1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) Microsoft Corporation.
4  *
5  * Author:
6  *   Jake Oshins <jakeo@microsoft.com>
7  *
8  * This driver acts as a paravirtual front-end for PCI Express root buses.
9  * When a PCI Express function (either an entire device or an SR-IOV
10  * Virtual Function) is being passed through to the VM, this driver exposes
11  * a new bus to the guest VM.  This is modeled as a root PCI bus because
12  * no bridges are being exposed to the VM.  In fact, with a "Generation 2"
13  * VM within Hyper-V, there may seem to be no PCI bus at all in the VM
14  * until a device as been exposed using this driver.
15  *
16  * Each root PCI bus has its own PCI domain, which is called "Segment" in
17  * the PCI Firmware Specifications.  Thus while each device passed through
18  * to the VM using this front-end will appear at "device 0", the domain will
19  * be unique.  Typically, each bus will have one PCI function on it, though
20  * this driver does support more than one.
21  *
22  * In order to map the interrupts from the device through to the guest VM,
23  * this driver also implements an IRQ Domain, which handles interrupts (either
24  * MSI or MSI-X) associated with the functions on the bus.  As interrupts are
25  * set up, torn down, or reaffined, this driver communicates with the
26  * underlying hypervisor to adjust the mappings in the I/O MMU so that each
27  * interrupt will be delivered to the correct virtual processor at the right
28  * vector.  This driver does not support level-triggered (line-based)
29  * interrupts, and will report that the Interrupt Line register in the
30  * function's configuration space is zero.
31  *
32  * The rest of this driver mostly maps PCI concepts onto underlying Hyper-V
33  * facilities.  For instance, the configuration space of a function exposed
34  * by Hyper-V is mapped into a single page of memory space, and the
35  * read and write handlers for config space must be aware of this mechanism.
36  * Similarly, device setup and teardown involves messages sent to and from
37  * the PCI back-end driver in Hyper-V.
38  */
39 
40 #include <linux/kernel.h>
41 #include <linux/module.h>
42 #include <linux/pci.h>
43 #include <linux/pci-ecam.h>
44 #include <linux/delay.h>
45 #include <linux/semaphore.h>
46 #include <linux/irq.h>
47 #include <linux/msi.h>
48 #include <linux/hyperv.h>
49 #include <linux/refcount.h>
50 #include <linux/irqdomain.h>
51 #include <linux/acpi.h>
52 #include <asm/mshyperv.h>
53 
54 /*
55  * Protocol versions. The low word is the minor version, the high word the
56  * major version.
57  */
58 
59 #define PCI_MAKE_VERSION(major, minor) ((u32)(((major) << 16) | (minor)))
60 #define PCI_MAJOR_VERSION(version) ((u32)(version) >> 16)
61 #define PCI_MINOR_VERSION(version) ((u32)(version) & 0xff)
62 
63 enum pci_protocol_version_t {
64 	PCI_PROTOCOL_VERSION_1_1 = PCI_MAKE_VERSION(1, 1),	/* Win10 */
65 	PCI_PROTOCOL_VERSION_1_2 = PCI_MAKE_VERSION(1, 2),	/* RS1 */
66 	PCI_PROTOCOL_VERSION_1_3 = PCI_MAKE_VERSION(1, 3),	/* Vibranium */
67 	PCI_PROTOCOL_VERSION_1_4 = PCI_MAKE_VERSION(1, 4),	/* WS2022 */
68 };
69 
70 #define CPU_AFFINITY_ALL	-1ULL
71 
72 /*
73  * Supported protocol versions in the order of probing - highest go
74  * first.
75  */
76 static enum pci_protocol_version_t pci_protocol_versions[] = {
77 	PCI_PROTOCOL_VERSION_1_4,
78 	PCI_PROTOCOL_VERSION_1_3,
79 	PCI_PROTOCOL_VERSION_1_2,
80 	PCI_PROTOCOL_VERSION_1_1,
81 };
82 
83 #define PCI_CONFIG_MMIO_LENGTH	0x2000
84 #define CFG_PAGE_OFFSET 0x1000
85 #define CFG_PAGE_SIZE (PCI_CONFIG_MMIO_LENGTH - CFG_PAGE_OFFSET)
86 
87 #define MAX_SUPPORTED_MSI_MESSAGES 0x400
88 
89 #define STATUS_REVISION_MISMATCH 0xC0000059
90 
91 /* space for 32bit serial number as string */
92 #define SLOT_NAME_SIZE 11
93 
94 /*
95  * Size of requestor for VMbus; the value is based on the observation
96  * that having more than one request outstanding is 'rare', and so 64
97  * should be generous in ensuring that we don't ever run out.
98  */
99 #define HV_PCI_RQSTOR_SIZE 64
100 
101 /*
102  * Message Types
103  */
104 
105 enum pci_message_type {
106 	/*
107 	 * Version 1.1
108 	 */
109 	PCI_MESSAGE_BASE                = 0x42490000,
110 	PCI_BUS_RELATIONS               = PCI_MESSAGE_BASE + 0,
111 	PCI_QUERY_BUS_RELATIONS         = PCI_MESSAGE_BASE + 1,
112 	PCI_POWER_STATE_CHANGE          = PCI_MESSAGE_BASE + 4,
113 	PCI_QUERY_RESOURCE_REQUIREMENTS = PCI_MESSAGE_BASE + 5,
114 	PCI_QUERY_RESOURCE_RESOURCES    = PCI_MESSAGE_BASE + 6,
115 	PCI_BUS_D0ENTRY                 = PCI_MESSAGE_BASE + 7,
116 	PCI_BUS_D0EXIT                  = PCI_MESSAGE_BASE + 8,
117 	PCI_READ_BLOCK                  = PCI_MESSAGE_BASE + 9,
118 	PCI_WRITE_BLOCK                 = PCI_MESSAGE_BASE + 0xA,
119 	PCI_EJECT                       = PCI_MESSAGE_BASE + 0xB,
120 	PCI_QUERY_STOP                  = PCI_MESSAGE_BASE + 0xC,
121 	PCI_REENABLE                    = PCI_MESSAGE_BASE + 0xD,
122 	PCI_QUERY_STOP_FAILED           = PCI_MESSAGE_BASE + 0xE,
123 	PCI_EJECTION_COMPLETE           = PCI_MESSAGE_BASE + 0xF,
124 	PCI_RESOURCES_ASSIGNED          = PCI_MESSAGE_BASE + 0x10,
125 	PCI_RESOURCES_RELEASED          = PCI_MESSAGE_BASE + 0x11,
126 	PCI_INVALIDATE_BLOCK            = PCI_MESSAGE_BASE + 0x12,
127 	PCI_QUERY_PROTOCOL_VERSION      = PCI_MESSAGE_BASE + 0x13,
128 	PCI_CREATE_INTERRUPT_MESSAGE    = PCI_MESSAGE_BASE + 0x14,
129 	PCI_DELETE_INTERRUPT_MESSAGE    = PCI_MESSAGE_BASE + 0x15,
130 	PCI_RESOURCES_ASSIGNED2		= PCI_MESSAGE_BASE + 0x16,
131 	PCI_CREATE_INTERRUPT_MESSAGE2	= PCI_MESSAGE_BASE + 0x17,
132 	PCI_DELETE_INTERRUPT_MESSAGE2	= PCI_MESSAGE_BASE + 0x18, /* unused */
133 	PCI_BUS_RELATIONS2		= PCI_MESSAGE_BASE + 0x19,
134 	PCI_RESOURCES_ASSIGNED3         = PCI_MESSAGE_BASE + 0x1A,
135 	PCI_CREATE_INTERRUPT_MESSAGE3   = PCI_MESSAGE_BASE + 0x1B,
136 	PCI_MESSAGE_MAXIMUM
137 };
138 
139 /*
140  * Structures defining the virtual PCI Express protocol.
141  */
142 
143 union pci_version {
144 	struct {
145 		u16 minor_version;
146 		u16 major_version;
147 	} parts;
148 	u32 version;
149 } __packed;
150 
151 /*
152  * Function numbers are 8-bits wide on Express, as interpreted through ARI,
153  * which is all this driver does.  This representation is the one used in
154  * Windows, which is what is expected when sending this back and forth with
155  * the Hyper-V parent partition.
156  */
157 union win_slot_encoding {
158 	struct {
159 		u32	dev:5;
160 		u32	func:3;
161 		u32	reserved:24;
162 	} bits;
163 	u32 slot;
164 } __packed;
165 
166 /*
167  * Pretty much as defined in the PCI Specifications.
168  */
169 struct pci_function_description {
170 	u16	v_id;	/* vendor ID */
171 	u16	d_id;	/* device ID */
172 	u8	rev;
173 	u8	prog_intf;
174 	u8	subclass;
175 	u8	base_class;
176 	u32	subsystem_id;
177 	union win_slot_encoding win_slot;
178 	u32	ser;	/* serial number */
179 } __packed;
180 
181 enum pci_device_description_flags {
182 	HV_PCI_DEVICE_FLAG_NONE			= 0x0,
183 	HV_PCI_DEVICE_FLAG_NUMA_AFFINITY	= 0x1,
184 };
185 
186 struct pci_function_description2 {
187 	u16	v_id;	/* vendor ID */
188 	u16	d_id;	/* device ID */
189 	u8	rev;
190 	u8	prog_intf;
191 	u8	subclass;
192 	u8	base_class;
193 	u32	subsystem_id;
194 	union	win_slot_encoding win_slot;
195 	u32	ser;	/* serial number */
196 	u32	flags;
197 	u16	virtual_numa_node;
198 	u16	reserved;
199 } __packed;
200 
201 /**
202  * struct hv_msi_desc
203  * @vector:		IDT entry
204  * @delivery_mode:	As defined in Intel's Programmer's
205  *			Reference Manual, Volume 3, Chapter 8.
206  * @vector_count:	Number of contiguous entries in the
207  *			Interrupt Descriptor Table that are
208  *			occupied by this Message-Signaled
209  *			Interrupt. For "MSI", as first defined
210  *			in PCI 2.2, this can be between 1 and
211  *			32. For "MSI-X," as first defined in PCI
212  *			3.0, this must be 1, as each MSI-X table
213  *			entry would have its own descriptor.
214  * @reserved:		Empty space
215  * @cpu_mask:		All the target virtual processors.
216  */
217 struct hv_msi_desc {
218 	u8	vector;
219 	u8	delivery_mode;
220 	u16	vector_count;
221 	u32	reserved;
222 	u64	cpu_mask;
223 } __packed;
224 
225 /**
226  * struct hv_msi_desc2 - 1.2 version of hv_msi_desc
227  * @vector:		IDT entry
228  * @delivery_mode:	As defined in Intel's Programmer's
229  *			Reference Manual, Volume 3, Chapter 8.
230  * @vector_count:	Number of contiguous entries in the
231  *			Interrupt Descriptor Table that are
232  *			occupied by this Message-Signaled
233  *			Interrupt. For "MSI", as first defined
234  *			in PCI 2.2, this can be between 1 and
235  *			32. For "MSI-X," as first defined in PCI
236  *			3.0, this must be 1, as each MSI-X table
237  *			entry would have its own descriptor.
238  * @processor_count:	number of bits enabled in array.
239  * @processor_array:	All the target virtual processors.
240  */
241 struct hv_msi_desc2 {
242 	u8	vector;
243 	u8	delivery_mode;
244 	u16	vector_count;
245 	u16	processor_count;
246 	u16	processor_array[32];
247 } __packed;
248 
249 /*
250  * struct hv_msi_desc3 - 1.3 version of hv_msi_desc
251  *	Everything is the same as in 'hv_msi_desc2' except that the size of the
252  *	'vector' field is larger to support bigger vector values. For ex: LPI
253  *	vectors on ARM.
254  */
255 struct hv_msi_desc3 {
256 	u32	vector;
257 	u8	delivery_mode;
258 	u8	reserved;
259 	u16	vector_count;
260 	u16	processor_count;
261 	u16	processor_array[32];
262 } __packed;
263 
264 /**
265  * struct tran_int_desc
266  * @reserved:		unused, padding
267  * @vector_count:	same as in hv_msi_desc
268  * @data:		This is the "data payload" value that is
269  *			written by the device when it generates
270  *			a message-signaled interrupt, either MSI
271  *			or MSI-X.
272  * @address:		This is the address to which the data
273  *			payload is written on interrupt
274  *			generation.
275  */
276 struct tran_int_desc {
277 	u16	reserved;
278 	u16	vector_count;
279 	u32	data;
280 	u64	address;
281 } __packed;
282 
283 /*
284  * A generic message format for virtual PCI.
285  * Specific message formats are defined later in the file.
286  */
287 
288 struct pci_message {
289 	u32 type;
290 } __packed;
291 
292 struct pci_child_message {
293 	struct pci_message message_type;
294 	union win_slot_encoding wslot;
295 } __packed;
296 
297 struct pci_incoming_message {
298 	struct vmpacket_descriptor hdr;
299 	struct pci_message message_type;
300 } __packed;
301 
302 struct pci_response {
303 	struct vmpacket_descriptor hdr;
304 	s32 status;			/* negative values are failures */
305 } __packed;
306 
307 struct pci_packet {
308 	void (*completion_func)(void *context, struct pci_response *resp,
309 				int resp_packet_size);
310 	void *compl_ctxt;
311 
312 	struct pci_message message[];
313 };
314 
315 /*
316  * Specific message types supporting the PCI protocol.
317  */
318 
319 /*
320  * Version negotiation message. Sent from the guest to the host.
321  * The guest is free to try different versions until the host
322  * accepts the version.
323  *
324  * pci_version: The protocol version requested.
325  * is_last_attempt: If TRUE, this is the last version guest will request.
326  * reservedz: Reserved field, set to zero.
327  */
328 
329 struct pci_version_request {
330 	struct pci_message message_type;
331 	u32 protocol_version;
332 } __packed;
333 
334 /*
335  * Bus D0 Entry.  This is sent from the guest to the host when the virtual
336  * bus (PCI Express port) is ready for action.
337  */
338 
339 struct pci_bus_d0_entry {
340 	struct pci_message message_type;
341 	u32 reserved;
342 	u64 mmio_base;
343 } __packed;
344 
345 struct pci_bus_relations {
346 	struct pci_incoming_message incoming;
347 	u32 device_count;
348 	struct pci_function_description func[];
349 } __packed;
350 
351 struct pci_bus_relations2 {
352 	struct pci_incoming_message incoming;
353 	u32 device_count;
354 	struct pci_function_description2 func[];
355 } __packed;
356 
357 struct pci_q_res_req_response {
358 	struct vmpacket_descriptor hdr;
359 	s32 status;			/* negative values are failures */
360 	u32 probed_bar[PCI_STD_NUM_BARS];
361 } __packed;
362 
363 struct pci_set_power {
364 	struct pci_message message_type;
365 	union win_slot_encoding wslot;
366 	u32 power_state;		/* In Windows terms */
367 	u32 reserved;
368 } __packed;
369 
370 struct pci_set_power_response {
371 	struct vmpacket_descriptor hdr;
372 	s32 status;			/* negative values are failures */
373 	union win_slot_encoding wslot;
374 	u32 resultant_state;		/* In Windows terms */
375 	u32 reserved;
376 } __packed;
377 
378 struct pci_resources_assigned {
379 	struct pci_message message_type;
380 	union win_slot_encoding wslot;
381 	u8 memory_range[0x14][6];	/* not used here */
382 	u32 msi_descriptors;
383 	u32 reserved[4];
384 } __packed;
385 
386 struct pci_resources_assigned2 {
387 	struct pci_message message_type;
388 	union win_slot_encoding wslot;
389 	u8 memory_range[0x14][6];	/* not used here */
390 	u32 msi_descriptor_count;
391 	u8 reserved[70];
392 } __packed;
393 
394 struct pci_create_interrupt {
395 	struct pci_message message_type;
396 	union win_slot_encoding wslot;
397 	struct hv_msi_desc int_desc;
398 } __packed;
399 
400 struct pci_create_int_response {
401 	struct pci_response response;
402 	u32 reserved;
403 	struct tran_int_desc int_desc;
404 } __packed;
405 
406 struct pci_create_interrupt2 {
407 	struct pci_message message_type;
408 	union win_slot_encoding wslot;
409 	struct hv_msi_desc2 int_desc;
410 } __packed;
411 
412 struct pci_create_interrupt3 {
413 	struct pci_message message_type;
414 	union win_slot_encoding wslot;
415 	struct hv_msi_desc3 int_desc;
416 } __packed;
417 
418 struct pci_delete_interrupt {
419 	struct pci_message message_type;
420 	union win_slot_encoding wslot;
421 	struct tran_int_desc int_desc;
422 } __packed;
423 
424 /*
425  * Note: the VM must pass a valid block id, wslot and bytes_requested.
426  */
427 struct pci_read_block {
428 	struct pci_message message_type;
429 	u32 block_id;
430 	union win_slot_encoding wslot;
431 	u32 bytes_requested;
432 } __packed;
433 
434 struct pci_read_block_response {
435 	struct vmpacket_descriptor hdr;
436 	u32 status;
437 	u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX];
438 } __packed;
439 
440 /*
441  * Note: the VM must pass a valid block id, wslot and byte_count.
442  */
443 struct pci_write_block {
444 	struct pci_message message_type;
445 	u32 block_id;
446 	union win_slot_encoding wslot;
447 	u32 byte_count;
448 	u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX];
449 } __packed;
450 
451 struct pci_dev_inval_block {
452 	struct pci_incoming_message incoming;
453 	union win_slot_encoding wslot;
454 	u64 block_mask;
455 } __packed;
456 
457 struct pci_dev_incoming {
458 	struct pci_incoming_message incoming;
459 	union win_slot_encoding wslot;
460 } __packed;
461 
462 struct pci_eject_response {
463 	struct pci_message message_type;
464 	union win_slot_encoding wslot;
465 	u32 status;
466 } __packed;
467 
468 static int pci_ring_size = (4 * PAGE_SIZE);
469 
470 /*
471  * Driver specific state.
472  */
473 
474 enum hv_pcibus_state {
475 	hv_pcibus_init = 0,
476 	hv_pcibus_probed,
477 	hv_pcibus_installed,
478 	hv_pcibus_removing,
479 	hv_pcibus_maximum
480 };
481 
482 struct hv_pcibus_device {
483 #ifdef CONFIG_X86
484 	struct pci_sysdata sysdata;
485 #elif defined(CONFIG_ARM64)
486 	struct pci_config_window sysdata;
487 #endif
488 	struct pci_host_bridge *bridge;
489 	struct fwnode_handle *fwnode;
490 	/* Protocol version negotiated with the host */
491 	enum pci_protocol_version_t protocol_version;
492 
493 	struct mutex state_lock;
494 	enum hv_pcibus_state state;
495 
496 	struct hv_device *hdev;
497 	resource_size_t low_mmio_space;
498 	resource_size_t high_mmio_space;
499 	struct resource *mem_config;
500 	struct resource *low_mmio_res;
501 	struct resource *high_mmio_res;
502 	struct completion *survey_event;
503 	struct pci_bus *pci_bus;
504 	spinlock_t config_lock;	/* Avoid two threads writing index page */
505 	spinlock_t device_list_lock;	/* Protect lists below */
506 	void __iomem *cfg_addr;
507 
508 	struct list_head children;
509 	struct list_head dr_list;
510 
511 	struct msi_domain_info msi_info;
512 	struct irq_domain *irq_domain;
513 
514 	struct workqueue_struct *wq;
515 
516 	/* Highest slot of child device with resources allocated */
517 	int wslot_res_allocated;
518 	bool use_calls; /* Use hypercalls to access mmio cfg space */
519 };
520 
521 /*
522  * Tracks "Device Relations" messages from the host, which must be both
523  * processed in order and deferred so that they don't run in the context
524  * of the incoming packet callback.
525  */
526 struct hv_dr_work {
527 	struct work_struct wrk;
528 	struct hv_pcibus_device *bus;
529 };
530 
531 struct hv_pcidev_description {
532 	u16	v_id;	/* vendor ID */
533 	u16	d_id;	/* device ID */
534 	u8	rev;
535 	u8	prog_intf;
536 	u8	subclass;
537 	u8	base_class;
538 	u32	subsystem_id;
539 	union	win_slot_encoding win_slot;
540 	u32	ser;	/* serial number */
541 	u32	flags;
542 	u16	virtual_numa_node;
543 };
544 
545 struct hv_dr_state {
546 	struct list_head list_entry;
547 	u32 device_count;
548 	struct hv_pcidev_description func[];
549 };
550 
551 struct hv_pci_dev {
552 	/* List protected by pci_rescan_remove_lock */
553 	struct list_head list_entry;
554 	refcount_t refs;
555 	struct pci_slot *pci_slot;
556 	struct hv_pcidev_description desc;
557 	bool reported_missing;
558 	struct hv_pcibus_device *hbus;
559 	struct work_struct wrk;
560 
561 	void (*block_invalidate)(void *context, u64 block_mask);
562 	void *invalidate_context;
563 
564 	/*
565 	 * What would be observed if one wrote 0xFFFFFFFF to a BAR and then
566 	 * read it back, for each of the BAR offsets within config space.
567 	 */
568 	u32 probed_bar[PCI_STD_NUM_BARS];
569 };
570 
571 struct hv_pci_compl {
572 	struct completion host_event;
573 	s32 completion_status;
574 };
575 
576 static void hv_pci_onchannelcallback(void *context);
577 
578 #ifdef CONFIG_X86
579 #define DELIVERY_MODE	APIC_DELIVERY_MODE_FIXED
580 #define FLOW_HANDLER	handle_edge_irq
581 #define FLOW_NAME	"edge"
582 
583 static int hv_pci_irqchip_init(void)
584 {
585 	return 0;
586 }
587 
588 static struct irq_domain *hv_pci_get_root_domain(void)
589 {
590 	return x86_vector_domain;
591 }
592 
593 static unsigned int hv_msi_get_int_vector(struct irq_data *data)
594 {
595 	struct irq_cfg *cfg = irqd_cfg(data);
596 
597 	return cfg->vector;
598 }
599 
600 #define hv_msi_prepare		pci_msi_prepare
601 
602 /**
603  * hv_arch_irq_unmask() - "Unmask" the IRQ by setting its current
604  * affinity.
605  * @data:	Describes the IRQ
606  *
607  * Build new a destination for the MSI and make a hypercall to
608  * update the Interrupt Redirection Table. "Device Logical ID"
609  * is built out of this PCI bus's instance GUID and the function
610  * number of the device.
611  */
612 static void hv_arch_irq_unmask(struct irq_data *data)
613 {
614 	struct msi_desc *msi_desc = irq_data_get_msi_desc(data);
615 	struct hv_retarget_device_interrupt *params;
616 	struct tran_int_desc *int_desc;
617 	struct hv_pcibus_device *hbus;
618 	const struct cpumask *dest;
619 	cpumask_var_t tmp;
620 	struct pci_bus *pbus;
621 	struct pci_dev *pdev;
622 	unsigned long flags;
623 	u32 var_size = 0;
624 	int cpu, nr_bank;
625 	u64 res;
626 
627 	dest = irq_data_get_effective_affinity_mask(data);
628 	pdev = msi_desc_to_pci_dev(msi_desc);
629 	pbus = pdev->bus;
630 	hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
631 	int_desc = data->chip_data;
632 	if (!int_desc) {
633 		dev_warn(&hbus->hdev->device, "%s() can not unmask irq %u\n",
634 			 __func__, data->irq);
635 		return;
636 	}
637 
638 	local_irq_save(flags);
639 
640 	params = *this_cpu_ptr(hyperv_pcpu_input_arg);
641 	memset(params, 0, sizeof(*params));
642 	params->partition_id = HV_PARTITION_ID_SELF;
643 	params->int_entry.source = HV_INTERRUPT_SOURCE_MSI;
644 	params->int_entry.msi_entry.address.as_uint32 = int_desc->address & 0xffffffff;
645 	params->int_entry.msi_entry.data.as_uint32 = int_desc->data;
646 	params->device_id = (hbus->hdev->dev_instance.b[5] << 24) |
647 			   (hbus->hdev->dev_instance.b[4] << 16) |
648 			   (hbus->hdev->dev_instance.b[7] << 8) |
649 			   (hbus->hdev->dev_instance.b[6] & 0xf8) |
650 			   PCI_FUNC(pdev->devfn);
651 	params->int_target.vector = hv_msi_get_int_vector(data);
652 
653 	/*
654 	 * Honoring apic->delivery_mode set to APIC_DELIVERY_MODE_FIXED by
655 	 * setting the HV_DEVICE_INTERRUPT_TARGET_MULTICAST flag results in a
656 	 * spurious interrupt storm. Not doing so does not seem to have a
657 	 * negative effect (yet?).
658 	 */
659 
660 	if (hbus->protocol_version >= PCI_PROTOCOL_VERSION_1_2) {
661 		/*
662 		 * PCI_PROTOCOL_VERSION_1_2 supports the VP_SET version of the
663 		 * HVCALL_RETARGET_INTERRUPT hypercall, which also coincides
664 		 * with >64 VP support.
665 		 * ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED
666 		 * is not sufficient for this hypercall.
667 		 */
668 		params->int_target.flags |=
669 			HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET;
670 
671 		if (!alloc_cpumask_var(&tmp, GFP_ATOMIC)) {
672 			res = 1;
673 			goto out;
674 		}
675 
676 		cpumask_and(tmp, dest, cpu_online_mask);
677 		nr_bank = cpumask_to_vpset(&params->int_target.vp_set, tmp);
678 		free_cpumask_var(tmp);
679 
680 		if (nr_bank <= 0) {
681 			res = 1;
682 			goto out;
683 		}
684 
685 		/*
686 		 * var-sized hypercall, var-size starts after vp_mask (thus
687 		 * vp_set.format does not count, but vp_set.valid_bank_mask
688 		 * does).
689 		 */
690 		var_size = 1 + nr_bank;
691 	} else {
692 		for_each_cpu_and(cpu, dest, cpu_online_mask) {
693 			params->int_target.vp_mask |=
694 				(1ULL << hv_cpu_number_to_vp_number(cpu));
695 		}
696 	}
697 
698 	res = hv_do_hypercall(HVCALL_RETARGET_INTERRUPT | (var_size << 17),
699 			      params, NULL);
700 
701 out:
702 	local_irq_restore(flags);
703 
704 	/*
705 	 * During hibernation, when a CPU is offlined, the kernel tries
706 	 * to move the interrupt to the remaining CPUs that haven't
707 	 * been offlined yet. In this case, the below hv_do_hypercall()
708 	 * always fails since the vmbus channel has been closed:
709 	 * refer to cpu_disable_common() -> fixup_irqs() ->
710 	 * irq_migrate_all_off_this_cpu() -> migrate_one_irq().
711 	 *
712 	 * Suppress the error message for hibernation because the failure
713 	 * during hibernation does not matter (at this time all the devices
714 	 * have been frozen). Note: the correct affinity info is still updated
715 	 * into the irqdata data structure in migrate_one_irq() ->
716 	 * irq_do_set_affinity(), so later when the VM resumes,
717 	 * hv_pci_restore_msi_state() is able to correctly restore the
718 	 * interrupt with the correct affinity.
719 	 */
720 	if (!hv_result_success(res) && hbus->state != hv_pcibus_removing)
721 		dev_err(&hbus->hdev->device,
722 			"%s() failed: %#llx", __func__, res);
723 }
724 #elif defined(CONFIG_ARM64)
725 /*
726  * SPI vectors to use for vPCI; arch SPIs range is [32, 1019], but leaving a bit
727  * of room at the start to allow for SPIs to be specified through ACPI and
728  * starting with a power of two to satisfy power of 2 multi-MSI requirement.
729  */
730 #define HV_PCI_MSI_SPI_START	64
731 #define HV_PCI_MSI_SPI_NR	(1020 - HV_PCI_MSI_SPI_START)
732 #define DELIVERY_MODE		0
733 #define FLOW_HANDLER		NULL
734 #define FLOW_NAME		NULL
735 #define hv_msi_prepare		NULL
736 
737 struct hv_pci_chip_data {
738 	DECLARE_BITMAP(spi_map, HV_PCI_MSI_SPI_NR);
739 	struct mutex	map_lock;
740 };
741 
742 /* Hyper-V vPCI MSI GIC IRQ domain */
743 static struct irq_domain *hv_msi_gic_irq_domain;
744 
745 /* Hyper-V PCI MSI IRQ chip */
746 static struct irq_chip hv_arm64_msi_irq_chip = {
747 	.name = "MSI",
748 	.irq_set_affinity = irq_chip_set_affinity_parent,
749 	.irq_eoi = irq_chip_eoi_parent,
750 	.irq_mask = irq_chip_mask_parent,
751 	.irq_unmask = irq_chip_unmask_parent
752 };
753 
754 static unsigned int hv_msi_get_int_vector(struct irq_data *irqd)
755 {
756 	return irqd->parent_data->hwirq;
757 }
758 
759 /*
760  * @nr_bm_irqs:		Indicates the number of IRQs that were allocated from
761  *			the bitmap.
762  * @nr_dom_irqs:	Indicates the number of IRQs that were allocated from
763  *			the parent domain.
764  */
765 static void hv_pci_vec_irq_free(struct irq_domain *domain,
766 				unsigned int virq,
767 				unsigned int nr_bm_irqs,
768 				unsigned int nr_dom_irqs)
769 {
770 	struct hv_pci_chip_data *chip_data = domain->host_data;
771 	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
772 	int first = d->hwirq - HV_PCI_MSI_SPI_START;
773 	int i;
774 
775 	mutex_lock(&chip_data->map_lock);
776 	bitmap_release_region(chip_data->spi_map,
777 			      first,
778 			      get_count_order(nr_bm_irqs));
779 	mutex_unlock(&chip_data->map_lock);
780 	for (i = 0; i < nr_dom_irqs; i++) {
781 		if (i)
782 			d = irq_domain_get_irq_data(domain, virq + i);
783 		irq_domain_reset_irq_data(d);
784 	}
785 
786 	irq_domain_free_irqs_parent(domain, virq, nr_dom_irqs);
787 }
788 
789 static void hv_pci_vec_irq_domain_free(struct irq_domain *domain,
790 				       unsigned int virq,
791 				       unsigned int nr_irqs)
792 {
793 	hv_pci_vec_irq_free(domain, virq, nr_irqs, nr_irqs);
794 }
795 
796 static int hv_pci_vec_alloc_device_irq(struct irq_domain *domain,
797 				       unsigned int nr_irqs,
798 				       irq_hw_number_t *hwirq)
799 {
800 	struct hv_pci_chip_data *chip_data = domain->host_data;
801 	int index;
802 
803 	/* Find and allocate region from the SPI bitmap */
804 	mutex_lock(&chip_data->map_lock);
805 	index = bitmap_find_free_region(chip_data->spi_map,
806 					HV_PCI_MSI_SPI_NR,
807 					get_count_order(nr_irqs));
808 	mutex_unlock(&chip_data->map_lock);
809 	if (index < 0)
810 		return -ENOSPC;
811 
812 	*hwirq = index + HV_PCI_MSI_SPI_START;
813 
814 	return 0;
815 }
816 
817 static int hv_pci_vec_irq_gic_domain_alloc(struct irq_domain *domain,
818 					   unsigned int virq,
819 					   irq_hw_number_t hwirq)
820 {
821 	struct irq_fwspec fwspec;
822 	struct irq_data *d;
823 	int ret;
824 
825 	fwspec.fwnode = domain->parent->fwnode;
826 	fwspec.param_count = 2;
827 	fwspec.param[0] = hwirq;
828 	fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
829 
830 	ret = irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
831 	if (ret)
832 		return ret;
833 
834 	/*
835 	 * Since the interrupt specifier is not coming from ACPI or DT, the
836 	 * trigger type will need to be set explicitly. Otherwise, it will be
837 	 * set to whatever is in the GIC configuration.
838 	 */
839 	d = irq_domain_get_irq_data(domain->parent, virq);
840 
841 	return d->chip->irq_set_type(d, IRQ_TYPE_EDGE_RISING);
842 }
843 
844 static int hv_pci_vec_irq_domain_alloc(struct irq_domain *domain,
845 				       unsigned int virq, unsigned int nr_irqs,
846 				       void *args)
847 {
848 	irq_hw_number_t hwirq;
849 	unsigned int i;
850 	int ret;
851 
852 	ret = hv_pci_vec_alloc_device_irq(domain, nr_irqs, &hwirq);
853 	if (ret)
854 		return ret;
855 
856 	for (i = 0; i < nr_irqs; i++) {
857 		ret = hv_pci_vec_irq_gic_domain_alloc(domain, virq + i,
858 						      hwirq + i);
859 		if (ret) {
860 			hv_pci_vec_irq_free(domain, virq, nr_irqs, i);
861 			return ret;
862 		}
863 
864 		irq_domain_set_hwirq_and_chip(domain, virq + i,
865 					      hwirq + i,
866 					      &hv_arm64_msi_irq_chip,
867 					      domain->host_data);
868 		pr_debug("pID:%d vID:%u\n", (int)(hwirq + i), virq + i);
869 	}
870 
871 	return 0;
872 }
873 
874 /*
875  * Pick the first cpu as the irq affinity that can be temporarily used for
876  * composing MSI from the hypervisor. GIC will eventually set the right
877  * affinity for the irq and the 'unmask' will retarget the interrupt to that
878  * cpu.
879  */
880 static int hv_pci_vec_irq_domain_activate(struct irq_domain *domain,
881 					  struct irq_data *irqd, bool reserve)
882 {
883 	int cpu = cpumask_first(cpu_present_mask);
884 
885 	irq_data_update_effective_affinity(irqd, cpumask_of(cpu));
886 
887 	return 0;
888 }
889 
890 static const struct irq_domain_ops hv_pci_domain_ops = {
891 	.alloc	= hv_pci_vec_irq_domain_alloc,
892 	.free	= hv_pci_vec_irq_domain_free,
893 	.activate = hv_pci_vec_irq_domain_activate,
894 };
895 
896 static int hv_pci_irqchip_init(void)
897 {
898 	static struct hv_pci_chip_data *chip_data;
899 	struct fwnode_handle *fn = NULL;
900 	int ret = -ENOMEM;
901 
902 	chip_data = kzalloc(sizeof(*chip_data), GFP_KERNEL);
903 	if (!chip_data)
904 		return ret;
905 
906 	mutex_init(&chip_data->map_lock);
907 	fn = irq_domain_alloc_named_fwnode("hv_vpci_arm64");
908 	if (!fn)
909 		goto free_chip;
910 
911 	/*
912 	 * IRQ domain once enabled, should not be removed since there is no
913 	 * way to ensure that all the corresponding devices are also gone and
914 	 * no interrupts will be generated.
915 	 */
916 	hv_msi_gic_irq_domain = acpi_irq_create_hierarchy(0, HV_PCI_MSI_SPI_NR,
917 							  fn, &hv_pci_domain_ops,
918 							  chip_data);
919 
920 	if (!hv_msi_gic_irq_domain) {
921 		pr_err("Failed to create Hyper-V arm64 vPCI MSI IRQ domain\n");
922 		goto free_chip;
923 	}
924 
925 	return 0;
926 
927 free_chip:
928 	kfree(chip_data);
929 	if (fn)
930 		irq_domain_free_fwnode(fn);
931 
932 	return ret;
933 }
934 
935 static struct irq_domain *hv_pci_get_root_domain(void)
936 {
937 	return hv_msi_gic_irq_domain;
938 }
939 
940 /*
941  * SPIs are used for interrupts of PCI devices and SPIs is managed via GICD
942  * registers which Hyper-V already supports, so no hypercall needed.
943  */
944 static void hv_arch_irq_unmask(struct irq_data *data) { }
945 #endif /* CONFIG_ARM64 */
946 
947 /**
948  * hv_pci_generic_compl() - Invoked for a completion packet
949  * @context:		Set up by the sender of the packet.
950  * @resp:		The response packet
951  * @resp_packet_size:	Size in bytes of the packet
952  *
953  * This function is used to trigger an event and report status
954  * for any message for which the completion packet contains a
955  * status and nothing else.
956  */
957 static void hv_pci_generic_compl(void *context, struct pci_response *resp,
958 				 int resp_packet_size)
959 {
960 	struct hv_pci_compl *comp_pkt = context;
961 
962 	comp_pkt->completion_status = resp->status;
963 	complete(&comp_pkt->host_event);
964 }
965 
966 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
967 						u32 wslot);
968 
969 static void get_pcichild(struct hv_pci_dev *hpdev)
970 {
971 	refcount_inc(&hpdev->refs);
972 }
973 
974 static void put_pcichild(struct hv_pci_dev *hpdev)
975 {
976 	if (refcount_dec_and_test(&hpdev->refs))
977 		kfree(hpdev);
978 }
979 
980 /*
981  * There is no good way to get notified from vmbus_onoffer_rescind(),
982  * so let's use polling here, since this is not a hot path.
983  */
984 static int wait_for_response(struct hv_device *hdev,
985 			     struct completion *comp)
986 {
987 	while (true) {
988 		if (hdev->channel->rescind) {
989 			dev_warn_once(&hdev->device, "The device is gone.\n");
990 			return -ENODEV;
991 		}
992 
993 		if (wait_for_completion_timeout(comp, HZ / 10))
994 			break;
995 	}
996 
997 	return 0;
998 }
999 
1000 /**
1001  * devfn_to_wslot() - Convert from Linux PCI slot to Windows
1002  * @devfn:	The Linux representation of PCI slot
1003  *
1004  * Windows uses a slightly different representation of PCI slot.
1005  *
1006  * Return: The Windows representation
1007  */
1008 static u32 devfn_to_wslot(int devfn)
1009 {
1010 	union win_slot_encoding wslot;
1011 
1012 	wslot.slot = 0;
1013 	wslot.bits.dev = PCI_SLOT(devfn);
1014 	wslot.bits.func = PCI_FUNC(devfn);
1015 
1016 	return wslot.slot;
1017 }
1018 
1019 /**
1020  * wslot_to_devfn() - Convert from Windows PCI slot to Linux
1021  * @wslot:	The Windows representation of PCI slot
1022  *
1023  * Windows uses a slightly different representation of PCI slot.
1024  *
1025  * Return: The Linux representation
1026  */
1027 static int wslot_to_devfn(u32 wslot)
1028 {
1029 	union win_slot_encoding slot_no;
1030 
1031 	slot_no.slot = wslot;
1032 	return PCI_DEVFN(slot_no.bits.dev, slot_no.bits.func);
1033 }
1034 
1035 static void hv_pci_read_mmio(struct device *dev, phys_addr_t gpa, int size, u32 *val)
1036 {
1037 	struct hv_mmio_read_input *in;
1038 	struct hv_mmio_read_output *out;
1039 	u64 ret;
1040 
1041 	/*
1042 	 * Must be called with interrupts disabled so it is safe
1043 	 * to use the per-cpu input argument page.  Use it for
1044 	 * both input and output.
1045 	 */
1046 	in = *this_cpu_ptr(hyperv_pcpu_input_arg);
1047 	out = *this_cpu_ptr(hyperv_pcpu_input_arg) + sizeof(*in);
1048 	in->gpa = gpa;
1049 	in->size = size;
1050 
1051 	ret = hv_do_hypercall(HVCALL_MMIO_READ, in, out);
1052 	if (hv_result_success(ret)) {
1053 		switch (size) {
1054 		case 1:
1055 			*val = *(u8 *)(out->data);
1056 			break;
1057 		case 2:
1058 			*val = *(u16 *)(out->data);
1059 			break;
1060 		default:
1061 			*val = *(u32 *)(out->data);
1062 			break;
1063 		}
1064 	} else
1065 		dev_err(dev, "MMIO read hypercall error %llx addr %llx size %d\n",
1066 				ret, gpa, size);
1067 }
1068 
1069 static void hv_pci_write_mmio(struct device *dev, phys_addr_t gpa, int size, u32 val)
1070 {
1071 	struct hv_mmio_write_input *in;
1072 	u64 ret;
1073 
1074 	/*
1075 	 * Must be called with interrupts disabled so it is safe
1076 	 * to use the per-cpu input argument memory.
1077 	 */
1078 	in = *this_cpu_ptr(hyperv_pcpu_input_arg);
1079 	in->gpa = gpa;
1080 	in->size = size;
1081 	switch (size) {
1082 	case 1:
1083 		*(u8 *)(in->data) = val;
1084 		break;
1085 	case 2:
1086 		*(u16 *)(in->data) = val;
1087 		break;
1088 	default:
1089 		*(u32 *)(in->data) = val;
1090 		break;
1091 	}
1092 
1093 	ret = hv_do_hypercall(HVCALL_MMIO_WRITE, in, NULL);
1094 	if (!hv_result_success(ret))
1095 		dev_err(dev, "MMIO write hypercall error %llx addr %llx size %d\n",
1096 				ret, gpa, size);
1097 }
1098 
1099 /*
1100  * PCI Configuration Space for these root PCI buses is implemented as a pair
1101  * of pages in memory-mapped I/O space.  Writing to the first page chooses
1102  * the PCI function being written or read.  Once the first page has been
1103  * written to, the following page maps in the entire configuration space of
1104  * the function.
1105  */
1106 
1107 /**
1108  * _hv_pcifront_read_config() - Internal PCI config read
1109  * @hpdev:	The PCI driver's representation of the device
1110  * @where:	Offset within config space
1111  * @size:	Size of the transfer
1112  * @val:	Pointer to the buffer receiving the data
1113  */
1114 static void _hv_pcifront_read_config(struct hv_pci_dev *hpdev, int where,
1115 				     int size, u32 *val)
1116 {
1117 	struct hv_pcibus_device *hbus = hpdev->hbus;
1118 	struct device *dev = &hbus->hdev->device;
1119 	int offset = where + CFG_PAGE_OFFSET;
1120 	unsigned long flags;
1121 
1122 	/*
1123 	 * If the attempt is to read the IDs or the ROM BAR, simulate that.
1124 	 */
1125 	if (where + size <= PCI_COMMAND) {
1126 		memcpy(val, ((u8 *)&hpdev->desc.v_id) + where, size);
1127 	} else if (where >= PCI_CLASS_REVISION && where + size <=
1128 		   PCI_CACHE_LINE_SIZE) {
1129 		memcpy(val, ((u8 *)&hpdev->desc.rev) + where -
1130 		       PCI_CLASS_REVISION, size);
1131 	} else if (where >= PCI_SUBSYSTEM_VENDOR_ID && where + size <=
1132 		   PCI_ROM_ADDRESS) {
1133 		memcpy(val, (u8 *)&hpdev->desc.subsystem_id + where -
1134 		       PCI_SUBSYSTEM_VENDOR_ID, size);
1135 	} else if (where >= PCI_ROM_ADDRESS && where + size <=
1136 		   PCI_CAPABILITY_LIST) {
1137 		/* ROM BARs are unimplemented */
1138 		*val = 0;
1139 	} else if (where >= PCI_INTERRUPT_LINE && where + size <=
1140 		   PCI_INTERRUPT_PIN) {
1141 		/*
1142 		 * Interrupt Line and Interrupt PIN are hard-wired to zero
1143 		 * because this front-end only supports message-signaled
1144 		 * interrupts.
1145 		 */
1146 		*val = 0;
1147 	} else if (where + size <= CFG_PAGE_SIZE) {
1148 
1149 		spin_lock_irqsave(&hbus->config_lock, flags);
1150 		if (hbus->use_calls) {
1151 			phys_addr_t addr = hbus->mem_config->start + offset;
1152 
1153 			hv_pci_write_mmio(dev, hbus->mem_config->start, 4,
1154 						hpdev->desc.win_slot.slot);
1155 			hv_pci_read_mmio(dev, addr, size, val);
1156 		} else {
1157 			void __iomem *addr = hbus->cfg_addr + offset;
1158 
1159 			/* Choose the function to be read. (See comment above) */
1160 			writel(hpdev->desc.win_slot.slot, hbus->cfg_addr);
1161 			/* Make sure the function was chosen before reading. */
1162 			mb();
1163 			/* Read from that function's config space. */
1164 			switch (size) {
1165 			case 1:
1166 				*val = readb(addr);
1167 				break;
1168 			case 2:
1169 				*val = readw(addr);
1170 				break;
1171 			default:
1172 				*val = readl(addr);
1173 				break;
1174 			}
1175 			/*
1176 			 * Make sure the read was done before we release the
1177 			 * spinlock allowing consecutive reads/writes.
1178 			 */
1179 			mb();
1180 		}
1181 		spin_unlock_irqrestore(&hbus->config_lock, flags);
1182 	} else {
1183 		dev_err(dev, "Attempt to read beyond a function's config space.\n");
1184 	}
1185 }
1186 
1187 static u16 hv_pcifront_get_vendor_id(struct hv_pci_dev *hpdev)
1188 {
1189 	struct hv_pcibus_device *hbus = hpdev->hbus;
1190 	struct device *dev = &hbus->hdev->device;
1191 	u32 val;
1192 	u16 ret;
1193 	unsigned long flags;
1194 
1195 	spin_lock_irqsave(&hbus->config_lock, flags);
1196 
1197 	if (hbus->use_calls) {
1198 		phys_addr_t addr = hbus->mem_config->start +
1199 					 CFG_PAGE_OFFSET + PCI_VENDOR_ID;
1200 
1201 		hv_pci_write_mmio(dev, hbus->mem_config->start, 4,
1202 					hpdev->desc.win_slot.slot);
1203 		hv_pci_read_mmio(dev, addr, 2, &val);
1204 		ret = val;  /* Truncates to 16 bits */
1205 	} else {
1206 		void __iomem *addr = hbus->cfg_addr + CFG_PAGE_OFFSET +
1207 					     PCI_VENDOR_ID;
1208 		/* Choose the function to be read. (See comment above) */
1209 		writel(hpdev->desc.win_slot.slot, hbus->cfg_addr);
1210 		/* Make sure the function was chosen before we start reading. */
1211 		mb();
1212 		/* Read from that function's config space. */
1213 		ret = readw(addr);
1214 		/*
1215 		 * mb() is not required here, because the
1216 		 * spin_unlock_irqrestore() is a barrier.
1217 		 */
1218 	}
1219 
1220 	spin_unlock_irqrestore(&hbus->config_lock, flags);
1221 
1222 	return ret;
1223 }
1224 
1225 /**
1226  * _hv_pcifront_write_config() - Internal PCI config write
1227  * @hpdev:	The PCI driver's representation of the device
1228  * @where:	Offset within config space
1229  * @size:	Size of the transfer
1230  * @val:	The data being transferred
1231  */
1232 static void _hv_pcifront_write_config(struct hv_pci_dev *hpdev, int where,
1233 				      int size, u32 val)
1234 {
1235 	struct hv_pcibus_device *hbus = hpdev->hbus;
1236 	struct device *dev = &hbus->hdev->device;
1237 	int offset = where + CFG_PAGE_OFFSET;
1238 	unsigned long flags;
1239 
1240 	if (where >= PCI_SUBSYSTEM_VENDOR_ID &&
1241 	    where + size <= PCI_CAPABILITY_LIST) {
1242 		/* SSIDs and ROM BARs are read-only */
1243 	} else if (where >= PCI_COMMAND && where + size <= CFG_PAGE_SIZE) {
1244 		spin_lock_irqsave(&hbus->config_lock, flags);
1245 
1246 		if (hbus->use_calls) {
1247 			phys_addr_t addr = hbus->mem_config->start + offset;
1248 
1249 			hv_pci_write_mmio(dev, hbus->mem_config->start, 4,
1250 						hpdev->desc.win_slot.slot);
1251 			hv_pci_write_mmio(dev, addr, size, val);
1252 		} else {
1253 			void __iomem *addr = hbus->cfg_addr + offset;
1254 
1255 			/* Choose the function to write. (See comment above) */
1256 			writel(hpdev->desc.win_slot.slot, hbus->cfg_addr);
1257 			/* Make sure the function was chosen before writing. */
1258 			wmb();
1259 			/* Write to that function's config space. */
1260 			switch (size) {
1261 			case 1:
1262 				writeb(val, addr);
1263 				break;
1264 			case 2:
1265 				writew(val, addr);
1266 				break;
1267 			default:
1268 				writel(val, addr);
1269 				break;
1270 			}
1271 			/*
1272 			 * Make sure the write was done before we release the
1273 			 * spinlock allowing consecutive reads/writes.
1274 			 */
1275 			mb();
1276 		}
1277 		spin_unlock_irqrestore(&hbus->config_lock, flags);
1278 	} else {
1279 		dev_err(dev, "Attempt to write beyond a function's config space.\n");
1280 	}
1281 }
1282 
1283 /**
1284  * hv_pcifront_read_config() - Read configuration space
1285  * @bus: PCI Bus structure
1286  * @devfn: Device/function
1287  * @where: Offset from base
1288  * @size: Byte/word/dword
1289  * @val: Value to be read
1290  *
1291  * Return: PCIBIOS_SUCCESSFUL on success
1292  *	   PCIBIOS_DEVICE_NOT_FOUND on failure
1293  */
1294 static int hv_pcifront_read_config(struct pci_bus *bus, unsigned int devfn,
1295 				   int where, int size, u32 *val)
1296 {
1297 	struct hv_pcibus_device *hbus =
1298 		container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
1299 	struct hv_pci_dev *hpdev;
1300 
1301 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
1302 	if (!hpdev)
1303 		return PCIBIOS_DEVICE_NOT_FOUND;
1304 
1305 	_hv_pcifront_read_config(hpdev, where, size, val);
1306 
1307 	put_pcichild(hpdev);
1308 	return PCIBIOS_SUCCESSFUL;
1309 }
1310 
1311 /**
1312  * hv_pcifront_write_config() - Write configuration space
1313  * @bus: PCI Bus structure
1314  * @devfn: Device/function
1315  * @where: Offset from base
1316  * @size: Byte/word/dword
1317  * @val: Value to be written to device
1318  *
1319  * Return: PCIBIOS_SUCCESSFUL on success
1320  *	   PCIBIOS_DEVICE_NOT_FOUND on failure
1321  */
1322 static int hv_pcifront_write_config(struct pci_bus *bus, unsigned int devfn,
1323 				    int where, int size, u32 val)
1324 {
1325 	struct hv_pcibus_device *hbus =
1326 	    container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
1327 	struct hv_pci_dev *hpdev;
1328 
1329 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
1330 	if (!hpdev)
1331 		return PCIBIOS_DEVICE_NOT_FOUND;
1332 
1333 	_hv_pcifront_write_config(hpdev, where, size, val);
1334 
1335 	put_pcichild(hpdev);
1336 	return PCIBIOS_SUCCESSFUL;
1337 }
1338 
1339 /* PCIe operations */
1340 static struct pci_ops hv_pcifront_ops = {
1341 	.read  = hv_pcifront_read_config,
1342 	.write = hv_pcifront_write_config,
1343 };
1344 
1345 /*
1346  * Paravirtual backchannel
1347  *
1348  * Hyper-V SR-IOV provides a backchannel mechanism in software for
1349  * communication between a VF driver and a PF driver.  These
1350  * "configuration blocks" are similar in concept to PCI configuration space,
1351  * but instead of doing reads and writes in 32-bit chunks through a very slow
1352  * path, packets of up to 128 bytes can be sent or received asynchronously.
1353  *
1354  * Nearly every SR-IOV device contains just such a communications channel in
1355  * hardware, so using this one in software is usually optional.  Using the
1356  * software channel, however, allows driver implementers to leverage software
1357  * tools that fuzz the communications channel looking for vulnerabilities.
1358  *
1359  * The usage model for these packets puts the responsibility for reading or
1360  * writing on the VF driver.  The VF driver sends a read or a write packet,
1361  * indicating which "block" is being referred to by number.
1362  *
1363  * If the PF driver wishes to initiate communication, it can "invalidate" one or
1364  * more of the first 64 blocks.  This invalidation is delivered via a callback
1365  * supplied by the VF driver by this driver.
1366  *
1367  * No protocol is implied, except that supplied by the PF and VF drivers.
1368  */
1369 
1370 struct hv_read_config_compl {
1371 	struct hv_pci_compl comp_pkt;
1372 	void *buf;
1373 	unsigned int len;
1374 	unsigned int bytes_returned;
1375 };
1376 
1377 /**
1378  * hv_pci_read_config_compl() - Invoked when a response packet
1379  * for a read config block operation arrives.
1380  * @context:		Identifies the read config operation
1381  * @resp:		The response packet itself
1382  * @resp_packet_size:	Size in bytes of the response packet
1383  */
1384 static void hv_pci_read_config_compl(void *context, struct pci_response *resp,
1385 				     int resp_packet_size)
1386 {
1387 	struct hv_read_config_compl *comp = context;
1388 	struct pci_read_block_response *read_resp =
1389 		(struct pci_read_block_response *)resp;
1390 	unsigned int data_len, hdr_len;
1391 
1392 	hdr_len = offsetof(struct pci_read_block_response, bytes);
1393 	if (resp_packet_size < hdr_len) {
1394 		comp->comp_pkt.completion_status = -1;
1395 		goto out;
1396 	}
1397 
1398 	data_len = resp_packet_size - hdr_len;
1399 	if (data_len > 0 && read_resp->status == 0) {
1400 		comp->bytes_returned = min(comp->len, data_len);
1401 		memcpy(comp->buf, read_resp->bytes, comp->bytes_returned);
1402 	} else {
1403 		comp->bytes_returned = 0;
1404 	}
1405 
1406 	comp->comp_pkt.completion_status = read_resp->status;
1407 out:
1408 	complete(&comp->comp_pkt.host_event);
1409 }
1410 
1411 /**
1412  * hv_read_config_block() - Sends a read config block request to
1413  * the back-end driver running in the Hyper-V parent partition.
1414  * @pdev:		The PCI driver's representation for this device.
1415  * @buf:		Buffer into which the config block will be copied.
1416  * @len:		Size in bytes of buf.
1417  * @block_id:		Identifies the config block which has been requested.
1418  * @bytes_returned:	Size which came back from the back-end driver.
1419  *
1420  * Return: 0 on success, -errno on failure
1421  */
1422 static int hv_read_config_block(struct pci_dev *pdev, void *buf,
1423 				unsigned int len, unsigned int block_id,
1424 				unsigned int *bytes_returned)
1425 {
1426 	struct hv_pcibus_device *hbus =
1427 		container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1428 			     sysdata);
1429 	struct {
1430 		struct pci_packet pkt;
1431 		char buf[sizeof(struct pci_read_block)];
1432 	} pkt;
1433 	struct hv_read_config_compl comp_pkt;
1434 	struct pci_read_block *read_blk;
1435 	int ret;
1436 
1437 	if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX)
1438 		return -EINVAL;
1439 
1440 	init_completion(&comp_pkt.comp_pkt.host_event);
1441 	comp_pkt.buf = buf;
1442 	comp_pkt.len = len;
1443 
1444 	memset(&pkt, 0, sizeof(pkt));
1445 	pkt.pkt.completion_func = hv_pci_read_config_compl;
1446 	pkt.pkt.compl_ctxt = &comp_pkt;
1447 	read_blk = (struct pci_read_block *)&pkt.pkt.message;
1448 	read_blk->message_type.type = PCI_READ_BLOCK;
1449 	read_blk->wslot.slot = devfn_to_wslot(pdev->devfn);
1450 	read_blk->block_id = block_id;
1451 	read_blk->bytes_requested = len;
1452 
1453 	ret = vmbus_sendpacket(hbus->hdev->channel, read_blk,
1454 			       sizeof(*read_blk), (unsigned long)&pkt.pkt,
1455 			       VM_PKT_DATA_INBAND,
1456 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1457 	if (ret)
1458 		return ret;
1459 
1460 	ret = wait_for_response(hbus->hdev, &comp_pkt.comp_pkt.host_event);
1461 	if (ret)
1462 		return ret;
1463 
1464 	if (comp_pkt.comp_pkt.completion_status != 0 ||
1465 	    comp_pkt.bytes_returned == 0) {
1466 		dev_err(&hbus->hdev->device,
1467 			"Read Config Block failed: 0x%x, bytes_returned=%d\n",
1468 			comp_pkt.comp_pkt.completion_status,
1469 			comp_pkt.bytes_returned);
1470 		return -EIO;
1471 	}
1472 
1473 	*bytes_returned = comp_pkt.bytes_returned;
1474 	return 0;
1475 }
1476 
1477 /**
1478  * hv_pci_write_config_compl() - Invoked when a response packet for a write
1479  * config block operation arrives.
1480  * @context:		Identifies the write config operation
1481  * @resp:		The response packet itself
1482  * @resp_packet_size:	Size in bytes of the response packet
1483  */
1484 static void hv_pci_write_config_compl(void *context, struct pci_response *resp,
1485 				      int resp_packet_size)
1486 {
1487 	struct hv_pci_compl *comp_pkt = context;
1488 
1489 	comp_pkt->completion_status = resp->status;
1490 	complete(&comp_pkt->host_event);
1491 }
1492 
1493 /**
1494  * hv_write_config_block() - Sends a write config block request to the
1495  * back-end driver running in the Hyper-V parent partition.
1496  * @pdev:		The PCI driver's representation for this device.
1497  * @buf:		Buffer from which the config block will	be copied.
1498  * @len:		Size in bytes of buf.
1499  * @block_id:		Identifies the config block which is being written.
1500  *
1501  * Return: 0 on success, -errno on failure
1502  */
1503 static int hv_write_config_block(struct pci_dev *pdev, void *buf,
1504 				unsigned int len, unsigned int block_id)
1505 {
1506 	struct hv_pcibus_device *hbus =
1507 		container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1508 			     sysdata);
1509 	struct {
1510 		struct pci_packet pkt;
1511 		char buf[sizeof(struct pci_write_block)];
1512 		u32 reserved;
1513 	} pkt;
1514 	struct hv_pci_compl comp_pkt;
1515 	struct pci_write_block *write_blk;
1516 	u32 pkt_size;
1517 	int ret;
1518 
1519 	if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX)
1520 		return -EINVAL;
1521 
1522 	init_completion(&comp_pkt.host_event);
1523 
1524 	memset(&pkt, 0, sizeof(pkt));
1525 	pkt.pkt.completion_func = hv_pci_write_config_compl;
1526 	pkt.pkt.compl_ctxt = &comp_pkt;
1527 	write_blk = (struct pci_write_block *)&pkt.pkt.message;
1528 	write_blk->message_type.type = PCI_WRITE_BLOCK;
1529 	write_blk->wslot.slot = devfn_to_wslot(pdev->devfn);
1530 	write_blk->block_id = block_id;
1531 	write_blk->byte_count = len;
1532 	memcpy(write_blk->bytes, buf, len);
1533 	pkt_size = offsetof(struct pci_write_block, bytes) + len;
1534 	/*
1535 	 * This quirk is required on some hosts shipped around 2018, because
1536 	 * these hosts don't check the pkt_size correctly (new hosts have been
1537 	 * fixed since early 2019). The quirk is also safe on very old hosts
1538 	 * and new hosts, because, on them, what really matters is the length
1539 	 * specified in write_blk->byte_count.
1540 	 */
1541 	pkt_size += sizeof(pkt.reserved);
1542 
1543 	ret = vmbus_sendpacket(hbus->hdev->channel, write_blk, pkt_size,
1544 			       (unsigned long)&pkt.pkt, VM_PKT_DATA_INBAND,
1545 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1546 	if (ret)
1547 		return ret;
1548 
1549 	ret = wait_for_response(hbus->hdev, &comp_pkt.host_event);
1550 	if (ret)
1551 		return ret;
1552 
1553 	if (comp_pkt.completion_status != 0) {
1554 		dev_err(&hbus->hdev->device,
1555 			"Write Config Block failed: 0x%x\n",
1556 			comp_pkt.completion_status);
1557 		return -EIO;
1558 	}
1559 
1560 	return 0;
1561 }
1562 
1563 /**
1564  * hv_register_block_invalidate() - Invoked when a config block invalidation
1565  * arrives from the back-end driver.
1566  * @pdev:		The PCI driver's representation for this device.
1567  * @context:		Identifies the device.
1568  * @block_invalidate:	Identifies all of the blocks being invalidated.
1569  *
1570  * Return: 0 on success, -errno on failure
1571  */
1572 static int hv_register_block_invalidate(struct pci_dev *pdev, void *context,
1573 					void (*block_invalidate)(void *context,
1574 								 u64 block_mask))
1575 {
1576 	struct hv_pcibus_device *hbus =
1577 		container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1578 			     sysdata);
1579 	struct hv_pci_dev *hpdev;
1580 
1581 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1582 	if (!hpdev)
1583 		return -ENODEV;
1584 
1585 	hpdev->block_invalidate = block_invalidate;
1586 	hpdev->invalidate_context = context;
1587 
1588 	put_pcichild(hpdev);
1589 	return 0;
1590 
1591 }
1592 
1593 /* Interrupt management hooks */
1594 static void hv_int_desc_free(struct hv_pci_dev *hpdev,
1595 			     struct tran_int_desc *int_desc)
1596 {
1597 	struct pci_delete_interrupt *int_pkt;
1598 	struct {
1599 		struct pci_packet pkt;
1600 		u8 buffer[sizeof(struct pci_delete_interrupt)];
1601 	} ctxt;
1602 
1603 	if (!int_desc->vector_count) {
1604 		kfree(int_desc);
1605 		return;
1606 	}
1607 	memset(&ctxt, 0, sizeof(ctxt));
1608 	int_pkt = (struct pci_delete_interrupt *)&ctxt.pkt.message;
1609 	int_pkt->message_type.type =
1610 		PCI_DELETE_INTERRUPT_MESSAGE;
1611 	int_pkt->wslot.slot = hpdev->desc.win_slot.slot;
1612 	int_pkt->int_desc = *int_desc;
1613 	vmbus_sendpacket(hpdev->hbus->hdev->channel, int_pkt, sizeof(*int_pkt),
1614 			 0, VM_PKT_DATA_INBAND, 0);
1615 	kfree(int_desc);
1616 }
1617 
1618 /**
1619  * hv_msi_free() - Free the MSI.
1620  * @domain:	The interrupt domain pointer
1621  * @info:	Extra MSI-related context
1622  * @irq:	Identifies the IRQ.
1623  *
1624  * The Hyper-V parent partition and hypervisor are tracking the
1625  * messages that are in use, keeping the interrupt redirection
1626  * table up to date.  This callback sends a message that frees
1627  * the IRT entry and related tracking nonsense.
1628  */
1629 static void hv_msi_free(struct irq_domain *domain, struct msi_domain_info *info,
1630 			unsigned int irq)
1631 {
1632 	struct hv_pcibus_device *hbus;
1633 	struct hv_pci_dev *hpdev;
1634 	struct pci_dev *pdev;
1635 	struct tran_int_desc *int_desc;
1636 	struct irq_data *irq_data = irq_domain_get_irq_data(domain, irq);
1637 	struct msi_desc *msi = irq_data_get_msi_desc(irq_data);
1638 
1639 	pdev = msi_desc_to_pci_dev(msi);
1640 	hbus = info->data;
1641 	int_desc = irq_data_get_irq_chip_data(irq_data);
1642 	if (!int_desc)
1643 		return;
1644 
1645 	irq_data->chip_data = NULL;
1646 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1647 	if (!hpdev) {
1648 		kfree(int_desc);
1649 		return;
1650 	}
1651 
1652 	hv_int_desc_free(hpdev, int_desc);
1653 	put_pcichild(hpdev);
1654 }
1655 
1656 static void hv_irq_mask(struct irq_data *data)
1657 {
1658 	pci_msi_mask_irq(data);
1659 	if (data->parent_data->chip->irq_mask)
1660 		irq_chip_mask_parent(data);
1661 }
1662 
1663 static void hv_irq_unmask(struct irq_data *data)
1664 {
1665 	hv_arch_irq_unmask(data);
1666 
1667 	if (data->parent_data->chip->irq_unmask)
1668 		irq_chip_unmask_parent(data);
1669 	pci_msi_unmask_irq(data);
1670 }
1671 
1672 struct compose_comp_ctxt {
1673 	struct hv_pci_compl comp_pkt;
1674 	struct tran_int_desc int_desc;
1675 };
1676 
1677 static void hv_pci_compose_compl(void *context, struct pci_response *resp,
1678 				 int resp_packet_size)
1679 {
1680 	struct compose_comp_ctxt *comp_pkt = context;
1681 	struct pci_create_int_response *int_resp =
1682 		(struct pci_create_int_response *)resp;
1683 
1684 	if (resp_packet_size < sizeof(*int_resp)) {
1685 		comp_pkt->comp_pkt.completion_status = -1;
1686 		goto out;
1687 	}
1688 	comp_pkt->comp_pkt.completion_status = resp->status;
1689 	comp_pkt->int_desc = int_resp->int_desc;
1690 out:
1691 	complete(&comp_pkt->comp_pkt.host_event);
1692 }
1693 
1694 static u32 hv_compose_msi_req_v1(
1695 	struct pci_create_interrupt *int_pkt,
1696 	u32 slot, u8 vector, u16 vector_count)
1697 {
1698 	int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE;
1699 	int_pkt->wslot.slot = slot;
1700 	int_pkt->int_desc.vector = vector;
1701 	int_pkt->int_desc.vector_count = vector_count;
1702 	int_pkt->int_desc.delivery_mode = DELIVERY_MODE;
1703 
1704 	/*
1705 	 * Create MSI w/ dummy vCPU set, overwritten by subsequent retarget in
1706 	 * hv_irq_unmask().
1707 	 */
1708 	int_pkt->int_desc.cpu_mask = CPU_AFFINITY_ALL;
1709 
1710 	return sizeof(*int_pkt);
1711 }
1712 
1713 /*
1714  * The vCPU selected by hv_compose_multi_msi_req_get_cpu() and
1715  * hv_compose_msi_req_get_cpu() is a "dummy" vCPU because the final vCPU to be
1716  * interrupted is specified later in hv_irq_unmask() and communicated to Hyper-V
1717  * via the HVCALL_RETARGET_INTERRUPT hypercall. But the choice of dummy vCPU is
1718  * not irrelevant because Hyper-V chooses the physical CPU to handle the
1719  * interrupts based on the vCPU specified in message sent to the vPCI VSP in
1720  * hv_compose_msi_msg(). Hyper-V's choice of pCPU is not visible to the guest,
1721  * but assigning too many vPCI device interrupts to the same pCPU can cause a
1722  * performance bottleneck. So we spread out the dummy vCPUs to influence Hyper-V
1723  * to spread out the pCPUs that it selects.
1724  *
1725  * For the single-MSI and MSI-X cases, it's OK for hv_compose_msi_req_get_cpu()
1726  * to always return the same dummy vCPU, because a second call to
1727  * hv_compose_msi_msg() contains the "real" vCPU, causing Hyper-V to choose a
1728  * new pCPU for the interrupt. But for the multi-MSI case, the second call to
1729  * hv_compose_msi_msg() exits without sending a message to the vPCI VSP, so the
1730  * original dummy vCPU is used. This dummy vCPU must be round-robin'ed so that
1731  * the pCPUs are spread out. All interrupts for a multi-MSI device end up using
1732  * the same pCPU, even though the vCPUs will be spread out by later calls
1733  * to hv_irq_unmask(), but that is the best we can do now.
1734  *
1735  * With Hyper-V in Nov 2022, the HVCALL_RETARGET_INTERRUPT hypercall does *not*
1736  * cause Hyper-V to reselect the pCPU based on the specified vCPU. Such an
1737  * enhancement is planned for a future version. With that enhancement, the
1738  * dummy vCPU selection won't matter, and interrupts for the same multi-MSI
1739  * device will be spread across multiple pCPUs.
1740  */
1741 
1742 /*
1743  * Create MSI w/ dummy vCPU set targeting just one vCPU, overwritten
1744  * by subsequent retarget in hv_irq_unmask().
1745  */
1746 static int hv_compose_msi_req_get_cpu(const struct cpumask *affinity)
1747 {
1748 	return cpumask_first_and(affinity, cpu_online_mask);
1749 }
1750 
1751 /*
1752  * Make sure the dummy vCPU values for multi-MSI don't all point to vCPU0.
1753  */
1754 static int hv_compose_multi_msi_req_get_cpu(void)
1755 {
1756 	static DEFINE_SPINLOCK(multi_msi_cpu_lock);
1757 
1758 	/* -1 means starting with CPU 0 */
1759 	static int cpu_next = -1;
1760 
1761 	unsigned long flags;
1762 	int cpu;
1763 
1764 	spin_lock_irqsave(&multi_msi_cpu_lock, flags);
1765 
1766 	cpu_next = cpumask_next_wrap(cpu_next, cpu_online_mask, nr_cpu_ids,
1767 				     false);
1768 	cpu = cpu_next;
1769 
1770 	spin_unlock_irqrestore(&multi_msi_cpu_lock, flags);
1771 
1772 	return cpu;
1773 }
1774 
1775 static u32 hv_compose_msi_req_v2(
1776 	struct pci_create_interrupt2 *int_pkt, int cpu,
1777 	u32 slot, u8 vector, u16 vector_count)
1778 {
1779 	int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE2;
1780 	int_pkt->wslot.slot = slot;
1781 	int_pkt->int_desc.vector = vector;
1782 	int_pkt->int_desc.vector_count = vector_count;
1783 	int_pkt->int_desc.delivery_mode = DELIVERY_MODE;
1784 	int_pkt->int_desc.processor_array[0] =
1785 		hv_cpu_number_to_vp_number(cpu);
1786 	int_pkt->int_desc.processor_count = 1;
1787 
1788 	return sizeof(*int_pkt);
1789 }
1790 
1791 static u32 hv_compose_msi_req_v3(
1792 	struct pci_create_interrupt3 *int_pkt, int cpu,
1793 	u32 slot, u32 vector, u16 vector_count)
1794 {
1795 	int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE3;
1796 	int_pkt->wslot.slot = slot;
1797 	int_pkt->int_desc.vector = vector;
1798 	int_pkt->int_desc.reserved = 0;
1799 	int_pkt->int_desc.vector_count = vector_count;
1800 	int_pkt->int_desc.delivery_mode = DELIVERY_MODE;
1801 	int_pkt->int_desc.processor_array[0] =
1802 		hv_cpu_number_to_vp_number(cpu);
1803 	int_pkt->int_desc.processor_count = 1;
1804 
1805 	return sizeof(*int_pkt);
1806 }
1807 
1808 /**
1809  * hv_compose_msi_msg() - Supplies a valid MSI address/data
1810  * @data:	Everything about this MSI
1811  * @msg:	Buffer that is filled in by this function
1812  *
1813  * This function unpacks the IRQ looking for target CPU set, IDT
1814  * vector and mode and sends a message to the parent partition
1815  * asking for a mapping for that tuple in this partition.  The
1816  * response supplies a data value and address to which that data
1817  * should be written to trigger that interrupt.
1818  */
1819 static void hv_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
1820 {
1821 	struct hv_pcibus_device *hbus;
1822 	struct vmbus_channel *channel;
1823 	struct hv_pci_dev *hpdev;
1824 	struct pci_bus *pbus;
1825 	struct pci_dev *pdev;
1826 	const struct cpumask *dest;
1827 	struct compose_comp_ctxt comp;
1828 	struct tran_int_desc *int_desc;
1829 	struct msi_desc *msi_desc;
1830 	/*
1831 	 * vector_count should be u16: see hv_msi_desc, hv_msi_desc2
1832 	 * and hv_msi_desc3. vector must be u32: see hv_msi_desc3.
1833 	 */
1834 	u16 vector_count;
1835 	u32 vector;
1836 	struct {
1837 		struct pci_packet pci_pkt;
1838 		union {
1839 			struct pci_create_interrupt v1;
1840 			struct pci_create_interrupt2 v2;
1841 			struct pci_create_interrupt3 v3;
1842 		} int_pkts;
1843 	} __packed ctxt;
1844 	bool multi_msi;
1845 	u64 trans_id;
1846 	u32 size;
1847 	int ret;
1848 	int cpu;
1849 
1850 	msi_desc  = irq_data_get_msi_desc(data);
1851 	multi_msi = !msi_desc->pci.msi_attrib.is_msix &&
1852 		    msi_desc->nvec_used > 1;
1853 
1854 	/* Reuse the previous allocation */
1855 	if (data->chip_data && multi_msi) {
1856 		int_desc = data->chip_data;
1857 		msg->address_hi = int_desc->address >> 32;
1858 		msg->address_lo = int_desc->address & 0xffffffff;
1859 		msg->data = int_desc->data;
1860 		return;
1861 	}
1862 
1863 	pdev = msi_desc_to_pci_dev(msi_desc);
1864 	dest = irq_data_get_effective_affinity_mask(data);
1865 	pbus = pdev->bus;
1866 	hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
1867 	channel = hbus->hdev->channel;
1868 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1869 	if (!hpdev)
1870 		goto return_null_message;
1871 
1872 	/* Free any previous message that might have already been composed. */
1873 	if (data->chip_data && !multi_msi) {
1874 		int_desc = data->chip_data;
1875 		data->chip_data = NULL;
1876 		hv_int_desc_free(hpdev, int_desc);
1877 	}
1878 
1879 	int_desc = kzalloc(sizeof(*int_desc), GFP_ATOMIC);
1880 	if (!int_desc)
1881 		goto drop_reference;
1882 
1883 	if (multi_msi) {
1884 		/*
1885 		 * If this is not the first MSI of Multi MSI, we already have
1886 		 * a mapping.  Can exit early.
1887 		 */
1888 		if (msi_desc->irq != data->irq) {
1889 			data->chip_data = int_desc;
1890 			int_desc->address = msi_desc->msg.address_lo |
1891 					    (u64)msi_desc->msg.address_hi << 32;
1892 			int_desc->data = msi_desc->msg.data +
1893 					 (data->irq - msi_desc->irq);
1894 			msg->address_hi = msi_desc->msg.address_hi;
1895 			msg->address_lo = msi_desc->msg.address_lo;
1896 			msg->data = int_desc->data;
1897 			put_pcichild(hpdev);
1898 			return;
1899 		}
1900 		/*
1901 		 * The vector we select here is a dummy value.  The correct
1902 		 * value gets sent to the hypervisor in unmask().  This needs
1903 		 * to be aligned with the count, and also not zero.  Multi-msi
1904 		 * is powers of 2 up to 32, so 32 will always work here.
1905 		 */
1906 		vector = 32;
1907 		vector_count = msi_desc->nvec_used;
1908 		cpu = hv_compose_multi_msi_req_get_cpu();
1909 	} else {
1910 		vector = hv_msi_get_int_vector(data);
1911 		vector_count = 1;
1912 		cpu = hv_compose_msi_req_get_cpu(dest);
1913 	}
1914 
1915 	/*
1916 	 * hv_compose_msi_req_v1 and v2 are for x86 only, meaning 'vector'
1917 	 * can't exceed u8. Cast 'vector' down to u8 for v1/v2 explicitly
1918 	 * for better readability.
1919 	 */
1920 	memset(&ctxt, 0, sizeof(ctxt));
1921 	init_completion(&comp.comp_pkt.host_event);
1922 	ctxt.pci_pkt.completion_func = hv_pci_compose_compl;
1923 	ctxt.pci_pkt.compl_ctxt = &comp;
1924 
1925 	switch (hbus->protocol_version) {
1926 	case PCI_PROTOCOL_VERSION_1_1:
1927 		size = hv_compose_msi_req_v1(&ctxt.int_pkts.v1,
1928 					hpdev->desc.win_slot.slot,
1929 					(u8)vector,
1930 					vector_count);
1931 		break;
1932 
1933 	case PCI_PROTOCOL_VERSION_1_2:
1934 	case PCI_PROTOCOL_VERSION_1_3:
1935 		size = hv_compose_msi_req_v2(&ctxt.int_pkts.v2,
1936 					cpu,
1937 					hpdev->desc.win_slot.slot,
1938 					(u8)vector,
1939 					vector_count);
1940 		break;
1941 
1942 	case PCI_PROTOCOL_VERSION_1_4:
1943 		size = hv_compose_msi_req_v3(&ctxt.int_pkts.v3,
1944 					cpu,
1945 					hpdev->desc.win_slot.slot,
1946 					vector,
1947 					vector_count);
1948 		break;
1949 
1950 	default:
1951 		/* As we only negotiate protocol versions known to this driver,
1952 		 * this path should never hit. However, this is it not a hot
1953 		 * path so we print a message to aid future updates.
1954 		 */
1955 		dev_err(&hbus->hdev->device,
1956 			"Unexpected vPCI protocol, update driver.");
1957 		goto free_int_desc;
1958 	}
1959 
1960 	ret = vmbus_sendpacket_getid(hpdev->hbus->hdev->channel, &ctxt.int_pkts,
1961 				     size, (unsigned long)&ctxt.pci_pkt,
1962 				     &trans_id, VM_PKT_DATA_INBAND,
1963 				     VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1964 	if (ret) {
1965 		dev_err(&hbus->hdev->device,
1966 			"Sending request for interrupt failed: 0x%x",
1967 			comp.comp_pkt.completion_status);
1968 		goto free_int_desc;
1969 	}
1970 
1971 	/*
1972 	 * Prevents hv_pci_onchannelcallback() from running concurrently
1973 	 * in the tasklet.
1974 	 */
1975 	tasklet_disable_in_atomic(&channel->callback_event);
1976 
1977 	/*
1978 	 * Since this function is called with IRQ locks held, can't
1979 	 * do normal wait for completion; instead poll.
1980 	 */
1981 	while (!try_wait_for_completion(&comp.comp_pkt.host_event)) {
1982 		unsigned long flags;
1983 
1984 		/* 0xFFFF means an invalid PCI VENDOR ID. */
1985 		if (hv_pcifront_get_vendor_id(hpdev) == 0xFFFF) {
1986 			dev_err_once(&hbus->hdev->device,
1987 				     "the device has gone\n");
1988 			goto enable_tasklet;
1989 		}
1990 
1991 		/*
1992 		 * Make sure that the ring buffer data structure doesn't get
1993 		 * freed while we dereference the ring buffer pointer.  Test
1994 		 * for the channel's onchannel_callback being NULL within a
1995 		 * sched_lock critical section.  See also the inline comments
1996 		 * in vmbus_reset_channel_cb().
1997 		 */
1998 		spin_lock_irqsave(&channel->sched_lock, flags);
1999 		if (unlikely(channel->onchannel_callback == NULL)) {
2000 			spin_unlock_irqrestore(&channel->sched_lock, flags);
2001 			goto enable_tasklet;
2002 		}
2003 		hv_pci_onchannelcallback(hbus);
2004 		spin_unlock_irqrestore(&channel->sched_lock, flags);
2005 
2006 		udelay(100);
2007 	}
2008 
2009 	tasklet_enable(&channel->callback_event);
2010 
2011 	if (comp.comp_pkt.completion_status < 0) {
2012 		dev_err(&hbus->hdev->device,
2013 			"Request for interrupt failed: 0x%x",
2014 			comp.comp_pkt.completion_status);
2015 		goto free_int_desc;
2016 	}
2017 
2018 	/*
2019 	 * Record the assignment so that this can be unwound later. Using
2020 	 * irq_set_chip_data() here would be appropriate, but the lock it takes
2021 	 * is already held.
2022 	 */
2023 	*int_desc = comp.int_desc;
2024 	data->chip_data = int_desc;
2025 
2026 	/* Pass up the result. */
2027 	msg->address_hi = comp.int_desc.address >> 32;
2028 	msg->address_lo = comp.int_desc.address & 0xffffffff;
2029 	msg->data = comp.int_desc.data;
2030 
2031 	put_pcichild(hpdev);
2032 	return;
2033 
2034 enable_tasklet:
2035 	tasklet_enable(&channel->callback_event);
2036 	/*
2037 	 * The completion packet on the stack becomes invalid after 'return';
2038 	 * remove the ID from the VMbus requestor if the identifier is still
2039 	 * mapped to/associated with the packet.  (The identifier could have
2040 	 * been 're-used', i.e., already removed and (re-)mapped.)
2041 	 *
2042 	 * Cf. hv_pci_onchannelcallback().
2043 	 */
2044 	vmbus_request_addr_match(channel, trans_id, (unsigned long)&ctxt.pci_pkt);
2045 free_int_desc:
2046 	kfree(int_desc);
2047 drop_reference:
2048 	put_pcichild(hpdev);
2049 return_null_message:
2050 	msg->address_hi = 0;
2051 	msg->address_lo = 0;
2052 	msg->data = 0;
2053 }
2054 
2055 /* HW Interrupt Chip Descriptor */
2056 static struct irq_chip hv_msi_irq_chip = {
2057 	.name			= "Hyper-V PCIe MSI",
2058 	.irq_compose_msi_msg	= hv_compose_msi_msg,
2059 	.irq_set_affinity	= irq_chip_set_affinity_parent,
2060 #ifdef CONFIG_X86
2061 	.irq_ack		= irq_chip_ack_parent,
2062 #elif defined(CONFIG_ARM64)
2063 	.irq_eoi		= irq_chip_eoi_parent,
2064 #endif
2065 	.irq_mask		= hv_irq_mask,
2066 	.irq_unmask		= hv_irq_unmask,
2067 };
2068 
2069 static struct msi_domain_ops hv_msi_ops = {
2070 	.msi_prepare	= hv_msi_prepare,
2071 	.msi_free	= hv_msi_free,
2072 };
2073 
2074 /**
2075  * hv_pcie_init_irq_domain() - Initialize IRQ domain
2076  * @hbus:	The root PCI bus
2077  *
2078  * This function creates an IRQ domain which will be used for
2079  * interrupts from devices that have been passed through.  These
2080  * devices only support MSI and MSI-X, not line-based interrupts
2081  * or simulations of line-based interrupts through PCIe's
2082  * fabric-layer messages.  Because interrupts are remapped, we
2083  * can support multi-message MSI here.
2084  *
2085  * Return: '0' on success and error value on failure
2086  */
2087 static int hv_pcie_init_irq_domain(struct hv_pcibus_device *hbus)
2088 {
2089 	hbus->msi_info.chip = &hv_msi_irq_chip;
2090 	hbus->msi_info.ops = &hv_msi_ops;
2091 	hbus->msi_info.flags = (MSI_FLAG_USE_DEF_DOM_OPS |
2092 		MSI_FLAG_USE_DEF_CHIP_OPS | MSI_FLAG_MULTI_PCI_MSI |
2093 		MSI_FLAG_PCI_MSIX);
2094 	hbus->msi_info.handler = FLOW_HANDLER;
2095 	hbus->msi_info.handler_name = FLOW_NAME;
2096 	hbus->msi_info.data = hbus;
2097 	hbus->irq_domain = pci_msi_create_irq_domain(hbus->fwnode,
2098 						     &hbus->msi_info,
2099 						     hv_pci_get_root_domain());
2100 	if (!hbus->irq_domain) {
2101 		dev_err(&hbus->hdev->device,
2102 			"Failed to build an MSI IRQ domain\n");
2103 		return -ENODEV;
2104 	}
2105 
2106 	dev_set_msi_domain(&hbus->bridge->dev, hbus->irq_domain);
2107 
2108 	return 0;
2109 }
2110 
2111 /**
2112  * get_bar_size() - Get the address space consumed by a BAR
2113  * @bar_val:	Value that a BAR returned after -1 was written
2114  *              to it.
2115  *
2116  * This function returns the size of the BAR, rounded up to 1
2117  * page.  It has to be rounded up because the hypervisor's page
2118  * table entry that maps the BAR into the VM can't specify an
2119  * offset within a page.  The invariant is that the hypervisor
2120  * must place any BARs of smaller than page length at the
2121  * beginning of a page.
2122  *
2123  * Return:	Size in bytes of the consumed MMIO space.
2124  */
2125 static u64 get_bar_size(u64 bar_val)
2126 {
2127 	return round_up((1 + ~(bar_val & PCI_BASE_ADDRESS_MEM_MASK)),
2128 			PAGE_SIZE);
2129 }
2130 
2131 /**
2132  * survey_child_resources() - Total all MMIO requirements
2133  * @hbus:	Root PCI bus, as understood by this driver
2134  */
2135 static void survey_child_resources(struct hv_pcibus_device *hbus)
2136 {
2137 	struct hv_pci_dev *hpdev;
2138 	resource_size_t bar_size = 0;
2139 	unsigned long flags;
2140 	struct completion *event;
2141 	u64 bar_val;
2142 	int i;
2143 
2144 	/* If nobody is waiting on the answer, don't compute it. */
2145 	event = xchg(&hbus->survey_event, NULL);
2146 	if (!event)
2147 		return;
2148 
2149 	/* If the answer has already been computed, go with it. */
2150 	if (hbus->low_mmio_space || hbus->high_mmio_space) {
2151 		complete(event);
2152 		return;
2153 	}
2154 
2155 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2156 
2157 	/*
2158 	 * Due to an interesting quirk of the PCI spec, all memory regions
2159 	 * for a child device are a power of 2 in size and aligned in memory,
2160 	 * so it's sufficient to just add them up without tracking alignment.
2161 	 */
2162 	list_for_each_entry(hpdev, &hbus->children, list_entry) {
2163 		for (i = 0; i < PCI_STD_NUM_BARS; i++) {
2164 			if (hpdev->probed_bar[i] & PCI_BASE_ADDRESS_SPACE_IO)
2165 				dev_err(&hbus->hdev->device,
2166 					"There's an I/O BAR in this list!\n");
2167 
2168 			if (hpdev->probed_bar[i] != 0) {
2169 				/*
2170 				 * A probed BAR has all the upper bits set that
2171 				 * can be changed.
2172 				 */
2173 
2174 				bar_val = hpdev->probed_bar[i];
2175 				if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
2176 					bar_val |=
2177 					((u64)hpdev->probed_bar[++i] << 32);
2178 				else
2179 					bar_val |= 0xffffffff00000000ULL;
2180 
2181 				bar_size = get_bar_size(bar_val);
2182 
2183 				if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
2184 					hbus->high_mmio_space += bar_size;
2185 				else
2186 					hbus->low_mmio_space += bar_size;
2187 			}
2188 		}
2189 	}
2190 
2191 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2192 	complete(event);
2193 }
2194 
2195 /**
2196  * prepopulate_bars() - Fill in BARs with defaults
2197  * @hbus:	Root PCI bus, as understood by this driver
2198  *
2199  * The core PCI driver code seems much, much happier if the BARs
2200  * for a device have values upon first scan. So fill them in.
2201  * The algorithm below works down from large sizes to small,
2202  * attempting to pack the assignments optimally. The assumption,
2203  * enforced in other parts of the code, is that the beginning of
2204  * the memory-mapped I/O space will be aligned on the largest
2205  * BAR size.
2206  */
2207 static void prepopulate_bars(struct hv_pcibus_device *hbus)
2208 {
2209 	resource_size_t high_size = 0;
2210 	resource_size_t low_size = 0;
2211 	resource_size_t high_base = 0;
2212 	resource_size_t low_base = 0;
2213 	resource_size_t bar_size;
2214 	struct hv_pci_dev *hpdev;
2215 	unsigned long flags;
2216 	u64 bar_val;
2217 	u32 command;
2218 	bool high;
2219 	int i;
2220 
2221 	if (hbus->low_mmio_space) {
2222 		low_size = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
2223 		low_base = hbus->low_mmio_res->start;
2224 	}
2225 
2226 	if (hbus->high_mmio_space) {
2227 		high_size = 1ULL <<
2228 			(63 - __builtin_clzll(hbus->high_mmio_space));
2229 		high_base = hbus->high_mmio_res->start;
2230 	}
2231 
2232 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2233 
2234 	/*
2235 	 * Clear the memory enable bit, in case it's already set. This occurs
2236 	 * in the suspend path of hibernation, where the device is suspended,
2237 	 * resumed and suspended again: see hibernation_snapshot() and
2238 	 * hibernation_platform_enter().
2239 	 *
2240 	 * If the memory enable bit is already set, Hyper-V silently ignores
2241 	 * the below BAR updates, and the related PCI device driver can not
2242 	 * work, because reading from the device register(s) always returns
2243 	 * 0xFFFFFFFF (PCI_ERROR_RESPONSE).
2244 	 */
2245 	list_for_each_entry(hpdev, &hbus->children, list_entry) {
2246 		_hv_pcifront_read_config(hpdev, PCI_COMMAND, 2, &command);
2247 		command &= ~PCI_COMMAND_MEMORY;
2248 		_hv_pcifront_write_config(hpdev, PCI_COMMAND, 2, command);
2249 	}
2250 
2251 	/* Pick addresses for the BARs. */
2252 	do {
2253 		list_for_each_entry(hpdev, &hbus->children, list_entry) {
2254 			for (i = 0; i < PCI_STD_NUM_BARS; i++) {
2255 				bar_val = hpdev->probed_bar[i];
2256 				if (bar_val == 0)
2257 					continue;
2258 				high = bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64;
2259 				if (high) {
2260 					bar_val |=
2261 						((u64)hpdev->probed_bar[i + 1]
2262 						 << 32);
2263 				} else {
2264 					bar_val |= 0xffffffffULL << 32;
2265 				}
2266 				bar_size = get_bar_size(bar_val);
2267 				if (high) {
2268 					if (high_size != bar_size) {
2269 						i++;
2270 						continue;
2271 					}
2272 					_hv_pcifront_write_config(hpdev,
2273 						PCI_BASE_ADDRESS_0 + (4 * i),
2274 						4,
2275 						(u32)(high_base & 0xffffff00));
2276 					i++;
2277 					_hv_pcifront_write_config(hpdev,
2278 						PCI_BASE_ADDRESS_0 + (4 * i),
2279 						4, (u32)(high_base >> 32));
2280 					high_base += bar_size;
2281 				} else {
2282 					if (low_size != bar_size)
2283 						continue;
2284 					_hv_pcifront_write_config(hpdev,
2285 						PCI_BASE_ADDRESS_0 + (4 * i),
2286 						4,
2287 						(u32)(low_base & 0xffffff00));
2288 					low_base += bar_size;
2289 				}
2290 			}
2291 			if (high_size <= 1 && low_size <= 1) {
2292 				/*
2293 				 * No need to set the PCI_COMMAND_MEMORY bit as
2294 				 * the core PCI driver doesn't require the bit
2295 				 * to be pre-set. Actually here we intentionally
2296 				 * keep the bit off so that the PCI BAR probing
2297 				 * in the core PCI driver doesn't cause Hyper-V
2298 				 * to unnecessarily unmap/map the virtual BARs
2299 				 * from/to the physical BARs multiple times.
2300 				 * This reduces the VM boot time significantly
2301 				 * if the BAR sizes are huge.
2302 				 */
2303 				break;
2304 			}
2305 		}
2306 
2307 		high_size >>= 1;
2308 		low_size >>= 1;
2309 	}  while (high_size || low_size);
2310 
2311 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2312 }
2313 
2314 /*
2315  * Assign entries in sysfs pci slot directory.
2316  *
2317  * Note that this function does not need to lock the children list
2318  * because it is called from pci_devices_present_work which
2319  * is serialized with hv_eject_device_work because they are on the
2320  * same ordered workqueue. Therefore hbus->children list will not change
2321  * even when pci_create_slot sleeps.
2322  */
2323 static void hv_pci_assign_slots(struct hv_pcibus_device *hbus)
2324 {
2325 	struct hv_pci_dev *hpdev;
2326 	char name[SLOT_NAME_SIZE];
2327 	int slot_nr;
2328 
2329 	list_for_each_entry(hpdev, &hbus->children, list_entry) {
2330 		if (hpdev->pci_slot)
2331 			continue;
2332 
2333 		slot_nr = PCI_SLOT(wslot_to_devfn(hpdev->desc.win_slot.slot));
2334 		snprintf(name, SLOT_NAME_SIZE, "%u", hpdev->desc.ser);
2335 		hpdev->pci_slot = pci_create_slot(hbus->bridge->bus, slot_nr,
2336 					  name, NULL);
2337 		if (IS_ERR(hpdev->pci_slot)) {
2338 			pr_warn("pci_create slot %s failed\n", name);
2339 			hpdev->pci_slot = NULL;
2340 		}
2341 	}
2342 }
2343 
2344 /*
2345  * Remove entries in sysfs pci slot directory.
2346  */
2347 static void hv_pci_remove_slots(struct hv_pcibus_device *hbus)
2348 {
2349 	struct hv_pci_dev *hpdev;
2350 
2351 	list_for_each_entry(hpdev, &hbus->children, list_entry) {
2352 		if (!hpdev->pci_slot)
2353 			continue;
2354 		pci_destroy_slot(hpdev->pci_slot);
2355 		hpdev->pci_slot = NULL;
2356 	}
2357 }
2358 
2359 /*
2360  * Set NUMA node for the devices on the bus
2361  */
2362 static void hv_pci_assign_numa_node(struct hv_pcibus_device *hbus)
2363 {
2364 	struct pci_dev *dev;
2365 	struct pci_bus *bus = hbus->bridge->bus;
2366 	struct hv_pci_dev *hv_dev;
2367 
2368 	list_for_each_entry(dev, &bus->devices, bus_list) {
2369 		hv_dev = get_pcichild_wslot(hbus, devfn_to_wslot(dev->devfn));
2370 		if (!hv_dev)
2371 			continue;
2372 
2373 		if (hv_dev->desc.flags & HV_PCI_DEVICE_FLAG_NUMA_AFFINITY &&
2374 		    hv_dev->desc.virtual_numa_node < num_possible_nodes())
2375 			/*
2376 			 * The kernel may boot with some NUMA nodes offline
2377 			 * (e.g. in a KDUMP kernel) or with NUMA disabled via
2378 			 * "numa=off". In those cases, adjust the host provided
2379 			 * NUMA node to a valid NUMA node used by the kernel.
2380 			 */
2381 			set_dev_node(&dev->dev,
2382 				     numa_map_to_online_node(
2383 					     hv_dev->desc.virtual_numa_node));
2384 
2385 		put_pcichild(hv_dev);
2386 	}
2387 }
2388 
2389 /**
2390  * create_root_hv_pci_bus() - Expose a new root PCI bus
2391  * @hbus:	Root PCI bus, as understood by this driver
2392  *
2393  * Return: 0 on success, -errno on failure
2394  */
2395 static int create_root_hv_pci_bus(struct hv_pcibus_device *hbus)
2396 {
2397 	int error;
2398 	struct pci_host_bridge *bridge = hbus->bridge;
2399 
2400 	bridge->dev.parent = &hbus->hdev->device;
2401 	bridge->sysdata = &hbus->sysdata;
2402 	bridge->ops = &hv_pcifront_ops;
2403 
2404 	error = pci_scan_root_bus_bridge(bridge);
2405 	if (error)
2406 		return error;
2407 
2408 	pci_lock_rescan_remove();
2409 	hv_pci_assign_numa_node(hbus);
2410 	pci_bus_assign_resources(bridge->bus);
2411 	hv_pci_assign_slots(hbus);
2412 	pci_bus_add_devices(bridge->bus);
2413 	pci_unlock_rescan_remove();
2414 	hbus->state = hv_pcibus_installed;
2415 	return 0;
2416 }
2417 
2418 struct q_res_req_compl {
2419 	struct completion host_event;
2420 	struct hv_pci_dev *hpdev;
2421 };
2422 
2423 /**
2424  * q_resource_requirements() - Query Resource Requirements
2425  * @context:		The completion context.
2426  * @resp:		The response that came from the host.
2427  * @resp_packet_size:	The size in bytes of resp.
2428  *
2429  * This function is invoked on completion of a Query Resource
2430  * Requirements packet.
2431  */
2432 static void q_resource_requirements(void *context, struct pci_response *resp,
2433 				    int resp_packet_size)
2434 {
2435 	struct q_res_req_compl *completion = context;
2436 	struct pci_q_res_req_response *q_res_req =
2437 		(struct pci_q_res_req_response *)resp;
2438 	s32 status;
2439 	int i;
2440 
2441 	status = (resp_packet_size < sizeof(*q_res_req)) ? -1 : resp->status;
2442 	if (status < 0) {
2443 		dev_err(&completion->hpdev->hbus->hdev->device,
2444 			"query resource requirements failed: %x\n",
2445 			status);
2446 	} else {
2447 		for (i = 0; i < PCI_STD_NUM_BARS; i++) {
2448 			completion->hpdev->probed_bar[i] =
2449 				q_res_req->probed_bar[i];
2450 		}
2451 	}
2452 
2453 	complete(&completion->host_event);
2454 }
2455 
2456 /**
2457  * new_pcichild_device() - Create a new child device
2458  * @hbus:	The internal struct tracking this root PCI bus.
2459  * @desc:	The information supplied so far from the host
2460  *              about the device.
2461  *
2462  * This function creates the tracking structure for a new child
2463  * device and kicks off the process of figuring out what it is.
2464  *
2465  * Return: Pointer to the new tracking struct
2466  */
2467 static struct hv_pci_dev *new_pcichild_device(struct hv_pcibus_device *hbus,
2468 		struct hv_pcidev_description *desc)
2469 {
2470 	struct hv_pci_dev *hpdev;
2471 	struct pci_child_message *res_req;
2472 	struct q_res_req_compl comp_pkt;
2473 	struct {
2474 		struct pci_packet init_packet;
2475 		u8 buffer[sizeof(struct pci_child_message)];
2476 	} pkt;
2477 	unsigned long flags;
2478 	int ret;
2479 
2480 	hpdev = kzalloc(sizeof(*hpdev), GFP_KERNEL);
2481 	if (!hpdev)
2482 		return NULL;
2483 
2484 	hpdev->hbus = hbus;
2485 
2486 	memset(&pkt, 0, sizeof(pkt));
2487 	init_completion(&comp_pkt.host_event);
2488 	comp_pkt.hpdev = hpdev;
2489 	pkt.init_packet.compl_ctxt = &comp_pkt;
2490 	pkt.init_packet.completion_func = q_resource_requirements;
2491 	res_req = (struct pci_child_message *)&pkt.init_packet.message;
2492 	res_req->message_type.type = PCI_QUERY_RESOURCE_REQUIREMENTS;
2493 	res_req->wslot.slot = desc->win_slot.slot;
2494 
2495 	ret = vmbus_sendpacket(hbus->hdev->channel, res_req,
2496 			       sizeof(struct pci_child_message),
2497 			       (unsigned long)&pkt.init_packet,
2498 			       VM_PKT_DATA_INBAND,
2499 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2500 	if (ret)
2501 		goto error;
2502 
2503 	if (wait_for_response(hbus->hdev, &comp_pkt.host_event))
2504 		goto error;
2505 
2506 	hpdev->desc = *desc;
2507 	refcount_set(&hpdev->refs, 1);
2508 	get_pcichild(hpdev);
2509 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2510 
2511 	list_add_tail(&hpdev->list_entry, &hbus->children);
2512 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2513 	return hpdev;
2514 
2515 error:
2516 	kfree(hpdev);
2517 	return NULL;
2518 }
2519 
2520 /**
2521  * get_pcichild_wslot() - Find device from slot
2522  * @hbus:	Root PCI bus, as understood by this driver
2523  * @wslot:	Location on the bus
2524  *
2525  * This function looks up a PCI device and returns the internal
2526  * representation of it.  It acquires a reference on it, so that
2527  * the device won't be deleted while somebody is using it.  The
2528  * caller is responsible for calling put_pcichild() to release
2529  * this reference.
2530  *
2531  * Return:	Internal representation of a PCI device
2532  */
2533 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
2534 					     u32 wslot)
2535 {
2536 	unsigned long flags;
2537 	struct hv_pci_dev *iter, *hpdev = NULL;
2538 
2539 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2540 	list_for_each_entry(iter, &hbus->children, list_entry) {
2541 		if (iter->desc.win_slot.slot == wslot) {
2542 			hpdev = iter;
2543 			get_pcichild(hpdev);
2544 			break;
2545 		}
2546 	}
2547 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2548 
2549 	return hpdev;
2550 }
2551 
2552 /**
2553  * pci_devices_present_work() - Handle new list of child devices
2554  * @work:	Work struct embedded in struct hv_dr_work
2555  *
2556  * "Bus Relations" is the Windows term for "children of this
2557  * bus."  The terminology is preserved here for people trying to
2558  * debug the interaction between Hyper-V and Linux.  This
2559  * function is called when the parent partition reports a list
2560  * of functions that should be observed under this PCI Express
2561  * port (bus).
2562  *
2563  * This function updates the list, and must tolerate being
2564  * called multiple times with the same information.  The typical
2565  * number of child devices is one, with very atypical cases
2566  * involving three or four, so the algorithms used here can be
2567  * simple and inefficient.
2568  *
2569  * It must also treat the omission of a previously observed device as
2570  * notification that the device no longer exists.
2571  *
2572  * Note that this function is serialized with hv_eject_device_work(),
2573  * because both are pushed to the ordered workqueue hbus->wq.
2574  */
2575 static void pci_devices_present_work(struct work_struct *work)
2576 {
2577 	u32 child_no;
2578 	bool found;
2579 	struct hv_pcidev_description *new_desc;
2580 	struct hv_pci_dev *hpdev;
2581 	struct hv_pcibus_device *hbus;
2582 	struct list_head removed;
2583 	struct hv_dr_work *dr_wrk;
2584 	struct hv_dr_state *dr = NULL;
2585 	unsigned long flags;
2586 
2587 	dr_wrk = container_of(work, struct hv_dr_work, wrk);
2588 	hbus = dr_wrk->bus;
2589 	kfree(dr_wrk);
2590 
2591 	INIT_LIST_HEAD(&removed);
2592 
2593 	/* Pull this off the queue and process it if it was the last one. */
2594 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2595 	while (!list_empty(&hbus->dr_list)) {
2596 		dr = list_first_entry(&hbus->dr_list, struct hv_dr_state,
2597 				      list_entry);
2598 		list_del(&dr->list_entry);
2599 
2600 		/* Throw this away if the list still has stuff in it. */
2601 		if (!list_empty(&hbus->dr_list)) {
2602 			kfree(dr);
2603 			continue;
2604 		}
2605 	}
2606 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2607 
2608 	if (!dr)
2609 		return;
2610 
2611 	mutex_lock(&hbus->state_lock);
2612 
2613 	/* First, mark all existing children as reported missing. */
2614 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2615 	list_for_each_entry(hpdev, &hbus->children, list_entry) {
2616 		hpdev->reported_missing = true;
2617 	}
2618 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2619 
2620 	/* Next, add back any reported devices. */
2621 	for (child_no = 0; child_no < dr->device_count; child_no++) {
2622 		found = false;
2623 		new_desc = &dr->func[child_no];
2624 
2625 		spin_lock_irqsave(&hbus->device_list_lock, flags);
2626 		list_for_each_entry(hpdev, &hbus->children, list_entry) {
2627 			if ((hpdev->desc.win_slot.slot == new_desc->win_slot.slot) &&
2628 			    (hpdev->desc.v_id == new_desc->v_id) &&
2629 			    (hpdev->desc.d_id == new_desc->d_id) &&
2630 			    (hpdev->desc.ser == new_desc->ser)) {
2631 				hpdev->reported_missing = false;
2632 				found = true;
2633 			}
2634 		}
2635 		spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2636 
2637 		if (!found) {
2638 			hpdev = new_pcichild_device(hbus, new_desc);
2639 			if (!hpdev)
2640 				dev_err(&hbus->hdev->device,
2641 					"couldn't record a child device.\n");
2642 		}
2643 	}
2644 
2645 	/* Move missing children to a list on the stack. */
2646 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2647 	do {
2648 		found = false;
2649 		list_for_each_entry(hpdev, &hbus->children, list_entry) {
2650 			if (hpdev->reported_missing) {
2651 				found = true;
2652 				put_pcichild(hpdev);
2653 				list_move_tail(&hpdev->list_entry, &removed);
2654 				break;
2655 			}
2656 		}
2657 	} while (found);
2658 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2659 
2660 	/* Delete everything that should no longer exist. */
2661 	while (!list_empty(&removed)) {
2662 		hpdev = list_first_entry(&removed, struct hv_pci_dev,
2663 					 list_entry);
2664 		list_del(&hpdev->list_entry);
2665 
2666 		if (hpdev->pci_slot)
2667 			pci_destroy_slot(hpdev->pci_slot);
2668 
2669 		put_pcichild(hpdev);
2670 	}
2671 
2672 	switch (hbus->state) {
2673 	case hv_pcibus_installed:
2674 		/*
2675 		 * Tell the core to rescan bus
2676 		 * because there may have been changes.
2677 		 */
2678 		pci_lock_rescan_remove();
2679 		pci_scan_child_bus(hbus->bridge->bus);
2680 		hv_pci_assign_numa_node(hbus);
2681 		hv_pci_assign_slots(hbus);
2682 		pci_unlock_rescan_remove();
2683 		break;
2684 
2685 	case hv_pcibus_init:
2686 	case hv_pcibus_probed:
2687 		survey_child_resources(hbus);
2688 		break;
2689 
2690 	default:
2691 		break;
2692 	}
2693 
2694 	mutex_unlock(&hbus->state_lock);
2695 
2696 	kfree(dr);
2697 }
2698 
2699 /**
2700  * hv_pci_start_relations_work() - Queue work to start device discovery
2701  * @hbus:	Root PCI bus, as understood by this driver
2702  * @dr:		The list of children returned from host
2703  *
2704  * Return:  0 on success, -errno on failure
2705  */
2706 static int hv_pci_start_relations_work(struct hv_pcibus_device *hbus,
2707 				       struct hv_dr_state *dr)
2708 {
2709 	struct hv_dr_work *dr_wrk;
2710 	unsigned long flags;
2711 	bool pending_dr;
2712 
2713 	if (hbus->state == hv_pcibus_removing) {
2714 		dev_info(&hbus->hdev->device,
2715 			 "PCI VMBus BUS_RELATIONS: ignored\n");
2716 		return -ENOENT;
2717 	}
2718 
2719 	dr_wrk = kzalloc(sizeof(*dr_wrk), GFP_NOWAIT);
2720 	if (!dr_wrk)
2721 		return -ENOMEM;
2722 
2723 	INIT_WORK(&dr_wrk->wrk, pci_devices_present_work);
2724 	dr_wrk->bus = hbus;
2725 
2726 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2727 	/*
2728 	 * If pending_dr is true, we have already queued a work,
2729 	 * which will see the new dr. Otherwise, we need to
2730 	 * queue a new work.
2731 	 */
2732 	pending_dr = !list_empty(&hbus->dr_list);
2733 	list_add_tail(&dr->list_entry, &hbus->dr_list);
2734 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2735 
2736 	if (pending_dr)
2737 		kfree(dr_wrk);
2738 	else
2739 		queue_work(hbus->wq, &dr_wrk->wrk);
2740 
2741 	return 0;
2742 }
2743 
2744 /**
2745  * hv_pci_devices_present() - Handle list of new children
2746  * @hbus:      Root PCI bus, as understood by this driver
2747  * @relations: Packet from host listing children
2748  *
2749  * Process a new list of devices on the bus. The list of devices is
2750  * discovered by VSP and sent to us via VSP message PCI_BUS_RELATIONS,
2751  * whenever a new list of devices for this bus appears.
2752  */
2753 static void hv_pci_devices_present(struct hv_pcibus_device *hbus,
2754 				   struct pci_bus_relations *relations)
2755 {
2756 	struct hv_dr_state *dr;
2757 	int i;
2758 
2759 	dr = kzalloc(struct_size(dr, func, relations->device_count),
2760 		     GFP_NOWAIT);
2761 	if (!dr)
2762 		return;
2763 
2764 	dr->device_count = relations->device_count;
2765 	for (i = 0; i < dr->device_count; i++) {
2766 		dr->func[i].v_id = relations->func[i].v_id;
2767 		dr->func[i].d_id = relations->func[i].d_id;
2768 		dr->func[i].rev = relations->func[i].rev;
2769 		dr->func[i].prog_intf = relations->func[i].prog_intf;
2770 		dr->func[i].subclass = relations->func[i].subclass;
2771 		dr->func[i].base_class = relations->func[i].base_class;
2772 		dr->func[i].subsystem_id = relations->func[i].subsystem_id;
2773 		dr->func[i].win_slot = relations->func[i].win_slot;
2774 		dr->func[i].ser = relations->func[i].ser;
2775 	}
2776 
2777 	if (hv_pci_start_relations_work(hbus, dr))
2778 		kfree(dr);
2779 }
2780 
2781 /**
2782  * hv_pci_devices_present2() - Handle list of new children
2783  * @hbus:	Root PCI bus, as understood by this driver
2784  * @relations:	Packet from host listing children
2785  *
2786  * This function is the v2 version of hv_pci_devices_present()
2787  */
2788 static void hv_pci_devices_present2(struct hv_pcibus_device *hbus,
2789 				    struct pci_bus_relations2 *relations)
2790 {
2791 	struct hv_dr_state *dr;
2792 	int i;
2793 
2794 	dr = kzalloc(struct_size(dr, func, relations->device_count),
2795 		     GFP_NOWAIT);
2796 	if (!dr)
2797 		return;
2798 
2799 	dr->device_count = relations->device_count;
2800 	for (i = 0; i < dr->device_count; i++) {
2801 		dr->func[i].v_id = relations->func[i].v_id;
2802 		dr->func[i].d_id = relations->func[i].d_id;
2803 		dr->func[i].rev = relations->func[i].rev;
2804 		dr->func[i].prog_intf = relations->func[i].prog_intf;
2805 		dr->func[i].subclass = relations->func[i].subclass;
2806 		dr->func[i].base_class = relations->func[i].base_class;
2807 		dr->func[i].subsystem_id = relations->func[i].subsystem_id;
2808 		dr->func[i].win_slot = relations->func[i].win_slot;
2809 		dr->func[i].ser = relations->func[i].ser;
2810 		dr->func[i].flags = relations->func[i].flags;
2811 		dr->func[i].virtual_numa_node =
2812 			relations->func[i].virtual_numa_node;
2813 	}
2814 
2815 	if (hv_pci_start_relations_work(hbus, dr))
2816 		kfree(dr);
2817 }
2818 
2819 /**
2820  * hv_eject_device_work() - Asynchronously handles ejection
2821  * @work:	Work struct embedded in internal device struct
2822  *
2823  * This function handles ejecting a device.  Windows will
2824  * attempt to gracefully eject a device, waiting 60 seconds to
2825  * hear back from the guest OS that this completed successfully.
2826  * If this timer expires, the device will be forcibly removed.
2827  */
2828 static void hv_eject_device_work(struct work_struct *work)
2829 {
2830 	struct pci_eject_response *ejct_pkt;
2831 	struct hv_pcibus_device *hbus;
2832 	struct hv_pci_dev *hpdev;
2833 	struct pci_dev *pdev;
2834 	unsigned long flags;
2835 	int wslot;
2836 	struct {
2837 		struct pci_packet pkt;
2838 		u8 buffer[sizeof(struct pci_eject_response)];
2839 	} ctxt;
2840 
2841 	hpdev = container_of(work, struct hv_pci_dev, wrk);
2842 	hbus = hpdev->hbus;
2843 
2844 	mutex_lock(&hbus->state_lock);
2845 
2846 	/*
2847 	 * Ejection can come before or after the PCI bus has been set up, so
2848 	 * attempt to find it and tear down the bus state, if it exists.  This
2849 	 * must be done without constructs like pci_domain_nr(hbus->bridge->bus)
2850 	 * because hbus->bridge->bus may not exist yet.
2851 	 */
2852 	wslot = wslot_to_devfn(hpdev->desc.win_slot.slot);
2853 	pdev = pci_get_domain_bus_and_slot(hbus->bridge->domain_nr, 0, wslot);
2854 	if (pdev) {
2855 		pci_lock_rescan_remove();
2856 		pci_stop_and_remove_bus_device(pdev);
2857 		pci_dev_put(pdev);
2858 		pci_unlock_rescan_remove();
2859 	}
2860 
2861 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2862 	list_del(&hpdev->list_entry);
2863 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2864 
2865 	if (hpdev->pci_slot)
2866 		pci_destroy_slot(hpdev->pci_slot);
2867 
2868 	memset(&ctxt, 0, sizeof(ctxt));
2869 	ejct_pkt = (struct pci_eject_response *)&ctxt.pkt.message;
2870 	ejct_pkt->message_type.type = PCI_EJECTION_COMPLETE;
2871 	ejct_pkt->wslot.slot = hpdev->desc.win_slot.slot;
2872 	vmbus_sendpacket(hbus->hdev->channel, ejct_pkt,
2873 			 sizeof(*ejct_pkt), 0,
2874 			 VM_PKT_DATA_INBAND, 0);
2875 
2876 	/* For the get_pcichild() in hv_pci_eject_device() */
2877 	put_pcichild(hpdev);
2878 	/* For the two refs got in new_pcichild_device() */
2879 	put_pcichild(hpdev);
2880 	put_pcichild(hpdev);
2881 	/* hpdev has been freed. Do not use it any more. */
2882 
2883 	mutex_unlock(&hbus->state_lock);
2884 }
2885 
2886 /**
2887  * hv_pci_eject_device() - Handles device ejection
2888  * @hpdev:	Internal device tracking struct
2889  *
2890  * This function is invoked when an ejection packet arrives.  It
2891  * just schedules work so that we don't re-enter the packet
2892  * delivery code handling the ejection.
2893  */
2894 static void hv_pci_eject_device(struct hv_pci_dev *hpdev)
2895 {
2896 	struct hv_pcibus_device *hbus = hpdev->hbus;
2897 	struct hv_device *hdev = hbus->hdev;
2898 
2899 	if (hbus->state == hv_pcibus_removing) {
2900 		dev_info(&hdev->device, "PCI VMBus EJECT: ignored\n");
2901 		return;
2902 	}
2903 
2904 	get_pcichild(hpdev);
2905 	INIT_WORK(&hpdev->wrk, hv_eject_device_work);
2906 	queue_work(hbus->wq, &hpdev->wrk);
2907 }
2908 
2909 /**
2910  * hv_pci_onchannelcallback() - Handles incoming packets
2911  * @context:	Internal bus tracking struct
2912  *
2913  * This function is invoked whenever the host sends a packet to
2914  * this channel (which is private to this root PCI bus).
2915  */
2916 static void hv_pci_onchannelcallback(void *context)
2917 {
2918 	const int packet_size = 0x100;
2919 	int ret;
2920 	struct hv_pcibus_device *hbus = context;
2921 	struct vmbus_channel *chan = hbus->hdev->channel;
2922 	u32 bytes_recvd;
2923 	u64 req_id, req_addr;
2924 	struct vmpacket_descriptor *desc;
2925 	unsigned char *buffer;
2926 	int bufferlen = packet_size;
2927 	struct pci_packet *comp_packet;
2928 	struct pci_response *response;
2929 	struct pci_incoming_message *new_message;
2930 	struct pci_bus_relations *bus_rel;
2931 	struct pci_bus_relations2 *bus_rel2;
2932 	struct pci_dev_inval_block *inval;
2933 	struct pci_dev_incoming *dev_message;
2934 	struct hv_pci_dev *hpdev;
2935 	unsigned long flags;
2936 
2937 	buffer = kmalloc(bufferlen, GFP_ATOMIC);
2938 	if (!buffer)
2939 		return;
2940 
2941 	while (1) {
2942 		ret = vmbus_recvpacket_raw(chan, buffer, bufferlen,
2943 					   &bytes_recvd, &req_id);
2944 
2945 		if (ret == -ENOBUFS) {
2946 			kfree(buffer);
2947 			/* Handle large packet */
2948 			bufferlen = bytes_recvd;
2949 			buffer = kmalloc(bytes_recvd, GFP_ATOMIC);
2950 			if (!buffer)
2951 				return;
2952 			continue;
2953 		}
2954 
2955 		/* Zero length indicates there are no more packets. */
2956 		if (ret || !bytes_recvd)
2957 			break;
2958 
2959 		/*
2960 		 * All incoming packets must be at least as large as a
2961 		 * response.
2962 		 */
2963 		if (bytes_recvd <= sizeof(struct pci_response))
2964 			continue;
2965 		desc = (struct vmpacket_descriptor *)buffer;
2966 
2967 		switch (desc->type) {
2968 		case VM_PKT_COMP:
2969 
2970 			lock_requestor(chan, flags);
2971 			req_addr = __vmbus_request_addr_match(chan, req_id,
2972 							      VMBUS_RQST_ADDR_ANY);
2973 			if (req_addr == VMBUS_RQST_ERROR) {
2974 				unlock_requestor(chan, flags);
2975 				dev_err(&hbus->hdev->device,
2976 					"Invalid transaction ID %llx\n",
2977 					req_id);
2978 				break;
2979 			}
2980 			comp_packet = (struct pci_packet *)req_addr;
2981 			response = (struct pci_response *)buffer;
2982 			/*
2983 			 * Call ->completion_func() within the critical section to make
2984 			 * sure that the packet pointer is still valid during the call:
2985 			 * here 'valid' means that there's a task still waiting for the
2986 			 * completion, and that the packet data is still on the waiting
2987 			 * task's stack.  Cf. hv_compose_msi_msg().
2988 			 */
2989 			comp_packet->completion_func(comp_packet->compl_ctxt,
2990 						     response,
2991 						     bytes_recvd);
2992 			unlock_requestor(chan, flags);
2993 			break;
2994 
2995 		case VM_PKT_DATA_INBAND:
2996 
2997 			new_message = (struct pci_incoming_message *)buffer;
2998 			switch (new_message->message_type.type) {
2999 			case PCI_BUS_RELATIONS:
3000 
3001 				bus_rel = (struct pci_bus_relations *)buffer;
3002 				if (bytes_recvd < sizeof(*bus_rel) ||
3003 				    bytes_recvd <
3004 					struct_size(bus_rel, func,
3005 						    bus_rel->device_count)) {
3006 					dev_err(&hbus->hdev->device,
3007 						"bus relations too small\n");
3008 					break;
3009 				}
3010 
3011 				hv_pci_devices_present(hbus, bus_rel);
3012 				break;
3013 
3014 			case PCI_BUS_RELATIONS2:
3015 
3016 				bus_rel2 = (struct pci_bus_relations2 *)buffer;
3017 				if (bytes_recvd < sizeof(*bus_rel2) ||
3018 				    bytes_recvd <
3019 					struct_size(bus_rel2, func,
3020 						    bus_rel2->device_count)) {
3021 					dev_err(&hbus->hdev->device,
3022 						"bus relations v2 too small\n");
3023 					break;
3024 				}
3025 
3026 				hv_pci_devices_present2(hbus, bus_rel2);
3027 				break;
3028 
3029 			case PCI_EJECT:
3030 
3031 				dev_message = (struct pci_dev_incoming *)buffer;
3032 				if (bytes_recvd < sizeof(*dev_message)) {
3033 					dev_err(&hbus->hdev->device,
3034 						"eject message too small\n");
3035 					break;
3036 				}
3037 				hpdev = get_pcichild_wslot(hbus,
3038 						      dev_message->wslot.slot);
3039 				if (hpdev) {
3040 					hv_pci_eject_device(hpdev);
3041 					put_pcichild(hpdev);
3042 				}
3043 				break;
3044 
3045 			case PCI_INVALIDATE_BLOCK:
3046 
3047 				inval = (struct pci_dev_inval_block *)buffer;
3048 				if (bytes_recvd < sizeof(*inval)) {
3049 					dev_err(&hbus->hdev->device,
3050 						"invalidate message too small\n");
3051 					break;
3052 				}
3053 				hpdev = get_pcichild_wslot(hbus,
3054 							   inval->wslot.slot);
3055 				if (hpdev) {
3056 					if (hpdev->block_invalidate) {
3057 						hpdev->block_invalidate(
3058 						    hpdev->invalidate_context,
3059 						    inval->block_mask);
3060 					}
3061 					put_pcichild(hpdev);
3062 				}
3063 				break;
3064 
3065 			default:
3066 				dev_warn(&hbus->hdev->device,
3067 					"Unimplemented protocol message %x\n",
3068 					new_message->message_type.type);
3069 				break;
3070 			}
3071 			break;
3072 
3073 		default:
3074 			dev_err(&hbus->hdev->device,
3075 				"unhandled packet type %d, tid %llx len %d\n",
3076 				desc->type, req_id, bytes_recvd);
3077 			break;
3078 		}
3079 	}
3080 
3081 	kfree(buffer);
3082 }
3083 
3084 /**
3085  * hv_pci_protocol_negotiation() - Set up protocol
3086  * @hdev:		VMBus's tracking struct for this root PCI bus.
3087  * @version:		Array of supported channel protocol versions in
3088  *			the order of probing - highest go first.
3089  * @num_version:	Number of elements in the version array.
3090  *
3091  * This driver is intended to support running on Windows 10
3092  * (server) and later versions. It will not run on earlier
3093  * versions, as they assume that many of the operations which
3094  * Linux needs accomplished with a spinlock held were done via
3095  * asynchronous messaging via VMBus.  Windows 10 increases the
3096  * surface area of PCI emulation so that these actions can take
3097  * place by suspending a virtual processor for their duration.
3098  *
3099  * This function negotiates the channel protocol version,
3100  * failing if the host doesn't support the necessary protocol
3101  * level.
3102  */
3103 static int hv_pci_protocol_negotiation(struct hv_device *hdev,
3104 				       enum pci_protocol_version_t version[],
3105 				       int num_version)
3106 {
3107 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3108 	struct pci_version_request *version_req;
3109 	struct hv_pci_compl comp_pkt;
3110 	struct pci_packet *pkt;
3111 	int ret;
3112 	int i;
3113 
3114 	/*
3115 	 * Initiate the handshake with the host and negotiate
3116 	 * a version that the host can support. We start with the
3117 	 * highest version number and go down if the host cannot
3118 	 * support it.
3119 	 */
3120 	pkt = kzalloc(sizeof(*pkt) + sizeof(*version_req), GFP_KERNEL);
3121 	if (!pkt)
3122 		return -ENOMEM;
3123 
3124 	init_completion(&comp_pkt.host_event);
3125 	pkt->completion_func = hv_pci_generic_compl;
3126 	pkt->compl_ctxt = &comp_pkt;
3127 	version_req = (struct pci_version_request *)&pkt->message;
3128 	version_req->message_type.type = PCI_QUERY_PROTOCOL_VERSION;
3129 
3130 	for (i = 0; i < num_version; i++) {
3131 		version_req->protocol_version = version[i];
3132 		ret = vmbus_sendpacket(hdev->channel, version_req,
3133 				sizeof(struct pci_version_request),
3134 				(unsigned long)pkt, VM_PKT_DATA_INBAND,
3135 				VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3136 		if (!ret)
3137 			ret = wait_for_response(hdev, &comp_pkt.host_event);
3138 
3139 		if (ret) {
3140 			dev_err(&hdev->device,
3141 				"PCI Pass-through VSP failed to request version: %d",
3142 				ret);
3143 			goto exit;
3144 		}
3145 
3146 		if (comp_pkt.completion_status >= 0) {
3147 			hbus->protocol_version = version[i];
3148 			dev_info(&hdev->device,
3149 				"PCI VMBus probing: Using version %#x\n",
3150 				hbus->protocol_version);
3151 			goto exit;
3152 		}
3153 
3154 		if (comp_pkt.completion_status != STATUS_REVISION_MISMATCH) {
3155 			dev_err(&hdev->device,
3156 				"PCI Pass-through VSP failed version request: %#x",
3157 				comp_pkt.completion_status);
3158 			ret = -EPROTO;
3159 			goto exit;
3160 		}
3161 
3162 		reinit_completion(&comp_pkt.host_event);
3163 	}
3164 
3165 	dev_err(&hdev->device,
3166 		"PCI pass-through VSP failed to find supported version");
3167 	ret = -EPROTO;
3168 
3169 exit:
3170 	kfree(pkt);
3171 	return ret;
3172 }
3173 
3174 /**
3175  * hv_pci_free_bridge_windows() - Release memory regions for the
3176  * bus
3177  * @hbus:	Root PCI bus, as understood by this driver
3178  */
3179 static void hv_pci_free_bridge_windows(struct hv_pcibus_device *hbus)
3180 {
3181 	/*
3182 	 * Set the resources back to the way they looked when they
3183 	 * were allocated by setting IORESOURCE_BUSY again.
3184 	 */
3185 
3186 	if (hbus->low_mmio_space && hbus->low_mmio_res) {
3187 		hbus->low_mmio_res->flags |= IORESOURCE_BUSY;
3188 		vmbus_free_mmio(hbus->low_mmio_res->start,
3189 				resource_size(hbus->low_mmio_res));
3190 	}
3191 
3192 	if (hbus->high_mmio_space && hbus->high_mmio_res) {
3193 		hbus->high_mmio_res->flags |= IORESOURCE_BUSY;
3194 		vmbus_free_mmio(hbus->high_mmio_res->start,
3195 				resource_size(hbus->high_mmio_res));
3196 	}
3197 }
3198 
3199 /**
3200  * hv_pci_allocate_bridge_windows() - Allocate memory regions
3201  * for the bus
3202  * @hbus:	Root PCI bus, as understood by this driver
3203  *
3204  * This function calls vmbus_allocate_mmio(), which is itself a
3205  * bit of a compromise.  Ideally, we might change the pnp layer
3206  * in the kernel such that it comprehends either PCI devices
3207  * which are "grandchildren of ACPI," with some intermediate bus
3208  * node (in this case, VMBus) or change it such that it
3209  * understands VMBus.  The pnp layer, however, has been declared
3210  * deprecated, and not subject to change.
3211  *
3212  * The workaround, implemented here, is to ask VMBus to allocate
3213  * MMIO space for this bus.  VMBus itself knows which ranges are
3214  * appropriate by looking at its own ACPI objects.  Then, after
3215  * these ranges are claimed, they're modified to look like they
3216  * would have looked if the ACPI and pnp code had allocated
3217  * bridge windows.  These descriptors have to exist in this form
3218  * in order to satisfy the code which will get invoked when the
3219  * endpoint PCI function driver calls request_mem_region() or
3220  * request_mem_region_exclusive().
3221  *
3222  * Return: 0 on success, -errno on failure
3223  */
3224 static int hv_pci_allocate_bridge_windows(struct hv_pcibus_device *hbus)
3225 {
3226 	resource_size_t align;
3227 	int ret;
3228 
3229 	if (hbus->low_mmio_space) {
3230 		align = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
3231 		ret = vmbus_allocate_mmio(&hbus->low_mmio_res, hbus->hdev, 0,
3232 					  (u64)(u32)0xffffffff,
3233 					  hbus->low_mmio_space,
3234 					  align, false);
3235 		if (ret) {
3236 			dev_err(&hbus->hdev->device,
3237 				"Need %#llx of low MMIO space. Consider reconfiguring the VM.\n",
3238 				hbus->low_mmio_space);
3239 			return ret;
3240 		}
3241 
3242 		/* Modify this resource to become a bridge window. */
3243 		hbus->low_mmio_res->flags |= IORESOURCE_WINDOW;
3244 		hbus->low_mmio_res->flags &= ~IORESOURCE_BUSY;
3245 		pci_add_resource(&hbus->bridge->windows, hbus->low_mmio_res);
3246 	}
3247 
3248 	if (hbus->high_mmio_space) {
3249 		align = 1ULL << (63 - __builtin_clzll(hbus->high_mmio_space));
3250 		ret = vmbus_allocate_mmio(&hbus->high_mmio_res, hbus->hdev,
3251 					  0x100000000, -1,
3252 					  hbus->high_mmio_space, align,
3253 					  false);
3254 		if (ret) {
3255 			dev_err(&hbus->hdev->device,
3256 				"Need %#llx of high MMIO space. Consider reconfiguring the VM.\n",
3257 				hbus->high_mmio_space);
3258 			goto release_low_mmio;
3259 		}
3260 
3261 		/* Modify this resource to become a bridge window. */
3262 		hbus->high_mmio_res->flags |= IORESOURCE_WINDOW;
3263 		hbus->high_mmio_res->flags &= ~IORESOURCE_BUSY;
3264 		pci_add_resource(&hbus->bridge->windows, hbus->high_mmio_res);
3265 	}
3266 
3267 	return 0;
3268 
3269 release_low_mmio:
3270 	if (hbus->low_mmio_res) {
3271 		vmbus_free_mmio(hbus->low_mmio_res->start,
3272 				resource_size(hbus->low_mmio_res));
3273 	}
3274 
3275 	return ret;
3276 }
3277 
3278 /**
3279  * hv_allocate_config_window() - Find MMIO space for PCI Config
3280  * @hbus:	Root PCI bus, as understood by this driver
3281  *
3282  * This function claims memory-mapped I/O space for accessing
3283  * configuration space for the functions on this bus.
3284  *
3285  * Return: 0 on success, -errno on failure
3286  */
3287 static int hv_allocate_config_window(struct hv_pcibus_device *hbus)
3288 {
3289 	int ret;
3290 
3291 	/*
3292 	 * Set up a region of MMIO space to use for accessing configuration
3293 	 * space.
3294 	 */
3295 	ret = vmbus_allocate_mmio(&hbus->mem_config, hbus->hdev, 0, -1,
3296 				  PCI_CONFIG_MMIO_LENGTH, 0x1000, false);
3297 	if (ret)
3298 		return ret;
3299 
3300 	/*
3301 	 * vmbus_allocate_mmio() gets used for allocating both device endpoint
3302 	 * resource claims (those which cannot be overlapped) and the ranges
3303 	 * which are valid for the children of this bus, which are intended
3304 	 * to be overlapped by those children.  Set the flag on this claim
3305 	 * meaning that this region can't be overlapped.
3306 	 */
3307 
3308 	hbus->mem_config->flags |= IORESOURCE_BUSY;
3309 
3310 	return 0;
3311 }
3312 
3313 static void hv_free_config_window(struct hv_pcibus_device *hbus)
3314 {
3315 	vmbus_free_mmio(hbus->mem_config->start, PCI_CONFIG_MMIO_LENGTH);
3316 }
3317 
3318 static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs);
3319 
3320 /**
3321  * hv_pci_enter_d0() - Bring the "bus" into the D0 power state
3322  * @hdev:	VMBus's tracking struct for this root PCI bus
3323  *
3324  * Return: 0 on success, -errno on failure
3325  */
3326 static int hv_pci_enter_d0(struct hv_device *hdev)
3327 {
3328 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3329 	struct pci_bus_d0_entry *d0_entry;
3330 	struct hv_pci_compl comp_pkt;
3331 	struct pci_packet *pkt;
3332 	bool retry = true;
3333 	int ret;
3334 
3335 enter_d0_retry:
3336 	/*
3337 	 * Tell the host that the bus is ready to use, and moved into the
3338 	 * powered-on state.  This includes telling the host which region
3339 	 * of memory-mapped I/O space has been chosen for configuration space
3340 	 * access.
3341 	 */
3342 	pkt = kzalloc(sizeof(*pkt) + sizeof(*d0_entry), GFP_KERNEL);
3343 	if (!pkt)
3344 		return -ENOMEM;
3345 
3346 	init_completion(&comp_pkt.host_event);
3347 	pkt->completion_func = hv_pci_generic_compl;
3348 	pkt->compl_ctxt = &comp_pkt;
3349 	d0_entry = (struct pci_bus_d0_entry *)&pkt->message;
3350 	d0_entry->message_type.type = PCI_BUS_D0ENTRY;
3351 	d0_entry->mmio_base = hbus->mem_config->start;
3352 
3353 	ret = vmbus_sendpacket(hdev->channel, d0_entry, sizeof(*d0_entry),
3354 			       (unsigned long)pkt, VM_PKT_DATA_INBAND,
3355 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3356 	if (!ret)
3357 		ret = wait_for_response(hdev, &comp_pkt.host_event);
3358 
3359 	if (ret)
3360 		goto exit;
3361 
3362 	/*
3363 	 * In certain case (Kdump) the pci device of interest was
3364 	 * not cleanly shut down and resource is still held on host
3365 	 * side, the host could return invalid device status.
3366 	 * We need to explicitly request host to release the resource
3367 	 * and try to enter D0 again.
3368 	 */
3369 	if (comp_pkt.completion_status < 0 && retry) {
3370 		retry = false;
3371 
3372 		dev_err(&hdev->device, "Retrying D0 Entry\n");
3373 
3374 		/*
3375 		 * Hv_pci_bus_exit() calls hv_send_resource_released()
3376 		 * to free up resources of its child devices.
3377 		 * In the kdump kernel we need to set the
3378 		 * wslot_res_allocated to 255 so it scans all child
3379 		 * devices to release resources allocated in the
3380 		 * normal kernel before panic happened.
3381 		 */
3382 		hbus->wslot_res_allocated = 255;
3383 
3384 		ret = hv_pci_bus_exit(hdev, true);
3385 
3386 		if (ret == 0) {
3387 			kfree(pkt);
3388 			goto enter_d0_retry;
3389 		}
3390 		dev_err(&hdev->device,
3391 			"Retrying D0 failed with ret %d\n", ret);
3392 	}
3393 
3394 	if (comp_pkt.completion_status < 0) {
3395 		dev_err(&hdev->device,
3396 			"PCI Pass-through VSP failed D0 Entry with status %x\n",
3397 			comp_pkt.completion_status);
3398 		ret = -EPROTO;
3399 		goto exit;
3400 	}
3401 
3402 	ret = 0;
3403 
3404 exit:
3405 	kfree(pkt);
3406 	return ret;
3407 }
3408 
3409 /**
3410  * hv_pci_query_relations() - Ask host to send list of child
3411  * devices
3412  * @hdev:	VMBus's tracking struct for this root PCI bus
3413  *
3414  * Return: 0 on success, -errno on failure
3415  */
3416 static int hv_pci_query_relations(struct hv_device *hdev)
3417 {
3418 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3419 	struct pci_message message;
3420 	struct completion comp;
3421 	int ret;
3422 
3423 	/* Ask the host to send along the list of child devices */
3424 	init_completion(&comp);
3425 	if (cmpxchg(&hbus->survey_event, NULL, &comp))
3426 		return -ENOTEMPTY;
3427 
3428 	memset(&message, 0, sizeof(message));
3429 	message.type = PCI_QUERY_BUS_RELATIONS;
3430 
3431 	ret = vmbus_sendpacket(hdev->channel, &message, sizeof(message),
3432 			       0, VM_PKT_DATA_INBAND, 0);
3433 	if (!ret)
3434 		ret = wait_for_response(hdev, &comp);
3435 
3436 	/*
3437 	 * In the case of fast device addition/removal, it's possible that
3438 	 * vmbus_sendpacket() or wait_for_response() returns -ENODEV but we
3439 	 * already got a PCI_BUS_RELATIONS* message from the host and the
3440 	 * channel callback already scheduled a work to hbus->wq, which can be
3441 	 * running pci_devices_present_work() -> survey_child_resources() ->
3442 	 * complete(&hbus->survey_event), even after hv_pci_query_relations()
3443 	 * exits and the stack variable 'comp' is no longer valid; as a result,
3444 	 * a hang or a page fault may happen when the complete() calls
3445 	 * raw_spin_lock_irqsave(). Flush hbus->wq before we exit from
3446 	 * hv_pci_query_relations() to avoid the issues. Note: if 'ret' is
3447 	 * -ENODEV, there can't be any more work item scheduled to hbus->wq
3448 	 * after the flush_workqueue(): see vmbus_onoffer_rescind() ->
3449 	 * vmbus_reset_channel_cb(), vmbus_rescind_cleanup() ->
3450 	 * channel->rescind = true.
3451 	 */
3452 	flush_workqueue(hbus->wq);
3453 
3454 	return ret;
3455 }
3456 
3457 /**
3458  * hv_send_resources_allocated() - Report local resource choices
3459  * @hdev:	VMBus's tracking struct for this root PCI bus
3460  *
3461  * The host OS is expecting to be sent a request as a message
3462  * which contains all the resources that the device will use.
3463  * The response contains those same resources, "translated"
3464  * which is to say, the values which should be used by the
3465  * hardware, when it delivers an interrupt.  (MMIO resources are
3466  * used in local terms.)  This is nice for Windows, and lines up
3467  * with the FDO/PDO split, which doesn't exist in Linux.  Linux
3468  * is deeply expecting to scan an emulated PCI configuration
3469  * space.  So this message is sent here only to drive the state
3470  * machine on the host forward.
3471  *
3472  * Return: 0 on success, -errno on failure
3473  */
3474 static int hv_send_resources_allocated(struct hv_device *hdev)
3475 {
3476 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3477 	struct pci_resources_assigned *res_assigned;
3478 	struct pci_resources_assigned2 *res_assigned2;
3479 	struct hv_pci_compl comp_pkt;
3480 	struct hv_pci_dev *hpdev;
3481 	struct pci_packet *pkt;
3482 	size_t size_res;
3483 	int wslot;
3484 	int ret;
3485 
3486 	size_res = (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2)
3487 			? sizeof(*res_assigned) : sizeof(*res_assigned2);
3488 
3489 	pkt = kmalloc(sizeof(*pkt) + size_res, GFP_KERNEL);
3490 	if (!pkt)
3491 		return -ENOMEM;
3492 
3493 	ret = 0;
3494 
3495 	for (wslot = 0; wslot < 256; wslot++) {
3496 		hpdev = get_pcichild_wslot(hbus, wslot);
3497 		if (!hpdev)
3498 			continue;
3499 
3500 		memset(pkt, 0, sizeof(*pkt) + size_res);
3501 		init_completion(&comp_pkt.host_event);
3502 		pkt->completion_func = hv_pci_generic_compl;
3503 		pkt->compl_ctxt = &comp_pkt;
3504 
3505 		if (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2) {
3506 			res_assigned =
3507 				(struct pci_resources_assigned *)&pkt->message;
3508 			res_assigned->message_type.type =
3509 				PCI_RESOURCES_ASSIGNED;
3510 			res_assigned->wslot.slot = hpdev->desc.win_slot.slot;
3511 		} else {
3512 			res_assigned2 =
3513 				(struct pci_resources_assigned2 *)&pkt->message;
3514 			res_assigned2->message_type.type =
3515 				PCI_RESOURCES_ASSIGNED2;
3516 			res_assigned2->wslot.slot = hpdev->desc.win_slot.slot;
3517 		}
3518 		put_pcichild(hpdev);
3519 
3520 		ret = vmbus_sendpacket(hdev->channel, &pkt->message,
3521 				size_res, (unsigned long)pkt,
3522 				VM_PKT_DATA_INBAND,
3523 				VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3524 		if (!ret)
3525 			ret = wait_for_response(hdev, &comp_pkt.host_event);
3526 		if (ret)
3527 			break;
3528 
3529 		if (comp_pkt.completion_status < 0) {
3530 			ret = -EPROTO;
3531 			dev_err(&hdev->device,
3532 				"resource allocated returned 0x%x",
3533 				comp_pkt.completion_status);
3534 			break;
3535 		}
3536 
3537 		hbus->wslot_res_allocated = wslot;
3538 	}
3539 
3540 	kfree(pkt);
3541 	return ret;
3542 }
3543 
3544 /**
3545  * hv_send_resources_released() - Report local resources
3546  * released
3547  * @hdev:	VMBus's tracking struct for this root PCI bus
3548  *
3549  * Return: 0 on success, -errno on failure
3550  */
3551 static int hv_send_resources_released(struct hv_device *hdev)
3552 {
3553 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3554 	struct pci_child_message pkt;
3555 	struct hv_pci_dev *hpdev;
3556 	int wslot;
3557 	int ret;
3558 
3559 	for (wslot = hbus->wslot_res_allocated; wslot >= 0; wslot--) {
3560 		hpdev = get_pcichild_wslot(hbus, wslot);
3561 		if (!hpdev)
3562 			continue;
3563 
3564 		memset(&pkt, 0, sizeof(pkt));
3565 		pkt.message_type.type = PCI_RESOURCES_RELEASED;
3566 		pkt.wslot.slot = hpdev->desc.win_slot.slot;
3567 
3568 		put_pcichild(hpdev);
3569 
3570 		ret = vmbus_sendpacket(hdev->channel, &pkt, sizeof(pkt), 0,
3571 				       VM_PKT_DATA_INBAND, 0);
3572 		if (ret)
3573 			return ret;
3574 
3575 		hbus->wslot_res_allocated = wslot - 1;
3576 	}
3577 
3578 	hbus->wslot_res_allocated = -1;
3579 
3580 	return 0;
3581 }
3582 
3583 #define HVPCI_DOM_MAP_SIZE (64 * 1024)
3584 static DECLARE_BITMAP(hvpci_dom_map, HVPCI_DOM_MAP_SIZE);
3585 
3586 /*
3587  * PCI domain number 0 is used by emulated devices on Gen1 VMs, so define 0
3588  * as invalid for passthrough PCI devices of this driver.
3589  */
3590 #define HVPCI_DOM_INVALID 0
3591 
3592 /**
3593  * hv_get_dom_num() - Get a valid PCI domain number
3594  * Check if the PCI domain number is in use, and return another number if
3595  * it is in use.
3596  *
3597  * @dom: Requested domain number
3598  *
3599  * return: domain number on success, HVPCI_DOM_INVALID on failure
3600  */
3601 static u16 hv_get_dom_num(u16 dom)
3602 {
3603 	unsigned int i;
3604 
3605 	if (test_and_set_bit(dom, hvpci_dom_map) == 0)
3606 		return dom;
3607 
3608 	for_each_clear_bit(i, hvpci_dom_map, HVPCI_DOM_MAP_SIZE) {
3609 		if (test_and_set_bit(i, hvpci_dom_map) == 0)
3610 			return i;
3611 	}
3612 
3613 	return HVPCI_DOM_INVALID;
3614 }
3615 
3616 /**
3617  * hv_put_dom_num() - Mark the PCI domain number as free
3618  * @dom: Domain number to be freed
3619  */
3620 static void hv_put_dom_num(u16 dom)
3621 {
3622 	clear_bit(dom, hvpci_dom_map);
3623 }
3624 
3625 /**
3626  * hv_pci_probe() - New VMBus channel probe, for a root PCI bus
3627  * @hdev:	VMBus's tracking struct for this root PCI bus
3628  * @dev_id:	Identifies the device itself
3629  *
3630  * Return: 0 on success, -errno on failure
3631  */
3632 static int hv_pci_probe(struct hv_device *hdev,
3633 			const struct hv_vmbus_device_id *dev_id)
3634 {
3635 	struct pci_host_bridge *bridge;
3636 	struct hv_pcibus_device *hbus;
3637 	u16 dom_req, dom;
3638 	char *name;
3639 	int ret;
3640 
3641 	bridge = devm_pci_alloc_host_bridge(&hdev->device, 0);
3642 	if (!bridge)
3643 		return -ENOMEM;
3644 
3645 	hbus = kzalloc(sizeof(*hbus), GFP_KERNEL);
3646 	if (!hbus)
3647 		return -ENOMEM;
3648 
3649 	hbus->bridge = bridge;
3650 	mutex_init(&hbus->state_lock);
3651 	hbus->state = hv_pcibus_init;
3652 	hbus->wslot_res_allocated = -1;
3653 
3654 	/*
3655 	 * The PCI bus "domain" is what is called "segment" in ACPI and other
3656 	 * specs. Pull it from the instance ID, to get something usually
3657 	 * unique. In rare cases of collision, we will find out another number
3658 	 * not in use.
3659 	 *
3660 	 * Note that, since this code only runs in a Hyper-V VM, Hyper-V
3661 	 * together with this guest driver can guarantee that (1) The only
3662 	 * domain used by Gen1 VMs for something that looks like a physical
3663 	 * PCI bus (which is actually emulated by the hypervisor) is domain 0.
3664 	 * (2) There will be no overlap between domains (after fixing possible
3665 	 * collisions) in the same VM.
3666 	 */
3667 	dom_req = hdev->dev_instance.b[5] << 8 | hdev->dev_instance.b[4];
3668 	dom = hv_get_dom_num(dom_req);
3669 
3670 	if (dom == HVPCI_DOM_INVALID) {
3671 		dev_err(&hdev->device,
3672 			"Unable to use dom# 0x%x or other numbers", dom_req);
3673 		ret = -EINVAL;
3674 		goto free_bus;
3675 	}
3676 
3677 	if (dom != dom_req)
3678 		dev_info(&hdev->device,
3679 			 "PCI dom# 0x%x has collision, using 0x%x",
3680 			 dom_req, dom);
3681 
3682 	hbus->bridge->domain_nr = dom;
3683 #ifdef CONFIG_X86
3684 	hbus->sysdata.domain = dom;
3685 	hbus->use_calls = !!(ms_hyperv.hints & HV_X64_USE_MMIO_HYPERCALLS);
3686 #elif defined(CONFIG_ARM64)
3687 	/*
3688 	 * Set the PCI bus parent to be the corresponding VMbus
3689 	 * device. Then the VMbus device will be assigned as the
3690 	 * ACPI companion in pcibios_root_bridge_prepare() and
3691 	 * pci_dma_configure() will propagate device coherence
3692 	 * information to devices created on the bus.
3693 	 */
3694 	hbus->sysdata.parent = hdev->device.parent;
3695 	hbus->use_calls = false;
3696 #endif
3697 
3698 	hbus->hdev = hdev;
3699 	INIT_LIST_HEAD(&hbus->children);
3700 	INIT_LIST_HEAD(&hbus->dr_list);
3701 	spin_lock_init(&hbus->config_lock);
3702 	spin_lock_init(&hbus->device_list_lock);
3703 	hbus->wq = alloc_ordered_workqueue("hv_pci_%x", 0,
3704 					   hbus->bridge->domain_nr);
3705 	if (!hbus->wq) {
3706 		ret = -ENOMEM;
3707 		goto free_dom;
3708 	}
3709 
3710 	hdev->channel->next_request_id_callback = vmbus_next_request_id;
3711 	hdev->channel->request_addr_callback = vmbus_request_addr;
3712 	hdev->channel->rqstor_size = HV_PCI_RQSTOR_SIZE;
3713 
3714 	ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0,
3715 			 hv_pci_onchannelcallback, hbus);
3716 	if (ret)
3717 		goto destroy_wq;
3718 
3719 	hv_set_drvdata(hdev, hbus);
3720 
3721 	ret = hv_pci_protocol_negotiation(hdev, pci_protocol_versions,
3722 					  ARRAY_SIZE(pci_protocol_versions));
3723 	if (ret)
3724 		goto close;
3725 
3726 	ret = hv_allocate_config_window(hbus);
3727 	if (ret)
3728 		goto close;
3729 
3730 	hbus->cfg_addr = ioremap(hbus->mem_config->start,
3731 				 PCI_CONFIG_MMIO_LENGTH);
3732 	if (!hbus->cfg_addr) {
3733 		dev_err(&hdev->device,
3734 			"Unable to map a virtual address for config space\n");
3735 		ret = -ENOMEM;
3736 		goto free_config;
3737 	}
3738 
3739 	name = kasprintf(GFP_KERNEL, "%pUL", &hdev->dev_instance);
3740 	if (!name) {
3741 		ret = -ENOMEM;
3742 		goto unmap;
3743 	}
3744 
3745 	hbus->fwnode = irq_domain_alloc_named_fwnode(name);
3746 	kfree(name);
3747 	if (!hbus->fwnode) {
3748 		ret = -ENOMEM;
3749 		goto unmap;
3750 	}
3751 
3752 	ret = hv_pcie_init_irq_domain(hbus);
3753 	if (ret)
3754 		goto free_fwnode;
3755 
3756 	ret = hv_pci_query_relations(hdev);
3757 	if (ret)
3758 		goto free_irq_domain;
3759 
3760 	mutex_lock(&hbus->state_lock);
3761 
3762 	ret = hv_pci_enter_d0(hdev);
3763 	if (ret)
3764 		goto release_state_lock;
3765 
3766 	ret = hv_pci_allocate_bridge_windows(hbus);
3767 	if (ret)
3768 		goto exit_d0;
3769 
3770 	ret = hv_send_resources_allocated(hdev);
3771 	if (ret)
3772 		goto free_windows;
3773 
3774 	prepopulate_bars(hbus);
3775 
3776 	hbus->state = hv_pcibus_probed;
3777 
3778 	ret = create_root_hv_pci_bus(hbus);
3779 	if (ret)
3780 		goto free_windows;
3781 
3782 	mutex_unlock(&hbus->state_lock);
3783 	return 0;
3784 
3785 free_windows:
3786 	hv_pci_free_bridge_windows(hbus);
3787 exit_d0:
3788 	(void) hv_pci_bus_exit(hdev, true);
3789 release_state_lock:
3790 	mutex_unlock(&hbus->state_lock);
3791 free_irq_domain:
3792 	irq_domain_remove(hbus->irq_domain);
3793 free_fwnode:
3794 	irq_domain_free_fwnode(hbus->fwnode);
3795 unmap:
3796 	iounmap(hbus->cfg_addr);
3797 free_config:
3798 	hv_free_config_window(hbus);
3799 close:
3800 	vmbus_close(hdev->channel);
3801 destroy_wq:
3802 	destroy_workqueue(hbus->wq);
3803 free_dom:
3804 	hv_put_dom_num(hbus->bridge->domain_nr);
3805 free_bus:
3806 	kfree(hbus);
3807 	return ret;
3808 }
3809 
3810 static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs)
3811 {
3812 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3813 	struct vmbus_channel *chan = hdev->channel;
3814 	struct {
3815 		struct pci_packet teardown_packet;
3816 		u8 buffer[sizeof(struct pci_message)];
3817 	} pkt;
3818 	struct hv_pci_compl comp_pkt;
3819 	struct hv_pci_dev *hpdev, *tmp;
3820 	unsigned long flags;
3821 	u64 trans_id;
3822 	int ret;
3823 
3824 	/*
3825 	 * After the host sends the RESCIND_CHANNEL message, it doesn't
3826 	 * access the per-channel ringbuffer any longer.
3827 	 */
3828 	if (chan->rescind)
3829 		return 0;
3830 
3831 	if (!keep_devs) {
3832 		struct list_head removed;
3833 
3834 		/* Move all present children to the list on stack */
3835 		INIT_LIST_HEAD(&removed);
3836 		spin_lock_irqsave(&hbus->device_list_lock, flags);
3837 		list_for_each_entry_safe(hpdev, tmp, &hbus->children, list_entry)
3838 			list_move_tail(&hpdev->list_entry, &removed);
3839 		spin_unlock_irqrestore(&hbus->device_list_lock, flags);
3840 
3841 		/* Remove all children in the list */
3842 		list_for_each_entry_safe(hpdev, tmp, &removed, list_entry) {
3843 			list_del(&hpdev->list_entry);
3844 			if (hpdev->pci_slot)
3845 				pci_destroy_slot(hpdev->pci_slot);
3846 			/* For the two refs got in new_pcichild_device() */
3847 			put_pcichild(hpdev);
3848 			put_pcichild(hpdev);
3849 		}
3850 	}
3851 
3852 	ret = hv_send_resources_released(hdev);
3853 	if (ret) {
3854 		dev_err(&hdev->device,
3855 			"Couldn't send resources released packet(s)\n");
3856 		return ret;
3857 	}
3858 
3859 	memset(&pkt.teardown_packet, 0, sizeof(pkt.teardown_packet));
3860 	init_completion(&comp_pkt.host_event);
3861 	pkt.teardown_packet.completion_func = hv_pci_generic_compl;
3862 	pkt.teardown_packet.compl_ctxt = &comp_pkt;
3863 	pkt.teardown_packet.message[0].type = PCI_BUS_D0EXIT;
3864 
3865 	ret = vmbus_sendpacket_getid(chan, &pkt.teardown_packet.message,
3866 				     sizeof(struct pci_message),
3867 				     (unsigned long)&pkt.teardown_packet,
3868 				     &trans_id, VM_PKT_DATA_INBAND,
3869 				     VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3870 	if (ret)
3871 		return ret;
3872 
3873 	if (wait_for_completion_timeout(&comp_pkt.host_event, 10 * HZ) == 0) {
3874 		/*
3875 		 * The completion packet on the stack becomes invalid after
3876 		 * 'return'; remove the ID from the VMbus requestor if the
3877 		 * identifier is still mapped to/associated with the packet.
3878 		 *
3879 		 * Cf. hv_pci_onchannelcallback().
3880 		 */
3881 		vmbus_request_addr_match(chan, trans_id,
3882 					 (unsigned long)&pkt.teardown_packet);
3883 		return -ETIMEDOUT;
3884 	}
3885 
3886 	return 0;
3887 }
3888 
3889 /**
3890  * hv_pci_remove() - Remove routine for this VMBus channel
3891  * @hdev:	VMBus's tracking struct for this root PCI bus
3892  */
3893 static void hv_pci_remove(struct hv_device *hdev)
3894 {
3895 	struct hv_pcibus_device *hbus;
3896 
3897 	hbus = hv_get_drvdata(hdev);
3898 	if (hbus->state == hv_pcibus_installed) {
3899 		tasklet_disable(&hdev->channel->callback_event);
3900 		hbus->state = hv_pcibus_removing;
3901 		tasklet_enable(&hdev->channel->callback_event);
3902 		destroy_workqueue(hbus->wq);
3903 		hbus->wq = NULL;
3904 		/*
3905 		 * At this point, no work is running or can be scheduled
3906 		 * on hbus-wq. We can't race with hv_pci_devices_present()
3907 		 * or hv_pci_eject_device(), it's safe to proceed.
3908 		 */
3909 
3910 		/* Remove the bus from PCI's point of view. */
3911 		pci_lock_rescan_remove();
3912 		pci_stop_root_bus(hbus->bridge->bus);
3913 		hv_pci_remove_slots(hbus);
3914 		pci_remove_root_bus(hbus->bridge->bus);
3915 		pci_unlock_rescan_remove();
3916 	}
3917 
3918 	hv_pci_bus_exit(hdev, false);
3919 
3920 	vmbus_close(hdev->channel);
3921 
3922 	iounmap(hbus->cfg_addr);
3923 	hv_free_config_window(hbus);
3924 	hv_pci_free_bridge_windows(hbus);
3925 	irq_domain_remove(hbus->irq_domain);
3926 	irq_domain_free_fwnode(hbus->fwnode);
3927 
3928 	hv_put_dom_num(hbus->bridge->domain_nr);
3929 
3930 	kfree(hbus);
3931 }
3932 
3933 static int hv_pci_suspend(struct hv_device *hdev)
3934 {
3935 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3936 	enum hv_pcibus_state old_state;
3937 	int ret;
3938 
3939 	/*
3940 	 * hv_pci_suspend() must make sure there are no pending work items
3941 	 * before calling vmbus_close(), since it runs in a process context
3942 	 * as a callback in dpm_suspend().  When it starts to run, the channel
3943 	 * callback hv_pci_onchannelcallback(), which runs in a tasklet
3944 	 * context, can be still running concurrently and scheduling new work
3945 	 * items onto hbus->wq in hv_pci_devices_present() and
3946 	 * hv_pci_eject_device(), and the work item handlers can access the
3947 	 * vmbus channel, which can be being closed by hv_pci_suspend(), e.g.
3948 	 * the work item handler pci_devices_present_work() ->
3949 	 * new_pcichild_device() writes to the vmbus channel.
3950 	 *
3951 	 * To eliminate the race, hv_pci_suspend() disables the channel
3952 	 * callback tasklet, sets hbus->state to hv_pcibus_removing, and
3953 	 * re-enables the tasklet. This way, when hv_pci_suspend() proceeds,
3954 	 * it knows that no new work item can be scheduled, and then it flushes
3955 	 * hbus->wq and safely closes the vmbus channel.
3956 	 */
3957 	tasklet_disable(&hdev->channel->callback_event);
3958 
3959 	/* Change the hbus state to prevent new work items. */
3960 	old_state = hbus->state;
3961 	if (hbus->state == hv_pcibus_installed)
3962 		hbus->state = hv_pcibus_removing;
3963 
3964 	tasklet_enable(&hdev->channel->callback_event);
3965 
3966 	if (old_state != hv_pcibus_installed)
3967 		return -EINVAL;
3968 
3969 	flush_workqueue(hbus->wq);
3970 
3971 	ret = hv_pci_bus_exit(hdev, true);
3972 	if (ret)
3973 		return ret;
3974 
3975 	vmbus_close(hdev->channel);
3976 
3977 	return 0;
3978 }
3979 
3980 static int hv_pci_restore_msi_msg(struct pci_dev *pdev, void *arg)
3981 {
3982 	struct irq_data *irq_data;
3983 	struct msi_desc *entry;
3984 	int ret = 0;
3985 
3986 	msi_lock_descs(&pdev->dev);
3987 	msi_for_each_desc(entry, &pdev->dev, MSI_DESC_ASSOCIATED) {
3988 		irq_data = irq_get_irq_data(entry->irq);
3989 		if (WARN_ON_ONCE(!irq_data)) {
3990 			ret = -EINVAL;
3991 			break;
3992 		}
3993 
3994 		hv_compose_msi_msg(irq_data, &entry->msg);
3995 	}
3996 	msi_unlock_descs(&pdev->dev);
3997 
3998 	return ret;
3999 }
4000 
4001 /*
4002  * Upon resume, pci_restore_msi_state() -> ... ->  __pci_write_msi_msg()
4003  * directly writes the MSI/MSI-X registers via MMIO, but since Hyper-V
4004  * doesn't trap and emulate the MMIO accesses, here hv_compose_msi_msg()
4005  * must be used to ask Hyper-V to re-create the IOMMU Interrupt Remapping
4006  * Table entries.
4007  */
4008 static void hv_pci_restore_msi_state(struct hv_pcibus_device *hbus)
4009 {
4010 	pci_walk_bus(hbus->bridge->bus, hv_pci_restore_msi_msg, NULL);
4011 }
4012 
4013 static int hv_pci_resume(struct hv_device *hdev)
4014 {
4015 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
4016 	enum pci_protocol_version_t version[1];
4017 	int ret;
4018 
4019 	hbus->state = hv_pcibus_init;
4020 
4021 	hdev->channel->next_request_id_callback = vmbus_next_request_id;
4022 	hdev->channel->request_addr_callback = vmbus_request_addr;
4023 	hdev->channel->rqstor_size = HV_PCI_RQSTOR_SIZE;
4024 
4025 	ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0,
4026 			 hv_pci_onchannelcallback, hbus);
4027 	if (ret)
4028 		return ret;
4029 
4030 	/* Only use the version that was in use before hibernation. */
4031 	version[0] = hbus->protocol_version;
4032 	ret = hv_pci_protocol_negotiation(hdev, version, 1);
4033 	if (ret)
4034 		goto out;
4035 
4036 	ret = hv_pci_query_relations(hdev);
4037 	if (ret)
4038 		goto out;
4039 
4040 	mutex_lock(&hbus->state_lock);
4041 
4042 	ret = hv_pci_enter_d0(hdev);
4043 	if (ret)
4044 		goto release_state_lock;
4045 
4046 	ret = hv_send_resources_allocated(hdev);
4047 	if (ret)
4048 		goto release_state_lock;
4049 
4050 	prepopulate_bars(hbus);
4051 
4052 	hv_pci_restore_msi_state(hbus);
4053 
4054 	hbus->state = hv_pcibus_installed;
4055 	mutex_unlock(&hbus->state_lock);
4056 	return 0;
4057 
4058 release_state_lock:
4059 	mutex_unlock(&hbus->state_lock);
4060 out:
4061 	vmbus_close(hdev->channel);
4062 	return ret;
4063 }
4064 
4065 static const struct hv_vmbus_device_id hv_pci_id_table[] = {
4066 	/* PCI Pass-through Class ID */
4067 	/* 44C4F61D-4444-4400-9D52-802E27EDE19F */
4068 	{ HV_PCIE_GUID, },
4069 	{ },
4070 };
4071 
4072 MODULE_DEVICE_TABLE(vmbus, hv_pci_id_table);
4073 
4074 static struct hv_driver hv_pci_drv = {
4075 	.name		= "hv_pci",
4076 	.id_table	= hv_pci_id_table,
4077 	.probe		= hv_pci_probe,
4078 	.remove		= hv_pci_remove,
4079 	.suspend	= hv_pci_suspend,
4080 	.resume		= hv_pci_resume,
4081 };
4082 
4083 static void __exit exit_hv_pci_drv(void)
4084 {
4085 	vmbus_driver_unregister(&hv_pci_drv);
4086 
4087 	hvpci_block_ops.read_block = NULL;
4088 	hvpci_block_ops.write_block = NULL;
4089 	hvpci_block_ops.reg_blk_invalidate = NULL;
4090 }
4091 
4092 static int __init init_hv_pci_drv(void)
4093 {
4094 	int ret;
4095 
4096 	if (!hv_is_hyperv_initialized())
4097 		return -ENODEV;
4098 
4099 	ret = hv_pci_irqchip_init();
4100 	if (ret)
4101 		return ret;
4102 
4103 	/* Set the invalid domain number's bit, so it will not be used */
4104 	set_bit(HVPCI_DOM_INVALID, hvpci_dom_map);
4105 
4106 	/* Initialize PCI block r/w interface */
4107 	hvpci_block_ops.read_block = hv_read_config_block;
4108 	hvpci_block_ops.write_block = hv_write_config_block;
4109 	hvpci_block_ops.reg_blk_invalidate = hv_register_block_invalidate;
4110 
4111 	return vmbus_driver_register(&hv_pci_drv);
4112 }
4113 
4114 module_init(init_hv_pci_drv);
4115 module_exit(exit_hv_pci_drv);
4116 
4117 MODULE_DESCRIPTION("Hyper-V PCI");
4118 MODULE_LICENSE("GPL v2");
4119