xref: /openbmc/linux/drivers/pci/access.c (revision de2bdb3d)
1 #include <linux/delay.h>
2 #include <linux/pci.h>
3 #include <linux/module.h>
4 #include <linux/sched.h>
5 #include <linux/slab.h>
6 #include <linux/ioport.h>
7 #include <linux/wait.h>
8 
9 #include "pci.h"
10 
11 /*
12  * This interrupt-safe spinlock protects all accesses to PCI
13  * configuration space.
14  */
15 
16 DEFINE_RAW_SPINLOCK(pci_lock);
17 
18 /*
19  *  Wrappers for all PCI configuration access functions.  They just check
20  *  alignment, do locking and call the low-level functions pointed to
21  *  by pci_dev->ops.
22  */
23 
24 #define PCI_byte_BAD 0
25 #define PCI_word_BAD (pos & 1)
26 #define PCI_dword_BAD (pos & 3)
27 
28 #define PCI_OP_READ(size, type, len) \
29 int pci_bus_read_config_##size \
30 	(struct pci_bus *bus, unsigned int devfn, int pos, type *value)	\
31 {									\
32 	int res;							\
33 	unsigned long flags;						\
34 	u32 data = 0;							\
35 	if (PCI_##size##_BAD) return PCIBIOS_BAD_REGISTER_NUMBER;	\
36 	raw_spin_lock_irqsave(&pci_lock, flags);			\
37 	res = bus->ops->read(bus, devfn, pos, len, &data);		\
38 	*value = (type)data;						\
39 	raw_spin_unlock_irqrestore(&pci_lock, flags);		\
40 	return res;							\
41 }
42 
43 #define PCI_OP_WRITE(size, type, len) \
44 int pci_bus_write_config_##size \
45 	(struct pci_bus *bus, unsigned int devfn, int pos, type value)	\
46 {									\
47 	int res;							\
48 	unsigned long flags;						\
49 	if (PCI_##size##_BAD) return PCIBIOS_BAD_REGISTER_NUMBER;	\
50 	raw_spin_lock_irqsave(&pci_lock, flags);			\
51 	res = bus->ops->write(bus, devfn, pos, len, value);		\
52 	raw_spin_unlock_irqrestore(&pci_lock, flags);		\
53 	return res;							\
54 }
55 
56 PCI_OP_READ(byte, u8, 1)
57 PCI_OP_READ(word, u16, 2)
58 PCI_OP_READ(dword, u32, 4)
59 PCI_OP_WRITE(byte, u8, 1)
60 PCI_OP_WRITE(word, u16, 2)
61 PCI_OP_WRITE(dword, u32, 4)
62 
63 EXPORT_SYMBOL(pci_bus_read_config_byte);
64 EXPORT_SYMBOL(pci_bus_read_config_word);
65 EXPORT_SYMBOL(pci_bus_read_config_dword);
66 EXPORT_SYMBOL(pci_bus_write_config_byte);
67 EXPORT_SYMBOL(pci_bus_write_config_word);
68 EXPORT_SYMBOL(pci_bus_write_config_dword);
69 
70 int pci_generic_config_read(struct pci_bus *bus, unsigned int devfn,
71 			    int where, int size, u32 *val)
72 {
73 	void __iomem *addr;
74 
75 	addr = bus->ops->map_bus(bus, devfn, where);
76 	if (!addr) {
77 		*val = ~0;
78 		return PCIBIOS_DEVICE_NOT_FOUND;
79 	}
80 
81 	if (size == 1)
82 		*val = readb(addr);
83 	else if (size == 2)
84 		*val = readw(addr);
85 	else
86 		*val = readl(addr);
87 
88 	return PCIBIOS_SUCCESSFUL;
89 }
90 EXPORT_SYMBOL_GPL(pci_generic_config_read);
91 
92 int pci_generic_config_write(struct pci_bus *bus, unsigned int devfn,
93 			     int where, int size, u32 val)
94 {
95 	void __iomem *addr;
96 
97 	addr = bus->ops->map_bus(bus, devfn, where);
98 	if (!addr)
99 		return PCIBIOS_DEVICE_NOT_FOUND;
100 
101 	if (size == 1)
102 		writeb(val, addr);
103 	else if (size == 2)
104 		writew(val, addr);
105 	else
106 		writel(val, addr);
107 
108 	return PCIBIOS_SUCCESSFUL;
109 }
110 EXPORT_SYMBOL_GPL(pci_generic_config_write);
111 
112 int pci_generic_config_read32(struct pci_bus *bus, unsigned int devfn,
113 			      int where, int size, u32 *val)
114 {
115 	void __iomem *addr;
116 
117 	addr = bus->ops->map_bus(bus, devfn, where & ~0x3);
118 	if (!addr) {
119 		*val = ~0;
120 		return PCIBIOS_DEVICE_NOT_FOUND;
121 	}
122 
123 	*val = readl(addr);
124 
125 	if (size <= 2)
126 		*val = (*val >> (8 * (where & 3))) & ((1 << (size * 8)) - 1);
127 
128 	return PCIBIOS_SUCCESSFUL;
129 }
130 EXPORT_SYMBOL_GPL(pci_generic_config_read32);
131 
132 int pci_generic_config_write32(struct pci_bus *bus, unsigned int devfn,
133 			       int where, int size, u32 val)
134 {
135 	void __iomem *addr;
136 	u32 mask, tmp;
137 
138 	addr = bus->ops->map_bus(bus, devfn, where & ~0x3);
139 	if (!addr)
140 		return PCIBIOS_DEVICE_NOT_FOUND;
141 
142 	if (size == 4) {
143 		writel(val, addr);
144 		return PCIBIOS_SUCCESSFUL;
145 	} else {
146 		mask = ~(((1 << (size * 8)) - 1) << ((where & 0x3) * 8));
147 	}
148 
149 	tmp = readl(addr) & mask;
150 	tmp |= val << ((where & 0x3) * 8);
151 	writel(tmp, addr);
152 
153 	return PCIBIOS_SUCCESSFUL;
154 }
155 EXPORT_SYMBOL_GPL(pci_generic_config_write32);
156 
157 /**
158  * pci_bus_set_ops - Set raw operations of pci bus
159  * @bus:	pci bus struct
160  * @ops:	new raw operations
161  *
162  * Return previous raw operations
163  */
164 struct pci_ops *pci_bus_set_ops(struct pci_bus *bus, struct pci_ops *ops)
165 {
166 	struct pci_ops *old_ops;
167 	unsigned long flags;
168 
169 	raw_spin_lock_irqsave(&pci_lock, flags);
170 	old_ops = bus->ops;
171 	bus->ops = ops;
172 	raw_spin_unlock_irqrestore(&pci_lock, flags);
173 	return old_ops;
174 }
175 EXPORT_SYMBOL(pci_bus_set_ops);
176 
177 /*
178  * The following routines are to prevent the user from accessing PCI config
179  * space when it's unsafe to do so.  Some devices require this during BIST and
180  * we're required to prevent it during D-state transitions.
181  *
182  * We have a bit per device to indicate it's blocked and a global wait queue
183  * for callers to sleep on until devices are unblocked.
184  */
185 static DECLARE_WAIT_QUEUE_HEAD(pci_cfg_wait);
186 
187 static noinline void pci_wait_cfg(struct pci_dev *dev)
188 {
189 	DECLARE_WAITQUEUE(wait, current);
190 
191 	__add_wait_queue(&pci_cfg_wait, &wait);
192 	do {
193 		set_current_state(TASK_UNINTERRUPTIBLE);
194 		raw_spin_unlock_irq(&pci_lock);
195 		schedule();
196 		raw_spin_lock_irq(&pci_lock);
197 	} while (dev->block_cfg_access);
198 	__remove_wait_queue(&pci_cfg_wait, &wait);
199 }
200 
201 /* Returns 0 on success, negative values indicate error. */
202 #define PCI_USER_READ_CONFIG(size, type)					\
203 int pci_user_read_config_##size						\
204 	(struct pci_dev *dev, int pos, type *val)			\
205 {									\
206 	int ret = PCIBIOS_SUCCESSFUL;					\
207 	u32 data = -1;							\
208 	if (PCI_##size##_BAD)						\
209 		return -EINVAL;						\
210 	raw_spin_lock_irq(&pci_lock);				\
211 	if (unlikely(dev->block_cfg_access))				\
212 		pci_wait_cfg(dev);					\
213 	ret = dev->bus->ops->read(dev->bus, dev->devfn,			\
214 					pos, sizeof(type), &data);	\
215 	raw_spin_unlock_irq(&pci_lock);				\
216 	*val = (type)data;						\
217 	return pcibios_err_to_errno(ret);				\
218 }									\
219 EXPORT_SYMBOL_GPL(pci_user_read_config_##size);
220 
221 /* Returns 0 on success, negative values indicate error. */
222 #define PCI_USER_WRITE_CONFIG(size, type)				\
223 int pci_user_write_config_##size					\
224 	(struct pci_dev *dev, int pos, type val)			\
225 {									\
226 	int ret = PCIBIOS_SUCCESSFUL;					\
227 	if (PCI_##size##_BAD)						\
228 		return -EINVAL;						\
229 	raw_spin_lock_irq(&pci_lock);				\
230 	if (unlikely(dev->block_cfg_access))				\
231 		pci_wait_cfg(dev);					\
232 	ret = dev->bus->ops->write(dev->bus, dev->devfn,		\
233 					pos, sizeof(type), val);	\
234 	raw_spin_unlock_irq(&pci_lock);				\
235 	return pcibios_err_to_errno(ret);				\
236 }									\
237 EXPORT_SYMBOL_GPL(pci_user_write_config_##size);
238 
239 PCI_USER_READ_CONFIG(byte, u8)
240 PCI_USER_READ_CONFIG(word, u16)
241 PCI_USER_READ_CONFIG(dword, u32)
242 PCI_USER_WRITE_CONFIG(byte, u8)
243 PCI_USER_WRITE_CONFIG(word, u16)
244 PCI_USER_WRITE_CONFIG(dword, u32)
245 
246 /* VPD access through PCI 2.2+ VPD capability */
247 
248 /**
249  * pci_read_vpd - Read one entry from Vital Product Data
250  * @dev:	pci device struct
251  * @pos:	offset in vpd space
252  * @count:	number of bytes to read
253  * @buf:	pointer to where to store result
254  */
255 ssize_t pci_read_vpd(struct pci_dev *dev, loff_t pos, size_t count, void *buf)
256 {
257 	if (!dev->vpd || !dev->vpd->ops)
258 		return -ENODEV;
259 	return dev->vpd->ops->read(dev, pos, count, buf);
260 }
261 EXPORT_SYMBOL(pci_read_vpd);
262 
263 /**
264  * pci_write_vpd - Write entry to Vital Product Data
265  * @dev:	pci device struct
266  * @pos:	offset in vpd space
267  * @count:	number of bytes to write
268  * @buf:	buffer containing write data
269  */
270 ssize_t pci_write_vpd(struct pci_dev *dev, loff_t pos, size_t count, const void *buf)
271 {
272 	if (!dev->vpd || !dev->vpd->ops)
273 		return -ENODEV;
274 	return dev->vpd->ops->write(dev, pos, count, buf);
275 }
276 EXPORT_SYMBOL(pci_write_vpd);
277 
278 /**
279  * pci_set_vpd_size - Set size of Vital Product Data space
280  * @dev:	pci device struct
281  * @len:	size of vpd space
282  */
283 int pci_set_vpd_size(struct pci_dev *dev, size_t len)
284 {
285 	if (!dev->vpd || !dev->vpd->ops)
286 		return -ENODEV;
287 	return dev->vpd->ops->set_size(dev, len);
288 }
289 EXPORT_SYMBOL(pci_set_vpd_size);
290 
291 #define PCI_VPD_MAX_SIZE (PCI_VPD_ADDR_MASK + 1)
292 
293 /**
294  * pci_vpd_size - determine actual size of Vital Product Data
295  * @dev:	pci device struct
296  * @old_size:	current assumed size, also maximum allowed size
297  */
298 static size_t pci_vpd_size(struct pci_dev *dev, size_t old_size)
299 {
300 	size_t off = 0;
301 	unsigned char header[1+2];	/* 1 byte tag, 2 bytes length */
302 
303 	while (off < old_size &&
304 	       pci_read_vpd(dev, off, 1, header) == 1) {
305 		unsigned char tag;
306 
307 		if (header[0] & PCI_VPD_LRDT) {
308 			/* Large Resource Data Type Tag */
309 			tag = pci_vpd_lrdt_tag(header);
310 			/* Only read length from known tag items */
311 			if ((tag == PCI_VPD_LTIN_ID_STRING) ||
312 			    (tag == PCI_VPD_LTIN_RO_DATA) ||
313 			    (tag == PCI_VPD_LTIN_RW_DATA)) {
314 				if (pci_read_vpd(dev, off+1, 2,
315 						 &header[1]) != 2) {
316 					dev_warn(&dev->dev,
317 						 "invalid large VPD tag %02x size at offset %zu",
318 						 tag, off + 1);
319 					return 0;
320 				}
321 				off += PCI_VPD_LRDT_TAG_SIZE +
322 					pci_vpd_lrdt_size(header);
323 			}
324 		} else {
325 			/* Short Resource Data Type Tag */
326 			off += PCI_VPD_SRDT_TAG_SIZE +
327 				pci_vpd_srdt_size(header);
328 			tag = pci_vpd_srdt_tag(header);
329 		}
330 
331 		if (tag == PCI_VPD_STIN_END)	/* End tag descriptor */
332 			return off;
333 
334 		if ((tag != PCI_VPD_LTIN_ID_STRING) &&
335 		    (tag != PCI_VPD_LTIN_RO_DATA) &&
336 		    (tag != PCI_VPD_LTIN_RW_DATA)) {
337 			dev_warn(&dev->dev,
338 				 "invalid %s VPD tag %02x at offset %zu",
339 				 (header[0] & PCI_VPD_LRDT) ? "large" : "short",
340 				 tag, off);
341 			return 0;
342 		}
343 	}
344 	return 0;
345 }
346 
347 /*
348  * Wait for last operation to complete.
349  * This code has to spin since there is no other notification from the PCI
350  * hardware. Since the VPD is often implemented by serial attachment to an
351  * EEPROM, it may take many milliseconds to complete.
352  *
353  * Returns 0 on success, negative values indicate error.
354  */
355 static int pci_vpd_wait(struct pci_dev *dev)
356 {
357 	struct pci_vpd *vpd = dev->vpd;
358 	unsigned long timeout = jiffies + msecs_to_jiffies(50);
359 	unsigned long max_sleep = 16;
360 	u16 status;
361 	int ret;
362 
363 	if (!vpd->busy)
364 		return 0;
365 
366 	while (time_before(jiffies, timeout)) {
367 		ret = pci_user_read_config_word(dev, vpd->cap + PCI_VPD_ADDR,
368 						&status);
369 		if (ret < 0)
370 			return ret;
371 
372 		if ((status & PCI_VPD_ADDR_F) == vpd->flag) {
373 			vpd->busy = 0;
374 			return 0;
375 		}
376 
377 		if (fatal_signal_pending(current))
378 			return -EINTR;
379 
380 		usleep_range(10, max_sleep);
381 		if (max_sleep < 1024)
382 			max_sleep *= 2;
383 	}
384 
385 	dev_warn(&dev->dev, "VPD access failed.  This is likely a firmware bug on this device.  Contact the card vendor for a firmware update\n");
386 	return -ETIMEDOUT;
387 }
388 
389 static ssize_t pci_vpd_read(struct pci_dev *dev, loff_t pos, size_t count,
390 			    void *arg)
391 {
392 	struct pci_vpd *vpd = dev->vpd;
393 	int ret;
394 	loff_t end = pos + count;
395 	u8 *buf = arg;
396 
397 	if (pos < 0)
398 		return -EINVAL;
399 
400 	if (!vpd->valid) {
401 		vpd->valid = 1;
402 		vpd->len = pci_vpd_size(dev, vpd->len);
403 	}
404 
405 	if (vpd->len == 0)
406 		return -EIO;
407 
408 	if (pos > vpd->len)
409 		return 0;
410 
411 	if (end > vpd->len) {
412 		end = vpd->len;
413 		count = end - pos;
414 	}
415 
416 	if (mutex_lock_killable(&vpd->lock))
417 		return -EINTR;
418 
419 	ret = pci_vpd_wait(dev);
420 	if (ret < 0)
421 		goto out;
422 
423 	while (pos < end) {
424 		u32 val;
425 		unsigned int i, skip;
426 
427 		ret = pci_user_write_config_word(dev, vpd->cap + PCI_VPD_ADDR,
428 						 pos & ~3);
429 		if (ret < 0)
430 			break;
431 		vpd->busy = 1;
432 		vpd->flag = PCI_VPD_ADDR_F;
433 		ret = pci_vpd_wait(dev);
434 		if (ret < 0)
435 			break;
436 
437 		ret = pci_user_read_config_dword(dev, vpd->cap + PCI_VPD_DATA, &val);
438 		if (ret < 0)
439 			break;
440 
441 		skip = pos & 3;
442 		for (i = 0;  i < sizeof(u32); i++) {
443 			if (i >= skip) {
444 				*buf++ = val;
445 				if (++pos == end)
446 					break;
447 			}
448 			val >>= 8;
449 		}
450 	}
451 out:
452 	mutex_unlock(&vpd->lock);
453 	return ret ? ret : count;
454 }
455 
456 static ssize_t pci_vpd_write(struct pci_dev *dev, loff_t pos, size_t count,
457 			     const void *arg)
458 {
459 	struct pci_vpd *vpd = dev->vpd;
460 	const u8 *buf = arg;
461 	loff_t end = pos + count;
462 	int ret = 0;
463 
464 	if (pos < 0 || (pos & 3) || (count & 3))
465 		return -EINVAL;
466 
467 	if (!vpd->valid) {
468 		vpd->valid = 1;
469 		vpd->len = pci_vpd_size(dev, vpd->len);
470 	}
471 
472 	if (vpd->len == 0)
473 		return -EIO;
474 
475 	if (end > vpd->len)
476 		return -EINVAL;
477 
478 	if (mutex_lock_killable(&vpd->lock))
479 		return -EINTR;
480 
481 	ret = pci_vpd_wait(dev);
482 	if (ret < 0)
483 		goto out;
484 
485 	while (pos < end) {
486 		u32 val;
487 
488 		val = *buf++;
489 		val |= *buf++ << 8;
490 		val |= *buf++ << 16;
491 		val |= *buf++ << 24;
492 
493 		ret = pci_user_write_config_dword(dev, vpd->cap + PCI_VPD_DATA, val);
494 		if (ret < 0)
495 			break;
496 		ret = pci_user_write_config_word(dev, vpd->cap + PCI_VPD_ADDR,
497 						 pos | PCI_VPD_ADDR_F);
498 		if (ret < 0)
499 			break;
500 
501 		vpd->busy = 1;
502 		vpd->flag = 0;
503 		ret = pci_vpd_wait(dev);
504 		if (ret < 0)
505 			break;
506 
507 		pos += sizeof(u32);
508 	}
509 out:
510 	mutex_unlock(&vpd->lock);
511 	return ret ? ret : count;
512 }
513 
514 static int pci_vpd_set_size(struct pci_dev *dev, size_t len)
515 {
516 	struct pci_vpd *vpd = dev->vpd;
517 
518 	if (len == 0 || len > PCI_VPD_MAX_SIZE)
519 		return -EIO;
520 
521 	vpd->valid = 1;
522 	vpd->len = len;
523 
524 	return 0;
525 }
526 
527 static const struct pci_vpd_ops pci_vpd_ops = {
528 	.read = pci_vpd_read,
529 	.write = pci_vpd_write,
530 	.set_size = pci_vpd_set_size,
531 };
532 
533 static ssize_t pci_vpd_f0_read(struct pci_dev *dev, loff_t pos, size_t count,
534 			       void *arg)
535 {
536 	struct pci_dev *tdev = pci_get_slot(dev->bus,
537 					    PCI_DEVFN(PCI_SLOT(dev->devfn), 0));
538 	ssize_t ret;
539 
540 	if (!tdev)
541 		return -ENODEV;
542 
543 	ret = pci_read_vpd(tdev, pos, count, arg);
544 	pci_dev_put(tdev);
545 	return ret;
546 }
547 
548 static ssize_t pci_vpd_f0_write(struct pci_dev *dev, loff_t pos, size_t count,
549 				const void *arg)
550 {
551 	struct pci_dev *tdev = pci_get_slot(dev->bus,
552 					    PCI_DEVFN(PCI_SLOT(dev->devfn), 0));
553 	ssize_t ret;
554 
555 	if (!tdev)
556 		return -ENODEV;
557 
558 	ret = pci_write_vpd(tdev, pos, count, arg);
559 	pci_dev_put(tdev);
560 	return ret;
561 }
562 
563 static int pci_vpd_f0_set_size(struct pci_dev *dev, size_t len)
564 {
565 	struct pci_dev *tdev = pci_get_slot(dev->bus,
566 					    PCI_DEVFN(PCI_SLOT(dev->devfn), 0));
567 	int ret;
568 
569 	if (!tdev)
570 		return -ENODEV;
571 
572 	ret = pci_set_vpd_size(tdev, len);
573 	pci_dev_put(tdev);
574 	return ret;
575 }
576 
577 static const struct pci_vpd_ops pci_vpd_f0_ops = {
578 	.read = pci_vpd_f0_read,
579 	.write = pci_vpd_f0_write,
580 	.set_size = pci_vpd_f0_set_size,
581 };
582 
583 int pci_vpd_init(struct pci_dev *dev)
584 {
585 	struct pci_vpd *vpd;
586 	u8 cap;
587 
588 	cap = pci_find_capability(dev, PCI_CAP_ID_VPD);
589 	if (!cap)
590 		return -ENODEV;
591 
592 	vpd = kzalloc(sizeof(*vpd), GFP_ATOMIC);
593 	if (!vpd)
594 		return -ENOMEM;
595 
596 	vpd->len = PCI_VPD_MAX_SIZE;
597 	if (dev->dev_flags & PCI_DEV_FLAGS_VPD_REF_F0)
598 		vpd->ops = &pci_vpd_f0_ops;
599 	else
600 		vpd->ops = &pci_vpd_ops;
601 	mutex_init(&vpd->lock);
602 	vpd->cap = cap;
603 	vpd->busy = 0;
604 	vpd->valid = 0;
605 	dev->vpd = vpd;
606 	return 0;
607 }
608 
609 void pci_vpd_release(struct pci_dev *dev)
610 {
611 	kfree(dev->vpd);
612 }
613 
614 /**
615  * pci_cfg_access_lock - Lock PCI config reads/writes
616  * @dev:	pci device struct
617  *
618  * When access is locked, any userspace reads or writes to config
619  * space and concurrent lock requests will sleep until access is
620  * allowed via pci_cfg_access_unlocked again.
621  */
622 void pci_cfg_access_lock(struct pci_dev *dev)
623 {
624 	might_sleep();
625 
626 	raw_spin_lock_irq(&pci_lock);
627 	if (dev->block_cfg_access)
628 		pci_wait_cfg(dev);
629 	dev->block_cfg_access = 1;
630 	raw_spin_unlock_irq(&pci_lock);
631 }
632 EXPORT_SYMBOL_GPL(pci_cfg_access_lock);
633 
634 /**
635  * pci_cfg_access_trylock - try to lock PCI config reads/writes
636  * @dev:	pci device struct
637  *
638  * Same as pci_cfg_access_lock, but will return 0 if access is
639  * already locked, 1 otherwise. This function can be used from
640  * atomic contexts.
641  */
642 bool pci_cfg_access_trylock(struct pci_dev *dev)
643 {
644 	unsigned long flags;
645 	bool locked = true;
646 
647 	raw_spin_lock_irqsave(&pci_lock, flags);
648 	if (dev->block_cfg_access)
649 		locked = false;
650 	else
651 		dev->block_cfg_access = 1;
652 	raw_spin_unlock_irqrestore(&pci_lock, flags);
653 
654 	return locked;
655 }
656 EXPORT_SYMBOL_GPL(pci_cfg_access_trylock);
657 
658 /**
659  * pci_cfg_access_unlock - Unlock PCI config reads/writes
660  * @dev:	pci device struct
661  *
662  * This function allows PCI config accesses to resume.
663  */
664 void pci_cfg_access_unlock(struct pci_dev *dev)
665 {
666 	unsigned long flags;
667 
668 	raw_spin_lock_irqsave(&pci_lock, flags);
669 
670 	/* This indicates a problem in the caller, but we don't need
671 	 * to kill them, unlike a double-block above. */
672 	WARN_ON(!dev->block_cfg_access);
673 
674 	dev->block_cfg_access = 0;
675 	wake_up_all(&pci_cfg_wait);
676 	raw_spin_unlock_irqrestore(&pci_lock, flags);
677 }
678 EXPORT_SYMBOL_GPL(pci_cfg_access_unlock);
679 
680 static inline int pcie_cap_version(const struct pci_dev *dev)
681 {
682 	return pcie_caps_reg(dev) & PCI_EXP_FLAGS_VERS;
683 }
684 
685 static bool pcie_downstream_port(const struct pci_dev *dev)
686 {
687 	int type = pci_pcie_type(dev);
688 
689 	return type == PCI_EXP_TYPE_ROOT_PORT ||
690 	       type == PCI_EXP_TYPE_DOWNSTREAM;
691 }
692 
693 bool pcie_cap_has_lnkctl(const struct pci_dev *dev)
694 {
695 	int type = pci_pcie_type(dev);
696 
697 	return type == PCI_EXP_TYPE_ENDPOINT ||
698 	       type == PCI_EXP_TYPE_LEG_END ||
699 	       type == PCI_EXP_TYPE_ROOT_PORT ||
700 	       type == PCI_EXP_TYPE_UPSTREAM ||
701 	       type == PCI_EXP_TYPE_DOWNSTREAM ||
702 	       type == PCI_EXP_TYPE_PCI_BRIDGE ||
703 	       type == PCI_EXP_TYPE_PCIE_BRIDGE;
704 }
705 
706 static inline bool pcie_cap_has_sltctl(const struct pci_dev *dev)
707 {
708 	return pcie_downstream_port(dev) &&
709 	       pcie_caps_reg(dev) & PCI_EXP_FLAGS_SLOT;
710 }
711 
712 static inline bool pcie_cap_has_rtctl(const struct pci_dev *dev)
713 {
714 	int type = pci_pcie_type(dev);
715 
716 	return type == PCI_EXP_TYPE_ROOT_PORT ||
717 	       type == PCI_EXP_TYPE_RC_EC;
718 }
719 
720 static bool pcie_capability_reg_implemented(struct pci_dev *dev, int pos)
721 {
722 	if (!pci_is_pcie(dev))
723 		return false;
724 
725 	switch (pos) {
726 	case PCI_EXP_FLAGS:
727 		return true;
728 	case PCI_EXP_DEVCAP:
729 	case PCI_EXP_DEVCTL:
730 	case PCI_EXP_DEVSTA:
731 		return true;
732 	case PCI_EXP_LNKCAP:
733 	case PCI_EXP_LNKCTL:
734 	case PCI_EXP_LNKSTA:
735 		return pcie_cap_has_lnkctl(dev);
736 	case PCI_EXP_SLTCAP:
737 	case PCI_EXP_SLTCTL:
738 	case PCI_EXP_SLTSTA:
739 		return pcie_cap_has_sltctl(dev);
740 	case PCI_EXP_RTCTL:
741 	case PCI_EXP_RTCAP:
742 	case PCI_EXP_RTSTA:
743 		return pcie_cap_has_rtctl(dev);
744 	case PCI_EXP_DEVCAP2:
745 	case PCI_EXP_DEVCTL2:
746 	case PCI_EXP_LNKCAP2:
747 	case PCI_EXP_LNKCTL2:
748 	case PCI_EXP_LNKSTA2:
749 		return pcie_cap_version(dev) > 1;
750 	default:
751 		return false;
752 	}
753 }
754 
755 /*
756  * Note that these accessor functions are only for the "PCI Express
757  * Capability" (see PCIe spec r3.0, sec 7.8).  They do not apply to the
758  * other "PCI Express Extended Capabilities" (AER, VC, ACS, MFVC, etc.)
759  */
760 int pcie_capability_read_word(struct pci_dev *dev, int pos, u16 *val)
761 {
762 	int ret;
763 
764 	*val = 0;
765 	if (pos & 1)
766 		return -EINVAL;
767 
768 	if (pcie_capability_reg_implemented(dev, pos)) {
769 		ret = pci_read_config_word(dev, pci_pcie_cap(dev) + pos, val);
770 		/*
771 		 * Reset *val to 0 if pci_read_config_word() fails, it may
772 		 * have been written as 0xFFFF if hardware error happens
773 		 * during pci_read_config_word().
774 		 */
775 		if (ret)
776 			*val = 0;
777 		return ret;
778 	}
779 
780 	/*
781 	 * For Functions that do not implement the Slot Capabilities,
782 	 * Slot Status, and Slot Control registers, these spaces must
783 	 * be hardwired to 0b, with the exception of the Presence Detect
784 	 * State bit in the Slot Status register of Downstream Ports,
785 	 * which must be hardwired to 1b.  (PCIe Base Spec 3.0, sec 7.8)
786 	 */
787 	if (pci_is_pcie(dev) && pcie_downstream_port(dev) &&
788 	    pos == PCI_EXP_SLTSTA)
789 		*val = PCI_EXP_SLTSTA_PDS;
790 
791 	return 0;
792 }
793 EXPORT_SYMBOL(pcie_capability_read_word);
794 
795 int pcie_capability_read_dword(struct pci_dev *dev, int pos, u32 *val)
796 {
797 	int ret;
798 
799 	*val = 0;
800 	if (pos & 3)
801 		return -EINVAL;
802 
803 	if (pcie_capability_reg_implemented(dev, pos)) {
804 		ret = pci_read_config_dword(dev, pci_pcie_cap(dev) + pos, val);
805 		/*
806 		 * Reset *val to 0 if pci_read_config_dword() fails, it may
807 		 * have been written as 0xFFFFFFFF if hardware error happens
808 		 * during pci_read_config_dword().
809 		 */
810 		if (ret)
811 			*val = 0;
812 		return ret;
813 	}
814 
815 	if (pci_is_pcie(dev) && pcie_downstream_port(dev) &&
816 	    pos == PCI_EXP_SLTSTA)
817 		*val = PCI_EXP_SLTSTA_PDS;
818 
819 	return 0;
820 }
821 EXPORT_SYMBOL(pcie_capability_read_dword);
822 
823 int pcie_capability_write_word(struct pci_dev *dev, int pos, u16 val)
824 {
825 	if (pos & 1)
826 		return -EINVAL;
827 
828 	if (!pcie_capability_reg_implemented(dev, pos))
829 		return 0;
830 
831 	return pci_write_config_word(dev, pci_pcie_cap(dev) + pos, val);
832 }
833 EXPORT_SYMBOL(pcie_capability_write_word);
834 
835 int pcie_capability_write_dword(struct pci_dev *dev, int pos, u32 val)
836 {
837 	if (pos & 3)
838 		return -EINVAL;
839 
840 	if (!pcie_capability_reg_implemented(dev, pos))
841 		return 0;
842 
843 	return pci_write_config_dword(dev, pci_pcie_cap(dev) + pos, val);
844 }
845 EXPORT_SYMBOL(pcie_capability_write_dword);
846 
847 int pcie_capability_clear_and_set_word(struct pci_dev *dev, int pos,
848 				       u16 clear, u16 set)
849 {
850 	int ret;
851 	u16 val;
852 
853 	ret = pcie_capability_read_word(dev, pos, &val);
854 	if (!ret) {
855 		val &= ~clear;
856 		val |= set;
857 		ret = pcie_capability_write_word(dev, pos, val);
858 	}
859 
860 	return ret;
861 }
862 EXPORT_SYMBOL(pcie_capability_clear_and_set_word);
863 
864 int pcie_capability_clear_and_set_dword(struct pci_dev *dev, int pos,
865 					u32 clear, u32 set)
866 {
867 	int ret;
868 	u32 val;
869 
870 	ret = pcie_capability_read_dword(dev, pos, &val);
871 	if (!ret) {
872 		val &= ~clear;
873 		val |= set;
874 		ret = pcie_capability_write_dword(dev, pos, val);
875 	}
876 
877 	return ret;
878 }
879 EXPORT_SYMBOL(pcie_capability_clear_and_set_dword);
880