xref: /openbmc/linux/drivers/parisc/sba_iommu.c (revision 95e9fd10)
1 /*
2 **  System Bus Adapter (SBA) I/O MMU manager
3 **
4 **	(c) Copyright 2000-2004 Grant Grundler <grundler @ parisc-linux x org>
5 **	(c) Copyright 2004 Naresh Kumar Inna <knaresh at india x hp x com>
6 **	(c) Copyright 2000-2004 Hewlett-Packard Company
7 **
8 **	Portions (c) 1999 Dave S. Miller (from sparc64 I/O MMU code)
9 **
10 **	This program is free software; you can redistribute it and/or modify
11 **	it under the terms of the GNU General Public License as published by
12 **      the Free Software Foundation; either version 2 of the License, or
13 **      (at your option) any later version.
14 **
15 **
16 ** This module initializes the IOC (I/O Controller) found on B1000/C3000/
17 ** J5000/J7000/N-class/L-class machines and their successors.
18 **
19 ** FIXME: add DMA hint support programming in both sba and lba modules.
20 */
21 
22 #include <linux/types.h>
23 #include <linux/kernel.h>
24 #include <linux/spinlock.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 
28 #include <linux/mm.h>
29 #include <linux/string.h>
30 #include <linux/pci.h>
31 #include <linux/scatterlist.h>
32 #include <linux/iommu-helper.h>
33 
34 #include <asm/byteorder.h>
35 #include <asm/io.h>
36 #include <asm/dma.h>		/* for DMA_CHUNK_SIZE */
37 
38 #include <asm/hardware.h>	/* for register_parisc_driver() stuff */
39 
40 #include <linux/proc_fs.h>
41 #include <linux/seq_file.h>
42 #include <linux/module.h>
43 
44 #include <asm/ropes.h>
45 #include <asm/mckinley.h>	/* for proc_mckinley_root */
46 #include <asm/runway.h>		/* for proc_runway_root */
47 #include <asm/page.h>		/* for PAGE0 */
48 #include <asm/pdc.h>		/* for PDC_MODEL_* */
49 #include <asm/pdcpat.h>		/* for is_pdc_pat() */
50 #include <asm/parisc-device.h>
51 
52 #define MODULE_NAME "SBA"
53 
54 /*
55 ** The number of debug flags is a clue - this code is fragile.
56 ** Don't even think about messing with it unless you have
57 ** plenty of 710's to sacrifice to the computer gods. :^)
58 */
59 #undef DEBUG_SBA_INIT
60 #undef DEBUG_SBA_RUN
61 #undef DEBUG_SBA_RUN_SG
62 #undef DEBUG_SBA_RESOURCE
63 #undef ASSERT_PDIR_SANITY
64 #undef DEBUG_LARGE_SG_ENTRIES
65 #undef DEBUG_DMB_TRAP
66 
67 #ifdef DEBUG_SBA_INIT
68 #define DBG_INIT(x...)	printk(x)
69 #else
70 #define DBG_INIT(x...)
71 #endif
72 
73 #ifdef DEBUG_SBA_RUN
74 #define DBG_RUN(x...)	printk(x)
75 #else
76 #define DBG_RUN(x...)
77 #endif
78 
79 #ifdef DEBUG_SBA_RUN_SG
80 #define DBG_RUN_SG(x...)	printk(x)
81 #else
82 #define DBG_RUN_SG(x...)
83 #endif
84 
85 
86 #ifdef DEBUG_SBA_RESOURCE
87 #define DBG_RES(x...)	printk(x)
88 #else
89 #define DBG_RES(x...)
90 #endif
91 
92 #define SBA_INLINE	__inline__
93 
94 #define DEFAULT_DMA_HINT_REG	0
95 
96 struct sba_device *sba_list;
97 EXPORT_SYMBOL_GPL(sba_list);
98 
99 static unsigned long ioc_needs_fdc = 0;
100 
101 /* global count of IOMMUs in the system */
102 static unsigned int global_ioc_cnt = 0;
103 
104 /* PA8700 (Piranha 2.2) bug workaround */
105 static unsigned long piranha_bad_128k = 0;
106 
107 /* Looks nice and keeps the compiler happy */
108 #define SBA_DEV(d) ((struct sba_device *) (d))
109 
110 #ifdef CONFIG_AGP_PARISC
111 #define SBA_AGP_SUPPORT
112 #endif /*CONFIG_AGP_PARISC*/
113 
114 #ifdef SBA_AGP_SUPPORT
115 static int sba_reserve_agpgart = 1;
116 module_param(sba_reserve_agpgart, int, 0444);
117 MODULE_PARM_DESC(sba_reserve_agpgart, "Reserve half of IO pdir as AGPGART");
118 #endif
119 
120 
121 /************************************
122 ** SBA register read and write support
123 **
124 ** BE WARNED: register writes are posted.
125 **  (ie follow writes which must reach HW with a read)
126 **
127 ** Superdome (in particular, REO) allows only 64-bit CSR accesses.
128 */
129 #define READ_REG32(addr)	readl(addr)
130 #define READ_REG64(addr)	readq(addr)
131 #define WRITE_REG32(val, addr)	writel((val), (addr))
132 #define WRITE_REG64(val, addr)	writeq((val), (addr))
133 
134 #ifdef CONFIG_64BIT
135 #define READ_REG(addr)		READ_REG64(addr)
136 #define WRITE_REG(value, addr)	WRITE_REG64(value, addr)
137 #else
138 #define READ_REG(addr)		READ_REG32(addr)
139 #define WRITE_REG(value, addr)	WRITE_REG32(value, addr)
140 #endif
141 
142 #ifdef DEBUG_SBA_INIT
143 
144 /* NOTE: When CONFIG_64BIT isn't defined, READ_REG64() is two 32-bit reads */
145 
146 /**
147  * sba_dump_ranges - debugging only - print ranges assigned to this IOA
148  * @hpa: base address of the sba
149  *
150  * Print the MMIO and IO Port address ranges forwarded by an Astro/Ike/RIO
151  * IO Adapter (aka Bus Converter).
152  */
153 static void
154 sba_dump_ranges(void __iomem *hpa)
155 {
156 	DBG_INIT("SBA at 0x%p\n", hpa);
157 	DBG_INIT("IOS_DIST_BASE   : %Lx\n", READ_REG64(hpa+IOS_DIST_BASE));
158 	DBG_INIT("IOS_DIST_MASK   : %Lx\n", READ_REG64(hpa+IOS_DIST_MASK));
159 	DBG_INIT("IOS_DIST_ROUTE  : %Lx\n", READ_REG64(hpa+IOS_DIST_ROUTE));
160 	DBG_INIT("\n");
161 	DBG_INIT("IOS_DIRECT_BASE : %Lx\n", READ_REG64(hpa+IOS_DIRECT_BASE));
162 	DBG_INIT("IOS_DIRECT_MASK : %Lx\n", READ_REG64(hpa+IOS_DIRECT_MASK));
163 	DBG_INIT("IOS_DIRECT_ROUTE: %Lx\n", READ_REG64(hpa+IOS_DIRECT_ROUTE));
164 }
165 
166 /**
167  * sba_dump_tlb - debugging only - print IOMMU operating parameters
168  * @hpa: base address of the IOMMU
169  *
170  * Print the size/location of the IO MMU PDIR.
171  */
172 static void sba_dump_tlb(void __iomem *hpa)
173 {
174 	DBG_INIT("IO TLB at 0x%p\n", hpa);
175 	DBG_INIT("IOC_IBASE    : 0x%Lx\n", READ_REG64(hpa+IOC_IBASE));
176 	DBG_INIT("IOC_IMASK    : 0x%Lx\n", READ_REG64(hpa+IOC_IMASK));
177 	DBG_INIT("IOC_TCNFG    : 0x%Lx\n", READ_REG64(hpa+IOC_TCNFG));
178 	DBG_INIT("IOC_PDIR_BASE: 0x%Lx\n", READ_REG64(hpa+IOC_PDIR_BASE));
179 	DBG_INIT("\n");
180 }
181 #else
182 #define sba_dump_ranges(x)
183 #define sba_dump_tlb(x)
184 #endif	/* DEBUG_SBA_INIT */
185 
186 
187 #ifdef ASSERT_PDIR_SANITY
188 
189 /**
190  * sba_dump_pdir_entry - debugging only - print one IOMMU PDIR entry
191  * @ioc: IO MMU structure which owns the pdir we are interested in.
192  * @msg: text to print ont the output line.
193  * @pide: pdir index.
194  *
195  * Print one entry of the IO MMU PDIR in human readable form.
196  */
197 static void
198 sba_dump_pdir_entry(struct ioc *ioc, char *msg, uint pide)
199 {
200 	/* start printing from lowest pde in rval */
201 	u64 *ptr = &(ioc->pdir_base[pide & (~0U * BITS_PER_LONG)]);
202 	unsigned long *rptr = (unsigned long *) &(ioc->res_map[(pide >>3) & ~(sizeof(unsigned long) - 1)]);
203 	uint rcnt;
204 
205 	printk(KERN_DEBUG "SBA: %s rp %p bit %d rval 0x%lx\n",
206 		 msg,
207 		 rptr, pide & (BITS_PER_LONG - 1), *rptr);
208 
209 	rcnt = 0;
210 	while (rcnt < BITS_PER_LONG) {
211 		printk(KERN_DEBUG "%s %2d %p %016Lx\n",
212 			(rcnt == (pide & (BITS_PER_LONG - 1)))
213 				? "    -->" : "       ",
214 			rcnt, ptr, *ptr );
215 		rcnt++;
216 		ptr++;
217 	}
218 	printk(KERN_DEBUG "%s", msg);
219 }
220 
221 
222 /**
223  * sba_check_pdir - debugging only - consistency checker
224  * @ioc: IO MMU structure which owns the pdir we are interested in.
225  * @msg: text to print ont the output line.
226  *
227  * Verify the resource map and pdir state is consistent
228  */
229 static int
230 sba_check_pdir(struct ioc *ioc, char *msg)
231 {
232 	u32 *rptr_end = (u32 *) &(ioc->res_map[ioc->res_size]);
233 	u32 *rptr = (u32 *) ioc->res_map;	/* resource map ptr */
234 	u64 *pptr = ioc->pdir_base;	/* pdir ptr */
235 	uint pide = 0;
236 
237 	while (rptr < rptr_end) {
238 		u32 rval = *rptr;
239 		int rcnt = 32;	/* number of bits we might check */
240 
241 		while (rcnt) {
242 			/* Get last byte and highest bit from that */
243 			u32 pde = ((u32) (((char *)pptr)[7])) << 24;
244 			if ((rval ^ pde) & 0x80000000)
245 			{
246 				/*
247 				** BUMMER!  -- res_map != pdir --
248 				** Dump rval and matching pdir entries
249 				*/
250 				sba_dump_pdir_entry(ioc, msg, pide);
251 				return(1);
252 			}
253 			rcnt--;
254 			rval <<= 1;	/* try the next bit */
255 			pptr++;
256 			pide++;
257 		}
258 		rptr++;	/* look at next word of res_map */
259 	}
260 	/* It'd be nice if we always got here :^) */
261 	return 0;
262 }
263 
264 
265 /**
266  * sba_dump_sg - debugging only - print Scatter-Gather list
267  * @ioc: IO MMU structure which owns the pdir we are interested in.
268  * @startsg: head of the SG list
269  * @nents: number of entries in SG list
270  *
271  * print the SG list so we can verify it's correct by hand.
272  */
273 static void
274 sba_dump_sg( struct ioc *ioc, struct scatterlist *startsg, int nents)
275 {
276 	while (nents-- > 0) {
277 		printk(KERN_DEBUG " %d : %08lx/%05x %p/%05x\n",
278 				nents,
279 				(unsigned long) sg_dma_address(startsg),
280 				sg_dma_len(startsg),
281 				sg_virt_addr(startsg), startsg->length);
282 		startsg++;
283 	}
284 }
285 
286 #endif /* ASSERT_PDIR_SANITY */
287 
288 
289 
290 
291 /**************************************************************
292 *
293 *   I/O Pdir Resource Management
294 *
295 *   Bits set in the resource map are in use.
296 *   Each bit can represent a number of pages.
297 *   LSbs represent lower addresses (IOVA's).
298 *
299 ***************************************************************/
300 #define PAGES_PER_RANGE 1	/* could increase this to 4 or 8 if needed */
301 
302 /* Convert from IOVP to IOVA and vice versa. */
303 
304 #ifdef ZX1_SUPPORT
305 /* Pluto (aka ZX1) boxes need to set or clear the ibase bits appropriately */
306 #define SBA_IOVA(ioc,iovp,offset,hint_reg) ((ioc->ibase) | (iovp) | (offset))
307 #define SBA_IOVP(ioc,iova) ((iova) & (ioc)->iovp_mask)
308 #else
309 /* only support Astro and ancestors. Saves a few cycles in key places */
310 #define SBA_IOVA(ioc,iovp,offset,hint_reg) ((iovp) | (offset))
311 #define SBA_IOVP(ioc,iova) (iova)
312 #endif
313 
314 #define PDIR_INDEX(iovp)   ((iovp)>>IOVP_SHIFT)
315 
316 #define RESMAP_MASK(n)    (~0UL << (BITS_PER_LONG - (n)))
317 #define RESMAP_IDX_MASK   (sizeof(unsigned long) - 1)
318 
319 static unsigned long ptr_to_pide(struct ioc *ioc, unsigned long *res_ptr,
320 				 unsigned int bitshiftcnt)
321 {
322 	return (((unsigned long)res_ptr - (unsigned long)ioc->res_map) << 3)
323 		+ bitshiftcnt;
324 }
325 
326 /**
327  * sba_search_bitmap - find free space in IO PDIR resource bitmap
328  * @ioc: IO MMU structure which owns the pdir we are interested in.
329  * @bits_wanted: number of entries we need.
330  *
331  * Find consecutive free bits in resource bitmap.
332  * Each bit represents one entry in the IO Pdir.
333  * Cool perf optimization: search for log2(size) bits at a time.
334  */
335 static SBA_INLINE unsigned long
336 sba_search_bitmap(struct ioc *ioc, struct device *dev,
337 		  unsigned long bits_wanted)
338 {
339 	unsigned long *res_ptr = ioc->res_hint;
340 	unsigned long *res_end = (unsigned long *) &(ioc->res_map[ioc->res_size]);
341 	unsigned long pide = ~0UL, tpide;
342 	unsigned long boundary_size;
343 	unsigned long shift;
344 	int ret;
345 
346 	boundary_size = ALIGN((unsigned long long)dma_get_seg_boundary(dev) + 1,
347 			      1ULL << IOVP_SHIFT) >> IOVP_SHIFT;
348 
349 #if defined(ZX1_SUPPORT)
350 	BUG_ON(ioc->ibase & ~IOVP_MASK);
351 	shift = ioc->ibase >> IOVP_SHIFT;
352 #else
353 	shift = 0;
354 #endif
355 
356 	if (bits_wanted > (BITS_PER_LONG/2)) {
357 		/* Search word at a time - no mask needed */
358 		for(; res_ptr < res_end; ++res_ptr) {
359 			tpide = ptr_to_pide(ioc, res_ptr, 0);
360 			ret = iommu_is_span_boundary(tpide, bits_wanted,
361 						     shift,
362 						     boundary_size);
363 			if ((*res_ptr == 0) && !ret) {
364 				*res_ptr = RESMAP_MASK(bits_wanted);
365 				pide = tpide;
366 				break;
367 			}
368 		}
369 		/* point to the next word on next pass */
370 		res_ptr++;
371 		ioc->res_bitshift = 0;
372 	} else {
373 		/*
374 		** Search the resource bit map on well-aligned values.
375 		** "o" is the alignment.
376 		** We need the alignment to invalidate I/O TLB using
377 		** SBA HW features in the unmap path.
378 		*/
379 		unsigned long o = 1 << get_order(bits_wanted << PAGE_SHIFT);
380 		uint bitshiftcnt = ALIGN(ioc->res_bitshift, o);
381 		unsigned long mask;
382 
383 		if (bitshiftcnt >= BITS_PER_LONG) {
384 			bitshiftcnt = 0;
385 			res_ptr++;
386 		}
387 		mask = RESMAP_MASK(bits_wanted) >> bitshiftcnt;
388 
389 		DBG_RES("%s() o %ld %p", __func__, o, res_ptr);
390 		while(res_ptr < res_end)
391 		{
392 			DBG_RES("    %p %lx %lx\n", res_ptr, mask, *res_ptr);
393 			WARN_ON(mask == 0);
394 			tpide = ptr_to_pide(ioc, res_ptr, bitshiftcnt);
395 			ret = iommu_is_span_boundary(tpide, bits_wanted,
396 						     shift,
397 						     boundary_size);
398 			if ((((*res_ptr) & mask) == 0) && !ret) {
399 				*res_ptr |= mask;     /* mark resources busy! */
400 				pide = tpide;
401 				break;
402 			}
403 			mask >>= o;
404 			bitshiftcnt += o;
405 			if (mask == 0) {
406 				mask = RESMAP_MASK(bits_wanted);
407 				bitshiftcnt=0;
408 				res_ptr++;
409 			}
410 		}
411 		/* look in the same word on the next pass */
412 		ioc->res_bitshift = bitshiftcnt + bits_wanted;
413 	}
414 
415 	/* wrapped ? */
416 	if (res_end <= res_ptr) {
417 		ioc->res_hint = (unsigned long *) ioc->res_map;
418 		ioc->res_bitshift = 0;
419 	} else {
420 		ioc->res_hint = res_ptr;
421 	}
422 	return (pide);
423 }
424 
425 
426 /**
427  * sba_alloc_range - find free bits and mark them in IO PDIR resource bitmap
428  * @ioc: IO MMU structure which owns the pdir we are interested in.
429  * @size: number of bytes to create a mapping for
430  *
431  * Given a size, find consecutive unmarked and then mark those bits in the
432  * resource bit map.
433  */
434 static int
435 sba_alloc_range(struct ioc *ioc, struct device *dev, size_t size)
436 {
437 	unsigned int pages_needed = size >> IOVP_SHIFT;
438 #ifdef SBA_COLLECT_STATS
439 	unsigned long cr_start = mfctl(16);
440 #endif
441 	unsigned long pide;
442 
443 	pide = sba_search_bitmap(ioc, dev, pages_needed);
444 	if (pide >= (ioc->res_size << 3)) {
445 		pide = sba_search_bitmap(ioc, dev, pages_needed);
446 		if (pide >= (ioc->res_size << 3))
447 			panic("%s: I/O MMU @ %p is out of mapping resources\n",
448 			      __FILE__, ioc->ioc_hpa);
449 	}
450 
451 #ifdef ASSERT_PDIR_SANITY
452 	/* verify the first enable bit is clear */
453 	if(0x00 != ((u8 *) ioc->pdir_base)[pide*sizeof(u64) + 7]) {
454 		sba_dump_pdir_entry(ioc, "sba_search_bitmap() botched it?", pide);
455 	}
456 #endif
457 
458 	DBG_RES("%s(%x) %d -> %lx hint %x/%x\n",
459 		__func__, size, pages_needed, pide,
460 		(uint) ((unsigned long) ioc->res_hint - (unsigned long) ioc->res_map),
461 		ioc->res_bitshift );
462 
463 #ifdef SBA_COLLECT_STATS
464 	{
465 		unsigned long cr_end = mfctl(16);
466 		unsigned long tmp = cr_end - cr_start;
467 		/* check for roll over */
468 		cr_start = (cr_end < cr_start) ?  -(tmp) : (tmp);
469 	}
470 	ioc->avg_search[ioc->avg_idx++] = cr_start;
471 	ioc->avg_idx &= SBA_SEARCH_SAMPLE - 1;
472 
473 	ioc->used_pages += pages_needed;
474 #endif
475 
476 	return (pide);
477 }
478 
479 
480 /**
481  * sba_free_range - unmark bits in IO PDIR resource bitmap
482  * @ioc: IO MMU structure which owns the pdir we are interested in.
483  * @iova: IO virtual address which was previously allocated.
484  * @size: number of bytes to create a mapping for
485  *
486  * clear bits in the ioc's resource map
487  */
488 static SBA_INLINE void
489 sba_free_range(struct ioc *ioc, dma_addr_t iova, size_t size)
490 {
491 	unsigned long iovp = SBA_IOVP(ioc, iova);
492 	unsigned int pide = PDIR_INDEX(iovp);
493 	unsigned int ridx = pide >> 3;	/* convert bit to byte address */
494 	unsigned long *res_ptr = (unsigned long *) &((ioc)->res_map[ridx & ~RESMAP_IDX_MASK]);
495 
496 	int bits_not_wanted = size >> IOVP_SHIFT;
497 
498 	/* 3-bits "bit" address plus 2 (or 3) bits for "byte" == bit in word */
499 	unsigned long m = RESMAP_MASK(bits_not_wanted) >> (pide & (BITS_PER_LONG - 1));
500 
501 	DBG_RES("%s( ,%x,%x) %x/%lx %x %p %lx\n",
502 		__func__, (uint) iova, size,
503 		bits_not_wanted, m, pide, res_ptr, *res_ptr);
504 
505 #ifdef SBA_COLLECT_STATS
506 	ioc->used_pages -= bits_not_wanted;
507 #endif
508 
509 	*res_ptr &= ~m;
510 }
511 
512 
513 /**************************************************************
514 *
515 *   "Dynamic DMA Mapping" support (aka "Coherent I/O")
516 *
517 ***************************************************************/
518 
519 #ifdef SBA_HINT_SUPPORT
520 #define SBA_DMA_HINT(ioc, val) ((val) << (ioc)->hint_shift_pdir)
521 #endif
522 
523 typedef unsigned long space_t;
524 #define KERNEL_SPACE 0
525 
526 /**
527  * sba_io_pdir_entry - fill in one IO PDIR entry
528  * @pdir_ptr:  pointer to IO PDIR entry
529  * @sid: process Space ID - currently only support KERNEL_SPACE
530  * @vba: Virtual CPU address of buffer to map
531  * @hint: DMA hint set to use for this mapping
532  *
533  * SBA Mapping Routine
534  *
535  * Given a virtual address (vba, arg2) and space id, (sid, arg1)
536  * sba_io_pdir_entry() loads the I/O PDIR entry pointed to by
537  * pdir_ptr (arg0).
538  * Using the bass-ackwards HP bit numbering, Each IO Pdir entry
539  * for Astro/Ike looks like:
540  *
541  *
542  *  0                    19                                 51   55       63
543  * +-+---------------------+----------------------------------+----+--------+
544  * |V|        U            |            PPN[43:12]            | U  |   VI   |
545  * +-+---------------------+----------------------------------+----+--------+
546  *
547  * Pluto is basically identical, supports fewer physical address bits:
548  *
549  *  0                       23                              51   55       63
550  * +-+------------------------+-------------------------------+----+--------+
551  * |V|        U               |         PPN[39:12]            | U  |   VI   |
552  * +-+------------------------+-------------------------------+----+--------+
553  *
554  *  V  == Valid Bit  (Most Significant Bit is bit 0)
555  *  U  == Unused
556  * PPN == Physical Page Number
557  * VI  == Virtual Index (aka Coherent Index)
558  *
559  * LPA instruction output is put into PPN field.
560  * LCI (Load Coherence Index) instruction provides the "VI" bits.
561  *
562  * We pre-swap the bytes since PCX-W is Big Endian and the
563  * IOMMU uses little endian for the pdir.
564  */
565 
566 static void SBA_INLINE
567 sba_io_pdir_entry(u64 *pdir_ptr, space_t sid, unsigned long vba,
568 		  unsigned long hint)
569 {
570 	u64 pa; /* physical address */
571 	register unsigned ci; /* coherent index */
572 
573 	pa = virt_to_phys(vba);
574 	pa &= IOVP_MASK;
575 
576 	mtsp(sid,1);
577 	asm("lci 0(%%sr1, %1), %0" : "=r" (ci) : "r" (vba));
578 	pa |= (ci >> 12) & 0xff;  /* move CI (8 bits) into lowest byte */
579 
580 	pa |= SBA_PDIR_VALID_BIT;	/* set "valid" bit */
581 	*pdir_ptr = cpu_to_le64(pa);	/* swap and store into I/O Pdir */
582 
583 	/*
584 	 * If the PDC_MODEL capabilities has Non-coherent IO-PDIR bit set
585 	 * (bit #61, big endian), we have to flush and sync every time
586 	 * IO-PDIR is changed in Ike/Astro.
587 	 */
588 	if (ioc_needs_fdc)
589 		asm volatile("fdc %%r0(%0)" : : "r" (pdir_ptr));
590 }
591 
592 
593 /**
594  * sba_mark_invalid - invalidate one or more IO PDIR entries
595  * @ioc: IO MMU structure which owns the pdir we are interested in.
596  * @iova:  IO Virtual Address mapped earlier
597  * @byte_cnt:  number of bytes this mapping covers.
598  *
599  * Marking the IO PDIR entry(ies) as Invalid and invalidate
600  * corresponding IO TLB entry. The Ike PCOM (Purge Command Register)
601  * is to purge stale entries in the IO TLB when unmapping entries.
602  *
603  * The PCOM register supports purging of multiple pages, with a minium
604  * of 1 page and a maximum of 2GB. Hardware requires the address be
605  * aligned to the size of the range being purged. The size of the range
606  * must be a power of 2. The "Cool perf optimization" in the
607  * allocation routine helps keep that true.
608  */
609 static SBA_INLINE void
610 sba_mark_invalid(struct ioc *ioc, dma_addr_t iova, size_t byte_cnt)
611 {
612 	u32 iovp = (u32) SBA_IOVP(ioc,iova);
613 	u64 *pdir_ptr = &ioc->pdir_base[PDIR_INDEX(iovp)];
614 
615 #ifdef ASSERT_PDIR_SANITY
616 	/* Assert first pdir entry is set.
617 	**
618 	** Even though this is a big-endian machine, the entries
619 	** in the iopdir are little endian. That's why we look at
620 	** the byte at +7 instead of at +0.
621 	*/
622 	if (0x80 != (((u8 *) pdir_ptr)[7])) {
623 		sba_dump_pdir_entry(ioc,"sba_mark_invalid()", PDIR_INDEX(iovp));
624 	}
625 #endif
626 
627 	if (byte_cnt > IOVP_SIZE)
628 	{
629 #if 0
630 		unsigned long entries_per_cacheline = ioc_needs_fdc ?
631 				L1_CACHE_ALIGN(((unsigned long) pdir_ptr))
632 					- (unsigned long) pdir_ptr;
633 				: 262144;
634 #endif
635 
636 		/* set "size" field for PCOM */
637 		iovp |= get_order(byte_cnt) + PAGE_SHIFT;
638 
639 		do {
640 			/* clear I/O Pdir entry "valid" bit first */
641 			((u8 *) pdir_ptr)[7] = 0;
642 			if (ioc_needs_fdc) {
643 				asm volatile("fdc %%r0(%0)" : : "r" (pdir_ptr));
644 #if 0
645 				entries_per_cacheline = L1_CACHE_SHIFT - 3;
646 #endif
647 			}
648 			pdir_ptr++;
649 			byte_cnt -= IOVP_SIZE;
650 		} while (byte_cnt > IOVP_SIZE);
651 	} else
652 		iovp |= IOVP_SHIFT;     /* set "size" field for PCOM */
653 
654 	/*
655 	** clear I/O PDIR entry "valid" bit.
656 	** We have to R/M/W the cacheline regardless how much of the
657 	** pdir entry that we clobber.
658 	** The rest of the entry would be useful for debugging if we
659 	** could dump core on HPMC.
660 	*/
661 	((u8 *) pdir_ptr)[7] = 0;
662 	if (ioc_needs_fdc)
663 		asm volatile("fdc %%r0(%0)" : : "r" (pdir_ptr));
664 
665 	WRITE_REG( SBA_IOVA(ioc, iovp, 0, 0), ioc->ioc_hpa+IOC_PCOM);
666 }
667 
668 /**
669  * sba_dma_supported - PCI driver can query DMA support
670  * @dev: instance of PCI owned by the driver that's asking
671  * @mask:  number of address bits this PCI device can handle
672  *
673  * See Documentation/DMA-API-HOWTO.txt
674  */
675 static int sba_dma_supported( struct device *dev, u64 mask)
676 {
677 	struct ioc *ioc;
678 
679 	if (dev == NULL) {
680 		printk(KERN_ERR MODULE_NAME ": EISA/ISA/et al not supported\n");
681 		BUG();
682 		return(0);
683 	}
684 
685 	/* Documentation/DMA-API-HOWTO.txt tells drivers to try 64-bit
686 	 * first, then fall back to 32-bit if that fails.
687 	 * We are just "encouraging" 32-bit DMA masks here since we can
688 	 * never allow IOMMU bypass unless we add special support for ZX1.
689 	 */
690 	if (mask > ~0U)
691 		return 0;
692 
693 	ioc = GET_IOC(dev);
694 
695 	/*
696 	 * check if mask is >= than the current max IO Virt Address
697 	 * The max IO Virt address will *always* < 30 bits.
698 	 */
699 	return((int)(mask >= (ioc->ibase - 1 +
700 			(ioc->pdir_size / sizeof(u64) * IOVP_SIZE) )));
701 }
702 
703 
704 /**
705  * sba_map_single - map one buffer and return IOVA for DMA
706  * @dev: instance of PCI owned by the driver that's asking.
707  * @addr:  driver buffer to map.
708  * @size:  number of bytes to map in driver buffer.
709  * @direction:  R/W or both.
710  *
711  * See Documentation/DMA-API-HOWTO.txt
712  */
713 static dma_addr_t
714 sba_map_single(struct device *dev, void *addr, size_t size,
715 	       enum dma_data_direction direction)
716 {
717 	struct ioc *ioc;
718 	unsigned long flags;
719 	dma_addr_t iovp;
720 	dma_addr_t offset;
721 	u64 *pdir_start;
722 	int pide;
723 
724 	ioc = GET_IOC(dev);
725 
726 	/* save offset bits */
727 	offset = ((dma_addr_t) (long) addr) & ~IOVP_MASK;
728 
729 	/* round up to nearest IOVP_SIZE */
730 	size = (size + offset + ~IOVP_MASK) & IOVP_MASK;
731 
732 	spin_lock_irqsave(&ioc->res_lock, flags);
733 #ifdef ASSERT_PDIR_SANITY
734 	sba_check_pdir(ioc,"Check before sba_map_single()");
735 #endif
736 
737 #ifdef SBA_COLLECT_STATS
738 	ioc->msingle_calls++;
739 	ioc->msingle_pages += size >> IOVP_SHIFT;
740 #endif
741 	pide = sba_alloc_range(ioc, dev, size);
742 	iovp = (dma_addr_t) pide << IOVP_SHIFT;
743 
744 	DBG_RUN("%s() 0x%p -> 0x%lx\n",
745 		__func__, addr, (long) iovp | offset);
746 
747 	pdir_start = &(ioc->pdir_base[pide]);
748 
749 	while (size > 0) {
750 		sba_io_pdir_entry(pdir_start, KERNEL_SPACE, (unsigned long) addr, 0);
751 
752 		DBG_RUN("	pdir 0x%p %02x%02x%02x%02x%02x%02x%02x%02x\n",
753 			pdir_start,
754 			(u8) (((u8 *) pdir_start)[7]),
755 			(u8) (((u8 *) pdir_start)[6]),
756 			(u8) (((u8 *) pdir_start)[5]),
757 			(u8) (((u8 *) pdir_start)[4]),
758 			(u8) (((u8 *) pdir_start)[3]),
759 			(u8) (((u8 *) pdir_start)[2]),
760 			(u8) (((u8 *) pdir_start)[1]),
761 			(u8) (((u8 *) pdir_start)[0])
762 			);
763 
764 		addr += IOVP_SIZE;
765 		size -= IOVP_SIZE;
766 		pdir_start++;
767 	}
768 
769 	/* force FDC ops in io_pdir_entry() to be visible to IOMMU */
770 	if (ioc_needs_fdc)
771 		asm volatile("sync" : : );
772 
773 #ifdef ASSERT_PDIR_SANITY
774 	sba_check_pdir(ioc,"Check after sba_map_single()");
775 #endif
776 	spin_unlock_irqrestore(&ioc->res_lock, flags);
777 
778 	/* form complete address */
779 	return SBA_IOVA(ioc, iovp, offset, DEFAULT_DMA_HINT_REG);
780 }
781 
782 
783 /**
784  * sba_unmap_single - unmap one IOVA and free resources
785  * @dev: instance of PCI owned by the driver that's asking.
786  * @iova:  IOVA of driver buffer previously mapped.
787  * @size:  number of bytes mapped in driver buffer.
788  * @direction:  R/W or both.
789  *
790  * See Documentation/DMA-API-HOWTO.txt
791  */
792 static void
793 sba_unmap_single(struct device *dev, dma_addr_t iova, size_t size,
794 		 enum dma_data_direction direction)
795 {
796 	struct ioc *ioc;
797 #if DELAYED_RESOURCE_CNT > 0
798 	struct sba_dma_pair *d;
799 #endif
800 	unsigned long flags;
801 	dma_addr_t offset;
802 
803 	DBG_RUN("%s() iovp 0x%lx/%x\n", __func__, (long) iova, size);
804 
805 	ioc = GET_IOC(dev);
806 	offset = iova & ~IOVP_MASK;
807 	iova ^= offset;        /* clear offset bits */
808 	size += offset;
809 	size = ALIGN(size, IOVP_SIZE);
810 
811 	spin_lock_irqsave(&ioc->res_lock, flags);
812 
813 #ifdef SBA_COLLECT_STATS
814 	ioc->usingle_calls++;
815 	ioc->usingle_pages += size >> IOVP_SHIFT;
816 #endif
817 
818 	sba_mark_invalid(ioc, iova, size);
819 
820 #if DELAYED_RESOURCE_CNT > 0
821 	/* Delaying when we re-use a IO Pdir entry reduces the number
822 	 * of MMIO reads needed to flush writes to the PCOM register.
823 	 */
824 	d = &(ioc->saved[ioc->saved_cnt]);
825 	d->iova = iova;
826 	d->size = size;
827 	if (++(ioc->saved_cnt) >= DELAYED_RESOURCE_CNT) {
828 		int cnt = ioc->saved_cnt;
829 		while (cnt--) {
830 			sba_free_range(ioc, d->iova, d->size);
831 			d--;
832 		}
833 		ioc->saved_cnt = 0;
834 
835 		READ_REG(ioc->ioc_hpa+IOC_PCOM);	/* flush purges */
836 	}
837 #else /* DELAYED_RESOURCE_CNT == 0 */
838 	sba_free_range(ioc, iova, size);
839 
840 	/* If fdc's were issued, force fdc's to be visible now */
841 	if (ioc_needs_fdc)
842 		asm volatile("sync" : : );
843 
844 	READ_REG(ioc->ioc_hpa+IOC_PCOM);	/* flush purges */
845 #endif /* DELAYED_RESOURCE_CNT == 0 */
846 
847 	spin_unlock_irqrestore(&ioc->res_lock, flags);
848 
849 	/* XXX REVISIT for 2.5 Linux - need syncdma for zero-copy support.
850 	** For Astro based systems this isn't a big deal WRT performance.
851 	** As long as 2.4 kernels copyin/copyout data from/to userspace,
852 	** we don't need the syncdma. The issue here is I/O MMU cachelines
853 	** are *not* coherent in all cases.  May be hwrev dependent.
854 	** Need to investigate more.
855 	asm volatile("syncdma");
856 	*/
857 }
858 
859 
860 /**
861  * sba_alloc_consistent - allocate/map shared mem for DMA
862  * @hwdev: instance of PCI owned by the driver that's asking.
863  * @size:  number of bytes mapped in driver buffer.
864  * @dma_handle:  IOVA of new buffer.
865  *
866  * See Documentation/DMA-API-HOWTO.txt
867  */
868 static void *sba_alloc_consistent(struct device *hwdev, size_t size,
869 					dma_addr_t *dma_handle, gfp_t gfp)
870 {
871 	void *ret;
872 
873 	if (!hwdev) {
874 		/* only support PCI */
875 		*dma_handle = 0;
876 		return NULL;
877 	}
878 
879         ret = (void *) __get_free_pages(gfp, get_order(size));
880 
881 	if (ret) {
882 		memset(ret, 0, size);
883 		*dma_handle = sba_map_single(hwdev, ret, size, 0);
884 	}
885 
886 	return ret;
887 }
888 
889 
890 /**
891  * sba_free_consistent - free/unmap shared mem for DMA
892  * @hwdev: instance of PCI owned by the driver that's asking.
893  * @size:  number of bytes mapped in driver buffer.
894  * @vaddr:  virtual address IOVA of "consistent" buffer.
895  * @dma_handler:  IO virtual address of "consistent" buffer.
896  *
897  * See Documentation/DMA-API-HOWTO.txt
898  */
899 static void
900 sba_free_consistent(struct device *hwdev, size_t size, void *vaddr,
901 		    dma_addr_t dma_handle)
902 {
903 	sba_unmap_single(hwdev, dma_handle, size, 0);
904 	free_pages((unsigned long) vaddr, get_order(size));
905 }
906 
907 
908 /*
909 ** Since 0 is a valid pdir_base index value, can't use that
910 ** to determine if a value is valid or not. Use a flag to indicate
911 ** the SG list entry contains a valid pdir index.
912 */
913 #define PIDE_FLAG 0x80000000UL
914 
915 #ifdef SBA_COLLECT_STATS
916 #define IOMMU_MAP_STATS
917 #endif
918 #include "iommu-helpers.h"
919 
920 #ifdef DEBUG_LARGE_SG_ENTRIES
921 int dump_run_sg = 0;
922 #endif
923 
924 
925 /**
926  * sba_map_sg - map Scatter/Gather list
927  * @dev: instance of PCI owned by the driver that's asking.
928  * @sglist:  array of buffer/length pairs
929  * @nents:  number of entries in list
930  * @direction:  R/W or both.
931  *
932  * See Documentation/DMA-API-HOWTO.txt
933  */
934 static int
935 sba_map_sg(struct device *dev, struct scatterlist *sglist, int nents,
936 	   enum dma_data_direction direction)
937 {
938 	struct ioc *ioc;
939 	int coalesced, filled = 0;
940 	unsigned long flags;
941 
942 	DBG_RUN_SG("%s() START %d entries\n", __func__, nents);
943 
944 	ioc = GET_IOC(dev);
945 
946 	/* Fast path single entry scatterlists. */
947 	if (nents == 1) {
948 		sg_dma_address(sglist) = sba_map_single(dev,
949 						(void *)sg_virt_addr(sglist),
950 						sglist->length, direction);
951 		sg_dma_len(sglist)     = sglist->length;
952 		return 1;
953 	}
954 
955 	spin_lock_irqsave(&ioc->res_lock, flags);
956 
957 #ifdef ASSERT_PDIR_SANITY
958 	if (sba_check_pdir(ioc,"Check before sba_map_sg()"))
959 	{
960 		sba_dump_sg(ioc, sglist, nents);
961 		panic("Check before sba_map_sg()");
962 	}
963 #endif
964 
965 #ifdef SBA_COLLECT_STATS
966 	ioc->msg_calls++;
967 #endif
968 
969 	/*
970 	** First coalesce the chunks and allocate I/O pdir space
971 	**
972 	** If this is one DMA stream, we can properly map using the
973 	** correct virtual address associated with each DMA page.
974 	** w/o this association, we wouldn't have coherent DMA!
975 	** Access to the virtual address is what forces a two pass algorithm.
976 	*/
977 	coalesced = iommu_coalesce_chunks(ioc, dev, sglist, nents, sba_alloc_range);
978 
979 	/*
980 	** Program the I/O Pdir
981 	**
982 	** map the virtual addresses to the I/O Pdir
983 	** o dma_address will contain the pdir index
984 	** o dma_len will contain the number of bytes to map
985 	** o address contains the virtual address.
986 	*/
987 	filled = iommu_fill_pdir(ioc, sglist, nents, 0, sba_io_pdir_entry);
988 
989 	/* force FDC ops in io_pdir_entry() to be visible to IOMMU */
990 	if (ioc_needs_fdc)
991 		asm volatile("sync" : : );
992 
993 #ifdef ASSERT_PDIR_SANITY
994 	if (sba_check_pdir(ioc,"Check after sba_map_sg()"))
995 	{
996 		sba_dump_sg(ioc, sglist, nents);
997 		panic("Check after sba_map_sg()\n");
998 	}
999 #endif
1000 
1001 	spin_unlock_irqrestore(&ioc->res_lock, flags);
1002 
1003 	DBG_RUN_SG("%s() DONE %d mappings\n", __func__, filled);
1004 
1005 	return filled;
1006 }
1007 
1008 
1009 /**
1010  * sba_unmap_sg - unmap Scatter/Gather list
1011  * @dev: instance of PCI owned by the driver that's asking.
1012  * @sglist:  array of buffer/length pairs
1013  * @nents:  number of entries in list
1014  * @direction:  R/W or both.
1015  *
1016  * See Documentation/DMA-API-HOWTO.txt
1017  */
1018 static void
1019 sba_unmap_sg(struct device *dev, struct scatterlist *sglist, int nents,
1020 	     enum dma_data_direction direction)
1021 {
1022 	struct ioc *ioc;
1023 #ifdef ASSERT_PDIR_SANITY
1024 	unsigned long flags;
1025 #endif
1026 
1027 	DBG_RUN_SG("%s() START %d entries,  %p,%x\n",
1028 		__func__, nents, sg_virt_addr(sglist), sglist->length);
1029 
1030 	ioc = GET_IOC(dev);
1031 
1032 #ifdef SBA_COLLECT_STATS
1033 	ioc->usg_calls++;
1034 #endif
1035 
1036 #ifdef ASSERT_PDIR_SANITY
1037 	spin_lock_irqsave(&ioc->res_lock, flags);
1038 	sba_check_pdir(ioc,"Check before sba_unmap_sg()");
1039 	spin_unlock_irqrestore(&ioc->res_lock, flags);
1040 #endif
1041 
1042 	while (sg_dma_len(sglist) && nents--) {
1043 
1044 		sba_unmap_single(dev, sg_dma_address(sglist), sg_dma_len(sglist), direction);
1045 #ifdef SBA_COLLECT_STATS
1046 		ioc->usg_pages += ((sg_dma_address(sglist) & ~IOVP_MASK) + sg_dma_len(sglist) + IOVP_SIZE - 1) >> PAGE_SHIFT;
1047 		ioc->usingle_calls--;	/* kluge since call is unmap_sg() */
1048 #endif
1049 		++sglist;
1050 	}
1051 
1052 	DBG_RUN_SG("%s() DONE (nents %d)\n", __func__,  nents);
1053 
1054 #ifdef ASSERT_PDIR_SANITY
1055 	spin_lock_irqsave(&ioc->res_lock, flags);
1056 	sba_check_pdir(ioc,"Check after sba_unmap_sg()");
1057 	spin_unlock_irqrestore(&ioc->res_lock, flags);
1058 #endif
1059 
1060 }
1061 
1062 static struct hppa_dma_ops sba_ops = {
1063 	.dma_supported =	sba_dma_supported,
1064 	.alloc_consistent =	sba_alloc_consistent,
1065 	.alloc_noncoherent =	sba_alloc_consistent,
1066 	.free_consistent =	sba_free_consistent,
1067 	.map_single =		sba_map_single,
1068 	.unmap_single =		sba_unmap_single,
1069 	.map_sg =		sba_map_sg,
1070 	.unmap_sg =		sba_unmap_sg,
1071 	.dma_sync_single_for_cpu =	NULL,
1072 	.dma_sync_single_for_device =	NULL,
1073 	.dma_sync_sg_for_cpu =		NULL,
1074 	.dma_sync_sg_for_device =	NULL,
1075 };
1076 
1077 
1078 /**************************************************************************
1079 **
1080 **   SBA PAT PDC support
1081 **
1082 **   o call pdc_pat_cell_module()
1083 **   o store ranges in PCI "resource" structures
1084 **
1085 **************************************************************************/
1086 
1087 static void
1088 sba_get_pat_resources(struct sba_device *sba_dev)
1089 {
1090 #if 0
1091 /*
1092 ** TODO/REVISIT/FIXME: support for directed ranges requires calls to
1093 **      PAT PDC to program the SBA/LBA directed range registers...this
1094 **      burden may fall on the LBA code since it directly supports the
1095 **      PCI subsystem. It's not clear yet. - ggg
1096 */
1097 PAT_MOD(mod)->mod_info.mod_pages   = PAT_GET_MOD_PAGES(temp);
1098 	FIXME : ???
1099 PAT_MOD(mod)->mod_info.dvi         = PAT_GET_DVI(temp);
1100 	Tells where the dvi bits are located in the address.
1101 PAT_MOD(mod)->mod_info.ioc         = PAT_GET_IOC(temp);
1102 	FIXME : ???
1103 #endif
1104 }
1105 
1106 
1107 /**************************************************************
1108 *
1109 *   Initialization and claim
1110 *
1111 ***************************************************************/
1112 #define PIRANHA_ADDR_MASK	0x00160000UL /* bit 17,18,20 */
1113 #define PIRANHA_ADDR_VAL	0x00060000UL /* bit 17,18 on */
1114 static void *
1115 sba_alloc_pdir(unsigned int pdir_size)
1116 {
1117         unsigned long pdir_base;
1118 	unsigned long pdir_order = get_order(pdir_size);
1119 
1120 	pdir_base = __get_free_pages(GFP_KERNEL, pdir_order);
1121 	if (NULL == (void *) pdir_base)	{
1122 		panic("%s() could not allocate I/O Page Table\n",
1123 			__func__);
1124 	}
1125 
1126 	/* If this is not PA8700 (PCX-W2)
1127 	**	OR newer than ver 2.2
1128 	**	OR in a system that doesn't need VINDEX bits from SBA,
1129 	**
1130 	** then we aren't exposed to the HW bug.
1131 	*/
1132 	if ( ((boot_cpu_data.pdc.cpuid >> 5) & 0x7f) != 0x13
1133 			|| (boot_cpu_data.pdc.versions > 0x202)
1134 			|| (boot_cpu_data.pdc.capabilities & 0x08L) )
1135 		return (void *) pdir_base;
1136 
1137 	/*
1138 	 * PA8700 (PCX-W2, aka piranha) silent data corruption fix
1139 	 *
1140 	 * An interaction between PA8700 CPU (Ver 2.2 or older) and
1141 	 * Ike/Astro can cause silent data corruption. This is only
1142 	 * a problem if the I/O PDIR is located in memory such that
1143 	 * (little-endian)  bits 17 and 18 are on and bit 20 is off.
1144 	 *
1145 	 * Since the max IO Pdir size is 2MB, by cleverly allocating the
1146 	 * right physical address, we can either avoid (IOPDIR <= 1MB)
1147 	 * or minimize (2MB IO Pdir) the problem if we restrict the
1148 	 * IO Pdir to a maximum size of 2MB-128K (1902K).
1149 	 *
1150 	 * Because we always allocate 2^N sized IO pdirs, either of the
1151 	 * "bad" regions will be the last 128K if at all. That's easy
1152 	 * to test for.
1153 	 *
1154 	 */
1155 	if (pdir_order <= (19-12)) {
1156 		if (((virt_to_phys(pdir_base)+pdir_size-1) & PIRANHA_ADDR_MASK) == PIRANHA_ADDR_VAL) {
1157 			/* allocate a new one on 512k alignment */
1158 			unsigned long new_pdir = __get_free_pages(GFP_KERNEL, (19-12));
1159 			/* release original */
1160 			free_pages(pdir_base, pdir_order);
1161 
1162 			pdir_base = new_pdir;
1163 
1164 			/* release excess */
1165 			while (pdir_order < (19-12)) {
1166 				new_pdir += pdir_size;
1167 				free_pages(new_pdir, pdir_order);
1168 				pdir_order +=1;
1169 				pdir_size <<=1;
1170 			}
1171 		}
1172 	} else {
1173 		/*
1174 		** 1MB or 2MB Pdir
1175 		** Needs to be aligned on an "odd" 1MB boundary.
1176 		*/
1177 		unsigned long new_pdir = __get_free_pages(GFP_KERNEL, pdir_order+1); /* 2 or 4MB */
1178 
1179 		/* release original */
1180 		free_pages( pdir_base, pdir_order);
1181 
1182 		/* release first 1MB */
1183 		free_pages(new_pdir, 20-12);
1184 
1185 		pdir_base = new_pdir + 1024*1024;
1186 
1187 		if (pdir_order > (20-12)) {
1188 			/*
1189 			** 2MB Pdir.
1190 			**
1191 			** Flag tells init_bitmap() to mark bad 128k as used
1192 			** and to reduce the size by 128k.
1193 			*/
1194 			piranha_bad_128k = 1;
1195 
1196 			new_pdir += 3*1024*1024;
1197 			/* release last 1MB */
1198 			free_pages(new_pdir, 20-12);
1199 
1200 			/* release unusable 128KB */
1201 			free_pages(new_pdir - 128*1024 , 17-12);
1202 
1203 			pdir_size -= 128*1024;
1204 		}
1205 	}
1206 
1207 	memset((void *) pdir_base, 0, pdir_size);
1208 	return (void *) pdir_base;
1209 }
1210 
1211 struct ibase_data_struct {
1212 	struct ioc *ioc;
1213 	int ioc_num;
1214 };
1215 
1216 static int setup_ibase_imask_callback(struct device *dev, void *data)
1217 {
1218 	/* lba_set_iregs() is in drivers/parisc/lba_pci.c */
1219         extern void lba_set_iregs(struct parisc_device *, u32, u32);
1220 	struct parisc_device *lba = to_parisc_device(dev);
1221 	struct ibase_data_struct *ibd = data;
1222 	int rope_num = (lba->hpa.start >> 13) & 0xf;
1223 	if (rope_num >> 3 == ibd->ioc_num)
1224 		lba_set_iregs(lba, ibd->ioc->ibase, ibd->ioc->imask);
1225 	return 0;
1226 }
1227 
1228 /* setup Mercury or Elroy IBASE/IMASK registers. */
1229 static void
1230 setup_ibase_imask(struct parisc_device *sba, struct ioc *ioc, int ioc_num)
1231 {
1232 	struct ibase_data_struct ibase_data = {
1233 		.ioc		= ioc,
1234 		.ioc_num	= ioc_num,
1235 	};
1236 
1237 	device_for_each_child(&sba->dev, &ibase_data,
1238 			      setup_ibase_imask_callback);
1239 }
1240 
1241 #ifdef SBA_AGP_SUPPORT
1242 static int
1243 sba_ioc_find_quicksilver(struct device *dev, void *data)
1244 {
1245 	int *agp_found = data;
1246 	struct parisc_device *lba = to_parisc_device(dev);
1247 
1248 	if (IS_QUICKSILVER(lba))
1249 		*agp_found = 1;
1250 	return 0;
1251 }
1252 #endif
1253 
1254 static void
1255 sba_ioc_init_pluto(struct parisc_device *sba, struct ioc *ioc, int ioc_num)
1256 {
1257 	u32 iova_space_mask;
1258 	u32 iova_space_size;
1259 	int iov_order, tcnfg;
1260 #ifdef SBA_AGP_SUPPORT
1261 	int agp_found = 0;
1262 #endif
1263 	/*
1264 	** Firmware programs the base and size of a "safe IOVA space"
1265 	** (one that doesn't overlap memory or LMMIO space) in the
1266 	** IBASE and IMASK registers.
1267 	*/
1268 	ioc->ibase = READ_REG(ioc->ioc_hpa + IOC_IBASE);
1269 	iova_space_size = ~(READ_REG(ioc->ioc_hpa + IOC_IMASK) & 0xFFFFFFFFUL) + 1;
1270 
1271 	if ((ioc->ibase < 0xfed00000UL) && ((ioc->ibase + iova_space_size) > 0xfee00000UL)) {
1272 		printk("WARNING: IOV space overlaps local config and interrupt message, truncating\n");
1273 		iova_space_size /= 2;
1274 	}
1275 
1276 	/*
1277 	** iov_order is always based on a 1GB IOVA space since we want to
1278 	** turn on the other half for AGP GART.
1279 	*/
1280 	iov_order = get_order(iova_space_size >> (IOVP_SHIFT - PAGE_SHIFT));
1281 	ioc->pdir_size = (iova_space_size / IOVP_SIZE) * sizeof(u64);
1282 
1283 	DBG_INIT("%s() hpa 0x%p IOV %dMB (%d bits)\n",
1284 		__func__, ioc->ioc_hpa, iova_space_size >> 20,
1285 		iov_order + PAGE_SHIFT);
1286 
1287 	ioc->pdir_base = (void *) __get_free_pages(GFP_KERNEL,
1288 						   get_order(ioc->pdir_size));
1289 	if (!ioc->pdir_base)
1290 		panic("Couldn't allocate I/O Page Table\n");
1291 
1292 	memset(ioc->pdir_base, 0, ioc->pdir_size);
1293 
1294 	DBG_INIT("%s() pdir %p size %x\n",
1295 			__func__, ioc->pdir_base, ioc->pdir_size);
1296 
1297 #ifdef SBA_HINT_SUPPORT
1298 	ioc->hint_shift_pdir = iov_order + PAGE_SHIFT;
1299 	ioc->hint_mask_pdir = ~(0x3 << (iov_order + PAGE_SHIFT));
1300 
1301 	DBG_INIT("	hint_shift_pdir %x hint_mask_pdir %lx\n",
1302 		ioc->hint_shift_pdir, ioc->hint_mask_pdir);
1303 #endif
1304 
1305 	WARN_ON((((unsigned long) ioc->pdir_base) & PAGE_MASK) != (unsigned long) ioc->pdir_base);
1306 	WRITE_REG(virt_to_phys(ioc->pdir_base), ioc->ioc_hpa + IOC_PDIR_BASE);
1307 
1308 	/* build IMASK for IOC and Elroy */
1309 	iova_space_mask =  0xffffffff;
1310 	iova_space_mask <<= (iov_order + PAGE_SHIFT);
1311 	ioc->imask = iova_space_mask;
1312 #ifdef ZX1_SUPPORT
1313 	ioc->iovp_mask = ~(iova_space_mask + PAGE_SIZE - 1);
1314 #endif
1315 	sba_dump_tlb(ioc->ioc_hpa);
1316 
1317 	setup_ibase_imask(sba, ioc, ioc_num);
1318 
1319 	WRITE_REG(ioc->imask, ioc->ioc_hpa + IOC_IMASK);
1320 
1321 #ifdef CONFIG_64BIT
1322 	/*
1323 	** Setting the upper bits makes checking for bypass addresses
1324 	** a little faster later on.
1325 	*/
1326 	ioc->imask |= 0xFFFFFFFF00000000UL;
1327 #endif
1328 
1329 	/* Set I/O PDIR Page size to system page size */
1330 	switch (PAGE_SHIFT) {
1331 		case 12: tcnfg = 0; break;	/*  4K */
1332 		case 13: tcnfg = 1; break;	/*  8K */
1333 		case 14: tcnfg = 2; break;	/* 16K */
1334 		case 16: tcnfg = 3; break;	/* 64K */
1335 		default:
1336 			panic(__FILE__ "Unsupported system page size %d",
1337 				1 << PAGE_SHIFT);
1338 			break;
1339 	}
1340 	WRITE_REG(tcnfg, ioc->ioc_hpa + IOC_TCNFG);
1341 
1342 	/*
1343 	** Program the IOC's ibase and enable IOVA translation
1344 	** Bit zero == enable bit.
1345 	*/
1346 	WRITE_REG(ioc->ibase | 1, ioc->ioc_hpa + IOC_IBASE);
1347 
1348 	/*
1349 	** Clear I/O TLB of any possible entries.
1350 	** (Yes. This is a bit paranoid...but so what)
1351 	*/
1352 	WRITE_REG(ioc->ibase | 31, ioc->ioc_hpa + IOC_PCOM);
1353 
1354 #ifdef SBA_AGP_SUPPORT
1355 
1356 	/*
1357 	** If an AGP device is present, only use half of the IOV space
1358 	** for PCI DMA.  Unfortunately we can't know ahead of time
1359 	** whether GART support will actually be used, for now we
1360 	** can just key on any AGP device found in the system.
1361 	** We program the next pdir index after we stop w/ a key for
1362 	** the GART code to handshake on.
1363 	*/
1364 	device_for_each_child(&sba->dev, &agp_found, sba_ioc_find_quicksilver);
1365 
1366 	if (agp_found && sba_reserve_agpgart) {
1367 		printk(KERN_INFO "%s: reserving %dMb of IOVA space for agpgart\n",
1368 		       __func__, (iova_space_size/2) >> 20);
1369 		ioc->pdir_size /= 2;
1370 		ioc->pdir_base[PDIR_INDEX(iova_space_size/2)] = SBA_AGPGART_COOKIE;
1371 	}
1372 #endif /*SBA_AGP_SUPPORT*/
1373 }
1374 
1375 static void
1376 sba_ioc_init(struct parisc_device *sba, struct ioc *ioc, int ioc_num)
1377 {
1378 	u32 iova_space_size, iova_space_mask;
1379 	unsigned int pdir_size, iov_order;
1380 
1381 	/*
1382 	** Determine IOVA Space size from memory size.
1383 	**
1384 	** Ideally, PCI drivers would register the maximum number
1385 	** of DMA they can have outstanding for each device they
1386 	** own.  Next best thing would be to guess how much DMA
1387 	** can be outstanding based on PCI Class/sub-class. Both
1388 	** methods still require some "extra" to support PCI
1389 	** Hot-Plug/Removal of PCI cards. (aka PCI OLARD).
1390 	**
1391 	** While we have 32-bits "IOVA" space, top two 2 bits are used
1392 	** for DMA hints - ergo only 30 bits max.
1393 	*/
1394 
1395 	iova_space_size = (u32) (totalram_pages/global_ioc_cnt);
1396 
1397 	/* limit IOVA space size to 1MB-1GB */
1398 	if (iova_space_size < (1 << (20 - PAGE_SHIFT))) {
1399 		iova_space_size = 1 << (20 - PAGE_SHIFT);
1400 	}
1401 	else if (iova_space_size > (1 << (30 - PAGE_SHIFT))) {
1402 		iova_space_size = 1 << (30 - PAGE_SHIFT);
1403 	}
1404 
1405 	/*
1406 	** iova space must be log2() in size.
1407 	** thus, pdir/res_map will also be log2().
1408 	** PIRANHA BUG: Exception is when IO Pdir is 2MB (gets reduced)
1409 	*/
1410 	iov_order = get_order(iova_space_size << PAGE_SHIFT);
1411 
1412 	/* iova_space_size is now bytes, not pages */
1413 	iova_space_size = 1 << (iov_order + PAGE_SHIFT);
1414 
1415 	ioc->pdir_size = pdir_size = (iova_space_size/IOVP_SIZE) * sizeof(u64);
1416 
1417 	DBG_INIT("%s() hpa 0x%lx mem %ldMB IOV %dMB (%d bits)\n",
1418 			__func__,
1419 			ioc->ioc_hpa,
1420 			(unsigned long) totalram_pages >> (20 - PAGE_SHIFT),
1421 			iova_space_size>>20,
1422 			iov_order + PAGE_SHIFT);
1423 
1424 	ioc->pdir_base = sba_alloc_pdir(pdir_size);
1425 
1426 	DBG_INIT("%s() pdir %p size %x\n",
1427 			__func__, ioc->pdir_base, pdir_size);
1428 
1429 #ifdef SBA_HINT_SUPPORT
1430 	/* FIXME : DMA HINTs not used */
1431 	ioc->hint_shift_pdir = iov_order + PAGE_SHIFT;
1432 	ioc->hint_mask_pdir = ~(0x3 << (iov_order + PAGE_SHIFT));
1433 
1434 	DBG_INIT("	hint_shift_pdir %x hint_mask_pdir %lx\n",
1435 			ioc->hint_shift_pdir, ioc->hint_mask_pdir);
1436 #endif
1437 
1438 	WRITE_REG64(virt_to_phys(ioc->pdir_base), ioc->ioc_hpa + IOC_PDIR_BASE);
1439 
1440 	/* build IMASK for IOC and Elroy */
1441 	iova_space_mask =  0xffffffff;
1442 	iova_space_mask <<= (iov_order + PAGE_SHIFT);
1443 
1444 	/*
1445 	** On C3000 w/512MB mem, HP-UX 10.20 reports:
1446 	**     ibase=0, imask=0xFE000000, size=0x2000000.
1447 	*/
1448 	ioc->ibase = 0;
1449 	ioc->imask = iova_space_mask;	/* save it */
1450 #ifdef ZX1_SUPPORT
1451 	ioc->iovp_mask = ~(iova_space_mask + PAGE_SIZE - 1);
1452 #endif
1453 
1454 	DBG_INIT("%s() IOV base 0x%lx mask 0x%0lx\n",
1455 		__func__, ioc->ibase, ioc->imask);
1456 
1457 	/*
1458 	** FIXME: Hint registers are programmed with default hint
1459 	** values during boot, so hints should be sane even if we
1460 	** can't reprogram them the way drivers want.
1461 	*/
1462 
1463 	setup_ibase_imask(sba, ioc, ioc_num);
1464 
1465 	/*
1466 	** Program the IOC's ibase and enable IOVA translation
1467 	*/
1468 	WRITE_REG(ioc->ibase | 1, ioc->ioc_hpa+IOC_IBASE);
1469 	WRITE_REG(ioc->imask, ioc->ioc_hpa+IOC_IMASK);
1470 
1471 	/* Set I/O PDIR Page size to 4K */
1472 	WRITE_REG(0, ioc->ioc_hpa+IOC_TCNFG);
1473 
1474 	/*
1475 	** Clear I/O TLB of any possible entries.
1476 	** (Yes. This is a bit paranoid...but so what)
1477 	*/
1478 	WRITE_REG(0 | 31, ioc->ioc_hpa+IOC_PCOM);
1479 
1480 	ioc->ibase = 0; /* used by SBA_IOVA and related macros */
1481 
1482 	DBG_INIT("%s() DONE\n", __func__);
1483 }
1484 
1485 
1486 
1487 /**************************************************************************
1488 **
1489 **   SBA initialization code (HW and SW)
1490 **
1491 **   o identify SBA chip itself
1492 **   o initialize SBA chip modes (HardFail)
1493 **   o initialize SBA chip modes (HardFail)
1494 **   o FIXME: initialize DMA hints for reasonable defaults
1495 **
1496 **************************************************************************/
1497 
1498 static void __iomem *ioc_remap(struct sba_device *sba_dev, unsigned int offset)
1499 {
1500 	return ioremap_nocache(sba_dev->dev->hpa.start + offset, SBA_FUNC_SIZE);
1501 }
1502 
1503 static void sba_hw_init(struct sba_device *sba_dev)
1504 {
1505 	int i;
1506 	int num_ioc;
1507 	u64 ioc_ctl;
1508 
1509 	if (!is_pdc_pat()) {
1510 		/* Shutdown the USB controller on Astro-based workstations.
1511 		** Once we reprogram the IOMMU, the next DMA performed by
1512 		** USB will HPMC the box. USB is only enabled if a
1513 		** keyboard is present and found.
1514 		**
1515 		** With serial console, j6k v5.0 firmware says:
1516 		**   mem_kbd hpa 0xfee003f8 sba 0x0 pad 0x0 cl_class 0x7
1517 		**
1518 		** FIXME: Using GFX+USB console at power up but direct
1519 		**	linux to serial console is still broken.
1520 		**	USB could generate DMA so we must reset USB.
1521 		**	The proper sequence would be:
1522 		**	o block console output
1523 		**	o reset USB device
1524 		**	o reprogram serial port
1525 		**	o unblock console output
1526 		*/
1527 		if (PAGE0->mem_kbd.cl_class == CL_KEYBD) {
1528 			pdc_io_reset_devices();
1529 		}
1530 
1531 	}
1532 
1533 
1534 #if 0
1535 printk("sba_hw_init(): mem_boot 0x%x 0x%x 0x%x 0x%x\n", PAGE0->mem_boot.hpa,
1536 	PAGE0->mem_boot.spa, PAGE0->mem_boot.pad, PAGE0->mem_boot.cl_class);
1537 
1538 	/*
1539 	** Need to deal with DMA from LAN.
1540 	**	Maybe use page zero boot device as a handle to talk
1541 	**	to PDC about which device to shutdown.
1542 	**
1543 	** Netbooting, j6k v5.0 firmware says:
1544 	** 	mem_boot hpa 0xf4008000 sba 0x0 pad 0x0 cl_class 0x1002
1545 	** ARGH! invalid class.
1546 	*/
1547 	if ((PAGE0->mem_boot.cl_class != CL_RANDOM)
1548 		&& (PAGE0->mem_boot.cl_class != CL_SEQU)) {
1549 			pdc_io_reset();
1550 	}
1551 #endif
1552 
1553 	if (!IS_PLUTO(sba_dev->dev)) {
1554 		ioc_ctl = READ_REG(sba_dev->sba_hpa+IOC_CTRL);
1555 		DBG_INIT("%s() hpa 0x%lx ioc_ctl 0x%Lx ->",
1556 			__func__, sba_dev->sba_hpa, ioc_ctl);
1557 		ioc_ctl &= ~(IOC_CTRL_RM | IOC_CTRL_NC | IOC_CTRL_CE);
1558 		ioc_ctl |= IOC_CTRL_DD | IOC_CTRL_D4 | IOC_CTRL_TC;
1559 			/* j6700 v1.6 firmware sets 0x294f */
1560 			/* A500 firmware sets 0x4d */
1561 
1562 		WRITE_REG(ioc_ctl, sba_dev->sba_hpa+IOC_CTRL);
1563 
1564 #ifdef DEBUG_SBA_INIT
1565 		ioc_ctl = READ_REG64(sba_dev->sba_hpa+IOC_CTRL);
1566 		DBG_INIT(" 0x%Lx\n", ioc_ctl);
1567 #endif
1568 	} /* if !PLUTO */
1569 
1570 	if (IS_ASTRO(sba_dev->dev)) {
1571 		int err;
1572 		sba_dev->ioc[0].ioc_hpa = ioc_remap(sba_dev, ASTRO_IOC_OFFSET);
1573 		num_ioc = 1;
1574 
1575 		sba_dev->chip_resv.name = "Astro Intr Ack";
1576 		sba_dev->chip_resv.start = PCI_F_EXTEND | 0xfef00000UL;
1577 		sba_dev->chip_resv.end   = PCI_F_EXTEND | (0xff000000UL - 1) ;
1578 		err = request_resource(&iomem_resource, &(sba_dev->chip_resv));
1579 		BUG_ON(err < 0);
1580 
1581 	} else if (IS_PLUTO(sba_dev->dev)) {
1582 		int err;
1583 
1584 		sba_dev->ioc[0].ioc_hpa = ioc_remap(sba_dev, PLUTO_IOC_OFFSET);
1585 		num_ioc = 1;
1586 
1587 		sba_dev->chip_resv.name = "Pluto Intr/PIOP/VGA";
1588 		sba_dev->chip_resv.start = PCI_F_EXTEND | 0xfee00000UL;
1589 		sba_dev->chip_resv.end   = PCI_F_EXTEND | (0xff200000UL - 1);
1590 		err = request_resource(&iomem_resource, &(sba_dev->chip_resv));
1591 		WARN_ON(err < 0);
1592 
1593 		sba_dev->iommu_resv.name = "IOVA Space";
1594 		sba_dev->iommu_resv.start = 0x40000000UL;
1595 		sba_dev->iommu_resv.end   = 0x50000000UL - 1;
1596 		err = request_resource(&iomem_resource, &(sba_dev->iommu_resv));
1597 		WARN_ON(err < 0);
1598 	} else {
1599 		/* IKE, REO */
1600 		sba_dev->ioc[0].ioc_hpa = ioc_remap(sba_dev, IKE_IOC_OFFSET(0));
1601 		sba_dev->ioc[1].ioc_hpa = ioc_remap(sba_dev, IKE_IOC_OFFSET(1));
1602 		num_ioc = 2;
1603 
1604 		/* TODO - LOOKUP Ike/Stretch chipset mem map */
1605 	}
1606 	/* XXX: What about Reo Grande? */
1607 
1608 	sba_dev->num_ioc = num_ioc;
1609 	for (i = 0; i < num_ioc; i++) {
1610 		void __iomem *ioc_hpa = sba_dev->ioc[i].ioc_hpa;
1611 		unsigned int j;
1612 
1613 		for (j=0; j < sizeof(u64) * ROPES_PER_IOC; j+=sizeof(u64)) {
1614 
1615 			/*
1616 			 * Clear ROPE(N)_CONFIG AO bit.
1617 			 * Disables "NT Ordering" (~= !"Relaxed Ordering")
1618 			 * Overrides bit 1 in DMA Hint Sets.
1619 			 * Improves netperf UDP_STREAM by ~10% for bcm5701.
1620 			 */
1621 			if (IS_PLUTO(sba_dev->dev)) {
1622 				void __iomem *rope_cfg;
1623 				unsigned long cfg_val;
1624 
1625 				rope_cfg = ioc_hpa + IOC_ROPE0_CFG + j;
1626 				cfg_val = READ_REG(rope_cfg);
1627 				cfg_val &= ~IOC_ROPE_AO;
1628 				WRITE_REG(cfg_val, rope_cfg);
1629 			}
1630 
1631 			/*
1632 			** Make sure the box crashes on rope errors.
1633 			*/
1634 			WRITE_REG(HF_ENABLE, ioc_hpa + ROPE0_CTL + j);
1635 		}
1636 
1637 		/* flush out the last writes */
1638 		READ_REG(sba_dev->ioc[i].ioc_hpa + ROPE7_CTL);
1639 
1640 		DBG_INIT("	ioc[%d] ROPE_CFG 0x%Lx  ROPE_DBG 0x%Lx\n",
1641 				i,
1642 				READ_REG(sba_dev->ioc[i].ioc_hpa + 0x40),
1643 				READ_REG(sba_dev->ioc[i].ioc_hpa + 0x50)
1644 			);
1645 		DBG_INIT("	STATUS_CONTROL 0x%Lx  FLUSH_CTRL 0x%Lx\n",
1646 				READ_REG(sba_dev->ioc[i].ioc_hpa + 0x108),
1647 				READ_REG(sba_dev->ioc[i].ioc_hpa + 0x400)
1648 			);
1649 
1650 		if (IS_PLUTO(sba_dev->dev)) {
1651 			sba_ioc_init_pluto(sba_dev->dev, &(sba_dev->ioc[i]), i);
1652 		} else {
1653 			sba_ioc_init(sba_dev->dev, &(sba_dev->ioc[i]), i);
1654 		}
1655 	}
1656 }
1657 
1658 static void
1659 sba_common_init(struct sba_device *sba_dev)
1660 {
1661 	int i;
1662 
1663 	/* add this one to the head of the list (order doesn't matter)
1664 	** This will be useful for debugging - especially if we get coredumps
1665 	*/
1666 	sba_dev->next = sba_list;
1667 	sba_list = sba_dev;
1668 
1669 	for(i=0; i< sba_dev->num_ioc; i++) {
1670 		int res_size;
1671 #ifdef DEBUG_DMB_TRAP
1672 		extern void iterate_pages(unsigned long , unsigned long ,
1673 					  void (*)(pte_t * , unsigned long),
1674 					  unsigned long );
1675 		void set_data_memory_break(pte_t * , unsigned long);
1676 #endif
1677 		/* resource map size dictated by pdir_size */
1678 		res_size = sba_dev->ioc[i].pdir_size/sizeof(u64); /* entries */
1679 
1680 		/* Second part of PIRANHA BUG */
1681 		if (piranha_bad_128k) {
1682 			res_size -= (128*1024)/sizeof(u64);
1683 		}
1684 
1685 		res_size >>= 3;  /* convert bit count to byte count */
1686 		DBG_INIT("%s() res_size 0x%x\n",
1687 			__func__, res_size);
1688 
1689 		sba_dev->ioc[i].res_size = res_size;
1690 		sba_dev->ioc[i].res_map = (char *) __get_free_pages(GFP_KERNEL, get_order(res_size));
1691 
1692 #ifdef DEBUG_DMB_TRAP
1693 		iterate_pages( sba_dev->ioc[i].res_map, res_size,
1694 				set_data_memory_break, 0);
1695 #endif
1696 
1697 		if (NULL == sba_dev->ioc[i].res_map)
1698 		{
1699 			panic("%s:%s() could not allocate resource map\n",
1700 			      __FILE__, __func__ );
1701 		}
1702 
1703 		memset(sba_dev->ioc[i].res_map, 0, res_size);
1704 		/* next available IOVP - circular search */
1705 		sba_dev->ioc[i].res_hint = (unsigned long *)
1706 				&(sba_dev->ioc[i].res_map[L1_CACHE_BYTES]);
1707 
1708 #ifdef ASSERT_PDIR_SANITY
1709 		/* Mark first bit busy - ie no IOVA 0 */
1710 		sba_dev->ioc[i].res_map[0] = 0x80;
1711 		sba_dev->ioc[i].pdir_base[0] = 0xeeffc0addbba0080ULL;
1712 #endif
1713 
1714 		/* Third (and last) part of PIRANHA BUG */
1715 		if (piranha_bad_128k) {
1716 			/* region from +1408K to +1536 is un-usable. */
1717 
1718 			int idx_start = (1408*1024/sizeof(u64)) >> 3;
1719 			int idx_end   = (1536*1024/sizeof(u64)) >> 3;
1720 			long *p_start = (long *) &(sba_dev->ioc[i].res_map[idx_start]);
1721 			long *p_end   = (long *) &(sba_dev->ioc[i].res_map[idx_end]);
1722 
1723 			/* mark that part of the io pdir busy */
1724 			while (p_start < p_end)
1725 				*p_start++ = -1;
1726 
1727 		}
1728 
1729 #ifdef DEBUG_DMB_TRAP
1730 		iterate_pages( sba_dev->ioc[i].res_map, res_size,
1731 				set_data_memory_break, 0);
1732 		iterate_pages( sba_dev->ioc[i].pdir_base, sba_dev->ioc[i].pdir_size,
1733 				set_data_memory_break, 0);
1734 #endif
1735 
1736 		DBG_INIT("%s() %d res_map %x %p\n",
1737 			__func__, i, res_size, sba_dev->ioc[i].res_map);
1738 	}
1739 
1740 	spin_lock_init(&sba_dev->sba_lock);
1741 	ioc_needs_fdc = boot_cpu_data.pdc.capabilities & PDC_MODEL_IOPDIR_FDC;
1742 
1743 #ifdef DEBUG_SBA_INIT
1744 	/*
1745 	 * If the PDC_MODEL capabilities has Non-coherent IO-PDIR bit set
1746 	 * (bit #61, big endian), we have to flush and sync every time
1747 	 * IO-PDIR is changed in Ike/Astro.
1748 	 */
1749 	if (ioc_needs_fdc) {
1750 		printk(KERN_INFO MODULE_NAME " FDC/SYNC required.\n");
1751 	} else {
1752 		printk(KERN_INFO MODULE_NAME " IOC has cache coherent PDIR.\n");
1753 	}
1754 #endif
1755 }
1756 
1757 #ifdef CONFIG_PROC_FS
1758 static int sba_proc_info(struct seq_file *m, void *p)
1759 {
1760 	struct sba_device *sba_dev = sba_list;
1761 	struct ioc *ioc = &sba_dev->ioc[0];	/* FIXME: Multi-IOC support! */
1762 	int total_pages = (int) (ioc->res_size << 3); /* 8 bits per byte */
1763 #ifdef SBA_COLLECT_STATS
1764 	unsigned long avg = 0, min, max;
1765 #endif
1766 	int i, len = 0;
1767 
1768 	len += seq_printf(m, "%s rev %d.%d\n",
1769 		sba_dev->name,
1770 		(sba_dev->hw_rev & 0x7) + 1,
1771 		(sba_dev->hw_rev & 0x18) >> 3
1772 		);
1773 	len += seq_printf(m, "IO PDIR size    : %d bytes (%d entries)\n",
1774 		(int) ((ioc->res_size << 3) * sizeof(u64)), /* 8 bits/byte */
1775 		total_pages);
1776 
1777 	len += seq_printf(m, "Resource bitmap : %d bytes (%d pages)\n",
1778 		ioc->res_size, ioc->res_size << 3);   /* 8 bits per byte */
1779 
1780 	len += seq_printf(m, "LMMIO_BASE/MASK/ROUTE %08x %08x %08x\n",
1781 		READ_REG32(sba_dev->sba_hpa + LMMIO_DIST_BASE),
1782 		READ_REG32(sba_dev->sba_hpa + LMMIO_DIST_MASK),
1783 		READ_REG32(sba_dev->sba_hpa + LMMIO_DIST_ROUTE)
1784 		);
1785 
1786 	for (i=0; i<4; i++)
1787 		len += seq_printf(m, "DIR%d_BASE/MASK/ROUTE %08x %08x %08x\n", i,
1788 			READ_REG32(sba_dev->sba_hpa + LMMIO_DIRECT0_BASE  + i*0x18),
1789 			READ_REG32(sba_dev->sba_hpa + LMMIO_DIRECT0_MASK  + i*0x18),
1790 			READ_REG32(sba_dev->sba_hpa + LMMIO_DIRECT0_ROUTE + i*0x18)
1791 		);
1792 
1793 #ifdef SBA_COLLECT_STATS
1794 	len += seq_printf(m, "IO PDIR entries : %ld free  %ld used (%d%%)\n",
1795 		total_pages - ioc->used_pages, ioc->used_pages,
1796 		(int) (ioc->used_pages * 100 / total_pages));
1797 
1798 	min = max = ioc->avg_search[0];
1799 	for (i = 0; i < SBA_SEARCH_SAMPLE; i++) {
1800 		avg += ioc->avg_search[i];
1801 		if (ioc->avg_search[i] > max) max = ioc->avg_search[i];
1802 		if (ioc->avg_search[i] < min) min = ioc->avg_search[i];
1803 	}
1804 	avg /= SBA_SEARCH_SAMPLE;
1805 	len += seq_printf(m, "  Bitmap search : %ld/%ld/%ld (min/avg/max CPU Cycles)\n",
1806 		min, avg, max);
1807 
1808 	len += seq_printf(m, "pci_map_single(): %12ld calls  %12ld pages (avg %d/1000)\n",
1809 		ioc->msingle_calls, ioc->msingle_pages,
1810 		(int) ((ioc->msingle_pages * 1000)/ioc->msingle_calls));
1811 
1812 	/* KLUGE - unmap_sg calls unmap_single for each mapped page */
1813 	min = ioc->usingle_calls;
1814 	max = ioc->usingle_pages - ioc->usg_pages;
1815 	len += seq_printf(m, "pci_unmap_single: %12ld calls  %12ld pages (avg %d/1000)\n",
1816 		min, max, (int) ((max * 1000)/min));
1817 
1818 	len += seq_printf(m, "pci_map_sg()    : %12ld calls  %12ld pages (avg %d/1000)\n",
1819 		ioc->msg_calls, ioc->msg_pages,
1820 		(int) ((ioc->msg_pages * 1000)/ioc->msg_calls));
1821 
1822 	len += seq_printf(m, "pci_unmap_sg()  : %12ld calls  %12ld pages (avg %d/1000)\n",
1823 		ioc->usg_calls, ioc->usg_pages,
1824 		(int) ((ioc->usg_pages * 1000)/ioc->usg_calls));
1825 #endif
1826 
1827 	return 0;
1828 }
1829 
1830 static int
1831 sba_proc_open(struct inode *i, struct file *f)
1832 {
1833 	return single_open(f, &sba_proc_info, NULL);
1834 }
1835 
1836 static const struct file_operations sba_proc_fops = {
1837 	.owner = THIS_MODULE,
1838 	.open = sba_proc_open,
1839 	.read = seq_read,
1840 	.llseek = seq_lseek,
1841 	.release = single_release,
1842 };
1843 
1844 static int
1845 sba_proc_bitmap_info(struct seq_file *m, void *p)
1846 {
1847 	struct sba_device *sba_dev = sba_list;
1848 	struct ioc *ioc = &sba_dev->ioc[0];	/* FIXME: Multi-IOC support! */
1849 	unsigned int *res_ptr = (unsigned int *)ioc->res_map;
1850 	int i, len = 0;
1851 
1852 	for (i = 0; i < (ioc->res_size/sizeof(unsigned int)); ++i, ++res_ptr) {
1853 		if ((i & 7) == 0)
1854 			len += seq_printf(m, "\n   ");
1855 		len += seq_printf(m, " %08x", *res_ptr);
1856 	}
1857 	len += seq_printf(m, "\n");
1858 
1859 	return 0;
1860 }
1861 
1862 static int
1863 sba_proc_bitmap_open(struct inode *i, struct file *f)
1864 {
1865 	return single_open(f, &sba_proc_bitmap_info, NULL);
1866 }
1867 
1868 static const struct file_operations sba_proc_bitmap_fops = {
1869 	.owner = THIS_MODULE,
1870 	.open = sba_proc_bitmap_open,
1871 	.read = seq_read,
1872 	.llseek = seq_lseek,
1873 	.release = single_release,
1874 };
1875 #endif /* CONFIG_PROC_FS */
1876 
1877 static struct parisc_device_id sba_tbl[] = {
1878 	{ HPHW_IOA, HVERSION_REV_ANY_ID, ASTRO_RUNWAY_PORT, 0xb },
1879 	{ HPHW_BCPORT, HVERSION_REV_ANY_ID, IKE_MERCED_PORT, 0xc },
1880 	{ HPHW_BCPORT, HVERSION_REV_ANY_ID, REO_MERCED_PORT, 0xc },
1881 	{ HPHW_BCPORT, HVERSION_REV_ANY_ID, REOG_MERCED_PORT, 0xc },
1882 	{ HPHW_IOA, HVERSION_REV_ANY_ID, PLUTO_MCKINLEY_PORT, 0xc },
1883 	{ 0, }
1884 };
1885 
1886 static int sba_driver_callback(struct parisc_device *);
1887 
1888 static struct parisc_driver sba_driver = {
1889 	.name =		MODULE_NAME,
1890 	.id_table =	sba_tbl,
1891 	.probe =	sba_driver_callback,
1892 };
1893 
1894 /*
1895 ** Determine if sba should claim this chip (return 0) or not (return 1).
1896 ** If so, initialize the chip and tell other partners in crime they
1897 ** have work to do.
1898 */
1899 static int sba_driver_callback(struct parisc_device *dev)
1900 {
1901 	struct sba_device *sba_dev;
1902 	u32 func_class;
1903 	int i;
1904 	char *version;
1905 	void __iomem *sba_addr = ioremap_nocache(dev->hpa.start, SBA_FUNC_SIZE);
1906 #ifdef CONFIG_PROC_FS
1907 	struct proc_dir_entry *root;
1908 #endif
1909 
1910 	sba_dump_ranges(sba_addr);
1911 
1912 	/* Read HW Rev First */
1913 	func_class = READ_REG(sba_addr + SBA_FCLASS);
1914 
1915 	if (IS_ASTRO(dev)) {
1916 		unsigned long fclass;
1917 		static char astro_rev[]="Astro ?.?";
1918 
1919 		/* Astro is broken...Read HW Rev First */
1920 		fclass = READ_REG(sba_addr);
1921 
1922 		astro_rev[6] = '1' + (char) (fclass & 0x7);
1923 		astro_rev[8] = '0' + (char) ((fclass & 0x18) >> 3);
1924 		version = astro_rev;
1925 
1926 	} else if (IS_IKE(dev)) {
1927 		static char ike_rev[] = "Ike rev ?";
1928 		ike_rev[8] = '0' + (char) (func_class & 0xff);
1929 		version = ike_rev;
1930 	} else if (IS_PLUTO(dev)) {
1931 		static char pluto_rev[]="Pluto ?.?";
1932 		pluto_rev[6] = '0' + (char) ((func_class & 0xf0) >> 4);
1933 		pluto_rev[8] = '0' + (char) (func_class & 0x0f);
1934 		version = pluto_rev;
1935 	} else {
1936 		static char reo_rev[] = "REO rev ?";
1937 		reo_rev[8] = '0' + (char) (func_class & 0xff);
1938 		version = reo_rev;
1939 	}
1940 
1941 	if (!global_ioc_cnt) {
1942 		global_ioc_cnt = count_parisc_driver(&sba_driver);
1943 
1944 		/* Astro and Pluto have one IOC per SBA */
1945 		if ((!IS_ASTRO(dev)) || (!IS_PLUTO(dev)))
1946 			global_ioc_cnt *= 2;
1947 	}
1948 
1949 	printk(KERN_INFO "%s found %s at 0x%llx\n",
1950 		MODULE_NAME, version, (unsigned long long)dev->hpa.start);
1951 
1952 	sba_dev = kzalloc(sizeof(struct sba_device), GFP_KERNEL);
1953 	if (!sba_dev) {
1954 		printk(KERN_ERR MODULE_NAME " - couldn't alloc sba_device\n");
1955 		return -ENOMEM;
1956 	}
1957 
1958 	parisc_set_drvdata(dev, sba_dev);
1959 
1960 	for(i=0; i<MAX_IOC; i++)
1961 		spin_lock_init(&(sba_dev->ioc[i].res_lock));
1962 
1963 	sba_dev->dev = dev;
1964 	sba_dev->hw_rev = func_class;
1965 	sba_dev->name = dev->name;
1966 	sba_dev->sba_hpa = sba_addr;
1967 
1968 	sba_get_pat_resources(sba_dev);
1969 	sba_hw_init(sba_dev);
1970 	sba_common_init(sba_dev);
1971 
1972 	hppa_dma_ops = &sba_ops;
1973 
1974 #ifdef CONFIG_PROC_FS
1975 	switch (dev->id.hversion) {
1976 	case PLUTO_MCKINLEY_PORT:
1977 		root = proc_mckinley_root;
1978 		break;
1979 	case ASTRO_RUNWAY_PORT:
1980 	case IKE_MERCED_PORT:
1981 	default:
1982 		root = proc_runway_root;
1983 		break;
1984 	}
1985 
1986 	proc_create("sba_iommu", 0, root, &sba_proc_fops);
1987 	proc_create("sba_iommu-bitmap", 0, root, &sba_proc_bitmap_fops);
1988 #endif
1989 
1990 	parisc_has_iommu();
1991 	return 0;
1992 }
1993 
1994 /*
1995 ** One time initialization to let the world know the SBA was found.
1996 ** This is the only routine which is NOT static.
1997 ** Must be called exactly once before pci_init().
1998 */
1999 void __init sba_init(void)
2000 {
2001 	register_parisc_driver(&sba_driver);
2002 }
2003 
2004 
2005 /**
2006  * sba_get_iommu - Assign the iommu pointer for the pci bus controller.
2007  * @dev: The parisc device.
2008  *
2009  * Returns the appropriate IOMMU data for the given parisc PCI controller.
2010  * This is cached and used later for PCI DMA Mapping.
2011  */
2012 void * sba_get_iommu(struct parisc_device *pci_hba)
2013 {
2014 	struct parisc_device *sba_dev = parisc_parent(pci_hba);
2015 	struct sba_device *sba = dev_get_drvdata(&sba_dev->dev);
2016 	char t = sba_dev->id.hw_type;
2017 	int iocnum = (pci_hba->hw_path >> 3);	/* rope # */
2018 
2019 	WARN_ON((t != HPHW_IOA) && (t != HPHW_BCPORT));
2020 
2021 	return &(sba->ioc[iocnum]);
2022 }
2023 
2024 
2025 /**
2026  * sba_directed_lmmio - return first directed LMMIO range routed to rope
2027  * @pa_dev: The parisc device.
2028  * @r: resource PCI host controller wants start/end fields assigned.
2029  *
2030  * For the given parisc PCI controller, determine if any direct ranges
2031  * are routed down the corresponding rope.
2032  */
2033 void sba_directed_lmmio(struct parisc_device *pci_hba, struct resource *r)
2034 {
2035 	struct parisc_device *sba_dev = parisc_parent(pci_hba);
2036 	struct sba_device *sba = dev_get_drvdata(&sba_dev->dev);
2037 	char t = sba_dev->id.hw_type;
2038 	int i;
2039 	int rope = (pci_hba->hw_path & (ROPES_PER_IOC-1));  /* rope # */
2040 
2041 	BUG_ON((t!=HPHW_IOA) && (t!=HPHW_BCPORT));
2042 
2043 	r->start = r->end = 0;
2044 
2045 	/* Astro has 4 directed ranges. Not sure about Ike/Pluto/et al */
2046 	for (i=0; i<4; i++) {
2047 		int base, size;
2048 		void __iomem *reg = sba->sba_hpa + i*0x18;
2049 
2050 		base = READ_REG32(reg + LMMIO_DIRECT0_BASE);
2051 		if ((base & 1) == 0)
2052 			continue;	/* not enabled */
2053 
2054 		size = READ_REG32(reg + LMMIO_DIRECT0_ROUTE);
2055 
2056 		if ((size & (ROPES_PER_IOC-1)) != rope)
2057 			continue;	/* directed down different rope */
2058 
2059 		r->start = (base & ~1UL) | PCI_F_EXTEND;
2060 		size = ~ READ_REG32(reg + LMMIO_DIRECT0_MASK);
2061 		r->end = r->start + size;
2062 		r->flags = IORESOURCE_MEM;
2063 	}
2064 }
2065 
2066 
2067 /**
2068  * sba_distributed_lmmio - return portion of distributed LMMIO range
2069  * @pa_dev: The parisc device.
2070  * @r: resource PCI host controller wants start/end fields assigned.
2071  *
2072  * For the given parisc PCI controller, return portion of distributed LMMIO
2073  * range. The distributed LMMIO is always present and it's just a question
2074  * of the base address and size of the range.
2075  */
2076 void sba_distributed_lmmio(struct parisc_device *pci_hba, struct resource *r )
2077 {
2078 	struct parisc_device *sba_dev = parisc_parent(pci_hba);
2079 	struct sba_device *sba = dev_get_drvdata(&sba_dev->dev);
2080 	char t = sba_dev->id.hw_type;
2081 	int base, size;
2082 	int rope = (pci_hba->hw_path & (ROPES_PER_IOC-1));  /* rope # */
2083 
2084 	BUG_ON((t!=HPHW_IOA) && (t!=HPHW_BCPORT));
2085 
2086 	r->start = r->end = 0;
2087 
2088 	base = READ_REG32(sba->sba_hpa + LMMIO_DIST_BASE);
2089 	if ((base & 1) == 0) {
2090 		BUG();	/* Gah! Distr Range wasn't enabled! */
2091 		return;
2092 	}
2093 
2094 	r->start = (base & ~1UL) | PCI_F_EXTEND;
2095 
2096 	size = (~READ_REG32(sba->sba_hpa + LMMIO_DIST_MASK)) / ROPES_PER_IOC;
2097 	r->start += rope * (size + 1);	/* adjust base for this rope */
2098 	r->end = r->start + size;
2099 	r->flags = IORESOURCE_MEM;
2100 }
2101