCCESSFUL; 848 } 849 850 /* PCIe operations */ 851 static struct pci_ops hv_pcifront_ops = { 852 .read = hv_pcifront_read_config, 853 .write = hv_pcifront_write_config, 854 }; 855 856 /* 857 * Paravirtual backchannel 858 * 859 * Hyper-V SR-IOV provides a backchannel mechanism in software for 860 * communication between a VF driver and a PF driver. These 861 * "configuration blocks" are similar in concept to PCI configuration space, 862 * but instead of doing reads and writes in 32-bit chunks through a very slow 863 * path, packets of up to 128 bytes can be sent or received asynchronously. 864 * 865 * Nearly every SR-IOV device contains just such a communications channel in 866 * hardware, so using this one in software is usually optional. Using the 867 * software channel, however, allows driver implementers to leverage software 868 * tools that fuzz the communications channel looking for vulnerabilities. 869 * 870 * The usage model for these packets puts the responsibility for reading or 871 * writing on the VF driver. The VF driver sends a read or a write packet, 872 * indicating which "block" is being referred to by number. 873 * 874 * If the PF driver wishes to initiate communication, it can "invalidate" one or 875 * more of the first 64 blocks. This invalidation is delivered via a callback 876 * supplied by the VF driver by this driver. 877 * 878 * No protocol is implied, except that supplied by the PF and VF drivers. 879 */ 880 881 struct hv_read_config_compl { 882 struct hv_pci_compl comp_pkt; 883 void *buf; 884 unsigned int len; 885 unsigned int bytes_returned; 886 }; 887 888 /** 889 * hv_pci_read_config_compl() - Invoked when a response packet 890 * for a read config block operation arrives. 891 * @context: Identifies the read config operation 892 * @resp: The response packet itself 893 * @resp_packet_size: Size in bytes of the response packet 894 */ 895 static void hv_pci_read_config_compl(void *context, struct pci_response *resp, 896 int resp_packet_size) 897 { 898 struct hv_read_config_compl *comp = context; 899 struct pci_read_block_response *read_resp = 900 (struct pci_read_block_response *)resp; 901 unsigned int data_len, hdr_len; 902 903 hdr_len = offsetof(struct pci_read_block_response, bytes); 904 if (resp_packet_size < hdr_len) { 905 comp->comp_pkt.completion_status = -1; 906 goto out; 907 } 908 909 data_len = resp_packet_size - hdr_len; 910 if (data_len > 0 && read_resp->status == 0) { 911 comp->bytes_returned = min(comp->len, data_len); 912 memcpy(comp->buf, read_resp->bytes, comp->bytes_returned); 913 } else { 914 comp->bytes_returned = 0; 915 } 916 917 comp->comp_pkt.completion_status = read_resp->status; 918 out: 919 complete(&comp->comp_pkt.host_event); 920 } 921 922 /** 923 * hv_read_config_block() - Sends a read config block request to 924 * the back-end driver running in the Hyper-V parent partition. 925 * @pdev: The PCI driver's representation for this device. 926 * @buf: Buffer into which the config block will be copied. 927 * @len: Size in bytes of buf. 928 * @block_id: Identifies the config block which has been requested. 929 * @bytes_returned: Size which came back from the back-end driver. 930 * 931 * Return: 0 on success, -errno on failure 932 */ 933 int hv_read_config_block(struct pci_dev *pdev, void *buf, unsigned int len, 934 unsigned int block_id, unsigned int *bytes_returned) 935 { 936 struct hv_pcibus_device *hbus = 937 container_of(pdev->bus->sysdata, struct hv_pcibus_device, 938 sysdata); 939 struct { 940 struct pci_packet pkt; 941 char buf[sizeof(struct pci_read_block)]; 942 } pkt; 943 struct hv_read_config_compl comp_pkt; 944 struct pci_read_block *read_blk; 945 int ret; 946 947 if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX) 948 return -EINVAL; 949 950 init_completion(&comp_pkt.comp_pkt.host_event); 951 comp_pkt.buf = buf; 952 comp_pkt.len = len; 953 954 memset(&pkt, 0, sizeof(pkt)); 955 pkt.pkt.completion_func = hv_pci_read_config_compl; 956 pkt.pkt.compl_ctxt = &comp_pkt; 957 read_blk = (struct pci_read_block *)&pkt.pkt.message; 958 read_blk->message_type.type = PCI_READ_BLOCK; 959 read_blk->wslot.slot = devfn_to_wslot(pdev->devfn); 960 read_blk->block_id = block_id; 961 read_blk->bytes_requested = len; 962 963 ret = vmbus_sendpacket(hbus->hdev->channel, read_blk, 964 sizeof(*read_blk), (unsigned long)&pkt.pkt, 965 VM_PKT_DATA_INBAND, 966 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 967 if (ret) 968 return ret; 969 970 ret = wait_for_response(hbus->hdev, &comp_pkt.comp_pkt.host_event); 971 if (ret) 972 return ret; 973 974 if (comp_pkt.comp_pkt.completion_status != 0 || 975 comp_pkt.bytes_returned == 0) { 976 dev_err(&hbus->hdev->device, 977 "Read Config Block failed: 0x%x, bytes_returned=%d\n", 978 comp_pkt.comp_pkt.completion_status, 979 comp_pkt.bytes_returned); 980 return -EIO; 981 } 982 983 *bytes_returned = comp_pkt.bytes_returned; 984 return 0; 985 } 986 987 /** 988 * hv_pci_write_config_compl() - Invoked when a response packet for a write 989 * config block operation arrives. 990 * @context: Identifies the write config operation 991 * @resp: The response packet itself 992 * @resp_packet_size: Size in bytes of the response packet 993 */ 994 static void hv_pci_write_config_compl(void *context, struct pci_response *resp, 995 int resp_packet_size) 996 { 997 struct hv_pci_compl *comp_pkt = context; 998 999 comp_pkt->completion_status = resp->status; 1000 complete(&comp_pkt->host_event); 1001 } 1002 1003 /** 1004 * hv_write_config_block() - Sends a write config block request to the 1005 * back-end driver running in the Hyper-V parent partition. 1006 * @pdev: The PCI driver's representation for this device. 1007 * @buf: Buffer from which the config block will be copied. 1008 * @len: Size in bytes of buf. 1009 * @block_id: Identifies the config block which is being written. 1010 * 1011 * Return: 0 on success, -errno on failure 1012 */ 1013 int hv_write_config_block(struct pci_dev *pdev, void *buf, unsigned int len, 1014 unsigned int block_id) 1015 { 1016 struct hv_pcibus_device *hbus = 1017 container_of(pdev->bus->sysdata, struct hv_pcibus_device, 1018 sysdata); 1019 struct { 1020 struct pci_packet pkt; 1021 char buf[sizeof(struct pci_write_block)]; 1022 u32 reserved; 1023 } pkt; 1024 struct hv_pci_compl comp_pkt; 1025 struct pci_write_block *write_blk; 1026 u32 pkt_size; 1027 int ret; 1028 1029 if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX) 1030 return -EINVAL; 1031 1032 init_completion(&comp_pkt.host_event); 1033 1034 memset(&pkt, 0, sizeof(pkt)); 1035 pkt.pkt.completion_func = hv_pci_write_config_compl; 1036 pkt.pkt.compl_ctxt = &comp_pkt; 1037 write_blk = (struct pci_write_block *)&pkt.pkt.message; 1038 write_blk->message_type.type = PCI_WRITE_BLOCK; 1039 write_blk->wslot.slot = devfn_to_wslot(pdev->devfn); 1040 write_blk->block_id = block_id; 1041 write_blk->byte_count = len; 1042 memcpy(write_blk->bytes, buf, len); 1043 pkt_size = offsetof(struct pci_write_block, bytes) + len; 1044 /* 1045 * This quirk is required on some hosts shipped around 2018, because 1046 * these hosts don't check the pkt_size correctly (new hosts have been 1047 * fixed since early 2019). The quirk is also safe on very old hosts 1048 * and new hosts, because, on them, what really matters is the length 1049 * specified in write_blk->byte_count. 1050 */ 1051 pkt_size += sizeof(pkt.reserved); 1052 1053 ret = vmbus_sendpacket(hbus->hdev->channel, write_blk, pkt_size, 1054 (unsigned long)&pkt.pkt, VM_PKT_DATA_INBAND, 1055 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1056 if (ret) 1057 return ret; 1058 1059 ret = wait_for_response(hbus->hdev, &comp_pkt.host_event); 1060 if (ret) 1061 return ret; 1062 1063 if (comp_pkt.completion_status != 0) { 1064 dev_err(&hbus->hdev->device, 1065 "Write Config Block failed: 0x%x\n", 1066 comp_pkt.completion_status); 1067 return -EIO; 1068 } 1069 1070 return 0; 1071 } 1072 1073 /** 1074 * hv_register_block_invalidate() - Invoked when a config block invalidation 1075 * arrives from the back-end driver. 1076 * @pdev: The PCI driver's representation for this device. 1077 * @context: Identifies the device. 1078 * @block_invalidate: Identifies all of the blocks being invalidated. 1079 * 1080 * Return: 0 on success, -errno on failure 1081 */ 1082 int hv_register_block_invalidate(struct pci_dev *pdev, void *context, 1083 void (*block_invalidate)(void *context, 1084 u64 block_mask)) 1085 { 1086 struct hv_pcibus_device *hbus = 1087 container_of(pdev->bus->sysdata, struct hv_pcibus_device, 1088 sysdata); 1089 struct hv_pci_dev *hpdev; 1090 1091 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn)); 1092 if (!hpdev) 1093 return -ENODEV; 1094 1095 hpdev->block_invalidate = block_invalidate; 1096 hpdev->invalidate_context = context; 1097 1098 put_pcichild(hpdev); 1099 return 0; 1100 1101 } 1102 1103 /* Interrupt management hooks */ 1104 static void hv_int_desc_free(struct hv_pci_dev *hpdev, 1105 struct tran_int_desc *int_desc) 1106 { 1107 struct pci_delete_interrupt *int_pkt; 1108 struct { 1109 struct pci_packet pkt; 1110 u8 buffer[sizeof(struct pci_delete_interrupt)]; 1111 } ctxt; 1112 1113 memset(&ctxt, 0, sizeof(ctxt)); 1114 int_pkt = (struct pci_delete_interrupt *)&ctxt.pkt.message; 1115 int_pkt->message_type.type = 1116 PCI_DELETE_INTERRUPT_MESSAGE; 1117 int_pkt->wslot.slot = hpdev->desc.win_slot.slot; 1118 int_pkt->int_desc = *int_desc; 1119 vmbus_sendpacket(hpdev->hbus->hdev->channel, int_pkt, sizeof(*int_pkt), 1120 (unsigned long)&ctxt.pkt, VM_PKT_DATA_INBAND, 0); 1121 kfree(int_desc); 1122 } 1123 1124 /** 1125 * hv_msi_free() - Free the MSI. 1126 * @domain: The interrupt domain pointer 1127 * @info: Extra MSI-related context 1128 * @irq: Identifies the IRQ. 1129 * 1130 * The Hyper-V parent partition and hypervisor are tracking the 1131 * messages that are in use, keeping the interrupt redirection 1132 * table up to date. This callback sends a message that frees 1133 * the IRT entry and related tracking nonsense. 1134 */ 1135 static void hv_msi_free(struct irq_domain *domain, struct msi_domain_info *info, 1136 unsigned int irq) 1137 { 1138 struct hv_pcibus_device *hbus; 1139 struct hv_pci_dev *hpdev; 1140 struct pci_dev *pdev; 1141 struct tran_int_desc *int_desc; 1142 struct irq_data *irq_data = irq_domain_get_irq_data(domain, irq); 1143 struct msi_desc *msi = irq_data_get_msi_desc(irq_data); 1144 1145 pdev = msi_desc_to_pci_dev(msi); 1146 hbus = info->data; 1147 int_desc = irq_data_get_irq_chip_data(irq_data); 1148 if (!int_desc) 1149 return; 1150 1151 irq_data->chip_data = NULL; 1152 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn)); 1153 if (!hpdev) { 1154 kfree(int_desc); 1155 return; 1156 } 1157 1158 hv_int_desc_free(hpdev, int_desc); 1159 put_pcichild(hpdev); 1160 } 1161 1162 static int hv_set_affinity(struct irq_data *data, const struct cpumask *dest, 1163 bool force) 1164 { 1165 struct irq_data *parent = data->parent_data; 1166 1167 return parent->chip->irq_set_affinity(parent, dest, force); 1168 } 1169 1170 static void hv_irq_mask(struct irq_data *data) 1171 { 1172 pci_msi_mask_irq(data); 1173 } 1174 1175 /** 1176 * hv_irq_unmask() - "Unmask" the IRQ by setting its current 1177 * affinity. 1178 * @data: Describes the IRQ 1179 * 1180 * Build new a destination for the MSI and make a hypercall to 1181 * update the Interrupt Redirection Table. "Device Logical ID" 1182 * is built out of this PCI bus's instance GUID and the function 1183 * number of the device. 1184 */ 1185 static void hv_irq_unmask(struct irq_data *data) 1186 { 1187 struct msi_desc *msi_desc = irq_data_get_msi_desc(data); 1188 struct irq_cfg *cfg = irqd_cfg(data); 1189 struct retarget_msi_interrupt *params; 1190 struct hv_pcibus_device *hbus; 1191 struct cpumask *dest; 1192 cpumask_var_t tmp; 1193 struct pci_bus *pbus; 1194 struct pci_dev *pdev; 1195 unsigned long flags; 1196 u32 var_size = 0; 1197 int cpu, nr_bank; 1198 u64 res; 1199 1200 dest = irq_data_get_effective_affinity_mask(data); 1201 pdev = msi_desc_to_pci_dev(msi_desc); 1202 pbus = pdev->bus; 1203 hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata); 1204 1205 spin_lock_irqsave(&hbus->retarget_msi_interrupt_lock, flags); 1206 1207 params = &hbus->retarget_msi_interrupt_params; 1208 memset(params, 0, sizeof(*params)); 1209 params->partition_id = HV_PARTITION_ID_SELF; 1210 params->int_entry.source = 1; /* MSI(-X) */ 1211 params->int_entry.address = msi_desc->msg.address_lo; 1212 params->int_entry.data = msi_desc->msg.data; 1213 params->device_id = (hbus->hdev->dev_instance.b[5] << 24) | 1214 (hbus->hdev->dev_instance.b[4] << 16) | 1215 (hbus->hdev->dev_instance.b[7] << 8) | 1216 (hbus->hdev->dev_instance.b[6] & 0xf8) | 1217 PCI_FUNC(pdev->devfn); 1218 params->int_target.vector = cfg->vector; 1219 1220 /* 1221 * Honoring apic->irq_delivery_mode set to dest_Fixed by 1222 * setting the HV_DEVICE_INTERRUPT_TARGET_MULTICAST flag results in a 1223 * spurious interrupt storm. Not doing so does not seem to have a 1224 * negative effect (yet?). 1225 */ 1226 1227 if (pci_protocol_version >= PCI_PROTOCOL_VERSION_1_2) { 1228 /* 1229 * PCI_PROTOCOL_VERSION_1_2 supports the VP_SET version of the 1230 * HVCALL_RETARGET_INTERRUPT hypercall, which also coincides 1231 * with >64 VP support. 1232 * ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED 1233 * is not sufficient for this hypercall. 1234 */ 1235 params->int_target.flags |= 1236 HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET; 1237 1238 if (!alloc_cpumask_var(&tmp, GFP_ATOMIC)) { 1239 res = 1; 1240 goto exit_unlock; 1241 } 1242 1243 cpumask_and(tmp, dest, cpu_online_mask); 1244 nr_bank = cpumask_to_vpset(¶ms->int_target.vp_set, tmp); 1245 free_cpumask_var(tmp); 1246 1247 if (nr_bank <= 0) { 1248 res = 1; 1249 goto exit_unlock; 1250 } 1251 1252 /* 1253 * var-sized hypercall, var-size starts after vp_mask (thus 1254 * vp_set.format does not count, but vp_set.valid_bank_mask 1255 * does). 1256 */ 1257 var_size = 1 + nr_bank; 1258 } else { 1259 for_each_cpu_and(cpu, dest, cpu_online_mask) { 1260 params->int_target.vp_mask |= 1261 (1ULL << hv_cpu_number_to_vp_number(cpu)); 1262 } 1263 } 1264 1265 res = hv_do_hypercall(HVCALL_RETARGET_INTERRUPT | (var_size << 17), 1266 params, NULL); 1267 1268 exit_unlock: 1269 spin_unlock_irqrestore(&hbus->retarget_msi_interrupt_lock, flags); 1270 1271 if (res) { 1272 dev_err(&hbus->hdev->device, 1273 "%s() failed: %#llx", __func__, res); 1274 return; 1275 } 1276 1277 pci_msi_unmask_irq(data); 1278 } 1279 1280 struct compose_comp_ctxt { 1281 struct hv_pci_compl comp_pkt; 1282 struct tran_int_desc int_desc; 1283 }; 1284 1285 static void hv_pci_compose_compl(void *context, struct pci_response *resp, 1286 int resp_packet_size) 1287 { 1288 struct compose_comp_ctxt *comp_pkt = context; 1289 struct pci_create_int_response *int_resp = 1290 (struct pci_create_int_response *)resp; 1291 1292 comp_pkt->comp_pkt.completion_status = resp->status; 1293 comp_pkt->int_desc = int_resp->int_desc; 1294 complete(&comp_pkt->comp_pkt.host_event); 1295 } 1296 1297 static u32 hv_compose_msi_req_v1( 1298 struct pci_create_interrupt *int_pkt, struct cpumask *affinity, 1299 u32 slot, u8 vector) 1300 { 1301 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE; 1302 int_pkt->wslot.slot = slot; 1303 int_pkt->int_desc.vector = vector; 1304 int_pkt->int_desc.vector_count = 1; 1305 int_pkt->int_desc.delivery_mode = dest_Fixed; 1306 1307 /* 1308 * Create MSI w/ dummy vCPU set, overwritten by subsequent retarget in 1309 * hv_irq_unmask(). 1310 */ 1311 int_pkt->int_desc.cpu_mask = CPU_AFFINITY_ALL; 1312 1313 return sizeof(*int_pkt); 1314 } 1315 1316 static u32 hv_compose_msi_req_v2( 1317 struct pci_create_interrupt2 *int_pkt, struct cpumask *affinity, 1318 u32 slot, u8 vector) 1319 { 1320 int cpu; 1321 1322 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE2; 1323 int_pkt->wslot.slot = slot; 1324 int_pkt->int_desc.vector = vector; 1325 int_pkt->int_desc.vector_count = 1; 1326 int_pkt->int_desc.delivery_mode = dest_Fixed; 1327 1328 /* 1329 * Create MSI w/ dummy vCPU set targeting just one vCPU, overwritten 1330 * by subsequent retarget in hv_irq_unmask(). 1331 */ 1332 cpu = cpumask_first_and(affinity, cpu_online_mask); 1333 int_pkt->int_desc.processor_array[0] = 1334 hv_cpu_number_to_vp_number(cpu); 1335 int_pkt->int_desc.processor_count = 1; 1336 1337 return sizeof(*int_pkt); 1338 } 1339 1340 /** 1341 * hv_compose_msi_msg() - Supplies a valid MSI address/data 1342 * @data: Everything about this MSI 1343 * @msg: Buffer that is filled in by this function 1344 * 1345 * This function unpacks the IRQ looking for target CPU set, IDT 1346 * vector and mode and sends a message to the parent partition 1347 * asking for a mapping for that tuple in this partition. The 1348 * response supplies a data value and address to which that data 1349 * should be written to trigger that interrupt. 1350 */ 1351 static void hv_compose_msi_msg(struct irq_data *data, struct msi_msg *msg) 1352 { 1353 struct irq_cfg *cfg = irqd_cfg(data); 1354 struct hv_pcibus_device *hbus; 1355 struct hv_pci_dev *hpdev; 1356 struct pci_bus *pbus; 1357 struct pci_dev *pdev; 1358 struct cpumask *dest; 1359 unsigned long flags; 1360 struct compose_comp_ctxt comp; 1361 struct tran_int_desc *int_desc; 1362 struct { 1363 struct pci_packet pci_pkt; 1364 union { 1365 struct pci_create_interrupt v1; 1366 struct pci_create_interrupt2 v2; 1367 } int_pkts; 1368 } __packed ctxt; 1369 1370 u32 size; 1371 int ret; 1372 1373 pdev = msi_desc_to_pci_dev(irq_data_get_msi_desc(data)); 1374 dest = irq_data_get_effective_affinity_mask(data); 1375 pbus = pdev->bus; 1376 hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata); 1377 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn)); 1378 if (!hpdev) 1379 goto return_null_message; 1380 1381 /* Free any previous message that might have already been composed. */ 1382 if (data->chip_data) { 1383 int_desc = data->chip_data; 1384 data->chip_data = NULL; 1385 hv_int_desc_free(hpdev, int_desc); 1386 } 1387 1388 int_desc = kzalloc(sizeof(*int_desc), GFP_ATOMIC); 1389 if (!int_desc) 1390 goto drop_reference; 1391 1392 memset(&ctxt, 0, sizeof(ctxt)); 1393 init_completion(&comp.comp_pkt.host_event); 1394 ctxt.pci_pkt.completion_func = hv_pci_compose_compl; 1395 ctxt.pci_pkt.compl_ctxt = ∁ 1396 1397 switch (pci_protocol_version) { 1398 case PCI_PROTOCOL_VERSION_1_1: 1399 size = hv_compose_msi_req_v1(&ctxt.int_pkts.v1, 1400 dest, 1401 hpdev->desc.win_slot.slot, 1402 cfg->vector); 1403 break; 1404 1405 case PCI_PROTOCOL_VERSION_1_2: 1406 size = hv_compose_msi_req_v2(&ctxt.int_pkts.v2, 1407 dest, 1408 hpdev->desc.win_slot.slot, 1409 cfg->vector); 1410 break; 1411 1412 default: 1413 /* As we only negotiate protocol versions known to this driver, 1414 * this path should never hit. However, this is it not a hot 1415 * path so we print a message to aid future updates. 1416 */ 1417 dev_err(&hbus->hdev->device, 1418 "Unexpected vPCI protocol, update driver."); 1419 goto free_int_desc; 1420 } 1421 1422 ret = vmbus_sendpacket(hpdev->hbus->hdev->channel, &ctxt.int_pkts, 1423 size, (unsigned long)&ctxt.pci_pkt, 1424 VM_PKT_DATA_INBAND, 1425 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1426 if (ret) { 1427 dev_err(&hbus->hdev->device, 1428 "Sending request for interrupt failed: 0x%x", 1429 comp.comp_pkt.completion_status); 1430 goto free_int_desc; 1431 } 1432 1433 /* 1434 * Since this function is called with IRQ locks held, can't 1435 * do normal wait for completion; instead poll. 1436 */ 1437 while (!try_wait_for_completion(&comp.comp_pkt.host_event)) { 1438 /* 0xFFFF means an invalid PCI VENDOR ID. */ 1439 if (hv_pcifront_get_vendor_id(hpdev) == 0xFFFF) { 1440 dev_err_once(&hbus->hdev->device, 1441 "the device has gone\n"); 1442 goto free_int_desc; 1443 } 1444 1445 /* 1446 * When the higher level interrupt code calls us with 1447 * interrupt disabled, we must poll the channel by calling 1448 * the channel callback directly when channel->target_cpu is 1449 * the current CPU. When the higher level interrupt code 1450 * calls us with interrupt enabled, let's add the 1451 * local_irq_save()/restore() to avoid race: 1452 * hv_pci_onchannelcallback() can also run in tasklet. 1453 */ 1454 local_irq_save(flags); 1455 1456 if (hbus->hdev->channel->target_cpu == smp_processor_id()) 1457 hv_pci_onchannelcallback(hbus); 1458 1459 local_irq_restore(flags); 1460 1461 if (hpdev->state == hv_pcichild_ejecting) { 1462 dev_err_once(&hbus->hdev->device, 1463 "the device is being ejected\n"); 1464 goto free_int_desc; 1465 } 1466 1467 udelay(100); 1468 } 1469 1470 if (comp.comp_pkt.completion_status < 0) { 1471 dev_err(&hbus->hdev->device, 1472 "Request for interrupt failed: 0x%x", 1473 comp.comp_pkt.completion_status); 1474 goto free_int_desc; 1475 } 1476 1477 /* 1478 * Record the assignment so that this can be unwound later. Using 1479 * irq_set_chip_data() here would be appropriate, but the lock it takes 1480 * is already held. 1481 */ 1482 *int_desc = comp.int_desc; 1483 data->chip_data = int_desc; 1484 1485 /* Pass up the result. */ 1486 msg->address_hi = comp.int_desc.address >> 32; 1487 msg->address_lo = comp.int_desc.address & 0xffffffff; 1488 msg->data = comp.int_desc.data; 1489 1490 put_pcichild(hpdev); 1491 return; 1492 1493 free_int_desc: 1494 kfree(int_desc); 1495 drop_reference: 1496 put_pcichild(hpdev); 1497 return_null_message: 1498 msg->address_hi = 0; 1499 msg->address_lo = 0; 1500 msg->data = 0; 1501 } 1502 1503 /* HW Interrupt Chip Descriptor */ 1504 static struct irq_chip hv_msi_irq_chip = { 1505 .name = "Hyper-V PCIe MSI", 1506 .irq_compose_msi_msg = hv_compose_msi_msg, 1507 .irq_set_affinity = hv_set_affinity, 1508 .irq_ack = irq_chip_ack_parent, 1509 .irq_mask = hv_irq_mask, 1510 .irq_unmask = hv_irq_unmask, 1511 }; 1512 1513 static irq_hw_number_t hv_msi_domain_ops_get_hwirq(struct msi_domain_info *info, 1514 msi_alloc_info_t *arg) 1515 { 1516 return arg->msi_hwirq; 1517 } 1518 1519 static struct msi_domain_ops hv_msi_ops = { 1520 .get_hwirq = hv_msi_domain_ops_get_hwirq, 1521 .msi_prepare = pci_msi_prepare, 1522 .set_desc = pci_msi_set_desc, 1523 .msi_free = hv_msi_free, 1524 }; 1525 1526 /** 1527 * hv_pcie_init_irq_domain() - Initialize IRQ domain 1528 * @hbus: The root PCI bus 1529 * 1530 * This function creates an IRQ domain which will be used for 1531 * interrupts from devices that have been passed through. These 1532 * devices only support MSI and MSI-X, not line-based interrupts 1533 * or simulations of line-based interrupts through PCIe's 1534 * fabric-layer messages. Because interrupts are remapped, we 1535 * can support multi-message MSI here. 1536 * 1537 * Return: '0' on success and error value on failure 1538 */ 1539 static int hv_pcie_init_irq_domain(struct hv_pcibus_device *hbus) 1540 { 1541 hbus->msi_info.chip = &hv_msi_irq_chip; 1542 hbus->msi_info.ops = &hv_msi_ops; 1543 hbus->msi_info.flags = (MSI_FLAG_USE_DEF_DOM_OPS | 1544 MSI_FLAG_USE_DEF_CHIP_OPS | MSI_FLAG_MULTI_PCI_MSI | 1545 MSI_FLAG_PCI_MSIX); 1546 hbus->msi_info.handler = handle_edge_irq; 1547 hbus->msi_info.handler_name = "edge"; 1548 hbus->msi_info.data = hbus; 1549 hbus->irq_domain = pci_msi_create_irq_domain(hbus->sysdata.fwnode, 1550 &hbus->msi_info, 1551 x86_vector_domain); 1552 if (!hbus->irq_domain) { 1553 dev_err(&hbus->hdev->device, 1554 "Failed to build an MSI IRQ domain\n"); 1555 return -ENODEV; 1556 } 1557 1558 return 0; 1559 } 1560 1561 /** 1562 * get_bar_size() - Get the address space consumed by a BAR 1563 * @bar_val: Value that a BAR returned after -1 was written 1564 * to it. 1565 * 1566 * This function returns the size of the BAR, rounded up to 1 1567 * page. It has to be rounded up because the hypervisor's page 1568 * table entry that maps the BAR into the VM can't specify an 1569 * offset within a page. The invariant is that the hypervisor 1570 * must place any BARs of smaller than page length at the 1571 * beginning of a page. 1572 * 1573 * Return: Size in bytes of the consumed MMIO space. 1574 */ 1575 static u64 get_bar_size(u64 bar_val) 1576 { 1577 return round_up((1 + ~(bar_val & PCI_BASE_ADDRESS_MEM_MASK)), 1578 PAGE_SIZE); 1579 } 1580 1581 /** 1582 * survey_child_resources() - Total all MMIO requirements 1583 * @hbus: Root PCI bus, as understood by this driver 1584 */ 1585 static void survey_child_resources(struct hv_pcibus_device *hbus) 1586 { 1587 struct hv_pci_dev *hpdev; 1588 resource_size_t bar_size = 0; 1589 unsigned long flags; 1590 struct completion *event; 1591 u64 bar_val; 1592 int i; 1593 1594 /* If nobody is waiting on the answer, don't compute it. */ 1595 event = xchg(&hbus->survey_event, NULL); 1596 if (!event) 1597 return; 1598 1599 /* If the answer has already been computed, go with it. */ 1600 if (hbus->low_mmio_space || hbus->high_mmio_space) { 1601 complete(event); 1602 return; 1603 } 1604 1605 spin_lock_irqsave(&hbus->device_list_lock, flags); 1606 1607 /* 1608 * Due to an interesting quirk of the PCI spec, all memory regions 1609 * for a child device are a power of 2 in size and aligned in memory, 1610 * so it's sufficient to just add them up without tracking alignment. 1611 */ 1612 list_for_each_entry(hpdev, &hbus->children, list_entry) { 1613 for (i = 0; i < 6; i++) { 1614 if (hpdev->probed_bar[i] & PCI_BASE_ADDRESS_SPACE_IO) 1615 dev_err(&hbus->hdev->device, 1616 "There's an I/O BAR in this list!\n"); 1617 1618 if (hpdev->probed_bar[i] != 0) { 1619 /* 1620 * A probed BAR has all the upper bits set that 1621 * can be changed. 1622 */ 1623 1624 bar_val = hpdev->probed_bar[i]; 1625 if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64) 1626 bar_val |= 1627 ((u64)hpdev->probed_bar[++i] << 32); 1628 else 1629 bar_val |= 0xffffffff00000000ULL; 1630 1631 bar_size = get_bar_size(bar_val); 1632 1633 if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64) 1634 hbus->high_mmio_space += bar_size; 1635 else 1636 hbus->low_mmio_space += bar_size; 1637 } 1638 } 1639 } 1640 1641 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 1642 complete(event); 1643 } 1644 1645 /** 1646 * prepopulate_bars() - Fill in BARs with defaults 1647 * @hbus: Root PCI bus, as understood by this driver 1648 * 1649 * The core PCI driver code seems much, much happier if the BARs 1650 * for a device have values upon first scan. So fill them in. 1651 * The algorithm below works down from large sizes to small, 1652 * attempting to pack the assignments optimally. The assumption, 1653 * enforced in other parts of the code, is that the beginning of 1654 * the memory-mapped I/O space will be aligned on the largest 1655 * BAR size. 1656 */ 1657 static void prepopulate_bars(struct hv_pcibus_device *hbus) 1658 { 1659 resource_size_t high_size = 0; 1660 resource_size_t low_size = 0; 1661 resource_size_t high_base = 0; 1662 resource_size_t low_base = 0; 1663 resource_size_t bar_size; 1664 struct hv_pci_dev *hpdev; 1665 unsigned long flags; 1666 u64 bar_val; 1667 u32 command; 1668 bool high; 1669 int i; 1670 1671 if (hbus->low_mmio_space) { 1672 low_size = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space)); 1673 low_base = hbus->low_mmio_res->start; 1674 } 1675 1676 if (hbus->high_mmio_space) { 1677 high_size = 1ULL << 1678 (63 - __builtin_clzll(hbus->high_mmio_space)); 1679 high_base = hbus->high_mmio_res->start; 1680 } 1681 1682 spin_lock_irqsave(&hbus->device_list_lock, flags); 1683 1684 /* Pick addresses for the BARs. */ 1685 do { 1686 list_for_each_entry(hpdev, &hbus->children, list_entry) { 1687 for (i = 0; i < 6; i++) { 1688 bar_val = hpdev->probed_bar[i]; 1689 if (bar_val == 0) 1690 continue; 1691 high = bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64; 1692 if (high) { 1693 bar_val |= 1694 ((u64)hpdev->probed_bar[i + 1] 1695 << 32); 1696 } else { 1697 bar_val |= 0xffffffffULL << 32; 1698 } 1699 bar_size = get_bar_size(bar_val); 1700 if (high) { 1701 if (high_size != bar_size) { 1702 i++; 1703 continue; 1704 } 1705 _hv_pcifront_write_config(hpdev, 1706 PCI_BASE_ADDRESS_0 + (4 * i), 1707 4, 1708 (u32)(high_base & 0xffffff00)); 1709 i++; 1710 _hv_pcifront_write_config(hpdev, 1711 PCI_BASE_ADDRESS_0 + (4 * i), 1712 4, (u32)(high_base >> 32)); 1713 high_base += bar_size; 1714 } else { 1715 if (low_size != bar_size) 1716 continue; 1717 _hv_pcifront_write_config(hpdev, 1718 PCI_BASE_ADDRESS_0 + (4 * i), 1719 4, 1720 (u32)(low_base & 0xffffff00)); 1721 low_base += bar_size; 1722 } 1723 } 1724 if (high_size <= 1 && low_size <= 1) { 1725 /* Set the memory enable bit. */ 1726 _hv_pcifront_read_config(hpdev, PCI_COMMAND, 2, 1727 &command); 1728 command |= PCI_COMMAND_MEMORY; 1729 _hv_pcifront_write_config(hpdev, PCI_COMMAND, 2, 1730 command); 1731 break; 1732 } 1733 } 1734 1735 high_size >>= 1; 1736 low_size >>= 1; 1737 } while (high_size || low_size); 1738 1739 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 1740 } 1741 1742 /* 1743 * Assign entries in sysfs pci slot directory. 1744 * 1745 * Note that this function does not need to lock the children list 1746 * because it is called from pci_devices_present_work which 1747 * is serialized with hv_eject_device_work because they are on the 1748 * same ordered workqueue. Therefore hbus->children list will not change 1749 * even when pci_create_slot sleeps. 1750 */ 1751 static void hv_pci_assign_slots(struct hv_pcibus_device *hbus) 1752 { 1753 struct hv_pci_dev *hpdev; 1754 char name[SLOT_NAME_SIZE]; 1755 int slot_nr; 1756 1757 list_for_each_entry(hpdev, &hbus->children, list_entry) { 1758 if (hpdev->pci_slot) 1759 continue; 1760 1761 slot_nr = PCI_SLOT(wslot_to_devfn(hpdev->desc.win_slot.slot)); 1762 snprintf(name, SLOT_NAME_SIZE, "%u", hpdev->desc.ser); 1763 hpdev->pci_slot = pci_create_slot(hbus->pci_bus, slot_nr, 1764 name, NULL); 1765 if (IS_ERR(hpdev->pci_slot)) { 1766 pr_warn("pci_create slot %s failed\n", name); 1767 hpdev->pci_slot = NULL; 1768 } 1769 } 1770 } 1771 1772 /* 1773 * Remove entries in sysfs pci slot directory. 1774 */ 1775 static void hv_pci_remove_slots(struct hv_pcibus_device *hbus) 1776 { 1777 struct hv_pci_dev *hpdev; 1778 1779 list_for_each_entry(hpdev, &hbus->children, list_entry) { 1780 if (!hpdev->pci_slot) 1781 continue; 1782 pci_destroy_slot(hpdev->pci_slot); 1783 hpdev->pci_slot = NULL; 1784 } 1785 } 1786 1787 /** 1788 * create_root_hv_pci_bus() - Expose a new root PCI bus 1789 * @hbus: Root PCI bus, as understood by this driver 1790 * 1791 * Return: 0 on success, -errno on failure 1792 */ 1793 static int create_root_hv_pci_bus(struct hv_pcibus_device *hbus) 1794 { 1795 /* Register the device */ 1796 hbus->pci_bus = pci_create_root_bus(&hbus->hdev->device, 1797 0, /* bus number is always zero */ 1798 &hv_pcifront_ops, 1799 &hbus->sysdata, 1800 &hbus->resources_for_children); 1801 if (!hbus->pci_bus) 1802 return -ENODEV; 1803 1804 hbus->pci_bus->msi = &hbus->msi_chip; 1805 hbus->pci_bus->msi->dev = &hbus->hdev->device; 1806 1807 pci_lock_rescan_remove(); 1808 pci_scan_child_bus(hbus->pci_bus); 1809 pci_bus_assign_resources(hbus->pci_bus); 1810 hv_pci_assign_slots(hbus); 1811 pci_bus_add_devices(hbus->pci_bus); 1812 pci_unlock_rescan_remove(); 1813 hbus->state = hv_pcibus_installed; 1814 return 0; 1815 } 1816 1817 struct q_res_req_compl { 1818 struct completion host_event; 1819 struct hv_pci_dev *hpdev; 1820 }; 1821 1822 /** 1823 * q_resource_requirements() - Query Resource Requirements 1824 * @context: The completion context. 1825 * @resp: The response that came from the host. 1826 * @resp_packet_size: The size in bytes of resp. 1827 * 1828 * This function is invoked on completion of a Query Resource 1829 * Requirements packet. 1830 */ 1831 static void q_resource_requirements(void *context, struct pci_response *resp, 1832 int resp_packet_size) 1833 { 1834 struct q_res_req_compl *completion = context; 1835 struct pci_q_res_req_response *q_res_req = 1836 (struct pci_q_res_req_response *)resp; 1837 int i; 1838 1839 if (resp->status < 0) { 1840 dev_err(&completion->hpdev->hbus->hdev->device, 1841 "query resource requirements failed: %x\n", 1842 resp->status); 1843 } else { 1844 for (i = 0; i < 6; i++) { 1845 completion->hpdev->probed_bar[i] = 1846 q_res_req->probed_bar[i]; 1847 } 1848 } 1849 1850 complete(&completion->host_event); 1851 } 1852 1853 /** 1854 * new_pcichild_device() - Create a new child device 1855 * @hbus: The internal struct tracking this root PCI bus. 1856 * @desc: The information supplied so far from the host 1857 * about the device. 1858 * 1859 * This function creates the tracking structure for a new child 1860 * device and kicks off the process of figuring out what it is. 1861 * 1862 * Return: Pointer to the new tracking struct 1863 */ 1864 static struct hv_pci_dev *new_pcichild_device(struct hv_pcibus_device *hbus, 1865 struct pci_function_description *desc) 1866 { 1867 struct hv_pci_dev *hpdev; 1868 struct pci_child_message *res_req; 1869 struct q_res_req_compl comp_pkt; 1870 struct { 1871 struct pci_packet init_packet; 1872 u8 buffer[sizeof(struct pci_child_message)]; 1873 } pkt; 1874 unsigned long flags; 1875 int ret; 1876 1877 hpdev = kzalloc(sizeof(*hpdev), GFP_KERNEL); 1878 if (!hpdev) 1879 return NULL; 1880 1881 hpdev->hbus = hbus; 1882 1883 memset(&pkt, 0, sizeof(pkt)); 1884 init_completion(&comp_pkt.host_event); 1885 comp_pkt.hpdev = hpdev; 1886 pkt.init_packet.compl_ctxt = &comp_pkt; 1887 pkt.init_packet.completion_func = q_resource_requirements; 1888 res_req = (struct pci_child_message *)&pkt.init_packet.message; 1889 res_req->message_type.type = PCI_QUERY_RESOURCE_REQUIREMENTS; 1890 res_req->wslot.slot = desc->win_slot.slot; 1891 1892 ret = vmbus_sendpacket(hbus->hdev->channel, res_req, 1893 sizeof(struct pci_child_message), 1894 (unsigned long)&pkt.init_packet, 1895 VM_PKT_DATA_INBAND, 1896 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1897 if (ret) 1898 goto error; 1899 1900 if (wait_for_response(hbus->hdev, &comp_pkt.host_event)) 1901 goto error; 1902 1903 hpdev->desc = *desc; 1904 refcount_set(&hpdev->refs, 1); 1905 get_pcichild(hpdev); 1906 spin_lock_irqsave(&hbus->device_list_lock, flags); 1907 1908 list_add_tail(&hpdev->list_entry, &hbus->children); 1909 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 1910 return hpdev; 1911 1912 error: 1913 kfree(hpdev); 1914 return NULL; 1915 } 1916 1917 /** 1918 * get_pcichild_wslot() - Find device from slot 1919 * @hbus: Root PCI bus, as understood by this driver 1920 * @wslot: Location on the bus 1921 * 1922 * This function looks up a PCI device and returns the internal 1923 * representation of it. It acquires a reference on it, so that 1924 * the device won't be deleted while somebody is using it. The 1925 * caller is responsible for calling put_pcichild() to release 1926 * this reference. 1927 * 1928 * Return: Internal representation of a PCI device 1929 */ 1930 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus, 1931 u32 wslot) 1932 { 1933 unsigned long flags; 1934 struct hv_pci_dev *iter, *hpdev = NULL; 1935 1936 spin_lock_irqsave(&hbus->device_list_lock, flags); 1937 list_for_each_entry(iter, &hbus->children, list_entry) { 1938 if (iter->desc.win_slot.slot == wslot) { 1939 hpdev = iter; 1940 get_pcichild(hpdev); 1941 break; 1942 } 1943 } 1944 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 1945 1946 return hpdev; 1947 } 1948 1949 /** 1950 * pci_devices_present_work() - Handle new list of child devices 1951 * @work: Work struct embedded in struct hv_dr_work 1952 * 1953 * "Bus Relations" is the Windows term for "children of this 1954 * bus." The terminology is preserved here for people trying to 1955 * debug the interaction between Hyper-V and Linux. This 1956 * function is called when the parent partition reports a list 1957 * of functions that should be observed under this PCI Express 1958 * port (bus). 1959 * 1960 * This function updates the list, and must tolerate being 1961 * called multiple times with the same information. The typical 1962 * number of child devices is one, with very atypical cases 1963 * involving three or four, so the algorithms used here can be 1964 * simple and inefficient. 1965 * 1966 * It must also treat the omission of a previously observed device as 1967 * notification that the device no longer exists. 1968 * 1969 * Note that this function is serialized with hv_eject_device_work(), 1970 * because both are pushed to the ordered workqueue hbus->wq. 1971 */ 1972 static void pci_devices_present_work(struct work_struct *work) 1973 { 1974 u32 child_no; 1975 bool found; 1976 struct pci_function_description *new_desc; 1977 struct hv_pci_dev *hpdev; 1978 struct hv_pcibus_device *hbus; 1979 struct list_head removed; 1980 struct hv_dr_work *dr_wrk; 1981 struct hv_dr_state *dr = NULL; 1982 unsigned long flags; 1983 1984 dr_wrk = container_of(work, struct hv_dr_work, wrk); 1985 hbus = dr_wrk->bus; 1986 kfree(dr_wrk); 1987 1988 INIT_LIST_HEAD(&removed); 1989 1990 /* Pull this off the queue and process it if it was the last one. */ 1991 spin_lock_irqsave(&hbus->device_list_lock, flags); 1992 while (!list_empty(&hbus->dr_list)) { 1993 dr = list_first_entry(&hbus->dr_list, struct hv_dr_state, 1994 list_entry); 1995 list_del(&dr->list_entry); 1996 1997 /* Throw this away if the list still has stuff in it. */ 1998 if (!list_empty(&hbus->dr_list)) { 1999 kfree(dr); 2000 continue; 2001 } 2002 } 2003 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2004 2005 if (!dr) { 2006 put_hvpcibus(hbus); 2007 return; 2008 } 2009 2010 /* First, mark all existing children as reported missing. */ 2011 spin_lock_irqsave(&hbus->device_list_lock, flags); 2012 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2013 hpdev->reported_missing = true; 2014 } 2015 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2016 2017 /* Next, add back any reported devices. */ 2018 for (child_no = 0; child_no < dr->device_count; child_no++) { 2019 found = false; 2020 new_desc = &dr->func[child_no]; 2021 2022 spin_lock_irqsave(&hbus->device_list_lock, flags); 2023 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2024 if ((hpdev->desc.win_slot.slot == new_desc->win_slot.slot) && 2025 (hpdev->desc.v_id == new_desc->v_id) && 2026 (hpdev->desc.d_id == new_desc->d_id) && 2027 (hpdev->desc.ser == new_desc->ser)) { 2028 hpdev->reported_missing = false; 2029 found = true; 2030 } 2031 } 2032 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2033 2034 if (!found) { 2035 hpdev = new_pcichild_device(hbus, new_desc); 2036 if (!hpdev) 2037 dev_err(&hbus->hdev->device, 2038 "couldn't record a child device.\n"); 2039 } 2040 } 2041 2042 /* Move missing children to a list on the stack. */ 2043 spin_lock_irqsave(&hbus->device_list_lock, flags); 2044 do { 2045 found = false; 2046 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2047 if (hpdev->reported_missing) { 2048 found = true; 2049 put_pcichild(hpdev); 2050 list_move_tail(&hpdev->list_entry, &removed); 2051 break; 2052 } 2053 } 2054 } while (found); 2055 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2056 2057 /* Delete everything that should no longer exist. */ 2058 while (!list_empty(&removed)) { 2059 hpdev = list_first_entry(&removed, struct hv_pci_dev, 2060 list_entry); 2061 list_del(&hpdev->list_entry); 2062 2063 if (hpdev->pci_slot) 2064 pci_destroy_slot(hpdev->pci_slot); 2065 2066 put_pcichild(hpdev); 2067 } 2068 2069 switch (hbus->state) { 2070 case hv_pcibus_installed: 2071 /* 2072 * Tell the core to rescan bus 2073 * because there may have been changes. 2074 */ 2075 pci_lock_rescan_remove(); 2076 pci_scan_child_bus(hbus->pci_bus); 2077 hv_pci_assign_slots(hbus); 2078 pci_unlock_rescan_remove(); 2079 break; 2080 2081 case hv_pcibus_init: 2082 case hv_pcibus_probed: 2083 survey_child_resources(hbus); 2084 break; 2085 2086 default: 2087 break; 2088 } 2089 2090 put_hvpcibus(hbus); 2091 kfree(dr); 2092 } 2093 2094 /** 2095 * hv_pci_devices_present() - Handles list of new children 2096 * @hbus: Root PCI bus, as understood by this driver 2097 * @relations: Packet from host listing children 2098 * 2099 * This function is invoked whenever a new list of devices for 2100 * this bus appears. 2101 */ 2102 static void hv_pci_devices_present(struct hv_pcibus_device *hbus, 2103 struct pci_bus_relations *relations) 2104 { 2105 struct hv_dr_state *dr; 2106 struct hv_dr_work *dr_wrk; 2107 unsigned long flags; 2108 bool pending_dr; 2109 2110 dr_wrk = kzalloc(sizeof(*dr_wrk), GFP_NOWAIT); 2111 if (!dr_wrk) 2112 return; 2113 2114 dr = kzalloc(offsetof(struct hv_dr_state, func) + 2115 (sizeof(struct pci_function_description) * 2116 (relations->device_count)), GFP_NOWAIT); 2117 if (!dr) { 2118 kfree(dr_wrk); 2119 return; 2120 } 2121 2122 INIT_WORK(&dr_wrk->wrk, pci_devices_present_work); 2123 dr_wrk->bus = hbus; 2124 dr->device_count = relations->device_count; 2125 if (dr->device_count != 0) { 2126 memcpy(dr->func, relations->func, 2127 sizeof(struct pci_function_description) * 2128 dr->device_count); 2129 } 2130 2131 spin_lock_irqsave(&hbus->device_list_lock, flags); 2132 /* 2133 * If pending_dr is true, we have already queued a work, 2134 * which will see the new dr. Otherwise, we need to 2135 * queue a new work. 2136 */ 2137 pending_dr = !list_empty(&hbus->dr_list); 2138 list_add_tail(&dr->list_entry, &hbus->dr_list); 2139 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2140 2141 if (pending_dr) { 2142 kfree(dr_wrk); 2143 } else { 2144 get_hvpcibus(hbus); 2145 queue_work(hbus->wq, &dr_wrk->wrk); 2146 } 2147 } 2148 2149 /** 2150 * hv_eject_device_work() - Asynchronously handles ejection 2151 * @work: Work struct embedded in internal device struct 2152 * 2153 * This function handles ejecting a device. Windows will 2154 * attempt to gracefully eject a device, waiting 60 seconds to 2155 * hear back from the guest OS that this completed successfully. 2156 * If this timer expires, the device will be forcibly removed. 2157 */ 2158 static void hv_eject_device_work(struct work_struct *work) 2159 { 2160 struct pci_eject_response *ejct_pkt; 2161 struct hv_pcibus_device *hbus; 2162 struct hv_pci_dev *hpdev; 2163 struct pci_dev *pdev; 2164 unsigned long flags; 2165 int wslot; 2166 struct { 2167 struct pci_packet pkt; 2168 u8 buffer[sizeof(struct pci_eject_response)]; 2169 } ctxt; 2170 2171 hpdev = container_of(work, struct hv_pci_dev, wrk); 2172 hbus = hpdev->hbus; 2173 2174 WARN_ON(hpdev->state != hv_pcichild_ejecting); 2175 2176 /* 2177 * Ejection can come before or after the PCI bus has been set up, so 2178 * attempt to find it and tear down the bus state, if it exists. This 2179 * must be done without constructs like pci_domain_nr(hbus->pci_bus) 2180 * because hbus->pci_bus may not exist yet. 2181 */ 2182 wslot = wslot_to_devfn(hpdev->desc.win_slot.slot); 2183 pdev = pci_get_domain_bus_and_slot(hbus->sysdata.domain, 0, wslot); 2184 if (pdev) { 2185 pci_lock_rescan_remove(); 2186 pci_stop_and_remove_bus_device(pdev); 2187 pci_dev_put(pdev); 2188 pci_unlock_rescan_remove(); 2189 } 2190 2191 spin_lock_irqsave(&hbus->device_list_lock, flags); 2192 list_del(&hpdev->list_entry); 2193 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2194 2195 if (hpdev->pci_slot) 2196 pci_destroy_slot(hpdev->pci_slot); 2197 2198 memset(&ctxt, 0, sizeof(ctxt)); 2199 ejct_pkt = (struct pci_eject_response *)&ctxt.pkt.message; 2200 ejct_pkt->message_type.type = PCI_EJECTION_COMPLETE; 2201 ejct_pkt->wslot.slot = hpdev->desc.win_slot.slot; 2202 vmbus_sendpacket(hbus->hdev->channel, ejct_pkt, 2203 sizeof(*ejct_pkt), (unsigned long)&ctxt.pkt, 2204 VM_PKT_DATA_INBAND, 0); 2205 2206 /* For the get_pcichild() in hv_pci_eject_device() */ 2207 put_pcichild(hpdev); 2208 /* For the two refs got in new_pcichild_device() */ 2209 put_pcichild(hpdev); 2210 put_pcichild(hpdev); 2211 /* hpdev has been freed. Do not use it any more. */ 2212 2213 put_hvpcibus(hbus); 2214 } 2215 2216 /** 2217 * hv_pci_eject_device() - Handles device ejection 2218 * @hpdev: Internal device tracking struct 2219 * 2220 * This function is invoked when an ejection packet arrives. It 2221 * just schedules work so that we don't re-enter the packet 2222 * delivery code handling the ejection. 2223 */ 2224 static void hv_pci_eject_device(struct hv_pci_dev *hpdev) 2225 { 2226 hpdev->state = hv_pcichild_ejecting; 2227 get_pcichild(hpdev); 2228 INIT_WORK(&hpdev->wrk, hv_eject_device_work); 2229 get_hvpcibus(hpdev->hbus); 2230 queue_work(hpdev->hbus->wq, &hpdev->wrk); 2231 } 2232 2233 /** 2234 * hv_pci_onchannelcallback() - Handles incoming packets 2235 * @context: Internal bus tracking struct 2236 * 2237 * This function is invoked whenever the host sends a packet to 2238 * this channel (which is private to this root PCI bus). 2239 */ 2240 static void hv_pci_onchannelcallback(void *context) 2241 { 2242 const int packet_size = 0x100; 2243 int ret; 2244 struct hv_pcibus_device *hbus = context; 2245 u32 bytes_recvd; 2246 u64 req_id; 2247 struct vmpacket_descriptor *desc; 2248 unsigned char *buffer; 2249 int bufferlen = packet_size; 2250 struct pci_packet *comp_packet; 2251 struct pci_response *response; 2252 struct pci_incoming_message *new_message; 2253 struct pci_bus_relations *bus_rel; 2254 struct pci_dev_inval_block *inval; 2255 struct pci_dev_incoming *dev_message; 2256 struct hv_pci_dev *hpdev; 2257 2258 buffer = kmalloc(bufferlen, GFP_ATOMIC); 2259 if (!buffer) 2260 return; 2261 2262 while (1) { 2263 ret = vmbus_recvpacket_raw(hbus->hdev->channel, buffer, 2264 bufferlen, &bytes_recvd, &req_id); 2265 2266 if (ret == -ENOBUFS) { 2267 kfree(buffer); 2268 /* Handle large packet */ 2269 bufferlen = bytes_recvd; 2270 buffer = kmalloc(bytes_recvd, GFP_ATOMIC); 2271 if (!buffer) 2272 return; 2273 continue; 2274 } 2275 2276 /* Zero length indicates there are no more packets. */ 2277 if (ret || !bytes_recvd) 2278 break; 2279 2280 /* 2281 * All incoming packets must be at least as large as a 2282 * response. 2283 */ 2284 if (bytes_recvd <= sizeof(struct pci_response)) 2285 continue; 2286 desc = (struct vmpacket_descriptor *)buffer; 2287 2288 switch (desc->type) { 2289 case VM_PKT_COMP: 2290 2291 /* 2292 * The host is trusted, and thus it's safe to interpret 2293 * this transaction ID as a pointer. 2294 */ 2295 comp_packet = (struct pci_packet *)req_id; 2296 response = (struct pci_response *)buffer; 2297 comp_packet->completion_func(comp_packet->compl_ctxt, 2298 response, 2299 bytes_recvd); 2300 break; 2301 2302 case VM_PKT_DATA_INBAND: 2303 2304 new_message = (struct pci_incoming_message *)buffer; 2305 switch (new_message->message_type.type) { 2306 case PCI_BUS_RELATIONS: 2307 2308 bus_rel = (struct pci_bus_relations *)buffer; 2309 if (bytes_recvd < 2310 offsetof(struct pci_bus_relations, func) + 2311 (sizeof(struct pci_function_description) * 2312 (bus_rel->device_count))) { 2313 dev_err(&hbus->hdev->device, 2314 "bus relations too small\n"); 2315 break; 2316 } 2317 2318 hv_pci_devices_present(hbus, bus_rel); 2319 break; 2320 2321 case PCI_EJECT: 2322 2323 dev_message = (struct pci_dev_incoming *)buffer; 2324 hpdev = get_pcichild_wslot(hbus, 2325 dev_message->wslot.slot); 2326 if (hpdev) { 2327 hv_pci_eject_device(hpdev); 2328 put_pcichild(hpdev); 2329 } 2330 break; 2331 2332 case PCI_INVALIDATE_BLOCK: 2333 2334 inval = (struct pci_dev_inval_block *)buffer; 2335 hpdev = get_pcichild_wslot(hbus, 2336 inval->wslot.slot); 2337 if (hpdev) { 2338 if (hpdev->block_invalidate) { 2339 hpdev->block_invalidate( 2340 hpdev->invalidate_context, 2341 inval->block_mask); 2342 } 2343 put_pcichild(hpdev); 2344 } 2345 break; 2346 2347 default: 2348 dev_warn(&hbus->hdev->device, 2349 "Unimplemented protocol message %x\n", 2350 new_message->message_type.type); 2351 break; 2352 } 2353 break; 2354 2355 default: 2356 dev_err(&hbus->hdev->device, 2357 "unhandled packet type %d, tid %llx len %d\n", 2358 desc->type, req_id, bytes_recvd); 2359 break; 2360 } 2361 } 2362 2363 kfree(buffer); 2364 } 2365 2366 /** 2367 * hv_pci_protocol_negotiation() - Set up protocol 2368 * @hdev: VMBus's tracking struct for this root PCI bus 2369 * 2370 * This driver is intended to support running on Windows 10 2371 * (server) and later versions. It will not run on earlier 2372 * versions, as they assume that many of the operations which 2373 * Linux needs accomplished with a spinlock held were done via 2374 * asynchronous messaging via VMBus. Windows 10 increases the 2375 * surface area of PCI emulation so that these actions can take 2376 * place by suspending a virtual processor for their duration. 2377 * 2378 * This function negotiates the channel protocol version, 2379 * failing if the host doesn't support the necessary protocol 2380 * level. 2381 */ 2382 static int hv_pci_protocol_negotiation(struct hv_device *hdev) 2383 { 2384 struct pci_version_request *version_req; 2385 struct hv_pci_compl comp_pkt; 2386 struct pci_packet *pkt; 2387 int ret; 2388 int i; 2389 2390 /* 2391 * Initiate the handshake with the host and negotiate 2392 * a version that the host can support. We start with the 2393 * highest version number and go down if the host cannot 2394 * support it. 2395 */ 2396 pkt = kzalloc(sizeof(*pkt) + sizeof(*version_req), GFP_KERNEL); 2397 if (!pkt) 2398 return -ENOMEM; 2399 2400 init_completion(&comp_pkt.host_event); 2401 pkt->completion_func = hv_pci_generic_compl; 2402 pkt->compl_ctxt = &comp_pkt; 2403 version_req = (struct pci_version_request *)&pkt->message; 2404 version_req->message_type.type = PCI_QUERY_PROTOCOL_VERSION; 2405 2406 for (i = 0; i < ARRAY_SIZE(pci_protocol_versions); i++) { 2407 version_req->protocol_version = pci_protocol_versions[i]; 2408 ret = vmbus_sendpacket(hdev->channel, version_req, 2409 sizeof(struct pci_version_request), 2410 (unsigned long)pkt, VM_PKT_DATA_INBAND, 2411 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 2412 if (!ret) 2413 ret = wait_for_response(hdev, &comp_pkt.host_event); 2414 2415 if (ret) { 2416 dev_err(&hdev->device, 2417 "PCI Pass-through VSP failed to request version: %d", 2418 ret); 2419 goto exit; 2420 } 2421 2422 if (comp_pkt.completion_status >= 0) { 2423 pci_protocol_version = pci_protocol_versions[i]; 2424 dev_info(&hdev->device, 2425 "PCI VMBus probing: Using version %#x\n", 2426 pci_protocol_version); 2427 goto exit; 2428 } 2429 2430 if (comp_pkt.completion_status != STATUS_REVISION_MISMATCH) { 2431 dev_err(&hdev->device, 2432 "PCI Pass-through VSP failed version request: %#x", 2433 comp_pkt.completion_status); 2434 ret = -EPROTO; 2435 goto exit; 2436 } 2437 2438 reinit_completion(&comp_pkt.host_event); 2439 } 2440 2441 dev_err(&hdev->device, 2442 "PCI pass-through VSP failed to find supported version"); 2443 ret = -EPROTO; 2444 2445 exit: 2446 kfree(pkt); 2447 return ret; 2448 } 2449 2450 /** 2451 * hv_pci_free_bridge_windows() - Release memory regions for the 2452 * bus 2453 * @hbus: Root PCI bus, as understood by this driver 2454 */ 2455 static void hv_pci_free_bridge_windows(struct hv_pcibus_device *hbus) 2456 { 2457 /* 2458 * Set the resources back to the way they looked when they 2459 * were allocated by setting IORESOURCE_BUSY again. 2460 */ 2461 2462 if (hbus->low_mmio_space && hbus->low_mmio_res) { 2463 hbus->low_mmio_res->flags |= IORESOURCE_BUSY; 2464 vmbus_free_mmio(hbus->low_mmio_res->start, 2465 resource_size(hbus->low_mmio_res)); 2466 } 2467 2468 if (hbus->high_mmio_space && hbus->high_mmio_res) { 2469 hbus->high_mmio_res->flags |= IORESOURCE_BUSY; 2470 vmbus_free_mmio(hbus->high_mmio_res->start, 2471 resource_size(hbus->high_mmio_res)); 2472 } 2473 } 2474 2475 /** 2476 * hv_pci_allocate_bridge_windows() - Allocate memory regions 2477 * for the bus 2478 * @hbus: Root PCI bus, as understood by this driver 2479 * 2480 * This function calls vmbus_allocate_mmio(), which is itself a 2481 * bit of a compromise. Ideally, we might change the pnp layer 2482 * in the kernel such that it comprehends either PCI devices 2483 * which are "grandchildren of ACPI," with some intermediate bus 2484 * node (in this case, VMBus) or change it such that it 2485 * understands VMBus. The pnp layer, however, has been declared 2486 * deprecated, and not subject to change. 2487 * 2488 * The workaround, implemented here, is to ask VMBus to allocate 2489 * MMIO space for this bus. VMBus itself knows which ranges are 2490 * appropriate by looking at its own ACPI objects. Then, after 2491 * these ranges are claimed, they're modified to look like they 2492 * would have looked if the ACPI and pnp code had allocated 2493 * bridge windows. These descriptors have to exist in this form 2494 * in order to satisfy the code which will get invoked when the 2495 * endpoint PCI function driver calls request_mem_region() or 2496 * request_mem_region_exclusive(). 2497 * 2498 * Return: 0 on success, -errno on failure 2499 */ 2500 static int hv_pci_allocate_bridge_windows(struct hv_pcibus_device *hbus) 2501 { 2502 resource_size_t align; 2503 int ret; 2504 2505 if (hbus->low_mmio_space) { 2506 align = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space)); 2507 ret = vmbus_allocate_mmio(&hbus->low_mmio_res, hbus->hdev, 0, 2508 (u64)(u32)0xffffffff, 2509 hbus->low_mmio_space, 2510 align, false); 2511 if (ret) { 2512 dev_err(&hbus->hdev->device, 2513 "Need %#llx of low MMIO space. Consider reconfiguring the VM.\n", 2514 hbus->low_mmio_space); 2515 return ret; 2516 } 2517 2518 /* Modify this resource to become a bridge window. */ 2519 hbus->low_mmio_res->flags |= IORESOURCE_WINDOW; 2520 hbus->low_mmio_res->flags &= ~IORESOURCE_BUSY; 2521 pci_add_resource(&hbus->resources_for_children, 2522 hbus->low_mmio_res); 2523 } 2524 2525 if (hbus->high_mmio_space) { 2526 align = 1ULL << (63 - __builtin_clzll(hbus->high_mmio_space)); 2527 ret = vmbus_allocate_mmio(&hbus->high_mmio_res, hbus->hdev, 2528 0x100000000, -1, 2529 hbus->high_mmio_space, align, 2530 false); 2531 if (ret) { 2532 dev_err(&hbus->hdev->device, 2533 "Need %#llx of high MMIO space. Consider reconfiguring the VM.\n", 2534 hbus->high_mmio_space); 2535 goto release_low_mmio; 2536 } 2537 2538 /* Modify this resource to become a bridge window. */ 2539 hbus->high_mmio_res->flags |= IORESOURCE_WINDOW; 2540 hbus->high_mmio_res->flags &= ~IORESOURCE_BUSY; 2541 pci_add_resource(&hbus->resources_for_children, 2542 hbus->high_mmio_res); 2543 } 2544 2545 return 0; 2546 2547 release_low_mmio: 2548 if (hbus->low_mmio_res) { 2549 vmbus_free_mmio(hbus->low_mmio_res->start, 2550 resource_size(hbus->low_mmio_res)); 2551 } 2552 2553 return ret; 2554 } 2555 2556 /** 2557 * hv_allocate_config_window() - Find MMIO space for PCI Config 2558 * @hbus: Root PCI bus, as understood by this driver 2559 * 2560 * This function claims memory-mapped I/O space for accessing 2561 * configuration space for the functions on this bus. 2562 * 2563 * Return: 0 on success, -errno on failure 2564 */ 2565 static int hv_allocate_config_window(struct hv_pcibus_device *hbus) 2566 { 2567 int ret; 2568 2569 /* 2570 * Set up a region of MMIO space to use for accessing configuration 2571 * space. 2572 */ 2573 ret = vmbus_allocate_mmio(&hbus->mem_config, hbus->hdev, 0, -1, 2574 PCI_CONFIG_MMIO_LENGTH, 0x1000, false); 2575 if (ret) 2576 return ret; 2577 2578 /* 2579 * vmbus_allocate_mmio() gets used for allocating both device endpoint 2580 * resource claims (those which cannot be overlapped) and the ranges 2581 * which are valid for the children of this bus, which are intended 2582 * to be overlapped by those children. Set the flag on this claim 2583 * meaning that this region can't be overlapped. 2584 */ 2585 2586 hbus->mem_config->flags |= IORESOURCE_BUSY; 2587 2588 return 0; 2589 } 2590 2591 static void hv_free_config_window(struct hv_pcibus_device *hbus) 2592 { 2593 vmbus_free_mmio(hbus->mem_config->start, PCI_CONFIG_MMIO_LENGTH); 2594 } 2595 2596 /** 2597 * hv_pci_enter_d0() - Bring the "bus" into the D0 power state 2598 * @hdev: VMBus's tracking struct for this root PCI bus 2599 * 2600 * Return: 0 on success, -errno on failure 2601 */ 2602 static int hv_pci_enter_d0(struct hv_device *hdev) 2603 { 2604 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 2605 struct pci_bus_d0_entry *d0_entry; 2606 struct hv_pci_compl comp_pkt; 2607 struct pci_packet *pkt; 2608 int ret; 2609 2610 /* 2611 * Tell the host that the bus is ready to use, and moved into the 2612 * powered-on state. This includes telling the host which region 2613 * of memory-mapped I/O space has been chosen for configuration space 2614 * access. 2615 */ 2616 pkt = kzalloc(sizeof(*pkt) + sizeof(*d0_entry), GFP_KERNEL); 2617 if (!pkt) 2618 return -ENOMEM; 2619 2620 init_completion(&comp_pkt.host_event); 2621 pkt->completion_func = hv_pci_generic_compl; 2622 pkt->compl_ctxt = &comp_pkt; 2623 d0_entry = (struct pci_bus_d0_entry *)&pkt->message; 2624 d0_entry->message_type.type = PCI_BUS_D0ENTRY; 2625 d0_entry->mmio_base = hbus->mem_config->start; 2626 2627 ret = vmbus_sendpacket(hdev->channel, d0_entry, sizeof(*d0_entry), 2628 (unsigned long)pkt, VM_PKT_DATA_INBAND, 2629 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 2630 if (!ret) 2631 ret = wait_for_response(hdev, &comp_pkt.host_event); 2632 2633 if (ret) 2634 goto exit; 2635 2636 if (comp_pkt.completion_status < 0) { 2637 dev_err(&hdev->device, 2638 "PCI Pass-through VSP failed D0 Entry with status %x\n", 2639 comp_pkt.completion_status); 2640 ret = -EPROTO; 2641 goto exit; 2642 } 2643 2644 ret = 0; 2645 2646 exit: 2647 kfree(pkt); 2648 return ret; 2649 } 2650 2651 /** 2652 * hv_pci_query_relations() - Ask host to send list of child 2653 * devices 2654 * @hdev: VMBus's tracking struct for this root PCI bus 2655 * 2656 * Return: 0 on success, -errno on failure 2657 */ 2658 static int hv_pci_query_relations(struct hv_device *hdev) 2659 { 2660 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 2661 struct pci_message message; 2662 struct completion comp; 2663 int ret; 2664 2665 /* Ask the host to send along the list of child devices */ 2666 init_completion(&comp); 2667 if (cmpxchg(&hbus->survey_event, NULL, &comp)) 2668 return -ENOTEMPTY; 2669 2670 memset(&message, 0, sizeof(message)); 2671 message.type = PCI_QUERY_BUS_RELATIONS; 2672 2673 ret = vmbus_sendpacket(hdev->channel, &message, sizeof(message), 2674 0, VM_PKT_DATA_INBAND, 0); 2675 if (!ret) 2676 ret = wait_for_response(hdev, &comp); 2677 2678 return ret; 2679 } 2680 2681 /** 2682 * hv_send_resources_allocated() - Report local resource choices 2683 * @hdev: VMBus's tracking struct for this root PCI bus 2684 * 2685 * The host OS is expecting to be sent a request as a message 2686 * which contains all the resources that the device will use. 2687 * The response contains those same resources, "translated" 2688 * which is to say, the values which should be used by the 2689 * hardware, when it delivers an interrupt. (MMIO resources are 2690 * used in local terms.) This is nice for Windows, and lines up 2691 * with the FDO/PDO split, which doesn't exist in Linux. Linux 2692 * is deeply expecting to scan an emulated PCI configuration 2693 * space. So this message is sent here only to drive the state 2694 * machine on the host forward. 2695 * 2696 * Return: 0 on success, -errno on failure 2697 */ 2698 static int hv_send_resources_allocated(struct hv_device *hdev) 2699 { 2700 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 2701 struct pci_resources_assigned *res_assigned; 2702 struct pci_resources_assigned2 *res_assigned2; 2703 struct hv_pci_compl comp_pkt; 2704 struct hv_pci_dev *hpdev; 2705 struct pci_packet *pkt; 2706 size_t size_res; 2707 u32 wslot; 2708 int ret; 2709 2710 size_res = (pci_protocol_version < PCI_PROTOCOL_VERSION_1_2) 2711 ? sizeof(*res_assigned) : sizeof(*res_assigned2); 2712 2713 pkt = kmalloc(sizeof(*pkt) + size_res, GFP_KERNEL); 2714 if (!pkt) 2715 return -ENOMEM; 2716 2717 ret = 0; 2718 2719 for (wslot = 0; wslot < 256; wslot++) { 2720 hpdev = get_pcichild_wslot(hbus, wslot); 2721 if (!hpdev) 2722 continue; 2723 2724 memset(pkt, 0, sizeof(*pkt) + size_res); 2725 init_completion(&comp_pkt.host_event); 2726 pkt->completion_func = hv_pci_generic_compl; 2727 pkt->compl_ctxt = &comp_pkt; 2728 2729 if (pci_protocol_version < PCI_PROTOCOL_VERSION_1_2) { 2730 res_assigned = 2731 (struct pci_resources_assigned *)&pkt->message; 2732 res_assigned->message_type.type = 2733 PCI_RESOURCES_ASSIGNED; 2734 res_assigned->wslot.slot = hpdev->desc.win_slot.slot; 2735 } else { 2736 res_assigned2 = 2737 (struct pci_resources_assigned2 *)&pkt->message; 2738 res_assigned2->message_type.type = 2739 PCI_RESOURCES_ASSIGNED2; 2740 res_assigned2->wslot.slot = hpdev->desc.win_slot.slot; 2741 } 2742 put_pcichild(hpdev); 2743 2744 ret = vmbus_sendpacket(hdev->channel, &pkt->message, 2745 size_res, (unsigned long)pkt, 2746 VM_PKT_DATA_INBAND, 2747 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 2748 if (!ret) 2749 ret = wait_for_response(hdev, &comp_pkt.host_event); 2750 if (ret) 2751 break; 2752 2753 if (comp_pkt.completion_status < 0) { 2754 ret = -EPROTO; 2755 dev_err(&hdev->device, 2756 "resource allocated returned 0x%x", 2757 comp_pkt.completion_status); 2758 break; 2759 } 2760 } 2761 2762 kfree(pkt); 2763 return ret; 2764 } 2765 2766 /** 2767 * hv_send_resources_released() - Report local resources 2768 * released 2769 * @hdev: VMBus's tracking struct for this root PCI bus 2770 * 2771 * Return: 0 on success, -errno on failure 2772 */ 2773 static int hv_send_resources_released(struct hv_device *hdev) 2774 { 2775 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 2776 struct pci_child_message pkt; 2777 struct hv_pci_dev *hpdev; 2778 u32 wslot; 2779 int ret; 2780 2781 for (wslot = 0; wslot < 256; wslot++) { 2782 hpdev = get_pcichild_wslot(hbus, wslot); 2783 if (!hpdev) 2784 continue; 2785 2786 memset(&pkt, 0, sizeof(pkt)); 2787 pkt.message_type.type = PCI_RESOURCES_RELEASED; 2788 pkt.wslot.slot = hpdev->desc.win_slot.slot; 2789 2790 put_pcichild(hpdev); 2791 2792 ret = vmbus_sendpacket(hdev->channel, &pkt, sizeof(pkt), 0, 2793 VM_PKT_DATA_INBAND, 0); 2794 if (ret) 2795 return ret; 2796 } 2797 2798 return 0; 2799 } 2800 2801 static void get_hvpcibus(struct hv_pcibus_device *hbus) 2802 { 2803 refcount_inc(&hbus->remove_lock); 2804 } 2805 2806 static void put_hvpcibus(struct hv_pcibus_device *hbus) 2807 { 2808 if (refcount_dec_and_test(&hbus->remove_lock)) 2809 complete(&hbus->remove_event); 2810 } 2811 2812 #define HVPCI_DOM_MAP_SIZE (64 * 1024) 2813 static DECLARE_BITMAP(hvpci_dom_map, HVPCI_DOM_MAP_SIZE); 2814 2815 /* 2816 * PCI domain number 0 is used by emulated devices on Gen1 VMs, so define 0 2817 * as invalid for passthrough PCI devices of this driver. 2818 */ 2819 #define HVPCI_DOM_INVALID 0 2820 2821 /** 2822 * hv_get_dom_num() - Get a valid PCI domain number 2823 * Check if the PCI domain number is in use, and return another number if 2824 * it is in use. 2825 * 2826 * @dom: Requested domain number 2827 * 2828 * return: domain number on success, HVPCI_DOM_INVALID on failure 2829 */ 2830 static u16 hv_get_dom_num(u16 dom) 2831 { 2832 unsigned int i; 2833 2834 if (test_and_set_bit(dom, hvpci_dom_map) == 0) 2835 return dom; 2836 2837 for_each_clear_bit(i, hvpci_dom_map, HVPCI_DOM_MAP_SIZE) { 2838 if (test_and_set_bit(i, hvpci_dom_map) == 0) 2839 return i; 2840 } 2841 2842 return HVPCI_DOM_INVALID; 2843 } 2844 2845 /** 2846 * hv_put_dom_num() - Mark the PCI domain number as free 2847 * @dom: Domain number to be freed 2848 */ 2849 static void hv_put_dom_num(u16 dom) 2850 { 2851 clear_bit(dom, hvpci_dom_map); 2852 } 2853 2854 /** 2855 * hv_pci_probe() - New VMBus channel probe, for a root PCI bus 2856 * @hdev: VMBus's tracking struct for this root PCI bus 2857 * @dev_id: Identifies the device itself 2858 * 2859 * Return: 0 on success, -errno on failure 2860 */ 2861 static int hv_pci_probe(struct hv_device *hdev, 2862 const struct hv_vmbus_device_id *dev_id) 2863 { 2864 struct hv_pcibus_device *hbus; 2865 u16 dom_req, dom; 2866 char *name; 2867 int ret; 2868 2869 /* 2870 * hv_pcibus_device contains the hypercall arguments for retargeting in 2871 * hv_irq_unmask(). Those must not cross a page boundary. 2872 */ 2873 BUILD_BUG_ON(sizeof(*hbus) > PAGE_SIZE); 2874 2875 hbus = (struct hv_pcibus_device *)get_zeroed_page(GFP_KERNEL); 2876 if (!hbus) 2877 return -ENOMEM; 2878 hbus->state = hv_pcibus_init; 2879 2880 /* 2881 * The PCI bus "domain" is what is called "segment" in ACPI and other 2882 * specs. Pull it from the instance ID, to get something usually 2883 * unique. In rare cases of collision, we will find out another number 2884 * not in use. 2885 * 2886 * Note that, since this code only runs in a Hyper-V VM, Hyper-V 2887 * together with this guest driver can guarantee that (1) The only 2888 * domain used by Gen1 VMs for something that looks like a physical 2889 * PCI bus (which is actually emulated by the hypervisor) is domain 0. 2890 * (2) There will be no overlap between domains (after fixing possible 2891 * collisions) in the same VM. 2892 */ 2893 dom_req = hdev->dev_instance.b[5] << 8 | hdev->dev_instance.b[4]; 2894 dom = hv_get_dom_num(dom_req); 2895 2896 if (dom == HVPCI_DOM_INVALID) { 2897 dev_err(&hdev->device, 2898 "Unable to use dom# 0x%hx or other numbers", dom_req); 2899 ret = -EINVAL; 2900 goto free_bus; 2901 } 2902 2903 if (dom != dom_req) 2904 dev_info(&hdev->device, 2905 "PCI dom# 0x%hx has collision, using 0x%hx", 2906 dom_req, dom); 2907 2908 hbus->sysdata.domain = dom; 2909 2910 hbus->hdev = hdev; 2911 refcount_set(&hbus->remove_lock, 1); 2912 INIT_LIST_HEAD(&hbus->children); 2913 INIT_LIST_HEAD(&hbus->dr_list); 2914 INIT_LIST_HEAD(&hbus->resources_for_children); 2915 spin_lock_init(&hbus->config_lock); 2916 spin_lock_init(&hbus->device_list_lock); 2917 spin_lock_init(&hbus->retarget_msi_interrupt_lock); 2918 init_completion(&hbus->remove_event); 2919 hbus->wq = alloc_ordered_workqueue("hv_pci_%x", 0, 2920 hbus->sysdata.domain); 2921 if (!hbus->wq) { 2922 ret = -ENOMEM; 2923 goto free_dom; 2924 } 2925 2926 ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0, 2927 hv_pci_onchannelcallback, hbus); 2928 if (ret) 2929 goto destroy_wq; 2930 2931 hv_set_drvdata(hdev, hbus); 2932 2933 ret = hv_pci_protocol_negotiation(hdev); 2934 if (ret) 2935 goto close; 2936 2937 ret = hv_allocate_config_window(hbus); 2938 if (ret) 2939 goto close; 2940 2941 hbus->cfg_addr = ioremap(hbus->mem_config->start, 2942 PCI_CONFIG_MMIO_LENGTH); 2943 if (!hbus->cfg_addr) { 2944 dev_err(&hdev->device, 2945 "Unable to map a virtual address for config space\n"); 2946 ret = -ENOMEM; 2947 goto free_config; 2948 } 2949 2950 name = kasprintf(GFP_KERNEL, "%pUL", &hdev->dev_instance); 2951 if (!name) { 2952 ret = -ENOMEM; 2953 goto unmap; 2954 } 2955 2956 hbus->sysdata.fwnode = irq_domain_alloc_named_fwnode(name); 2957 kfree(name); 2958 if (!hbus->sysdata.fwnode) { 2959 ret = -ENOMEM; 2960 goto unmap; 2961 } 2962 2963 ret = hv_pcie_init_irq_domain(hbus); 2964 if (ret) 2965 goto free_fwnode; 2966 2967 ret = hv_pci_query_relations(hdev); 2968 if (ret) 2969 goto free_irq_domain; 2970 2971 ret = hv_pci_enter_d0(hdev); 2972 if (ret) 2973 goto free_irq_domain; 2974 2975 ret = hv_pci_allocate_bridge_windows(hbus); 2976 if (ret) 2977 goto free_irq_domain; 2978 2979 ret = hv_send_resources_allocated(hdev); 2980 if (ret) 2981 goto free_windows; 2982 2983 prepopulate_bars(hbus); 2984 2985 hbus->state = hv_pcibus_probed; 2986 2987 ret = create_root_hv_pci_bus(hbus); 2988 if (ret) 2989 goto free_windows; 2990 2991 return 0; 2992 2993 free_windows: 2994 hv_pci_free_bridge_windows(hbus); 2995 free_irq_domain: 2996 irq_domain_remove(hbus->irq_domain); 2997 free_fwnode: 2998 irq_domain_free_fwnode(hbus->sysdata.fwnode); 2999 unmap: 3000 iounmap(hbus->cfg_addr); 3001 free_config: 3002 hv_free_config_window(hbus); 3003 close: 3004 vmbus_close(hdev->channel); 3005 destroy_wq: 3006 destroy_workqueue(hbus->wq); 3007 free_dom: 3008 hv_put_dom_num(hbus->sysdata.domain); 3009 free_bus: 3010 free_page((unsigned long)hbus); 3011 return ret; 3012 } 3013 3014 static void hv_pci_bus_exit(struct hv_device *hdev) 3015 { 3016 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3017 struct { 3018 struct pci_packet teardown_packet; 3019 u8 buffer[sizeof(struct pci_message)]; 3020 } pkt; 3021 struct pci_bus_relations relations; 3022 struct hv_pci_compl comp_pkt; 3023 int ret; 3024 3025 /* 3026 * After the host sends the RESCIND_CHANNEL message, it doesn't 3027 * access the per-channel ringbuffer any longer. 3028 */ 3029 if (hdev->channel->rescind) 3030 return; 3031 3032 /* Delete any children which might still exist. */ 3033 memset(&relations, 0, sizeof(relations)); 3034 hv_pci_devices_present(hbus, &relations); 3035 3036 ret = hv_send_resources_released(hdev); 3037 if (ret) 3038 dev_err(&hdev->device, 3039 "Couldn't send resources released packet(s)\n"); 3040 3041 memset(&pkt.teardown_packet, 0, sizeof(pkt.teardown_packet)); 3042 init_completion(&comp_pkt.host_event); 3043 pkt.teardown_packet.completion_func = hv_pci_generic_compl; 3044 pkt.teardown_packet.compl_ctxt = &comp_pkt; 3045 pkt.teardown_packet.message[0].type = PCI_BUS_D0EXIT; 3046 3047 ret = vmbus_sendpacket(hdev->channel, &pkt.teardown_packet.message, 3048 sizeof(struct pci_message), 3049 (unsigned long)&pkt.teardown_packet, 3050 VM_PKT_DATA_INBAND, 3051 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 3052 if (!ret) 3053 wait_for_completion_timeout(&comp_pkt.host_event, 10 * HZ); 3054 } 3055 3056 /** 3057 * hv_pci_remove() - Remove routine for this VMBus channel 3058 * @hdev: VMBus's tracking struct for this root PCI bus 3059 * 3060 * Return: 0 on success, -errno on failure 3061 */ 3062 static int hv_pci_remove(struct hv_device *hdev) 3063 { 3064 struct hv_pcibus_device *hbus; 3065 3066 hbus = hv_get_drvdata(hdev); 3067 if (hbus->state == hv_pcibus_installed) { 3068 /* Remove the bus from PCI's point of view. */ 3069 pci_lock_rescan_remove(); 3070 pci_stop_root_bus(hbus->pci_bus); 3071 hv_pci_remove_slots(hbus); 3072 pci_remove_root_bus(hbus->pci_bus); 3073 pci_unlock_rescan_remove(); 3074 hbus->state = hv_pcibus_removed; 3075 } 3076 3077 hv_pci_bus_exit(hdev); 3078 3079 vmbus_close(hdev->channel); 3080 3081 iounmap(hbus->cfg_addr); 3082 hv_free_config_window(hbus); 3083 pci_free_resource_list(&hbus->resources_for_children); 3084 hv_pci_free_bridge_windows(hbus); 3085 irq_domain_remove(hbus->irq_domain); 3086 irq_domain_free_fwnode(hbus->sysdata.fwnode); 3087 put_hvpcibus(hbus); 3088 wait_for_completion(&hbus->remove_event); 3089 destroy_workqueue(hbus->wq); 3090 3091 hv_put_dom_num(hbus->sysdata.domain); 3092 3093 free_page((unsigned long)hbus); 3094 return 0; 3095 } 3096 3097 static const struct hv_vmbus_device_id hv_pci_id_table[] = { 3098 /* PCI Pass-through Class ID */ 3099 /* 44C4F61D-4444-4400-9D52-802E27EDE19F */ 3100 { HV_PCIE_GUID, }, 3101 { }, 3102 }; 3103 3104 MODULE_DEVICE_TABLE(vmbus, hv_pci_id_table); 3105 3106 static struct hv_driver hv_pci_drv = { 3107 .name = "hv_pci", 3108 .id_table = hv_pci_id_table, 3109 .probe = hv_pci_probe, 3110 .remove = hv_pci_remove, 3111 }; 3112 3113 static void __exit exit_hv_pci_drv(void) 3114 { 3115 vmbus_driver_unregister(&hv_pci_drv); 3116 3117 hvpci_block_ops.read_block = NULL; 3118 hvpci_block_ops.write_block = NULL; 3119 hvpci_block_ops.reg_blk_invalidate = NULL; 3120 } 3121 3122 static int __init init_hv_pci_drv(void) 3123 { 3124 /* Set the invalid domain number's bit, so it will not be used */ 3125 set_bit(HVPCI_DOM_INVALID, hvpci_dom_map); 3126 3127 /* Initialize PCI block r/w interface */ 3128 hvpci_block_ops.read_block = hv_read_config_block; 3129 hvpci_block_ops.write_block = hv_write_config_block; 3130 hvpci_block_ops.reg_blk_invalidate = hv_register_block_invalidate; 3131 3132 return vmbus_driver_register(&hv_pci_drv); 3133 } 3134 3135 module_init(init_hv_pci_drv); 3136 module_exit(exit_hv_pci_drv); 3137 3138 MODULE_DESCRIPTION("Hyper-V PCI"); 3139 MODULE_LICENSE("GPL v2"); 3140