xref: /openbmc/linux/drivers/pci/access.c (revision 6c870213d6f3a25981c10728f46294a3bed1703f)
1 #include <linux/delay.h>
2 #include <linux/pci.h>
3 #include <linux/module.h>
4 #include <linux/sched.h>
5 #include <linux/slab.h>
6 #include <linux/ioport.h>
7 #include <linux/wait.h>
8 
9 #include "pci.h"
10 
11 /*
12  * This interrupt-safe spinlock protects all accesses to PCI
13  * configuration space.
14  */
15 
16 DEFINE_RAW_SPINLOCK(pci_lock);
17 
18 /*
19  *  Wrappers for all PCI configuration access functions.  They just check
20  *  alignment, do locking and call the low-level functions pointed to
21  *  by pci_dev->ops.
22  */
23 
24 #define PCI_byte_BAD 0
25 #define PCI_word_BAD (pos & 1)
26 #define PCI_dword_BAD (pos & 3)
27 
28 #define PCI_OP_READ(size,type,len) \
29 int pci_bus_read_config_##size \
30 	(struct pci_bus *bus, unsigned int devfn, int pos, type *value)	\
31 {									\
32 	int res;							\
33 	unsigned long flags;						\
34 	u32 data = 0;							\
35 	if (PCI_##size##_BAD) return PCIBIOS_BAD_REGISTER_NUMBER;	\
36 	raw_spin_lock_irqsave(&pci_lock, flags);			\
37 	res = bus->ops->read(bus, devfn, pos, len, &data);		\
38 	*value = (type)data;						\
39 	raw_spin_unlock_irqrestore(&pci_lock, flags);		\
40 	return res;							\
41 }
42 
43 #define PCI_OP_WRITE(size,type,len) \
44 int pci_bus_write_config_##size \
45 	(struct pci_bus *bus, unsigned int devfn, int pos, type value)	\
46 {									\
47 	int res;							\
48 	unsigned long flags;						\
49 	if (PCI_##size##_BAD) return PCIBIOS_BAD_REGISTER_NUMBER;	\
50 	raw_spin_lock_irqsave(&pci_lock, flags);			\
51 	res = bus->ops->write(bus, devfn, pos, len, value);		\
52 	raw_spin_unlock_irqrestore(&pci_lock, flags);		\
53 	return res;							\
54 }
55 
56 PCI_OP_READ(byte, u8, 1)
57 PCI_OP_READ(word, u16, 2)
58 PCI_OP_READ(dword, u32, 4)
59 PCI_OP_WRITE(byte, u8, 1)
60 PCI_OP_WRITE(word, u16, 2)
61 PCI_OP_WRITE(dword, u32, 4)
62 
63 EXPORT_SYMBOL(pci_bus_read_config_byte);
64 EXPORT_SYMBOL(pci_bus_read_config_word);
65 EXPORT_SYMBOL(pci_bus_read_config_dword);
66 EXPORT_SYMBOL(pci_bus_write_config_byte);
67 EXPORT_SYMBOL(pci_bus_write_config_word);
68 EXPORT_SYMBOL(pci_bus_write_config_dword);
69 
70 /**
71  * pci_bus_set_ops - Set raw operations of pci bus
72  * @bus:	pci bus struct
73  * @ops:	new raw operations
74  *
75  * Return previous raw operations
76  */
77 struct pci_ops *pci_bus_set_ops(struct pci_bus *bus, struct pci_ops *ops)
78 {
79 	struct pci_ops *old_ops;
80 	unsigned long flags;
81 
82 	raw_spin_lock_irqsave(&pci_lock, flags);
83 	old_ops = bus->ops;
84 	bus->ops = ops;
85 	raw_spin_unlock_irqrestore(&pci_lock, flags);
86 	return old_ops;
87 }
88 EXPORT_SYMBOL(pci_bus_set_ops);
89 
90 /**
91  * pci_read_vpd - Read one entry from Vital Product Data
92  * @dev:	pci device struct
93  * @pos:	offset in vpd space
94  * @count:	number of bytes to read
95  * @buf:	pointer to where to store result
96  *
97  */
98 ssize_t pci_read_vpd(struct pci_dev *dev, loff_t pos, size_t count, void *buf)
99 {
100 	if (!dev->vpd || !dev->vpd->ops)
101 		return -ENODEV;
102 	return dev->vpd->ops->read(dev, pos, count, buf);
103 }
104 EXPORT_SYMBOL(pci_read_vpd);
105 
106 /**
107  * pci_write_vpd - Write entry to Vital Product Data
108  * @dev:	pci device struct
109  * @pos:	offset in vpd space
110  * @count:	number of bytes to write
111  * @buf:	buffer containing write data
112  *
113  */
114 ssize_t pci_write_vpd(struct pci_dev *dev, loff_t pos, size_t count, const void *buf)
115 {
116 	if (!dev->vpd || !dev->vpd->ops)
117 		return -ENODEV;
118 	return dev->vpd->ops->write(dev, pos, count, buf);
119 }
120 EXPORT_SYMBOL(pci_write_vpd);
121 
122 /*
123  * The following routines are to prevent the user from accessing PCI config
124  * space when it's unsafe to do so.  Some devices require this during BIST and
125  * we're required to prevent it during D-state transitions.
126  *
127  * We have a bit per device to indicate it's blocked and a global wait queue
128  * for callers to sleep on until devices are unblocked.
129  */
130 static DECLARE_WAIT_QUEUE_HEAD(pci_cfg_wait);
131 
132 static noinline void pci_wait_cfg(struct pci_dev *dev)
133 {
134 	DECLARE_WAITQUEUE(wait, current);
135 
136 	__add_wait_queue(&pci_cfg_wait, &wait);
137 	do {
138 		set_current_state(TASK_UNINTERRUPTIBLE);
139 		raw_spin_unlock_irq(&pci_lock);
140 		schedule();
141 		raw_spin_lock_irq(&pci_lock);
142 	} while (dev->block_cfg_access);
143 	__remove_wait_queue(&pci_cfg_wait, &wait);
144 }
145 
146 /* Returns 0 on success, negative values indicate error. */
147 #define PCI_USER_READ_CONFIG(size,type)					\
148 int pci_user_read_config_##size						\
149 	(struct pci_dev *dev, int pos, type *val)			\
150 {									\
151 	int ret = 0;							\
152 	u32 data = -1;							\
153 	if (PCI_##size##_BAD)						\
154 		return -EINVAL;						\
155 	raw_spin_lock_irq(&pci_lock);				\
156 	if (unlikely(dev->block_cfg_access))				\
157 		pci_wait_cfg(dev);					\
158 	ret = dev->bus->ops->read(dev->bus, dev->devfn,			\
159 					pos, sizeof(type), &data);	\
160 	raw_spin_unlock_irq(&pci_lock);				\
161 	*val = (type)data;						\
162 	if (ret > 0)							\
163 		ret = -EINVAL;						\
164 	return ret;							\
165 }									\
166 EXPORT_SYMBOL_GPL(pci_user_read_config_##size);
167 
168 /* Returns 0 on success, negative values indicate error. */
169 #define PCI_USER_WRITE_CONFIG(size,type)				\
170 int pci_user_write_config_##size					\
171 	(struct pci_dev *dev, int pos, type val)			\
172 {									\
173 	int ret = -EIO;							\
174 	if (PCI_##size##_BAD)						\
175 		return -EINVAL;						\
176 	raw_spin_lock_irq(&pci_lock);				\
177 	if (unlikely(dev->block_cfg_access))				\
178 		pci_wait_cfg(dev);					\
179 	ret = dev->bus->ops->write(dev->bus, dev->devfn,		\
180 					pos, sizeof(type), val);	\
181 	raw_spin_unlock_irq(&pci_lock);				\
182 	if (ret > 0)							\
183 		ret = -EINVAL;						\
184 	return ret;							\
185 }									\
186 EXPORT_SYMBOL_GPL(pci_user_write_config_##size);
187 
188 PCI_USER_READ_CONFIG(byte, u8)
189 PCI_USER_READ_CONFIG(word, u16)
190 PCI_USER_READ_CONFIG(dword, u32)
191 PCI_USER_WRITE_CONFIG(byte, u8)
192 PCI_USER_WRITE_CONFIG(word, u16)
193 PCI_USER_WRITE_CONFIG(dword, u32)
194 
195 /* VPD access through PCI 2.2+ VPD capability */
196 
197 #define PCI_VPD_PCI22_SIZE (PCI_VPD_ADDR_MASK + 1)
198 
199 struct pci_vpd_pci22 {
200 	struct pci_vpd base;
201 	struct mutex lock;
202 	u16	flag;
203 	bool	busy;
204 	u8	cap;
205 };
206 
207 /*
208  * Wait for last operation to complete.
209  * This code has to spin since there is no other notification from the PCI
210  * hardware. Since the VPD is often implemented by serial attachment to an
211  * EEPROM, it may take many milliseconds to complete.
212  *
213  * Returns 0 on success, negative values indicate error.
214  */
215 static int pci_vpd_pci22_wait(struct pci_dev *dev)
216 {
217 	struct pci_vpd_pci22 *vpd =
218 		container_of(dev->vpd, struct pci_vpd_pci22, base);
219 	unsigned long timeout = jiffies + HZ/20 + 2;
220 	u16 status;
221 	int ret;
222 
223 	if (!vpd->busy)
224 		return 0;
225 
226 	for (;;) {
227 		ret = pci_user_read_config_word(dev, vpd->cap + PCI_VPD_ADDR,
228 						&status);
229 		if (ret < 0)
230 			return ret;
231 
232 		if ((status & PCI_VPD_ADDR_F) == vpd->flag) {
233 			vpd->busy = false;
234 			return 0;
235 		}
236 
237 		if (time_after(jiffies, timeout)) {
238 			dev_printk(KERN_DEBUG, &dev->dev,
239 				   "vpd r/w failed.  This is likely a firmware "
240 				   "bug on this device.  Contact the card "
241 				   "vendor for a firmware update.");
242 			return -ETIMEDOUT;
243 		}
244 		if (fatal_signal_pending(current))
245 			return -EINTR;
246 		if (!cond_resched())
247 			udelay(10);
248 	}
249 }
250 
251 static ssize_t pci_vpd_pci22_read(struct pci_dev *dev, loff_t pos, size_t count,
252 				  void *arg)
253 {
254 	struct pci_vpd_pci22 *vpd =
255 		container_of(dev->vpd, struct pci_vpd_pci22, base);
256 	int ret;
257 	loff_t end = pos + count;
258 	u8 *buf = arg;
259 
260 	if (pos < 0 || pos > vpd->base.len || end > vpd->base.len)
261 		return -EINVAL;
262 
263 	if (mutex_lock_killable(&vpd->lock))
264 		return -EINTR;
265 
266 	ret = pci_vpd_pci22_wait(dev);
267 	if (ret < 0)
268 		goto out;
269 
270 	while (pos < end) {
271 		u32 val;
272 		unsigned int i, skip;
273 
274 		ret = pci_user_write_config_word(dev, vpd->cap + PCI_VPD_ADDR,
275 						 pos & ~3);
276 		if (ret < 0)
277 			break;
278 		vpd->busy = true;
279 		vpd->flag = PCI_VPD_ADDR_F;
280 		ret = pci_vpd_pci22_wait(dev);
281 		if (ret < 0)
282 			break;
283 
284 		ret = pci_user_read_config_dword(dev, vpd->cap + PCI_VPD_DATA, &val);
285 		if (ret < 0)
286 			break;
287 
288 		skip = pos & 3;
289 		for (i = 0;  i < sizeof(u32); i++) {
290 			if (i >= skip) {
291 				*buf++ = val;
292 				if (++pos == end)
293 					break;
294 			}
295 			val >>= 8;
296 		}
297 	}
298 out:
299 	mutex_unlock(&vpd->lock);
300 	return ret ? ret : count;
301 }
302 
303 static ssize_t pci_vpd_pci22_write(struct pci_dev *dev, loff_t pos, size_t count,
304 				   const void *arg)
305 {
306 	struct pci_vpd_pci22 *vpd =
307 		container_of(dev->vpd, struct pci_vpd_pci22, base);
308 	const u8 *buf = arg;
309 	loff_t end = pos + count;
310 	int ret = 0;
311 
312 	if (pos < 0 || (pos & 3) || (count & 3) || end > vpd->base.len)
313 		return -EINVAL;
314 
315 	if (mutex_lock_killable(&vpd->lock))
316 		return -EINTR;
317 
318 	ret = pci_vpd_pci22_wait(dev);
319 	if (ret < 0)
320 		goto out;
321 
322 	while (pos < end) {
323 		u32 val;
324 
325 		val = *buf++;
326 		val |= *buf++ << 8;
327 		val |= *buf++ << 16;
328 		val |= *buf++ << 24;
329 
330 		ret = pci_user_write_config_dword(dev, vpd->cap + PCI_VPD_DATA, val);
331 		if (ret < 0)
332 			break;
333 		ret = pci_user_write_config_word(dev, vpd->cap + PCI_VPD_ADDR,
334 						 pos | PCI_VPD_ADDR_F);
335 		if (ret < 0)
336 			break;
337 
338 		vpd->busy = true;
339 		vpd->flag = 0;
340 		ret = pci_vpd_pci22_wait(dev);
341 		if (ret < 0)
342 			break;
343 
344 		pos += sizeof(u32);
345 	}
346 out:
347 	mutex_unlock(&vpd->lock);
348 	return ret ? ret : count;
349 }
350 
351 static void pci_vpd_pci22_release(struct pci_dev *dev)
352 {
353 	kfree(container_of(dev->vpd, struct pci_vpd_pci22, base));
354 }
355 
356 static const struct pci_vpd_ops pci_vpd_pci22_ops = {
357 	.read = pci_vpd_pci22_read,
358 	.write = pci_vpd_pci22_write,
359 	.release = pci_vpd_pci22_release,
360 };
361 
362 int pci_vpd_pci22_init(struct pci_dev *dev)
363 {
364 	struct pci_vpd_pci22 *vpd;
365 	u8 cap;
366 
367 	cap = pci_find_capability(dev, PCI_CAP_ID_VPD);
368 	if (!cap)
369 		return -ENODEV;
370 	vpd = kzalloc(sizeof(*vpd), GFP_ATOMIC);
371 	if (!vpd)
372 		return -ENOMEM;
373 
374 	vpd->base.len = PCI_VPD_PCI22_SIZE;
375 	vpd->base.ops = &pci_vpd_pci22_ops;
376 	mutex_init(&vpd->lock);
377 	vpd->cap = cap;
378 	vpd->busy = false;
379 	dev->vpd = &vpd->base;
380 	return 0;
381 }
382 
383 /**
384  * pci_cfg_access_lock - Lock PCI config reads/writes
385  * @dev:	pci device struct
386  *
387  * When access is locked, any userspace reads or writes to config
388  * space and concurrent lock requests will sleep until access is
389  * allowed via pci_cfg_access_unlocked again.
390  */
391 void pci_cfg_access_lock(struct pci_dev *dev)
392 {
393 	might_sleep();
394 
395 	raw_spin_lock_irq(&pci_lock);
396 	if (dev->block_cfg_access)
397 		pci_wait_cfg(dev);
398 	dev->block_cfg_access = 1;
399 	raw_spin_unlock_irq(&pci_lock);
400 }
401 EXPORT_SYMBOL_GPL(pci_cfg_access_lock);
402 
403 /**
404  * pci_cfg_access_trylock - try to lock PCI config reads/writes
405  * @dev:	pci device struct
406  *
407  * Same as pci_cfg_access_lock, but will return 0 if access is
408  * already locked, 1 otherwise. This function can be used from
409  * atomic contexts.
410  */
411 bool pci_cfg_access_trylock(struct pci_dev *dev)
412 {
413 	unsigned long flags;
414 	bool locked = true;
415 
416 	raw_spin_lock_irqsave(&pci_lock, flags);
417 	if (dev->block_cfg_access)
418 		locked = false;
419 	else
420 		dev->block_cfg_access = 1;
421 	raw_spin_unlock_irqrestore(&pci_lock, flags);
422 
423 	return locked;
424 }
425 EXPORT_SYMBOL_GPL(pci_cfg_access_trylock);
426 
427 /**
428  * pci_cfg_access_unlock - Unlock PCI config reads/writes
429  * @dev:	pci device struct
430  *
431  * This function allows PCI config accesses to resume.
432  */
433 void pci_cfg_access_unlock(struct pci_dev *dev)
434 {
435 	unsigned long flags;
436 
437 	raw_spin_lock_irqsave(&pci_lock, flags);
438 
439 	/* This indicates a problem in the caller, but we don't need
440 	 * to kill them, unlike a double-block above. */
441 	WARN_ON(!dev->block_cfg_access);
442 
443 	dev->block_cfg_access = 0;
444 	wake_up_all(&pci_cfg_wait);
445 	raw_spin_unlock_irqrestore(&pci_lock, flags);
446 }
447 EXPORT_SYMBOL_GPL(pci_cfg_access_unlock);
448 
449 static inline int pcie_cap_version(const struct pci_dev *dev)
450 {
451 	return pcie_caps_reg(dev) & PCI_EXP_FLAGS_VERS;
452 }
453 
454 static inline bool pcie_cap_has_lnkctl(const struct pci_dev *dev)
455 {
456 	int type = pci_pcie_type(dev);
457 
458 	return type == PCI_EXP_TYPE_ENDPOINT ||
459 	       type == PCI_EXP_TYPE_LEG_END ||
460 	       type == PCI_EXP_TYPE_ROOT_PORT ||
461 	       type == PCI_EXP_TYPE_UPSTREAM ||
462 	       type == PCI_EXP_TYPE_DOWNSTREAM ||
463 	       type == PCI_EXP_TYPE_PCI_BRIDGE ||
464 	       type == PCI_EXP_TYPE_PCIE_BRIDGE;
465 }
466 
467 static inline bool pcie_cap_has_sltctl(const struct pci_dev *dev)
468 {
469 	int type = pci_pcie_type(dev);
470 
471 	return (type == PCI_EXP_TYPE_ROOT_PORT ||
472 		type == PCI_EXP_TYPE_DOWNSTREAM) &&
473 	       pcie_caps_reg(dev) & PCI_EXP_FLAGS_SLOT;
474 }
475 
476 static inline bool pcie_cap_has_rtctl(const struct pci_dev *dev)
477 {
478 	int type = pci_pcie_type(dev);
479 
480 	return type == PCI_EXP_TYPE_ROOT_PORT ||
481 	       type == PCI_EXP_TYPE_RC_EC;
482 }
483 
484 static bool pcie_capability_reg_implemented(struct pci_dev *dev, int pos)
485 {
486 	if (!pci_is_pcie(dev))
487 		return false;
488 
489 	switch (pos) {
490 	case PCI_EXP_FLAGS:
491 		return true;
492 	case PCI_EXP_DEVCAP:
493 	case PCI_EXP_DEVCTL:
494 	case PCI_EXP_DEVSTA:
495 		return true;
496 	case PCI_EXP_LNKCAP:
497 	case PCI_EXP_LNKCTL:
498 	case PCI_EXP_LNKSTA:
499 		return pcie_cap_has_lnkctl(dev);
500 	case PCI_EXP_SLTCAP:
501 	case PCI_EXP_SLTCTL:
502 	case PCI_EXP_SLTSTA:
503 		return pcie_cap_has_sltctl(dev);
504 	case PCI_EXP_RTCTL:
505 	case PCI_EXP_RTCAP:
506 	case PCI_EXP_RTSTA:
507 		return pcie_cap_has_rtctl(dev);
508 	case PCI_EXP_DEVCAP2:
509 	case PCI_EXP_DEVCTL2:
510 	case PCI_EXP_LNKCAP2:
511 	case PCI_EXP_LNKCTL2:
512 	case PCI_EXP_LNKSTA2:
513 		return pcie_cap_version(dev) > 1;
514 	default:
515 		return false;
516 	}
517 }
518 
519 /*
520  * Note that these accessor functions are only for the "PCI Express
521  * Capability" (see PCIe spec r3.0, sec 7.8).  They do not apply to the
522  * other "PCI Express Extended Capabilities" (AER, VC, ACS, MFVC, etc.)
523  */
524 int pcie_capability_read_word(struct pci_dev *dev, int pos, u16 *val)
525 {
526 	int ret;
527 
528 	*val = 0;
529 	if (pos & 1)
530 		return -EINVAL;
531 
532 	if (pcie_capability_reg_implemented(dev, pos)) {
533 		ret = pci_read_config_word(dev, pci_pcie_cap(dev) + pos, val);
534 		/*
535 		 * Reset *val to 0 if pci_read_config_word() fails, it may
536 		 * have been written as 0xFFFF if hardware error happens
537 		 * during pci_read_config_word().
538 		 */
539 		if (ret)
540 			*val = 0;
541 		return ret;
542 	}
543 
544 	/*
545 	 * For Functions that do not implement the Slot Capabilities,
546 	 * Slot Status, and Slot Control registers, these spaces must
547 	 * be hardwired to 0b, with the exception of the Presence Detect
548 	 * State bit in the Slot Status register of Downstream Ports,
549 	 * which must be hardwired to 1b.  (PCIe Base Spec 3.0, sec 7.8)
550 	 */
551 	if (pci_is_pcie(dev) && pos == PCI_EXP_SLTSTA &&
552 		 pci_pcie_type(dev) == PCI_EXP_TYPE_DOWNSTREAM) {
553 		*val = PCI_EXP_SLTSTA_PDS;
554 	}
555 
556 	return 0;
557 }
558 EXPORT_SYMBOL(pcie_capability_read_word);
559 
560 int pcie_capability_read_dword(struct pci_dev *dev, int pos, u32 *val)
561 {
562 	int ret;
563 
564 	*val = 0;
565 	if (pos & 3)
566 		return -EINVAL;
567 
568 	if (pcie_capability_reg_implemented(dev, pos)) {
569 		ret = pci_read_config_dword(dev, pci_pcie_cap(dev) + pos, val);
570 		/*
571 		 * Reset *val to 0 if pci_read_config_dword() fails, it may
572 		 * have been written as 0xFFFFFFFF if hardware error happens
573 		 * during pci_read_config_dword().
574 		 */
575 		if (ret)
576 			*val = 0;
577 		return ret;
578 	}
579 
580 	if (pci_is_pcie(dev) && pos == PCI_EXP_SLTCTL &&
581 		 pci_pcie_type(dev) == PCI_EXP_TYPE_DOWNSTREAM) {
582 		*val = PCI_EXP_SLTSTA_PDS;
583 	}
584 
585 	return 0;
586 }
587 EXPORT_SYMBOL(pcie_capability_read_dword);
588 
589 int pcie_capability_write_word(struct pci_dev *dev, int pos, u16 val)
590 {
591 	if (pos & 1)
592 		return -EINVAL;
593 
594 	if (!pcie_capability_reg_implemented(dev, pos))
595 		return 0;
596 
597 	return pci_write_config_word(dev, pci_pcie_cap(dev) + pos, val);
598 }
599 EXPORT_SYMBOL(pcie_capability_write_word);
600 
601 int pcie_capability_write_dword(struct pci_dev *dev, int pos, u32 val)
602 {
603 	if (pos & 3)
604 		return -EINVAL;
605 
606 	if (!pcie_capability_reg_implemented(dev, pos))
607 		return 0;
608 
609 	return pci_write_config_dword(dev, pci_pcie_cap(dev) + pos, val);
610 }
611 EXPORT_SYMBOL(pcie_capability_write_dword);
612 
613 int pcie_capability_clear_and_set_word(struct pci_dev *dev, int pos,
614 				       u16 clear, u16 set)
615 {
616 	int ret;
617 	u16 val;
618 
619 	ret = pcie_capability_read_word(dev, pos, &val);
620 	if (!ret) {
621 		val &= ~clear;
622 		val |= set;
623 		ret = pcie_capability_write_word(dev, pos, val);
624 	}
625 
626 	return ret;
627 }
628 EXPORT_SYMBOL(pcie_capability_clear_and_set_word);
629 
630 int pcie_capability_clear_and_set_dword(struct pci_dev *dev, int pos,
631 					u32 clear, u32 set)
632 {
633 	int ret;
634 	u32 val;
635 
636 	ret = pcie_capability_read_dword(dev, pos, &val);
637 	if (!ret) {
638 		val &= ~clear;
639 		val |= set;
640 		ret = pcie_capability_write_dword(dev, pos, val);
641 	}
642 
643 	return ret;
644 }
645 EXPORT_SYMBOL(pcie_capability_clear_and_set_dword);
646