1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) Microsoft Corporation.
4  *
5  * Author:
6  *   Jake Oshins <jakeo@microsoft.com>
7  *
8  * This driver acts as a paravirtual front-end for PCI Express root buses.
9  * When a PCI Express function (either an entire device or an SR-IOV
10  * Virtual Function) is being passed through to the VM, this driver exposes
11  * a new bus to the guest VM.  This is modeled as a root PCI bus because
12  * no bridges are being exposed to the VM.  In fact, with a "Generation 2"
13  * VM within Hyper-V, there may seem to be no PCI bus at all in the VM
14  * until a device as been exposed using this driver.
15  *
16  * Each root PCI bus has its own PCI domain, which is called "Segment" in
17  * the PCI Firmware Specifications.  Thus while each device passed through
18  * to the VM using this front-end will appear at "device 0", the domain will
19  * be unique.  Typically, each bus will have one PCI function on it, though
20  * this driver does support more than one.
21  *
22  * In order to map the interrupts from the device through to the guest VM,
23  * this driver also implements an IRQ Domain, which handles interrupts (either
24  * MSI or MSI-X) associated with the functions on the bus.  As interrupts are
25  * set up, torn down, or reaffined, this driver communicates with the
26  * underlying hypervisor to adjust the mappings in the I/O MMU so that each
27  * interrupt will be delivered to the correct virtual processor at the right
28  * vector.  This driver does not support level-triggered (line-based)
29  * interrupts, and will report that the Interrupt Line register in the
30  * function's configuration space is zero.
31  *
32  * The rest of this driver mostly maps PCI concepts onto underlying Hyper-V
33  * facilities.  For instance, the configuration space of a function exposed
34  * by Hyper-V is mapped into a single page of memory space, and the
35  * read and write handlers for config space must be aware of this mechanism.
36  * Similarly, device setup and teardown involves messages sent to and from
37  * the PCI back-end driver in Hyper-V.
38  */
39 
40 #include <linux/kernel.h>
41 #include <linux/module.h>
42 #include <linux/pci.h>
43 #include <linux/delay.h>
44 #include <linux/semaphore.h>
45 #include <linux/irqdomain.h>
46 #include <asm/irqdomain.h>
47 #include <asm/apic.h>
48 #include <linux/irq.h>
49 #include <linux/msi.h>
50 #include <linux/hyperv.h>
51 #include <linux/refcount.h>
52 #include <asm/mshyperv.h>
53 
54 /*
55  * Protocol versions. The low word is the minor version, the high word the
56  * major version.
57  */
58 
59 #define PCI_MAKE_VERSION(major, minor) ((u32)(((major) << 16) | (minor)))
60 #define PCI_MAJOR_VERSION(version) ((u32)(version) >> 16)
61 #define PCI_MINOR_VERSION(version) ((u32)(version) & 0xff)
62 
63 enum pci_protocol_version_t {
64 	PCI_PROTOCOL_VERSION_1_1 = PCI_MAKE_VERSION(1, 1),	/* Win10 */
65 	PCI_PROTOCOL_VERSION_1_2 = PCI_MAKE_VERSION(1, 2),	/* RS1 */
66 	PCI_PROTOCOL_VERSION_1_3 = PCI_MAKE_VERSION(1, 3),	/* Vibranium */
67 };
68 
69 #define CPU_AFFINITY_ALL	-1ULL
70 
71 /*
72  * Supported protocol versions in the order of probing - highest go
73  * first.
74  */
75 static enum pci_protocol_version_t pci_protocol_versions[] = {
76 	PCI_PROTOCOL_VERSION_1_3,
77 	PCI_PROTOCOL_VERSION_1_2,
78 	PCI_PROTOCOL_VERSION_1_1,
79 };
80 
81 #define PCI_CONFIG_MMIO_LENGTH	0x2000
82 #define CFG_PAGE_OFFSET 0x1000
83 #define CFG_PAGE_SIZE (PCI_CONFIG_MMIO_LENGTH - CFG_PAGE_OFFSET)
84 
85 #define MAX_SUPPORTED_MSI_MESSAGES 0x400
86 
87 #define STATUS_REVISION_MISMATCH 0xC0000059
88 
89 /* space for 32bit serial number as string */
90 #define SLOT_NAME_SIZE 11
91 
92 /*
93  * Message Types
94  */
95 
96 enum pci_message_type {
97 	/*
98 	 * Version 1.1
99 	 */
100 	PCI_MESSAGE_BASE                = 0x42490000,
101 	PCI_BUS_RELATIONS               = PCI_MESSAGE_BASE + 0,
102 	PCI_QUERY_BUS_RELATIONS         = PCI_MESSAGE_BASE + 1,
103 	PCI_POWER_STATE_CHANGE          = PCI_MESSAGE_BASE + 4,
104 	PCI_QUERY_RESOURCE_REQUIREMENTS = PCI_MESSAGE_BASE + 5,
105 	PCI_QUERY_RESOURCE_RESOURCES    = PCI_MESSAGE_BASE + 6,
106 	PCI_BUS_D0ENTRY                 = PCI_MESSAGE_BASE + 7,
107 	PCI_BUS_D0EXIT                  = PCI_MESSAGE_BASE + 8,
108 	PCI_READ_BLOCK                  = PCI_MESSAGE_BASE + 9,
109 	PCI_WRITE_BLOCK                 = PCI_MESSAGE_BASE + 0xA,
110 	PCI_EJECT                       = PCI_MESSAGE_BASE + 0xB,
111 	PCI_QUERY_STOP                  = PCI_MESSAGE_BASE + 0xC,
112 	PCI_REENABLE                    = PCI_MESSAGE_BASE + 0xD,
113 	PCI_QUERY_STOP_FAILED           = PCI_MESSAGE_BASE + 0xE,
114 	PCI_EJECTION_COMPLETE           = PCI_MESSAGE_BASE + 0xF,
115 	PCI_RESOURCES_ASSIGNED          = PCI_MESSAGE_BASE + 0x10,
116 	PCI_RESOURCES_RELEASED          = PCI_MESSAGE_BASE + 0x11,
117 	PCI_INVALIDATE_BLOCK            = PCI_MESSAGE_BASE + 0x12,
118 	PCI_QUERY_PROTOCOL_VERSION      = PCI_MESSAGE_BASE + 0x13,
119 	PCI_CREATE_INTERRUPT_MESSAGE    = PCI_MESSAGE_BASE + 0x14,
120 	PCI_DELETE_INTERRUPT_MESSAGE    = PCI_MESSAGE_BASE + 0x15,
121 	PCI_RESOURCES_ASSIGNED2		= PCI_MESSAGE_BASE + 0x16,
122 	PCI_CREATE_INTERRUPT_MESSAGE2	= PCI_MESSAGE_BASE + 0x17,
123 	PCI_DELETE_INTERRUPT_MESSAGE2	= PCI_MESSAGE_BASE + 0x18, /* unused */
124 	PCI_BUS_RELATIONS2		= PCI_MESSAGE_BASE + 0x19,
125 	PCI_MESSAGE_MAXIMUM
126 };
127 
128 /*
129  * Structures defining the virtual PCI Express protocol.
130  */
131 
132 union pci_version {
133 	struct {
134 		u16 minor_version;
135 		u16 major_version;
136 	} parts;
137 	u32 version;
138 } __packed;
139 
140 /*
141  * Function numbers are 8-bits wide on Express, as interpreted through ARI,
142  * which is all this driver does.  This representation is the one used in
143  * Windows, which is what is expected when sending this back and forth with
144  * the Hyper-V parent partition.
145  */
146 union win_slot_encoding {
147 	struct {
148 		u32	dev:5;
149 		u32	func:3;
150 		u32	reserved:24;
151 	} bits;
152 	u32 slot;
153 } __packed;
154 
155 /*
156  * Pretty much as defined in the PCI Specifications.
157  */
158 struct pci_function_description {
159 	u16	v_id;	/* vendor ID */
160 	u16	d_id;	/* device ID */
161 	u8	rev;
162 	u8	prog_intf;
163 	u8	subclass;
164 	u8	base_class;
165 	u32	subsystem_id;
166 	union win_slot_encoding win_slot;
167 	u32	ser;	/* serial number */
168 } __packed;
169 
170 enum pci_device_description_flags {
171 	HV_PCI_DEVICE_FLAG_NONE			= 0x0,
172 	HV_PCI_DEVICE_FLAG_NUMA_AFFINITY	= 0x1,
173 };
174 
175 struct pci_function_description2 {
176 	u16	v_id;	/* vendor ID */
177 	u16	d_id;	/* device ID */
178 	u8	rev;
179 	u8	prog_intf;
180 	u8	subclass;
181 	u8	base_class;
182 	u32	subsystem_id;
183 	union	win_slot_encoding win_slot;
184 	u32	ser;	/* serial number */
185 	u32	flags;
186 	u16	virtual_numa_node;
187 	u16	reserved;
188 } __packed;
189 
190 /**
191  * struct hv_msi_desc
192  * @vector:		IDT entry
193  * @delivery_mode:	As defined in Intel's Programmer's
194  *			Reference Manual, Volume 3, Chapter 8.
195  * @vector_count:	Number of contiguous entries in the
196  *			Interrupt Descriptor Table that are
197  *			occupied by this Message-Signaled
198  *			Interrupt. For "MSI", as first defined
199  *			in PCI 2.2, this can be between 1 and
200  *			32. For "MSI-X," as first defined in PCI
201  *			3.0, this must be 1, as each MSI-X table
202  *			entry would have its own descriptor.
203  * @reserved:		Empty space
204  * @cpu_mask:		All the target virtual processors.
205  */
206 struct hv_msi_desc {
207 	u8	vector;
208 	u8	delivery_mode;
209 	u16	vector_count;
210 	u32	reserved;
211 	u64	cpu_mask;
212 } __packed;
213 
214 /**
215  * struct hv_msi_desc2 - 1.2 version of hv_msi_desc
216  * @vector:		IDT entry
217  * @delivery_mode:	As defined in Intel's Programmer's
218  *			Reference Manual, Volume 3, Chapter 8.
219  * @vector_count:	Number of contiguous entries in the
220  *			Interrupt Descriptor Table that are
221  *			occupied by this Message-Signaled
222  *			Interrupt. For "MSI", as first defined
223  *			in PCI 2.2, this can be between 1 and
224  *			32. For "MSI-X," as first defined in PCI
225  *			3.0, this must be 1, as each MSI-X table
226  *			entry would have its own descriptor.
227  * @processor_count:	number of bits enabled in array.
228  * @processor_array:	All the target virtual processors.
229  */
230 struct hv_msi_desc2 {
231 	u8	vector;
232 	u8	delivery_mode;
233 	u16	vector_count;
234 	u16	processor_count;
235 	u16	processor_array[32];
236 } __packed;
237 
238 /**
239  * struct tran_int_desc
240  * @reserved:		unused, padding
241  * @vector_count:	same as in hv_msi_desc
242  * @data:		This is the "data payload" value that is
243  *			written by the device when it generates
244  *			a message-signaled interrupt, either MSI
245  *			or MSI-X.
246  * @address:		This is the address to which the data
247  *			payload is written on interrupt
248  *			generation.
249  */
250 struct tran_int_desc {
251 	u16	reserved;
252 	u16	vector_count;
253 	u32	data;
254 	u64	address;
255 } __packed;
256 
257 /*
258  * A generic message format for virtual PCI.
259  * Specific message formats are defined later in the file.
260  */
261 
262 struct pci_message {
263 	u32 type;
264 } __packed;
265 
266 struct pci_child_message {
267 	struct pci_message message_type;
268 	union win_slot_encoding wslot;
269 } __packed;
270 
271 struct pci_incoming_message {
272 	struct vmpacket_descriptor hdr;
273 	struct pci_message message_type;
274 } __packed;
275 
276 struct pci_response {
277 	struct vmpacket_descriptor hdr;
278 	s32 status;			/* negative values are failures */
279 } __packed;
280 
281 struct pci_packet {
282 	void (*completion_func)(void *context, struct pci_response *resp,
283 				int resp_packet_size);
284 	void *compl_ctxt;
285 
286 	struct pci_message message[];
287 };
288 
289 /*
290  * Specific message types supporting the PCI protocol.
291  */
292 
293 /*
294  * Version negotiation message. Sent from the guest to the host.
295  * The guest is free to try different versions until the host
296  * accepts the version.
297  *
298  * pci_version: The protocol version requested.
299  * is_last_attempt: If TRUE, this is the last version guest will request.
300  * reservedz: Reserved field, set to zero.
301  */
302 
303 struct pci_version_request {
304 	struct pci_message message_type;
305 	u32 protocol_version;
306 } __packed;
307 
308 /*
309  * Bus D0 Entry.  This is sent from the guest to the host when the virtual
310  * bus (PCI Express port) is ready for action.
311  */
312 
313 struct pci_bus_d0_entry {
314 	struct pci_message message_type;
315 	u32 reserved;
316 	u64 mmio_base;
317 } __packed;
318 
319 struct pci_bus_relations {
320 	struct pci_incoming_message incoming;
321 	u32 device_count;
322 	struct pci_function_description func[];
323 } __packed;
324 
325 struct pci_bus_relations2 {
326 	struct pci_incoming_message incoming;
327 	u32 device_count;
328 	struct pci_function_description2 func[];
329 } __packed;
330 
331 struct pci_q_res_req_response {
332 	struct vmpacket_descriptor hdr;
333 	s32 status;			/* negative values are failures */
334 	u32 probed_bar[PCI_STD_NUM_BARS];
335 } __packed;
336 
337 struct pci_set_power {
338 	struct pci_message message_type;
339 	union win_slot_encoding wslot;
340 	u32 power_state;		/* In Windows terms */
341 	u32 reserved;
342 } __packed;
343 
344 struct pci_set_power_response {
345 	struct vmpacket_descriptor hdr;
346 	s32 status;			/* negative values are failures */
347 	union win_slot_encoding wslot;
348 	u32 resultant_state;		/* In Windows terms */
349 	u32 reserved;
350 } __packed;
351 
352 struct pci_resources_assigned {
353 	struct pci_message message_type;
354 	union win_slot_encoding wslot;
355 	u8 memory_range[0x14][6];	/* not used here */
356 	u32 msi_descriptors;
357 	u32 reserved[4];
358 } __packed;
359 
360 struct pci_resources_assigned2 {
361 	struct pci_message message_type;
362 	union win_slot_encoding wslot;
363 	u8 memory_range[0x14][6];	/* not used here */
364 	u32 msi_descriptor_count;
365 	u8 reserved[70];
366 } __packed;
367 
368 struct pci_create_interrupt {
369 	struct pci_message message_type;
370 	union win_slot_encoding wslot;
371 	struct hv_msi_desc int_desc;
372 } __packed;
373 
374 struct pci_create_int_response {
375 	struct pci_response response;
376 	u32 reserved;
377 	struct tran_int_desc int_desc;
378 } __packed;
379 
380 struct pci_create_interrupt2 {
381 	struct pci_message message_type;
382 	union win_slot_encoding wslot;
383 	struct hv_msi_desc2 int_desc;
384 } __packed;
385 
386 struct pci_delete_interrupt {
387 	struct pci_message message_type;
388 	union win_slot_encoding wslot;
389 	struct tran_int_desc int_desc;
390 } __packed;
391 
392 /*
393  * Note: the VM must pass a valid block id, wslot and bytes_requested.
394  */
395 struct pci_read_block {
396 	struct pci_message message_type;
397 	u32 block_id;
398 	union win_slot_encoding wslot;
399 	u32 bytes_requested;
400 } __packed;
401 
402 struct pci_read_block_response {
403 	struct vmpacket_descriptor hdr;
404 	u32 status;
405 	u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX];
406 } __packed;
407 
408 /*
409  * Note: the VM must pass a valid block id, wslot and byte_count.
410  */
411 struct pci_write_block {
412 	struct pci_message message_type;
413 	u32 block_id;
414 	union win_slot_encoding wslot;
415 	u32 byte_count;
416 	u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX];
417 } __packed;
418 
419 struct pci_dev_inval_block {
420 	struct pci_incoming_message incoming;
421 	union win_slot_encoding wslot;
422 	u64 block_mask;
423 } __packed;
424 
425 struct pci_dev_incoming {
426 	struct pci_incoming_message incoming;
427 	union win_slot_encoding wslot;
428 } __packed;
429 
430 struct pci_eject_response {
431 	struct pci_message message_type;
432 	union win_slot_encoding wslot;
433 	u32 status;
434 } __packed;
435 
436 static int pci_ring_size = (4 * PAGE_SIZE);
437 
438 /*
439  * Driver specific state.
440  */
441 
442 enum hv_pcibus_state {
443 	hv_pcibus_init = 0,
444 	hv_pcibus_probed,
445 	hv_pcibus_installed,
446 	hv_pcibus_removing,
447 	hv_pcibus_maximum
448 };
449 
450 struct hv_pcibus_device {
451 	struct pci_sysdata sysdata;
452 	/* Protocol version negotiated with the host */
453 	enum pci_protocol_version_t protocol_version;
454 	enum hv_pcibus_state state;
455 	struct hv_device *hdev;
456 	resource_size_t low_mmio_space;
457 	resource_size_t high_mmio_space;
458 	struct resource *mem_config;
459 	struct resource *low_mmio_res;
460 	struct resource *high_mmio_res;
461 	struct completion *survey_event;
462 	struct pci_bus *pci_bus;
463 	spinlock_t config_lock;	/* Avoid two threads writing index page */
464 	spinlock_t device_list_lock;	/* Protect lists below */
465 	void __iomem *cfg_addr;
466 
467 	struct list_head resources_for_children;
468 
469 	struct list_head children;
470 	struct list_head dr_list;
471 
472 	struct msi_domain_info msi_info;
473 	struct irq_domain *irq_domain;
474 
475 	spinlock_t retarget_msi_interrupt_lock;
476 
477 	struct workqueue_struct *wq;
478 
479 	/* Highest slot of child device with resources allocated */
480 	int wslot_res_allocated;
481 
482 	/* hypercall arg, must not cross page boundary */
483 	struct hv_retarget_device_interrupt retarget_msi_interrupt_params;
484 
485 	/*
486 	 * Don't put anything here: retarget_msi_interrupt_params must be last
487 	 */
488 };
489 
490 /*
491  * Tracks "Device Relations" messages from the host, which must be both
492  * processed in order and deferred so that they don't run in the context
493  * of the incoming packet callback.
494  */
495 struct hv_dr_work {
496 	struct work_struct wrk;
497 	struct hv_pcibus_device *bus;
498 };
499 
500 struct hv_pcidev_description {
501 	u16	v_id;	/* vendor ID */
502 	u16	d_id;	/* device ID */
503 	u8	rev;
504 	u8	prog_intf;
505 	u8	subclass;
506 	u8	base_class;
507 	u32	subsystem_id;
508 	union	win_slot_encoding win_slot;
509 	u32	ser;	/* serial number */
510 	u32	flags;
511 	u16	virtual_numa_node;
512 };
513 
514 struct hv_dr_state {
515 	struct list_head list_entry;
516 	u32 device_count;
517 	struct hv_pcidev_description func[];
518 };
519 
520 enum hv_pcichild_state {
521 	hv_pcichild_init = 0,
522 	hv_pcichild_requirements,
523 	hv_pcichild_resourced,
524 	hv_pcichild_ejecting,
525 	hv_pcichild_maximum
526 };
527 
528 struct hv_pci_dev {
529 	/* List protected by pci_rescan_remove_lock */
530 	struct list_head list_entry;
531 	refcount_t refs;
532 	enum hv_pcichild_state state;
533 	struct pci_slot *pci_slot;
534 	struct hv_pcidev_description desc;
535 	bool reported_missing;
536 	struct hv_pcibus_device *hbus;
537 	struct work_struct wrk;
538 
539 	void (*block_invalidate)(void *context, u64 block_mask);
540 	void *invalidate_context;
541 
542 	/*
543 	 * What would be observed if one wrote 0xFFFFFFFF to a BAR and then
544 	 * read it back, for each of the BAR offsets within config space.
545 	 */
546 	u32 probed_bar[PCI_STD_NUM_BARS];
547 };
548 
549 struct hv_pci_compl {
550 	struct completion host_event;
551 	s32 completion_status;
552 };
553 
554 static void hv_pci_onchannelcallback(void *context);
555 
556 /**
557  * hv_pci_generic_compl() - Invoked for a completion packet
558  * @context:		Set up by the sender of the packet.
559  * @resp:		The response packet
560  * @resp_packet_size:	Size in bytes of the packet
561  *
562  * This function is used to trigger an event and report status
563  * for any message for which the completion packet contains a
564  * status and nothing else.
565  */
566 static void hv_pci_generic_compl(void *context, struct pci_response *resp,
567 				 int resp_packet_size)
568 {
569 	struct hv_pci_compl *comp_pkt = context;
570 
571 	if (resp_packet_size >= offsetofend(struct pci_response, status))
572 		comp_pkt->completion_status = resp->status;
573 	else
574 		comp_pkt->completion_status = -1;
575 
576 	complete(&comp_pkt->host_event);
577 }
578 
579 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
580 						u32 wslot);
581 
582 static void get_pcichild(struct hv_pci_dev *hpdev)
583 {
584 	refcount_inc(&hpdev->refs);
585 }
586 
587 static void put_pcichild(struct hv_pci_dev *hpdev)
588 {
589 	if (refcount_dec_and_test(&hpdev->refs))
590 		kfree(hpdev);
591 }
592 
593 /*
594  * There is no good way to get notified from vmbus_onoffer_rescind(),
595  * so let's use polling here, since this is not a hot path.
596  */
597 static int wait_for_response(struct hv_device *hdev,
598 			     struct completion *comp)
599 {
600 	while (true) {
601 		if (hdev->channel->rescind) {
602 			dev_warn_once(&hdev->device, "The device is gone.\n");
603 			return -ENODEV;
604 		}
605 
606 		if (wait_for_completion_timeout(comp, HZ / 10))
607 			break;
608 	}
609 
610 	return 0;
611 }
612 
613 /**
614  * devfn_to_wslot() - Convert from Linux PCI slot to Windows
615  * @devfn:	The Linux representation of PCI slot
616  *
617  * Windows uses a slightly different representation of PCI slot.
618  *
619  * Return: The Windows representation
620  */
621 static u32 devfn_to_wslot(int devfn)
622 {
623 	union win_slot_encoding wslot;
624 
625 	wslot.slot = 0;
626 	wslot.bits.dev = PCI_SLOT(devfn);
627 	wslot.bits.func = PCI_FUNC(devfn);
628 
629 	return wslot.slot;
630 }
631 
632 /**
633  * wslot_to_devfn() - Convert from Windows PCI slot to Linux
634  * @wslot:	The Windows representation of PCI slot
635  *
636  * Windows uses a slightly different representation of PCI slot.
637  *
638  * Return: The Linux representation
639  */
640 static int wslot_to_devfn(u32 wslot)
641 {
642 	union win_slot_encoding slot_no;
643 
644 	slot_no.slot = wslot;
645 	return PCI_DEVFN(slot_no.bits.dev, slot_no.bits.func);
646 }
647 
648 /*
649  * PCI Configuration Space for these root PCI buses is implemented as a pair
650  * of pages in memory-mapped I/O space.  Writing to the first page chooses
651  * the PCI function being written or read.  Once the first page has been
652  * written to, the following page maps in the entire configuration space of
653  * the function.
654  */
655 
656 /**
657  * _hv_pcifront_read_config() - Internal PCI config read
658  * @hpdev:	The PCI driver's representation of the device
659  * @where:	Offset within config space
660  * @size:	Size of the transfer
661  * @val:	Pointer to the buffer receiving the data
662  */
663 static void _hv_pcifront_read_config(struct hv_pci_dev *hpdev, int where,
664 				     int size, u32 *val)
665 {
666 	unsigned long flags;
667 	void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where;
668 
669 	/*
670 	 * If the attempt is to read the IDs or the ROM BAR, simulate that.
671 	 */
672 	if (where + size <= PCI_COMMAND) {
673 		memcpy(val, ((u8 *)&hpdev->desc.v_id) + where, size);
674 	} else if (where >= PCI_CLASS_REVISION && where + size <=
675 		   PCI_CACHE_LINE_SIZE) {
676 		memcpy(val, ((u8 *)&hpdev->desc.rev) + where -
677 		       PCI_CLASS_REVISION, size);
678 	} else if (where >= PCI_SUBSYSTEM_VENDOR_ID && where + size <=
679 		   PCI_ROM_ADDRESS) {
680 		memcpy(val, (u8 *)&hpdev->desc.subsystem_id + where -
681 		       PCI_SUBSYSTEM_VENDOR_ID, size);
682 	} else if (where >= PCI_ROM_ADDRESS && where + size <=
683 		   PCI_CAPABILITY_LIST) {
684 		/* ROM BARs are unimplemented */
685 		*val = 0;
686 	} else if (where >= PCI_INTERRUPT_LINE && where + size <=
687 		   PCI_INTERRUPT_PIN) {
688 		/*
689 		 * Interrupt Line and Interrupt PIN are hard-wired to zero
690 		 * because this front-end only supports message-signaled
691 		 * interrupts.
692 		 */
693 		*val = 0;
694 	} else if (where + size <= CFG_PAGE_SIZE) {
695 		spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
696 		/* Choose the function to be read. (See comment above) */
697 		writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
698 		/* Make sure the function was chosen before we start reading. */
699 		mb();
700 		/* Read from that function's config space. */
701 		switch (size) {
702 		case 1:
703 			*val = readb(addr);
704 			break;
705 		case 2:
706 			*val = readw(addr);
707 			break;
708 		default:
709 			*val = readl(addr);
710 			break;
711 		}
712 		/*
713 		 * Make sure the read was done before we release the spinlock
714 		 * allowing consecutive reads/writes.
715 		 */
716 		mb();
717 		spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
718 	} else {
719 		dev_err(&hpdev->hbus->hdev->device,
720 			"Attempt to read beyond a function's config space.\n");
721 	}
722 }
723 
724 static u16 hv_pcifront_get_vendor_id(struct hv_pci_dev *hpdev)
725 {
726 	u16 ret;
727 	unsigned long flags;
728 	void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET +
729 			     PCI_VENDOR_ID;
730 
731 	spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
732 
733 	/* Choose the function to be read. (See comment above) */
734 	writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
735 	/* Make sure the function was chosen before we start reading. */
736 	mb();
737 	/* Read from that function's config space. */
738 	ret = readw(addr);
739 	/*
740 	 * mb() is not required here, because the spin_unlock_irqrestore()
741 	 * is a barrier.
742 	 */
743 
744 	spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
745 
746 	return ret;
747 }
748 
749 /**
750  * _hv_pcifront_write_config() - Internal PCI config write
751  * @hpdev:	The PCI driver's representation of the device
752  * @where:	Offset within config space
753  * @size:	Size of the transfer
754  * @val:	The data being transferred
755  */
756 static void _hv_pcifront_write_config(struct hv_pci_dev *hpdev, int where,
757 				      int size, u32 val)
758 {
759 	unsigned long flags;
760 	void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where;
761 
762 	if (where >= PCI_SUBSYSTEM_VENDOR_ID &&
763 	    where + size <= PCI_CAPABILITY_LIST) {
764 		/* SSIDs and ROM BARs are read-only */
765 	} else if (where >= PCI_COMMAND && where + size <= CFG_PAGE_SIZE) {
766 		spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
767 		/* Choose the function to be written. (See comment above) */
768 		writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
769 		/* Make sure the function was chosen before we start writing. */
770 		wmb();
771 		/* Write to that function's config space. */
772 		switch (size) {
773 		case 1:
774 			writeb(val, addr);
775 			break;
776 		case 2:
777 			writew(val, addr);
778 			break;
779 		default:
780 			writel(val, addr);
781 			break;
782 		}
783 		/*
784 		 * Make sure the write was done before we release the spinlock
785 		 * allowing consecutive reads/writes.
786 		 */
787 		mb();
788 		spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
789 	} else {
790 		dev_err(&hpdev->hbus->hdev->device,
791 			"Attempt to write beyond a function's config space.\n");
792 	}
793 }
794 
795 /**
796  * hv_pcifront_read_config() - Read configuration space
797  * @bus: PCI Bus structure
798  * @devfn: Device/function
799  * @where: Offset from base
800  * @size: Byte/word/dword
801  * @val: Value to be read
802  *
803  * Return: PCIBIOS_SUCCESSFUL on success
804  *	   PCIBIOS_DEVICE_NOT_FOUND on failure
805  */
806 static int hv_pcifront_read_config(struct pci_bus *bus, unsigned int devfn,
807 				   int where, int size, u32 *val)
808 {
809 	struct hv_pcibus_device *hbus =
810 		container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
811 	struct hv_pci_dev *hpdev;
812 
813 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
814 	if (!hpdev)
815 		return PCIBIOS_DEVICE_NOT_FOUND;
816 
817 	_hv_pcifront_read_config(hpdev, where, size, val);
818 
819 	put_pcichild(hpdev);
820 	return PCIBIOS_SUCCESSFUL;
821 }
822 
823 /**
824  * hv_pcifront_write_config() - Write configuration space
825  * @bus: PCI Bus structure
826  * @devfn: Device/function
827  * @where: Offset from base
828  * @size: Byte/word/dword
829  * @val: Value to be written to device
830  *
831  * Return: PCIBIOS_SUCCESSFUL on success
832  *	   PCIBIOS_DEVICE_NOT_FOUND on failure
833  */
834 static int hv_pcifront_write_config(struct pci_bus *bus, unsigned int devfn,
835 				    int where, int size, u32 val)
836 {
837 	struct hv_pcibus_device *hbus =
838 	    container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
839 	struct hv_pci_dev *hpdev;
840 
841 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
842 	if (!hpdev)
843 		return PCIBIOS_DEVICE_NOT_FOUND;
844 
845 	_hv_pcifront_write_config(hpdev, where, size, val);
846 
847 	put_pcichild(hpdev);
848 	return PCIBIOS_SUCCESSFUL;
849 }
850 
851 /* PCIe operations */
852 static struct pci_ops hv_pcifront_ops = {
853 	.read  = hv_pcifront_read_config,
854 	.write = hv_pcifront_write_config,
855 };
856 
857 /*
858  * Paravirtual backchannel
859  *
860  * Hyper-V SR-IOV provides a backchannel mechanism in software for
861  * communication between a VF driver and a PF driver.  These
862  * "configuration blocks" are similar in concept to PCI configuration space,
863  * but instead of doing reads and writes in 32-bit chunks through a very slow
864  * path, packets of up to 128 bytes can be sent or received asynchronously.
865  *
866  * Nearly every SR-IOV device contains just such a communications channel in
867  * hardware, so using this one in software is usually optional.  Using the
868  * software channel, however, allows driver implementers to leverage software
869  * tools that fuzz the communications channel looking for vulnerabilities.
870  *
871  * The usage model for these packets puts the responsibility for reading or
872  * writing on the VF driver.  The VF driver sends a read or a write packet,
873  * indicating which "block" is being referred to by number.
874  *
875  * If the PF driver wishes to initiate communication, it can "invalidate" one or
876  * more of the first 64 blocks.  This invalidation is delivered via a callback
877  * supplied by the VF driver by this driver.
878  *
879  * No protocol is implied, except that supplied by the PF and VF drivers.
880  */
881 
882 struct hv_read_config_compl {
883 	struct hv_pci_compl comp_pkt;
884 	void *buf;
885 	unsigned int len;
886 	unsigned int bytes_returned;
887 };
888 
889 /**
890  * hv_pci_read_config_compl() - Invoked when a response packet
891  * for a read config block operation arrives.
892  * @context:		Identifies the read config operation
893  * @resp:		The response packet itself
894  * @resp_packet_size:	Size in bytes of the response packet
895  */
896 static void hv_pci_read_config_compl(void *context, struct pci_response *resp,
897 				     int resp_packet_size)
898 {
899 	struct hv_read_config_compl *comp = context;
900 	struct pci_read_block_response *read_resp =
901 		(struct pci_read_block_response *)resp;
902 	unsigned int data_len, hdr_len;
903 
904 	hdr_len = offsetof(struct pci_read_block_response, bytes);
905 	if (resp_packet_size < hdr_len) {
906 		comp->comp_pkt.completion_status = -1;
907 		goto out;
908 	}
909 
910 	data_len = resp_packet_size - hdr_len;
911 	if (data_len > 0 && read_resp->status == 0) {
912 		comp->bytes_returned = min(comp->len, data_len);
913 		memcpy(comp->buf, read_resp->bytes, comp->bytes_returned);
914 	} else {
915 		comp->bytes_returned = 0;
916 	}
917 
918 	comp->comp_pkt.completion_status = read_resp->status;
919 out:
920 	complete(&comp->comp_pkt.host_event);
921 }
922 
923 /**
924  * hv_read_config_block() - Sends a read config block request to
925  * the back-end driver running in the Hyper-V parent partition.
926  * @pdev:		The PCI driver's representation for this device.
927  * @buf:		Buffer into which the config block will be copied.
928  * @len:		Size in bytes of buf.
929  * @block_id:		Identifies the config block which has been requested.
930  * @bytes_returned:	Size which came back from the back-end driver.
931  *
932  * Return: 0 on success, -errno on failure
933  */
934 static int hv_read_config_block(struct pci_dev *pdev, void *buf,
935 				unsigned int len, unsigned int block_id,
936 				unsigned int *bytes_returned)
937 {
938 	struct hv_pcibus_device *hbus =
939 		container_of(pdev->bus->sysdata, struct hv_pcibus_device,
940 			     sysdata);
941 	struct {
942 		struct pci_packet pkt;
943 		char buf[sizeof(struct pci_read_block)];
944 	} pkt;
945 	struct hv_read_config_compl comp_pkt;
946 	struct pci_read_block *read_blk;
947 	int ret;
948 
949 	if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX)
950 		return -EINVAL;
951 
952 	init_completion(&comp_pkt.comp_pkt.host_event);
953 	comp_pkt.buf = buf;
954 	comp_pkt.len = len;
955 
956 	memset(&pkt, 0, sizeof(pkt));
957 	pkt.pkt.completion_func = hv_pci_read_config_compl;
958 	pkt.pkt.compl_ctxt = &comp_pkt;
959 	read_blk = (struct pci_read_block *)&pkt.pkt.message;
960 	read_blk->message_type.type = PCI_READ_BLOCK;
961 	read_blk->wslot.slot = devfn_to_wslot(pdev->devfn);
962 	read_blk->block_id = block_id;
963 	read_blk->bytes_requested = len;
964 
965 	ret = vmbus_sendpacket(hbus->hdev->channel, read_blk,
966 			       sizeof(*read_blk), (unsigned long)&pkt.pkt,
967 			       VM_PKT_DATA_INBAND,
968 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
969 	if (ret)
970 		return ret;
971 
972 	ret = wait_for_response(hbus->hdev, &comp_pkt.comp_pkt.host_event);
973 	if (ret)
974 		return ret;
975 
976 	if (comp_pkt.comp_pkt.completion_status != 0 ||
977 	    comp_pkt.bytes_returned == 0) {
978 		dev_err(&hbus->hdev->device,
979 			"Read Config Block failed: 0x%x, bytes_returned=%d\n",
980 			comp_pkt.comp_pkt.completion_status,
981 			comp_pkt.bytes_returned);
982 		return -EIO;
983 	}
984 
985 	*bytes_returned = comp_pkt.bytes_returned;
986 	return 0;
987 }
988 
989 /**
990  * hv_pci_write_config_compl() - Invoked when a response packet for a write
991  * config block operation arrives.
992  * @context:		Identifies the write config operation
993  * @resp:		The response packet itself
994  * @resp_packet_size:	Size in bytes of the response packet
995  */
996 static void hv_pci_write_config_compl(void *context, struct pci_response *resp,
997 				      int resp_packet_size)
998 {
999 	struct hv_pci_compl *comp_pkt = context;
1000 
1001 	comp_pkt->completion_status = resp->status;
1002 	complete(&comp_pkt->host_event);
1003 }
1004 
1005 /**
1006  * hv_write_config_block() - Sends a write config block request to the
1007  * back-end driver running in the Hyper-V parent partition.
1008  * @pdev:		The PCI driver's representation for this device.
1009  * @buf:		Buffer from which the config block will	be copied.
1010  * @len:		Size in bytes of buf.
1011  * @block_id:		Identifies the config block which is being written.
1012  *
1013  * Return: 0 on success, -errno on failure
1014  */
1015 static int hv_write_config_block(struct pci_dev *pdev, void *buf,
1016 				unsigned int len, unsigned int block_id)
1017 {
1018 	struct hv_pcibus_device *hbus =
1019 		container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1020 			     sysdata);
1021 	struct {
1022 		struct pci_packet pkt;
1023 		char buf[sizeof(struct pci_write_block)];
1024 		u32 reserved;
1025 	} pkt;
1026 	struct hv_pci_compl comp_pkt;
1027 	struct pci_write_block *write_blk;
1028 	u32 pkt_size;
1029 	int ret;
1030 
1031 	if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX)
1032 		return -EINVAL;
1033 
1034 	init_completion(&comp_pkt.host_event);
1035 
1036 	memset(&pkt, 0, sizeof(pkt));
1037 	pkt.pkt.completion_func = hv_pci_write_config_compl;
1038 	pkt.pkt.compl_ctxt = &comp_pkt;
1039 	write_blk = (struct pci_write_block *)&pkt.pkt.message;
1040 	write_blk->message_type.type = PCI_WRITE_BLOCK;
1041 	write_blk->wslot.slot = devfn_to_wslot(pdev->devfn);
1042 	write_blk->block_id = block_id;
1043 	write_blk->byte_count = len;
1044 	memcpy(write_blk->bytes, buf, len);
1045 	pkt_size = offsetof(struct pci_write_block, bytes) + len;
1046 	/*
1047 	 * This quirk is required on some hosts shipped around 2018, because
1048 	 * these hosts don't check the pkt_size correctly (new hosts have been
1049 	 * fixed since early 2019). The quirk is also safe on very old hosts
1050 	 * and new hosts, because, on them, what really matters is the length
1051 	 * specified in write_blk->byte_count.
1052 	 */
1053 	pkt_size += sizeof(pkt.reserved);
1054 
1055 	ret = vmbus_sendpacket(hbus->hdev->channel, write_blk, pkt_size,
1056 			       (unsigned long)&pkt.pkt, VM_PKT_DATA_INBAND,
1057 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1058 	if (ret)
1059 		return ret;
1060 
1061 	ret = wait_for_response(hbus->hdev, &comp_pkt.host_event);
1062 	if (ret)
1063 		return ret;
1064 
1065 	if (comp_pkt.completion_status != 0) {
1066 		dev_err(&hbus->hdev->device,
1067 			"Write Config Block failed: 0x%x\n",
1068 			comp_pkt.completion_status);
1069 		return -EIO;
1070 	}
1071 
1072 	return 0;
1073 }
1074 
1075 /**
1076  * hv_register_block_invalidate() - Invoked when a config block invalidation
1077  * arrives from the back-end driver.
1078  * @pdev:		The PCI driver's representation for this device.
1079  * @context:		Identifies the device.
1080  * @block_invalidate:	Identifies all of the blocks being invalidated.
1081  *
1082  * Return: 0 on success, -errno on failure
1083  */
1084 static int hv_register_block_invalidate(struct pci_dev *pdev, void *context,
1085 					void (*block_invalidate)(void *context,
1086 								 u64 block_mask))
1087 {
1088 	struct hv_pcibus_device *hbus =
1089 		container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1090 			     sysdata);
1091 	struct hv_pci_dev *hpdev;
1092 
1093 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1094 	if (!hpdev)
1095 		return -ENODEV;
1096 
1097 	hpdev->block_invalidate = block_invalidate;
1098 	hpdev->invalidate_context = context;
1099 
1100 	put_pcichild(hpdev);
1101 	return 0;
1102 
1103 }
1104 
1105 /* Interrupt management hooks */
1106 static void hv_int_desc_free(struct hv_pci_dev *hpdev,
1107 			     struct tran_int_desc *int_desc)
1108 {
1109 	struct pci_delete_interrupt *int_pkt;
1110 	struct {
1111 		struct pci_packet pkt;
1112 		u8 buffer[sizeof(struct pci_delete_interrupt)];
1113 	} ctxt;
1114 
1115 	memset(&ctxt, 0, sizeof(ctxt));
1116 	int_pkt = (struct pci_delete_interrupt *)&ctxt.pkt.message;
1117 	int_pkt->message_type.type =
1118 		PCI_DELETE_INTERRUPT_MESSAGE;
1119 	int_pkt->wslot.slot = hpdev->desc.win_slot.slot;
1120 	int_pkt->int_desc = *int_desc;
1121 	vmbus_sendpacket(hpdev->hbus->hdev->channel, int_pkt, sizeof(*int_pkt),
1122 			 (unsigned long)&ctxt.pkt, VM_PKT_DATA_INBAND, 0);
1123 	kfree(int_desc);
1124 }
1125 
1126 /**
1127  * hv_msi_free() - Free the MSI.
1128  * @domain:	The interrupt domain pointer
1129  * @info:	Extra MSI-related context
1130  * @irq:	Identifies the IRQ.
1131  *
1132  * The Hyper-V parent partition and hypervisor are tracking the
1133  * messages that are in use, keeping the interrupt redirection
1134  * table up to date.  This callback sends a message that frees
1135  * the IRT entry and related tracking nonsense.
1136  */
1137 static void hv_msi_free(struct irq_domain *domain, struct msi_domain_info *info,
1138 			unsigned int irq)
1139 {
1140 	struct hv_pcibus_device *hbus;
1141 	struct hv_pci_dev *hpdev;
1142 	struct pci_dev *pdev;
1143 	struct tran_int_desc *int_desc;
1144 	struct irq_data *irq_data = irq_domain_get_irq_data(domain, irq);
1145 	struct msi_desc *msi = irq_data_get_msi_desc(irq_data);
1146 
1147 	pdev = msi_desc_to_pci_dev(msi);
1148 	hbus = info->data;
1149 	int_desc = irq_data_get_irq_chip_data(irq_data);
1150 	if (!int_desc)
1151 		return;
1152 
1153 	irq_data->chip_data = NULL;
1154 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1155 	if (!hpdev) {
1156 		kfree(int_desc);
1157 		return;
1158 	}
1159 
1160 	hv_int_desc_free(hpdev, int_desc);
1161 	put_pcichild(hpdev);
1162 }
1163 
1164 static int hv_set_affinity(struct irq_data *data, const struct cpumask *dest,
1165 			   bool force)
1166 {
1167 	struct irq_data *parent = data->parent_data;
1168 
1169 	return parent->chip->irq_set_affinity(parent, dest, force);
1170 }
1171 
1172 static void hv_irq_mask(struct irq_data *data)
1173 {
1174 	pci_msi_mask_irq(data);
1175 }
1176 
1177 /**
1178  * hv_irq_unmask() - "Unmask" the IRQ by setting its current
1179  * affinity.
1180  * @data:	Describes the IRQ
1181  *
1182  * Build new a destination for the MSI and make a hypercall to
1183  * update the Interrupt Redirection Table. "Device Logical ID"
1184  * is built out of this PCI bus's instance GUID and the function
1185  * number of the device.
1186  */
1187 static void hv_irq_unmask(struct irq_data *data)
1188 {
1189 	struct msi_desc *msi_desc = irq_data_get_msi_desc(data);
1190 	struct irq_cfg *cfg = irqd_cfg(data);
1191 	struct hv_retarget_device_interrupt *params;
1192 	struct hv_pcibus_device *hbus;
1193 	struct cpumask *dest;
1194 	cpumask_var_t tmp;
1195 	struct pci_bus *pbus;
1196 	struct pci_dev *pdev;
1197 	unsigned long flags;
1198 	u32 var_size = 0;
1199 	int cpu, nr_bank;
1200 	u64 res;
1201 
1202 	dest = irq_data_get_effective_affinity_mask(data);
1203 	pdev = msi_desc_to_pci_dev(msi_desc);
1204 	pbus = pdev->bus;
1205 	hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
1206 
1207 	spin_lock_irqsave(&hbus->retarget_msi_interrupt_lock, flags);
1208 
1209 	params = &hbus->retarget_msi_interrupt_params;
1210 	memset(params, 0, sizeof(*params));
1211 	params->partition_id = HV_PARTITION_ID_SELF;
1212 	params->int_entry.source = HV_INTERRUPT_SOURCE_MSI;
1213 	hv_set_msi_entry_from_desc(&params->int_entry.msi_entry, msi_desc);
1214 	params->device_id = (hbus->hdev->dev_instance.b[5] << 24) |
1215 			   (hbus->hdev->dev_instance.b[4] << 16) |
1216 			   (hbus->hdev->dev_instance.b[7] << 8) |
1217 			   (hbus->hdev->dev_instance.b[6] & 0xf8) |
1218 			   PCI_FUNC(pdev->devfn);
1219 	params->int_target.vector = cfg->vector;
1220 
1221 	/*
1222 	 * Honoring apic->delivery_mode set to APIC_DELIVERY_MODE_FIXED by
1223 	 * setting the HV_DEVICE_INTERRUPT_TARGET_MULTICAST flag results in a
1224 	 * spurious interrupt storm. Not doing so does not seem to have a
1225 	 * negative effect (yet?).
1226 	 */
1227 
1228 	if (hbus->protocol_version >= PCI_PROTOCOL_VERSION_1_2) {
1229 		/*
1230 		 * PCI_PROTOCOL_VERSION_1_2 supports the VP_SET version of the
1231 		 * HVCALL_RETARGET_INTERRUPT hypercall, which also coincides
1232 		 * with >64 VP support.
1233 		 * ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED
1234 		 * is not sufficient for this hypercall.
1235 		 */
1236 		params->int_target.flags |=
1237 			HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET;
1238 
1239 		if (!alloc_cpumask_var(&tmp, GFP_ATOMIC)) {
1240 			res = 1;
1241 			goto exit_unlock;
1242 		}
1243 
1244 		cpumask_and(tmp, dest, cpu_online_mask);
1245 		nr_bank = cpumask_to_vpset(&params->int_target.vp_set, tmp);
1246 		free_cpumask_var(tmp);
1247 
1248 		if (nr_bank <= 0) {
1249 			res = 1;
1250 			goto exit_unlock;
1251 		}
1252 
1253 		/*
1254 		 * var-sized hypercall, var-size starts after vp_mask (thus
1255 		 * vp_set.format does not count, but vp_set.valid_bank_mask
1256 		 * does).
1257 		 */
1258 		var_size = 1 + nr_bank;
1259 	} else {
1260 		for_each_cpu_and(cpu, dest, cpu_online_mask) {
1261 			params->int_target.vp_mask |=
1262 				(1ULL << hv_cpu_number_to_vp_number(cpu));
1263 		}
1264 	}
1265 
1266 	res = hv_do_hypercall(HVCALL_RETARGET_INTERRUPT | (var_size << 17),
1267 			      params, NULL);
1268 
1269 exit_unlock:
1270 	spin_unlock_irqrestore(&hbus->retarget_msi_interrupt_lock, flags);
1271 
1272 	/*
1273 	 * During hibernation, when a CPU is offlined, the kernel tries
1274 	 * to move the interrupt to the remaining CPUs that haven't
1275 	 * been offlined yet. In this case, the below hv_do_hypercall()
1276 	 * always fails since the vmbus channel has been closed:
1277 	 * refer to cpu_disable_common() -> fixup_irqs() ->
1278 	 * irq_migrate_all_off_this_cpu() -> migrate_one_irq().
1279 	 *
1280 	 * Suppress the error message for hibernation because the failure
1281 	 * during hibernation does not matter (at this time all the devices
1282 	 * have been frozen). Note: the correct affinity info is still updated
1283 	 * into the irqdata data structure in migrate_one_irq() ->
1284 	 * irq_do_set_affinity() -> hv_set_affinity(), so later when the VM
1285 	 * resumes, hv_pci_restore_msi_state() is able to correctly restore
1286 	 * the interrupt with the correct affinity.
1287 	 */
1288 	if (!hv_result_success(res) && hbus->state != hv_pcibus_removing)
1289 		dev_err(&hbus->hdev->device,
1290 			"%s() failed: %#llx", __func__, res);
1291 
1292 	pci_msi_unmask_irq(data);
1293 }
1294 
1295 struct compose_comp_ctxt {
1296 	struct hv_pci_compl comp_pkt;
1297 	struct tran_int_desc int_desc;
1298 };
1299 
1300 static void hv_pci_compose_compl(void *context, struct pci_response *resp,
1301 				 int resp_packet_size)
1302 {
1303 	struct compose_comp_ctxt *comp_pkt = context;
1304 	struct pci_create_int_response *int_resp =
1305 		(struct pci_create_int_response *)resp;
1306 
1307 	comp_pkt->comp_pkt.completion_status = resp->status;
1308 	comp_pkt->int_desc = int_resp->int_desc;
1309 	complete(&comp_pkt->comp_pkt.host_event);
1310 }
1311 
1312 static u32 hv_compose_msi_req_v1(
1313 	struct pci_create_interrupt *int_pkt, struct cpumask *affinity,
1314 	u32 slot, u8 vector)
1315 {
1316 	int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE;
1317 	int_pkt->wslot.slot = slot;
1318 	int_pkt->int_desc.vector = vector;
1319 	int_pkt->int_desc.vector_count = 1;
1320 	int_pkt->int_desc.delivery_mode = APIC_DELIVERY_MODE_FIXED;
1321 
1322 	/*
1323 	 * Create MSI w/ dummy vCPU set, overwritten by subsequent retarget in
1324 	 * hv_irq_unmask().
1325 	 */
1326 	int_pkt->int_desc.cpu_mask = CPU_AFFINITY_ALL;
1327 
1328 	return sizeof(*int_pkt);
1329 }
1330 
1331 static u32 hv_compose_msi_req_v2(
1332 	struct pci_create_interrupt2 *int_pkt, struct cpumask *affinity,
1333 	u32 slot, u8 vector)
1334 {
1335 	int cpu;
1336 
1337 	int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE2;
1338 	int_pkt->wslot.slot = slot;
1339 	int_pkt->int_desc.vector = vector;
1340 	int_pkt->int_desc.vector_count = 1;
1341 	int_pkt->int_desc.delivery_mode = APIC_DELIVERY_MODE_FIXED;
1342 
1343 	/*
1344 	 * Create MSI w/ dummy vCPU set targeting just one vCPU, overwritten
1345 	 * by subsequent retarget in hv_irq_unmask().
1346 	 */
1347 	cpu = cpumask_first_and(affinity, cpu_online_mask);
1348 	int_pkt->int_desc.processor_array[0] =
1349 		hv_cpu_number_to_vp_number(cpu);
1350 	int_pkt->int_desc.processor_count = 1;
1351 
1352 	return sizeof(*int_pkt);
1353 }
1354 
1355 /**
1356  * hv_compose_msi_msg() - Supplies a valid MSI address/data
1357  * @data:	Everything about this MSI
1358  * @msg:	Buffer that is filled in by this function
1359  *
1360  * This function unpacks the IRQ looking for target CPU set, IDT
1361  * vector and mode and sends a message to the parent partition
1362  * asking for a mapping for that tuple in this partition.  The
1363  * response supplies a data value and address to which that data
1364  * should be written to trigger that interrupt.
1365  */
1366 static void hv_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
1367 {
1368 	struct irq_cfg *cfg = irqd_cfg(data);
1369 	struct hv_pcibus_device *hbus;
1370 	struct vmbus_channel *channel;
1371 	struct hv_pci_dev *hpdev;
1372 	struct pci_bus *pbus;
1373 	struct pci_dev *pdev;
1374 	struct cpumask *dest;
1375 	struct compose_comp_ctxt comp;
1376 	struct tran_int_desc *int_desc;
1377 	struct {
1378 		struct pci_packet pci_pkt;
1379 		union {
1380 			struct pci_create_interrupt v1;
1381 			struct pci_create_interrupt2 v2;
1382 		} int_pkts;
1383 	} __packed ctxt;
1384 
1385 	u32 size;
1386 	int ret;
1387 
1388 	pdev = msi_desc_to_pci_dev(irq_data_get_msi_desc(data));
1389 	dest = irq_data_get_effective_affinity_mask(data);
1390 	pbus = pdev->bus;
1391 	hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
1392 	channel = hbus->hdev->channel;
1393 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1394 	if (!hpdev)
1395 		goto return_null_message;
1396 
1397 	/* Free any previous message that might have already been composed. */
1398 	if (data->chip_data) {
1399 		int_desc = data->chip_data;
1400 		data->chip_data = NULL;
1401 		hv_int_desc_free(hpdev, int_desc);
1402 	}
1403 
1404 	int_desc = kzalloc(sizeof(*int_desc), GFP_ATOMIC);
1405 	if (!int_desc)
1406 		goto drop_reference;
1407 
1408 	memset(&ctxt, 0, sizeof(ctxt));
1409 	init_completion(&comp.comp_pkt.host_event);
1410 	ctxt.pci_pkt.completion_func = hv_pci_compose_compl;
1411 	ctxt.pci_pkt.compl_ctxt = &comp;
1412 
1413 	switch (hbus->protocol_version) {
1414 	case PCI_PROTOCOL_VERSION_1_1:
1415 		size = hv_compose_msi_req_v1(&ctxt.int_pkts.v1,
1416 					dest,
1417 					hpdev->desc.win_slot.slot,
1418 					cfg->vector);
1419 		break;
1420 
1421 	case PCI_PROTOCOL_VERSION_1_2:
1422 	case PCI_PROTOCOL_VERSION_1_3:
1423 		size = hv_compose_msi_req_v2(&ctxt.int_pkts.v2,
1424 					dest,
1425 					hpdev->desc.win_slot.slot,
1426 					cfg->vector);
1427 		break;
1428 
1429 	default:
1430 		/* As we only negotiate protocol versions known to this driver,
1431 		 * this path should never hit. However, this is it not a hot
1432 		 * path so we print a message to aid future updates.
1433 		 */
1434 		dev_err(&hbus->hdev->device,
1435 			"Unexpected vPCI protocol, update driver.");
1436 		goto free_int_desc;
1437 	}
1438 
1439 	ret = vmbus_sendpacket(hpdev->hbus->hdev->channel, &ctxt.int_pkts,
1440 			       size, (unsigned long)&ctxt.pci_pkt,
1441 			       VM_PKT_DATA_INBAND,
1442 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1443 	if (ret) {
1444 		dev_err(&hbus->hdev->device,
1445 			"Sending request for interrupt failed: 0x%x",
1446 			comp.comp_pkt.completion_status);
1447 		goto free_int_desc;
1448 	}
1449 
1450 	/*
1451 	 * Prevents hv_pci_onchannelcallback() from running concurrently
1452 	 * in the tasklet.
1453 	 */
1454 	tasklet_disable_in_atomic(&channel->callback_event);
1455 
1456 	/*
1457 	 * Since this function is called with IRQ locks held, can't
1458 	 * do normal wait for completion; instead poll.
1459 	 */
1460 	while (!try_wait_for_completion(&comp.comp_pkt.host_event)) {
1461 		unsigned long flags;
1462 
1463 		/* 0xFFFF means an invalid PCI VENDOR ID. */
1464 		if (hv_pcifront_get_vendor_id(hpdev) == 0xFFFF) {
1465 			dev_err_once(&hbus->hdev->device,
1466 				     "the device has gone\n");
1467 			goto enable_tasklet;
1468 		}
1469 
1470 		/*
1471 		 * Make sure that the ring buffer data structure doesn't get
1472 		 * freed while we dereference the ring buffer pointer.  Test
1473 		 * for the channel's onchannel_callback being NULL within a
1474 		 * sched_lock critical section.  See also the inline comments
1475 		 * in vmbus_reset_channel_cb().
1476 		 */
1477 		spin_lock_irqsave(&channel->sched_lock, flags);
1478 		if (unlikely(channel->onchannel_callback == NULL)) {
1479 			spin_unlock_irqrestore(&channel->sched_lock, flags);
1480 			goto enable_tasklet;
1481 		}
1482 		hv_pci_onchannelcallback(hbus);
1483 		spin_unlock_irqrestore(&channel->sched_lock, flags);
1484 
1485 		if (hpdev->state == hv_pcichild_ejecting) {
1486 			dev_err_once(&hbus->hdev->device,
1487 				     "the device is being ejected\n");
1488 			goto enable_tasklet;
1489 		}
1490 
1491 		udelay(100);
1492 	}
1493 
1494 	tasklet_enable(&channel->callback_event);
1495 
1496 	if (comp.comp_pkt.completion_status < 0) {
1497 		dev_err(&hbus->hdev->device,
1498 			"Request for interrupt failed: 0x%x",
1499 			comp.comp_pkt.completion_status);
1500 		goto free_int_desc;
1501 	}
1502 
1503 	/*
1504 	 * Record the assignment so that this can be unwound later. Using
1505 	 * irq_set_chip_data() here would be appropriate, but the lock it takes
1506 	 * is already held.
1507 	 */
1508 	*int_desc = comp.int_desc;
1509 	data->chip_data = int_desc;
1510 
1511 	/* Pass up the result. */
1512 	msg->address_hi = comp.int_desc.address >> 32;
1513 	msg->address_lo = comp.int_desc.address & 0xffffffff;
1514 	msg->data = comp.int_desc.data;
1515 
1516 	put_pcichild(hpdev);
1517 	return;
1518 
1519 enable_tasklet:
1520 	tasklet_enable(&channel->callback_event);
1521 free_int_desc:
1522 	kfree(int_desc);
1523 drop_reference:
1524 	put_pcichild(hpdev);
1525 return_null_message:
1526 	msg->address_hi = 0;
1527 	msg->address_lo = 0;
1528 	msg->data = 0;
1529 }
1530 
1531 /* HW Interrupt Chip Descriptor */
1532 static struct irq_chip hv_msi_irq_chip = {
1533 	.name			= "Hyper-V PCIe MSI",
1534 	.irq_compose_msi_msg	= hv_compose_msi_msg,
1535 	.irq_set_affinity	= hv_set_affinity,
1536 	.irq_ack		= irq_chip_ack_parent,
1537 	.irq_mask		= hv_irq_mask,
1538 	.irq_unmask		= hv_irq_unmask,
1539 };
1540 
1541 static struct msi_domain_ops hv_msi_ops = {
1542 	.msi_prepare	= pci_msi_prepare,
1543 	.msi_free	= hv_msi_free,
1544 };
1545 
1546 /**
1547  * hv_pcie_init_irq_domain() - Initialize IRQ domain
1548  * @hbus:	The root PCI bus
1549  *
1550  * This function creates an IRQ domain which will be used for
1551  * interrupts from devices that have been passed through.  These
1552  * devices only support MSI and MSI-X, not line-based interrupts
1553  * or simulations of line-based interrupts through PCIe's
1554  * fabric-layer messages.  Because interrupts are remapped, we
1555  * can support multi-message MSI here.
1556  *
1557  * Return: '0' on success and error value on failure
1558  */
1559 static int hv_pcie_init_irq_domain(struct hv_pcibus_device *hbus)
1560 {
1561 	hbus->msi_info.chip = &hv_msi_irq_chip;
1562 	hbus->msi_info.ops = &hv_msi_ops;
1563 	hbus->msi_info.flags = (MSI_FLAG_USE_DEF_DOM_OPS |
1564 		MSI_FLAG_USE_DEF_CHIP_OPS | MSI_FLAG_MULTI_PCI_MSI |
1565 		MSI_FLAG_PCI_MSIX);
1566 	hbus->msi_info.handler = handle_edge_irq;
1567 	hbus->msi_info.handler_name = "edge";
1568 	hbus->msi_info.data = hbus;
1569 	hbus->irq_domain = pci_msi_create_irq_domain(hbus->sysdata.fwnode,
1570 						     &hbus->msi_info,
1571 						     x86_vector_domain);
1572 	if (!hbus->irq_domain) {
1573 		dev_err(&hbus->hdev->device,
1574 			"Failed to build an MSI IRQ domain\n");
1575 		return -ENODEV;
1576 	}
1577 
1578 	return 0;
1579 }
1580 
1581 /**
1582  * get_bar_size() - Get the address space consumed by a BAR
1583  * @bar_val:	Value that a BAR returned after -1 was written
1584  *              to it.
1585  *
1586  * This function returns the size of the BAR, rounded up to 1
1587  * page.  It has to be rounded up because the hypervisor's page
1588  * table entry that maps the BAR into the VM can't specify an
1589  * offset within a page.  The invariant is that the hypervisor
1590  * must place any BARs of smaller than page length at the
1591  * beginning of a page.
1592  *
1593  * Return:	Size in bytes of the consumed MMIO space.
1594  */
1595 static u64 get_bar_size(u64 bar_val)
1596 {
1597 	return round_up((1 + ~(bar_val & PCI_BASE_ADDRESS_MEM_MASK)),
1598 			PAGE_SIZE);
1599 }
1600 
1601 /**
1602  * survey_child_resources() - Total all MMIO requirements
1603  * @hbus:	Root PCI bus, as understood by this driver
1604  */
1605 static void survey_child_resources(struct hv_pcibus_device *hbus)
1606 {
1607 	struct hv_pci_dev *hpdev;
1608 	resource_size_t bar_size = 0;
1609 	unsigned long flags;
1610 	struct completion *event;
1611 	u64 bar_val;
1612 	int i;
1613 
1614 	/* If nobody is waiting on the answer, don't compute it. */
1615 	event = xchg(&hbus->survey_event, NULL);
1616 	if (!event)
1617 		return;
1618 
1619 	/* If the answer has already been computed, go with it. */
1620 	if (hbus->low_mmio_space || hbus->high_mmio_space) {
1621 		complete(event);
1622 		return;
1623 	}
1624 
1625 	spin_lock_irqsave(&hbus->device_list_lock, flags);
1626 
1627 	/*
1628 	 * Due to an interesting quirk of the PCI spec, all memory regions
1629 	 * for a child device are a power of 2 in size and aligned in memory,
1630 	 * so it's sufficient to just add them up without tracking alignment.
1631 	 */
1632 	list_for_each_entry(hpdev, &hbus->children, list_entry) {
1633 		for (i = 0; i < PCI_STD_NUM_BARS; i++) {
1634 			if (hpdev->probed_bar[i] & PCI_BASE_ADDRESS_SPACE_IO)
1635 				dev_err(&hbus->hdev->device,
1636 					"There's an I/O BAR in this list!\n");
1637 
1638 			if (hpdev->probed_bar[i] != 0) {
1639 				/*
1640 				 * A probed BAR has all the upper bits set that
1641 				 * can be changed.
1642 				 */
1643 
1644 				bar_val = hpdev->probed_bar[i];
1645 				if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
1646 					bar_val |=
1647 					((u64)hpdev->probed_bar[++i] << 32);
1648 				else
1649 					bar_val |= 0xffffffff00000000ULL;
1650 
1651 				bar_size = get_bar_size(bar_val);
1652 
1653 				if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
1654 					hbus->high_mmio_space += bar_size;
1655 				else
1656 					hbus->low_mmio_space += bar_size;
1657 			}
1658 		}
1659 	}
1660 
1661 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1662 	complete(event);
1663 }
1664 
1665 /**
1666  * prepopulate_bars() - Fill in BARs with defaults
1667  * @hbus:	Root PCI bus, as understood by this driver
1668  *
1669  * The core PCI driver code seems much, much happier if the BARs
1670  * for a device have values upon first scan. So fill them in.
1671  * The algorithm below works down from large sizes to small,
1672  * attempting to pack the assignments optimally. The assumption,
1673  * enforced in other parts of the code, is that the beginning of
1674  * the memory-mapped I/O space will be aligned on the largest
1675  * BAR size.
1676  */
1677 static void prepopulate_bars(struct hv_pcibus_device *hbus)
1678 {
1679 	resource_size_t high_size = 0;
1680 	resource_size_t low_size = 0;
1681 	resource_size_t high_base = 0;
1682 	resource_size_t low_base = 0;
1683 	resource_size_t bar_size;
1684 	struct hv_pci_dev *hpdev;
1685 	unsigned long flags;
1686 	u64 bar_val;
1687 	u32 command;
1688 	bool high;
1689 	int i;
1690 
1691 	if (hbus->low_mmio_space) {
1692 		low_size = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
1693 		low_base = hbus->low_mmio_res->start;
1694 	}
1695 
1696 	if (hbus->high_mmio_space) {
1697 		high_size = 1ULL <<
1698 			(63 - __builtin_clzll(hbus->high_mmio_space));
1699 		high_base = hbus->high_mmio_res->start;
1700 	}
1701 
1702 	spin_lock_irqsave(&hbus->device_list_lock, flags);
1703 
1704 	/*
1705 	 * Clear the memory enable bit, in case it's already set. This occurs
1706 	 * in the suspend path of hibernation, where the device is suspended,
1707 	 * resumed and suspended again: see hibernation_snapshot() and
1708 	 * hibernation_platform_enter().
1709 	 *
1710 	 * If the memory enable bit is already set, Hyper-V silently ignores
1711 	 * the below BAR updates, and the related PCI device driver can not
1712 	 * work, because reading from the device register(s) always returns
1713 	 * 0xFFFFFFFF.
1714 	 */
1715 	list_for_each_entry(hpdev, &hbus->children, list_entry) {
1716 		_hv_pcifront_read_config(hpdev, PCI_COMMAND, 2, &command);
1717 		command &= ~PCI_COMMAND_MEMORY;
1718 		_hv_pcifront_write_config(hpdev, PCI_COMMAND, 2, command);
1719 	}
1720 
1721 	/* Pick addresses for the BARs. */
1722 	do {
1723 		list_for_each_entry(hpdev, &hbus->children, list_entry) {
1724 			for (i = 0; i < PCI_STD_NUM_BARS; i++) {
1725 				bar_val = hpdev->probed_bar[i];
1726 				if (bar_val == 0)
1727 					continue;
1728 				high = bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64;
1729 				if (high) {
1730 					bar_val |=
1731 						((u64)hpdev->probed_bar[i + 1]
1732 						 << 32);
1733 				} else {
1734 					bar_val |= 0xffffffffULL << 32;
1735 				}
1736 				bar_size = get_bar_size(bar_val);
1737 				if (high) {
1738 					if (high_size != bar_size) {
1739 						i++;
1740 						continue;
1741 					}
1742 					_hv_pcifront_write_config(hpdev,
1743 						PCI_BASE_ADDRESS_0 + (4 * i),
1744 						4,
1745 						(u32)(high_base & 0xffffff00));
1746 					i++;
1747 					_hv_pcifront_write_config(hpdev,
1748 						PCI_BASE_ADDRESS_0 + (4 * i),
1749 						4, (u32)(high_base >> 32));
1750 					high_base += bar_size;
1751 				} else {
1752 					if (low_size != bar_size)
1753 						continue;
1754 					_hv_pcifront_write_config(hpdev,
1755 						PCI_BASE_ADDRESS_0 + (4 * i),
1756 						4,
1757 						(u32)(low_base & 0xffffff00));
1758 					low_base += bar_size;
1759 				}
1760 			}
1761 			if (high_size <= 1 && low_size <= 1) {
1762 				/* Set the memory enable bit. */
1763 				_hv_pcifront_read_config(hpdev, PCI_COMMAND, 2,
1764 							 &command);
1765 				command |= PCI_COMMAND_MEMORY;
1766 				_hv_pcifront_write_config(hpdev, PCI_COMMAND, 2,
1767 							  command);
1768 				break;
1769 			}
1770 		}
1771 
1772 		high_size >>= 1;
1773 		low_size >>= 1;
1774 	}  while (high_size || low_size);
1775 
1776 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1777 }
1778 
1779 /*
1780  * Assign entries in sysfs pci slot directory.
1781  *
1782  * Note that this function does not need to lock the children list
1783  * because it is called from pci_devices_present_work which
1784  * is serialized with hv_eject_device_work because they are on the
1785  * same ordered workqueue. Therefore hbus->children list will not change
1786  * even when pci_create_slot sleeps.
1787  */
1788 static void hv_pci_assign_slots(struct hv_pcibus_device *hbus)
1789 {
1790 	struct hv_pci_dev *hpdev;
1791 	char name[SLOT_NAME_SIZE];
1792 	int slot_nr;
1793 
1794 	list_for_each_entry(hpdev, &hbus->children, list_entry) {
1795 		if (hpdev->pci_slot)
1796 			continue;
1797 
1798 		slot_nr = PCI_SLOT(wslot_to_devfn(hpdev->desc.win_slot.slot));
1799 		snprintf(name, SLOT_NAME_SIZE, "%u", hpdev->desc.ser);
1800 		hpdev->pci_slot = pci_create_slot(hbus->pci_bus, slot_nr,
1801 					  name, NULL);
1802 		if (IS_ERR(hpdev->pci_slot)) {
1803 			pr_warn("pci_create slot %s failed\n", name);
1804 			hpdev->pci_slot = NULL;
1805 		}
1806 	}
1807 }
1808 
1809 /*
1810  * Remove entries in sysfs pci slot directory.
1811  */
1812 static void hv_pci_remove_slots(struct hv_pcibus_device *hbus)
1813 {
1814 	struct hv_pci_dev *hpdev;
1815 
1816 	list_for_each_entry(hpdev, &hbus->children, list_entry) {
1817 		if (!hpdev->pci_slot)
1818 			continue;
1819 		pci_destroy_slot(hpdev->pci_slot);
1820 		hpdev->pci_slot = NULL;
1821 	}
1822 }
1823 
1824 /*
1825  * Set NUMA node for the devices on the bus
1826  */
1827 static void hv_pci_assign_numa_node(struct hv_pcibus_device *hbus)
1828 {
1829 	struct pci_dev *dev;
1830 	struct pci_bus *bus = hbus->pci_bus;
1831 	struct hv_pci_dev *hv_dev;
1832 
1833 	list_for_each_entry(dev, &bus->devices, bus_list) {
1834 		hv_dev = get_pcichild_wslot(hbus, devfn_to_wslot(dev->devfn));
1835 		if (!hv_dev)
1836 			continue;
1837 
1838 		if (hv_dev->desc.flags & HV_PCI_DEVICE_FLAG_NUMA_AFFINITY)
1839 			set_dev_node(&dev->dev, hv_dev->desc.virtual_numa_node);
1840 
1841 		put_pcichild(hv_dev);
1842 	}
1843 }
1844 
1845 /**
1846  * create_root_hv_pci_bus() - Expose a new root PCI bus
1847  * @hbus:	Root PCI bus, as understood by this driver
1848  *
1849  * Return: 0 on success, -errno on failure
1850  */
1851 static int create_root_hv_pci_bus(struct hv_pcibus_device *hbus)
1852 {
1853 	/* Register the device */
1854 	hbus->pci_bus = pci_create_root_bus(&hbus->hdev->device,
1855 					    0, /* bus number is always zero */
1856 					    &hv_pcifront_ops,
1857 					    &hbus->sysdata,
1858 					    &hbus->resources_for_children);
1859 	if (!hbus->pci_bus)
1860 		return -ENODEV;
1861 
1862 	pci_lock_rescan_remove();
1863 	pci_scan_child_bus(hbus->pci_bus);
1864 	hv_pci_assign_numa_node(hbus);
1865 	pci_bus_assign_resources(hbus->pci_bus);
1866 	hv_pci_assign_slots(hbus);
1867 	pci_bus_add_devices(hbus->pci_bus);
1868 	pci_unlock_rescan_remove();
1869 	hbus->state = hv_pcibus_installed;
1870 	return 0;
1871 }
1872 
1873 struct q_res_req_compl {
1874 	struct completion host_event;
1875 	struct hv_pci_dev *hpdev;
1876 };
1877 
1878 /**
1879  * q_resource_requirements() - Query Resource Requirements
1880  * @context:		The completion context.
1881  * @resp:		The response that came from the host.
1882  * @resp_packet_size:	The size in bytes of resp.
1883  *
1884  * This function is invoked on completion of a Query Resource
1885  * Requirements packet.
1886  */
1887 static void q_resource_requirements(void *context, struct pci_response *resp,
1888 				    int resp_packet_size)
1889 {
1890 	struct q_res_req_compl *completion = context;
1891 	struct pci_q_res_req_response *q_res_req =
1892 		(struct pci_q_res_req_response *)resp;
1893 	int i;
1894 
1895 	if (resp->status < 0) {
1896 		dev_err(&completion->hpdev->hbus->hdev->device,
1897 			"query resource requirements failed: %x\n",
1898 			resp->status);
1899 	} else {
1900 		for (i = 0; i < PCI_STD_NUM_BARS; i++) {
1901 			completion->hpdev->probed_bar[i] =
1902 				q_res_req->probed_bar[i];
1903 		}
1904 	}
1905 
1906 	complete(&completion->host_event);
1907 }
1908 
1909 /**
1910  * new_pcichild_device() - Create a new child device
1911  * @hbus:	The internal struct tracking this root PCI bus.
1912  * @desc:	The information supplied so far from the host
1913  *              about the device.
1914  *
1915  * This function creates the tracking structure for a new child
1916  * device and kicks off the process of figuring out what it is.
1917  *
1918  * Return: Pointer to the new tracking struct
1919  */
1920 static struct hv_pci_dev *new_pcichild_device(struct hv_pcibus_device *hbus,
1921 		struct hv_pcidev_description *desc)
1922 {
1923 	struct hv_pci_dev *hpdev;
1924 	struct pci_child_message *res_req;
1925 	struct q_res_req_compl comp_pkt;
1926 	struct {
1927 		struct pci_packet init_packet;
1928 		u8 buffer[sizeof(struct pci_child_message)];
1929 	} pkt;
1930 	unsigned long flags;
1931 	int ret;
1932 
1933 	hpdev = kzalloc(sizeof(*hpdev), GFP_KERNEL);
1934 	if (!hpdev)
1935 		return NULL;
1936 
1937 	hpdev->hbus = hbus;
1938 
1939 	memset(&pkt, 0, sizeof(pkt));
1940 	init_completion(&comp_pkt.host_event);
1941 	comp_pkt.hpdev = hpdev;
1942 	pkt.init_packet.compl_ctxt = &comp_pkt;
1943 	pkt.init_packet.completion_func = q_resource_requirements;
1944 	res_req = (struct pci_child_message *)&pkt.init_packet.message;
1945 	res_req->message_type.type = PCI_QUERY_RESOURCE_REQUIREMENTS;
1946 	res_req->wslot.slot = desc->win_slot.slot;
1947 
1948 	ret = vmbus_sendpacket(hbus->hdev->channel, res_req,
1949 			       sizeof(struct pci_child_message),
1950 			       (unsigned long)&pkt.init_packet,
1951 			       VM_PKT_DATA_INBAND,
1952 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1953 	if (ret)
1954 		goto error;
1955 
1956 	if (wait_for_response(hbus->hdev, &comp_pkt.host_event))
1957 		goto error;
1958 
1959 	hpdev->desc = *desc;
1960 	refcount_set(&hpdev->refs, 1);
1961 	get_pcichild(hpdev);
1962 	spin_lock_irqsave(&hbus->device_list_lock, flags);
1963 
1964 	list_add_tail(&hpdev->list_entry, &hbus->children);
1965 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1966 	return hpdev;
1967 
1968 error:
1969 	kfree(hpdev);
1970 	return NULL;
1971 }
1972 
1973 /**
1974  * get_pcichild_wslot() - Find device from slot
1975  * @hbus:	Root PCI bus, as understood by this driver
1976  * @wslot:	Location on the bus
1977  *
1978  * This function looks up a PCI device and returns the internal
1979  * representation of it.  It acquires a reference on it, so that
1980  * the device won't be deleted while somebody is using it.  The
1981  * caller is responsible for calling put_pcichild() to release
1982  * this reference.
1983  *
1984  * Return:	Internal representation of a PCI device
1985  */
1986 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
1987 					     u32 wslot)
1988 {
1989 	unsigned long flags;
1990 	struct hv_pci_dev *iter, *hpdev = NULL;
1991 
1992 	spin_lock_irqsave(&hbus->device_list_lock, flags);
1993 	list_for_each_entry(iter, &hbus->children, list_entry) {
1994 		if (iter->desc.win_slot.slot == wslot) {
1995 			hpdev = iter;
1996 			get_pcichild(hpdev);
1997 			break;
1998 		}
1999 	}
2000 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2001 
2002 	return hpdev;
2003 }
2004 
2005 /**
2006  * pci_devices_present_work() - Handle new list of child devices
2007  * @work:	Work struct embedded in struct hv_dr_work
2008  *
2009  * "Bus Relations" is the Windows term for "children of this
2010  * bus."  The terminology is preserved here for people trying to
2011  * debug the interaction between Hyper-V and Linux.  This
2012  * function is called when the parent partition reports a list
2013  * of functions that should be observed under this PCI Express
2014  * port (bus).
2015  *
2016  * This function updates the list, and must tolerate being
2017  * called multiple times with the same information.  The typical
2018  * number of child devices is one, with very atypical cases
2019  * involving three or four, so the algorithms used here can be
2020  * simple and inefficient.
2021  *
2022  * It must also treat the omission of a previously observed device as
2023  * notification that the device no longer exists.
2024  *
2025  * Note that this function is serialized with hv_eject_device_work(),
2026  * because both are pushed to the ordered workqueue hbus->wq.
2027  */
2028 static void pci_devices_present_work(struct work_struct *work)
2029 {
2030 	u32 child_no;
2031 	bool found;
2032 	struct hv_pcidev_description *new_desc;
2033 	struct hv_pci_dev *hpdev;
2034 	struct hv_pcibus_device *hbus;
2035 	struct list_head removed;
2036 	struct hv_dr_work *dr_wrk;
2037 	struct hv_dr_state *dr = NULL;
2038 	unsigned long flags;
2039 
2040 	dr_wrk = container_of(work, struct hv_dr_work, wrk);
2041 	hbus = dr_wrk->bus;
2042 	kfree(dr_wrk);
2043 
2044 	INIT_LIST_HEAD(&removed);
2045 
2046 	/* Pull this off the queue and process it if it was the last one. */
2047 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2048 	while (!list_empty(&hbus->dr_list)) {
2049 		dr = list_first_entry(&hbus->dr_list, struct hv_dr_state,
2050 				      list_entry);
2051 		list_del(&dr->list_entry);
2052 
2053 		/* Throw this away if the list still has stuff in it. */
2054 		if (!list_empty(&hbus->dr_list)) {
2055 			kfree(dr);
2056 			continue;
2057 		}
2058 	}
2059 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2060 
2061 	if (!dr)
2062 		return;
2063 
2064 	/* First, mark all existing children as reported missing. */
2065 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2066 	list_for_each_entry(hpdev, &hbus->children, list_entry) {
2067 		hpdev->reported_missing = true;
2068 	}
2069 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2070 
2071 	/* Next, add back any reported devices. */
2072 	for (child_no = 0; child_no < dr->device_count; child_no++) {
2073 		found = false;
2074 		new_desc = &dr->func[child_no];
2075 
2076 		spin_lock_irqsave(&hbus->device_list_lock, flags);
2077 		list_for_each_entry(hpdev, &hbus->children, list_entry) {
2078 			if ((hpdev->desc.win_slot.slot == new_desc->win_slot.slot) &&
2079 			    (hpdev->desc.v_id == new_desc->v_id) &&
2080 			    (hpdev->desc.d_id == new_desc->d_id) &&
2081 			    (hpdev->desc.ser == new_desc->ser)) {
2082 				hpdev->reported_missing = false;
2083 				found = true;
2084 			}
2085 		}
2086 		spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2087 
2088 		if (!found) {
2089 			hpdev = new_pcichild_device(hbus, new_desc);
2090 			if (!hpdev)
2091 				dev_err(&hbus->hdev->device,
2092 					"couldn't record a child device.\n");
2093 		}
2094 	}
2095 
2096 	/* Move missing children to a list on the stack. */
2097 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2098 	do {
2099 		found = false;
2100 		list_for_each_entry(hpdev, &hbus->children, list_entry) {
2101 			if (hpdev->reported_missing) {
2102 				found = true;
2103 				put_pcichild(hpdev);
2104 				list_move_tail(&hpdev->list_entry, &removed);
2105 				break;
2106 			}
2107 		}
2108 	} while (found);
2109 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2110 
2111 	/* Delete everything that should no longer exist. */
2112 	while (!list_empty(&removed)) {
2113 		hpdev = list_first_entry(&removed, struct hv_pci_dev,
2114 					 list_entry);
2115 		list_del(&hpdev->list_entry);
2116 
2117 		if (hpdev->pci_slot)
2118 			pci_destroy_slot(hpdev->pci_slot);
2119 
2120 		put_pcichild(hpdev);
2121 	}
2122 
2123 	switch (hbus->state) {
2124 	case hv_pcibus_installed:
2125 		/*
2126 		 * Tell the core to rescan bus
2127 		 * because there may have been changes.
2128 		 */
2129 		pci_lock_rescan_remove();
2130 		pci_scan_child_bus(hbus->pci_bus);
2131 		hv_pci_assign_numa_node(hbus);
2132 		hv_pci_assign_slots(hbus);
2133 		pci_unlock_rescan_remove();
2134 		break;
2135 
2136 	case hv_pcibus_init:
2137 	case hv_pcibus_probed:
2138 		survey_child_resources(hbus);
2139 		break;
2140 
2141 	default:
2142 		break;
2143 	}
2144 
2145 	kfree(dr);
2146 }
2147 
2148 /**
2149  * hv_pci_start_relations_work() - Queue work to start device discovery
2150  * @hbus:	Root PCI bus, as understood by this driver
2151  * @dr:		The list of children returned from host
2152  *
2153  * Return:  0 on success, -errno on failure
2154  */
2155 static int hv_pci_start_relations_work(struct hv_pcibus_device *hbus,
2156 				       struct hv_dr_state *dr)
2157 {
2158 	struct hv_dr_work *dr_wrk;
2159 	unsigned long flags;
2160 	bool pending_dr;
2161 
2162 	if (hbus->state == hv_pcibus_removing) {
2163 		dev_info(&hbus->hdev->device,
2164 			 "PCI VMBus BUS_RELATIONS: ignored\n");
2165 		return -ENOENT;
2166 	}
2167 
2168 	dr_wrk = kzalloc(sizeof(*dr_wrk), GFP_NOWAIT);
2169 	if (!dr_wrk)
2170 		return -ENOMEM;
2171 
2172 	INIT_WORK(&dr_wrk->wrk, pci_devices_present_work);
2173 	dr_wrk->bus = hbus;
2174 
2175 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2176 	/*
2177 	 * If pending_dr is true, we have already queued a work,
2178 	 * which will see the new dr. Otherwise, we need to
2179 	 * queue a new work.
2180 	 */
2181 	pending_dr = !list_empty(&hbus->dr_list);
2182 	list_add_tail(&dr->list_entry, &hbus->dr_list);
2183 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2184 
2185 	if (pending_dr)
2186 		kfree(dr_wrk);
2187 	else
2188 		queue_work(hbus->wq, &dr_wrk->wrk);
2189 
2190 	return 0;
2191 }
2192 
2193 /**
2194  * hv_pci_devices_present() - Handle list of new children
2195  * @hbus:      Root PCI bus, as understood by this driver
2196  * @relations: Packet from host listing children
2197  *
2198  * Process a new list of devices on the bus. The list of devices is
2199  * discovered by VSP and sent to us via VSP message PCI_BUS_RELATIONS,
2200  * whenever a new list of devices for this bus appears.
2201  */
2202 static void hv_pci_devices_present(struct hv_pcibus_device *hbus,
2203 				   struct pci_bus_relations *relations)
2204 {
2205 	struct hv_dr_state *dr;
2206 	int i;
2207 
2208 	dr = kzalloc(struct_size(dr, func, relations->device_count),
2209 		     GFP_NOWAIT);
2210 	if (!dr)
2211 		return;
2212 
2213 	dr->device_count = relations->device_count;
2214 	for (i = 0; i < dr->device_count; i++) {
2215 		dr->func[i].v_id = relations->func[i].v_id;
2216 		dr->func[i].d_id = relations->func[i].d_id;
2217 		dr->func[i].rev = relations->func[i].rev;
2218 		dr->func[i].prog_intf = relations->func[i].prog_intf;
2219 		dr->func[i].subclass = relations->func[i].subclass;
2220 		dr->func[i].base_class = relations->func[i].base_class;
2221 		dr->func[i].subsystem_id = relations->func[i].subsystem_id;
2222 		dr->func[i].win_slot = relations->func[i].win_slot;
2223 		dr->func[i].ser = relations->func[i].ser;
2224 	}
2225 
2226 	if (hv_pci_start_relations_work(hbus, dr))
2227 		kfree(dr);
2228 }
2229 
2230 /**
2231  * hv_pci_devices_present2() - Handle list of new children
2232  * @hbus:	Root PCI bus, as understood by this driver
2233  * @relations:	Packet from host listing children
2234  *
2235  * This function is the v2 version of hv_pci_devices_present()
2236  */
2237 static void hv_pci_devices_present2(struct hv_pcibus_device *hbus,
2238 				    struct pci_bus_relations2 *relations)
2239 {
2240 	struct hv_dr_state *dr;
2241 	int i;
2242 
2243 	dr = kzalloc(struct_size(dr, func, relations->device_count),
2244 		     GFP_NOWAIT);
2245 	if (!dr)
2246 		return;
2247 
2248 	dr->device_count = relations->device_count;
2249 	for (i = 0; i < dr->device_count; i++) {
2250 		dr->func[i].v_id = relations->func[i].v_id;
2251 		dr->func[i].d_id = relations->func[i].d_id;
2252 		dr->func[i].rev = relations->func[i].rev;
2253 		dr->func[i].prog_intf = relations->func[i].prog_intf;
2254 		dr->func[i].subclass = relations->func[i].subclass;
2255 		dr->func[i].base_class = relations->func[i].base_class;
2256 		dr->func[i].subsystem_id = relations->func[i].subsystem_id;
2257 		dr->func[i].win_slot = relations->func[i].win_slot;
2258 		dr->func[i].ser = relations->func[i].ser;
2259 		dr->func[i].flags = relations->func[i].flags;
2260 		dr->func[i].virtual_numa_node =
2261 			relations->func[i].virtual_numa_node;
2262 	}
2263 
2264 	if (hv_pci_start_relations_work(hbus, dr))
2265 		kfree(dr);
2266 }
2267 
2268 /**
2269  * hv_eject_device_work() - Asynchronously handles ejection
2270  * @work:	Work struct embedded in internal device struct
2271  *
2272  * This function handles ejecting a device.  Windows will
2273  * attempt to gracefully eject a device, waiting 60 seconds to
2274  * hear back from the guest OS that this completed successfully.
2275  * If this timer expires, the device will be forcibly removed.
2276  */
2277 static void hv_eject_device_work(struct work_struct *work)
2278 {
2279 	struct pci_eject_response *ejct_pkt;
2280 	struct hv_pcibus_device *hbus;
2281 	struct hv_pci_dev *hpdev;
2282 	struct pci_dev *pdev;
2283 	unsigned long flags;
2284 	int wslot;
2285 	struct {
2286 		struct pci_packet pkt;
2287 		u8 buffer[sizeof(struct pci_eject_response)];
2288 	} ctxt;
2289 
2290 	hpdev = container_of(work, struct hv_pci_dev, wrk);
2291 	hbus = hpdev->hbus;
2292 
2293 	WARN_ON(hpdev->state != hv_pcichild_ejecting);
2294 
2295 	/*
2296 	 * Ejection can come before or after the PCI bus has been set up, so
2297 	 * attempt to find it and tear down the bus state, if it exists.  This
2298 	 * must be done without constructs like pci_domain_nr(hbus->pci_bus)
2299 	 * because hbus->pci_bus may not exist yet.
2300 	 */
2301 	wslot = wslot_to_devfn(hpdev->desc.win_slot.slot);
2302 	pdev = pci_get_domain_bus_and_slot(hbus->sysdata.domain, 0, wslot);
2303 	if (pdev) {
2304 		pci_lock_rescan_remove();
2305 		pci_stop_and_remove_bus_device(pdev);
2306 		pci_dev_put(pdev);
2307 		pci_unlock_rescan_remove();
2308 	}
2309 
2310 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2311 	list_del(&hpdev->list_entry);
2312 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2313 
2314 	if (hpdev->pci_slot)
2315 		pci_destroy_slot(hpdev->pci_slot);
2316 
2317 	memset(&ctxt, 0, sizeof(ctxt));
2318 	ejct_pkt = (struct pci_eject_response *)&ctxt.pkt.message;
2319 	ejct_pkt->message_type.type = PCI_EJECTION_COMPLETE;
2320 	ejct_pkt->wslot.slot = hpdev->desc.win_slot.slot;
2321 	vmbus_sendpacket(hbus->hdev->channel, ejct_pkt,
2322 			 sizeof(*ejct_pkt), (unsigned long)&ctxt.pkt,
2323 			 VM_PKT_DATA_INBAND, 0);
2324 
2325 	/* For the get_pcichild() in hv_pci_eject_device() */
2326 	put_pcichild(hpdev);
2327 	/* For the two refs got in new_pcichild_device() */
2328 	put_pcichild(hpdev);
2329 	put_pcichild(hpdev);
2330 	/* hpdev has been freed. Do not use it any more. */
2331 }
2332 
2333 /**
2334  * hv_pci_eject_device() - Handles device ejection
2335  * @hpdev:	Internal device tracking struct
2336  *
2337  * This function is invoked when an ejection packet arrives.  It
2338  * just schedules work so that we don't re-enter the packet
2339  * delivery code handling the ejection.
2340  */
2341 static void hv_pci_eject_device(struct hv_pci_dev *hpdev)
2342 {
2343 	struct hv_pcibus_device *hbus = hpdev->hbus;
2344 	struct hv_device *hdev = hbus->hdev;
2345 
2346 	if (hbus->state == hv_pcibus_removing) {
2347 		dev_info(&hdev->device, "PCI VMBus EJECT: ignored\n");
2348 		return;
2349 	}
2350 
2351 	hpdev->state = hv_pcichild_ejecting;
2352 	get_pcichild(hpdev);
2353 	INIT_WORK(&hpdev->wrk, hv_eject_device_work);
2354 	queue_work(hbus->wq, &hpdev->wrk);
2355 }
2356 
2357 /**
2358  * hv_pci_onchannelcallback() - Handles incoming packets
2359  * @context:	Internal bus tracking struct
2360  *
2361  * This function is invoked whenever the host sends a packet to
2362  * this channel (which is private to this root PCI bus).
2363  */
2364 static void hv_pci_onchannelcallback(void *context)
2365 {
2366 	const int packet_size = 0x100;
2367 	int ret;
2368 	struct hv_pcibus_device *hbus = context;
2369 	u32 bytes_recvd;
2370 	u64 req_id;
2371 	struct vmpacket_descriptor *desc;
2372 	unsigned char *buffer;
2373 	int bufferlen = packet_size;
2374 	struct pci_packet *comp_packet;
2375 	struct pci_response *response;
2376 	struct pci_incoming_message *new_message;
2377 	struct pci_bus_relations *bus_rel;
2378 	struct pci_bus_relations2 *bus_rel2;
2379 	struct pci_dev_inval_block *inval;
2380 	struct pci_dev_incoming *dev_message;
2381 	struct hv_pci_dev *hpdev;
2382 
2383 	buffer = kmalloc(bufferlen, GFP_ATOMIC);
2384 	if (!buffer)
2385 		return;
2386 
2387 	while (1) {
2388 		ret = vmbus_recvpacket_raw(hbus->hdev->channel, buffer,
2389 					   bufferlen, &bytes_recvd, &req_id);
2390 
2391 		if (ret == -ENOBUFS) {
2392 			kfree(buffer);
2393 			/* Handle large packet */
2394 			bufferlen = bytes_recvd;
2395 			buffer = kmalloc(bytes_recvd, GFP_ATOMIC);
2396 			if (!buffer)
2397 				return;
2398 			continue;
2399 		}
2400 
2401 		/* Zero length indicates there are no more packets. */
2402 		if (ret || !bytes_recvd)
2403 			break;
2404 
2405 		/*
2406 		 * All incoming packets must be at least as large as a
2407 		 * response.
2408 		 */
2409 		if (bytes_recvd <= sizeof(struct pci_response))
2410 			continue;
2411 		desc = (struct vmpacket_descriptor *)buffer;
2412 
2413 		switch (desc->type) {
2414 		case VM_PKT_COMP:
2415 
2416 			/*
2417 			 * The host is trusted, and thus it's safe to interpret
2418 			 * this transaction ID as a pointer.
2419 			 */
2420 			comp_packet = (struct pci_packet *)req_id;
2421 			response = (struct pci_response *)buffer;
2422 			comp_packet->completion_func(comp_packet->compl_ctxt,
2423 						     response,
2424 						     bytes_recvd);
2425 			break;
2426 
2427 		case VM_PKT_DATA_INBAND:
2428 
2429 			new_message = (struct pci_incoming_message *)buffer;
2430 			switch (new_message->message_type.type) {
2431 			case PCI_BUS_RELATIONS:
2432 
2433 				bus_rel = (struct pci_bus_relations *)buffer;
2434 				if (bytes_recvd <
2435 					struct_size(bus_rel, func,
2436 						    bus_rel->device_count)) {
2437 					dev_err(&hbus->hdev->device,
2438 						"bus relations too small\n");
2439 					break;
2440 				}
2441 
2442 				hv_pci_devices_present(hbus, bus_rel);
2443 				break;
2444 
2445 			case PCI_BUS_RELATIONS2:
2446 
2447 				bus_rel2 = (struct pci_bus_relations2 *)buffer;
2448 				if (bytes_recvd <
2449 					struct_size(bus_rel2, func,
2450 						    bus_rel2->device_count)) {
2451 					dev_err(&hbus->hdev->device,
2452 						"bus relations v2 too small\n");
2453 					break;
2454 				}
2455 
2456 				hv_pci_devices_present2(hbus, bus_rel2);
2457 				break;
2458 
2459 			case PCI_EJECT:
2460 
2461 				dev_message = (struct pci_dev_incoming *)buffer;
2462 				hpdev = get_pcichild_wslot(hbus,
2463 						      dev_message->wslot.slot);
2464 				if (hpdev) {
2465 					hv_pci_eject_device(hpdev);
2466 					put_pcichild(hpdev);
2467 				}
2468 				break;
2469 
2470 			case PCI_INVALIDATE_BLOCK:
2471 
2472 				inval = (struct pci_dev_inval_block *)buffer;
2473 				hpdev = get_pcichild_wslot(hbus,
2474 							   inval->wslot.slot);
2475 				if (hpdev) {
2476 					if (hpdev->block_invalidate) {
2477 						hpdev->block_invalidate(
2478 						    hpdev->invalidate_context,
2479 						    inval->block_mask);
2480 					}
2481 					put_pcichild(hpdev);
2482 				}
2483 				break;
2484 
2485 			default:
2486 				dev_warn(&hbus->hdev->device,
2487 					"Unimplemented protocol message %x\n",
2488 					new_message->message_type.type);
2489 				break;
2490 			}
2491 			break;
2492 
2493 		default:
2494 			dev_err(&hbus->hdev->device,
2495 				"unhandled packet type %d, tid %llx len %d\n",
2496 				desc->type, req_id, bytes_recvd);
2497 			break;
2498 		}
2499 	}
2500 
2501 	kfree(buffer);
2502 }
2503 
2504 /**
2505  * hv_pci_protocol_negotiation() - Set up protocol
2506  * @hdev:		VMBus's tracking struct for this root PCI bus.
2507  * @version:		Array of supported channel protocol versions in
2508  *			the order of probing - highest go first.
2509  * @num_version:	Number of elements in the version array.
2510  *
2511  * This driver is intended to support running on Windows 10
2512  * (server) and later versions. It will not run on earlier
2513  * versions, as they assume that many of the operations which
2514  * Linux needs accomplished with a spinlock held were done via
2515  * asynchronous messaging via VMBus.  Windows 10 increases the
2516  * surface area of PCI emulation so that these actions can take
2517  * place by suspending a virtual processor for their duration.
2518  *
2519  * This function negotiates the channel protocol version,
2520  * failing if the host doesn't support the necessary protocol
2521  * level.
2522  */
2523 static int hv_pci_protocol_negotiation(struct hv_device *hdev,
2524 				       enum pci_protocol_version_t version[],
2525 				       int num_version)
2526 {
2527 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2528 	struct pci_version_request *version_req;
2529 	struct hv_pci_compl comp_pkt;
2530 	struct pci_packet *pkt;
2531 	int ret;
2532 	int i;
2533 
2534 	/*
2535 	 * Initiate the handshake with the host and negotiate
2536 	 * a version that the host can support. We start with the
2537 	 * highest version number and go down if the host cannot
2538 	 * support it.
2539 	 */
2540 	pkt = kzalloc(sizeof(*pkt) + sizeof(*version_req), GFP_KERNEL);
2541 	if (!pkt)
2542 		return -ENOMEM;
2543 
2544 	init_completion(&comp_pkt.host_event);
2545 	pkt->completion_func = hv_pci_generic_compl;
2546 	pkt->compl_ctxt = &comp_pkt;
2547 	version_req = (struct pci_version_request *)&pkt->message;
2548 	version_req->message_type.type = PCI_QUERY_PROTOCOL_VERSION;
2549 
2550 	for (i = 0; i < num_version; i++) {
2551 		version_req->protocol_version = version[i];
2552 		ret = vmbus_sendpacket(hdev->channel, version_req,
2553 				sizeof(struct pci_version_request),
2554 				(unsigned long)pkt, VM_PKT_DATA_INBAND,
2555 				VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2556 		if (!ret)
2557 			ret = wait_for_response(hdev, &comp_pkt.host_event);
2558 
2559 		if (ret) {
2560 			dev_err(&hdev->device,
2561 				"PCI Pass-through VSP failed to request version: %d",
2562 				ret);
2563 			goto exit;
2564 		}
2565 
2566 		if (comp_pkt.completion_status >= 0) {
2567 			hbus->protocol_version = version[i];
2568 			dev_info(&hdev->device,
2569 				"PCI VMBus probing: Using version %#x\n",
2570 				hbus->protocol_version);
2571 			goto exit;
2572 		}
2573 
2574 		if (comp_pkt.completion_status != STATUS_REVISION_MISMATCH) {
2575 			dev_err(&hdev->device,
2576 				"PCI Pass-through VSP failed version request: %#x",
2577 				comp_pkt.completion_status);
2578 			ret = -EPROTO;
2579 			goto exit;
2580 		}
2581 
2582 		reinit_completion(&comp_pkt.host_event);
2583 	}
2584 
2585 	dev_err(&hdev->device,
2586 		"PCI pass-through VSP failed to find supported version");
2587 	ret = -EPROTO;
2588 
2589 exit:
2590 	kfree(pkt);
2591 	return ret;
2592 }
2593 
2594 /**
2595  * hv_pci_free_bridge_windows() - Release memory regions for the
2596  * bus
2597  * @hbus:	Root PCI bus, as understood by this driver
2598  */
2599 static void hv_pci_free_bridge_windows(struct hv_pcibus_device *hbus)
2600 {
2601 	/*
2602 	 * Set the resources back to the way they looked when they
2603 	 * were allocated by setting IORESOURCE_BUSY again.
2604 	 */
2605 
2606 	if (hbus->low_mmio_space && hbus->low_mmio_res) {
2607 		hbus->low_mmio_res->flags |= IORESOURCE_BUSY;
2608 		vmbus_free_mmio(hbus->low_mmio_res->start,
2609 				resource_size(hbus->low_mmio_res));
2610 	}
2611 
2612 	if (hbus->high_mmio_space && hbus->high_mmio_res) {
2613 		hbus->high_mmio_res->flags |= IORESOURCE_BUSY;
2614 		vmbus_free_mmio(hbus->high_mmio_res->start,
2615 				resource_size(hbus->high_mmio_res));
2616 	}
2617 }
2618 
2619 /**
2620  * hv_pci_allocate_bridge_windows() - Allocate memory regions
2621  * for the bus
2622  * @hbus:	Root PCI bus, as understood by this driver
2623  *
2624  * This function calls vmbus_allocate_mmio(), which is itself a
2625  * bit of a compromise.  Ideally, we might change the pnp layer
2626  * in the kernel such that it comprehends either PCI devices
2627  * which are "grandchildren of ACPI," with some intermediate bus
2628  * node (in this case, VMBus) or change it such that it
2629  * understands VMBus.  The pnp layer, however, has been declared
2630  * deprecated, and not subject to change.
2631  *
2632  * The workaround, implemented here, is to ask VMBus to allocate
2633  * MMIO space for this bus.  VMBus itself knows which ranges are
2634  * appropriate by looking at its own ACPI objects.  Then, after
2635  * these ranges are claimed, they're modified to look like they
2636  * would have looked if the ACPI and pnp code had allocated
2637  * bridge windows.  These descriptors have to exist in this form
2638  * in order to satisfy the code which will get invoked when the
2639  * endpoint PCI function driver calls request_mem_region() or
2640  * request_mem_region_exclusive().
2641  *
2642  * Return: 0 on success, -errno on failure
2643  */
2644 static int hv_pci_allocate_bridge_windows(struct hv_pcibus_device *hbus)
2645 {
2646 	resource_size_t align;
2647 	int ret;
2648 
2649 	if (hbus->low_mmio_space) {
2650 		align = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
2651 		ret = vmbus_allocate_mmio(&hbus->low_mmio_res, hbus->hdev, 0,
2652 					  (u64)(u32)0xffffffff,
2653 					  hbus->low_mmio_space,
2654 					  align, false);
2655 		if (ret) {
2656 			dev_err(&hbus->hdev->device,
2657 				"Need %#llx of low MMIO space. Consider reconfiguring the VM.\n",
2658 				hbus->low_mmio_space);
2659 			return ret;
2660 		}
2661 
2662 		/* Modify this resource to become a bridge window. */
2663 		hbus->low_mmio_res->flags |= IORESOURCE_WINDOW;
2664 		hbus->low_mmio_res->flags &= ~IORESOURCE_BUSY;
2665 		pci_add_resource(&hbus->resources_for_children,
2666 				 hbus->low_mmio_res);
2667 	}
2668 
2669 	if (hbus->high_mmio_space) {
2670 		align = 1ULL << (63 - __builtin_clzll(hbus->high_mmio_space));
2671 		ret = vmbus_allocate_mmio(&hbus->high_mmio_res, hbus->hdev,
2672 					  0x100000000, -1,
2673 					  hbus->high_mmio_space, align,
2674 					  false);
2675 		if (ret) {
2676 			dev_err(&hbus->hdev->device,
2677 				"Need %#llx of high MMIO space. Consider reconfiguring the VM.\n",
2678 				hbus->high_mmio_space);
2679 			goto release_low_mmio;
2680 		}
2681 
2682 		/* Modify this resource to become a bridge window. */
2683 		hbus->high_mmio_res->flags |= IORESOURCE_WINDOW;
2684 		hbus->high_mmio_res->flags &= ~IORESOURCE_BUSY;
2685 		pci_add_resource(&hbus->resources_for_children,
2686 				 hbus->high_mmio_res);
2687 	}
2688 
2689 	return 0;
2690 
2691 release_low_mmio:
2692 	if (hbus->low_mmio_res) {
2693 		vmbus_free_mmio(hbus->low_mmio_res->start,
2694 				resource_size(hbus->low_mmio_res));
2695 	}
2696 
2697 	return ret;
2698 }
2699 
2700 /**
2701  * hv_allocate_config_window() - Find MMIO space for PCI Config
2702  * @hbus:	Root PCI bus, as understood by this driver
2703  *
2704  * This function claims memory-mapped I/O space for accessing
2705  * configuration space for the functions on this bus.
2706  *
2707  * Return: 0 on success, -errno on failure
2708  */
2709 static int hv_allocate_config_window(struct hv_pcibus_device *hbus)
2710 {
2711 	int ret;
2712 
2713 	/*
2714 	 * Set up a region of MMIO space to use for accessing configuration
2715 	 * space.
2716 	 */
2717 	ret = vmbus_allocate_mmio(&hbus->mem_config, hbus->hdev, 0, -1,
2718 				  PCI_CONFIG_MMIO_LENGTH, 0x1000, false);
2719 	if (ret)
2720 		return ret;
2721 
2722 	/*
2723 	 * vmbus_allocate_mmio() gets used for allocating both device endpoint
2724 	 * resource claims (those which cannot be overlapped) and the ranges
2725 	 * which are valid for the children of this bus, which are intended
2726 	 * to be overlapped by those children.  Set the flag on this claim
2727 	 * meaning that this region can't be overlapped.
2728 	 */
2729 
2730 	hbus->mem_config->flags |= IORESOURCE_BUSY;
2731 
2732 	return 0;
2733 }
2734 
2735 static void hv_free_config_window(struct hv_pcibus_device *hbus)
2736 {
2737 	vmbus_free_mmio(hbus->mem_config->start, PCI_CONFIG_MMIO_LENGTH);
2738 }
2739 
2740 static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs);
2741 
2742 /**
2743  * hv_pci_enter_d0() - Bring the "bus" into the D0 power state
2744  * @hdev:	VMBus's tracking struct for this root PCI bus
2745  *
2746  * Return: 0 on success, -errno on failure
2747  */
2748 static int hv_pci_enter_d0(struct hv_device *hdev)
2749 {
2750 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2751 	struct pci_bus_d0_entry *d0_entry;
2752 	struct hv_pci_compl comp_pkt;
2753 	struct pci_packet *pkt;
2754 	int ret;
2755 
2756 	/*
2757 	 * Tell the host that the bus is ready to use, and moved into the
2758 	 * powered-on state.  This includes telling the host which region
2759 	 * of memory-mapped I/O space has been chosen for configuration space
2760 	 * access.
2761 	 */
2762 	pkt = kzalloc(sizeof(*pkt) + sizeof(*d0_entry), GFP_KERNEL);
2763 	if (!pkt)
2764 		return -ENOMEM;
2765 
2766 	init_completion(&comp_pkt.host_event);
2767 	pkt->completion_func = hv_pci_generic_compl;
2768 	pkt->compl_ctxt = &comp_pkt;
2769 	d0_entry = (struct pci_bus_d0_entry *)&pkt->message;
2770 	d0_entry->message_type.type = PCI_BUS_D0ENTRY;
2771 	d0_entry->mmio_base = hbus->mem_config->start;
2772 
2773 	ret = vmbus_sendpacket(hdev->channel, d0_entry, sizeof(*d0_entry),
2774 			       (unsigned long)pkt, VM_PKT_DATA_INBAND,
2775 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2776 	if (!ret)
2777 		ret = wait_for_response(hdev, &comp_pkt.host_event);
2778 
2779 	if (ret)
2780 		goto exit;
2781 
2782 	if (comp_pkt.completion_status < 0) {
2783 		dev_err(&hdev->device,
2784 			"PCI Pass-through VSP failed D0 Entry with status %x\n",
2785 			comp_pkt.completion_status);
2786 		ret = -EPROTO;
2787 		goto exit;
2788 	}
2789 
2790 	ret = 0;
2791 
2792 exit:
2793 	kfree(pkt);
2794 	return ret;
2795 }
2796 
2797 /**
2798  * hv_pci_query_relations() - Ask host to send list of child
2799  * devices
2800  * @hdev:	VMBus's tracking struct for this root PCI bus
2801  *
2802  * Return: 0 on success, -errno on failure
2803  */
2804 static int hv_pci_query_relations(struct hv_device *hdev)
2805 {
2806 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2807 	struct pci_message message;
2808 	struct completion comp;
2809 	int ret;
2810 
2811 	/* Ask the host to send along the list of child devices */
2812 	init_completion(&comp);
2813 	if (cmpxchg(&hbus->survey_event, NULL, &comp))
2814 		return -ENOTEMPTY;
2815 
2816 	memset(&message, 0, sizeof(message));
2817 	message.type = PCI_QUERY_BUS_RELATIONS;
2818 
2819 	ret = vmbus_sendpacket(hdev->channel, &message, sizeof(message),
2820 			       0, VM_PKT_DATA_INBAND, 0);
2821 	if (!ret)
2822 		ret = wait_for_response(hdev, &comp);
2823 
2824 	return ret;
2825 }
2826 
2827 /**
2828  * hv_send_resources_allocated() - Report local resource choices
2829  * @hdev:	VMBus's tracking struct for this root PCI bus
2830  *
2831  * The host OS is expecting to be sent a request as a message
2832  * which contains all the resources that the device will use.
2833  * The response contains those same resources, "translated"
2834  * which is to say, the values which should be used by the
2835  * hardware, when it delivers an interrupt.  (MMIO resources are
2836  * used in local terms.)  This is nice for Windows, and lines up
2837  * with the FDO/PDO split, which doesn't exist in Linux.  Linux
2838  * is deeply expecting to scan an emulated PCI configuration
2839  * space.  So this message is sent here only to drive the state
2840  * machine on the host forward.
2841  *
2842  * Return: 0 on success, -errno on failure
2843  */
2844 static int hv_send_resources_allocated(struct hv_device *hdev)
2845 {
2846 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2847 	struct pci_resources_assigned *res_assigned;
2848 	struct pci_resources_assigned2 *res_assigned2;
2849 	struct hv_pci_compl comp_pkt;
2850 	struct hv_pci_dev *hpdev;
2851 	struct pci_packet *pkt;
2852 	size_t size_res;
2853 	int wslot;
2854 	int ret;
2855 
2856 	size_res = (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2)
2857 			? sizeof(*res_assigned) : sizeof(*res_assigned2);
2858 
2859 	pkt = kmalloc(sizeof(*pkt) + size_res, GFP_KERNEL);
2860 	if (!pkt)
2861 		return -ENOMEM;
2862 
2863 	ret = 0;
2864 
2865 	for (wslot = 0; wslot < 256; wslot++) {
2866 		hpdev = get_pcichild_wslot(hbus, wslot);
2867 		if (!hpdev)
2868 			continue;
2869 
2870 		memset(pkt, 0, sizeof(*pkt) + size_res);
2871 		init_completion(&comp_pkt.host_event);
2872 		pkt->completion_func = hv_pci_generic_compl;
2873 		pkt->compl_ctxt = &comp_pkt;
2874 
2875 		if (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2) {
2876 			res_assigned =
2877 				(struct pci_resources_assigned *)&pkt->message;
2878 			res_assigned->message_type.type =
2879 				PCI_RESOURCES_ASSIGNED;
2880 			res_assigned->wslot.slot = hpdev->desc.win_slot.slot;
2881 		} else {
2882 			res_assigned2 =
2883 				(struct pci_resources_assigned2 *)&pkt->message;
2884 			res_assigned2->message_type.type =
2885 				PCI_RESOURCES_ASSIGNED2;
2886 			res_assigned2->wslot.slot = hpdev->desc.win_slot.slot;
2887 		}
2888 		put_pcichild(hpdev);
2889 
2890 		ret = vmbus_sendpacket(hdev->channel, &pkt->message,
2891 				size_res, (unsigned long)pkt,
2892 				VM_PKT_DATA_INBAND,
2893 				VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2894 		if (!ret)
2895 			ret = wait_for_response(hdev, &comp_pkt.host_event);
2896 		if (ret)
2897 			break;
2898 
2899 		if (comp_pkt.completion_status < 0) {
2900 			ret = -EPROTO;
2901 			dev_err(&hdev->device,
2902 				"resource allocated returned 0x%x",
2903 				comp_pkt.completion_status);
2904 			break;
2905 		}
2906 
2907 		hbus->wslot_res_allocated = wslot;
2908 	}
2909 
2910 	kfree(pkt);
2911 	return ret;
2912 }
2913 
2914 /**
2915  * hv_send_resources_released() - Report local resources
2916  * released
2917  * @hdev:	VMBus's tracking struct for this root PCI bus
2918  *
2919  * Return: 0 on success, -errno on failure
2920  */
2921 static int hv_send_resources_released(struct hv_device *hdev)
2922 {
2923 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2924 	struct pci_child_message pkt;
2925 	struct hv_pci_dev *hpdev;
2926 	int wslot;
2927 	int ret;
2928 
2929 	for (wslot = hbus->wslot_res_allocated; wslot >= 0; wslot--) {
2930 		hpdev = get_pcichild_wslot(hbus, wslot);
2931 		if (!hpdev)
2932 			continue;
2933 
2934 		memset(&pkt, 0, sizeof(pkt));
2935 		pkt.message_type.type = PCI_RESOURCES_RELEASED;
2936 		pkt.wslot.slot = hpdev->desc.win_slot.slot;
2937 
2938 		put_pcichild(hpdev);
2939 
2940 		ret = vmbus_sendpacket(hdev->channel, &pkt, sizeof(pkt), 0,
2941 				       VM_PKT_DATA_INBAND, 0);
2942 		if (ret)
2943 			return ret;
2944 
2945 		hbus->wslot_res_allocated = wslot - 1;
2946 	}
2947 
2948 	hbus->wslot_res_allocated = -1;
2949 
2950 	return 0;
2951 }
2952 
2953 #define HVPCI_DOM_MAP_SIZE (64 * 1024)
2954 static DECLARE_BITMAP(hvpci_dom_map, HVPCI_DOM_MAP_SIZE);
2955 
2956 /*
2957  * PCI domain number 0 is used by emulated devices on Gen1 VMs, so define 0
2958  * as invalid for passthrough PCI devices of this driver.
2959  */
2960 #define HVPCI_DOM_INVALID 0
2961 
2962 /**
2963  * hv_get_dom_num() - Get a valid PCI domain number
2964  * Check if the PCI domain number is in use, and return another number if
2965  * it is in use.
2966  *
2967  * @dom: Requested domain number
2968  *
2969  * return: domain number on success, HVPCI_DOM_INVALID on failure
2970  */
2971 static u16 hv_get_dom_num(u16 dom)
2972 {
2973 	unsigned int i;
2974 
2975 	if (test_and_set_bit(dom, hvpci_dom_map) == 0)
2976 		return dom;
2977 
2978 	for_each_clear_bit(i, hvpci_dom_map, HVPCI_DOM_MAP_SIZE) {
2979 		if (test_and_set_bit(i, hvpci_dom_map) == 0)
2980 			return i;
2981 	}
2982 
2983 	return HVPCI_DOM_INVALID;
2984 }
2985 
2986 /**
2987  * hv_put_dom_num() - Mark the PCI domain number as free
2988  * @dom: Domain number to be freed
2989  */
2990 static void hv_put_dom_num(u16 dom)
2991 {
2992 	clear_bit(dom, hvpci_dom_map);
2993 }
2994 
2995 /**
2996  * hv_pci_probe() - New VMBus channel probe, for a root PCI bus
2997  * @hdev:	VMBus's tracking struct for this root PCI bus
2998  * @dev_id:	Identifies the device itself
2999  *
3000  * Return: 0 on success, -errno on failure
3001  */
3002 static int hv_pci_probe(struct hv_device *hdev,
3003 			const struct hv_vmbus_device_id *dev_id)
3004 {
3005 	struct hv_pcibus_device *hbus;
3006 	u16 dom_req, dom;
3007 	char *name;
3008 	bool enter_d0_retry = true;
3009 	int ret;
3010 
3011 	/*
3012 	 * hv_pcibus_device contains the hypercall arguments for retargeting in
3013 	 * hv_irq_unmask(). Those must not cross a page boundary.
3014 	 */
3015 	BUILD_BUG_ON(sizeof(*hbus) > HV_HYP_PAGE_SIZE);
3016 
3017 	/*
3018 	 * With the recent 59bb47985c1d ("mm, sl[aou]b: guarantee natural
3019 	 * alignment for kmalloc(power-of-two)"), kzalloc() is able to allocate
3020 	 * a 4KB buffer that is guaranteed to be 4KB-aligned. Here the size and
3021 	 * alignment of hbus is important because hbus's field
3022 	 * retarget_msi_interrupt_params must not cross a 4KB page boundary.
3023 	 *
3024 	 * Here we prefer kzalloc to get_zeroed_page(), because a buffer
3025 	 * allocated by the latter is not tracked and scanned by kmemleak, and
3026 	 * hence kmemleak reports the pointer contained in the hbus buffer
3027 	 * (i.e. the hpdev struct, which is created in new_pcichild_device() and
3028 	 * is tracked by hbus->children) as memory leak (false positive).
3029 	 *
3030 	 * If the kernel doesn't have 59bb47985c1d, get_zeroed_page() *must* be
3031 	 * used to allocate the hbus buffer and we can avoid the kmemleak false
3032 	 * positive by using kmemleak_alloc() and kmemleak_free() to ask
3033 	 * kmemleak to track and scan the hbus buffer.
3034 	 */
3035 	hbus = kzalloc(HV_HYP_PAGE_SIZE, GFP_KERNEL);
3036 	if (!hbus)
3037 		return -ENOMEM;
3038 	hbus->state = hv_pcibus_init;
3039 	hbus->wslot_res_allocated = -1;
3040 
3041 	/*
3042 	 * The PCI bus "domain" is what is called "segment" in ACPI and other
3043 	 * specs. Pull it from the instance ID, to get something usually
3044 	 * unique. In rare cases of collision, we will find out another number
3045 	 * not in use.
3046 	 *
3047 	 * Note that, since this code only runs in a Hyper-V VM, Hyper-V
3048 	 * together with this guest driver can guarantee that (1) The only
3049 	 * domain used by Gen1 VMs for something that looks like a physical
3050 	 * PCI bus (which is actually emulated by the hypervisor) is domain 0.
3051 	 * (2) There will be no overlap between domains (after fixing possible
3052 	 * collisions) in the same VM.
3053 	 */
3054 	dom_req = hdev->dev_instance.b[5] << 8 | hdev->dev_instance.b[4];
3055 	dom = hv_get_dom_num(dom_req);
3056 
3057 	if (dom == HVPCI_DOM_INVALID) {
3058 		dev_err(&hdev->device,
3059 			"Unable to use dom# 0x%hx or other numbers", dom_req);
3060 		ret = -EINVAL;
3061 		goto free_bus;
3062 	}
3063 
3064 	if (dom != dom_req)
3065 		dev_info(&hdev->device,
3066 			 "PCI dom# 0x%hx has collision, using 0x%hx",
3067 			 dom_req, dom);
3068 
3069 	hbus->sysdata.domain = dom;
3070 
3071 	hbus->hdev = hdev;
3072 	INIT_LIST_HEAD(&hbus->children);
3073 	INIT_LIST_HEAD(&hbus->dr_list);
3074 	INIT_LIST_HEAD(&hbus->resources_for_children);
3075 	spin_lock_init(&hbus->config_lock);
3076 	spin_lock_init(&hbus->device_list_lock);
3077 	spin_lock_init(&hbus->retarget_msi_interrupt_lock);
3078 	hbus->wq = alloc_ordered_workqueue("hv_pci_%x", 0,
3079 					   hbus->sysdata.domain);
3080 	if (!hbus->wq) {
3081 		ret = -ENOMEM;
3082 		goto free_dom;
3083 	}
3084 
3085 	ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0,
3086 			 hv_pci_onchannelcallback, hbus);
3087 	if (ret)
3088 		goto destroy_wq;
3089 
3090 	hv_set_drvdata(hdev, hbus);
3091 
3092 	ret = hv_pci_protocol_negotiation(hdev, pci_protocol_versions,
3093 					  ARRAY_SIZE(pci_protocol_versions));
3094 	if (ret)
3095 		goto close;
3096 
3097 	ret = hv_allocate_config_window(hbus);
3098 	if (ret)
3099 		goto close;
3100 
3101 	hbus->cfg_addr = ioremap(hbus->mem_config->start,
3102 				 PCI_CONFIG_MMIO_LENGTH);
3103 	if (!hbus->cfg_addr) {
3104 		dev_err(&hdev->device,
3105 			"Unable to map a virtual address for config space\n");
3106 		ret = -ENOMEM;
3107 		goto free_config;
3108 	}
3109 
3110 	name = kasprintf(GFP_KERNEL, "%pUL", &hdev->dev_instance);
3111 	if (!name) {
3112 		ret = -ENOMEM;
3113 		goto unmap;
3114 	}
3115 
3116 	hbus->sysdata.fwnode = irq_domain_alloc_named_fwnode(name);
3117 	kfree(name);
3118 	if (!hbus->sysdata.fwnode) {
3119 		ret = -ENOMEM;
3120 		goto unmap;
3121 	}
3122 
3123 	ret = hv_pcie_init_irq_domain(hbus);
3124 	if (ret)
3125 		goto free_fwnode;
3126 
3127 retry:
3128 	ret = hv_pci_query_relations(hdev);
3129 	if (ret)
3130 		goto free_irq_domain;
3131 
3132 	ret = hv_pci_enter_d0(hdev);
3133 	/*
3134 	 * In certain case (Kdump) the pci device of interest was
3135 	 * not cleanly shut down and resource is still held on host
3136 	 * side, the host could return invalid device status.
3137 	 * We need to explicitly request host to release the resource
3138 	 * and try to enter D0 again.
3139 	 * Since the hv_pci_bus_exit() call releases structures
3140 	 * of all its child devices, we need to start the retry from
3141 	 * hv_pci_query_relations() call, requesting host to send
3142 	 * the synchronous child device relations message before this
3143 	 * information is needed in hv_send_resources_allocated()
3144 	 * call later.
3145 	 */
3146 	if (ret == -EPROTO && enter_d0_retry) {
3147 		enter_d0_retry = false;
3148 
3149 		dev_err(&hdev->device, "Retrying D0 Entry\n");
3150 
3151 		/*
3152 		 * Hv_pci_bus_exit() calls hv_send_resources_released()
3153 		 * to free up resources of its child devices.
3154 		 * In the kdump kernel we need to set the
3155 		 * wslot_res_allocated to 255 so it scans all child
3156 		 * devices to release resources allocated in the
3157 		 * normal kernel before panic happened.
3158 		 */
3159 		hbus->wslot_res_allocated = 255;
3160 		ret = hv_pci_bus_exit(hdev, true);
3161 
3162 		if (ret == 0)
3163 			goto retry;
3164 
3165 		dev_err(&hdev->device,
3166 			"Retrying D0 failed with ret %d\n", ret);
3167 	}
3168 	if (ret)
3169 		goto free_irq_domain;
3170 
3171 	ret = hv_pci_allocate_bridge_windows(hbus);
3172 	if (ret)
3173 		goto exit_d0;
3174 
3175 	ret = hv_send_resources_allocated(hdev);
3176 	if (ret)
3177 		goto free_windows;
3178 
3179 	prepopulate_bars(hbus);
3180 
3181 	hbus->state = hv_pcibus_probed;
3182 
3183 	ret = create_root_hv_pci_bus(hbus);
3184 	if (ret)
3185 		goto free_windows;
3186 
3187 	return 0;
3188 
3189 free_windows:
3190 	hv_pci_free_bridge_windows(hbus);
3191 exit_d0:
3192 	(void) hv_pci_bus_exit(hdev, true);
3193 free_irq_domain:
3194 	irq_domain_remove(hbus->irq_domain);
3195 free_fwnode:
3196 	irq_domain_free_fwnode(hbus->sysdata.fwnode);
3197 unmap:
3198 	iounmap(hbus->cfg_addr);
3199 free_config:
3200 	hv_free_config_window(hbus);
3201 close:
3202 	vmbus_close(hdev->channel);
3203 destroy_wq:
3204 	destroy_workqueue(hbus->wq);
3205 free_dom:
3206 	hv_put_dom_num(hbus->sysdata.domain);
3207 free_bus:
3208 	kfree(hbus);
3209 	return ret;
3210 }
3211 
3212 static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs)
3213 {
3214 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3215 	struct {
3216 		struct pci_packet teardown_packet;
3217 		u8 buffer[sizeof(struct pci_message)];
3218 	} pkt;
3219 	struct hv_pci_compl comp_pkt;
3220 	struct hv_pci_dev *hpdev, *tmp;
3221 	unsigned long flags;
3222 	int ret;
3223 
3224 	/*
3225 	 * After the host sends the RESCIND_CHANNEL message, it doesn't
3226 	 * access the per-channel ringbuffer any longer.
3227 	 */
3228 	if (hdev->channel->rescind)
3229 		return 0;
3230 
3231 	if (!keep_devs) {
3232 		/* Delete any children which might still exist. */
3233 		spin_lock_irqsave(&hbus->device_list_lock, flags);
3234 		list_for_each_entry_safe(hpdev, tmp, &hbus->children, list_entry) {
3235 			list_del(&hpdev->list_entry);
3236 			if (hpdev->pci_slot)
3237 				pci_destroy_slot(hpdev->pci_slot);
3238 			/* For the two refs got in new_pcichild_device() */
3239 			put_pcichild(hpdev);
3240 			put_pcichild(hpdev);
3241 		}
3242 		spin_unlock_irqrestore(&hbus->device_list_lock, flags);
3243 	}
3244 
3245 	ret = hv_send_resources_released(hdev);
3246 	if (ret) {
3247 		dev_err(&hdev->device,
3248 			"Couldn't send resources released packet(s)\n");
3249 		return ret;
3250 	}
3251 
3252 	memset(&pkt.teardown_packet, 0, sizeof(pkt.teardown_packet));
3253 	init_completion(&comp_pkt.host_event);
3254 	pkt.teardown_packet.completion_func = hv_pci_generic_compl;
3255 	pkt.teardown_packet.compl_ctxt = &comp_pkt;
3256 	pkt.teardown_packet.message[0].type = PCI_BUS_D0EXIT;
3257 
3258 	ret = vmbus_sendpacket(hdev->channel, &pkt.teardown_packet.message,
3259 			       sizeof(struct pci_message),
3260 			       (unsigned long)&pkt.teardown_packet,
3261 			       VM_PKT_DATA_INBAND,
3262 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3263 	if (ret)
3264 		return ret;
3265 
3266 	if (wait_for_completion_timeout(&comp_pkt.host_event, 10 * HZ) == 0)
3267 		return -ETIMEDOUT;
3268 
3269 	return 0;
3270 }
3271 
3272 /**
3273  * hv_pci_remove() - Remove routine for this VMBus channel
3274  * @hdev:	VMBus's tracking struct for this root PCI bus
3275  *
3276  * Return: 0 on success, -errno on failure
3277  */
3278 static int hv_pci_remove(struct hv_device *hdev)
3279 {
3280 	struct hv_pcibus_device *hbus;
3281 	int ret;
3282 
3283 	hbus = hv_get_drvdata(hdev);
3284 	if (hbus->state == hv_pcibus_installed) {
3285 		tasklet_disable(&hdev->channel->callback_event);
3286 		hbus->state = hv_pcibus_removing;
3287 		tasklet_enable(&hdev->channel->callback_event);
3288 		destroy_workqueue(hbus->wq);
3289 		hbus->wq = NULL;
3290 		/*
3291 		 * At this point, no work is running or can be scheduled
3292 		 * on hbus-wq. We can't race with hv_pci_devices_present()
3293 		 * or hv_pci_eject_device(), it's safe to proceed.
3294 		 */
3295 
3296 		/* Remove the bus from PCI's point of view. */
3297 		pci_lock_rescan_remove();
3298 		pci_stop_root_bus(hbus->pci_bus);
3299 		hv_pci_remove_slots(hbus);
3300 		pci_remove_root_bus(hbus->pci_bus);
3301 		pci_unlock_rescan_remove();
3302 	}
3303 
3304 	ret = hv_pci_bus_exit(hdev, false);
3305 
3306 	vmbus_close(hdev->channel);
3307 
3308 	iounmap(hbus->cfg_addr);
3309 	hv_free_config_window(hbus);
3310 	pci_free_resource_list(&hbus->resources_for_children);
3311 	hv_pci_free_bridge_windows(hbus);
3312 	irq_domain_remove(hbus->irq_domain);
3313 	irq_domain_free_fwnode(hbus->sysdata.fwnode);
3314 
3315 	hv_put_dom_num(hbus->sysdata.domain);
3316 
3317 	kfree(hbus);
3318 	return ret;
3319 }
3320 
3321 static int hv_pci_suspend(struct hv_device *hdev)
3322 {
3323 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3324 	enum hv_pcibus_state old_state;
3325 	int ret;
3326 
3327 	/*
3328 	 * hv_pci_suspend() must make sure there are no pending work items
3329 	 * before calling vmbus_close(), since it runs in a process context
3330 	 * as a callback in dpm_suspend().  When it starts to run, the channel
3331 	 * callback hv_pci_onchannelcallback(), which runs in a tasklet
3332 	 * context, can be still running concurrently and scheduling new work
3333 	 * items onto hbus->wq in hv_pci_devices_present() and
3334 	 * hv_pci_eject_device(), and the work item handlers can access the
3335 	 * vmbus channel, which can be being closed by hv_pci_suspend(), e.g.
3336 	 * the work item handler pci_devices_present_work() ->
3337 	 * new_pcichild_device() writes to the vmbus channel.
3338 	 *
3339 	 * To eliminate the race, hv_pci_suspend() disables the channel
3340 	 * callback tasklet, sets hbus->state to hv_pcibus_removing, and
3341 	 * re-enables the tasklet. This way, when hv_pci_suspend() proceeds,
3342 	 * it knows that no new work item can be scheduled, and then it flushes
3343 	 * hbus->wq and safely closes the vmbus channel.
3344 	 */
3345 	tasklet_disable(&hdev->channel->callback_event);
3346 
3347 	/* Change the hbus state to prevent new work items. */
3348 	old_state = hbus->state;
3349 	if (hbus->state == hv_pcibus_installed)
3350 		hbus->state = hv_pcibus_removing;
3351 
3352 	tasklet_enable(&hdev->channel->callback_event);
3353 
3354 	if (old_state != hv_pcibus_installed)
3355 		return -EINVAL;
3356 
3357 	flush_workqueue(hbus->wq);
3358 
3359 	ret = hv_pci_bus_exit(hdev, true);
3360 	if (ret)
3361 		return ret;
3362 
3363 	vmbus_close(hdev->channel);
3364 
3365 	return 0;
3366 }
3367 
3368 static int hv_pci_restore_msi_msg(struct pci_dev *pdev, void *arg)
3369 {
3370 	struct msi_desc *entry;
3371 	struct irq_data *irq_data;
3372 
3373 	for_each_pci_msi_entry(entry, pdev) {
3374 		irq_data = irq_get_irq_data(entry->irq);
3375 		if (WARN_ON_ONCE(!irq_data))
3376 			return -EINVAL;
3377 
3378 		hv_compose_msi_msg(irq_data, &entry->msg);
3379 	}
3380 
3381 	return 0;
3382 }
3383 
3384 /*
3385  * Upon resume, pci_restore_msi_state() -> ... ->  __pci_write_msi_msg()
3386  * directly writes the MSI/MSI-X registers via MMIO, but since Hyper-V
3387  * doesn't trap and emulate the MMIO accesses, here hv_compose_msi_msg()
3388  * must be used to ask Hyper-V to re-create the IOMMU Interrupt Remapping
3389  * Table entries.
3390  */
3391 static void hv_pci_restore_msi_state(struct hv_pcibus_device *hbus)
3392 {
3393 	pci_walk_bus(hbus->pci_bus, hv_pci_restore_msi_msg, NULL);
3394 }
3395 
3396 static int hv_pci_resume(struct hv_device *hdev)
3397 {
3398 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3399 	enum pci_protocol_version_t version[1];
3400 	int ret;
3401 
3402 	hbus->state = hv_pcibus_init;
3403 
3404 	ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0,
3405 			 hv_pci_onchannelcallback, hbus);
3406 	if (ret)
3407 		return ret;
3408 
3409 	/* Only use the version that was in use before hibernation. */
3410 	version[0] = hbus->protocol_version;
3411 	ret = hv_pci_protocol_negotiation(hdev, version, 1);
3412 	if (ret)
3413 		goto out;
3414 
3415 	ret = hv_pci_query_relations(hdev);
3416 	if (ret)
3417 		goto out;
3418 
3419 	ret = hv_pci_enter_d0(hdev);
3420 	if (ret)
3421 		goto out;
3422 
3423 	ret = hv_send_resources_allocated(hdev);
3424 	if (ret)
3425 		goto out;
3426 
3427 	prepopulate_bars(hbus);
3428 
3429 	hv_pci_restore_msi_state(hbus);
3430 
3431 	hbus->state = hv_pcibus_installed;
3432 	return 0;
3433 out:
3434 	vmbus_close(hdev->channel);
3435 	return ret;
3436 }
3437 
3438 static const struct hv_vmbus_device_id hv_pci_id_table[] = {
3439 	/* PCI Pass-through Class ID */
3440 	/* 44C4F61D-4444-4400-9D52-802E27EDE19F */
3441 	{ HV_PCIE_GUID, },
3442 	{ },
3443 };
3444 
3445 MODULE_DEVICE_TABLE(vmbus, hv_pci_id_table);
3446 
3447 static struct hv_driver hv_pci_drv = {
3448 	.name		= "hv_pci",
3449 	.id_table	= hv_pci_id_table,
3450 	.probe		= hv_pci_probe,
3451 	.remove		= hv_pci_remove,
3452 	.suspend	= hv_pci_suspend,
3453 	.resume		= hv_pci_resume,
3454 };
3455 
3456 static void __exit exit_hv_pci_drv(void)
3457 {
3458 	vmbus_driver_unregister(&hv_pci_drv);
3459 
3460 	hvpci_block_ops.read_block = NULL;
3461 	hvpci_block_ops.write_block = NULL;
3462 	hvpci_block_ops.reg_blk_invalidate = NULL;
3463 }
3464 
3465 static int __init init_hv_pci_drv(void)
3466 {
3467 	if (!hv_is_hyperv_initialized())
3468 		return -ENODEV;
3469 
3470 	/* Set the invalid domain number's bit, so it will not be used */
3471 	set_bit(HVPCI_DOM_INVALID, hvpci_dom_map);
3472 
3473 	/* Initialize PCI block r/w interface */
3474 	hvpci_block_ops.read_block = hv_read_config_block;
3475 	hvpci_block_ops.write_block = hv_write_config_block;
3476 	hvpci_block_ops.reg_blk_invalidate = hv_register_block_invalidate;
3477 
3478 	return vmbus_driver_register(&hv_pci_drv);
3479 }
3480 
3481 module_init(init_hv_pci_drv);
3482 module_exit(exit_hv_pci_drv);
3483 
3484 MODULE_DESCRIPTION("Hyper-V PCI");
3485 MODULE_LICENSE("GPL v2");
3486