1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) Microsoft Corporation. 4 * 5 * Author: 6 * Jake Oshins <jakeo@microsoft.com> 7 * 8 * This driver acts as a paravirtual front-end for PCI Express root buses. 9 * When a PCI Express function (either an entire device or an SR-IOV 10 * Virtual Function) is being passed through to the VM, this driver exposes 11 * a new bus to the guest VM. This is modeled as a root PCI bus because 12 * no bridges are being exposed to the VM. In fact, with a "Generation 2" 13 * VM within Hyper-V, there may seem to be no PCI bus at all in the VM 14 * until a device as been exposed using this driver. 15 * 16 * Each root PCI bus has its own PCI domain, which is called "Segment" in 17 * the PCI Firmware Specifications. Thus while each device passed through 18 * to the VM using this front-end will appear at "device 0", the domain will 19 * be unique. Typically, each bus will have one PCI function on it, though 20 * this driver does support more than one. 21 * 22 * In order to map the interrupts from the device through to the guest VM, 23 * this driver also implements an IRQ Domain, which handles interrupts (either 24 * MSI or MSI-X) associated with the functions on the bus. As interrupts are 25 * set up, torn down, or reaffined, this driver communicates with the 26 * underlying hypervisor to adjust the mappings in the I/O MMU so that each 27 * interrupt will be delivered to the correct virtual processor at the right 28 * vector. This driver does not support level-triggered (line-based) 29 * interrupts, and will report that the Interrupt Line register in the 30 * function's configuration space is zero. 31 * 32 * The rest of this driver mostly maps PCI concepts onto underlying Hyper-V 33 * facilities. For instance, the configuration space of a function exposed 34 * by Hyper-V is mapped into a single page of memory space, and the 35 * read and write handlers for config space must be aware of this mechanism. 36 * Similarly, device setup and teardown involves messages sent to and from 37 * the PCI back-end driver in Hyper-V. 38 */ 39 40 #include <linux/kernel.h> 41 #include <linux/module.h> 42 #include <linux/pci.h> 43 #include <linux/delay.h> 44 #include <linux/semaphore.h> 45 #include <linux/irqdomain.h> 46 #include <asm/irqdomain.h> 47 #include <asm/apic.h> 48 #include <linux/irq.h> 49 #include <linux/msi.h> 50 #include <linux/hyperv.h> 51 #include <linux/refcount.h> 52 #include <asm/mshyperv.h> 53 54 /* 55 * Protocol versions. The low word is the minor version, the high word the 56 * major version. 57 */ 58 59 #define PCI_MAKE_VERSION(major, minor) ((u32)(((major) << 16) | (minor))) 60 #define PCI_MAJOR_VERSION(version) ((u32)(version) >> 16) 61 #define PCI_MINOR_VERSION(version) ((u32)(version) & 0xff) 62 63 enum pci_protocol_version_t { 64 PCI_PROTOCOL_VERSION_1_1 = PCI_MAKE_VERSION(1, 1), /* Win10 */ 65 PCI_PROTOCOL_VERSION_1_2 = PCI_MAKE_VERSION(1, 2), /* RS1 */ 66 PCI_PROTOCOL_VERSION_1_3 = PCI_MAKE_VERSION(1, 3), /* Vibranium */ 67 }; 68 69 #define CPU_AFFINITY_ALL -1ULL 70 71 /* 72 * Supported protocol versions in the order of probing - highest go 73 * first. 74 */ 75 static enum pci_protocol_version_t pci_protocol_versions[] = { 76 PCI_PROTOCOL_VERSION_1_3, 77 PCI_PROTOCOL_VERSION_1_2, 78 PCI_PROTOCOL_VERSION_1_1, 79 }; 80 81 #define PCI_CONFIG_MMIO_LENGTH 0x2000 82 #define CFG_PAGE_OFFSET 0x1000 83 #define CFG_PAGE_SIZE (PCI_CONFIG_MMIO_LENGTH - CFG_PAGE_OFFSET) 84 85 #define MAX_SUPPORTED_MSI_MESSAGES 0x400 86 87 #define STATUS_REVISION_MISMATCH 0xC0000059 88 89 /* space for 32bit serial number as string */ 90 #define SLOT_NAME_SIZE 11 91 92 /* 93 * Message Types 94 */ 95 96 enum pci_message_type { 97 /* 98 * Version 1.1 99 */ 100 PCI_MESSAGE_BASE = 0x42490000, 101 PCI_BUS_RELATIONS = PCI_MESSAGE_BASE + 0, 102 PCI_QUERY_BUS_RELATIONS = PCI_MESSAGE_BASE + 1, 103 PCI_POWER_STATE_CHANGE = PCI_MESSAGE_BASE + 4, 104 PCI_QUERY_RESOURCE_REQUIREMENTS = PCI_MESSAGE_BASE + 5, 105 PCI_QUERY_RESOURCE_RESOURCES = PCI_MESSAGE_BASE + 6, 106 PCI_BUS_D0ENTRY = PCI_MESSAGE_BASE + 7, 107 PCI_BUS_D0EXIT = PCI_MESSAGE_BASE + 8, 108 PCI_READ_BLOCK = PCI_MESSAGE_BASE + 9, 109 PCI_WRITE_BLOCK = PCI_MESSAGE_BASE + 0xA, 110 PCI_EJECT = PCI_MESSAGE_BASE + 0xB, 111 PCI_QUERY_STOP = PCI_MESSAGE_BASE + 0xC, 112 PCI_REENABLE = PCI_MESSAGE_BASE + 0xD, 113 PCI_QUERY_STOP_FAILED = PCI_MESSAGE_BASE + 0xE, 114 PCI_EJECTION_COMPLETE = PCI_MESSAGE_BASE + 0xF, 115 PCI_RESOURCES_ASSIGNED = PCI_MESSAGE_BASE + 0x10, 116 PCI_RESOURCES_RELEASED = PCI_MESSAGE_BASE + 0x11, 117 PCI_INVALIDATE_BLOCK = PCI_MESSAGE_BASE + 0x12, 118 PCI_QUERY_PROTOCOL_VERSION = PCI_MESSAGE_BASE + 0x13, 119 PCI_CREATE_INTERRUPT_MESSAGE = PCI_MESSAGE_BASE + 0x14, 120 PCI_DELETE_INTERRUPT_MESSAGE = PCI_MESSAGE_BASE + 0x15, 121 PCI_RESOURCES_ASSIGNED2 = PCI_MESSAGE_BASE + 0x16, 122 PCI_CREATE_INTERRUPT_MESSAGE2 = PCI_MESSAGE_BASE + 0x17, 123 PCI_DELETE_INTERRUPT_MESSAGE2 = PCI_MESSAGE_BASE + 0x18, /* unused */ 124 PCI_BUS_RELATIONS2 = PCI_MESSAGE_BASE + 0x19, 125 PCI_MESSAGE_MAXIMUM 126 }; 127 128 /* 129 * Structures defining the virtual PCI Express protocol. 130 */ 131 132 union pci_version { 133 struct { 134 u16 minor_version; 135 u16 major_version; 136 } parts; 137 u32 version; 138 } __packed; 139 140 /* 141 * Function numbers are 8-bits wide on Express, as interpreted through ARI, 142 * which is all this driver does. This representation is the one used in 143 * Windows, which is what is expected when sending this back and forth with 144 * the Hyper-V parent partition. 145 */ 146 union win_slot_encoding { 147 struct { 148 u32 dev:5; 149 u32 func:3; 150 u32 reserved:24; 151 } bits; 152 u32 slot; 153 } __packed; 154 155 /* 156 * Pretty much as defined in the PCI Specifications. 157 */ 158 struct pci_function_description { 159 u16 v_id; /* vendor ID */ 160 u16 d_id; /* device ID */ 161 u8 rev; 162 u8 prog_intf; 163 u8 subclass; 164 u8 base_class; 165 u32 subsystem_id; 166 union win_slot_encoding win_slot; 167 u32 ser; /* serial number */ 168 } __packed; 169 170 enum pci_device_description_flags { 171 HV_PCI_DEVICE_FLAG_NONE = 0x0, 172 HV_PCI_DEVICE_FLAG_NUMA_AFFINITY = 0x1, 173 }; 174 175 struct pci_function_description2 { 176 u16 v_id; /* vendor ID */ 177 u16 d_id; /* device ID */ 178 u8 rev; 179 u8 prog_intf; 180 u8 subclass; 181 u8 base_class; 182 u32 subsystem_id; 183 union win_slot_encoding win_slot; 184 u32 ser; /* serial number */ 185 u32 flags; 186 u16 virtual_numa_node; 187 u16 reserved; 188 } __packed; 189 190 /** 191 * struct hv_msi_desc 192 * @vector: IDT entry 193 * @delivery_mode: As defined in Intel's Programmer's 194 * Reference Manual, Volume 3, Chapter 8. 195 * @vector_count: Number of contiguous entries in the 196 * Interrupt Descriptor Table that are 197 * occupied by this Message-Signaled 198 * Interrupt. For "MSI", as first defined 199 * in PCI 2.2, this can be between 1 and 200 * 32. For "MSI-X," as first defined in PCI 201 * 3.0, this must be 1, as each MSI-X table 202 * entry would have its own descriptor. 203 * @reserved: Empty space 204 * @cpu_mask: All the target virtual processors. 205 */ 206 struct hv_msi_desc { 207 u8 vector; 208 u8 delivery_mode; 209 u16 vector_count; 210 u32 reserved; 211 u64 cpu_mask; 212 } __packed; 213 214 /** 215 * struct hv_msi_desc2 - 1.2 version of hv_msi_desc 216 * @vector: IDT entry 217 * @delivery_mode: As defined in Intel's Programmer's 218 * Reference Manual, Volume 3, Chapter 8. 219 * @vector_count: Number of contiguous entries in the 220 * Interrupt Descriptor Table that are 221 * occupied by this Message-Signaled 222 * Interrupt. For "MSI", as first defined 223 * in PCI 2.2, this can be between 1 and 224 * 32. For "MSI-X," as first defined in PCI 225 * 3.0, this must be 1, as each MSI-X table 226 * entry would have its own descriptor. 227 * @processor_count: number of bits enabled in array. 228 * @processor_array: All the target virtual processors. 229 */ 230 struct hv_msi_desc2 { 231 u8 vector; 232 u8 delivery_mode; 233 u16 vector_count; 234 u16 processor_count; 235 u16 processor_array[32]; 236 } __packed; 237 238 /** 239 * struct tran_int_desc 240 * @reserved: unused, padding 241 * @vector_count: same as in hv_msi_desc 242 * @data: This is the "data payload" value that is 243 * written by the device when it generates 244 * a message-signaled interrupt, either MSI 245 * or MSI-X. 246 * @address: This is the address to which the data 247 * payload is written on interrupt 248 * generation. 249 */ 250 struct tran_int_desc { 251 u16 reserved; 252 u16 vector_count; 253 u32 data; 254 u64 address; 255 } __packed; 256 257 /* 258 * A generic message format for virtual PCI. 259 * Specific message formats are defined later in the file. 260 */ 261 262 struct pci_message { 263 u32 type; 264 } __packed; 265 266 struct pci_child_message { 267 struct pci_message message_type; 268 union win_slot_encoding wslot; 269 } __packed; 270 271 struct pci_incoming_message { 272 struct vmpacket_descriptor hdr; 273 struct pci_message message_type; 274 } __packed; 275 276 struct pci_response { 277 struct vmpacket_descriptor hdr; 278 s32 status; /* negative values are failures */ 279 } __packed; 280 281 struct pci_packet { 282 void (*completion_func)(void *context, struct pci_response *resp, 283 int resp_packet_size); 284 void *compl_ctxt; 285 286 struct pci_message message[]; 287 }; 288 289 /* 290 * Specific message types supporting the PCI protocol. 291 */ 292 293 /* 294 * Version negotiation message. Sent from the guest to the host. 295 * The guest is free to try different versions until the host 296 * accepts the version. 297 * 298 * pci_version: The protocol version requested. 299 * is_last_attempt: If TRUE, this is the last version guest will request. 300 * reservedz: Reserved field, set to zero. 301 */ 302 303 struct pci_version_request { 304 struct pci_message message_type; 305 u32 protocol_version; 306 } __packed; 307 308 /* 309 * Bus D0 Entry. This is sent from the guest to the host when the virtual 310 * bus (PCI Express port) is ready for action. 311 */ 312 313 struct pci_bus_d0_entry { 314 struct pci_message message_type; 315 u32 reserved; 316 u64 mmio_base; 317 } __packed; 318 319 struct pci_bus_relations { 320 struct pci_incoming_message incoming; 321 u32 device_count; 322 struct pci_function_description func[]; 323 } __packed; 324 325 struct pci_bus_relations2 { 326 struct pci_incoming_message incoming; 327 u32 device_count; 328 struct pci_function_description2 func[]; 329 } __packed; 330 331 struct pci_q_res_req_response { 332 struct vmpacket_descriptor hdr; 333 s32 status; /* negative values are failures */ 334 u32 probed_bar[PCI_STD_NUM_BARS]; 335 } __packed; 336 337 struct pci_set_power { 338 struct pci_message message_type; 339 union win_slot_encoding wslot; 340 u32 power_state; /* In Windows terms */ 341 u32 reserved; 342 } __packed; 343 344 struct pci_set_power_response { 345 struct vmpacket_descriptor hdr; 346 s32 status; /* negative values are failures */ 347 union win_slot_encoding wslot; 348 u32 resultant_state; /* In Windows terms */ 349 u32 reserved; 350 } __packed; 351 352 struct pci_resources_assigned { 353 struct pci_message message_type; 354 union win_slot_encoding wslot; 355 u8 memory_range[0x14][6]; /* not used here */ 356 u32 msi_descriptors; 357 u32 reserved[4]; 358 } __packed; 359 360 struct pci_resources_assigned2 { 361 struct pci_message message_type; 362 union win_slot_encoding wslot; 363 u8 memory_range[0x14][6]; /* not used here */ 364 u32 msi_descriptor_count; 365 u8 reserved[70]; 366 } __packed; 367 368 struct pci_create_interrupt { 369 struct pci_message message_type; 370 union win_slot_encoding wslot; 371 struct hv_msi_desc int_desc; 372 } __packed; 373 374 struct pci_create_int_response { 375 struct pci_response response; 376 u32 reserved; 377 struct tran_int_desc int_desc; 378 } __packed; 379 380 struct pci_create_interrupt2 { 381 struct pci_message message_type; 382 union win_slot_encoding wslot; 383 struct hv_msi_desc2 int_desc; 384 } __packed; 385 386 struct pci_delete_interrupt { 387 struct pci_message message_type; 388 union win_slot_encoding wslot; 389 struct tran_int_desc int_desc; 390 } __packed; 391 392 /* 393 * Note: the VM must pass a valid block id, wslot and bytes_requested. 394 */ 395 struct pci_read_block { 396 struct pci_message message_type; 397 u32 block_id; 398 union win_slot_encoding wslot; 399 u32 bytes_requested; 400 } __packed; 401 402 struct pci_read_block_response { 403 struct vmpacket_descriptor hdr; 404 u32 status; 405 u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX]; 406 } __packed; 407 408 /* 409 * Note: the VM must pass a valid block id, wslot and byte_count. 410 */ 411 struct pci_write_block { 412 struct pci_message message_type; 413 u32 block_id; 414 union win_slot_encoding wslot; 415 u32 byte_count; 416 u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX]; 417 } __packed; 418 419 struct pci_dev_inval_block { 420 struct pci_incoming_message incoming; 421 union win_slot_encoding wslot; 422 u64 block_mask; 423 } __packed; 424 425 struct pci_dev_incoming { 426 struct pci_incoming_message incoming; 427 union win_slot_encoding wslot; 428 } __packed; 429 430 struct pci_eject_response { 431 struct pci_message message_type; 432 union win_slot_encoding wslot; 433 u32 status; 434 } __packed; 435 436 static int pci_ring_size = (4 * PAGE_SIZE); 437 438 /* 439 * Driver specific state. 440 */ 441 442 enum hv_pcibus_state { 443 hv_pcibus_init = 0, 444 hv_pcibus_probed, 445 hv_pcibus_installed, 446 hv_pcibus_removing, 447 hv_pcibus_maximum 448 }; 449 450 struct hv_pcibus_device { 451 struct pci_sysdata sysdata; 452 /* Protocol version negotiated with the host */ 453 enum pci_protocol_version_t protocol_version; 454 enum hv_pcibus_state state; 455 struct hv_device *hdev; 456 resource_size_t low_mmio_space; 457 resource_size_t high_mmio_space; 458 struct resource *mem_config; 459 struct resource *low_mmio_res; 460 struct resource *high_mmio_res; 461 struct completion *survey_event; 462 struct pci_bus *pci_bus; 463 spinlock_t config_lock; /* Avoid two threads writing index page */ 464 spinlock_t device_list_lock; /* Protect lists below */ 465 void __iomem *cfg_addr; 466 467 struct list_head resources_for_children; 468 469 struct list_head children; 470 struct list_head dr_list; 471 472 struct msi_domain_info msi_info; 473 struct irq_domain *irq_domain; 474 475 spinlock_t retarget_msi_interrupt_lock; 476 477 struct workqueue_struct *wq; 478 479 /* Highest slot of child device with resources allocated */ 480 int wslot_res_allocated; 481 482 /* hypercall arg, must not cross page boundary */ 483 struct hv_retarget_device_interrupt retarget_msi_interrupt_params; 484 485 /* 486 * Don't put anything here: retarget_msi_interrupt_params must be last 487 */ 488 }; 489 490 /* 491 * Tracks "Device Relations" messages from the host, which must be both 492 * processed in order and deferred so that they don't run in the context 493 * of the incoming packet callback. 494 */ 495 struct hv_dr_work { 496 struct work_struct wrk; 497 struct hv_pcibus_device *bus; 498 }; 499 500 struct hv_pcidev_description { 501 u16 v_id; /* vendor ID */ 502 u16 d_id; /* device ID */ 503 u8 rev; 504 u8 prog_intf; 505 u8 subclass; 506 u8 base_class; 507 u32 subsystem_id; 508 union win_slot_encoding win_slot; 509 u32 ser; /* serial number */ 510 u32 flags; 511 u16 virtual_numa_node; 512 }; 513 514 struct hv_dr_state { 515 struct list_head list_entry; 516 u32 device_count; 517 struct hv_pcidev_description func[]; 518 }; 519 520 enum hv_pcichild_state { 521 hv_pcichild_init = 0, 522 hv_pcichild_requirements, 523 hv_pcichild_resourced, 524 hv_pcichild_ejecting, 525 hv_pcichild_maximum 526 }; 527 528 struct hv_pci_dev { 529 /* List protected by pci_rescan_remove_lock */ 530 struct list_head list_entry; 531 refcount_t refs; 532 enum hv_pcichild_state state; 533 struct pci_slot *pci_slot; 534 struct hv_pcidev_description desc; 535 bool reported_missing; 536 struct hv_pcibus_device *hbus; 537 struct work_struct wrk; 538 539 void (*block_invalidate)(void *context, u64 block_mask); 540 void *invalidate_context; 541 542 /* 543 * What would be observed if one wrote 0xFFFFFFFF to a BAR and then 544 * read it back, for each of the BAR offsets within config space. 545 */ 546 u32 probed_bar[PCI_STD_NUM_BARS]; 547 }; 548 549 struct hv_pci_compl { 550 struct completion host_event; 551 s32 completion_status; 552 }; 553 554 static void hv_pci_onchannelcallback(void *context); 555 556 /** 557 * hv_pci_generic_compl() - Invoked for a completion packet 558 * @context: Set up by the sender of the packet. 559 * @resp: The response packet 560 * @resp_packet_size: Size in bytes of the packet 561 * 562 * This function is used to trigger an event and report status 563 * for any message for which the completion packet contains a 564 * status and nothing else. 565 */ 566 static void hv_pci_generic_compl(void *context, struct pci_response *resp, 567 int resp_packet_size) 568 { 569 struct hv_pci_compl *comp_pkt = context; 570 571 if (resp_packet_size >= offsetofend(struct pci_response, status)) 572 comp_pkt->completion_status = resp->status; 573 else 574 comp_pkt->completion_status = -1; 575 576 complete(&comp_pkt->host_event); 577 } 578 579 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus, 580 u32 wslot); 581 582 static void get_pcichild(struct hv_pci_dev *hpdev) 583 { 584 refcount_inc(&hpdev->refs); 585 } 586 587 static void put_pcichild(struct hv_pci_dev *hpdev) 588 { 589 if (refcount_dec_and_test(&hpdev->refs)) 590 kfree(hpdev); 591 } 592 593 /* 594 * There is no good way to get notified from vmbus_onoffer_rescind(), 595 * so let's use polling here, since this is not a hot path. 596 */ 597 static int wait_for_response(struct hv_device *hdev, 598 struct completion *comp) 599 { 600 while (true) { 601 if (hdev->channel->rescind) { 602 dev_warn_once(&hdev->device, "The device is gone.\n"); 603 return -ENODEV; 604 } 605 606 if (wait_for_completion_timeout(comp, HZ / 10)) 607 break; 608 } 609 610 return 0; 611 } 612 613 /** 614 * devfn_to_wslot() - Convert from Linux PCI slot to Windows 615 * @devfn: The Linux representation of PCI slot 616 * 617 * Windows uses a slightly different representation of PCI slot. 618 * 619 * Return: The Windows representation 620 */ 621 static u32 devfn_to_wslot(int devfn) 622 { 623 union win_slot_encoding wslot; 624 625 wslot.slot = 0; 626 wslot.bits.dev = PCI_SLOT(devfn); 627 wslot.bits.func = PCI_FUNC(devfn); 628 629 return wslot.slot; 630 } 631 632 /** 633 * wslot_to_devfn() - Convert from Windows PCI slot to Linux 634 * @wslot: The Windows representation of PCI slot 635 * 636 * Windows uses a slightly different representation of PCI slot. 637 * 638 * Return: The Linux representation 639 */ 640 static int wslot_to_devfn(u32 wslot) 641 { 642 union win_slot_encoding slot_no; 643 644 slot_no.slot = wslot; 645 return PCI_DEVFN(slot_no.bits.dev, slot_no.bits.func); 646 } 647 648 /* 649 * PCI Configuration Space for these root PCI buses is implemented as a pair 650 * of pages in memory-mapped I/O space. Writing to the first page chooses 651 * the PCI function being written or read. Once the first page has been 652 * written to, the following page maps in the entire configuration space of 653 * the function. 654 */ 655 656 /** 657 * _hv_pcifront_read_config() - Internal PCI config read 658 * @hpdev: The PCI driver's representation of the device 659 * @where: Offset within config space 660 * @size: Size of the transfer 661 * @val: Pointer to the buffer receiving the data 662 */ 663 static void _hv_pcifront_read_config(struct hv_pci_dev *hpdev, int where, 664 int size, u32 *val) 665 { 666 unsigned long flags; 667 void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where; 668 669 /* 670 * If the attempt is to read the IDs or the ROM BAR, simulate that. 671 */ 672 if (where + size <= PCI_COMMAND) { 673 memcpy(val, ((u8 *)&hpdev->desc.v_id) + where, size); 674 } else if (where >= PCI_CLASS_REVISION && where + size <= 675 PCI_CACHE_LINE_SIZE) { 676 memcpy(val, ((u8 *)&hpdev->desc.rev) + where - 677 PCI_CLASS_REVISION, size); 678 } else if (where >= PCI_SUBSYSTEM_VENDOR_ID && where + size <= 679 PCI_ROM_ADDRESS) { 680 memcpy(val, (u8 *)&hpdev->desc.subsystem_id + where - 681 PCI_SUBSYSTEM_VENDOR_ID, size); 682 } else if (where >= PCI_ROM_ADDRESS && where + size <= 683 PCI_CAPABILITY_LIST) { 684 /* ROM BARs are unimplemented */ 685 *val = 0; 686 } else if (where >= PCI_INTERRUPT_LINE && where + size <= 687 PCI_INTERRUPT_PIN) { 688 /* 689 * Interrupt Line and Interrupt PIN are hard-wired to zero 690 * because this front-end only supports message-signaled 691 * interrupts. 692 */ 693 *val = 0; 694 } else if (where + size <= CFG_PAGE_SIZE) { 695 spin_lock_irqsave(&hpdev->hbus->config_lock, flags); 696 /* Choose the function to be read. (See comment above) */ 697 writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr); 698 /* Make sure the function was chosen before we start reading. */ 699 mb(); 700 /* Read from that function's config space. */ 701 switch (size) { 702 case 1: 703 *val = readb(addr); 704 break; 705 case 2: 706 *val = readw(addr); 707 break; 708 default: 709 *val = readl(addr); 710 break; 711 } 712 /* 713 * Make sure the read was done before we release the spinlock 714 * allowing consecutive reads/writes. 715 */ 716 mb(); 717 spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags); 718 } else { 719 dev_err(&hpdev->hbus->hdev->device, 720 "Attempt to read beyond a function's config space.\n"); 721 } 722 } 723 724 static u16 hv_pcifront_get_vendor_id(struct hv_pci_dev *hpdev) 725 { 726 u16 ret; 727 unsigned long flags; 728 void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + 729 PCI_VENDOR_ID; 730 731 spin_lock_irqsave(&hpdev->hbus->config_lock, flags); 732 733 /* Choose the function to be read. (See comment above) */ 734 writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr); 735 /* Make sure the function was chosen before we start reading. */ 736 mb(); 737 /* Read from that function's config space. */ 738 ret = readw(addr); 739 /* 740 * mb() is not required here, because the spin_unlock_irqrestore() 741 * is a barrier. 742 */ 743 744 spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags); 745 746 return ret; 747 } 748 749 /** 750 * _hv_pcifront_write_config() - Internal PCI config write 751 * @hpdev: The PCI driver's representation of the device 752 * @where: Offset within config space 753 * @size: Size of the transfer 754 * @val: The data being transferred 755 */ 756 static void _hv_pcifront_write_config(struct hv_pci_dev *hpdev, int where, 757 int size, u32 val) 758 { 759 unsigned long flags; 760 void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where; 761 762 if (where >= PCI_SUBSYSTEM_VENDOR_ID && 763 where + size <= PCI_CAPABILITY_LIST) { 764 /* SSIDs and ROM BARs are read-only */ 765 } else if (where >= PCI_COMMAND && where + size <= CFG_PAGE_SIZE) { 766 spin_lock_irqsave(&hpdev->hbus->config_lock, flags); 767 /* Choose the function to be written. (See comment above) */ 768 writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr); 769 /* Make sure the function was chosen before we start writing. */ 770 wmb(); 771 /* Write to that function's config space. */ 772 switch (size) { 773 case 1: 774 writeb(val, addr); 775 break; 776 case 2: 777 writew(val, addr); 778 break; 779 default: 780 writel(val, addr); 781 break; 782 } 783 /* 784 * Make sure the write was done before we release the spinlock 785 * allowing consecutive reads/writes. 786 */ 787 mb(); 788 spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags); 789 } else { 790 dev_err(&hpdev->hbus->hdev->device, 791 "Attempt to write beyond a function's config space.\n"); 792 } 793 } 794 795 /** 796 * hv_pcifront_read_config() - Read configuration space 797 * @bus: PCI Bus structure 798 * @devfn: Device/function 799 * @where: Offset from base 800 * @size: Byte/word/dword 801 * @val: Value to be read 802 * 803 * Return: PCIBIOS_SUCCESSFUL on success 804 * PCIBIOS_DEVICE_NOT_FOUND on failure 805 */ 806 static int hv_pcifront_read_config(struct pci_bus *bus, unsigned int devfn, 807 int where, int size, u32 *val) 808 { 809 struct hv_pcibus_device *hbus = 810 container_of(bus->sysdata, struct hv_pcibus_device, sysdata); 811 struct hv_pci_dev *hpdev; 812 813 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn)); 814 if (!hpdev) 815 return PCIBIOS_DEVICE_NOT_FOUND; 816 817 _hv_pcifront_read_config(hpdev, where, size, val); 818 819 put_pcichild(hpdev); 820 return PCIBIOS_SUCCESSFUL; 821 } 822 823 /** 824 * hv_pcifront_write_config() - Write configuration space 825 * @bus: PCI Bus structure 826 * @devfn: Device/function 827 * @where: Offset from base 828 * @size: Byte/word/dword 829 * @val: Value to be written to device 830 * 831 * Return: PCIBIOS_SUCCESSFUL on success 832 * PCIBIOS_DEVICE_NOT_FOUND on failure 833 */ 834 static int hv_pcifront_write_config(struct pci_bus *bus, unsigned int devfn, 835 int where, int size, u32 val) 836 { 837 struct hv_pcibus_device *hbus = 838 container_of(bus->sysdata, struct hv_pcibus_device, sysdata); 839 struct hv_pci_dev *hpdev; 840 841 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn)); 842 if (!hpdev) 843 return PCIBIOS_DEVICE_NOT_FOUND; 844 845 _hv_pcifront_write_config(hpdev, where, size, val); 846 847 put_pcichild(hpdev); 848 return PCIBIOS_SUCCESSFUL; 849 } 850 851 /* PCIe operations */ 852 static struct pci_ops hv_pcifront_ops = { 853 .read = hv_pcifront_read_config, 854 .write = hv_pcifront_write_config, 855 }; 856 857 /* 858 * Paravirtual backchannel 859 * 860 * Hyper-V SR-IOV provides a backchannel mechanism in software for 861 * communication between a VF driver and a PF driver. These 862 * "configuration blocks" are similar in concept to PCI configuration space, 863 * but instead of doing reads and writes in 32-bit chunks through a very slow 864 * path, packets of up to 128 bytes can be sent or received asynchronously. 865 * 866 * Nearly every SR-IOV device contains just such a communications channel in 867 * hardware, so using this one in software is usually optional. Using the 868 * software channel, however, allows driver implementers to leverage software 869 * tools that fuzz the communications channel looking for vulnerabilities. 870 * 871 * The usage model for these packets puts the responsibility for reading or 872 * writing on the VF driver. The VF driver sends a read or a write packet, 873 * indicating which "block" is being referred to by number. 874 * 875 * If the PF driver wishes to initiate communication, it can "invalidate" one or 876 * more of the first 64 blocks. This invalidation is delivered via a callback 877 * supplied by the VF driver by this driver. 878 * 879 * No protocol is implied, except that supplied by the PF and VF drivers. 880 */ 881 882 struct hv_read_config_compl { 883 struct hv_pci_compl comp_pkt; 884 void *buf; 885 unsigned int len; 886 unsigned int bytes_returned; 887 }; 888 889 /** 890 * hv_pci_read_config_compl() - Invoked when a response packet 891 * for a read config block operation arrives. 892 * @context: Identifies the read config operation 893 * @resp: The response packet itself 894 * @resp_packet_size: Size in bytes of the response packet 895 */ 896 static void hv_pci_read_config_compl(void *context, struct pci_response *resp, 897 int resp_packet_size) 898 { 899 struct hv_read_config_compl *comp = context; 900 struct pci_read_block_response *read_resp = 901 (struct pci_read_block_response *)resp; 902 unsigned int data_len, hdr_len; 903 904 hdr_len = offsetof(struct pci_read_block_response, bytes); 905 if (resp_packet_size < hdr_len) { 906 comp->comp_pkt.completion_status = -1; 907 goto out; 908 } 909 910 data_len = resp_packet_size - hdr_len; 911 if (data_len > 0 && read_resp->status == 0) { 912 comp->bytes_returned = min(comp->len, data_len); 913 memcpy(comp->buf, read_resp->bytes, comp->bytes_returned); 914 } else { 915 comp->bytes_returned = 0; 916 } 917 918 comp->comp_pkt.completion_status = read_resp->status; 919 out: 920 complete(&comp->comp_pkt.host_event); 921 } 922 923 /** 924 * hv_read_config_block() - Sends a read config block request to 925 * the back-end driver running in the Hyper-V parent partition. 926 * @pdev: The PCI driver's representation for this device. 927 * @buf: Buffer into which the config block will be copied. 928 * @len: Size in bytes of buf. 929 * @block_id: Identifies the config block which has been requested. 930 * @bytes_returned: Size which came back from the back-end driver. 931 * 932 * Return: 0 on success, -errno on failure 933 */ 934 static int hv_read_config_block(struct pci_dev *pdev, void *buf, 935 unsigned int len, unsigned int block_id, 936 unsigned int *bytes_returned) 937 { 938 struct hv_pcibus_device *hbus = 939 container_of(pdev->bus->sysdata, struct hv_pcibus_device, 940 sysdata); 941 struct { 942 struct pci_packet pkt; 943 char buf[sizeof(struct pci_read_block)]; 944 } pkt; 945 struct hv_read_config_compl comp_pkt; 946 struct pci_read_block *read_blk; 947 int ret; 948 949 if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX) 950 return -EINVAL; 951 952 init_completion(&comp_pkt.comp_pkt.host_event); 953 comp_pkt.buf = buf; 954 comp_pkt.len = len; 955 956 memset(&pkt, 0, sizeof(pkt)); 957 pkt.pkt.completion_func = hv_pci_read_config_compl; 958 pkt.pkt.compl_ctxt = &comp_pkt; 959 read_blk = (struct pci_read_block *)&pkt.pkt.message; 960 read_blk->message_type.type = PCI_READ_BLOCK; 961 read_blk->wslot.slot = devfn_to_wslot(pdev->devfn); 962 read_blk->block_id = block_id; 963 read_blk->bytes_requested = len; 964 965 ret = vmbus_sendpacket(hbus->hdev->channel, read_blk, 966 sizeof(*read_blk), (unsigned long)&pkt.pkt, 967 VM_PKT_DATA_INBAND, 968 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 969 if (ret) 970 return ret; 971 972 ret = wait_for_response(hbus->hdev, &comp_pkt.comp_pkt.host_event); 973 if (ret) 974 return ret; 975 976 if (comp_pkt.comp_pkt.completion_status != 0 || 977 comp_pkt.bytes_returned == 0) { 978 dev_err(&hbus->hdev->device, 979 "Read Config Block failed: 0x%x, bytes_returned=%d\n", 980 comp_pkt.comp_pkt.completion_status, 981 comp_pkt.bytes_returned); 982 return -EIO; 983 } 984 985 *bytes_returned = comp_pkt.bytes_returned; 986 return 0; 987 } 988 989 /** 990 * hv_pci_write_config_compl() - Invoked when a response packet for a write 991 * config block operation arrives. 992 * @context: Identifies the write config operation 993 * @resp: The response packet itself 994 * @resp_packet_size: Size in bytes of the response packet 995 */ 996 static void hv_pci_write_config_compl(void *context, struct pci_response *resp, 997 int resp_packet_size) 998 { 999 struct hv_pci_compl *comp_pkt = context; 1000 1001 comp_pkt->completion_status = resp->status; 1002 complete(&comp_pkt->host_event); 1003 } 1004 1005 /** 1006 * hv_write_config_block() - Sends a write config block request to the 1007 * back-end driver running in the Hyper-V parent partition. 1008 * @pdev: The PCI driver's representation for this device. 1009 * @buf: Buffer from which the config block will be copied. 1010 * @len: Size in bytes of buf. 1011 * @block_id: Identifies the config block which is being written. 1012 * 1013 * Return: 0 on success, -errno on failure 1014 */ 1015 static int hv_write_config_block(struct pci_dev *pdev, void *buf, 1016 unsigned int len, unsigned int block_id) 1017 { 1018 struct hv_pcibus_device *hbus = 1019 container_of(pdev->bus->sysdata, struct hv_pcibus_device, 1020 sysdata); 1021 struct { 1022 struct pci_packet pkt; 1023 char buf[sizeof(struct pci_write_block)]; 1024 u32 reserved; 1025 } pkt; 1026 struct hv_pci_compl comp_pkt; 1027 struct pci_write_block *write_blk; 1028 u32 pkt_size; 1029 int ret; 1030 1031 if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX) 1032 return -EINVAL; 1033 1034 init_completion(&comp_pkt.host_event); 1035 1036 memset(&pkt, 0, sizeof(pkt)); 1037 pkt.pkt.completion_func = hv_pci_write_config_compl; 1038 pkt.pkt.compl_ctxt = &comp_pkt; 1039 write_blk = (struct pci_write_block *)&pkt.pkt.message; 1040 write_blk->message_type.type = PCI_WRITE_BLOCK; 1041 write_blk->wslot.slot = devfn_to_wslot(pdev->devfn); 1042 write_blk->block_id = block_id; 1043 write_blk->byte_count = len; 1044 memcpy(write_blk->bytes, buf, len); 1045 pkt_size = offsetof(struct pci_write_block, bytes) + len; 1046 /* 1047 * This quirk is required on some hosts shipped around 2018, because 1048 * these hosts don't check the pkt_size correctly (new hosts have been 1049 * fixed since early 2019). The quirk is also safe on very old hosts 1050 * and new hosts, because, on them, what really matters is the length 1051 * specified in write_blk->byte_count. 1052 */ 1053 pkt_size += sizeof(pkt.reserved); 1054 1055 ret = vmbus_sendpacket(hbus->hdev->channel, write_blk, pkt_size, 1056 (unsigned long)&pkt.pkt, VM_PKT_DATA_INBAND, 1057 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1058 if (ret) 1059 return ret; 1060 1061 ret = wait_for_response(hbus->hdev, &comp_pkt.host_event); 1062 if (ret) 1063 return ret; 1064 1065 if (comp_pkt.completion_status != 0) { 1066 dev_err(&hbus->hdev->device, 1067 "Write Config Block failed: 0x%x\n", 1068 comp_pkt.completion_status); 1069 return -EIO; 1070 } 1071 1072 return 0; 1073 } 1074 1075 /** 1076 * hv_register_block_invalidate() - Invoked when a config block invalidation 1077 * arrives from the back-end driver. 1078 * @pdev: The PCI driver's representation for this device. 1079 * @context: Identifies the device. 1080 * @block_invalidate: Identifies all of the blocks being invalidated. 1081 * 1082 * Return: 0 on success, -errno on failure 1083 */ 1084 static int hv_register_block_invalidate(struct pci_dev *pdev, void *context, 1085 void (*block_invalidate)(void *context, 1086 u64 block_mask)) 1087 { 1088 struct hv_pcibus_device *hbus = 1089 container_of(pdev->bus->sysdata, struct hv_pcibus_device, 1090 sysdata); 1091 struct hv_pci_dev *hpdev; 1092 1093 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn)); 1094 if (!hpdev) 1095 return -ENODEV; 1096 1097 hpdev->block_invalidate = block_invalidate; 1098 hpdev->invalidate_context = context; 1099 1100 put_pcichild(hpdev); 1101 return 0; 1102 1103 } 1104 1105 /* Interrupt management hooks */ 1106 static void hv_int_desc_free(struct hv_pci_dev *hpdev, 1107 struct tran_int_desc *int_desc) 1108 { 1109 struct pci_delete_interrupt *int_pkt; 1110 struct { 1111 struct pci_packet pkt; 1112 u8 buffer[sizeof(struct pci_delete_interrupt)]; 1113 } ctxt; 1114 1115 memset(&ctxt, 0, sizeof(ctxt)); 1116 int_pkt = (struct pci_delete_interrupt *)&ctxt.pkt.message; 1117 int_pkt->message_type.type = 1118 PCI_DELETE_INTERRUPT_MESSAGE; 1119 int_pkt->wslot.slot = hpdev->desc.win_slot.slot; 1120 int_pkt->int_desc = *int_desc; 1121 vmbus_sendpacket(hpdev->hbus->hdev->channel, int_pkt, sizeof(*int_pkt), 1122 (unsigned long)&ctxt.pkt, VM_PKT_DATA_INBAND, 0); 1123 kfree(int_desc); 1124 } 1125 1126 /** 1127 * hv_msi_free() - Free the MSI. 1128 * @domain: The interrupt domain pointer 1129 * @info: Extra MSI-related context 1130 * @irq: Identifies the IRQ. 1131 * 1132 * The Hyper-V parent partition and hypervisor are tracking the 1133 * messages that are in use, keeping the interrupt redirection 1134 * table up to date. This callback sends a message that frees 1135 * the IRT entry and related tracking nonsense. 1136 */ 1137 static void hv_msi_free(struct irq_domain *domain, struct msi_domain_info *info, 1138 unsigned int irq) 1139 { 1140 struct hv_pcibus_device *hbus; 1141 struct hv_pci_dev *hpdev; 1142 struct pci_dev *pdev; 1143 struct tran_int_desc *int_desc; 1144 struct irq_data *irq_data = irq_domain_get_irq_data(domain, irq); 1145 struct msi_desc *msi = irq_data_get_msi_desc(irq_data); 1146 1147 pdev = msi_desc_to_pci_dev(msi); 1148 hbus = info->data; 1149 int_desc = irq_data_get_irq_chip_data(irq_data); 1150 if (!int_desc) 1151 return; 1152 1153 irq_data->chip_data = NULL; 1154 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn)); 1155 if (!hpdev) { 1156 kfree(int_desc); 1157 return; 1158 } 1159 1160 hv_int_desc_free(hpdev, int_desc); 1161 put_pcichild(hpdev); 1162 } 1163 1164 static int hv_set_affinity(struct irq_data *data, const struct cpumask *dest, 1165 bool force) 1166 { 1167 struct irq_data *parent = data->parent_data; 1168 1169 return parent->chip->irq_set_affinity(parent, dest, force); 1170 } 1171 1172 static void hv_irq_mask(struct irq_data *data) 1173 { 1174 pci_msi_mask_irq(data); 1175 } 1176 1177 /** 1178 * hv_irq_unmask() - "Unmask" the IRQ by setting its current 1179 * affinity. 1180 * @data: Describes the IRQ 1181 * 1182 * Build new a destination for the MSI and make a hypercall to 1183 * update the Interrupt Redirection Table. "Device Logical ID" 1184 * is built out of this PCI bus's instance GUID and the function 1185 * number of the device. 1186 */ 1187 static void hv_irq_unmask(struct irq_data *data) 1188 { 1189 struct msi_desc *msi_desc = irq_data_get_msi_desc(data); 1190 struct irq_cfg *cfg = irqd_cfg(data); 1191 struct hv_retarget_device_interrupt *params; 1192 struct hv_pcibus_device *hbus; 1193 struct cpumask *dest; 1194 cpumask_var_t tmp; 1195 struct pci_bus *pbus; 1196 struct pci_dev *pdev; 1197 unsigned long flags; 1198 u32 var_size = 0; 1199 int cpu, nr_bank; 1200 u64 res; 1201 1202 dest = irq_data_get_effective_affinity_mask(data); 1203 pdev = msi_desc_to_pci_dev(msi_desc); 1204 pbus = pdev->bus; 1205 hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata); 1206 1207 spin_lock_irqsave(&hbus->retarget_msi_interrupt_lock, flags); 1208 1209 params = &hbus->retarget_msi_interrupt_params; 1210 memset(params, 0, sizeof(*params)); 1211 params->partition_id = HV_PARTITION_ID_SELF; 1212 params->int_entry.source = HV_INTERRUPT_SOURCE_MSI; 1213 hv_set_msi_entry_from_desc(¶ms->int_entry.msi_entry, msi_desc); 1214 params->device_id = (hbus->hdev->dev_instance.b[5] << 24) | 1215 (hbus->hdev->dev_instance.b[4] << 16) | 1216 (hbus->hdev->dev_instance.b[7] << 8) | 1217 (hbus->hdev->dev_instance.b[6] & 0xf8) | 1218 PCI_FUNC(pdev->devfn); 1219 params->int_target.vector = cfg->vector; 1220 1221 /* 1222 * Honoring apic->delivery_mode set to APIC_DELIVERY_MODE_FIXED by 1223 * setting the HV_DEVICE_INTERRUPT_TARGET_MULTICAST flag results in a 1224 * spurious interrupt storm. Not doing so does not seem to have a 1225 * negative effect (yet?). 1226 */ 1227 1228 if (hbus->protocol_version >= PCI_PROTOCOL_VERSION_1_2) { 1229 /* 1230 * PCI_PROTOCOL_VERSION_1_2 supports the VP_SET version of the 1231 * HVCALL_RETARGET_INTERRUPT hypercall, which also coincides 1232 * with >64 VP support. 1233 * ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED 1234 * is not sufficient for this hypercall. 1235 */ 1236 params->int_target.flags |= 1237 HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET; 1238 1239 if (!alloc_cpumask_var(&tmp, GFP_ATOMIC)) { 1240 res = 1; 1241 goto exit_unlock; 1242 } 1243 1244 cpumask_and(tmp, dest, cpu_online_mask); 1245 nr_bank = cpumask_to_vpset(¶ms->int_target.vp_set, tmp); 1246 free_cpumask_var(tmp); 1247 1248 if (nr_bank <= 0) { 1249 res = 1; 1250 goto exit_unlock; 1251 } 1252 1253 /* 1254 * var-sized hypercall, var-size starts after vp_mask (thus 1255 * vp_set.format does not count, but vp_set.valid_bank_mask 1256 * does). 1257 */ 1258 var_size = 1 + nr_bank; 1259 } else { 1260 for_each_cpu_and(cpu, dest, cpu_online_mask) { 1261 params->int_target.vp_mask |= 1262 (1ULL << hv_cpu_number_to_vp_number(cpu)); 1263 } 1264 } 1265 1266 res = hv_do_hypercall(HVCALL_RETARGET_INTERRUPT | (var_size << 17), 1267 params, NULL); 1268 1269 exit_unlock: 1270 spin_unlock_irqrestore(&hbus->retarget_msi_interrupt_lock, flags); 1271 1272 /* 1273 * During hibernation, when a CPU is offlined, the kernel tries 1274 * to move the interrupt to the remaining CPUs that haven't 1275 * been offlined yet. In this case, the below hv_do_hypercall() 1276 * always fails since the vmbus channel has been closed: 1277 * refer to cpu_disable_common() -> fixup_irqs() -> 1278 * irq_migrate_all_off_this_cpu() -> migrate_one_irq(). 1279 * 1280 * Suppress the error message for hibernation because the failure 1281 * during hibernation does not matter (at this time all the devices 1282 * have been frozen). Note: the correct affinity info is still updated 1283 * into the irqdata data structure in migrate_one_irq() -> 1284 * irq_do_set_affinity() -> hv_set_affinity(), so later when the VM 1285 * resumes, hv_pci_restore_msi_state() is able to correctly restore 1286 * the interrupt with the correct affinity. 1287 */ 1288 if (!hv_result_success(res) && hbus->state != hv_pcibus_removing) 1289 dev_err(&hbus->hdev->device, 1290 "%s() failed: %#llx", __func__, res); 1291 1292 pci_msi_unmask_irq(data); 1293 } 1294 1295 struct compose_comp_ctxt { 1296 struct hv_pci_compl comp_pkt; 1297 struct tran_int_desc int_desc; 1298 }; 1299 1300 static void hv_pci_compose_compl(void *context, struct pci_response *resp, 1301 int resp_packet_size) 1302 { 1303 struct compose_comp_ctxt *comp_pkt = context; 1304 struct pci_create_int_response *int_resp = 1305 (struct pci_create_int_response *)resp; 1306 1307 comp_pkt->comp_pkt.completion_status = resp->status; 1308 comp_pkt->int_desc = int_resp->int_desc; 1309 complete(&comp_pkt->comp_pkt.host_event); 1310 } 1311 1312 static u32 hv_compose_msi_req_v1( 1313 struct pci_create_interrupt *int_pkt, struct cpumask *affinity, 1314 u32 slot, u8 vector) 1315 { 1316 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE; 1317 int_pkt->wslot.slot = slot; 1318 int_pkt->int_desc.vector = vector; 1319 int_pkt->int_desc.vector_count = 1; 1320 int_pkt->int_desc.delivery_mode = APIC_DELIVERY_MODE_FIXED; 1321 1322 /* 1323 * Create MSI w/ dummy vCPU set, overwritten by subsequent retarget in 1324 * hv_irq_unmask(). 1325 */ 1326 int_pkt->int_desc.cpu_mask = CPU_AFFINITY_ALL; 1327 1328 return sizeof(*int_pkt); 1329 } 1330 1331 static u32 hv_compose_msi_req_v2( 1332 struct pci_create_interrupt2 *int_pkt, struct cpumask *affinity, 1333 u32 slot, u8 vector) 1334 { 1335 int cpu; 1336 1337 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE2; 1338 int_pkt->wslot.slot = slot; 1339 int_pkt->int_desc.vector = vector; 1340 int_pkt->int_desc.vector_count = 1; 1341 int_pkt->int_desc.delivery_mode = APIC_DELIVERY_MODE_FIXED; 1342 1343 /* 1344 * Create MSI w/ dummy vCPU set targeting just one vCPU, overwritten 1345 * by subsequent retarget in hv_irq_unmask(). 1346 */ 1347 cpu = cpumask_first_and(affinity, cpu_online_mask); 1348 int_pkt->int_desc.processor_array[0] = 1349 hv_cpu_number_to_vp_number(cpu); 1350 int_pkt->int_desc.processor_count = 1; 1351 1352 return sizeof(*int_pkt); 1353 } 1354 1355 /** 1356 * hv_compose_msi_msg() - Supplies a valid MSI address/data 1357 * @data: Everything about this MSI 1358 * @msg: Buffer that is filled in by this function 1359 * 1360 * This function unpacks the IRQ looking for target CPU set, IDT 1361 * vector and mode and sends a message to the parent partition 1362 * asking for a mapping for that tuple in this partition. The 1363 * response supplies a data value and address to which that data 1364 * should be written to trigger that interrupt. 1365 */ 1366 static void hv_compose_msi_msg(struct irq_data *data, struct msi_msg *msg) 1367 { 1368 struct irq_cfg *cfg = irqd_cfg(data); 1369 struct hv_pcibus_device *hbus; 1370 struct vmbus_channel *channel; 1371 struct hv_pci_dev *hpdev; 1372 struct pci_bus *pbus; 1373 struct pci_dev *pdev; 1374 struct cpumask *dest; 1375 struct compose_comp_ctxt comp; 1376 struct tran_int_desc *int_desc; 1377 struct { 1378 struct pci_packet pci_pkt; 1379 union { 1380 struct pci_create_interrupt v1; 1381 struct pci_create_interrupt2 v2; 1382 } int_pkts; 1383 } __packed ctxt; 1384 1385 u32 size; 1386 int ret; 1387 1388 pdev = msi_desc_to_pci_dev(irq_data_get_msi_desc(data)); 1389 dest = irq_data_get_effective_affinity_mask(data); 1390 pbus = pdev->bus; 1391 hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata); 1392 channel = hbus->hdev->channel; 1393 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn)); 1394 if (!hpdev) 1395 goto return_null_message; 1396 1397 /* Free any previous message that might have already been composed. */ 1398 if (data->chip_data) { 1399 int_desc = data->chip_data; 1400 data->chip_data = NULL; 1401 hv_int_desc_free(hpdev, int_desc); 1402 } 1403 1404 int_desc = kzalloc(sizeof(*int_desc), GFP_ATOMIC); 1405 if (!int_desc) 1406 goto drop_reference; 1407 1408 memset(&ctxt, 0, sizeof(ctxt)); 1409 init_completion(&comp.comp_pkt.host_event); 1410 ctxt.pci_pkt.completion_func = hv_pci_compose_compl; 1411 ctxt.pci_pkt.compl_ctxt = ∁ 1412 1413 switch (hbus->protocol_version) { 1414 case PCI_PROTOCOL_VERSION_1_1: 1415 size = hv_compose_msi_req_v1(&ctxt.int_pkts.v1, 1416 dest, 1417 hpdev->desc.win_slot.slot, 1418 cfg->vector); 1419 break; 1420 1421 case PCI_PROTOCOL_VERSION_1_2: 1422 case PCI_PROTOCOL_VERSION_1_3: 1423 size = hv_compose_msi_req_v2(&ctxt.int_pkts.v2, 1424 dest, 1425 hpdev->desc.win_slot.slot, 1426 cfg->vector); 1427 break; 1428 1429 default: 1430 /* As we only negotiate protocol versions known to this driver, 1431 * this path should never hit. However, this is it not a hot 1432 * path so we print a message to aid future updates. 1433 */ 1434 dev_err(&hbus->hdev->device, 1435 "Unexpected vPCI protocol, update driver."); 1436 goto free_int_desc; 1437 } 1438 1439 ret = vmbus_sendpacket(hpdev->hbus->hdev->channel, &ctxt.int_pkts, 1440 size, (unsigned long)&ctxt.pci_pkt, 1441 VM_PKT_DATA_INBAND, 1442 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1443 if (ret) { 1444 dev_err(&hbus->hdev->device, 1445 "Sending request for interrupt failed: 0x%x", 1446 comp.comp_pkt.completion_status); 1447 goto free_int_desc; 1448 } 1449 1450 /* 1451 * Prevents hv_pci_onchannelcallback() from running concurrently 1452 * in the tasklet. 1453 */ 1454 tasklet_disable_in_atomic(&channel->callback_event); 1455 1456 /* 1457 * Since this function is called with IRQ locks held, can't 1458 * do normal wait for completion; instead poll. 1459 */ 1460 while (!try_wait_for_completion(&comp.comp_pkt.host_event)) { 1461 unsigned long flags; 1462 1463 /* 0xFFFF means an invalid PCI VENDOR ID. */ 1464 if (hv_pcifront_get_vendor_id(hpdev) == 0xFFFF) { 1465 dev_err_once(&hbus->hdev->device, 1466 "the device has gone\n"); 1467 goto enable_tasklet; 1468 } 1469 1470 /* 1471 * Make sure that the ring buffer data structure doesn't get 1472 * freed while we dereference the ring buffer pointer. Test 1473 * for the channel's onchannel_callback being NULL within a 1474 * sched_lock critical section. See also the inline comments 1475 * in vmbus_reset_channel_cb(). 1476 */ 1477 spin_lock_irqsave(&channel->sched_lock, flags); 1478 if (unlikely(channel->onchannel_callback == NULL)) { 1479 spin_unlock_irqrestore(&channel->sched_lock, flags); 1480 goto enable_tasklet; 1481 } 1482 hv_pci_onchannelcallback(hbus); 1483 spin_unlock_irqrestore(&channel->sched_lock, flags); 1484 1485 if (hpdev->state == hv_pcichild_ejecting) { 1486 dev_err_once(&hbus->hdev->device, 1487 "the device is being ejected\n"); 1488 goto enable_tasklet; 1489 } 1490 1491 udelay(100); 1492 } 1493 1494 tasklet_enable(&channel->callback_event); 1495 1496 if (comp.comp_pkt.completion_status < 0) { 1497 dev_err(&hbus->hdev->device, 1498 "Request for interrupt failed: 0x%x", 1499 comp.comp_pkt.completion_status); 1500 goto free_int_desc; 1501 } 1502 1503 /* 1504 * Record the assignment so that this can be unwound later. Using 1505 * irq_set_chip_data() here would be appropriate, but the lock it takes 1506 * is already held. 1507 */ 1508 *int_desc = comp.int_desc; 1509 data->chip_data = int_desc; 1510 1511 /* Pass up the result. */ 1512 msg->address_hi = comp.int_desc.address >> 32; 1513 msg->address_lo = comp.int_desc.address & 0xffffffff; 1514 msg->data = comp.int_desc.data; 1515 1516 put_pcichild(hpdev); 1517 return; 1518 1519 enable_tasklet: 1520 tasklet_enable(&channel->callback_event); 1521 free_int_desc: 1522 kfree(int_desc); 1523 drop_reference: 1524 put_pcichild(hpdev); 1525 return_null_message: 1526 msg->address_hi = 0; 1527 msg->address_lo = 0; 1528 msg->data = 0; 1529 } 1530 1531 /* HW Interrupt Chip Descriptor */ 1532 static struct irq_chip hv_msi_irq_chip = { 1533 .name = "Hyper-V PCIe MSI", 1534 .irq_compose_msi_msg = hv_compose_msi_msg, 1535 .irq_set_affinity = hv_set_affinity, 1536 .irq_ack = irq_chip_ack_parent, 1537 .irq_mask = hv_irq_mask, 1538 .irq_unmask = hv_irq_unmask, 1539 }; 1540 1541 static struct msi_domain_ops hv_msi_ops = { 1542 .msi_prepare = pci_msi_prepare, 1543 .msi_free = hv_msi_free, 1544 }; 1545 1546 /** 1547 * hv_pcie_init_irq_domain() - Initialize IRQ domain 1548 * @hbus: The root PCI bus 1549 * 1550 * This function creates an IRQ domain which will be used for 1551 * interrupts from devices that have been passed through. These 1552 * devices only support MSI and MSI-X, not line-based interrupts 1553 * or simulations of line-based interrupts through PCIe's 1554 * fabric-layer messages. Because interrupts are remapped, we 1555 * can support multi-message MSI here. 1556 * 1557 * Return: '0' on success and error value on failure 1558 */ 1559 static int hv_pcie_init_irq_domain(struct hv_pcibus_device *hbus) 1560 { 1561 hbus->msi_info.chip = &hv_msi_irq_chip; 1562 hbus->msi_info.ops = &hv_msi_ops; 1563 hbus->msi_info.flags = (MSI_FLAG_USE_DEF_DOM_OPS | 1564 MSI_FLAG_USE_DEF_CHIP_OPS | MSI_FLAG_MULTI_PCI_MSI | 1565 MSI_FLAG_PCI_MSIX); 1566 hbus->msi_info.handler = handle_edge_irq; 1567 hbus->msi_info.handler_name = "edge"; 1568 hbus->msi_info.data = hbus; 1569 hbus->irq_domain = pci_msi_create_irq_domain(hbus->sysdata.fwnode, 1570 &hbus->msi_info, 1571 x86_vector_domain); 1572 if (!hbus->irq_domain) { 1573 dev_err(&hbus->hdev->device, 1574 "Failed to build an MSI IRQ domain\n"); 1575 return -ENODEV; 1576 } 1577 1578 return 0; 1579 } 1580 1581 /** 1582 * get_bar_size() - Get the address space consumed by a BAR 1583 * @bar_val: Value that a BAR returned after -1 was written 1584 * to it. 1585 * 1586 * This function returns the size of the BAR, rounded up to 1 1587 * page. It has to be rounded up because the hypervisor's page 1588 * table entry that maps the BAR into the VM can't specify an 1589 * offset within a page. The invariant is that the hypervisor 1590 * must place any BARs of smaller than page length at the 1591 * beginning of a page. 1592 * 1593 * Return: Size in bytes of the consumed MMIO space. 1594 */ 1595 static u64 get_bar_size(u64 bar_val) 1596 { 1597 return round_up((1 + ~(bar_val & PCI_BASE_ADDRESS_MEM_MASK)), 1598 PAGE_SIZE); 1599 } 1600 1601 /** 1602 * survey_child_resources() - Total all MMIO requirements 1603 * @hbus: Root PCI bus, as understood by this driver 1604 */ 1605 static void survey_child_resources(struct hv_pcibus_device *hbus) 1606 { 1607 struct hv_pci_dev *hpdev; 1608 resource_size_t bar_size = 0; 1609 unsigned long flags; 1610 struct completion *event; 1611 u64 bar_val; 1612 int i; 1613 1614 /* If nobody is waiting on the answer, don't compute it. */ 1615 event = xchg(&hbus->survey_event, NULL); 1616 if (!event) 1617 return; 1618 1619 /* If the answer has already been computed, go with it. */ 1620 if (hbus->low_mmio_space || hbus->high_mmio_space) { 1621 complete(event); 1622 return; 1623 } 1624 1625 spin_lock_irqsave(&hbus->device_list_lock, flags); 1626 1627 /* 1628 * Due to an interesting quirk of the PCI spec, all memory regions 1629 * for a child device are a power of 2 in size and aligned in memory, 1630 * so it's sufficient to just add them up without tracking alignment. 1631 */ 1632 list_for_each_entry(hpdev, &hbus->children, list_entry) { 1633 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 1634 if (hpdev->probed_bar[i] & PCI_BASE_ADDRESS_SPACE_IO) 1635 dev_err(&hbus->hdev->device, 1636 "There's an I/O BAR in this list!\n"); 1637 1638 if (hpdev->probed_bar[i] != 0) { 1639 /* 1640 * A probed BAR has all the upper bits set that 1641 * can be changed. 1642 */ 1643 1644 bar_val = hpdev->probed_bar[i]; 1645 if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64) 1646 bar_val |= 1647 ((u64)hpdev->probed_bar[++i] << 32); 1648 else 1649 bar_val |= 0xffffffff00000000ULL; 1650 1651 bar_size = get_bar_size(bar_val); 1652 1653 if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64) 1654 hbus->high_mmio_space += bar_size; 1655 else 1656 hbus->low_mmio_space += bar_size; 1657 } 1658 } 1659 } 1660 1661 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 1662 complete(event); 1663 } 1664 1665 /** 1666 * prepopulate_bars() - Fill in BARs with defaults 1667 * @hbus: Root PCI bus, as understood by this driver 1668 * 1669 * The core PCI driver code seems much, much happier if the BARs 1670 * for a device have values upon first scan. So fill them in. 1671 * The algorithm below works down from large sizes to small, 1672 * attempting to pack the assignments optimally. The assumption, 1673 * enforced in other parts of the code, is that the beginning of 1674 * the memory-mapped I/O space will be aligned on the largest 1675 * BAR size. 1676 */ 1677 static void prepopulate_bars(struct hv_pcibus_device *hbus) 1678 { 1679 resource_size_t high_size = 0; 1680 resource_size_t low_size = 0; 1681 resource_size_t high_base = 0; 1682 resource_size_t low_base = 0; 1683 resource_size_t bar_size; 1684 struct hv_pci_dev *hpdev; 1685 unsigned long flags; 1686 u64 bar_val; 1687 u32 command; 1688 bool high; 1689 int i; 1690 1691 if (hbus->low_mmio_space) { 1692 low_size = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space)); 1693 low_base = hbus->low_mmio_res->start; 1694 } 1695 1696 if (hbus->high_mmio_space) { 1697 high_size = 1ULL << 1698 (63 - __builtin_clzll(hbus->high_mmio_space)); 1699 high_base = hbus->high_mmio_res->start; 1700 } 1701 1702 spin_lock_irqsave(&hbus->device_list_lock, flags); 1703 1704 /* 1705 * Clear the memory enable bit, in case it's already set. This occurs 1706 * in the suspend path of hibernation, where the device is suspended, 1707 * resumed and suspended again: see hibernation_snapshot() and 1708 * hibernation_platform_enter(). 1709 * 1710 * If the memory enable bit is already set, Hyper-V silently ignores 1711 * the below BAR updates, and the related PCI device driver can not 1712 * work, because reading from the device register(s) always returns 1713 * 0xFFFFFFFF. 1714 */ 1715 list_for_each_entry(hpdev, &hbus->children, list_entry) { 1716 _hv_pcifront_read_config(hpdev, PCI_COMMAND, 2, &command); 1717 command &= ~PCI_COMMAND_MEMORY; 1718 _hv_pcifront_write_config(hpdev, PCI_COMMAND, 2, command); 1719 } 1720 1721 /* Pick addresses for the BARs. */ 1722 do { 1723 list_for_each_entry(hpdev, &hbus->children, list_entry) { 1724 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 1725 bar_val = hpdev->probed_bar[i]; 1726 if (bar_val == 0) 1727 continue; 1728 high = bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64; 1729 if (high) { 1730 bar_val |= 1731 ((u64)hpdev->probed_bar[i + 1] 1732 << 32); 1733 } else { 1734 bar_val |= 0xffffffffULL << 32; 1735 } 1736 bar_size = get_bar_size(bar_val); 1737 if (high) { 1738 if (high_size != bar_size) { 1739 i++; 1740 continue; 1741 } 1742 _hv_pcifront_write_config(hpdev, 1743 PCI_BASE_ADDRESS_0 + (4 * i), 1744 4, 1745 (u32)(high_base & 0xffffff00)); 1746 i++; 1747 _hv_pcifront_write_config(hpdev, 1748 PCI_BASE_ADDRESS_0 + (4 * i), 1749 4, (u32)(high_base >> 32)); 1750 high_base += bar_size; 1751 } else { 1752 if (low_size != bar_size) 1753 continue; 1754 _hv_pcifront_write_config(hpdev, 1755 PCI_BASE_ADDRESS_0 + (4 * i), 1756 4, 1757 (u32)(low_base & 0xffffff00)); 1758 low_base += bar_size; 1759 } 1760 } 1761 if (high_size <= 1 && low_size <= 1) { 1762 /* Set the memory enable bit. */ 1763 _hv_pcifront_read_config(hpdev, PCI_COMMAND, 2, 1764 &command); 1765 command |= PCI_COMMAND_MEMORY; 1766 _hv_pcifront_write_config(hpdev, PCI_COMMAND, 2, 1767 command); 1768 break; 1769 } 1770 } 1771 1772 high_size >>= 1; 1773 low_size >>= 1; 1774 } while (high_size || low_size); 1775 1776 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 1777 } 1778 1779 /* 1780 * Assign entries in sysfs pci slot directory. 1781 * 1782 * Note that this function does not need to lock the children list 1783 * because it is called from pci_devices_present_work which 1784 * is serialized with hv_eject_device_work because they are on the 1785 * same ordered workqueue. Therefore hbus->children list will not change 1786 * even when pci_create_slot sleeps. 1787 */ 1788 static void hv_pci_assign_slots(struct hv_pcibus_device *hbus) 1789 { 1790 struct hv_pci_dev *hpdev; 1791 char name[SLOT_NAME_SIZE]; 1792 int slot_nr; 1793 1794 list_for_each_entry(hpdev, &hbus->children, list_entry) { 1795 if (hpdev->pci_slot) 1796 continue; 1797 1798 slot_nr = PCI_SLOT(wslot_to_devfn(hpdev->desc.win_slot.slot)); 1799 snprintf(name, SLOT_NAME_SIZE, "%u", hpdev->desc.ser); 1800 hpdev->pci_slot = pci_create_slot(hbus->pci_bus, slot_nr, 1801 name, NULL); 1802 if (IS_ERR(hpdev->pci_slot)) { 1803 pr_warn("pci_create slot %s failed\n", name); 1804 hpdev->pci_slot = NULL; 1805 } 1806 } 1807 } 1808 1809 /* 1810 * Remove entries in sysfs pci slot directory. 1811 */ 1812 static void hv_pci_remove_slots(struct hv_pcibus_device *hbus) 1813 { 1814 struct hv_pci_dev *hpdev; 1815 1816 list_for_each_entry(hpdev, &hbus->children, list_entry) { 1817 if (!hpdev->pci_slot) 1818 continue; 1819 pci_destroy_slot(hpdev->pci_slot); 1820 hpdev->pci_slot = NULL; 1821 } 1822 } 1823 1824 /* 1825 * Set NUMA node for the devices on the bus 1826 */ 1827 static void hv_pci_assign_numa_node(struct hv_pcibus_device *hbus) 1828 { 1829 struct pci_dev *dev; 1830 struct pci_bus *bus = hbus->pci_bus; 1831 struct hv_pci_dev *hv_dev; 1832 1833 list_for_each_entry(dev, &bus->devices, bus_list) { 1834 hv_dev = get_pcichild_wslot(hbus, devfn_to_wslot(dev->devfn)); 1835 if (!hv_dev) 1836 continue; 1837 1838 if (hv_dev->desc.flags & HV_PCI_DEVICE_FLAG_NUMA_AFFINITY) 1839 set_dev_node(&dev->dev, hv_dev->desc.virtual_numa_node); 1840 1841 put_pcichild(hv_dev); 1842 } 1843 } 1844 1845 /** 1846 * create_root_hv_pci_bus() - Expose a new root PCI bus 1847 * @hbus: Root PCI bus, as understood by this driver 1848 * 1849 * Return: 0 on success, -errno on failure 1850 */ 1851 static int create_root_hv_pci_bus(struct hv_pcibus_device *hbus) 1852 { 1853 /* Register the device */ 1854 hbus->pci_bus = pci_create_root_bus(&hbus->hdev->device, 1855 0, /* bus number is always zero */ 1856 &hv_pcifront_ops, 1857 &hbus->sysdata, 1858 &hbus->resources_for_children); 1859 if (!hbus->pci_bus) 1860 return -ENODEV; 1861 1862 pci_lock_rescan_remove(); 1863 pci_scan_child_bus(hbus->pci_bus); 1864 hv_pci_assign_numa_node(hbus); 1865 pci_bus_assign_resources(hbus->pci_bus); 1866 hv_pci_assign_slots(hbus); 1867 pci_bus_add_devices(hbus->pci_bus); 1868 pci_unlock_rescan_remove(); 1869 hbus->state = hv_pcibus_installed; 1870 return 0; 1871 } 1872 1873 struct q_res_req_compl { 1874 struct completion host_event; 1875 struct hv_pci_dev *hpdev; 1876 }; 1877 1878 /** 1879 * q_resource_requirements() - Query Resource Requirements 1880 * @context: The completion context. 1881 * @resp: The response that came from the host. 1882 * @resp_packet_size: The size in bytes of resp. 1883 * 1884 * This function is invoked on completion of a Query Resource 1885 * Requirements packet. 1886 */ 1887 static void q_resource_requirements(void *context, struct pci_response *resp, 1888 int resp_packet_size) 1889 { 1890 struct q_res_req_compl *completion = context; 1891 struct pci_q_res_req_response *q_res_req = 1892 (struct pci_q_res_req_response *)resp; 1893 int i; 1894 1895 if (resp->status < 0) { 1896 dev_err(&completion->hpdev->hbus->hdev->device, 1897 "query resource requirements failed: %x\n", 1898 resp->status); 1899 } else { 1900 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 1901 completion->hpdev->probed_bar[i] = 1902 q_res_req->probed_bar[i]; 1903 } 1904 } 1905 1906 complete(&completion->host_event); 1907 } 1908 1909 /** 1910 * new_pcichild_device() - Create a new child device 1911 * @hbus: The internal struct tracking this root PCI bus. 1912 * @desc: The information supplied so far from the host 1913 * about the device. 1914 * 1915 * This function creates the tracking structure for a new child 1916 * device and kicks off the process of figuring out what it is. 1917 * 1918 * Return: Pointer to the new tracking struct 1919 */ 1920 static struct hv_pci_dev *new_pcichild_device(struct hv_pcibus_device *hbus, 1921 struct hv_pcidev_description *desc) 1922 { 1923 struct hv_pci_dev *hpdev; 1924 struct pci_child_message *res_req; 1925 struct q_res_req_compl comp_pkt; 1926 struct { 1927 struct pci_packet init_packet; 1928 u8 buffer[sizeof(struct pci_child_message)]; 1929 } pkt; 1930 unsigned long flags; 1931 int ret; 1932 1933 hpdev = kzalloc(sizeof(*hpdev), GFP_KERNEL); 1934 if (!hpdev) 1935 return NULL; 1936 1937 hpdev->hbus = hbus; 1938 1939 memset(&pkt, 0, sizeof(pkt)); 1940 init_completion(&comp_pkt.host_event); 1941 comp_pkt.hpdev = hpdev; 1942 pkt.init_packet.compl_ctxt = &comp_pkt; 1943 pkt.init_packet.completion_func = q_resource_requirements; 1944 res_req = (struct pci_child_message *)&pkt.init_packet.message; 1945 res_req->message_type.type = PCI_QUERY_RESOURCE_REQUIREMENTS; 1946 res_req->wslot.slot = desc->win_slot.slot; 1947 1948 ret = vmbus_sendpacket(hbus->hdev->channel, res_req, 1949 sizeof(struct pci_child_message), 1950 (unsigned long)&pkt.init_packet, 1951 VM_PKT_DATA_INBAND, 1952 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1953 if (ret) 1954 goto error; 1955 1956 if (wait_for_response(hbus->hdev, &comp_pkt.host_event)) 1957 goto error; 1958 1959 hpdev->desc = *desc; 1960 refcount_set(&hpdev->refs, 1); 1961 get_pcichild(hpdev); 1962 spin_lock_irqsave(&hbus->device_list_lock, flags); 1963 1964 list_add_tail(&hpdev->list_entry, &hbus->children); 1965 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 1966 return hpdev; 1967 1968 error: 1969 kfree(hpdev); 1970 return NULL; 1971 } 1972 1973 /** 1974 * get_pcichild_wslot() - Find device from slot 1975 * @hbus: Root PCI bus, as understood by this driver 1976 * @wslot: Location on the bus 1977 * 1978 * This function looks up a PCI device and returns the internal 1979 * representation of it. It acquires a reference on it, so that 1980 * the device won't be deleted while somebody is using it. The 1981 * caller is responsible for calling put_pcichild() to release 1982 * this reference. 1983 * 1984 * Return: Internal representation of a PCI device 1985 */ 1986 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus, 1987 u32 wslot) 1988 { 1989 unsigned long flags; 1990 struct hv_pci_dev *iter, *hpdev = NULL; 1991 1992 spin_lock_irqsave(&hbus->device_list_lock, flags); 1993 list_for_each_entry(iter, &hbus->children, list_entry) { 1994 if (iter->desc.win_slot.slot == wslot) { 1995 hpdev = iter; 1996 get_pcichild(hpdev); 1997 break; 1998 } 1999 } 2000 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2001 2002 return hpdev; 2003 } 2004 2005 /** 2006 * pci_devices_present_work() - Handle new list of child devices 2007 * @work: Work struct embedded in struct hv_dr_work 2008 * 2009 * "Bus Relations" is the Windows term for "children of this 2010 * bus." The terminology is preserved here for people trying to 2011 * debug the interaction between Hyper-V and Linux. This 2012 * function is called when the parent partition reports a list 2013 * of functions that should be observed under this PCI Express 2014 * port (bus). 2015 * 2016 * This function updates the list, and must tolerate being 2017 * called multiple times with the same information. The typical 2018 * number of child devices is one, with very atypical cases 2019 * involving three or four, so the algorithms used here can be 2020 * simple and inefficient. 2021 * 2022 * It must also treat the omission of a previously observed device as 2023 * notification that the device no longer exists. 2024 * 2025 * Note that this function is serialized with hv_eject_device_work(), 2026 * because both are pushed to the ordered workqueue hbus->wq. 2027 */ 2028 static void pci_devices_present_work(struct work_struct *work) 2029 { 2030 u32 child_no; 2031 bool found; 2032 struct hv_pcidev_description *new_desc; 2033 struct hv_pci_dev *hpdev; 2034 struct hv_pcibus_device *hbus; 2035 struct list_head removed; 2036 struct hv_dr_work *dr_wrk; 2037 struct hv_dr_state *dr = NULL; 2038 unsigned long flags; 2039 2040 dr_wrk = container_of(work, struct hv_dr_work, wrk); 2041 hbus = dr_wrk->bus; 2042 kfree(dr_wrk); 2043 2044 INIT_LIST_HEAD(&removed); 2045 2046 /* Pull this off the queue and process it if it was the last one. */ 2047 spin_lock_irqsave(&hbus->device_list_lock, flags); 2048 while (!list_empty(&hbus->dr_list)) { 2049 dr = list_first_entry(&hbus->dr_list, struct hv_dr_state, 2050 list_entry); 2051 list_del(&dr->list_entry); 2052 2053 /* Throw this away if the list still has stuff in it. */ 2054 if (!list_empty(&hbus->dr_list)) { 2055 kfree(dr); 2056 continue; 2057 } 2058 } 2059 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2060 2061 if (!dr) 2062 return; 2063 2064 /* First, mark all existing children as reported missing. */ 2065 spin_lock_irqsave(&hbus->device_list_lock, flags); 2066 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2067 hpdev->reported_missing = true; 2068 } 2069 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2070 2071 /* Next, add back any reported devices. */ 2072 for (child_no = 0; child_no < dr->device_count; child_no++) { 2073 found = false; 2074 new_desc = &dr->func[child_no]; 2075 2076 spin_lock_irqsave(&hbus->device_list_lock, flags); 2077 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2078 if ((hpdev->desc.win_slot.slot == new_desc->win_slot.slot) && 2079 (hpdev->desc.v_id == new_desc->v_id) && 2080 (hpdev->desc.d_id == new_desc->d_id) && 2081 (hpdev->desc.ser == new_desc->ser)) { 2082 hpdev->reported_missing = false; 2083 found = true; 2084 } 2085 } 2086 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2087 2088 if (!found) { 2089 hpdev = new_pcichild_device(hbus, new_desc); 2090 if (!hpdev) 2091 dev_err(&hbus->hdev->device, 2092 "couldn't record a child device.\n"); 2093 } 2094 } 2095 2096 /* Move missing children to a list on the stack. */ 2097 spin_lock_irqsave(&hbus->device_list_lock, flags); 2098 do { 2099 found = false; 2100 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2101 if (hpdev->reported_missing) { 2102 found = true; 2103 put_pcichild(hpdev); 2104 list_move_tail(&hpdev->list_entry, &removed); 2105 break; 2106 } 2107 } 2108 } while (found); 2109 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2110 2111 /* Delete everything that should no longer exist. */ 2112 while (!list_empty(&removed)) { 2113 hpdev = list_first_entry(&removed, struct hv_pci_dev, 2114 list_entry); 2115 list_del(&hpdev->list_entry); 2116 2117 if (hpdev->pci_slot) 2118 pci_destroy_slot(hpdev->pci_slot); 2119 2120 put_pcichild(hpdev); 2121 } 2122 2123 switch (hbus->state) { 2124 case hv_pcibus_installed: 2125 /* 2126 * Tell the core to rescan bus 2127 * because there may have been changes. 2128 */ 2129 pci_lock_rescan_remove(); 2130 pci_scan_child_bus(hbus->pci_bus); 2131 hv_pci_assign_numa_node(hbus); 2132 hv_pci_assign_slots(hbus); 2133 pci_unlock_rescan_remove(); 2134 break; 2135 2136 case hv_pcibus_init: 2137 case hv_pcibus_probed: 2138 survey_child_resources(hbus); 2139 break; 2140 2141 default: 2142 break; 2143 } 2144 2145 kfree(dr); 2146 } 2147 2148 /** 2149 * hv_pci_start_relations_work() - Queue work to start device discovery 2150 * @hbus: Root PCI bus, as understood by this driver 2151 * @dr: The list of children returned from host 2152 * 2153 * Return: 0 on success, -errno on failure 2154 */ 2155 static int hv_pci_start_relations_work(struct hv_pcibus_device *hbus, 2156 struct hv_dr_state *dr) 2157 { 2158 struct hv_dr_work *dr_wrk; 2159 unsigned long flags; 2160 bool pending_dr; 2161 2162 if (hbus->state == hv_pcibus_removing) { 2163 dev_info(&hbus->hdev->device, 2164 "PCI VMBus BUS_RELATIONS: ignored\n"); 2165 return -ENOENT; 2166 } 2167 2168 dr_wrk = kzalloc(sizeof(*dr_wrk), GFP_NOWAIT); 2169 if (!dr_wrk) 2170 return -ENOMEM; 2171 2172 INIT_WORK(&dr_wrk->wrk, pci_devices_present_work); 2173 dr_wrk->bus = hbus; 2174 2175 spin_lock_irqsave(&hbus->device_list_lock, flags); 2176 /* 2177 * If pending_dr is true, we have already queued a work, 2178 * which will see the new dr. Otherwise, we need to 2179 * queue a new work. 2180 */ 2181 pending_dr = !list_empty(&hbus->dr_list); 2182 list_add_tail(&dr->list_entry, &hbus->dr_list); 2183 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2184 2185 if (pending_dr) 2186 kfree(dr_wrk); 2187 else 2188 queue_work(hbus->wq, &dr_wrk->wrk); 2189 2190 return 0; 2191 } 2192 2193 /** 2194 * hv_pci_devices_present() - Handle list of new children 2195 * @hbus: Root PCI bus, as understood by this driver 2196 * @relations: Packet from host listing children 2197 * 2198 * Process a new list of devices on the bus. The list of devices is 2199 * discovered by VSP and sent to us via VSP message PCI_BUS_RELATIONS, 2200 * whenever a new list of devices for this bus appears. 2201 */ 2202 static void hv_pci_devices_present(struct hv_pcibus_device *hbus, 2203 struct pci_bus_relations *relations) 2204 { 2205 struct hv_dr_state *dr; 2206 int i; 2207 2208 dr = kzalloc(struct_size(dr, func, relations->device_count), 2209 GFP_NOWAIT); 2210 if (!dr) 2211 return; 2212 2213 dr->device_count = relations->device_count; 2214 for (i = 0; i < dr->device_count; i++) { 2215 dr->func[i].v_id = relations->func[i].v_id; 2216 dr->func[i].d_id = relations->func[i].d_id; 2217 dr->func[i].rev = relations->func[i].rev; 2218 dr->func[i].prog_intf = relations->func[i].prog_intf; 2219 dr->func[i].subclass = relations->func[i].subclass; 2220 dr->func[i].base_class = relations->func[i].base_class; 2221 dr->func[i].subsystem_id = relations->func[i].subsystem_id; 2222 dr->func[i].win_slot = relations->func[i].win_slot; 2223 dr->func[i].ser = relations->func[i].ser; 2224 } 2225 2226 if (hv_pci_start_relations_work(hbus, dr)) 2227 kfree(dr); 2228 } 2229 2230 /** 2231 * hv_pci_devices_present2() - Handle list of new children 2232 * @hbus: Root PCI bus, as understood by this driver 2233 * @relations: Packet from host listing children 2234 * 2235 * This function is the v2 version of hv_pci_devices_present() 2236 */ 2237 static void hv_pci_devices_present2(struct hv_pcibus_device *hbus, 2238 struct pci_bus_relations2 *relations) 2239 { 2240 struct hv_dr_state *dr; 2241 int i; 2242 2243 dr = kzalloc(struct_size(dr, func, relations->device_count), 2244 GFP_NOWAIT); 2245 if (!dr) 2246 return; 2247 2248 dr->device_count = relations->device_count; 2249 for (i = 0; i < dr->device_count; i++) { 2250 dr->func[i].v_id = relations->func[i].v_id; 2251 dr->func[i].d_id = relations->func[i].d_id; 2252 dr->func[i].rev = relations->func[i].rev; 2253 dr->func[i].prog_intf = relations->func[i].prog_intf; 2254 dr->func[i].subclass = relations->func[i].subclass; 2255 dr->func[i].base_class = relations->func[i].base_class; 2256 dr->func[i].subsystem_id = relations->func[i].subsystem_id; 2257 dr->func[i].win_slot = relations->func[i].win_slot; 2258 dr->func[i].ser = relations->func[i].ser; 2259 dr->func[i].flags = relations->func[i].flags; 2260 dr->func[i].virtual_numa_node = 2261 relations->func[i].virtual_numa_node; 2262 } 2263 2264 if (hv_pci_start_relations_work(hbus, dr)) 2265 kfree(dr); 2266 } 2267 2268 /** 2269 * hv_eject_device_work() - Asynchronously handles ejection 2270 * @work: Work struct embedded in internal device struct 2271 * 2272 * This function handles ejecting a device. Windows will 2273 * attempt to gracefully eject a device, waiting 60 seconds to 2274 * hear back from the guest OS that this completed successfully. 2275 * If this timer expires, the device will be forcibly removed. 2276 */ 2277 static void hv_eject_device_work(struct work_struct *work) 2278 { 2279 struct pci_eject_response *ejct_pkt; 2280 struct hv_pcibus_device *hbus; 2281 struct hv_pci_dev *hpdev; 2282 struct pci_dev *pdev; 2283 unsigned long flags; 2284 int wslot; 2285 struct { 2286 struct pci_packet pkt; 2287 u8 buffer[sizeof(struct pci_eject_response)]; 2288 } ctxt; 2289 2290 hpdev = container_of(work, struct hv_pci_dev, wrk); 2291 hbus = hpdev->hbus; 2292 2293 WARN_ON(hpdev->state != hv_pcichild_ejecting); 2294 2295 /* 2296 * Ejection can come before or after the PCI bus has been set up, so 2297 * attempt to find it and tear down the bus state, if it exists. This 2298 * must be done without constructs like pci_domain_nr(hbus->pci_bus) 2299 * because hbus->pci_bus may not exist yet. 2300 */ 2301 wslot = wslot_to_devfn(hpdev->desc.win_slot.slot); 2302 pdev = pci_get_domain_bus_and_slot(hbus->sysdata.domain, 0, wslot); 2303 if (pdev) { 2304 pci_lock_rescan_remove(); 2305 pci_stop_and_remove_bus_device(pdev); 2306 pci_dev_put(pdev); 2307 pci_unlock_rescan_remove(); 2308 } 2309 2310 spin_lock_irqsave(&hbus->device_list_lock, flags); 2311 list_del(&hpdev->list_entry); 2312 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2313 2314 if (hpdev->pci_slot) 2315 pci_destroy_slot(hpdev->pci_slot); 2316 2317 memset(&ctxt, 0, sizeof(ctxt)); 2318 ejct_pkt = (struct pci_eject_response *)&ctxt.pkt.message; 2319 ejct_pkt->message_type.type = PCI_EJECTION_COMPLETE; 2320 ejct_pkt->wslot.slot = hpdev->desc.win_slot.slot; 2321 vmbus_sendpacket(hbus->hdev->channel, ejct_pkt, 2322 sizeof(*ejct_pkt), (unsigned long)&ctxt.pkt, 2323 VM_PKT_DATA_INBAND, 0); 2324 2325 /* For the get_pcichild() in hv_pci_eject_device() */ 2326 put_pcichild(hpdev); 2327 /* For the two refs got in new_pcichild_device() */ 2328 put_pcichild(hpdev); 2329 put_pcichild(hpdev); 2330 /* hpdev has been freed. Do not use it any more. */ 2331 } 2332 2333 /** 2334 * hv_pci_eject_device() - Handles device ejection 2335 * @hpdev: Internal device tracking struct 2336 * 2337 * This function is invoked when an ejection packet arrives. It 2338 * just schedules work so that we don't re-enter the packet 2339 * delivery code handling the ejection. 2340 */ 2341 static void hv_pci_eject_device(struct hv_pci_dev *hpdev) 2342 { 2343 struct hv_pcibus_device *hbus = hpdev->hbus; 2344 struct hv_device *hdev = hbus->hdev; 2345 2346 if (hbus->state == hv_pcibus_removing) { 2347 dev_info(&hdev->device, "PCI VMBus EJECT: ignored\n"); 2348 return; 2349 } 2350 2351 hpdev->state = hv_pcichild_ejecting; 2352 get_pcichild(hpdev); 2353 INIT_WORK(&hpdev->wrk, hv_eject_device_work); 2354 queue_work(hbus->wq, &hpdev->wrk); 2355 } 2356 2357 /** 2358 * hv_pci_onchannelcallback() - Handles incoming packets 2359 * @context: Internal bus tracking struct 2360 * 2361 * This function is invoked whenever the host sends a packet to 2362 * this channel (which is private to this root PCI bus). 2363 */ 2364 static void hv_pci_onchannelcallback(void *context) 2365 { 2366 const int packet_size = 0x100; 2367 int ret; 2368 struct hv_pcibus_device *hbus = context; 2369 u32 bytes_recvd; 2370 u64 req_id; 2371 struct vmpacket_descriptor *desc; 2372 unsigned char *buffer; 2373 int bufferlen = packet_size; 2374 struct pci_packet *comp_packet; 2375 struct pci_response *response; 2376 struct pci_incoming_message *new_message; 2377 struct pci_bus_relations *bus_rel; 2378 struct pci_bus_relations2 *bus_rel2; 2379 struct pci_dev_inval_block *inval; 2380 struct pci_dev_incoming *dev_message; 2381 struct hv_pci_dev *hpdev; 2382 2383 buffer = kmalloc(bufferlen, GFP_ATOMIC); 2384 if (!buffer) 2385 return; 2386 2387 while (1) { 2388 ret = vmbus_recvpacket_raw(hbus->hdev->channel, buffer, 2389 bufferlen, &bytes_recvd, &req_id); 2390 2391 if (ret == -ENOBUFS) { 2392 kfree(buffer); 2393 /* Handle large packet */ 2394 bufferlen = bytes_recvd; 2395 buffer = kmalloc(bytes_recvd, GFP_ATOMIC); 2396 if (!buffer) 2397 return; 2398 continue; 2399 } 2400 2401 /* Zero length indicates there are no more packets. */ 2402 if (ret || !bytes_recvd) 2403 break; 2404 2405 /* 2406 * All incoming packets must be at least as large as a 2407 * response. 2408 */ 2409 if (bytes_recvd <= sizeof(struct pci_response)) 2410 continue; 2411 desc = (struct vmpacket_descriptor *)buffer; 2412 2413 switch (desc->type) { 2414 case VM_PKT_COMP: 2415 2416 /* 2417 * The host is trusted, and thus it's safe to interpret 2418 * this transaction ID as a pointer. 2419 */ 2420 comp_packet = (struct pci_packet *)req_id; 2421 response = (struct pci_response *)buffer; 2422 comp_packet->completion_func(comp_packet->compl_ctxt, 2423 response, 2424 bytes_recvd); 2425 break; 2426 2427 case VM_PKT_DATA_INBAND: 2428 2429 new_message = (struct pci_incoming_message *)buffer; 2430 switch (new_message->message_type.type) { 2431 case PCI_BUS_RELATIONS: 2432 2433 bus_rel = (struct pci_bus_relations *)buffer; 2434 if (bytes_recvd < 2435 struct_size(bus_rel, func, 2436 bus_rel->device_count)) { 2437 dev_err(&hbus->hdev->device, 2438 "bus relations too small\n"); 2439 break; 2440 } 2441 2442 hv_pci_devices_present(hbus, bus_rel); 2443 break; 2444 2445 case PCI_BUS_RELATIONS2: 2446 2447 bus_rel2 = (struct pci_bus_relations2 *)buffer; 2448 if (bytes_recvd < 2449 struct_size(bus_rel2, func, 2450 bus_rel2->device_count)) { 2451 dev_err(&hbus->hdev->device, 2452 "bus relations v2 too small\n"); 2453 break; 2454 } 2455 2456 hv_pci_devices_present2(hbus, bus_rel2); 2457 break; 2458 2459 case PCI_EJECT: 2460 2461 dev_message = (struct pci_dev_incoming *)buffer; 2462 hpdev = get_pcichild_wslot(hbus, 2463 dev_message->wslot.slot); 2464 if (hpdev) { 2465 hv_pci_eject_device(hpdev); 2466 put_pcichild(hpdev); 2467 } 2468 break; 2469 2470 case PCI_INVALIDATE_BLOCK: 2471 2472 inval = (struct pci_dev_inval_block *)buffer; 2473 hpdev = get_pcichild_wslot(hbus, 2474 inval->wslot.slot); 2475 if (hpdev) { 2476 if (hpdev->block_invalidate) { 2477 hpdev->block_invalidate( 2478 hpdev->invalidate_context, 2479 inval->block_mask); 2480 } 2481 put_pcichild(hpdev); 2482 } 2483 break; 2484 2485 default: 2486 dev_warn(&hbus->hdev->device, 2487 "Unimplemented protocol message %x\n", 2488 new_message->message_type.type); 2489 break; 2490 } 2491 break; 2492 2493 default: 2494 dev_err(&hbus->hdev->device, 2495 "unhandled packet type %d, tid %llx len %d\n", 2496 desc->type, req_id, bytes_recvd); 2497 break; 2498 } 2499 } 2500 2501 kfree(buffer); 2502 } 2503 2504 /** 2505 * hv_pci_protocol_negotiation() - Set up protocol 2506 * @hdev: VMBus's tracking struct for this root PCI bus. 2507 * @version: Array of supported channel protocol versions in 2508 * the order of probing - highest go first. 2509 * @num_version: Number of elements in the version array. 2510 * 2511 * This driver is intended to support running on Windows 10 2512 * (server) and later versions. It will not run on earlier 2513 * versions, as they assume that many of the operations which 2514 * Linux needs accomplished with a spinlock held were done via 2515 * asynchronous messaging via VMBus. Windows 10 increases the 2516 * surface area of PCI emulation so that these actions can take 2517 * place by suspending a virtual processor for their duration. 2518 * 2519 * This function negotiates the channel protocol version, 2520 * failing if the host doesn't support the necessary protocol 2521 * level. 2522 */ 2523 static int hv_pci_protocol_negotiation(struct hv_device *hdev, 2524 enum pci_protocol_version_t version[], 2525 int num_version) 2526 { 2527 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 2528 struct pci_version_request *version_req; 2529 struct hv_pci_compl comp_pkt; 2530 struct pci_packet *pkt; 2531 int ret; 2532 int i; 2533 2534 /* 2535 * Initiate the handshake with the host and negotiate 2536 * a version that the host can support. We start with the 2537 * highest version number and go down if the host cannot 2538 * support it. 2539 */ 2540 pkt = kzalloc(sizeof(*pkt) + sizeof(*version_req), GFP_KERNEL); 2541 if (!pkt) 2542 return -ENOMEM; 2543 2544 init_completion(&comp_pkt.host_event); 2545 pkt->completion_func = hv_pci_generic_compl; 2546 pkt->compl_ctxt = &comp_pkt; 2547 version_req = (struct pci_version_request *)&pkt->message; 2548 version_req->message_type.type = PCI_QUERY_PROTOCOL_VERSION; 2549 2550 for (i = 0; i < num_version; i++) { 2551 version_req->protocol_version = version[i]; 2552 ret = vmbus_sendpacket(hdev->channel, version_req, 2553 sizeof(struct pci_version_request), 2554 (unsigned long)pkt, VM_PKT_DATA_INBAND, 2555 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 2556 if (!ret) 2557 ret = wait_for_response(hdev, &comp_pkt.host_event); 2558 2559 if (ret) { 2560 dev_err(&hdev->device, 2561 "PCI Pass-through VSP failed to request version: %d", 2562 ret); 2563 goto exit; 2564 } 2565 2566 if (comp_pkt.completion_status >= 0) { 2567 hbus->protocol_version = version[i]; 2568 dev_info(&hdev->device, 2569 "PCI VMBus probing: Using version %#x\n", 2570 hbus->protocol_version); 2571 goto exit; 2572 } 2573 2574 if (comp_pkt.completion_status != STATUS_REVISION_MISMATCH) { 2575 dev_err(&hdev->device, 2576 "PCI Pass-through VSP failed version request: %#x", 2577 comp_pkt.completion_status); 2578 ret = -EPROTO; 2579 goto exit; 2580 } 2581 2582 reinit_completion(&comp_pkt.host_event); 2583 } 2584 2585 dev_err(&hdev->device, 2586 "PCI pass-through VSP failed to find supported version"); 2587 ret = -EPROTO; 2588 2589 exit: 2590 kfree(pkt); 2591 return ret; 2592 } 2593 2594 /** 2595 * hv_pci_free_bridge_windows() - Release memory regions for the 2596 * bus 2597 * @hbus: Root PCI bus, as understood by this driver 2598 */ 2599 static void hv_pci_free_bridge_windows(struct hv_pcibus_device *hbus) 2600 { 2601 /* 2602 * Set the resources back to the way they looked when they 2603 * were allocated by setting IORESOURCE_BUSY again. 2604 */ 2605 2606 if (hbus->low_mmio_space && hbus->low_mmio_res) { 2607 hbus->low_mmio_res->flags |= IORESOURCE_BUSY; 2608 vmbus_free_mmio(hbus->low_mmio_res->start, 2609 resource_size(hbus->low_mmio_res)); 2610 } 2611 2612 if (hbus->high_mmio_space && hbus->high_mmio_res) { 2613 hbus->high_mmio_res->flags |= IORESOURCE_BUSY; 2614 vmbus_free_mmio(hbus->high_mmio_res->start, 2615 resource_size(hbus->high_mmio_res)); 2616 } 2617 } 2618 2619 /** 2620 * hv_pci_allocate_bridge_windows() - Allocate memory regions 2621 * for the bus 2622 * @hbus: Root PCI bus, as understood by this driver 2623 * 2624 * This function calls vmbus_allocate_mmio(), which is itself a 2625 * bit of a compromise. Ideally, we might change the pnp layer 2626 * in the kernel such that it comprehends either PCI devices 2627 * which are "grandchildren of ACPI," with some intermediate bus 2628 * node (in this case, VMBus) or change it such that it 2629 * understands VMBus. The pnp layer, however, has been declared 2630 * deprecated, and not subject to change. 2631 * 2632 * The workaround, implemented here, is to ask VMBus to allocate 2633 * MMIO space for this bus. VMBus itself knows which ranges are 2634 * appropriate by looking at its own ACPI objects. Then, after 2635 * these ranges are claimed, they're modified to look like they 2636 * would have looked if the ACPI and pnp code had allocated 2637 * bridge windows. These descriptors have to exist in this form 2638 * in order to satisfy the code which will get invoked when the 2639 * endpoint PCI function driver calls request_mem_region() or 2640 * request_mem_region_exclusive(). 2641 * 2642 * Return: 0 on success, -errno on failure 2643 */ 2644 static int hv_pci_allocate_bridge_windows(struct hv_pcibus_device *hbus) 2645 { 2646 resource_size_t align; 2647 int ret; 2648 2649 if (hbus->low_mmio_space) { 2650 align = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space)); 2651 ret = vmbus_allocate_mmio(&hbus->low_mmio_res, hbus->hdev, 0, 2652 (u64)(u32)0xffffffff, 2653 hbus->low_mmio_space, 2654 align, false); 2655 if (ret) { 2656 dev_err(&hbus->hdev->device, 2657 "Need %#llx of low MMIO space. Consider reconfiguring the VM.\n", 2658 hbus->low_mmio_space); 2659 return ret; 2660 } 2661 2662 /* Modify this resource to become a bridge window. */ 2663 hbus->low_mmio_res->flags |= IORESOURCE_WINDOW; 2664 hbus->low_mmio_res->flags &= ~IORESOURCE_BUSY; 2665 pci_add_resource(&hbus->resources_for_children, 2666 hbus->low_mmio_res); 2667 } 2668 2669 if (hbus->high_mmio_space) { 2670 align = 1ULL << (63 - __builtin_clzll(hbus->high_mmio_space)); 2671 ret = vmbus_allocate_mmio(&hbus->high_mmio_res, hbus->hdev, 2672 0x100000000, -1, 2673 hbus->high_mmio_space, align, 2674 false); 2675 if (ret) { 2676 dev_err(&hbus->hdev->device, 2677 "Need %#llx of high MMIO space. Consider reconfiguring the VM.\n", 2678 hbus->high_mmio_space); 2679 goto release_low_mmio; 2680 } 2681 2682 /* Modify this resource to become a bridge window. */ 2683 hbus->high_mmio_res->flags |= IORESOURCE_WINDOW; 2684 hbus->high_mmio_res->flags &= ~IORESOURCE_BUSY; 2685 pci_add_resource(&hbus->resources_for_children, 2686 hbus->high_mmio_res); 2687 } 2688 2689 return 0; 2690 2691 release_low_mmio: 2692 if (hbus->low_mmio_res) { 2693 vmbus_free_mmio(hbus->low_mmio_res->start, 2694 resource_size(hbus->low_mmio_res)); 2695 } 2696 2697 return ret; 2698 } 2699 2700 /** 2701 * hv_allocate_config_window() - Find MMIO space for PCI Config 2702 * @hbus: Root PCI bus, as understood by this driver 2703 * 2704 * This function claims memory-mapped I/O space for accessing 2705 * configuration space for the functions on this bus. 2706 * 2707 * Return: 0 on success, -errno on failure 2708 */ 2709 static int hv_allocate_config_window(struct hv_pcibus_device *hbus) 2710 { 2711 int ret; 2712 2713 /* 2714 * Set up a region of MMIO space to use for accessing configuration 2715 * space. 2716 */ 2717 ret = vmbus_allocate_mmio(&hbus->mem_config, hbus->hdev, 0, -1, 2718 PCI_CONFIG_MMIO_LENGTH, 0x1000, false); 2719 if (ret) 2720 return ret; 2721 2722 /* 2723 * vmbus_allocate_mmio() gets used for allocating both device endpoint 2724 * resource claims (those which cannot be overlapped) and the ranges 2725 * which are valid for the children of this bus, which are intended 2726 * to be overlapped by those children. Set the flag on this claim 2727 * meaning that this region can't be overlapped. 2728 */ 2729 2730 hbus->mem_config->flags |= IORESOURCE_BUSY; 2731 2732 return 0; 2733 } 2734 2735 static void hv_free_config_window(struct hv_pcibus_device *hbus) 2736 { 2737 vmbus_free_mmio(hbus->mem_config->start, PCI_CONFIG_MMIO_LENGTH); 2738 } 2739 2740 static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs); 2741 2742 /** 2743 * hv_pci_enter_d0() - Bring the "bus" into the D0 power state 2744 * @hdev: VMBus's tracking struct for this root PCI bus 2745 * 2746 * Return: 0 on success, -errno on failure 2747 */ 2748 static int hv_pci_enter_d0(struct hv_device *hdev) 2749 { 2750 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 2751 struct pci_bus_d0_entry *d0_entry; 2752 struct hv_pci_compl comp_pkt; 2753 struct pci_packet *pkt; 2754 int ret; 2755 2756 /* 2757 * Tell the host that the bus is ready to use, and moved into the 2758 * powered-on state. This includes telling the host which region 2759 * of memory-mapped I/O space has been chosen for configuration space 2760 * access. 2761 */ 2762 pkt = kzalloc(sizeof(*pkt) + sizeof(*d0_entry), GFP_KERNEL); 2763 if (!pkt) 2764 return -ENOMEM; 2765 2766 init_completion(&comp_pkt.host_event); 2767 pkt->completion_func = hv_pci_generic_compl; 2768 pkt->compl_ctxt = &comp_pkt; 2769 d0_entry = (struct pci_bus_d0_entry *)&pkt->message; 2770 d0_entry->message_type.type = PCI_BUS_D0ENTRY; 2771 d0_entry->mmio_base = hbus->mem_config->start; 2772 2773 ret = vmbus_sendpacket(hdev->channel, d0_entry, sizeof(*d0_entry), 2774 (unsigned long)pkt, VM_PKT_DATA_INBAND, 2775 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 2776 if (!ret) 2777 ret = wait_for_response(hdev, &comp_pkt.host_event); 2778 2779 if (ret) 2780 goto exit; 2781 2782 if (comp_pkt.completion_status < 0) { 2783 dev_err(&hdev->device, 2784 "PCI Pass-through VSP failed D0 Entry with status %x\n", 2785 comp_pkt.completion_status); 2786 ret = -EPROTO; 2787 goto exit; 2788 } 2789 2790 ret = 0; 2791 2792 exit: 2793 kfree(pkt); 2794 return ret; 2795 } 2796 2797 /** 2798 * hv_pci_query_relations() - Ask host to send list of child 2799 * devices 2800 * @hdev: VMBus's tracking struct for this root PCI bus 2801 * 2802 * Return: 0 on success, -errno on failure 2803 */ 2804 static int hv_pci_query_relations(struct hv_device *hdev) 2805 { 2806 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 2807 struct pci_message message; 2808 struct completion comp; 2809 int ret; 2810 2811 /* Ask the host to send along the list of child devices */ 2812 init_completion(&comp); 2813 if (cmpxchg(&hbus->survey_event, NULL, &comp)) 2814 return -ENOTEMPTY; 2815 2816 memset(&message, 0, sizeof(message)); 2817 message.type = PCI_QUERY_BUS_RELATIONS; 2818 2819 ret = vmbus_sendpacket(hdev->channel, &message, sizeof(message), 2820 0, VM_PKT_DATA_INBAND, 0); 2821 if (!ret) 2822 ret = wait_for_response(hdev, &comp); 2823 2824 return ret; 2825 } 2826 2827 /** 2828 * hv_send_resources_allocated() - Report local resource choices 2829 * @hdev: VMBus's tracking struct for this root PCI bus 2830 * 2831 * The host OS is expecting to be sent a request as a message 2832 * which contains all the resources that the device will use. 2833 * The response contains those same resources, "translated" 2834 * which is to say, the values which should be used by the 2835 * hardware, when it delivers an interrupt. (MMIO resources are 2836 * used in local terms.) This is nice for Windows, and lines up 2837 * with the FDO/PDO split, which doesn't exist in Linux. Linux 2838 * is deeply expecting to scan an emulated PCI configuration 2839 * space. So this message is sent here only to drive the state 2840 * machine on the host forward. 2841 * 2842 * Return: 0 on success, -errno on failure 2843 */ 2844 static int hv_send_resources_allocated(struct hv_device *hdev) 2845 { 2846 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 2847 struct pci_resources_assigned *res_assigned; 2848 struct pci_resources_assigned2 *res_assigned2; 2849 struct hv_pci_compl comp_pkt; 2850 struct hv_pci_dev *hpdev; 2851 struct pci_packet *pkt; 2852 size_t size_res; 2853 int wslot; 2854 int ret; 2855 2856 size_res = (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2) 2857 ? sizeof(*res_assigned) : sizeof(*res_assigned2); 2858 2859 pkt = kmalloc(sizeof(*pkt) + size_res, GFP_KERNEL); 2860 if (!pkt) 2861 return -ENOMEM; 2862 2863 ret = 0; 2864 2865 for (wslot = 0; wslot < 256; wslot++) { 2866 hpdev = get_pcichild_wslot(hbus, wslot); 2867 if (!hpdev) 2868 continue; 2869 2870 memset(pkt, 0, sizeof(*pkt) + size_res); 2871 init_completion(&comp_pkt.host_event); 2872 pkt->completion_func = hv_pci_generic_compl; 2873 pkt->compl_ctxt = &comp_pkt; 2874 2875 if (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2) { 2876 res_assigned = 2877 (struct pci_resources_assigned *)&pkt->message; 2878 res_assigned->message_type.type = 2879 PCI_RESOURCES_ASSIGNED; 2880 res_assigned->wslot.slot = hpdev->desc.win_slot.slot; 2881 } else { 2882 res_assigned2 = 2883 (struct pci_resources_assigned2 *)&pkt->message; 2884 res_assigned2->message_type.type = 2885 PCI_RESOURCES_ASSIGNED2; 2886 res_assigned2->wslot.slot = hpdev->desc.win_slot.slot; 2887 } 2888 put_pcichild(hpdev); 2889 2890 ret = vmbus_sendpacket(hdev->channel, &pkt->message, 2891 size_res, (unsigned long)pkt, 2892 VM_PKT_DATA_INBAND, 2893 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 2894 if (!ret) 2895 ret = wait_for_response(hdev, &comp_pkt.host_event); 2896 if (ret) 2897 break; 2898 2899 if (comp_pkt.completion_status < 0) { 2900 ret = -EPROTO; 2901 dev_err(&hdev->device, 2902 "resource allocated returned 0x%x", 2903 comp_pkt.completion_status); 2904 break; 2905 } 2906 2907 hbus->wslot_res_allocated = wslot; 2908 } 2909 2910 kfree(pkt); 2911 return ret; 2912 } 2913 2914 /** 2915 * hv_send_resources_released() - Report local resources 2916 * released 2917 * @hdev: VMBus's tracking struct for this root PCI bus 2918 * 2919 * Return: 0 on success, -errno on failure 2920 */ 2921 static int hv_send_resources_released(struct hv_device *hdev) 2922 { 2923 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 2924 struct pci_child_message pkt; 2925 struct hv_pci_dev *hpdev; 2926 int wslot; 2927 int ret; 2928 2929 for (wslot = hbus->wslot_res_allocated; wslot >= 0; wslot--) { 2930 hpdev = get_pcichild_wslot(hbus, wslot); 2931 if (!hpdev) 2932 continue; 2933 2934 memset(&pkt, 0, sizeof(pkt)); 2935 pkt.message_type.type = PCI_RESOURCES_RELEASED; 2936 pkt.wslot.slot = hpdev->desc.win_slot.slot; 2937 2938 put_pcichild(hpdev); 2939 2940 ret = vmbus_sendpacket(hdev->channel, &pkt, sizeof(pkt), 0, 2941 VM_PKT_DATA_INBAND, 0); 2942 if (ret) 2943 return ret; 2944 2945 hbus->wslot_res_allocated = wslot - 1; 2946 } 2947 2948 hbus->wslot_res_allocated = -1; 2949 2950 return 0; 2951 } 2952 2953 #define HVPCI_DOM_MAP_SIZE (64 * 1024) 2954 static DECLARE_BITMAP(hvpci_dom_map, HVPCI_DOM_MAP_SIZE); 2955 2956 /* 2957 * PCI domain number 0 is used by emulated devices on Gen1 VMs, so define 0 2958 * as invalid for passthrough PCI devices of this driver. 2959 */ 2960 #define HVPCI_DOM_INVALID 0 2961 2962 /** 2963 * hv_get_dom_num() - Get a valid PCI domain number 2964 * Check if the PCI domain number is in use, and return another number if 2965 * it is in use. 2966 * 2967 * @dom: Requested domain number 2968 * 2969 * return: domain number on success, HVPCI_DOM_INVALID on failure 2970 */ 2971 static u16 hv_get_dom_num(u16 dom) 2972 { 2973 unsigned int i; 2974 2975 if (test_and_set_bit(dom, hvpci_dom_map) == 0) 2976 return dom; 2977 2978 for_each_clear_bit(i, hvpci_dom_map, HVPCI_DOM_MAP_SIZE) { 2979 if (test_and_set_bit(i, hvpci_dom_map) == 0) 2980 return i; 2981 } 2982 2983 return HVPCI_DOM_INVALID; 2984 } 2985 2986 /** 2987 * hv_put_dom_num() - Mark the PCI domain number as free 2988 * @dom: Domain number to be freed 2989 */ 2990 static void hv_put_dom_num(u16 dom) 2991 { 2992 clear_bit(dom, hvpci_dom_map); 2993 } 2994 2995 /** 2996 * hv_pci_probe() - New VMBus channel probe, for a root PCI bus 2997 * @hdev: VMBus's tracking struct for this root PCI bus 2998 * @dev_id: Identifies the device itself 2999 * 3000 * Return: 0 on success, -errno on failure 3001 */ 3002 static int hv_pci_probe(struct hv_device *hdev, 3003 const struct hv_vmbus_device_id *dev_id) 3004 { 3005 struct hv_pcibus_device *hbus; 3006 u16 dom_req, dom; 3007 char *name; 3008 bool enter_d0_retry = true; 3009 int ret; 3010 3011 /* 3012 * hv_pcibus_device contains the hypercall arguments for retargeting in 3013 * hv_irq_unmask(). Those must not cross a page boundary. 3014 */ 3015 BUILD_BUG_ON(sizeof(*hbus) > HV_HYP_PAGE_SIZE); 3016 3017 /* 3018 * With the recent 59bb47985c1d ("mm, sl[aou]b: guarantee natural 3019 * alignment for kmalloc(power-of-two)"), kzalloc() is able to allocate 3020 * a 4KB buffer that is guaranteed to be 4KB-aligned. Here the size and 3021 * alignment of hbus is important because hbus's field 3022 * retarget_msi_interrupt_params must not cross a 4KB page boundary. 3023 * 3024 * Here we prefer kzalloc to get_zeroed_page(), because a buffer 3025 * allocated by the latter is not tracked and scanned by kmemleak, and 3026 * hence kmemleak reports the pointer contained in the hbus buffer 3027 * (i.e. the hpdev struct, which is created in new_pcichild_device() and 3028 * is tracked by hbus->children) as memory leak (false positive). 3029 * 3030 * If the kernel doesn't have 59bb47985c1d, get_zeroed_page() *must* be 3031 * used to allocate the hbus buffer and we can avoid the kmemleak false 3032 * positive by using kmemleak_alloc() and kmemleak_free() to ask 3033 * kmemleak to track and scan the hbus buffer. 3034 */ 3035 hbus = kzalloc(HV_HYP_PAGE_SIZE, GFP_KERNEL); 3036 if (!hbus) 3037 return -ENOMEM; 3038 hbus->state = hv_pcibus_init; 3039 hbus->wslot_res_allocated = -1; 3040 3041 /* 3042 * The PCI bus "domain" is what is called "segment" in ACPI and other 3043 * specs. Pull it from the instance ID, to get something usually 3044 * unique. In rare cases of collision, we will find out another number 3045 * not in use. 3046 * 3047 * Note that, since this code only runs in a Hyper-V VM, Hyper-V 3048 * together with this guest driver can guarantee that (1) The only 3049 * domain used by Gen1 VMs for something that looks like a physical 3050 * PCI bus (which is actually emulated by the hypervisor) is domain 0. 3051 * (2) There will be no overlap between domains (after fixing possible 3052 * collisions) in the same VM. 3053 */ 3054 dom_req = hdev->dev_instance.b[5] << 8 | hdev->dev_instance.b[4]; 3055 dom = hv_get_dom_num(dom_req); 3056 3057 if (dom == HVPCI_DOM_INVALID) { 3058 dev_err(&hdev->device, 3059 "Unable to use dom# 0x%hx or other numbers", dom_req); 3060 ret = -EINVAL; 3061 goto free_bus; 3062 } 3063 3064 if (dom != dom_req) 3065 dev_info(&hdev->device, 3066 "PCI dom# 0x%hx has collision, using 0x%hx", 3067 dom_req, dom); 3068 3069 hbus->sysdata.domain = dom; 3070 3071 hbus->hdev = hdev; 3072 INIT_LIST_HEAD(&hbus->children); 3073 INIT_LIST_HEAD(&hbus->dr_list); 3074 INIT_LIST_HEAD(&hbus->resources_for_children); 3075 spin_lock_init(&hbus->config_lock); 3076 spin_lock_init(&hbus->device_list_lock); 3077 spin_lock_init(&hbus->retarget_msi_interrupt_lock); 3078 hbus->wq = alloc_ordered_workqueue("hv_pci_%x", 0, 3079 hbus->sysdata.domain); 3080 if (!hbus->wq) { 3081 ret = -ENOMEM; 3082 goto free_dom; 3083 } 3084 3085 ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0, 3086 hv_pci_onchannelcallback, hbus); 3087 if (ret) 3088 goto destroy_wq; 3089 3090 hv_set_drvdata(hdev, hbus); 3091 3092 ret = hv_pci_protocol_negotiation(hdev, pci_protocol_versions, 3093 ARRAY_SIZE(pci_protocol_versions)); 3094 if (ret) 3095 goto close; 3096 3097 ret = hv_allocate_config_window(hbus); 3098 if (ret) 3099 goto close; 3100 3101 hbus->cfg_addr = ioremap(hbus->mem_config->start, 3102 PCI_CONFIG_MMIO_LENGTH); 3103 if (!hbus->cfg_addr) { 3104 dev_err(&hdev->device, 3105 "Unable to map a virtual address for config space\n"); 3106 ret = -ENOMEM; 3107 goto free_config; 3108 } 3109 3110 name = kasprintf(GFP_KERNEL, "%pUL", &hdev->dev_instance); 3111 if (!name) { 3112 ret = -ENOMEM; 3113 goto unmap; 3114 } 3115 3116 hbus->sysdata.fwnode = irq_domain_alloc_named_fwnode(name); 3117 kfree(name); 3118 if (!hbus->sysdata.fwnode) { 3119 ret = -ENOMEM; 3120 goto unmap; 3121 } 3122 3123 ret = hv_pcie_init_irq_domain(hbus); 3124 if (ret) 3125 goto free_fwnode; 3126 3127 retry: 3128 ret = hv_pci_query_relations(hdev); 3129 if (ret) 3130 goto free_irq_domain; 3131 3132 ret = hv_pci_enter_d0(hdev); 3133 /* 3134 * In certain case (Kdump) the pci device of interest was 3135 * not cleanly shut down and resource is still held on host 3136 * side, the host could return invalid device status. 3137 * We need to explicitly request host to release the resource 3138 * and try to enter D0 again. 3139 * Since the hv_pci_bus_exit() call releases structures 3140 * of all its child devices, we need to start the retry from 3141 * hv_pci_query_relations() call, requesting host to send 3142 * the synchronous child device relations message before this 3143 * information is needed in hv_send_resources_allocated() 3144 * call later. 3145 */ 3146 if (ret == -EPROTO && enter_d0_retry) { 3147 enter_d0_retry = false; 3148 3149 dev_err(&hdev->device, "Retrying D0 Entry\n"); 3150 3151 /* 3152 * Hv_pci_bus_exit() calls hv_send_resources_released() 3153 * to free up resources of its child devices. 3154 * In the kdump kernel we need to set the 3155 * wslot_res_allocated to 255 so it scans all child 3156 * devices to release resources allocated in the 3157 * normal kernel before panic happened. 3158 */ 3159 hbus->wslot_res_allocated = 255; 3160 ret = hv_pci_bus_exit(hdev, true); 3161 3162 if (ret == 0) 3163 goto retry; 3164 3165 dev_err(&hdev->device, 3166 "Retrying D0 failed with ret %d\n", ret); 3167 } 3168 if (ret) 3169 goto free_irq_domain; 3170 3171 ret = hv_pci_allocate_bridge_windows(hbus); 3172 if (ret) 3173 goto exit_d0; 3174 3175 ret = hv_send_resources_allocated(hdev); 3176 if (ret) 3177 goto free_windows; 3178 3179 prepopulate_bars(hbus); 3180 3181 hbus->state = hv_pcibus_probed; 3182 3183 ret = create_root_hv_pci_bus(hbus); 3184 if (ret) 3185 goto free_windows; 3186 3187 return 0; 3188 3189 free_windows: 3190 hv_pci_free_bridge_windows(hbus); 3191 exit_d0: 3192 (void) hv_pci_bus_exit(hdev, true); 3193 free_irq_domain: 3194 irq_domain_remove(hbus->irq_domain); 3195 free_fwnode: 3196 irq_domain_free_fwnode(hbus->sysdata.fwnode); 3197 unmap: 3198 iounmap(hbus->cfg_addr); 3199 free_config: 3200 hv_free_config_window(hbus); 3201 close: 3202 vmbus_close(hdev->channel); 3203 destroy_wq: 3204 destroy_workqueue(hbus->wq); 3205 free_dom: 3206 hv_put_dom_num(hbus->sysdata.domain); 3207 free_bus: 3208 kfree(hbus); 3209 return ret; 3210 } 3211 3212 static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs) 3213 { 3214 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3215 struct { 3216 struct pci_packet teardown_packet; 3217 u8 buffer[sizeof(struct pci_message)]; 3218 } pkt; 3219 struct hv_pci_compl comp_pkt; 3220 struct hv_pci_dev *hpdev, *tmp; 3221 unsigned long flags; 3222 int ret; 3223 3224 /* 3225 * After the host sends the RESCIND_CHANNEL message, it doesn't 3226 * access the per-channel ringbuffer any longer. 3227 */ 3228 if (hdev->channel->rescind) 3229 return 0; 3230 3231 if (!keep_devs) { 3232 /* Delete any children which might still exist. */ 3233 spin_lock_irqsave(&hbus->device_list_lock, flags); 3234 list_for_each_entry_safe(hpdev, tmp, &hbus->children, list_entry) { 3235 list_del(&hpdev->list_entry); 3236 if (hpdev->pci_slot) 3237 pci_destroy_slot(hpdev->pci_slot); 3238 /* For the two refs got in new_pcichild_device() */ 3239 put_pcichild(hpdev); 3240 put_pcichild(hpdev); 3241 } 3242 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 3243 } 3244 3245 ret = hv_send_resources_released(hdev); 3246 if (ret) { 3247 dev_err(&hdev->device, 3248 "Couldn't send resources released packet(s)\n"); 3249 return ret; 3250 } 3251 3252 memset(&pkt.teardown_packet, 0, sizeof(pkt.teardown_packet)); 3253 init_completion(&comp_pkt.host_event); 3254 pkt.teardown_packet.completion_func = hv_pci_generic_compl; 3255 pkt.teardown_packet.compl_ctxt = &comp_pkt; 3256 pkt.teardown_packet.message[0].type = PCI_BUS_D0EXIT; 3257 3258 ret = vmbus_sendpacket(hdev->channel, &pkt.teardown_packet.message, 3259 sizeof(struct pci_message), 3260 (unsigned long)&pkt.teardown_packet, 3261 VM_PKT_DATA_INBAND, 3262 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 3263 if (ret) 3264 return ret; 3265 3266 if (wait_for_completion_timeout(&comp_pkt.host_event, 10 * HZ) == 0) 3267 return -ETIMEDOUT; 3268 3269 return 0; 3270 } 3271 3272 /** 3273 * hv_pci_remove() - Remove routine for this VMBus channel 3274 * @hdev: VMBus's tracking struct for this root PCI bus 3275 * 3276 * Return: 0 on success, -errno on failure 3277 */ 3278 static int hv_pci_remove(struct hv_device *hdev) 3279 { 3280 struct hv_pcibus_device *hbus; 3281 int ret; 3282 3283 hbus = hv_get_drvdata(hdev); 3284 if (hbus->state == hv_pcibus_installed) { 3285 tasklet_disable(&hdev->channel->callback_event); 3286 hbus->state = hv_pcibus_removing; 3287 tasklet_enable(&hdev->channel->callback_event); 3288 destroy_workqueue(hbus->wq); 3289 hbus->wq = NULL; 3290 /* 3291 * At this point, no work is running or can be scheduled 3292 * on hbus-wq. We can't race with hv_pci_devices_present() 3293 * or hv_pci_eject_device(), it's safe to proceed. 3294 */ 3295 3296 /* Remove the bus from PCI's point of view. */ 3297 pci_lock_rescan_remove(); 3298 pci_stop_root_bus(hbus->pci_bus); 3299 hv_pci_remove_slots(hbus); 3300 pci_remove_root_bus(hbus->pci_bus); 3301 pci_unlock_rescan_remove(); 3302 } 3303 3304 ret = hv_pci_bus_exit(hdev, false); 3305 3306 vmbus_close(hdev->channel); 3307 3308 iounmap(hbus->cfg_addr); 3309 hv_free_config_window(hbus); 3310 pci_free_resource_list(&hbus->resources_for_children); 3311 hv_pci_free_bridge_windows(hbus); 3312 irq_domain_remove(hbus->irq_domain); 3313 irq_domain_free_fwnode(hbus->sysdata.fwnode); 3314 3315 hv_put_dom_num(hbus->sysdata.domain); 3316 3317 kfree(hbus); 3318 return ret; 3319 } 3320 3321 static int hv_pci_suspend(struct hv_device *hdev) 3322 { 3323 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3324 enum hv_pcibus_state old_state; 3325 int ret; 3326 3327 /* 3328 * hv_pci_suspend() must make sure there are no pending work items 3329 * before calling vmbus_close(), since it runs in a process context 3330 * as a callback in dpm_suspend(). When it starts to run, the channel 3331 * callback hv_pci_onchannelcallback(), which runs in a tasklet 3332 * context, can be still running concurrently and scheduling new work 3333 * items onto hbus->wq in hv_pci_devices_present() and 3334 * hv_pci_eject_device(), and the work item handlers can access the 3335 * vmbus channel, which can be being closed by hv_pci_suspend(), e.g. 3336 * the work item handler pci_devices_present_work() -> 3337 * new_pcichild_device() writes to the vmbus channel. 3338 * 3339 * To eliminate the race, hv_pci_suspend() disables the channel 3340 * callback tasklet, sets hbus->state to hv_pcibus_removing, and 3341 * re-enables the tasklet. This way, when hv_pci_suspend() proceeds, 3342 * it knows that no new work item can be scheduled, and then it flushes 3343 * hbus->wq and safely closes the vmbus channel. 3344 */ 3345 tasklet_disable(&hdev->channel->callback_event); 3346 3347 /* Change the hbus state to prevent new work items. */ 3348 old_state = hbus->state; 3349 if (hbus->state == hv_pcibus_installed) 3350 hbus->state = hv_pcibus_removing; 3351 3352 tasklet_enable(&hdev->channel->callback_event); 3353 3354 if (old_state != hv_pcibus_installed) 3355 return -EINVAL; 3356 3357 flush_workqueue(hbus->wq); 3358 3359 ret = hv_pci_bus_exit(hdev, true); 3360 if (ret) 3361 return ret; 3362 3363 vmbus_close(hdev->channel); 3364 3365 return 0; 3366 } 3367 3368 static int hv_pci_restore_msi_msg(struct pci_dev *pdev, void *arg) 3369 { 3370 struct msi_desc *entry; 3371 struct irq_data *irq_data; 3372 3373 for_each_pci_msi_entry(entry, pdev) { 3374 irq_data = irq_get_irq_data(entry->irq); 3375 if (WARN_ON_ONCE(!irq_data)) 3376 return -EINVAL; 3377 3378 hv_compose_msi_msg(irq_data, &entry->msg); 3379 } 3380 3381 return 0; 3382 } 3383 3384 /* 3385 * Upon resume, pci_restore_msi_state() -> ... -> __pci_write_msi_msg() 3386 * directly writes the MSI/MSI-X registers via MMIO, but since Hyper-V 3387 * doesn't trap and emulate the MMIO accesses, here hv_compose_msi_msg() 3388 * must be used to ask Hyper-V to re-create the IOMMU Interrupt Remapping 3389 * Table entries. 3390 */ 3391 static void hv_pci_restore_msi_state(struct hv_pcibus_device *hbus) 3392 { 3393 pci_walk_bus(hbus->pci_bus, hv_pci_restore_msi_msg, NULL); 3394 } 3395 3396 static int hv_pci_resume(struct hv_device *hdev) 3397 { 3398 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3399 enum pci_protocol_version_t version[1]; 3400 int ret; 3401 3402 hbus->state = hv_pcibus_init; 3403 3404 ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0, 3405 hv_pci_onchannelcallback, hbus); 3406 if (ret) 3407 return ret; 3408 3409 /* Only use the version that was in use before hibernation. */ 3410 version[0] = hbus->protocol_version; 3411 ret = hv_pci_protocol_negotiation(hdev, version, 1); 3412 if (ret) 3413 goto out; 3414 3415 ret = hv_pci_query_relations(hdev); 3416 if (ret) 3417 goto out; 3418 3419 ret = hv_pci_enter_d0(hdev); 3420 if (ret) 3421 goto out; 3422 3423 ret = hv_send_resources_allocated(hdev); 3424 if (ret) 3425 goto out; 3426 3427 prepopulate_bars(hbus); 3428 3429 hv_pci_restore_msi_state(hbus); 3430 3431 hbus->state = hv_pcibus_installed; 3432 return 0; 3433 out: 3434 vmbus_close(hdev->channel); 3435 return ret; 3436 } 3437 3438 static const struct hv_vmbus_device_id hv_pci_id_table[] = { 3439 /* PCI Pass-through Class ID */ 3440 /* 44C4F61D-4444-4400-9D52-802E27EDE19F */ 3441 { HV_PCIE_GUID, }, 3442 { }, 3443 }; 3444 3445 MODULE_DEVICE_TABLE(vmbus, hv_pci_id_table); 3446 3447 static struct hv_driver hv_pci_drv = { 3448 .name = "hv_pci", 3449 .id_table = hv_pci_id_table, 3450 .probe = hv_pci_probe, 3451 .remove = hv_pci_remove, 3452 .suspend = hv_pci_suspend, 3453 .resume = hv_pci_resume, 3454 }; 3455 3456 static void __exit exit_hv_pci_drv(void) 3457 { 3458 vmbus_driver_unregister(&hv_pci_drv); 3459 3460 hvpci_block_ops.read_block = NULL; 3461 hvpci_block_ops.write_block = NULL; 3462 hvpci_block_ops.reg_blk_invalidate = NULL; 3463 } 3464 3465 static int __init init_hv_pci_drv(void) 3466 { 3467 if (!hv_is_hyperv_initialized()) 3468 return -ENODEV; 3469 3470 /* Set the invalid domain number's bit, so it will not be used */ 3471 set_bit(HVPCI_DOM_INVALID, hvpci_dom_map); 3472 3473 /* Initialize PCI block r/w interface */ 3474 hvpci_block_ops.read_block = hv_read_config_block; 3475 hvpci_block_ops.write_block = hv_write_config_block; 3476 hvpci_block_ops.reg_blk_invalidate = hv_register_block_invalidate; 3477 3478 return vmbus_driver_register(&hv_pci_drv); 3479 } 3480 3481 module_init(init_hv_pci_drv); 3482 module_exit(exit_hv_pci_drv); 3483 3484 MODULE_DESCRIPTION("Hyper-V PCI"); 3485 MODULE_LICENSE("GPL v2"); 3486