1 /* Low-level parallel port routines for built-in port on SGI IP32 2 * 3 * Author: Arnaud Giersch <arnaud.giersch@free.fr> 4 * 5 * Based on parport_pc.c by 6 * Phil Blundell, Tim Waugh, Jose Renau, David Campbell, 7 * Andrea Arcangeli, et al. 8 * 9 * Thanks to Ilya A. Volynets-Evenbakh for his help. 10 * 11 * Copyright (C) 2005, 2006 Arnaud Giersch. 12 * 13 * This program is free software; you can redistribute it and/or modify it 14 * under the terms of the GNU General Public License as published by the Free 15 * Software Foundation; either version 2 of the License, or (at your option) 16 * any later version. 17 * 18 * This program is distributed in the hope that it will be useful, but WITHOUT 19 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 20 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 21 * more details. 22 * 23 * You should have received a copy of the GNU General Public License along 24 * with this program; if not, write to the Free Software Foundation, Inc., 59 25 * Temple Place - Suite 330, Boston, MA 02111-1307, USA. 26 */ 27 28 /* Current status: 29 * 30 * Basic SPP and PS2 modes are supported. 31 * Support for parallel port IRQ is present. 32 * Hardware SPP (a.k.a. compatibility), EPP, and ECP modes are 33 * supported. 34 * SPP/ECP FIFO can be driven in PIO or DMA mode. PIO mode can work with 35 * or without interrupt support. 36 * 37 * Hardware ECP mode is not fully implemented (ecp_read_data and 38 * ecp_write_addr are actually missing). 39 * 40 * To do: 41 * 42 * Fully implement ECP mode. 43 * EPP and ECP mode need to be tested. I currently do not own any 44 * peripheral supporting these extended mode, and cannot test them. 45 * If DMA mode works well, decide if support for PIO FIFO modes should be 46 * dropped. 47 * Use the io{read,write} family functions when they become available in 48 * the linux-mips.org tree. Note: the MIPS specific functions readsb() 49 * and writesb() are to be translated by ioread8_rep() and iowrite8_rep() 50 * respectively. 51 */ 52 53 /* The built-in parallel port on the SGI 02 workstation (a.k.a. IP32) is an 54 * IEEE 1284 parallel port driven by a Texas Instrument TL16PIR552PH chip[1]. 55 * This chip supports SPP, bidirectional, EPP and ECP modes. It has a 16 byte 56 * FIFO buffer and supports DMA transfers. 57 * 58 * [1] http://focus.ti.com/docs/prod/folders/print/tl16pir552.html 59 * 60 * Theoretically, we could simply use the parport_pc module. It is however 61 * not so simple. The parport_pc code assumes that the parallel port 62 * registers are port-mapped. On the O2, they are memory-mapped. 63 * Furthermore, each register is replicated on 256 consecutive addresses (as 64 * it is for the built-in serial ports on the same chip). 65 */ 66 67 /*--- Some configuration defines ---------------------------------------*/ 68 69 /* DEBUG_PARPORT_IP32 70 * 0 disable debug 71 * 1 standard level: pr_debug1 is enabled 72 * 2 parport_ip32_dump_state is enabled 73 * >=3 verbose level: pr_debug is enabled 74 */ 75 #if !defined(DEBUG_PARPORT_IP32) 76 # define DEBUG_PARPORT_IP32 0 /* 0 (disabled) for production */ 77 #endif 78 79 /*----------------------------------------------------------------------*/ 80 81 /* Setup DEBUG macros. This is done before any includes, just in case we 82 * activate pr_debug() with DEBUG_PARPORT_IP32 >= 3. 83 */ 84 #if DEBUG_PARPORT_IP32 == 1 85 # warning DEBUG_PARPORT_IP32 == 1 86 #elif DEBUG_PARPORT_IP32 == 2 87 # warning DEBUG_PARPORT_IP32 == 2 88 #elif DEBUG_PARPORT_IP32 >= 3 89 # warning DEBUG_PARPORT_IP32 >= 3 90 # if !defined(DEBUG) 91 # define DEBUG /* enable pr_debug() in kernel.h */ 92 # endif 93 #endif 94 95 #include <linux/completion.h> 96 #include <linux/delay.h> 97 #include <linux/dma-mapping.h> 98 #include <linux/err.h> 99 #include <linux/init.h> 100 #include <linux/interrupt.h> 101 #include <linux/jiffies.h> 102 #include <linux/kernel.h> 103 #include <linux/module.h> 104 #include <linux/parport.h> 105 #include <linux/sched.h> 106 #include <linux/slab.h> 107 #include <linux/spinlock.h> 108 #include <linux/stddef.h> 109 #include <linux/types.h> 110 #include <asm/io.h> 111 #include <asm/ip32/ip32_ints.h> 112 #include <asm/ip32/mace.h> 113 114 /*--- Global variables -------------------------------------------------*/ 115 116 /* Verbose probing on by default for debugging. */ 117 #if DEBUG_PARPORT_IP32 >= 1 118 # define DEFAULT_VERBOSE_PROBING 1 119 #else 120 # define DEFAULT_VERBOSE_PROBING 0 121 #endif 122 123 /* Default prefix for printk */ 124 #define PPIP32 "parport_ip32: " 125 126 /* 127 * These are the module parameters: 128 * @features: bit mask of features to enable/disable 129 * (all enabled by default) 130 * @verbose_probing: log chit-chat during initialization 131 */ 132 #define PARPORT_IP32_ENABLE_IRQ (1U << 0) 133 #define PARPORT_IP32_ENABLE_DMA (1U << 1) 134 #define PARPORT_IP32_ENABLE_SPP (1U << 2) 135 #define PARPORT_IP32_ENABLE_EPP (1U << 3) 136 #define PARPORT_IP32_ENABLE_ECP (1U << 4) 137 static unsigned int features = ~0U; 138 static bool verbose_probing = DEFAULT_VERBOSE_PROBING; 139 140 /* We do not support more than one port. */ 141 static struct parport *this_port = NULL; 142 143 /* Timing constants for FIFO modes. */ 144 #define FIFO_NFAULT_TIMEOUT 100 /* milliseconds */ 145 #define FIFO_POLLING_INTERVAL 50 /* microseconds */ 146 147 /*--- I/O register definitions -----------------------------------------*/ 148 149 /** 150 * struct parport_ip32_regs - virtual addresses of parallel port registers 151 * @data: Data Register 152 * @dsr: Device Status Register 153 * @dcr: Device Control Register 154 * @eppAddr: EPP Address Register 155 * @eppData0: EPP Data Register 0 156 * @eppData1: EPP Data Register 1 157 * @eppData2: EPP Data Register 2 158 * @eppData3: EPP Data Register 3 159 * @ecpAFifo: ECP Address FIFO 160 * @fifo: General FIFO register. The same address is used for: 161 * - cFifo, the Parallel Port DATA FIFO 162 * - ecpDFifo, the ECP Data FIFO 163 * - tFifo, the ECP Test FIFO 164 * @cnfgA: Configuration Register A 165 * @cnfgB: Configuration Register B 166 * @ecr: Extended Control Register 167 */ 168 struct parport_ip32_regs { 169 void __iomem *data; 170 void __iomem *dsr; 171 void __iomem *dcr; 172 void __iomem *eppAddr; 173 void __iomem *eppData0; 174 void __iomem *eppData1; 175 void __iomem *eppData2; 176 void __iomem *eppData3; 177 void __iomem *ecpAFifo; 178 void __iomem *fifo; 179 void __iomem *cnfgA; 180 void __iomem *cnfgB; 181 void __iomem *ecr; 182 }; 183 184 /* Device Status Register */ 185 #define DSR_nBUSY (1U << 7) /* PARPORT_STATUS_BUSY */ 186 #define DSR_nACK (1U << 6) /* PARPORT_STATUS_ACK */ 187 #define DSR_PERROR (1U << 5) /* PARPORT_STATUS_PAPEROUT */ 188 #define DSR_SELECT (1U << 4) /* PARPORT_STATUS_SELECT */ 189 #define DSR_nFAULT (1U << 3) /* PARPORT_STATUS_ERROR */ 190 #define DSR_nPRINT (1U << 2) /* specific to TL16PIR552 */ 191 /* #define DSR_reserved (1U << 1) */ 192 #define DSR_TIMEOUT (1U << 0) /* EPP timeout */ 193 194 /* Device Control Register */ 195 /* #define DCR_reserved (1U << 7) | (1U << 6) */ 196 #define DCR_DIR (1U << 5) /* direction */ 197 #define DCR_IRQ (1U << 4) /* interrupt on nAck */ 198 #define DCR_SELECT (1U << 3) /* PARPORT_CONTROL_SELECT */ 199 #define DCR_nINIT (1U << 2) /* PARPORT_CONTROL_INIT */ 200 #define DCR_AUTOFD (1U << 1) /* PARPORT_CONTROL_AUTOFD */ 201 #define DCR_STROBE (1U << 0) /* PARPORT_CONTROL_STROBE */ 202 203 /* ECP Configuration Register A */ 204 #define CNFGA_IRQ (1U << 7) 205 #define CNFGA_ID_MASK ((1U << 6) | (1U << 5) | (1U << 4)) 206 #define CNFGA_ID_SHIFT 4 207 #define CNFGA_ID_16 (00U << CNFGA_ID_SHIFT) 208 #define CNFGA_ID_8 (01U << CNFGA_ID_SHIFT) 209 #define CNFGA_ID_32 (02U << CNFGA_ID_SHIFT) 210 /* #define CNFGA_reserved (1U << 3) */ 211 #define CNFGA_nBYTEINTRANS (1U << 2) 212 #define CNFGA_PWORDLEFT ((1U << 1) | (1U << 0)) 213 214 /* ECP Configuration Register B */ 215 #define CNFGB_COMPRESS (1U << 7) 216 #define CNFGB_INTRVAL (1U << 6) 217 #define CNFGB_IRQ_MASK ((1U << 5) | (1U << 4) | (1U << 3)) 218 #define CNFGB_IRQ_SHIFT 3 219 #define CNFGB_DMA_MASK ((1U << 2) | (1U << 1) | (1U << 0)) 220 #define CNFGB_DMA_SHIFT 0 221 222 /* Extended Control Register */ 223 #define ECR_MODE_MASK ((1U << 7) | (1U << 6) | (1U << 5)) 224 #define ECR_MODE_SHIFT 5 225 #define ECR_MODE_SPP (00U << ECR_MODE_SHIFT) 226 #define ECR_MODE_PS2 (01U << ECR_MODE_SHIFT) 227 #define ECR_MODE_PPF (02U << ECR_MODE_SHIFT) 228 #define ECR_MODE_ECP (03U << ECR_MODE_SHIFT) 229 #define ECR_MODE_EPP (04U << ECR_MODE_SHIFT) 230 /* #define ECR_MODE_reserved (05U << ECR_MODE_SHIFT) */ 231 #define ECR_MODE_TST (06U << ECR_MODE_SHIFT) 232 #define ECR_MODE_CFG (07U << ECR_MODE_SHIFT) 233 #define ECR_nERRINTR (1U << 4) 234 #define ECR_DMAEN (1U << 3) 235 #define ECR_SERVINTR (1U << 2) 236 #define ECR_F_FULL (1U << 1) 237 #define ECR_F_EMPTY (1U << 0) 238 239 /*--- Private data -----------------------------------------------------*/ 240 241 /** 242 * enum parport_ip32_irq_mode - operation mode of interrupt handler 243 * @PARPORT_IP32_IRQ_FWD: forward interrupt to the upper parport layer 244 * @PARPORT_IP32_IRQ_HERE: interrupt is handled locally 245 */ 246 enum parport_ip32_irq_mode { PARPORT_IP32_IRQ_FWD, PARPORT_IP32_IRQ_HERE }; 247 248 /** 249 * struct parport_ip32_private - private stuff for &struct parport 250 * @regs: register addresses 251 * @dcr_cache: cached contents of DCR 252 * @dcr_writable: bit mask of writable DCR bits 253 * @pword: number of bytes per PWord 254 * @fifo_depth: number of PWords that FIFO will hold 255 * @readIntrThreshold: minimum number of PWords we can read 256 * if we get an interrupt 257 * @writeIntrThreshold: minimum number of PWords we can write 258 * if we get an interrupt 259 * @irq_mode: operation mode of interrupt handler for this port 260 * @irq_complete: mutex used to wait for an interrupt to occur 261 */ 262 struct parport_ip32_private { 263 struct parport_ip32_regs regs; 264 unsigned int dcr_cache; 265 unsigned int dcr_writable; 266 unsigned int pword; 267 unsigned int fifo_depth; 268 unsigned int readIntrThreshold; 269 unsigned int writeIntrThreshold; 270 enum parport_ip32_irq_mode irq_mode; 271 struct completion irq_complete; 272 }; 273 274 /*--- Debug code -------------------------------------------------------*/ 275 276 /* 277 * pr_debug1 - print debug messages 278 * 279 * This is like pr_debug(), but is defined for %DEBUG_PARPORT_IP32 >= 1 280 */ 281 #if DEBUG_PARPORT_IP32 >= 1 282 # define pr_debug1(...) printk(KERN_DEBUG __VA_ARGS__) 283 #else /* DEBUG_PARPORT_IP32 < 1 */ 284 # define pr_debug1(...) do { } while (0) 285 #endif 286 287 /* 288 * pr_trace, pr_trace1 - trace function calls 289 * @p: pointer to &struct parport 290 * @fmt: printk format string 291 * @...: parameters for format string 292 * 293 * Macros used to trace function calls. The given string is formatted after 294 * function name. pr_trace() uses pr_debug(), and pr_trace1() uses 295 * pr_debug1(). __pr_trace() is the low-level macro and is not to be used 296 * directly. 297 */ 298 #define __pr_trace(pr, p, fmt, ...) \ 299 pr("%s: %s" fmt "\n", \ 300 ({ const struct parport *__p = (p); \ 301 __p ? __p->name : "parport_ip32"; }), \ 302 __func__ , ##__VA_ARGS__) 303 #define pr_trace(p, fmt, ...) __pr_trace(pr_debug, p, fmt , ##__VA_ARGS__) 304 #define pr_trace1(p, fmt, ...) __pr_trace(pr_debug1, p, fmt , ##__VA_ARGS__) 305 306 /* 307 * __pr_probe, pr_probe - print message if @verbose_probing is true 308 * @p: pointer to &struct parport 309 * @fmt: printk format string 310 * @...: parameters for format string 311 * 312 * For new lines, use pr_probe(). Use __pr_probe() for continued lines. 313 */ 314 #define __pr_probe(...) \ 315 do { if (verbose_probing) printk(__VA_ARGS__); } while (0) 316 #define pr_probe(p, fmt, ...) \ 317 __pr_probe(KERN_INFO PPIP32 "0x%lx: " fmt, (p)->base , ##__VA_ARGS__) 318 319 /* 320 * parport_ip32_dump_state - print register status of parport 321 * @p: pointer to &struct parport 322 * @str: string to add in message 323 * @show_ecp_config: shall we dump ECP configuration registers too? 324 * 325 * This function is only here for debugging purpose, and should be used with 326 * care. Reading the parallel port registers may have undesired side effects. 327 * Especially if @show_ecp_config is true, the parallel port is resetted. 328 * This function is only defined if %DEBUG_PARPORT_IP32 >= 2. 329 */ 330 #if DEBUG_PARPORT_IP32 >= 2 331 static void parport_ip32_dump_state(struct parport *p, char *str, 332 unsigned int show_ecp_config) 333 { 334 struct parport_ip32_private * const priv = p->physport->private_data; 335 unsigned int i; 336 337 printk(KERN_DEBUG PPIP32 "%s: state (%s):\n", p->name, str); 338 { 339 static const char ecr_modes[8][4] = {"SPP", "PS2", "PPF", 340 "ECP", "EPP", "???", 341 "TST", "CFG"}; 342 unsigned int ecr = readb(priv->regs.ecr); 343 printk(KERN_DEBUG PPIP32 " ecr=0x%02x", ecr); 344 printk(" %s", 345 ecr_modes[(ecr & ECR_MODE_MASK) >> ECR_MODE_SHIFT]); 346 if (ecr & ECR_nERRINTR) 347 printk(",nErrIntrEn"); 348 if (ecr & ECR_DMAEN) 349 printk(",dmaEn"); 350 if (ecr & ECR_SERVINTR) 351 printk(",serviceIntr"); 352 if (ecr & ECR_F_FULL) 353 printk(",f_full"); 354 if (ecr & ECR_F_EMPTY) 355 printk(",f_empty"); 356 printk("\n"); 357 } 358 if (show_ecp_config) { 359 unsigned int oecr, cnfgA, cnfgB; 360 oecr = readb(priv->regs.ecr); 361 writeb(ECR_MODE_PS2, priv->regs.ecr); 362 writeb(ECR_MODE_CFG, priv->regs.ecr); 363 cnfgA = readb(priv->regs.cnfgA); 364 cnfgB = readb(priv->regs.cnfgB); 365 writeb(ECR_MODE_PS2, priv->regs.ecr); 366 writeb(oecr, priv->regs.ecr); 367 printk(KERN_DEBUG PPIP32 " cnfgA=0x%02x", cnfgA); 368 printk(" ISA-%s", (cnfgA & CNFGA_IRQ) ? "Level" : "Pulses"); 369 switch (cnfgA & CNFGA_ID_MASK) { 370 case CNFGA_ID_8: 371 printk(",8 bits"); 372 break; 373 case CNFGA_ID_16: 374 printk(",16 bits"); 375 break; 376 case CNFGA_ID_32: 377 printk(",32 bits"); 378 break; 379 default: 380 printk(",unknown ID"); 381 break; 382 } 383 if (!(cnfgA & CNFGA_nBYTEINTRANS)) 384 printk(",ByteInTrans"); 385 if ((cnfgA & CNFGA_ID_MASK) != CNFGA_ID_8) 386 printk(",%d byte%s left", cnfgA & CNFGA_PWORDLEFT, 387 ((cnfgA & CNFGA_PWORDLEFT) > 1) ? "s" : ""); 388 printk("\n"); 389 printk(KERN_DEBUG PPIP32 " cnfgB=0x%02x", cnfgB); 390 printk(" irq=%u,dma=%u", 391 (cnfgB & CNFGB_IRQ_MASK) >> CNFGB_IRQ_SHIFT, 392 (cnfgB & CNFGB_DMA_MASK) >> CNFGB_DMA_SHIFT); 393 printk(",intrValue=%d", !!(cnfgB & CNFGB_INTRVAL)); 394 if (cnfgB & CNFGB_COMPRESS) 395 printk(",compress"); 396 printk("\n"); 397 } 398 for (i = 0; i < 2; i++) { 399 unsigned int dcr = i ? priv->dcr_cache : readb(priv->regs.dcr); 400 printk(KERN_DEBUG PPIP32 " dcr(%s)=0x%02x", 401 i ? "soft" : "hard", dcr); 402 printk(" %s", (dcr & DCR_DIR) ? "rev" : "fwd"); 403 if (dcr & DCR_IRQ) 404 printk(",ackIntEn"); 405 if (!(dcr & DCR_SELECT)) 406 printk(",nSelectIn"); 407 if (dcr & DCR_nINIT) 408 printk(",nInit"); 409 if (!(dcr & DCR_AUTOFD)) 410 printk(",nAutoFD"); 411 if (!(dcr & DCR_STROBE)) 412 printk(",nStrobe"); 413 printk("\n"); 414 } 415 #define sep (f++ ? ',' : ' ') 416 { 417 unsigned int f = 0; 418 unsigned int dsr = readb(priv->regs.dsr); 419 printk(KERN_DEBUG PPIP32 " dsr=0x%02x", dsr); 420 if (!(dsr & DSR_nBUSY)) 421 printk("%cBusy", sep); 422 if (dsr & DSR_nACK) 423 printk("%cnAck", sep); 424 if (dsr & DSR_PERROR) 425 printk("%cPError", sep); 426 if (dsr & DSR_SELECT) 427 printk("%cSelect", sep); 428 if (dsr & DSR_nFAULT) 429 printk("%cnFault", sep); 430 if (!(dsr & DSR_nPRINT)) 431 printk("%c(Print)", sep); 432 if (dsr & DSR_TIMEOUT) 433 printk("%cTimeout", sep); 434 printk("\n"); 435 } 436 #undef sep 437 } 438 #else /* DEBUG_PARPORT_IP32 < 2 */ 439 #define parport_ip32_dump_state(...) do { } while (0) 440 #endif 441 442 /* 443 * CHECK_EXTRA_BITS - track and log extra bits 444 * @p: pointer to &struct parport 445 * @b: byte to inspect 446 * @m: bit mask of authorized bits 447 * 448 * This is used to track and log extra bits that should not be there in 449 * parport_ip32_write_control() and parport_ip32_frob_control(). It is only 450 * defined if %DEBUG_PARPORT_IP32 >= 1. 451 */ 452 #if DEBUG_PARPORT_IP32 >= 1 453 #define CHECK_EXTRA_BITS(p, b, m) \ 454 do { \ 455 unsigned int __b = (b), __m = (m); \ 456 if (__b & ~__m) \ 457 pr_debug1(PPIP32 "%s: extra bits in %s(%s): " \ 458 "0x%02x/0x%02x\n", \ 459 (p)->name, __func__, #b, __b, __m); \ 460 } while (0) 461 #else /* DEBUG_PARPORT_IP32 < 1 */ 462 #define CHECK_EXTRA_BITS(...) do { } while (0) 463 #endif 464 465 /*--- IP32 parallel port DMA operations --------------------------------*/ 466 467 /** 468 * struct parport_ip32_dma_data - private data needed for DMA operation 469 * @dir: DMA direction (from or to device) 470 * @buf: buffer physical address 471 * @len: buffer length 472 * @next: address of next bytes to DMA transfer 473 * @left: number of bytes remaining 474 * @ctx: next context to write (0: context_a; 1: context_b) 475 * @irq_on: are the DMA IRQs currently enabled? 476 * @lock: spinlock to protect access to the structure 477 */ 478 struct parport_ip32_dma_data { 479 enum dma_data_direction dir; 480 dma_addr_t buf; 481 dma_addr_t next; 482 size_t len; 483 size_t left; 484 unsigned int ctx; 485 unsigned int irq_on; 486 spinlock_t lock; 487 }; 488 static struct parport_ip32_dma_data parport_ip32_dma; 489 490 /** 491 * parport_ip32_dma_setup_context - setup next DMA context 492 * @limit: maximum data size for the context 493 * 494 * The alignment constraints must be verified in caller function, and the 495 * parameter @limit must be set accordingly. 496 */ 497 static void parport_ip32_dma_setup_context(unsigned int limit) 498 { 499 unsigned long flags; 500 501 spin_lock_irqsave(&parport_ip32_dma.lock, flags); 502 if (parport_ip32_dma.left > 0) { 503 /* Note: ctxreg is "volatile" here only because 504 * mace->perif.ctrl.parport.context_a and context_b are 505 * "volatile". */ 506 volatile u64 __iomem *ctxreg = (parport_ip32_dma.ctx == 0) ? 507 &mace->perif.ctrl.parport.context_a : 508 &mace->perif.ctrl.parport.context_b; 509 u64 count; 510 u64 ctxval; 511 if (parport_ip32_dma.left <= limit) { 512 count = parport_ip32_dma.left; 513 ctxval = MACEPAR_CONTEXT_LASTFLAG; 514 } else { 515 count = limit; 516 ctxval = 0; 517 } 518 519 pr_trace(NULL, 520 "(%u): 0x%04x:0x%04x, %u -> %u%s", 521 limit, 522 (unsigned int)parport_ip32_dma.buf, 523 (unsigned int)parport_ip32_dma.next, 524 (unsigned int)count, 525 parport_ip32_dma.ctx, ctxval ? "*" : ""); 526 527 ctxval |= parport_ip32_dma.next & 528 MACEPAR_CONTEXT_BASEADDR_MASK; 529 ctxval |= ((count - 1) << MACEPAR_CONTEXT_DATALEN_SHIFT) & 530 MACEPAR_CONTEXT_DATALEN_MASK; 531 writeq(ctxval, ctxreg); 532 parport_ip32_dma.next += count; 533 parport_ip32_dma.left -= count; 534 parport_ip32_dma.ctx ^= 1U; 535 } 536 /* If there is nothing more to send, disable IRQs to avoid to 537 * face an IRQ storm which can lock the machine. Disable them 538 * only once. */ 539 if (parport_ip32_dma.left == 0 && parport_ip32_dma.irq_on) { 540 pr_debug(PPIP32 "IRQ off (ctx)\n"); 541 disable_irq_nosync(MACEISA_PAR_CTXA_IRQ); 542 disable_irq_nosync(MACEISA_PAR_CTXB_IRQ); 543 parport_ip32_dma.irq_on = 0; 544 } 545 spin_unlock_irqrestore(&parport_ip32_dma.lock, flags); 546 } 547 548 /** 549 * parport_ip32_dma_interrupt - DMA interrupt handler 550 * @irq: interrupt number 551 * @dev_id: unused 552 */ 553 static irqreturn_t parport_ip32_dma_interrupt(int irq, void *dev_id) 554 { 555 if (parport_ip32_dma.left) 556 pr_trace(NULL, "(%d): ctx=%d", irq, parport_ip32_dma.ctx); 557 parport_ip32_dma_setup_context(MACEPAR_CONTEXT_DATA_BOUND); 558 return IRQ_HANDLED; 559 } 560 561 #if DEBUG_PARPORT_IP32 562 static irqreturn_t parport_ip32_merr_interrupt(int irq, void *dev_id) 563 { 564 pr_trace1(NULL, "(%d)", irq); 565 return IRQ_HANDLED; 566 } 567 #endif 568 569 /** 570 * parport_ip32_dma_start - begins a DMA transfer 571 * @dir: DMA direction: DMA_TO_DEVICE or DMA_FROM_DEVICE 572 * @addr: pointer to data buffer 573 * @count: buffer size 574 * 575 * Calls to parport_ip32_dma_start() and parport_ip32_dma_stop() must be 576 * correctly balanced. 577 */ 578 static int parport_ip32_dma_start(enum dma_data_direction dir, 579 void *addr, size_t count) 580 { 581 unsigned int limit; 582 u64 ctrl; 583 584 pr_trace(NULL, "(%d, %lu)", dir, (unsigned long)count); 585 586 /* FIXME - add support for DMA_FROM_DEVICE. In this case, buffer must 587 * be 64 bytes aligned. */ 588 BUG_ON(dir != DMA_TO_DEVICE); 589 590 /* Reset DMA controller */ 591 ctrl = MACEPAR_CTLSTAT_RESET; 592 writeq(ctrl, &mace->perif.ctrl.parport.cntlstat); 593 594 /* DMA IRQs should normally be enabled */ 595 if (!parport_ip32_dma.irq_on) { 596 WARN_ON(1); 597 enable_irq(MACEISA_PAR_CTXA_IRQ); 598 enable_irq(MACEISA_PAR_CTXB_IRQ); 599 parport_ip32_dma.irq_on = 1; 600 } 601 602 /* Prepare DMA pointers */ 603 parport_ip32_dma.dir = dir; 604 parport_ip32_dma.buf = dma_map_single(NULL, addr, count, dir); 605 parport_ip32_dma.len = count; 606 parport_ip32_dma.next = parport_ip32_dma.buf; 607 parport_ip32_dma.left = parport_ip32_dma.len; 608 parport_ip32_dma.ctx = 0; 609 610 /* Setup DMA direction and first two contexts */ 611 ctrl = (dir == DMA_TO_DEVICE) ? 0 : MACEPAR_CTLSTAT_DIRECTION; 612 writeq(ctrl, &mace->perif.ctrl.parport.cntlstat); 613 /* Single transfer should not cross a 4K page boundary */ 614 limit = MACEPAR_CONTEXT_DATA_BOUND - 615 (parport_ip32_dma.next & (MACEPAR_CONTEXT_DATA_BOUND - 1)); 616 parport_ip32_dma_setup_context(limit); 617 parport_ip32_dma_setup_context(MACEPAR_CONTEXT_DATA_BOUND); 618 619 /* Real start of DMA transfer */ 620 ctrl |= MACEPAR_CTLSTAT_ENABLE; 621 writeq(ctrl, &mace->perif.ctrl.parport.cntlstat); 622 623 return 0; 624 } 625 626 /** 627 * parport_ip32_dma_stop - ends a running DMA transfer 628 * 629 * Calls to parport_ip32_dma_start() and parport_ip32_dma_stop() must be 630 * correctly balanced. 631 */ 632 static void parport_ip32_dma_stop(void) 633 { 634 u64 ctx_a; 635 u64 ctx_b; 636 u64 ctrl; 637 u64 diag; 638 size_t res[2]; /* {[0] = res_a, [1] = res_b} */ 639 640 pr_trace(NULL, "()"); 641 642 /* Disable IRQs */ 643 spin_lock_irq(&parport_ip32_dma.lock); 644 if (parport_ip32_dma.irq_on) { 645 pr_debug(PPIP32 "IRQ off (stop)\n"); 646 disable_irq_nosync(MACEISA_PAR_CTXA_IRQ); 647 disable_irq_nosync(MACEISA_PAR_CTXB_IRQ); 648 parport_ip32_dma.irq_on = 0; 649 } 650 spin_unlock_irq(&parport_ip32_dma.lock); 651 /* Force IRQ synchronization, even if the IRQs were disabled 652 * elsewhere. */ 653 synchronize_irq(MACEISA_PAR_CTXA_IRQ); 654 synchronize_irq(MACEISA_PAR_CTXB_IRQ); 655 656 /* Stop DMA transfer */ 657 ctrl = readq(&mace->perif.ctrl.parport.cntlstat); 658 ctrl &= ~MACEPAR_CTLSTAT_ENABLE; 659 writeq(ctrl, &mace->perif.ctrl.parport.cntlstat); 660 661 /* Adjust residue (parport_ip32_dma.left) */ 662 ctx_a = readq(&mace->perif.ctrl.parport.context_a); 663 ctx_b = readq(&mace->perif.ctrl.parport.context_b); 664 ctrl = readq(&mace->perif.ctrl.parport.cntlstat); 665 diag = readq(&mace->perif.ctrl.parport.diagnostic); 666 res[0] = (ctrl & MACEPAR_CTLSTAT_CTXA_VALID) ? 667 1 + ((ctx_a & MACEPAR_CONTEXT_DATALEN_MASK) >> 668 MACEPAR_CONTEXT_DATALEN_SHIFT) : 669 0; 670 res[1] = (ctrl & MACEPAR_CTLSTAT_CTXB_VALID) ? 671 1 + ((ctx_b & MACEPAR_CONTEXT_DATALEN_MASK) >> 672 MACEPAR_CONTEXT_DATALEN_SHIFT) : 673 0; 674 if (diag & MACEPAR_DIAG_DMACTIVE) 675 res[(diag & MACEPAR_DIAG_CTXINUSE) != 0] = 676 1 + ((diag & MACEPAR_DIAG_CTRMASK) >> 677 MACEPAR_DIAG_CTRSHIFT); 678 parport_ip32_dma.left += res[0] + res[1]; 679 680 /* Reset DMA controller, and re-enable IRQs */ 681 ctrl = MACEPAR_CTLSTAT_RESET; 682 writeq(ctrl, &mace->perif.ctrl.parport.cntlstat); 683 pr_debug(PPIP32 "IRQ on (stop)\n"); 684 enable_irq(MACEISA_PAR_CTXA_IRQ); 685 enable_irq(MACEISA_PAR_CTXB_IRQ); 686 parport_ip32_dma.irq_on = 1; 687 688 dma_unmap_single(NULL, parport_ip32_dma.buf, parport_ip32_dma.len, 689 parport_ip32_dma.dir); 690 } 691 692 /** 693 * parport_ip32_dma_get_residue - get residue from last DMA transfer 694 * 695 * Returns the number of bytes remaining from last DMA transfer. 696 */ 697 static inline size_t parport_ip32_dma_get_residue(void) 698 { 699 return parport_ip32_dma.left; 700 } 701 702 /** 703 * parport_ip32_dma_register - initialize DMA engine 704 * 705 * Returns zero for success. 706 */ 707 static int parport_ip32_dma_register(void) 708 { 709 int err; 710 711 spin_lock_init(&parport_ip32_dma.lock); 712 parport_ip32_dma.irq_on = 1; 713 714 /* Reset DMA controller */ 715 writeq(MACEPAR_CTLSTAT_RESET, &mace->perif.ctrl.parport.cntlstat); 716 717 /* Request IRQs */ 718 err = request_irq(MACEISA_PAR_CTXA_IRQ, parport_ip32_dma_interrupt, 719 0, "parport_ip32", NULL); 720 if (err) 721 goto fail_a; 722 err = request_irq(MACEISA_PAR_CTXB_IRQ, parport_ip32_dma_interrupt, 723 0, "parport_ip32", NULL); 724 if (err) 725 goto fail_b; 726 #if DEBUG_PARPORT_IP32 727 /* FIXME - what is this IRQ for? */ 728 err = request_irq(MACEISA_PAR_MERR_IRQ, parport_ip32_merr_interrupt, 729 0, "parport_ip32", NULL); 730 if (err) 731 goto fail_merr; 732 #endif 733 return 0; 734 735 #if DEBUG_PARPORT_IP32 736 fail_merr: 737 free_irq(MACEISA_PAR_CTXB_IRQ, NULL); 738 #endif 739 fail_b: 740 free_irq(MACEISA_PAR_CTXA_IRQ, NULL); 741 fail_a: 742 return err; 743 } 744 745 /** 746 * parport_ip32_dma_unregister - release and free resources for DMA engine 747 */ 748 static void parport_ip32_dma_unregister(void) 749 { 750 #if DEBUG_PARPORT_IP32 751 free_irq(MACEISA_PAR_MERR_IRQ, NULL); 752 #endif 753 free_irq(MACEISA_PAR_CTXB_IRQ, NULL); 754 free_irq(MACEISA_PAR_CTXA_IRQ, NULL); 755 } 756 757 /*--- Interrupt handlers and associates --------------------------------*/ 758 759 /** 760 * parport_ip32_wakeup - wakes up code waiting for an interrupt 761 * @p: pointer to &struct parport 762 */ 763 static inline void parport_ip32_wakeup(struct parport *p) 764 { 765 struct parport_ip32_private * const priv = p->physport->private_data; 766 complete(&priv->irq_complete); 767 } 768 769 /** 770 * parport_ip32_interrupt - interrupt handler 771 * @irq: interrupt number 772 * @dev_id: pointer to &struct parport 773 * 774 * Caught interrupts are forwarded to the upper parport layer if IRQ_mode is 775 * %PARPORT_IP32_IRQ_FWD. 776 */ 777 static irqreturn_t parport_ip32_interrupt(int irq, void *dev_id) 778 { 779 struct parport * const p = dev_id; 780 struct parport_ip32_private * const priv = p->physport->private_data; 781 enum parport_ip32_irq_mode irq_mode = priv->irq_mode; 782 783 switch (irq_mode) { 784 case PARPORT_IP32_IRQ_FWD: 785 return parport_irq_handler(irq, dev_id); 786 787 case PARPORT_IP32_IRQ_HERE: 788 parport_ip32_wakeup(p); 789 break; 790 } 791 792 return IRQ_HANDLED; 793 } 794 795 /*--- Some utility function to manipulate ECR register -----------------*/ 796 797 /** 798 * parport_ip32_read_econtrol - read contents of the ECR register 799 * @p: pointer to &struct parport 800 */ 801 static inline unsigned int parport_ip32_read_econtrol(struct parport *p) 802 { 803 struct parport_ip32_private * const priv = p->physport->private_data; 804 return readb(priv->regs.ecr); 805 } 806 807 /** 808 * parport_ip32_write_econtrol - write new contents to the ECR register 809 * @p: pointer to &struct parport 810 * @c: new value to write 811 */ 812 static inline void parport_ip32_write_econtrol(struct parport *p, 813 unsigned int c) 814 { 815 struct parport_ip32_private * const priv = p->physport->private_data; 816 writeb(c, priv->regs.ecr); 817 } 818 819 /** 820 * parport_ip32_frob_econtrol - change bits from the ECR register 821 * @p: pointer to &struct parport 822 * @mask: bit mask of bits to change 823 * @val: new value for changed bits 824 * 825 * Read from the ECR, mask out the bits in @mask, exclusive-or with the bits 826 * in @val, and write the result to the ECR. 827 */ 828 static inline void parport_ip32_frob_econtrol(struct parport *p, 829 unsigned int mask, 830 unsigned int val) 831 { 832 unsigned int c; 833 c = (parport_ip32_read_econtrol(p) & ~mask) ^ val; 834 parport_ip32_write_econtrol(p, c); 835 } 836 837 /** 838 * parport_ip32_set_mode - change mode of ECP port 839 * @p: pointer to &struct parport 840 * @mode: new mode to write in ECR 841 * 842 * ECR is reset in a sane state (interrupts and DMA disabled), and placed in 843 * mode @mode. Go through PS2 mode if needed. 844 */ 845 static void parport_ip32_set_mode(struct parport *p, unsigned int mode) 846 { 847 unsigned int omode; 848 849 mode &= ECR_MODE_MASK; 850 omode = parport_ip32_read_econtrol(p) & ECR_MODE_MASK; 851 852 if (!(mode == ECR_MODE_SPP || mode == ECR_MODE_PS2 853 || omode == ECR_MODE_SPP || omode == ECR_MODE_PS2)) { 854 /* We have to go through PS2 mode */ 855 unsigned int ecr = ECR_MODE_PS2 | ECR_nERRINTR | ECR_SERVINTR; 856 parport_ip32_write_econtrol(p, ecr); 857 } 858 parport_ip32_write_econtrol(p, mode | ECR_nERRINTR | ECR_SERVINTR); 859 } 860 861 /*--- Basic functions needed for parport -------------------------------*/ 862 863 /** 864 * parport_ip32_read_data - return current contents of the DATA register 865 * @p: pointer to &struct parport 866 */ 867 static inline unsigned char parport_ip32_read_data(struct parport *p) 868 { 869 struct parport_ip32_private * const priv = p->physport->private_data; 870 return readb(priv->regs.data); 871 } 872 873 /** 874 * parport_ip32_write_data - set new contents for the DATA register 875 * @p: pointer to &struct parport 876 * @d: new value to write 877 */ 878 static inline void parport_ip32_write_data(struct parport *p, unsigned char d) 879 { 880 struct parport_ip32_private * const priv = p->physport->private_data; 881 writeb(d, priv->regs.data); 882 } 883 884 /** 885 * parport_ip32_read_status - return current contents of the DSR register 886 * @p: pointer to &struct parport 887 */ 888 static inline unsigned char parport_ip32_read_status(struct parport *p) 889 { 890 struct parport_ip32_private * const priv = p->physport->private_data; 891 return readb(priv->regs.dsr); 892 } 893 894 /** 895 * __parport_ip32_read_control - return cached contents of the DCR register 896 * @p: pointer to &struct parport 897 */ 898 static inline unsigned int __parport_ip32_read_control(struct parport *p) 899 { 900 struct parport_ip32_private * const priv = p->physport->private_data; 901 return priv->dcr_cache; /* use soft copy */ 902 } 903 904 /** 905 * __parport_ip32_write_control - set new contents for the DCR register 906 * @p: pointer to &struct parport 907 * @c: new value to write 908 */ 909 static inline void __parport_ip32_write_control(struct parport *p, 910 unsigned int c) 911 { 912 struct parport_ip32_private * const priv = p->physport->private_data; 913 CHECK_EXTRA_BITS(p, c, priv->dcr_writable); 914 c &= priv->dcr_writable; /* only writable bits */ 915 writeb(c, priv->regs.dcr); 916 priv->dcr_cache = c; /* update soft copy */ 917 } 918 919 /** 920 * __parport_ip32_frob_control - change bits from the DCR register 921 * @p: pointer to &struct parport 922 * @mask: bit mask of bits to change 923 * @val: new value for changed bits 924 * 925 * This is equivalent to read from the DCR, mask out the bits in @mask, 926 * exclusive-or with the bits in @val, and write the result to the DCR. 927 * Actually, the cached contents of the DCR is used. 928 */ 929 static inline void __parport_ip32_frob_control(struct parport *p, 930 unsigned int mask, 931 unsigned int val) 932 { 933 unsigned int c; 934 c = (__parport_ip32_read_control(p) & ~mask) ^ val; 935 __parport_ip32_write_control(p, c); 936 } 937 938 /** 939 * parport_ip32_read_control - return cached contents of the DCR register 940 * @p: pointer to &struct parport 941 * 942 * The return value is masked so as to only return the value of %DCR_STROBE, 943 * %DCR_AUTOFD, %DCR_nINIT, and %DCR_SELECT. 944 */ 945 static inline unsigned char parport_ip32_read_control(struct parport *p) 946 { 947 const unsigned int rm = 948 DCR_STROBE | DCR_AUTOFD | DCR_nINIT | DCR_SELECT; 949 return __parport_ip32_read_control(p) & rm; 950 } 951 952 /** 953 * parport_ip32_write_control - set new contents for the DCR register 954 * @p: pointer to &struct parport 955 * @c: new value to write 956 * 957 * The value is masked so as to only change the value of %DCR_STROBE, 958 * %DCR_AUTOFD, %DCR_nINIT, and %DCR_SELECT. 959 */ 960 static inline void parport_ip32_write_control(struct parport *p, 961 unsigned char c) 962 { 963 const unsigned int wm = 964 DCR_STROBE | DCR_AUTOFD | DCR_nINIT | DCR_SELECT; 965 CHECK_EXTRA_BITS(p, c, wm); 966 __parport_ip32_frob_control(p, wm, c & wm); 967 } 968 969 /** 970 * parport_ip32_frob_control - change bits from the DCR register 971 * @p: pointer to &struct parport 972 * @mask: bit mask of bits to change 973 * @val: new value for changed bits 974 * 975 * This differs from __parport_ip32_frob_control() in that it only allows to 976 * change the value of %DCR_STROBE, %DCR_AUTOFD, %DCR_nINIT, and %DCR_SELECT. 977 */ 978 static inline unsigned char parport_ip32_frob_control(struct parport *p, 979 unsigned char mask, 980 unsigned char val) 981 { 982 const unsigned int wm = 983 DCR_STROBE | DCR_AUTOFD | DCR_nINIT | DCR_SELECT; 984 CHECK_EXTRA_BITS(p, mask, wm); 985 CHECK_EXTRA_BITS(p, val, wm); 986 __parport_ip32_frob_control(p, mask & wm, val & wm); 987 return parport_ip32_read_control(p); 988 } 989 990 /** 991 * parport_ip32_disable_irq - disable interrupts on the rising edge of nACK 992 * @p: pointer to &struct parport 993 */ 994 static inline void parport_ip32_disable_irq(struct parport *p) 995 { 996 __parport_ip32_frob_control(p, DCR_IRQ, 0); 997 } 998 999 /** 1000 * parport_ip32_enable_irq - enable interrupts on the rising edge of nACK 1001 * @p: pointer to &struct parport 1002 */ 1003 static inline void parport_ip32_enable_irq(struct parport *p) 1004 { 1005 __parport_ip32_frob_control(p, DCR_IRQ, DCR_IRQ); 1006 } 1007 1008 /** 1009 * parport_ip32_data_forward - enable host-to-peripheral communications 1010 * @p: pointer to &struct parport 1011 * 1012 * Enable the data line drivers, for 8-bit host-to-peripheral communications. 1013 */ 1014 static inline void parport_ip32_data_forward(struct parport *p) 1015 { 1016 __parport_ip32_frob_control(p, DCR_DIR, 0); 1017 } 1018 1019 /** 1020 * parport_ip32_data_reverse - enable peripheral-to-host communications 1021 * @p: pointer to &struct parport 1022 * 1023 * Place the data bus in a high impedance state, if @p->modes has the 1024 * PARPORT_MODE_TRISTATE bit set. 1025 */ 1026 static inline void parport_ip32_data_reverse(struct parport *p) 1027 { 1028 __parport_ip32_frob_control(p, DCR_DIR, DCR_DIR); 1029 } 1030 1031 /** 1032 * parport_ip32_init_state - for core parport code 1033 * @dev: pointer to &struct pardevice 1034 * @s: pointer to &struct parport_state to initialize 1035 */ 1036 static void parport_ip32_init_state(struct pardevice *dev, 1037 struct parport_state *s) 1038 { 1039 s->u.ip32.dcr = DCR_SELECT | DCR_nINIT; 1040 s->u.ip32.ecr = ECR_MODE_PS2 | ECR_nERRINTR | ECR_SERVINTR; 1041 } 1042 1043 /** 1044 * parport_ip32_save_state - for core parport code 1045 * @p: pointer to &struct parport 1046 * @s: pointer to &struct parport_state to save state to 1047 */ 1048 static void parport_ip32_save_state(struct parport *p, 1049 struct parport_state *s) 1050 { 1051 s->u.ip32.dcr = __parport_ip32_read_control(p); 1052 s->u.ip32.ecr = parport_ip32_read_econtrol(p); 1053 } 1054 1055 /** 1056 * parport_ip32_restore_state - for core parport code 1057 * @p: pointer to &struct parport 1058 * @s: pointer to &struct parport_state to restore state from 1059 */ 1060 static void parport_ip32_restore_state(struct parport *p, 1061 struct parport_state *s) 1062 { 1063 parport_ip32_set_mode(p, s->u.ip32.ecr & ECR_MODE_MASK); 1064 parport_ip32_write_econtrol(p, s->u.ip32.ecr); 1065 __parport_ip32_write_control(p, s->u.ip32.dcr); 1066 } 1067 1068 /*--- EPP mode functions -----------------------------------------------*/ 1069 1070 /** 1071 * parport_ip32_clear_epp_timeout - clear Timeout bit in EPP mode 1072 * @p: pointer to &struct parport 1073 * 1074 * Returns 1 if the Timeout bit is clear, and 0 otherwise. 1075 */ 1076 static unsigned int parport_ip32_clear_epp_timeout(struct parport *p) 1077 { 1078 struct parport_ip32_private * const priv = p->physport->private_data; 1079 unsigned int cleared; 1080 1081 if (!(parport_ip32_read_status(p) & DSR_TIMEOUT)) 1082 cleared = 1; 1083 else { 1084 unsigned int r; 1085 /* To clear timeout some chips require double read */ 1086 parport_ip32_read_status(p); 1087 r = parport_ip32_read_status(p); 1088 /* Some reset by writing 1 */ 1089 writeb(r | DSR_TIMEOUT, priv->regs.dsr); 1090 /* Others by writing 0 */ 1091 writeb(r & ~DSR_TIMEOUT, priv->regs.dsr); 1092 1093 r = parport_ip32_read_status(p); 1094 cleared = !(r & DSR_TIMEOUT); 1095 } 1096 1097 pr_trace(p, "(): %s", cleared ? "cleared" : "failed"); 1098 return cleared; 1099 } 1100 1101 /** 1102 * parport_ip32_epp_read - generic EPP read function 1103 * @eppreg: I/O register to read from 1104 * @p: pointer to &struct parport 1105 * @buf: buffer to store read data 1106 * @len: length of buffer @buf 1107 * @flags: may be PARPORT_EPP_FAST 1108 */ 1109 static size_t parport_ip32_epp_read(void __iomem *eppreg, 1110 struct parport *p, void *buf, 1111 size_t len, int flags) 1112 { 1113 struct parport_ip32_private * const priv = p->physport->private_data; 1114 size_t got; 1115 parport_ip32_set_mode(p, ECR_MODE_EPP); 1116 parport_ip32_data_reverse(p); 1117 parport_ip32_write_control(p, DCR_nINIT); 1118 if ((flags & PARPORT_EPP_FAST) && (len > 1)) { 1119 readsb(eppreg, buf, len); 1120 if (readb(priv->regs.dsr) & DSR_TIMEOUT) { 1121 parport_ip32_clear_epp_timeout(p); 1122 return -EIO; 1123 } 1124 got = len; 1125 } else { 1126 u8 *bufp = buf; 1127 for (got = 0; got < len; got++) { 1128 *bufp++ = readb(eppreg); 1129 if (readb(priv->regs.dsr) & DSR_TIMEOUT) { 1130 parport_ip32_clear_epp_timeout(p); 1131 break; 1132 } 1133 } 1134 } 1135 parport_ip32_data_forward(p); 1136 parport_ip32_set_mode(p, ECR_MODE_PS2); 1137 return got; 1138 } 1139 1140 /** 1141 * parport_ip32_epp_write - generic EPP write function 1142 * @eppreg: I/O register to write to 1143 * @p: pointer to &struct parport 1144 * @buf: buffer of data to write 1145 * @len: length of buffer @buf 1146 * @flags: may be PARPORT_EPP_FAST 1147 */ 1148 static size_t parport_ip32_epp_write(void __iomem *eppreg, 1149 struct parport *p, const void *buf, 1150 size_t len, int flags) 1151 { 1152 struct parport_ip32_private * const priv = p->physport->private_data; 1153 size_t written; 1154 parport_ip32_set_mode(p, ECR_MODE_EPP); 1155 parport_ip32_data_forward(p); 1156 parport_ip32_write_control(p, DCR_nINIT); 1157 if ((flags & PARPORT_EPP_FAST) && (len > 1)) { 1158 writesb(eppreg, buf, len); 1159 if (readb(priv->regs.dsr) & DSR_TIMEOUT) { 1160 parport_ip32_clear_epp_timeout(p); 1161 return -EIO; 1162 } 1163 written = len; 1164 } else { 1165 const u8 *bufp = buf; 1166 for (written = 0; written < len; written++) { 1167 writeb(*bufp++, eppreg); 1168 if (readb(priv->regs.dsr) & DSR_TIMEOUT) { 1169 parport_ip32_clear_epp_timeout(p); 1170 break; 1171 } 1172 } 1173 } 1174 parport_ip32_set_mode(p, ECR_MODE_PS2); 1175 return written; 1176 } 1177 1178 /** 1179 * parport_ip32_epp_read_data - read a block of data in EPP mode 1180 * @p: pointer to &struct parport 1181 * @buf: buffer to store read data 1182 * @len: length of buffer @buf 1183 * @flags: may be PARPORT_EPP_FAST 1184 */ 1185 static size_t parport_ip32_epp_read_data(struct parport *p, void *buf, 1186 size_t len, int flags) 1187 { 1188 struct parport_ip32_private * const priv = p->physport->private_data; 1189 return parport_ip32_epp_read(priv->regs.eppData0, p, buf, len, flags); 1190 } 1191 1192 /** 1193 * parport_ip32_epp_write_data - write a block of data in EPP mode 1194 * @p: pointer to &struct parport 1195 * @buf: buffer of data to write 1196 * @len: length of buffer @buf 1197 * @flags: may be PARPORT_EPP_FAST 1198 */ 1199 static size_t parport_ip32_epp_write_data(struct parport *p, const void *buf, 1200 size_t len, int flags) 1201 { 1202 struct parport_ip32_private * const priv = p->physport->private_data; 1203 return parport_ip32_epp_write(priv->regs.eppData0, p, buf, len, flags); 1204 } 1205 1206 /** 1207 * parport_ip32_epp_read_addr - read a block of addresses in EPP mode 1208 * @p: pointer to &struct parport 1209 * @buf: buffer to store read data 1210 * @len: length of buffer @buf 1211 * @flags: may be PARPORT_EPP_FAST 1212 */ 1213 static size_t parport_ip32_epp_read_addr(struct parport *p, void *buf, 1214 size_t len, int flags) 1215 { 1216 struct parport_ip32_private * const priv = p->physport->private_data; 1217 return parport_ip32_epp_read(priv->regs.eppAddr, p, buf, len, flags); 1218 } 1219 1220 /** 1221 * parport_ip32_epp_write_addr - write a block of addresses in EPP mode 1222 * @p: pointer to &struct parport 1223 * @buf: buffer of data to write 1224 * @len: length of buffer @buf 1225 * @flags: may be PARPORT_EPP_FAST 1226 */ 1227 static size_t parport_ip32_epp_write_addr(struct parport *p, const void *buf, 1228 size_t len, int flags) 1229 { 1230 struct parport_ip32_private * const priv = p->physport->private_data; 1231 return parport_ip32_epp_write(priv->regs.eppAddr, p, buf, len, flags); 1232 } 1233 1234 /*--- ECP mode functions (FIFO) ----------------------------------------*/ 1235 1236 /** 1237 * parport_ip32_fifo_wait_break - check if the waiting function should return 1238 * @p: pointer to &struct parport 1239 * @expire: timeout expiring date, in jiffies 1240 * 1241 * parport_ip32_fifo_wait_break() checks if the waiting function should return 1242 * immediately or not. The break conditions are: 1243 * - expired timeout; 1244 * - a pending signal; 1245 * - nFault asserted low. 1246 * This function also calls cond_resched(). 1247 */ 1248 static unsigned int parport_ip32_fifo_wait_break(struct parport *p, 1249 unsigned long expire) 1250 { 1251 cond_resched(); 1252 if (time_after(jiffies, expire)) { 1253 pr_debug1(PPIP32 "%s: FIFO write timed out\n", p->name); 1254 return 1; 1255 } 1256 if (signal_pending(current)) { 1257 pr_debug1(PPIP32 "%s: Signal pending\n", p->name); 1258 return 1; 1259 } 1260 if (!(parport_ip32_read_status(p) & DSR_nFAULT)) { 1261 pr_debug1(PPIP32 "%s: nFault asserted low\n", p->name); 1262 return 1; 1263 } 1264 return 0; 1265 } 1266 1267 /** 1268 * parport_ip32_fwp_wait_polling - wait for FIFO to empty (polling) 1269 * @p: pointer to &struct parport 1270 * 1271 * Returns the number of bytes that can safely be written in the FIFO. A 1272 * return value of zero means that the calling function should terminate as 1273 * fast as possible. 1274 */ 1275 static unsigned int parport_ip32_fwp_wait_polling(struct parport *p) 1276 { 1277 struct parport_ip32_private * const priv = p->physport->private_data; 1278 struct parport * const physport = p->physport; 1279 unsigned long expire; 1280 unsigned int count; 1281 unsigned int ecr; 1282 1283 expire = jiffies + physport->cad->timeout; 1284 count = 0; 1285 while (1) { 1286 if (parport_ip32_fifo_wait_break(p, expire)) 1287 break; 1288 1289 /* Check FIFO state. We do nothing when the FIFO is nor full, 1290 * nor empty. It appears that the FIFO full bit is not always 1291 * reliable, the FIFO state is sometimes wrongly reported, and 1292 * the chip gets confused if we give it another byte. */ 1293 ecr = parport_ip32_read_econtrol(p); 1294 if (ecr & ECR_F_EMPTY) { 1295 /* FIFO is empty, fill it up */ 1296 count = priv->fifo_depth; 1297 break; 1298 } 1299 1300 /* Wait a moment... */ 1301 udelay(FIFO_POLLING_INTERVAL); 1302 } /* while (1) */ 1303 1304 return count; 1305 } 1306 1307 /** 1308 * parport_ip32_fwp_wait_interrupt - wait for FIFO to empty (interrupt-driven) 1309 * @p: pointer to &struct parport 1310 * 1311 * Returns the number of bytes that can safely be written in the FIFO. A 1312 * return value of zero means that the calling function should terminate as 1313 * fast as possible. 1314 */ 1315 static unsigned int parport_ip32_fwp_wait_interrupt(struct parport *p) 1316 { 1317 static unsigned int lost_interrupt = 0; 1318 struct parport_ip32_private * const priv = p->physport->private_data; 1319 struct parport * const physport = p->physport; 1320 unsigned long nfault_timeout; 1321 unsigned long expire; 1322 unsigned int count; 1323 unsigned int ecr; 1324 1325 nfault_timeout = min((unsigned long)physport->cad->timeout, 1326 msecs_to_jiffies(FIFO_NFAULT_TIMEOUT)); 1327 expire = jiffies + physport->cad->timeout; 1328 count = 0; 1329 while (1) { 1330 if (parport_ip32_fifo_wait_break(p, expire)) 1331 break; 1332 1333 /* Initialize mutex used to take interrupts into account */ 1334 INIT_COMPLETION(priv->irq_complete); 1335 1336 /* Enable serviceIntr */ 1337 parport_ip32_frob_econtrol(p, ECR_SERVINTR, 0); 1338 1339 /* Enabling serviceIntr while the FIFO is empty does not 1340 * always generate an interrupt, so check for emptiness 1341 * now. */ 1342 ecr = parport_ip32_read_econtrol(p); 1343 if (!(ecr & ECR_F_EMPTY)) { 1344 /* FIFO is not empty: wait for an interrupt or a 1345 * timeout to occur */ 1346 wait_for_completion_interruptible_timeout( 1347 &priv->irq_complete, nfault_timeout); 1348 ecr = parport_ip32_read_econtrol(p); 1349 if ((ecr & ECR_F_EMPTY) && !(ecr & ECR_SERVINTR) 1350 && !lost_interrupt) { 1351 printk(KERN_WARNING PPIP32 1352 "%s: lost interrupt in %s\n", 1353 p->name, __func__); 1354 lost_interrupt = 1; 1355 } 1356 } 1357 1358 /* Disable serviceIntr */ 1359 parport_ip32_frob_econtrol(p, ECR_SERVINTR, ECR_SERVINTR); 1360 1361 /* Check FIFO state */ 1362 if (ecr & ECR_F_EMPTY) { 1363 /* FIFO is empty, fill it up */ 1364 count = priv->fifo_depth; 1365 break; 1366 } else if (ecr & ECR_SERVINTR) { 1367 /* FIFO is not empty, but we know that can safely push 1368 * writeIntrThreshold bytes into it */ 1369 count = priv->writeIntrThreshold; 1370 break; 1371 } 1372 /* FIFO is not empty, and we did not get any interrupt. 1373 * Either it's time to check for nFault, or a signal is 1374 * pending. This is verified in 1375 * parport_ip32_fifo_wait_break(), so we continue the loop. */ 1376 } /* while (1) */ 1377 1378 return count; 1379 } 1380 1381 /** 1382 * parport_ip32_fifo_write_block_pio - write a block of data (PIO mode) 1383 * @p: pointer to &struct parport 1384 * @buf: buffer of data to write 1385 * @len: length of buffer @buf 1386 * 1387 * Uses PIO to write the contents of the buffer @buf into the parallel port 1388 * FIFO. Returns the number of bytes that were actually written. It can work 1389 * with or without the help of interrupts. The parallel port must be 1390 * correctly initialized before calling parport_ip32_fifo_write_block_pio(). 1391 */ 1392 static size_t parport_ip32_fifo_write_block_pio(struct parport *p, 1393 const void *buf, size_t len) 1394 { 1395 struct parport_ip32_private * const priv = p->physport->private_data; 1396 const u8 *bufp = buf; 1397 size_t left = len; 1398 1399 priv->irq_mode = PARPORT_IP32_IRQ_HERE; 1400 1401 while (left > 0) { 1402 unsigned int count; 1403 1404 count = (p->irq == PARPORT_IRQ_NONE) ? 1405 parport_ip32_fwp_wait_polling(p) : 1406 parport_ip32_fwp_wait_interrupt(p); 1407 if (count == 0) 1408 break; /* Transmission should be stopped */ 1409 if (count > left) 1410 count = left; 1411 if (count == 1) { 1412 writeb(*bufp, priv->regs.fifo); 1413 bufp++, left--; 1414 } else { 1415 writesb(priv->regs.fifo, bufp, count); 1416 bufp += count, left -= count; 1417 } 1418 } 1419 1420 priv->irq_mode = PARPORT_IP32_IRQ_FWD; 1421 1422 return len - left; 1423 } 1424 1425 /** 1426 * parport_ip32_fifo_write_block_dma - write a block of data (DMA mode) 1427 * @p: pointer to &struct parport 1428 * @buf: buffer of data to write 1429 * @len: length of buffer @buf 1430 * 1431 * Uses DMA to write the contents of the buffer @buf into the parallel port 1432 * FIFO. Returns the number of bytes that were actually written. The 1433 * parallel port must be correctly initialized before calling 1434 * parport_ip32_fifo_write_block_dma(). 1435 */ 1436 static size_t parport_ip32_fifo_write_block_dma(struct parport *p, 1437 const void *buf, size_t len) 1438 { 1439 struct parport_ip32_private * const priv = p->physport->private_data; 1440 struct parport * const physport = p->physport; 1441 unsigned long nfault_timeout; 1442 unsigned long expire; 1443 size_t written; 1444 unsigned int ecr; 1445 1446 priv->irq_mode = PARPORT_IP32_IRQ_HERE; 1447 1448 parport_ip32_dma_start(DMA_TO_DEVICE, (void *)buf, len); 1449 INIT_COMPLETION(priv->irq_complete); 1450 parport_ip32_frob_econtrol(p, ECR_DMAEN | ECR_SERVINTR, ECR_DMAEN); 1451 1452 nfault_timeout = min((unsigned long)physport->cad->timeout, 1453 msecs_to_jiffies(FIFO_NFAULT_TIMEOUT)); 1454 expire = jiffies + physport->cad->timeout; 1455 while (1) { 1456 if (parport_ip32_fifo_wait_break(p, expire)) 1457 break; 1458 wait_for_completion_interruptible_timeout(&priv->irq_complete, 1459 nfault_timeout); 1460 ecr = parport_ip32_read_econtrol(p); 1461 if (ecr & ECR_SERVINTR) 1462 break; /* DMA transfer just finished */ 1463 } 1464 parport_ip32_dma_stop(); 1465 written = len - parport_ip32_dma_get_residue(); 1466 1467 priv->irq_mode = PARPORT_IP32_IRQ_FWD; 1468 1469 return written; 1470 } 1471 1472 /** 1473 * parport_ip32_fifo_write_block - write a block of data 1474 * @p: pointer to &struct parport 1475 * @buf: buffer of data to write 1476 * @len: length of buffer @buf 1477 * 1478 * Uses PIO or DMA to write the contents of the buffer @buf into the parallel 1479 * p FIFO. Returns the number of bytes that were actually written. 1480 */ 1481 static size_t parport_ip32_fifo_write_block(struct parport *p, 1482 const void *buf, size_t len) 1483 { 1484 size_t written = 0; 1485 if (len) 1486 /* FIXME - Maybe some threshold value should be set for @len 1487 * under which we revert to PIO mode? */ 1488 written = (p->modes & PARPORT_MODE_DMA) ? 1489 parport_ip32_fifo_write_block_dma(p, buf, len) : 1490 parport_ip32_fifo_write_block_pio(p, buf, len); 1491 return written; 1492 } 1493 1494 /** 1495 * parport_ip32_drain_fifo - wait for FIFO to empty 1496 * @p: pointer to &struct parport 1497 * @timeout: timeout, in jiffies 1498 * 1499 * This function waits for FIFO to empty. It returns 1 when FIFO is empty, or 1500 * 0 if the timeout @timeout is reached before, or if a signal is pending. 1501 */ 1502 static unsigned int parport_ip32_drain_fifo(struct parport *p, 1503 unsigned long timeout) 1504 { 1505 unsigned long expire = jiffies + timeout; 1506 unsigned int polling_interval; 1507 unsigned int counter; 1508 1509 /* Busy wait for approx. 200us */ 1510 for (counter = 0; counter < 40; counter++) { 1511 if (parport_ip32_read_econtrol(p) & ECR_F_EMPTY) 1512 break; 1513 if (time_after(jiffies, expire)) 1514 break; 1515 if (signal_pending(current)) 1516 break; 1517 udelay(5); 1518 } 1519 /* Poll slowly. Polling interval starts with 1 millisecond, and is 1520 * increased exponentially until 128. */ 1521 polling_interval = 1; /* msecs */ 1522 while (!(parport_ip32_read_econtrol(p) & ECR_F_EMPTY)) { 1523 if (time_after_eq(jiffies, expire)) 1524 break; 1525 msleep_interruptible(polling_interval); 1526 if (signal_pending(current)) 1527 break; 1528 if (polling_interval < 128) 1529 polling_interval *= 2; 1530 } 1531 1532 return !!(parport_ip32_read_econtrol(p) & ECR_F_EMPTY); 1533 } 1534 1535 /** 1536 * parport_ip32_get_fifo_residue - reset FIFO 1537 * @p: pointer to &struct parport 1538 * @mode: current operation mode (ECR_MODE_PPF or ECR_MODE_ECP) 1539 * 1540 * This function resets FIFO, and returns the number of bytes remaining in it. 1541 */ 1542 static unsigned int parport_ip32_get_fifo_residue(struct parport *p, 1543 unsigned int mode) 1544 { 1545 struct parport_ip32_private * const priv = p->physport->private_data; 1546 unsigned int residue; 1547 unsigned int cnfga; 1548 1549 /* FIXME - We are missing one byte if the printer is off-line. I 1550 * don't know how to detect this. It looks that the full bit is not 1551 * always reliable. For the moment, the problem is avoided in most 1552 * cases by testing for BUSY in parport_ip32_compat_write_data(). 1553 */ 1554 if (parport_ip32_read_econtrol(p) & ECR_F_EMPTY) 1555 residue = 0; 1556 else { 1557 pr_debug1(PPIP32 "%s: FIFO is stuck\n", p->name); 1558 1559 /* Stop all transfers. 1560 * 1561 * Microsoft's document instructs to drive DCR_STROBE to 0, 1562 * but it doesn't work (at least in Compatibility mode, not 1563 * tested in ECP mode). Switching directly to Test mode (as 1564 * in parport_pc) is not an option: it does confuse the port, 1565 * ECP service interrupts are no more working after that. A 1566 * hard reset is then needed to revert to a sane state. 1567 * 1568 * Let's hope that the FIFO is really stuck and that the 1569 * peripheral doesn't wake up now. 1570 */ 1571 parport_ip32_frob_control(p, DCR_STROBE, 0); 1572 1573 /* Fill up FIFO */ 1574 for (residue = priv->fifo_depth; residue > 0; residue--) { 1575 if (parport_ip32_read_econtrol(p) & ECR_F_FULL) 1576 break; 1577 writeb(0x00, priv->regs.fifo); 1578 } 1579 } 1580 if (residue) 1581 pr_debug1(PPIP32 "%s: %d PWord%s left in FIFO\n", 1582 p->name, residue, 1583 (residue == 1) ? " was" : "s were"); 1584 1585 /* Now reset the FIFO */ 1586 parport_ip32_set_mode(p, ECR_MODE_PS2); 1587 1588 /* Host recovery for ECP mode */ 1589 if (mode == ECR_MODE_ECP) { 1590 parport_ip32_data_reverse(p); 1591 parport_ip32_frob_control(p, DCR_nINIT, 0); 1592 if (parport_wait_peripheral(p, DSR_PERROR, 0)) 1593 pr_debug1(PPIP32 "%s: PEerror timeout 1 in %s\n", 1594 p->name, __func__); 1595 parport_ip32_frob_control(p, DCR_STROBE, DCR_STROBE); 1596 parport_ip32_frob_control(p, DCR_nINIT, DCR_nINIT); 1597 if (parport_wait_peripheral(p, DSR_PERROR, DSR_PERROR)) 1598 pr_debug1(PPIP32 "%s: PEerror timeout 2 in %s\n", 1599 p->name, __func__); 1600 } 1601 1602 /* Adjust residue if needed */ 1603 parport_ip32_set_mode(p, ECR_MODE_CFG); 1604 cnfga = readb(priv->regs.cnfgA); 1605 if (!(cnfga & CNFGA_nBYTEINTRANS)) { 1606 pr_debug1(PPIP32 "%s: cnfgA contains 0x%02x\n", 1607 p->name, cnfga); 1608 pr_debug1(PPIP32 "%s: Accounting for extra byte\n", 1609 p->name); 1610 residue++; 1611 } 1612 1613 /* Don't care about partial PWords since we do not support 1614 * PWord != 1 byte. */ 1615 1616 /* Back to forward PS2 mode. */ 1617 parport_ip32_set_mode(p, ECR_MODE_PS2); 1618 parport_ip32_data_forward(p); 1619 1620 return residue; 1621 } 1622 1623 /** 1624 * parport_ip32_compat_write_data - write a block of data in SPP mode 1625 * @p: pointer to &struct parport 1626 * @buf: buffer of data to write 1627 * @len: length of buffer @buf 1628 * @flags: ignored 1629 */ 1630 static size_t parport_ip32_compat_write_data(struct parport *p, 1631 const void *buf, size_t len, 1632 int flags) 1633 { 1634 static unsigned int ready_before = 1; 1635 struct parport_ip32_private * const priv = p->physport->private_data; 1636 struct parport * const physport = p->physport; 1637 size_t written = 0; 1638 1639 /* Special case: a timeout of zero means we cannot call schedule(). 1640 * Also if O_NONBLOCK is set then use the default implementation. */ 1641 if (physport->cad->timeout <= PARPORT_INACTIVITY_O_NONBLOCK) 1642 return parport_ieee1284_write_compat(p, buf, len, flags); 1643 1644 /* Reset FIFO, go in forward mode, and disable ackIntEn */ 1645 parport_ip32_set_mode(p, ECR_MODE_PS2); 1646 parport_ip32_write_control(p, DCR_SELECT | DCR_nINIT); 1647 parport_ip32_data_forward(p); 1648 parport_ip32_disable_irq(p); 1649 parport_ip32_set_mode(p, ECR_MODE_PPF); 1650 physport->ieee1284.phase = IEEE1284_PH_FWD_DATA; 1651 1652 /* Wait for peripheral to become ready */ 1653 if (parport_wait_peripheral(p, DSR_nBUSY | DSR_nFAULT, 1654 DSR_nBUSY | DSR_nFAULT)) { 1655 /* Avoid to flood the logs */ 1656 if (ready_before) 1657 printk(KERN_INFO PPIP32 "%s: not ready in %s\n", 1658 p->name, __func__); 1659 ready_before = 0; 1660 goto stop; 1661 } 1662 ready_before = 1; 1663 1664 written = parport_ip32_fifo_write_block(p, buf, len); 1665 1666 /* Wait FIFO to empty. Timeout is proportional to FIFO_depth. */ 1667 parport_ip32_drain_fifo(p, physport->cad->timeout * priv->fifo_depth); 1668 1669 /* Check for a potential residue */ 1670 written -= parport_ip32_get_fifo_residue(p, ECR_MODE_PPF); 1671 1672 /* Then, wait for BUSY to get low. */ 1673 if (parport_wait_peripheral(p, DSR_nBUSY, DSR_nBUSY)) 1674 printk(KERN_DEBUG PPIP32 "%s: BUSY timeout in %s\n", 1675 p->name, __func__); 1676 1677 stop: 1678 /* Reset FIFO */ 1679 parport_ip32_set_mode(p, ECR_MODE_PS2); 1680 physport->ieee1284.phase = IEEE1284_PH_FWD_IDLE; 1681 1682 return written; 1683 } 1684 1685 /* 1686 * FIXME - Insert here parport_ip32_ecp_read_data(). 1687 */ 1688 1689 /** 1690 * parport_ip32_ecp_write_data - write a block of data in ECP mode 1691 * @p: pointer to &struct parport 1692 * @buf: buffer of data to write 1693 * @len: length of buffer @buf 1694 * @flags: ignored 1695 */ 1696 static size_t parport_ip32_ecp_write_data(struct parport *p, 1697 const void *buf, size_t len, 1698 int flags) 1699 { 1700 static unsigned int ready_before = 1; 1701 struct parport_ip32_private * const priv = p->physport->private_data; 1702 struct parport * const physport = p->physport; 1703 size_t written = 0; 1704 1705 /* Special case: a timeout of zero means we cannot call schedule(). 1706 * Also if O_NONBLOCK is set then use the default implementation. */ 1707 if (physport->cad->timeout <= PARPORT_INACTIVITY_O_NONBLOCK) 1708 return parport_ieee1284_ecp_write_data(p, buf, len, flags); 1709 1710 /* Negotiate to forward mode if necessary. */ 1711 if (physport->ieee1284.phase != IEEE1284_PH_FWD_IDLE) { 1712 /* Event 47: Set nInit high. */ 1713 parport_ip32_frob_control(p, DCR_nINIT | DCR_AUTOFD, 1714 DCR_nINIT | DCR_AUTOFD); 1715 1716 /* Event 49: PError goes high. */ 1717 if (parport_wait_peripheral(p, DSR_PERROR, DSR_PERROR)) { 1718 printk(KERN_DEBUG PPIP32 "%s: PError timeout in %s", 1719 p->name, __func__); 1720 physport->ieee1284.phase = IEEE1284_PH_ECP_DIR_UNKNOWN; 1721 return 0; 1722 } 1723 } 1724 1725 /* Reset FIFO, go in forward mode, and disable ackIntEn */ 1726 parport_ip32_set_mode(p, ECR_MODE_PS2); 1727 parport_ip32_write_control(p, DCR_SELECT | DCR_nINIT); 1728 parport_ip32_data_forward(p); 1729 parport_ip32_disable_irq(p); 1730 parport_ip32_set_mode(p, ECR_MODE_ECP); 1731 physport->ieee1284.phase = IEEE1284_PH_FWD_DATA; 1732 1733 /* Wait for peripheral to become ready */ 1734 if (parport_wait_peripheral(p, DSR_nBUSY | DSR_nFAULT, 1735 DSR_nBUSY | DSR_nFAULT)) { 1736 /* Avoid to flood the logs */ 1737 if (ready_before) 1738 printk(KERN_INFO PPIP32 "%s: not ready in %s\n", 1739 p->name, __func__); 1740 ready_before = 0; 1741 goto stop; 1742 } 1743 ready_before = 1; 1744 1745 written = parport_ip32_fifo_write_block(p, buf, len); 1746 1747 /* Wait FIFO to empty. Timeout is proportional to FIFO_depth. */ 1748 parport_ip32_drain_fifo(p, physport->cad->timeout * priv->fifo_depth); 1749 1750 /* Check for a potential residue */ 1751 written -= parport_ip32_get_fifo_residue(p, ECR_MODE_ECP); 1752 1753 /* Then, wait for BUSY to get low. */ 1754 if (parport_wait_peripheral(p, DSR_nBUSY, DSR_nBUSY)) 1755 printk(KERN_DEBUG PPIP32 "%s: BUSY timeout in %s\n", 1756 p->name, __func__); 1757 1758 stop: 1759 /* Reset FIFO */ 1760 parport_ip32_set_mode(p, ECR_MODE_PS2); 1761 physport->ieee1284.phase = IEEE1284_PH_FWD_IDLE; 1762 1763 return written; 1764 } 1765 1766 /* 1767 * FIXME - Insert here parport_ip32_ecp_write_addr(). 1768 */ 1769 1770 /*--- Default parport operations ---------------------------------------*/ 1771 1772 static __initdata struct parport_operations parport_ip32_ops = { 1773 .write_data = parport_ip32_write_data, 1774 .read_data = parport_ip32_read_data, 1775 1776 .write_control = parport_ip32_write_control, 1777 .read_control = parport_ip32_read_control, 1778 .frob_control = parport_ip32_frob_control, 1779 1780 .read_status = parport_ip32_read_status, 1781 1782 .enable_irq = parport_ip32_enable_irq, 1783 .disable_irq = parport_ip32_disable_irq, 1784 1785 .data_forward = parport_ip32_data_forward, 1786 .data_reverse = parport_ip32_data_reverse, 1787 1788 .init_state = parport_ip32_init_state, 1789 .save_state = parport_ip32_save_state, 1790 .restore_state = parport_ip32_restore_state, 1791 1792 .epp_write_data = parport_ieee1284_epp_write_data, 1793 .epp_read_data = parport_ieee1284_epp_read_data, 1794 .epp_write_addr = parport_ieee1284_epp_write_addr, 1795 .epp_read_addr = parport_ieee1284_epp_read_addr, 1796 1797 .ecp_write_data = parport_ieee1284_ecp_write_data, 1798 .ecp_read_data = parport_ieee1284_ecp_read_data, 1799 .ecp_write_addr = parport_ieee1284_ecp_write_addr, 1800 1801 .compat_write_data = parport_ieee1284_write_compat, 1802 .nibble_read_data = parport_ieee1284_read_nibble, 1803 .byte_read_data = parport_ieee1284_read_byte, 1804 1805 .owner = THIS_MODULE, 1806 }; 1807 1808 /*--- Device detection -------------------------------------------------*/ 1809 1810 /** 1811 * parport_ip32_ecp_supported - check for an ECP port 1812 * @p: pointer to the &parport structure 1813 * 1814 * Returns 1 if an ECP port is found, and 0 otherwise. This function actually 1815 * checks if an Extended Control Register seems to be present. On successful 1816 * return, the port is placed in SPP mode. 1817 */ 1818 static __init unsigned int parport_ip32_ecp_supported(struct parport *p) 1819 { 1820 struct parport_ip32_private * const priv = p->physport->private_data; 1821 unsigned int ecr; 1822 1823 ecr = ECR_MODE_PS2 | ECR_nERRINTR | ECR_SERVINTR; 1824 writeb(ecr, priv->regs.ecr); 1825 if (readb(priv->regs.ecr) != (ecr | ECR_F_EMPTY)) 1826 goto fail; 1827 1828 pr_probe(p, "Found working ECR register\n"); 1829 parport_ip32_set_mode(p, ECR_MODE_SPP); 1830 parport_ip32_write_control(p, DCR_SELECT | DCR_nINIT); 1831 return 1; 1832 1833 fail: 1834 pr_probe(p, "ECR register not found\n"); 1835 return 0; 1836 } 1837 1838 /** 1839 * parport_ip32_fifo_supported - check for FIFO parameters 1840 * @p: pointer to the &parport structure 1841 * 1842 * Check for FIFO parameters of an Extended Capabilities Port. Returns 1 on 1843 * success, and 0 otherwise. Adjust FIFO parameters in the parport structure. 1844 * On return, the port is placed in SPP mode. 1845 */ 1846 static __init unsigned int parport_ip32_fifo_supported(struct parport *p) 1847 { 1848 struct parport_ip32_private * const priv = p->physport->private_data; 1849 unsigned int configa, configb; 1850 unsigned int pword; 1851 unsigned int i; 1852 1853 /* Configuration mode */ 1854 parport_ip32_set_mode(p, ECR_MODE_CFG); 1855 configa = readb(priv->regs.cnfgA); 1856 configb = readb(priv->regs.cnfgB); 1857 1858 /* Find out PWord size */ 1859 switch (configa & CNFGA_ID_MASK) { 1860 case CNFGA_ID_8: 1861 pword = 1; 1862 break; 1863 case CNFGA_ID_16: 1864 pword = 2; 1865 break; 1866 case CNFGA_ID_32: 1867 pword = 4; 1868 break; 1869 default: 1870 pr_probe(p, "Unknown implementation ID: 0x%0x\n", 1871 (configa & CNFGA_ID_MASK) >> CNFGA_ID_SHIFT); 1872 goto fail; 1873 break; 1874 } 1875 if (pword != 1) { 1876 pr_probe(p, "Unsupported PWord size: %u\n", pword); 1877 goto fail; 1878 } 1879 priv->pword = pword; 1880 pr_probe(p, "PWord is %u bits\n", 8 * priv->pword); 1881 1882 /* Check for compression support */ 1883 writeb(configb | CNFGB_COMPRESS, priv->regs.cnfgB); 1884 if (readb(priv->regs.cnfgB) & CNFGB_COMPRESS) 1885 pr_probe(p, "Hardware compression detected (unsupported)\n"); 1886 writeb(configb & ~CNFGB_COMPRESS, priv->regs.cnfgB); 1887 1888 /* Reset FIFO and go in test mode (no interrupt, no DMA) */ 1889 parport_ip32_set_mode(p, ECR_MODE_TST); 1890 1891 /* FIFO must be empty now */ 1892 if (!(readb(priv->regs.ecr) & ECR_F_EMPTY)) { 1893 pr_probe(p, "FIFO not reset\n"); 1894 goto fail; 1895 } 1896 1897 /* Find out FIFO depth. */ 1898 priv->fifo_depth = 0; 1899 for (i = 0; i < 1024; i++) { 1900 if (readb(priv->regs.ecr) & ECR_F_FULL) { 1901 /* FIFO full */ 1902 priv->fifo_depth = i; 1903 break; 1904 } 1905 writeb((u8)i, priv->regs.fifo); 1906 } 1907 if (i >= 1024) { 1908 pr_probe(p, "Can't fill FIFO\n"); 1909 goto fail; 1910 } 1911 if (!priv->fifo_depth) { 1912 pr_probe(p, "Can't get FIFO depth\n"); 1913 goto fail; 1914 } 1915 pr_probe(p, "FIFO is %u PWords deep\n", priv->fifo_depth); 1916 1917 /* Enable interrupts */ 1918 parport_ip32_frob_econtrol(p, ECR_SERVINTR, 0); 1919 1920 /* Find out writeIntrThreshold: number of PWords we know we can write 1921 * if we get an interrupt. */ 1922 priv->writeIntrThreshold = 0; 1923 for (i = 0; i < priv->fifo_depth; i++) { 1924 if (readb(priv->regs.fifo) != (u8)i) { 1925 pr_probe(p, "Invalid data in FIFO\n"); 1926 goto fail; 1927 } 1928 if (!priv->writeIntrThreshold 1929 && readb(priv->regs.ecr) & ECR_SERVINTR) 1930 /* writeIntrThreshold reached */ 1931 priv->writeIntrThreshold = i + 1; 1932 if (i + 1 < priv->fifo_depth 1933 && readb(priv->regs.ecr) & ECR_F_EMPTY) { 1934 /* FIFO empty before the last byte? */ 1935 pr_probe(p, "Data lost in FIFO\n"); 1936 goto fail; 1937 } 1938 } 1939 if (!priv->writeIntrThreshold) { 1940 pr_probe(p, "Can't get writeIntrThreshold\n"); 1941 goto fail; 1942 } 1943 pr_probe(p, "writeIntrThreshold is %u\n", priv->writeIntrThreshold); 1944 1945 /* FIFO must be empty now */ 1946 if (!(readb(priv->regs.ecr) & ECR_F_EMPTY)) { 1947 pr_probe(p, "Can't empty FIFO\n"); 1948 goto fail; 1949 } 1950 1951 /* Reset FIFO */ 1952 parport_ip32_set_mode(p, ECR_MODE_PS2); 1953 /* Set reverse direction (must be in PS2 mode) */ 1954 parport_ip32_data_reverse(p); 1955 /* Test FIFO, no interrupt, no DMA */ 1956 parport_ip32_set_mode(p, ECR_MODE_TST); 1957 /* Enable interrupts */ 1958 parport_ip32_frob_econtrol(p, ECR_SERVINTR, 0); 1959 1960 /* Find out readIntrThreshold: number of PWords we can read if we get 1961 * an interrupt. */ 1962 priv->readIntrThreshold = 0; 1963 for (i = 0; i < priv->fifo_depth; i++) { 1964 writeb(0xaa, priv->regs.fifo); 1965 if (readb(priv->regs.ecr) & ECR_SERVINTR) { 1966 /* readIntrThreshold reached */ 1967 priv->readIntrThreshold = i + 1; 1968 break; 1969 } 1970 } 1971 if (!priv->readIntrThreshold) { 1972 pr_probe(p, "Can't get readIntrThreshold\n"); 1973 goto fail; 1974 } 1975 pr_probe(p, "readIntrThreshold is %u\n", priv->readIntrThreshold); 1976 1977 /* Reset ECR */ 1978 parport_ip32_set_mode(p, ECR_MODE_PS2); 1979 parport_ip32_data_forward(p); 1980 parport_ip32_set_mode(p, ECR_MODE_SPP); 1981 return 1; 1982 1983 fail: 1984 priv->fifo_depth = 0; 1985 parport_ip32_set_mode(p, ECR_MODE_SPP); 1986 return 0; 1987 } 1988 1989 /*--- Initialization code ----------------------------------------------*/ 1990 1991 /** 1992 * parport_ip32_make_isa_registers - compute (ISA) register addresses 1993 * @regs: pointer to &struct parport_ip32_regs to fill 1994 * @base: base address of standard and EPP registers 1995 * @base_hi: base address of ECP registers 1996 * @regshift: how much to shift register offset by 1997 * 1998 * Compute register addresses, according to the ISA standard. The addresses 1999 * of the standard and EPP registers are computed from address @base. The 2000 * addresses of the ECP registers are computed from address @base_hi. 2001 */ 2002 static void __init 2003 parport_ip32_make_isa_registers(struct parport_ip32_regs *regs, 2004 void __iomem *base, void __iomem *base_hi, 2005 unsigned int regshift) 2006 { 2007 #define r_base(offset) ((u8 __iomem *)base + ((offset) << regshift)) 2008 #define r_base_hi(offset) ((u8 __iomem *)base_hi + ((offset) << regshift)) 2009 *regs = (struct parport_ip32_regs){ 2010 .data = r_base(0), 2011 .dsr = r_base(1), 2012 .dcr = r_base(2), 2013 .eppAddr = r_base(3), 2014 .eppData0 = r_base(4), 2015 .eppData1 = r_base(5), 2016 .eppData2 = r_base(6), 2017 .eppData3 = r_base(7), 2018 .ecpAFifo = r_base(0), 2019 .fifo = r_base_hi(0), 2020 .cnfgA = r_base_hi(0), 2021 .cnfgB = r_base_hi(1), 2022 .ecr = r_base_hi(2) 2023 }; 2024 #undef r_base_hi 2025 #undef r_base 2026 } 2027 2028 /** 2029 * parport_ip32_probe_port - probe and register IP32 built-in parallel port 2030 * 2031 * Returns the new allocated &parport structure. On error, an error code is 2032 * encoded in return value with the ERR_PTR function. 2033 */ 2034 static __init struct parport *parport_ip32_probe_port(void) 2035 { 2036 struct parport_ip32_regs regs; 2037 struct parport_ip32_private *priv = NULL; 2038 struct parport_operations *ops = NULL; 2039 struct parport *p = NULL; 2040 int err; 2041 2042 parport_ip32_make_isa_registers(®s, &mace->isa.parallel, 2043 &mace->isa.ecp1284, 8 /* regshift */); 2044 2045 ops = kmalloc(sizeof(struct parport_operations), GFP_KERNEL); 2046 priv = kmalloc(sizeof(struct parport_ip32_private), GFP_KERNEL); 2047 p = parport_register_port(0, PARPORT_IRQ_NONE, PARPORT_DMA_NONE, ops); 2048 if (ops == NULL || priv == NULL || p == NULL) { 2049 err = -ENOMEM; 2050 goto fail; 2051 } 2052 p->base = MACE_BASE + offsetof(struct sgi_mace, isa.parallel); 2053 p->base_hi = MACE_BASE + offsetof(struct sgi_mace, isa.ecp1284); 2054 p->private_data = priv; 2055 2056 *ops = parport_ip32_ops; 2057 *priv = (struct parport_ip32_private){ 2058 .regs = regs, 2059 .dcr_writable = DCR_DIR | DCR_SELECT | DCR_nINIT | 2060 DCR_AUTOFD | DCR_STROBE, 2061 .irq_mode = PARPORT_IP32_IRQ_FWD, 2062 }; 2063 init_completion(&priv->irq_complete); 2064 2065 /* Probe port. */ 2066 if (!parport_ip32_ecp_supported(p)) { 2067 err = -ENODEV; 2068 goto fail; 2069 } 2070 parport_ip32_dump_state(p, "begin init", 0); 2071 2072 /* We found what looks like a working ECR register. Simply assume 2073 * that all modes are correctly supported. Enable basic modes. */ 2074 p->modes = PARPORT_MODE_PCSPP | PARPORT_MODE_SAFEININT; 2075 p->modes |= PARPORT_MODE_TRISTATE; 2076 2077 if (!parport_ip32_fifo_supported(p)) { 2078 printk(KERN_WARNING PPIP32 2079 "%s: error: FIFO disabled\n", p->name); 2080 /* Disable hardware modes depending on a working FIFO. */ 2081 features &= ~PARPORT_IP32_ENABLE_SPP; 2082 features &= ~PARPORT_IP32_ENABLE_ECP; 2083 /* DMA is not needed if FIFO is not supported. */ 2084 features &= ~PARPORT_IP32_ENABLE_DMA; 2085 } 2086 2087 /* Request IRQ */ 2088 if (features & PARPORT_IP32_ENABLE_IRQ) { 2089 int irq = MACEISA_PARALLEL_IRQ; 2090 if (request_irq(irq, parport_ip32_interrupt, 0, p->name, p)) { 2091 printk(KERN_WARNING PPIP32 2092 "%s: error: IRQ disabled\n", p->name); 2093 /* DMA cannot work without interrupts. */ 2094 features &= ~PARPORT_IP32_ENABLE_DMA; 2095 } else { 2096 pr_probe(p, "Interrupt support enabled\n"); 2097 p->irq = irq; 2098 priv->dcr_writable |= DCR_IRQ; 2099 } 2100 } 2101 2102 /* Allocate DMA resources */ 2103 if (features & PARPORT_IP32_ENABLE_DMA) { 2104 if (parport_ip32_dma_register()) 2105 printk(KERN_WARNING PPIP32 2106 "%s: error: DMA disabled\n", p->name); 2107 else { 2108 pr_probe(p, "DMA support enabled\n"); 2109 p->dma = 0; /* arbitrary value != PARPORT_DMA_NONE */ 2110 p->modes |= PARPORT_MODE_DMA; 2111 } 2112 } 2113 2114 if (features & PARPORT_IP32_ENABLE_SPP) { 2115 /* Enable compatibility FIFO mode */ 2116 p->ops->compat_write_data = parport_ip32_compat_write_data; 2117 p->modes |= PARPORT_MODE_COMPAT; 2118 pr_probe(p, "Hardware support for SPP mode enabled\n"); 2119 } 2120 if (features & PARPORT_IP32_ENABLE_EPP) { 2121 /* Set up access functions to use EPP hardware. */ 2122 p->ops->epp_read_data = parport_ip32_epp_read_data; 2123 p->ops->epp_write_data = parport_ip32_epp_write_data; 2124 p->ops->epp_read_addr = parport_ip32_epp_read_addr; 2125 p->ops->epp_write_addr = parport_ip32_epp_write_addr; 2126 p->modes |= PARPORT_MODE_EPP; 2127 pr_probe(p, "Hardware support for EPP mode enabled\n"); 2128 } 2129 if (features & PARPORT_IP32_ENABLE_ECP) { 2130 /* Enable ECP FIFO mode */ 2131 p->ops->ecp_write_data = parport_ip32_ecp_write_data; 2132 /* FIXME - not implemented */ 2133 /* p->ops->ecp_read_data = parport_ip32_ecp_read_data; */ 2134 /* p->ops->ecp_write_addr = parport_ip32_ecp_write_addr; */ 2135 p->modes |= PARPORT_MODE_ECP; 2136 pr_probe(p, "Hardware support for ECP mode enabled\n"); 2137 } 2138 2139 /* Initialize the port with sensible values */ 2140 parport_ip32_set_mode(p, ECR_MODE_PS2); 2141 parport_ip32_write_control(p, DCR_SELECT | DCR_nINIT); 2142 parport_ip32_data_forward(p); 2143 parport_ip32_disable_irq(p); 2144 parport_ip32_write_data(p, 0x00); 2145 parport_ip32_dump_state(p, "end init", 0); 2146 2147 /* Print out what we found */ 2148 printk(KERN_INFO "%s: SGI IP32 at 0x%lx (0x%lx)", 2149 p->name, p->base, p->base_hi); 2150 if (p->irq != PARPORT_IRQ_NONE) 2151 printk(", irq %d", p->irq); 2152 printk(" ["); 2153 #define printmode(x) if (p->modes & PARPORT_MODE_##x) \ 2154 printk("%s%s", f++ ? "," : "", #x) 2155 { 2156 unsigned int f = 0; 2157 printmode(PCSPP); 2158 printmode(TRISTATE); 2159 printmode(COMPAT); 2160 printmode(EPP); 2161 printmode(ECP); 2162 printmode(DMA); 2163 } 2164 #undef printmode 2165 printk("]\n"); 2166 2167 parport_announce_port(p); 2168 return p; 2169 2170 fail: 2171 if (p) 2172 parport_put_port(p); 2173 kfree(priv); 2174 kfree(ops); 2175 return ERR_PTR(err); 2176 } 2177 2178 /** 2179 * parport_ip32_unregister_port - unregister a parallel port 2180 * @p: pointer to the &struct parport 2181 * 2182 * Unregisters a parallel port and free previously allocated resources 2183 * (memory, IRQ, ...). 2184 */ 2185 static __exit void parport_ip32_unregister_port(struct parport *p) 2186 { 2187 struct parport_ip32_private * const priv = p->physport->private_data; 2188 struct parport_operations *ops = p->ops; 2189 2190 parport_remove_port(p); 2191 if (p->modes & PARPORT_MODE_DMA) 2192 parport_ip32_dma_unregister(); 2193 if (p->irq != PARPORT_IRQ_NONE) 2194 free_irq(p->irq, p); 2195 parport_put_port(p); 2196 kfree(priv); 2197 kfree(ops); 2198 } 2199 2200 /** 2201 * parport_ip32_init - module initialization function 2202 */ 2203 static int __init parport_ip32_init(void) 2204 { 2205 pr_info(PPIP32 "SGI IP32 built-in parallel port driver v0.6\n"); 2206 this_port = parport_ip32_probe_port(); 2207 return IS_ERR(this_port) ? PTR_ERR(this_port) : 0; 2208 } 2209 2210 /** 2211 * parport_ip32_exit - module termination function 2212 */ 2213 static void __exit parport_ip32_exit(void) 2214 { 2215 parport_ip32_unregister_port(this_port); 2216 } 2217 2218 /*--- Module stuff -----------------------------------------------------*/ 2219 2220 MODULE_AUTHOR("Arnaud Giersch <arnaud.giersch@free.fr>"); 2221 MODULE_DESCRIPTION("SGI IP32 built-in parallel port driver"); 2222 MODULE_LICENSE("GPL"); 2223 MODULE_VERSION("0.6"); /* update in parport_ip32_init() too */ 2224 2225 module_init(parport_ip32_init); 2226 module_exit(parport_ip32_exit); 2227 2228 module_param(verbose_probing, bool, S_IRUGO); 2229 MODULE_PARM_DESC(verbose_probing, "Log chit-chat during initialization"); 2230 2231 module_param(features, uint, S_IRUGO); 2232 MODULE_PARM_DESC(features, 2233 "Bit mask of features to enable" 2234 ", bit 0: IRQ support" 2235 ", bit 1: DMA support" 2236 ", bit 2: hardware SPP mode" 2237 ", bit 3: hardware EPP mode" 2238 ", bit 4: hardware ECP mode"); 2239 2240 /*--- Inform (X)Emacs about preferred coding style ---------------------*/ 2241 /* 2242 * Local Variables: 2243 * mode: c 2244 * c-file-style: "linux" 2245 * indent-tabs-mode: t 2246 * tab-width: 8 2247 * fill-column: 78 2248 * ispell-local-dictionary: "american" 2249 * End: 2250 */ 2251