xref: /openbmc/linux/drivers/parport/share.c (revision bc5aa3a0)
1 /*
2  * Parallel-port resource manager code.
3  *
4  * Authors: David Campbell <campbell@tirian.che.curtin.edu.au>
5  *          Tim Waugh <tim@cyberelk.demon.co.uk>
6  *          Jose Renau <renau@acm.org>
7  *          Philip Blundell <philb@gnu.org>
8  *	    Andrea Arcangeli
9  *
10  * based on work by Grant Guenther <grant@torque.net>
11  *          and Philip Blundell
12  *
13  * Any part of this program may be used in documents licensed under
14  * the GNU Free Documentation License, Version 1.1 or any later version
15  * published by the Free Software Foundation.
16  */
17 
18 #undef PARPORT_DEBUG_SHARING		/* undef for production */
19 
20 #include <linux/module.h>
21 #include <linux/string.h>
22 #include <linux/threads.h>
23 #include <linux/parport.h>
24 #include <linux/delay.h>
25 #include <linux/errno.h>
26 #include <linux/interrupt.h>
27 #include <linux/ioport.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/sched.h>
31 #include <linux/kmod.h>
32 #include <linux/device.h>
33 
34 #include <linux/spinlock.h>
35 #include <linux/mutex.h>
36 #include <asm/irq.h>
37 
38 #undef PARPORT_PARANOID
39 
40 #define PARPORT_DEFAULT_TIMESLICE	(HZ/5)
41 
42 unsigned long parport_default_timeslice = PARPORT_DEFAULT_TIMESLICE;
43 int parport_default_spintime =  DEFAULT_SPIN_TIME;
44 
45 static LIST_HEAD(portlist);
46 static DEFINE_SPINLOCK(parportlist_lock);
47 
48 /* list of all allocated ports, sorted by ->number */
49 static LIST_HEAD(all_ports);
50 static DEFINE_SPINLOCK(full_list_lock);
51 
52 static LIST_HEAD(drivers);
53 
54 static DEFINE_MUTEX(registration_lock);
55 
56 /* What you can do to a port that's gone away.. */
57 static void dead_write_lines(struct parport *p, unsigned char b){}
58 static unsigned char dead_read_lines(struct parport *p) { return 0; }
59 static unsigned char dead_frob_lines(struct parport *p, unsigned char b,
60 			     unsigned char c) { return 0; }
61 static void dead_onearg(struct parport *p){}
62 static void dead_initstate(struct pardevice *d, struct parport_state *s) { }
63 static void dead_state(struct parport *p, struct parport_state *s) { }
64 static size_t dead_write(struct parport *p, const void *b, size_t l, int f)
65 { return 0; }
66 static size_t dead_read(struct parport *p, void *b, size_t l, int f)
67 { return 0; }
68 static struct parport_operations dead_ops = {
69 	.write_data	= dead_write_lines,	/* data */
70 	.read_data	= dead_read_lines,
71 
72 	.write_control	= dead_write_lines,	/* control */
73 	.read_control	= dead_read_lines,
74 	.frob_control	= dead_frob_lines,
75 
76 	.read_status	= dead_read_lines,	/* status */
77 
78 	.enable_irq	= dead_onearg,		/* enable_irq */
79 	.disable_irq	= dead_onearg,		/* disable_irq */
80 
81 	.data_forward	= dead_onearg,		/* data_forward */
82 	.data_reverse	= dead_onearg,		/* data_reverse */
83 
84 	.init_state	= dead_initstate,	/* init_state */
85 	.save_state	= dead_state,
86 	.restore_state	= dead_state,
87 
88 	.epp_write_data	= dead_write,		/* epp */
89 	.epp_read_data	= dead_read,
90 	.epp_write_addr	= dead_write,
91 	.epp_read_addr	= dead_read,
92 
93 	.ecp_write_data	= dead_write,		/* ecp */
94 	.ecp_read_data	= dead_read,
95 	.ecp_write_addr	= dead_write,
96 
97 	.compat_write_data	= dead_write,	/* compat */
98 	.nibble_read_data	= dead_read,	/* nibble */
99 	.byte_read_data		= dead_read,	/* byte */
100 
101 	.owner		= NULL,
102 };
103 
104 static struct device_type parport_device_type = {
105 	.name = "parport",
106 };
107 
108 static int is_parport(struct device *dev)
109 {
110 	return dev->type == &parport_device_type;
111 }
112 
113 static int parport_probe(struct device *dev)
114 {
115 	struct parport_driver *drv;
116 
117 	if (is_parport(dev))
118 		return -ENODEV;
119 
120 	drv = to_parport_driver(dev->driver);
121 	if (!drv->probe) {
122 		/* if driver has not defined a custom probe */
123 		struct pardevice *par_dev = to_pardevice(dev);
124 
125 		if (strcmp(par_dev->name, drv->name))
126 			return -ENODEV;
127 		return 0;
128 	}
129 	/* if driver defined its own probe */
130 	return drv->probe(to_pardevice(dev));
131 }
132 
133 static struct bus_type parport_bus_type = {
134 	.name = "parport",
135 	.probe = parport_probe,
136 };
137 
138 int parport_bus_init(void)
139 {
140 	return bus_register(&parport_bus_type);
141 }
142 
143 void parport_bus_exit(void)
144 {
145 	bus_unregister(&parport_bus_type);
146 }
147 
148 /*
149  * iterates through all the drivers registered with the bus and sends the port
150  * details to the match_port callback of the driver, so that the driver can
151  * know about the new port that just registered with the bus and decide if it
152  * wants to use this new port.
153  */
154 static int driver_check(struct device_driver *dev_drv, void *_port)
155 {
156 	struct parport *port = _port;
157 	struct parport_driver *drv = to_parport_driver(dev_drv);
158 
159 	if (drv->match_port)
160 		drv->match_port(port);
161 	return 0;
162 }
163 
164 /* Call attach(port) for each registered driver. */
165 static void attach_driver_chain(struct parport *port)
166 {
167 	/* caller has exclusive registration_lock */
168 	struct parport_driver *drv;
169 
170 	list_for_each_entry(drv, &drivers, list)
171 		drv->attach(port);
172 
173 	/*
174 	 * call the driver_check function of the drivers registered in
175 	 * new device model
176 	 */
177 
178 	bus_for_each_drv(&parport_bus_type, NULL, port, driver_check);
179 }
180 
181 static int driver_detach(struct device_driver *_drv, void *_port)
182 {
183 	struct parport *port = _port;
184 	struct parport_driver *drv = to_parport_driver(_drv);
185 
186 	if (drv->detach)
187 		drv->detach(port);
188 	return 0;
189 }
190 
191 /* Call detach(port) for each registered driver. */
192 static void detach_driver_chain(struct parport *port)
193 {
194 	struct parport_driver *drv;
195 	/* caller has exclusive registration_lock */
196 	list_for_each_entry(drv, &drivers, list)
197 		drv->detach(port);
198 
199 	/*
200 	 * call the detach function of the drivers registered in
201 	 * new device model
202 	 */
203 
204 	bus_for_each_drv(&parport_bus_type, NULL, port, driver_detach);
205 }
206 
207 /* Ask kmod for some lowlevel drivers. */
208 static void get_lowlevel_driver(void)
209 {
210 	/*
211 	 * There is no actual module called this: you should set
212 	 * up an alias for modutils.
213 	 */
214 	request_module("parport_lowlevel");
215 }
216 
217 /*
218  * iterates through all the devices connected to the bus and sends the device
219  * details to the match_port callback of the driver, so that the driver can
220  * know what are all the ports that are connected to the bus and choose the
221  * port to which it wants to register its device.
222  */
223 static int port_check(struct device *dev, void *dev_drv)
224 {
225 	struct parport_driver *drv = dev_drv;
226 
227 	/* only send ports, do not send other devices connected to bus */
228 	if (is_parport(dev))
229 		drv->match_port(to_parport_dev(dev));
230 	return 0;
231 }
232 
233 /**
234  *	parport_register_driver - register a parallel port device driver
235  *	@drv: structure describing the driver
236  *	@owner: owner module of drv
237  *	@mod_name: module name string
238  *
239  *	This can be called by a parallel port device driver in order
240  *	to receive notifications about ports being found in the
241  *	system, as well as ports no longer available.
242  *
243  *	If devmodel is true then the new device model is used
244  *	for registration.
245  *
246  *	The @drv structure is allocated by the caller and must not be
247  *	deallocated until after calling parport_unregister_driver().
248  *
249  *	If using the non device model:
250  *	The driver's attach() function may block.  The port that
251  *	attach() is given will be valid for the duration of the
252  *	callback, but if the driver wants to take a copy of the
253  *	pointer it must call parport_get_port() to do so.  Calling
254  *	parport_register_device() on that port will do this for you.
255  *
256  *	The driver's detach() function may block.  The port that
257  *	detach() is given will be valid for the duration of the
258  *	callback, but if the driver wants to take a copy of the
259  *	pointer it must call parport_get_port() to do so.
260  *
261  *
262  *	Returns 0 on success. The non device model will always succeeds.
263  *	but the new device model can fail and will return the error code.
264  **/
265 
266 int __parport_register_driver(struct parport_driver *drv, struct module *owner,
267 			      const char *mod_name)
268 {
269 	if (list_empty(&portlist))
270 		get_lowlevel_driver();
271 
272 	if (drv->devmodel) {
273 		/* using device model */
274 		int ret;
275 
276 		/* initialize common driver fields */
277 		drv->driver.name = drv->name;
278 		drv->driver.bus = &parport_bus_type;
279 		drv->driver.owner = owner;
280 		drv->driver.mod_name = mod_name;
281 		ret = driver_register(&drv->driver);
282 		if (ret)
283 			return ret;
284 
285 		mutex_lock(&registration_lock);
286 		if (drv->match_port)
287 			bus_for_each_dev(&parport_bus_type, NULL, drv,
288 					 port_check);
289 		mutex_unlock(&registration_lock);
290 	} else {
291 		struct parport *port;
292 
293 		drv->devmodel = false;
294 
295 		mutex_lock(&registration_lock);
296 		list_for_each_entry(port, &portlist, list)
297 			drv->attach(port);
298 		list_add(&drv->list, &drivers);
299 		mutex_unlock(&registration_lock);
300 	}
301 
302 	return 0;
303 }
304 EXPORT_SYMBOL(__parport_register_driver);
305 
306 static int port_detach(struct device *dev, void *_drv)
307 {
308 	struct parport_driver *drv = _drv;
309 
310 	if (is_parport(dev) && drv->detach)
311 		drv->detach(to_parport_dev(dev));
312 
313 	return 0;
314 }
315 
316 /**
317  *	parport_unregister_driver - deregister a parallel port device driver
318  *	@drv: structure describing the driver that was given to
319  *	      parport_register_driver()
320  *
321  *	This should be called by a parallel port device driver that
322  *	has registered itself using parport_register_driver() when it
323  *	is about to be unloaded.
324  *
325  *	When it returns, the driver's attach() routine will no longer
326  *	be called, and for each port that attach() was called for, the
327  *	detach() routine will have been called.
328  *
329  *	All the driver's attach() and detach() calls are guaranteed to have
330  *	finished by the time this function returns.
331  **/
332 
333 void parport_unregister_driver(struct parport_driver *drv)
334 {
335 	struct parport *port;
336 
337 	mutex_lock(&registration_lock);
338 	if (drv->devmodel) {
339 		bus_for_each_dev(&parport_bus_type, NULL, drv, port_detach);
340 		driver_unregister(&drv->driver);
341 	} else {
342 		list_del_init(&drv->list);
343 		list_for_each_entry(port, &portlist, list)
344 			drv->detach(port);
345 	}
346 	mutex_unlock(&registration_lock);
347 }
348 EXPORT_SYMBOL(parport_unregister_driver);
349 
350 static void free_port(struct device *dev)
351 {
352 	int d;
353 	struct parport *port = to_parport_dev(dev);
354 
355 	spin_lock(&full_list_lock);
356 	list_del(&port->full_list);
357 	spin_unlock(&full_list_lock);
358 	for (d = 0; d < 5; d++) {
359 		kfree(port->probe_info[d].class_name);
360 		kfree(port->probe_info[d].mfr);
361 		kfree(port->probe_info[d].model);
362 		kfree(port->probe_info[d].cmdset);
363 		kfree(port->probe_info[d].description);
364 	}
365 
366 	kfree(port->name);
367 	kfree(port);
368 }
369 
370 /**
371  *	parport_get_port - increment a port's reference count
372  *	@port: the port
373  *
374  *	This ensures that a struct parport pointer remains valid
375  *	until the matching parport_put_port() call.
376  **/
377 
378 struct parport *parport_get_port(struct parport *port)
379 {
380 	struct device *dev = get_device(&port->bus_dev);
381 
382 	return to_parport_dev(dev);
383 }
384 EXPORT_SYMBOL(parport_get_port);
385 
386 void parport_del_port(struct parport *port)
387 {
388 	device_unregister(&port->bus_dev);
389 }
390 EXPORT_SYMBOL(parport_del_port);
391 
392 /**
393  *	parport_put_port - decrement a port's reference count
394  *	@port: the port
395  *
396  *	This should be called once for each call to parport_get_port(),
397  *	once the port is no longer needed. When the reference count reaches
398  *	zero (port is no longer used), free_port is called.
399  **/
400 
401 void parport_put_port(struct parport *port)
402 {
403 	put_device(&port->bus_dev);
404 }
405 EXPORT_SYMBOL(parport_put_port);
406 
407 /**
408  *	parport_register_port - register a parallel port
409  *	@base: base I/O address
410  *	@irq: IRQ line
411  *	@dma: DMA channel
412  *	@ops: pointer to the port driver's port operations structure
413  *
414  *	When a parallel port (lowlevel) driver finds a port that
415  *	should be made available to parallel port device drivers, it
416  *	should call parport_register_port().  The @base, @irq, and
417  *	@dma parameters are for the convenience of port drivers, and
418  *	for ports where they aren't meaningful needn't be set to
419  *	anything special.  They can be altered afterwards by adjusting
420  *	the relevant members of the parport structure that is returned
421  *	and represents the port.  They should not be tampered with
422  *	after calling parport_announce_port, however.
423  *
424  *	If there are parallel port device drivers in the system that
425  *	have registered themselves using parport_register_driver(),
426  *	they are not told about the port at this time; that is done by
427  *	parport_announce_port().
428  *
429  *	The @ops structure is allocated by the caller, and must not be
430  *	deallocated before calling parport_remove_port().
431  *
432  *	If there is no memory to allocate a new parport structure,
433  *	this function will return %NULL.
434  **/
435 
436 struct parport *parport_register_port(unsigned long base, int irq, int dma,
437 				      struct parport_operations *ops)
438 {
439 	struct list_head *l;
440 	struct parport *tmp;
441 	int num;
442 	int device;
443 	char *name;
444 	int ret;
445 
446 	tmp = kzalloc(sizeof(struct parport), GFP_KERNEL);
447 	if (!tmp)
448 		return NULL;
449 
450 	/* Init our structure */
451 	tmp->base = base;
452 	tmp->irq = irq;
453 	tmp->dma = dma;
454 	tmp->muxport = tmp->daisy = tmp->muxsel = -1;
455 	tmp->modes = 0;
456 	INIT_LIST_HEAD(&tmp->list);
457 	tmp->devices = tmp->cad = NULL;
458 	tmp->flags = 0;
459 	tmp->ops = ops;
460 	tmp->physport = tmp;
461 	memset(tmp->probe_info, 0, 5 * sizeof(struct parport_device_info));
462 	rwlock_init(&tmp->cad_lock);
463 	spin_lock_init(&tmp->waitlist_lock);
464 	spin_lock_init(&tmp->pardevice_lock);
465 	tmp->ieee1284.mode = IEEE1284_MODE_COMPAT;
466 	tmp->ieee1284.phase = IEEE1284_PH_FWD_IDLE;
467 	sema_init(&tmp->ieee1284.irq, 0);
468 	tmp->spintime = parport_default_spintime;
469 	atomic_set(&tmp->ref_count, 1);
470 	INIT_LIST_HEAD(&tmp->full_list);
471 
472 	name = kmalloc(15, GFP_KERNEL);
473 	if (!name) {
474 		kfree(tmp);
475 		return NULL;
476 	}
477 	/* Search for the lowest free parport number. */
478 
479 	spin_lock(&full_list_lock);
480 	for (l = all_ports.next, num = 0; l != &all_ports; l = l->next, num++) {
481 		struct parport *p = list_entry(l, struct parport, full_list);
482 		if (p->number != num)
483 			break;
484 	}
485 	tmp->portnum = tmp->number = num;
486 	list_add_tail(&tmp->full_list, l);
487 	spin_unlock(&full_list_lock);
488 
489 	/*
490 	 * Now that the portnum is known finish doing the Init.
491 	 */
492 	sprintf(name, "parport%d", tmp->portnum = tmp->number);
493 	tmp->name = name;
494 	tmp->bus_dev.bus = &parport_bus_type;
495 	tmp->bus_dev.release = free_port;
496 	dev_set_name(&tmp->bus_dev, name);
497 	tmp->bus_dev.type = &parport_device_type;
498 
499 	for (device = 0; device < 5; device++)
500 		/* assume the worst */
501 		tmp->probe_info[device].class = PARPORT_CLASS_LEGACY;
502 
503 	tmp->waithead = tmp->waittail = NULL;
504 
505 	ret = device_register(&tmp->bus_dev);
506 	if (ret) {
507 		put_device(&tmp->bus_dev);
508 		return NULL;
509 	}
510 
511 	return tmp;
512 }
513 EXPORT_SYMBOL(parport_register_port);
514 
515 /**
516  *	parport_announce_port - tell device drivers about a parallel port
517  *	@port: parallel port to announce
518  *
519  *	After a port driver has registered a parallel port with
520  *	parport_register_port, and performed any necessary
521  *	initialisation or adjustments, it should call
522  *	parport_announce_port() in order to notify all device drivers
523  *	that have called parport_register_driver().  Their attach()
524  *	functions will be called, with @port as the parameter.
525  **/
526 
527 void parport_announce_port(struct parport *port)
528 {
529 	int i;
530 
531 #ifdef CONFIG_PARPORT_1284
532 	/* Analyse the IEEE1284.3 topology of the port. */
533 	parport_daisy_init(port);
534 #endif
535 
536 	if (!port->dev)
537 		printk(KERN_WARNING "%s: fix this legacy no-device port driver!\n",
538 		       port->name);
539 
540 	parport_proc_register(port);
541 	mutex_lock(&registration_lock);
542 	spin_lock_irq(&parportlist_lock);
543 	list_add_tail(&port->list, &portlist);
544 	for (i = 1; i < 3; i++) {
545 		struct parport *slave = port->slaves[i-1];
546 		if (slave)
547 			list_add_tail(&slave->list, &portlist);
548 	}
549 	spin_unlock_irq(&parportlist_lock);
550 
551 	/* Let drivers know that new port(s) has arrived. */
552 	attach_driver_chain(port);
553 	for (i = 1; i < 3; i++) {
554 		struct parport *slave = port->slaves[i-1];
555 		if (slave)
556 			attach_driver_chain(slave);
557 	}
558 	mutex_unlock(&registration_lock);
559 }
560 EXPORT_SYMBOL(parport_announce_port);
561 
562 /**
563  *	parport_remove_port - deregister a parallel port
564  *	@port: parallel port to deregister
565  *
566  *	When a parallel port driver is forcibly unloaded, or a
567  *	parallel port becomes inaccessible, the port driver must call
568  *	this function in order to deal with device drivers that still
569  *	want to use it.
570  *
571  *	The parport structure associated with the port has its
572  *	operations structure replaced with one containing 'null'
573  *	operations that return errors or just don't do anything.
574  *
575  *	Any drivers that have registered themselves using
576  *	parport_register_driver() are notified that the port is no
577  *	longer accessible by having their detach() routines called
578  *	with @port as the parameter.
579  **/
580 
581 void parport_remove_port(struct parport *port)
582 {
583 	int i;
584 
585 	mutex_lock(&registration_lock);
586 
587 	/* Spread the word. */
588 	detach_driver_chain(port);
589 
590 #ifdef CONFIG_PARPORT_1284
591 	/* Forget the IEEE1284.3 topology of the port. */
592 	parport_daisy_fini(port);
593 	for (i = 1; i < 3; i++) {
594 		struct parport *slave = port->slaves[i-1];
595 		if (!slave)
596 			continue;
597 		detach_driver_chain(slave);
598 		parport_daisy_fini(slave);
599 	}
600 #endif
601 
602 	port->ops = &dead_ops;
603 	spin_lock(&parportlist_lock);
604 	list_del_init(&port->list);
605 	for (i = 1; i < 3; i++) {
606 		struct parport *slave = port->slaves[i-1];
607 		if (slave)
608 			list_del_init(&slave->list);
609 	}
610 	spin_unlock(&parportlist_lock);
611 
612 	mutex_unlock(&registration_lock);
613 
614 	parport_proc_unregister(port);
615 
616 	for (i = 1; i < 3; i++) {
617 		struct parport *slave = port->slaves[i-1];
618 		if (slave)
619 			parport_put_port(slave);
620 	}
621 }
622 EXPORT_SYMBOL(parport_remove_port);
623 
624 /**
625  *	parport_register_device - register a device on a parallel port
626  *	@port: port to which the device is attached
627  *	@name: a name to refer to the device
628  *	@pf: preemption callback
629  *	@kf: kick callback (wake-up)
630  *	@irq_func: interrupt handler
631  *	@flags: registration flags
632  *	@handle: data for callback functions
633  *
634  *	This function, called by parallel port device drivers,
635  *	declares that a device is connected to a port, and tells the
636  *	system all it needs to know.
637  *
638  *	The @name is allocated by the caller and must not be
639  *	deallocated until the caller calls @parport_unregister_device
640  *	for that device.
641  *
642  *	The preemption callback function, @pf, is called when this
643  *	device driver has claimed access to the port but another
644  *	device driver wants to use it.  It is given @handle as its
645  *	parameter, and should return zero if it is willing for the
646  *	system to release the port to another driver on its behalf.
647  *	If it wants to keep control of the port it should return
648  *	non-zero, and no action will be taken.  It is good manners for
649  *	the driver to try to release the port at the earliest
650  *	opportunity after its preemption callback rejects a preemption
651  *	attempt.  Note that if a preemption callback is happy for
652  *	preemption to go ahead, there is no need to release the port;
653  *	it is done automatically.  This function may not block, as it
654  *	may be called from interrupt context.  If the device driver
655  *	does not support preemption, @pf can be %NULL.
656  *
657  *	The wake-up ("kick") callback function, @kf, is called when
658  *	the port is available to be claimed for exclusive access; that
659  *	is, parport_claim() is guaranteed to succeed when called from
660  *	inside the wake-up callback function.  If the driver wants to
661  *	claim the port it should do so; otherwise, it need not take
662  *	any action.  This function may not block, as it may be called
663  *	from interrupt context.  If the device driver does not want to
664  *	be explicitly invited to claim the port in this way, @kf can
665  *	be %NULL.
666  *
667  *	The interrupt handler, @irq_func, is called when an interrupt
668  *	arrives from the parallel port.  Note that if a device driver
669  *	wants to use interrupts it should use parport_enable_irq(),
670  *	and can also check the irq member of the parport structure
671  *	representing the port.
672  *
673  *	The parallel port (lowlevel) driver is the one that has called
674  *	request_irq() and whose interrupt handler is called first.
675  *	This handler does whatever needs to be done to the hardware to
676  *	acknowledge the interrupt (for PC-style ports there is nothing
677  *	special to be done).  It then tells the IEEE 1284 code about
678  *	the interrupt, which may involve reacting to an IEEE 1284
679  *	event depending on the current IEEE 1284 phase.  After this,
680  *	it calls @irq_func.  Needless to say, @irq_func will be called
681  *	from interrupt context, and may not block.
682  *
683  *	The %PARPORT_DEV_EXCL flag is for preventing port sharing, and
684  *	so should only be used when sharing the port with other device
685  *	drivers is impossible and would lead to incorrect behaviour.
686  *	Use it sparingly!  Normally, @flags will be zero.
687  *
688  *	This function returns a pointer to a structure that represents
689  *	the device on the port, or %NULL if there is not enough memory
690  *	to allocate space for that structure.
691  **/
692 
693 struct pardevice *
694 parport_register_device(struct parport *port, const char *name,
695 			int (*pf)(void *), void (*kf)(void *),
696 			void (*irq_func)(void *),
697 			int flags, void *handle)
698 {
699 	struct pardevice *tmp;
700 
701 	if (port->physport->flags & PARPORT_FLAG_EXCL) {
702 		/* An exclusive device is registered. */
703 		printk(KERN_DEBUG "%s: no more devices allowed\n",
704 			port->name);
705 		return NULL;
706 	}
707 
708 	if (flags & PARPORT_DEV_LURK) {
709 		if (!pf || !kf) {
710 			printk(KERN_INFO "%s: refused to register lurking device (%s) without callbacks\n", port->name, name);
711 			return NULL;
712 		}
713 	}
714 
715 	if (flags & PARPORT_DEV_EXCL) {
716 		if (port->physport->devices) {
717 			/*
718 			 * If a device is already registered and this new
719 			 * device wants exclusive access, then no need to
720 			 * continue as we can not grant exclusive access to
721 			 * this device.
722 			 */
723 			pr_err("%s: cannot grant exclusive access for device %s\n",
724 			       port->name, name);
725 			return NULL;
726 		}
727 	}
728 
729 	/*
730 	 * We up our own module reference count, and that of the port
731 	 * on which a device is to be registered, to ensure that
732 	 * neither of us gets unloaded while we sleep in (e.g.)
733 	 * kmalloc.
734 	 */
735 	if (!try_module_get(port->ops->owner))
736 		return NULL;
737 
738 	parport_get_port(port);
739 
740 	tmp = kmalloc(sizeof(struct pardevice), GFP_KERNEL);
741 	if (!tmp)
742 		goto out;
743 
744 	tmp->state = kmalloc(sizeof(struct parport_state), GFP_KERNEL);
745 	if (!tmp->state)
746 		goto out_free_pardevice;
747 
748 	tmp->name = name;
749 	tmp->port = port;
750 	tmp->daisy = -1;
751 	tmp->preempt = pf;
752 	tmp->wakeup = kf;
753 	tmp->private = handle;
754 	tmp->flags = flags;
755 	tmp->irq_func = irq_func;
756 	tmp->waiting = 0;
757 	tmp->timeout = 5 * HZ;
758 	tmp->devmodel = false;
759 
760 	/* Chain this onto the list */
761 	tmp->prev = NULL;
762 	/*
763 	 * This function must not run from an irq handler so we don' t need
764 	 * to clear irq on the local CPU. -arca
765 	 */
766 	spin_lock(&port->physport->pardevice_lock);
767 
768 	if (flags & PARPORT_DEV_EXCL) {
769 		if (port->physport->devices) {
770 			spin_unlock(&port->physport->pardevice_lock);
771 			printk(KERN_DEBUG
772 				"%s: cannot grant exclusive access for device %s\n",
773 				port->name, name);
774 			goto out_free_all;
775 		}
776 		port->flags |= PARPORT_FLAG_EXCL;
777 	}
778 
779 	tmp->next = port->physport->devices;
780 	wmb(); /*
781 		* Make sure that tmp->next is written before it's
782 		* added to the list; see comments marked 'no locking
783 		* required'
784 		*/
785 	if (port->physport->devices)
786 		port->physport->devices->prev = tmp;
787 	port->physport->devices = tmp;
788 	spin_unlock(&port->physport->pardevice_lock);
789 
790 	init_waitqueue_head(&tmp->wait_q);
791 	tmp->timeslice = parport_default_timeslice;
792 	tmp->waitnext = tmp->waitprev = NULL;
793 
794 	/*
795 	 * This has to be run as last thing since init_state may need other
796 	 * pardevice fields. -arca
797 	 */
798 	port->ops->init_state(tmp, tmp->state);
799 	if (!test_and_set_bit(PARPORT_DEVPROC_REGISTERED, &port->devflags)) {
800 		port->proc_device = tmp;
801 		parport_device_proc_register(tmp);
802 	}
803 	return tmp;
804 
805  out_free_all:
806 	kfree(tmp->state);
807  out_free_pardevice:
808 	kfree(tmp);
809  out:
810 	parport_put_port(port);
811 	module_put(port->ops->owner);
812 
813 	return NULL;
814 }
815 EXPORT_SYMBOL(parport_register_device);
816 
817 static void free_pardevice(struct device *dev)
818 {
819 	struct pardevice *par_dev = to_pardevice(dev);
820 
821 	kfree(par_dev->name);
822 	kfree(par_dev);
823 }
824 
825 struct pardevice *
826 parport_register_dev_model(struct parport *port, const char *name,
827 			   const struct pardev_cb *par_dev_cb, int id)
828 {
829 	struct pardevice *par_dev;
830 	int ret;
831 	char *devname;
832 
833 	if (port->physport->flags & PARPORT_FLAG_EXCL) {
834 		/* An exclusive device is registered. */
835 		pr_err("%s: no more devices allowed\n", port->name);
836 		return NULL;
837 	}
838 
839 	if (par_dev_cb->flags & PARPORT_DEV_LURK) {
840 		if (!par_dev_cb->preempt || !par_dev_cb->wakeup) {
841 			pr_info("%s: refused to register lurking device (%s) without callbacks\n",
842 				port->name, name);
843 			return NULL;
844 		}
845 	}
846 
847 	if (par_dev_cb->flags & PARPORT_DEV_EXCL) {
848 		if (port->physport->devices) {
849 			/*
850 			 * If a device is already registered and this new
851 			 * device wants exclusive access, then no need to
852 			 * continue as we can not grant exclusive access to
853 			 * this device.
854 			 */
855 			pr_err("%s: cannot grant exclusive access for device %s\n",
856 			       port->name, name);
857 			return NULL;
858 		}
859 	}
860 
861 	if (!try_module_get(port->ops->owner))
862 		return NULL;
863 
864 	parport_get_port(port);
865 
866 	par_dev = kzalloc(sizeof(*par_dev), GFP_KERNEL);
867 	if (!par_dev)
868 		goto err_put_port;
869 
870 	par_dev->state = kzalloc(sizeof(*par_dev->state), GFP_KERNEL);
871 	if (!par_dev->state)
872 		goto err_put_par_dev;
873 
874 	devname = kstrdup(name, GFP_KERNEL);
875 	if (!devname)
876 		goto err_free_par_dev;
877 
878 	par_dev->name = devname;
879 	par_dev->port = port;
880 	par_dev->daisy = -1;
881 	par_dev->preempt = par_dev_cb->preempt;
882 	par_dev->wakeup = par_dev_cb->wakeup;
883 	par_dev->private = par_dev_cb->private;
884 	par_dev->flags = par_dev_cb->flags;
885 	par_dev->irq_func = par_dev_cb->irq_func;
886 	par_dev->waiting = 0;
887 	par_dev->timeout = 5 * HZ;
888 
889 	par_dev->dev.parent = &port->bus_dev;
890 	par_dev->dev.bus = &parport_bus_type;
891 	ret = dev_set_name(&par_dev->dev, "%s.%d", devname, id);
892 	if (ret)
893 		goto err_free_devname;
894 	par_dev->dev.release = free_pardevice;
895 	par_dev->devmodel = true;
896 	ret = device_register(&par_dev->dev);
897 	if (ret) {
898 		put_device(&par_dev->dev);
899 		goto err_put_port;
900 	}
901 
902 	/* Chain this onto the list */
903 	par_dev->prev = NULL;
904 	/*
905 	 * This function must not run from an irq handler so we don' t need
906 	 * to clear irq on the local CPU. -arca
907 	 */
908 	spin_lock(&port->physport->pardevice_lock);
909 
910 	if (par_dev_cb->flags & PARPORT_DEV_EXCL) {
911 		if (port->physport->devices) {
912 			spin_unlock(&port->physport->pardevice_lock);
913 			pr_debug("%s: cannot grant exclusive access for device %s\n",
914 				 port->name, name);
915 			device_unregister(&par_dev->dev);
916 			goto err_put_port;
917 		}
918 		port->flags |= PARPORT_FLAG_EXCL;
919 	}
920 
921 	par_dev->next = port->physport->devices;
922 	wmb();	/*
923 		 * Make sure that tmp->next is written before it's
924 		 * added to the list; see comments marked 'no locking
925 		 * required'
926 		 */
927 	if (port->physport->devices)
928 		port->physport->devices->prev = par_dev;
929 	port->physport->devices = par_dev;
930 	spin_unlock(&port->physport->pardevice_lock);
931 
932 	init_waitqueue_head(&par_dev->wait_q);
933 	par_dev->timeslice = parport_default_timeslice;
934 	par_dev->waitnext = NULL;
935 	par_dev->waitprev = NULL;
936 
937 	/*
938 	 * This has to be run as last thing since init_state may need other
939 	 * pardevice fields. -arca
940 	 */
941 	port->ops->init_state(par_dev, par_dev->state);
942 	port->proc_device = par_dev;
943 	parport_device_proc_register(par_dev);
944 
945 	return par_dev;
946 
947 err_free_devname:
948 	kfree(devname);
949 err_free_par_dev:
950 	kfree(par_dev->state);
951 err_put_par_dev:
952 	if (!par_dev->devmodel)
953 		kfree(par_dev);
954 err_put_port:
955 	parport_put_port(port);
956 	module_put(port->ops->owner);
957 
958 	return NULL;
959 }
960 EXPORT_SYMBOL(parport_register_dev_model);
961 
962 /**
963  *	parport_unregister_device - deregister a device on a parallel port
964  *	@dev: pointer to structure representing device
965  *
966  *	This undoes the effect of parport_register_device().
967  **/
968 
969 void parport_unregister_device(struct pardevice *dev)
970 {
971 	struct parport *port;
972 
973 #ifdef PARPORT_PARANOID
974 	if (!dev) {
975 		printk(KERN_ERR "parport_unregister_device: passed NULL\n");
976 		return;
977 	}
978 #endif
979 
980 	port = dev->port->physport;
981 
982 	if (port->proc_device == dev) {
983 		port->proc_device = NULL;
984 		clear_bit(PARPORT_DEVPROC_REGISTERED, &port->devflags);
985 		parport_device_proc_unregister(dev);
986 	}
987 
988 	if (port->cad == dev) {
989 		printk(KERN_DEBUG "%s: %s forgot to release port\n",
990 		       port->name, dev->name);
991 		parport_release(dev);
992 	}
993 
994 	spin_lock(&port->pardevice_lock);
995 	if (dev->next)
996 		dev->next->prev = dev->prev;
997 	if (dev->prev)
998 		dev->prev->next = dev->next;
999 	else
1000 		port->devices = dev->next;
1001 
1002 	if (dev->flags & PARPORT_DEV_EXCL)
1003 		port->flags &= ~PARPORT_FLAG_EXCL;
1004 
1005 	spin_unlock(&port->pardevice_lock);
1006 
1007 	/*
1008 	 * Make sure we haven't left any pointers around in the wait
1009 	 * list.
1010 	 */
1011 	spin_lock_irq(&port->waitlist_lock);
1012 	if (dev->waitprev || dev->waitnext || port->waithead == dev) {
1013 		if (dev->waitprev)
1014 			dev->waitprev->waitnext = dev->waitnext;
1015 		else
1016 			port->waithead = dev->waitnext;
1017 		if (dev->waitnext)
1018 			dev->waitnext->waitprev = dev->waitprev;
1019 		else
1020 			port->waittail = dev->waitprev;
1021 	}
1022 	spin_unlock_irq(&port->waitlist_lock);
1023 
1024 	kfree(dev->state);
1025 	if (dev->devmodel)
1026 		device_unregister(&dev->dev);
1027 	else
1028 		kfree(dev);
1029 
1030 	module_put(port->ops->owner);
1031 	parport_put_port(port);
1032 }
1033 EXPORT_SYMBOL(parport_unregister_device);
1034 
1035 /**
1036  *	parport_find_number - find a parallel port by number
1037  *	@number: parallel port number
1038  *
1039  *	This returns the parallel port with the specified number, or
1040  *	%NULL if there is none.
1041  *
1042  *	There is an implicit parport_get_port() done already; to throw
1043  *	away the reference to the port that parport_find_number()
1044  *	gives you, use parport_put_port().
1045  */
1046 
1047 struct parport *parport_find_number(int number)
1048 {
1049 	struct parport *port, *result = NULL;
1050 
1051 	if (list_empty(&portlist))
1052 		get_lowlevel_driver();
1053 
1054 	spin_lock(&parportlist_lock);
1055 	list_for_each_entry(port, &portlist, list) {
1056 		if (port->number == number) {
1057 			result = parport_get_port(port);
1058 			break;
1059 		}
1060 	}
1061 	spin_unlock(&parportlist_lock);
1062 	return result;
1063 }
1064 EXPORT_SYMBOL(parport_find_number);
1065 
1066 /**
1067  *	parport_find_base - find a parallel port by base address
1068  *	@base: base I/O address
1069  *
1070  *	This returns the parallel port with the specified base
1071  *	address, or %NULL if there is none.
1072  *
1073  *	There is an implicit parport_get_port() done already; to throw
1074  *	away the reference to the port that parport_find_base()
1075  *	gives you, use parport_put_port().
1076  */
1077 
1078 struct parport *parport_find_base(unsigned long base)
1079 {
1080 	struct parport *port, *result = NULL;
1081 
1082 	if (list_empty(&portlist))
1083 		get_lowlevel_driver();
1084 
1085 	spin_lock(&parportlist_lock);
1086 	list_for_each_entry(port, &portlist, list) {
1087 		if (port->base == base) {
1088 			result = parport_get_port(port);
1089 			break;
1090 		}
1091 	}
1092 	spin_unlock(&parportlist_lock);
1093 	return result;
1094 }
1095 EXPORT_SYMBOL(parport_find_base);
1096 
1097 /**
1098  *	parport_claim - claim access to a parallel port device
1099  *	@dev: pointer to structure representing a device on the port
1100  *
1101  *	This function will not block and so can be used from interrupt
1102  *	context.  If parport_claim() succeeds in claiming access to
1103  *	the port it returns zero and the port is available to use.  It
1104  *	may fail (returning non-zero) if the port is in use by another
1105  *	driver and that driver is not willing to relinquish control of
1106  *	the port.
1107  **/
1108 
1109 int parport_claim(struct pardevice *dev)
1110 {
1111 	struct pardevice *oldcad;
1112 	struct parport *port = dev->port->physport;
1113 	unsigned long flags;
1114 
1115 	if (port->cad == dev) {
1116 		printk(KERN_INFO "%s: %s already owner\n",
1117 		       dev->port->name,dev->name);
1118 		return 0;
1119 	}
1120 
1121 	/* Preempt any current device */
1122 	write_lock_irqsave(&port->cad_lock, flags);
1123 	oldcad = port->cad;
1124 	if (oldcad) {
1125 		if (oldcad->preempt) {
1126 			if (oldcad->preempt(oldcad->private))
1127 				goto blocked;
1128 			port->ops->save_state(port, dev->state);
1129 		} else
1130 			goto blocked;
1131 
1132 		if (port->cad != oldcad) {
1133 			/*
1134 			 * I think we'll actually deadlock rather than
1135 			 * get here, but just in case..
1136 			 */
1137 			printk(KERN_WARNING
1138 			       "%s: %s released port when preempted!\n",
1139 			       port->name, oldcad->name);
1140 			if (port->cad)
1141 				goto blocked;
1142 		}
1143 	}
1144 
1145 	/* Can't fail from now on, so mark ourselves as no longer waiting.  */
1146 	if (dev->waiting & 1) {
1147 		dev->waiting = 0;
1148 
1149 		/* Take ourselves out of the wait list again.  */
1150 		spin_lock_irq(&port->waitlist_lock);
1151 		if (dev->waitprev)
1152 			dev->waitprev->waitnext = dev->waitnext;
1153 		else
1154 			port->waithead = dev->waitnext;
1155 		if (dev->waitnext)
1156 			dev->waitnext->waitprev = dev->waitprev;
1157 		else
1158 			port->waittail = dev->waitprev;
1159 		spin_unlock_irq(&port->waitlist_lock);
1160 		dev->waitprev = dev->waitnext = NULL;
1161 	}
1162 
1163 	/* Now we do the change of devices */
1164 	port->cad = dev;
1165 
1166 #ifdef CONFIG_PARPORT_1284
1167 	/* If it's a mux port, select it. */
1168 	if (dev->port->muxport >= 0) {
1169 		/* FIXME */
1170 		port->muxsel = dev->port->muxport;
1171 	}
1172 
1173 	/* If it's a daisy chain device, select it. */
1174 	if (dev->daisy >= 0) {
1175 		/* This could be lazier. */
1176 		if (!parport_daisy_select(port, dev->daisy,
1177 					   IEEE1284_MODE_COMPAT))
1178 			port->daisy = dev->daisy;
1179 	}
1180 #endif /* IEEE1284.3 support */
1181 
1182 	/* Restore control registers */
1183 	port->ops->restore_state(port, dev->state);
1184 	write_unlock_irqrestore(&port->cad_lock, flags);
1185 	dev->time = jiffies;
1186 	return 0;
1187 
1188 blocked:
1189 	/*
1190 	 * If this is the first time we tried to claim the port, register an
1191 	 * interest.  This is only allowed for devices sleeping in
1192 	 * parport_claim_or_block(), or those with a wakeup function.
1193 	 */
1194 
1195 	/* The cad_lock is still held for writing here */
1196 	if (dev->waiting & 2 || dev->wakeup) {
1197 		spin_lock(&port->waitlist_lock);
1198 		if (test_and_set_bit(0, &dev->waiting) == 0) {
1199 			/* First add ourselves to the end of the wait list. */
1200 			dev->waitnext = NULL;
1201 			dev->waitprev = port->waittail;
1202 			if (port->waittail) {
1203 				port->waittail->waitnext = dev;
1204 				port->waittail = dev;
1205 			} else
1206 				port->waithead = port->waittail = dev;
1207 		}
1208 		spin_unlock(&port->waitlist_lock);
1209 	}
1210 	write_unlock_irqrestore(&port->cad_lock, flags);
1211 	return -EAGAIN;
1212 }
1213 EXPORT_SYMBOL(parport_claim);
1214 
1215 /**
1216  *	parport_claim_or_block - claim access to a parallel port device
1217  *	@dev: pointer to structure representing a device on the port
1218  *
1219  *	This behaves like parport_claim(), but will block if necessary
1220  *	to wait for the port to be free.  A return value of 1
1221  *	indicates that it slept; 0 means that it succeeded without
1222  *	needing to sleep.  A negative error code indicates failure.
1223  **/
1224 
1225 int parport_claim_or_block(struct pardevice *dev)
1226 {
1227 	int r;
1228 
1229 	/*
1230 	 * Signal to parport_claim() that we can wait even without a
1231 	 * wakeup function.
1232 	 */
1233 	dev->waiting = 2;
1234 
1235 	/* Try to claim the port.  If this fails, we need to sleep.  */
1236 	r = parport_claim(dev);
1237 	if (r == -EAGAIN) {
1238 #ifdef PARPORT_DEBUG_SHARING
1239 		printk(KERN_DEBUG "%s: parport_claim() returned -EAGAIN\n", dev->name);
1240 #endif
1241 		/*
1242 		 * FIXME!!! Use the proper locking for dev->waiting,
1243 		 * and make this use the "wait_event_interruptible()"
1244 		 * interfaces. The cli/sti that used to be here
1245 		 * did nothing.
1246 		 *
1247 		 * See also parport_release()
1248 		 */
1249 
1250 		/*
1251 		 * If dev->waiting is clear now, an interrupt
1252 		 * gave us the port and we would deadlock if we slept.
1253 		 */
1254 		if (dev->waiting) {
1255 			wait_event_interruptible(dev->wait_q,
1256 						 !dev->waiting);
1257 			if (signal_pending(current))
1258 				return -EINTR;
1259 			r = 1;
1260 		} else {
1261 			r = 0;
1262 #ifdef PARPORT_DEBUG_SHARING
1263 			printk(KERN_DEBUG "%s: didn't sleep in parport_claim_or_block()\n",
1264 			       dev->name);
1265 #endif
1266 		}
1267 
1268 #ifdef PARPORT_DEBUG_SHARING
1269 		if (dev->port->physport->cad != dev)
1270 			printk(KERN_DEBUG "%s: exiting parport_claim_or_block but %s owns port!\n",
1271 			       dev->name, dev->port->physport->cad ?
1272 			       dev->port->physport->cad->name:"nobody");
1273 #endif
1274 	}
1275 	dev->waiting = 0;
1276 	return r;
1277 }
1278 EXPORT_SYMBOL(parport_claim_or_block);
1279 
1280 /**
1281  *	parport_release - give up access to a parallel port device
1282  *	@dev: pointer to structure representing parallel port device
1283  *
1284  *	This function cannot fail, but it should not be called without
1285  *	the port claimed.  Similarly, if the port is already claimed
1286  *	you should not try claiming it again.
1287  **/
1288 
1289 void parport_release(struct pardevice *dev)
1290 {
1291 	struct parport *port = dev->port->physport;
1292 	struct pardevice *pd;
1293 	unsigned long flags;
1294 
1295 	/* Make sure that dev is the current device */
1296 	write_lock_irqsave(&port->cad_lock, flags);
1297 	if (port->cad != dev) {
1298 		write_unlock_irqrestore(&port->cad_lock, flags);
1299 		printk(KERN_WARNING "%s: %s tried to release parport when not owner\n",
1300 		       port->name, dev->name);
1301 		return;
1302 	}
1303 
1304 #ifdef CONFIG_PARPORT_1284
1305 	/* If this is on a mux port, deselect it. */
1306 	if (dev->port->muxport >= 0) {
1307 		/* FIXME */
1308 		port->muxsel = -1;
1309 	}
1310 
1311 	/* If this is a daisy device, deselect it. */
1312 	if (dev->daisy >= 0) {
1313 		parport_daisy_deselect_all(port);
1314 		port->daisy = -1;
1315 	}
1316 #endif
1317 
1318 	port->cad = NULL;
1319 	write_unlock_irqrestore(&port->cad_lock, flags);
1320 
1321 	/* Save control registers */
1322 	port->ops->save_state(port, dev->state);
1323 
1324 	/*
1325 	 * If anybody is waiting, find out who's been there longest and
1326 	 * then wake them up. (Note: no locking required)
1327 	 */
1328 	/* !!! LOCKING IS NEEDED HERE */
1329 	for (pd = port->waithead; pd; pd = pd->waitnext) {
1330 		if (pd->waiting & 2) { /* sleeping in claim_or_block */
1331 			parport_claim(pd);
1332 			if (waitqueue_active(&pd->wait_q))
1333 				wake_up_interruptible(&pd->wait_q);
1334 			return;
1335 		} else if (pd->wakeup) {
1336 			pd->wakeup(pd->private);
1337 			if (dev->port->cad) /* racy but no matter */
1338 				return;
1339 		} else {
1340 			printk(KERN_ERR "%s: don't know how to wake %s\n", port->name, pd->name);
1341 		}
1342 	}
1343 
1344 	/*
1345 	 * Nobody was waiting, so walk the list to see if anyone is
1346 	 * interested in being woken up. (Note: no locking required)
1347 	 */
1348 	/* !!! LOCKING IS NEEDED HERE */
1349 	for (pd = port->devices; !port->cad && pd; pd = pd->next) {
1350 		if (pd->wakeup && pd != dev)
1351 			pd->wakeup(pd->private);
1352 	}
1353 }
1354 EXPORT_SYMBOL(parport_release);
1355 
1356 irqreturn_t parport_irq_handler(int irq, void *dev_id)
1357 {
1358 	struct parport *port = dev_id;
1359 
1360 	parport_generic_irq(port);
1361 
1362 	return IRQ_HANDLED;
1363 }
1364 EXPORT_SYMBOL(parport_irq_handler);
1365 
1366 MODULE_LICENSE("GPL");
1367