xref: /openbmc/linux/drivers/parisc/sba_iommu.c (revision 64c70b1c)
1 /*
2 **  System Bus Adapter (SBA) I/O MMU manager
3 **
4 **	(c) Copyright 2000-2004 Grant Grundler <grundler @ parisc-linux x org>
5 **	(c) Copyright 2004 Naresh Kumar Inna <knaresh at india x hp x com>
6 **	(c) Copyright 2000-2004 Hewlett-Packard Company
7 **
8 **	Portions (c) 1999 Dave S. Miller (from sparc64 I/O MMU code)
9 **
10 **	This program is free software; you can redistribute it and/or modify
11 **	it under the terms of the GNU General Public License as published by
12 **      the Free Software Foundation; either version 2 of the License, or
13 **      (at your option) any later version.
14 **
15 **
16 ** This module initializes the IOC (I/O Controller) found on B1000/C3000/
17 ** J5000/J7000/N-class/L-class machines and their successors.
18 **
19 ** FIXME: add DMA hint support programming in both sba and lba modules.
20 */
21 
22 #include <linux/types.h>
23 #include <linux/kernel.h>
24 #include <linux/spinlock.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 
28 #include <linux/mm.h>
29 #include <linux/string.h>
30 #include <linux/pci.h>
31 
32 #include <asm/byteorder.h>
33 #include <asm/io.h>
34 #include <asm/dma.h>		/* for DMA_CHUNK_SIZE */
35 
36 #include <asm/hardware.h>	/* for register_parisc_driver() stuff */
37 
38 #include <linux/proc_fs.h>
39 #include <linux/seq_file.h>
40 
41 #include <asm/ropes.h>
42 #include <asm/mckinley.h>	/* for proc_mckinley_root */
43 #include <asm/runway.h>		/* for proc_runway_root */
44 #include <asm/pdc.h>		/* for PDC_MODEL_* */
45 #include <asm/pdcpat.h>		/* for is_pdc_pat() */
46 #include <asm/parisc-device.h>
47 
48 #define MODULE_NAME "SBA"
49 
50 /*
51 ** The number of debug flags is a clue - this code is fragile.
52 ** Don't even think about messing with it unless you have
53 ** plenty of 710's to sacrifice to the computer gods. :^)
54 */
55 #undef DEBUG_SBA_INIT
56 #undef DEBUG_SBA_RUN
57 #undef DEBUG_SBA_RUN_SG
58 #undef DEBUG_SBA_RESOURCE
59 #undef ASSERT_PDIR_SANITY
60 #undef DEBUG_LARGE_SG_ENTRIES
61 #undef DEBUG_DMB_TRAP
62 
63 #ifdef DEBUG_SBA_INIT
64 #define DBG_INIT(x...)	printk(x)
65 #else
66 #define DBG_INIT(x...)
67 #endif
68 
69 #ifdef DEBUG_SBA_RUN
70 #define DBG_RUN(x...)	printk(x)
71 #else
72 #define DBG_RUN(x...)
73 #endif
74 
75 #ifdef DEBUG_SBA_RUN_SG
76 #define DBG_RUN_SG(x...)	printk(x)
77 #else
78 #define DBG_RUN_SG(x...)
79 #endif
80 
81 
82 #ifdef DEBUG_SBA_RESOURCE
83 #define DBG_RES(x...)	printk(x)
84 #else
85 #define DBG_RES(x...)
86 #endif
87 
88 #define SBA_INLINE	__inline__
89 
90 #define DEFAULT_DMA_HINT_REG	0
91 
92 struct sba_device *sba_list;
93 EXPORT_SYMBOL_GPL(sba_list);
94 
95 static unsigned long ioc_needs_fdc = 0;
96 
97 /* global count of IOMMUs in the system */
98 static unsigned int global_ioc_cnt = 0;
99 
100 /* PA8700 (Piranha 2.2) bug workaround */
101 static unsigned long piranha_bad_128k = 0;
102 
103 /* Looks nice and keeps the compiler happy */
104 #define SBA_DEV(d) ((struct sba_device *) (d))
105 
106 #ifdef CONFIG_AGP_PARISC
107 #define SBA_AGP_SUPPORT
108 #endif /*CONFIG_AGP_PARISC*/
109 
110 #ifdef SBA_AGP_SUPPORT
111 static int sba_reserve_agpgart = 1;
112 module_param(sba_reserve_agpgart, int, 0444);
113 MODULE_PARM_DESC(sba_reserve_agpgart, "Reserve half of IO pdir as AGPGART");
114 #endif
115 
116 
117 /************************************
118 ** SBA register read and write support
119 **
120 ** BE WARNED: register writes are posted.
121 **  (ie follow writes which must reach HW with a read)
122 **
123 ** Superdome (in particular, REO) allows only 64-bit CSR accesses.
124 */
125 #define READ_REG32(addr)	readl(addr)
126 #define READ_REG64(addr)	readq(addr)
127 #define WRITE_REG32(val, addr)	writel((val), (addr))
128 #define WRITE_REG64(val, addr)	writeq((val), (addr))
129 
130 #ifdef CONFIG_64BIT
131 #define READ_REG(addr)		READ_REG64(addr)
132 #define WRITE_REG(value, addr)	WRITE_REG64(value, addr)
133 #else
134 #define READ_REG(addr)		READ_REG32(addr)
135 #define WRITE_REG(value, addr)	WRITE_REG32(value, addr)
136 #endif
137 
138 #ifdef DEBUG_SBA_INIT
139 
140 /* NOTE: When CONFIG_64BIT isn't defined, READ_REG64() is two 32-bit reads */
141 
142 /**
143  * sba_dump_ranges - debugging only - print ranges assigned to this IOA
144  * @hpa: base address of the sba
145  *
146  * Print the MMIO and IO Port address ranges forwarded by an Astro/Ike/RIO
147  * IO Adapter (aka Bus Converter).
148  */
149 static void
150 sba_dump_ranges(void __iomem *hpa)
151 {
152 	DBG_INIT("SBA at 0x%p\n", hpa);
153 	DBG_INIT("IOS_DIST_BASE   : %Lx\n", READ_REG64(hpa+IOS_DIST_BASE));
154 	DBG_INIT("IOS_DIST_MASK   : %Lx\n", READ_REG64(hpa+IOS_DIST_MASK));
155 	DBG_INIT("IOS_DIST_ROUTE  : %Lx\n", READ_REG64(hpa+IOS_DIST_ROUTE));
156 	DBG_INIT("\n");
157 	DBG_INIT("IOS_DIRECT_BASE : %Lx\n", READ_REG64(hpa+IOS_DIRECT_BASE));
158 	DBG_INIT("IOS_DIRECT_MASK : %Lx\n", READ_REG64(hpa+IOS_DIRECT_MASK));
159 	DBG_INIT("IOS_DIRECT_ROUTE: %Lx\n", READ_REG64(hpa+IOS_DIRECT_ROUTE));
160 }
161 
162 /**
163  * sba_dump_tlb - debugging only - print IOMMU operating parameters
164  * @hpa: base address of the IOMMU
165  *
166  * Print the size/location of the IO MMU PDIR.
167  */
168 static void sba_dump_tlb(void __iomem *hpa)
169 {
170 	DBG_INIT("IO TLB at 0x%p\n", hpa);
171 	DBG_INIT("IOC_IBASE    : 0x%Lx\n", READ_REG64(hpa+IOC_IBASE));
172 	DBG_INIT("IOC_IMASK    : 0x%Lx\n", READ_REG64(hpa+IOC_IMASK));
173 	DBG_INIT("IOC_TCNFG    : 0x%Lx\n", READ_REG64(hpa+IOC_TCNFG));
174 	DBG_INIT("IOC_PDIR_BASE: 0x%Lx\n", READ_REG64(hpa+IOC_PDIR_BASE));
175 	DBG_INIT("\n");
176 }
177 #else
178 #define sba_dump_ranges(x)
179 #define sba_dump_tlb(x)
180 #endif	/* DEBUG_SBA_INIT */
181 
182 
183 #ifdef ASSERT_PDIR_SANITY
184 
185 /**
186  * sba_dump_pdir_entry - debugging only - print one IOMMU PDIR entry
187  * @ioc: IO MMU structure which owns the pdir we are interested in.
188  * @msg: text to print ont the output line.
189  * @pide: pdir index.
190  *
191  * Print one entry of the IO MMU PDIR in human readable form.
192  */
193 static void
194 sba_dump_pdir_entry(struct ioc *ioc, char *msg, uint pide)
195 {
196 	/* start printing from lowest pde in rval */
197 	u64 *ptr = &(ioc->pdir_base[pide & (~0U * BITS_PER_LONG)]);
198 	unsigned long *rptr = (unsigned long *) &(ioc->res_map[(pide >>3) & ~(sizeof(unsigned long) - 1)]);
199 	uint rcnt;
200 
201 	printk(KERN_DEBUG "SBA: %s rp %p bit %d rval 0x%lx\n",
202 		 msg,
203 		 rptr, pide & (BITS_PER_LONG - 1), *rptr);
204 
205 	rcnt = 0;
206 	while (rcnt < BITS_PER_LONG) {
207 		printk(KERN_DEBUG "%s %2d %p %016Lx\n",
208 			(rcnt == (pide & (BITS_PER_LONG - 1)))
209 				? "    -->" : "       ",
210 			rcnt, ptr, *ptr );
211 		rcnt++;
212 		ptr++;
213 	}
214 	printk(KERN_DEBUG "%s", msg);
215 }
216 
217 
218 /**
219  * sba_check_pdir - debugging only - consistency checker
220  * @ioc: IO MMU structure which owns the pdir we are interested in.
221  * @msg: text to print ont the output line.
222  *
223  * Verify the resource map and pdir state is consistent
224  */
225 static int
226 sba_check_pdir(struct ioc *ioc, char *msg)
227 {
228 	u32 *rptr_end = (u32 *) &(ioc->res_map[ioc->res_size]);
229 	u32 *rptr = (u32 *) ioc->res_map;	/* resource map ptr */
230 	u64 *pptr = ioc->pdir_base;	/* pdir ptr */
231 	uint pide = 0;
232 
233 	while (rptr < rptr_end) {
234 		u32 rval = *rptr;
235 		int rcnt = 32;	/* number of bits we might check */
236 
237 		while (rcnt) {
238 			/* Get last byte and highest bit from that */
239 			u32 pde = ((u32) (((char *)pptr)[7])) << 24;
240 			if ((rval ^ pde) & 0x80000000)
241 			{
242 				/*
243 				** BUMMER!  -- res_map != pdir --
244 				** Dump rval and matching pdir entries
245 				*/
246 				sba_dump_pdir_entry(ioc, msg, pide);
247 				return(1);
248 			}
249 			rcnt--;
250 			rval <<= 1;	/* try the next bit */
251 			pptr++;
252 			pide++;
253 		}
254 		rptr++;	/* look at next word of res_map */
255 	}
256 	/* It'd be nice if we always got here :^) */
257 	return 0;
258 }
259 
260 
261 /**
262  * sba_dump_sg - debugging only - print Scatter-Gather list
263  * @ioc: IO MMU structure which owns the pdir we are interested in.
264  * @startsg: head of the SG list
265  * @nents: number of entries in SG list
266  *
267  * print the SG list so we can verify it's correct by hand.
268  */
269 static void
270 sba_dump_sg( struct ioc *ioc, struct scatterlist *startsg, int nents)
271 {
272 	while (nents-- > 0) {
273 		printk(KERN_DEBUG " %d : %08lx/%05x %p/%05x\n",
274 				nents,
275 				(unsigned long) sg_dma_address(startsg),
276 				sg_dma_len(startsg),
277 				sg_virt_addr(startsg), startsg->length);
278 		startsg++;
279 	}
280 }
281 
282 #endif /* ASSERT_PDIR_SANITY */
283 
284 
285 
286 
287 /**************************************************************
288 *
289 *   I/O Pdir Resource Management
290 *
291 *   Bits set in the resource map are in use.
292 *   Each bit can represent a number of pages.
293 *   LSbs represent lower addresses (IOVA's).
294 *
295 ***************************************************************/
296 #define PAGES_PER_RANGE 1	/* could increase this to 4 or 8 if needed */
297 
298 /* Convert from IOVP to IOVA and vice versa. */
299 
300 #ifdef ZX1_SUPPORT
301 /* Pluto (aka ZX1) boxes need to set or clear the ibase bits appropriately */
302 #define SBA_IOVA(ioc,iovp,offset,hint_reg) ((ioc->ibase) | (iovp) | (offset))
303 #define SBA_IOVP(ioc,iova) ((iova) & (ioc)->iovp_mask)
304 #else
305 /* only support Astro and ancestors. Saves a few cycles in key places */
306 #define SBA_IOVA(ioc,iovp,offset,hint_reg) ((iovp) | (offset))
307 #define SBA_IOVP(ioc,iova) (iova)
308 #endif
309 
310 #define PDIR_INDEX(iovp)   ((iovp)>>IOVP_SHIFT)
311 
312 #define RESMAP_MASK(n)    (~0UL << (BITS_PER_LONG - (n)))
313 #define RESMAP_IDX_MASK   (sizeof(unsigned long) - 1)
314 
315 
316 /**
317  * sba_search_bitmap - find free space in IO PDIR resource bitmap
318  * @ioc: IO MMU structure which owns the pdir we are interested in.
319  * @bits_wanted: number of entries we need.
320  *
321  * Find consecutive free bits in resource bitmap.
322  * Each bit represents one entry in the IO Pdir.
323  * Cool perf optimization: search for log2(size) bits at a time.
324  */
325 static SBA_INLINE unsigned long
326 sba_search_bitmap(struct ioc *ioc, unsigned long bits_wanted)
327 {
328 	unsigned long *res_ptr = ioc->res_hint;
329 	unsigned long *res_end = (unsigned long *) &(ioc->res_map[ioc->res_size]);
330 	unsigned long pide = ~0UL;
331 
332 	if (bits_wanted > (BITS_PER_LONG/2)) {
333 		/* Search word at a time - no mask needed */
334 		for(; res_ptr < res_end; ++res_ptr) {
335 			if (*res_ptr == 0) {
336 				*res_ptr = RESMAP_MASK(bits_wanted);
337 				pide = ((unsigned long)res_ptr - (unsigned long)ioc->res_map);
338 				pide <<= 3;	/* convert to bit address */
339 				break;
340 			}
341 		}
342 		/* point to the next word on next pass */
343 		res_ptr++;
344 		ioc->res_bitshift = 0;
345 	} else {
346 		/*
347 		** Search the resource bit map on well-aligned values.
348 		** "o" is the alignment.
349 		** We need the alignment to invalidate I/O TLB using
350 		** SBA HW features in the unmap path.
351 		*/
352 		unsigned long o = 1 << get_order(bits_wanted << PAGE_SHIFT);
353 		uint bitshiftcnt = ALIGN(ioc->res_bitshift, o);
354 		unsigned long mask;
355 
356 		if (bitshiftcnt >= BITS_PER_LONG) {
357 			bitshiftcnt = 0;
358 			res_ptr++;
359 		}
360 		mask = RESMAP_MASK(bits_wanted) >> bitshiftcnt;
361 
362 		DBG_RES("%s() o %ld %p", __FUNCTION__, o, res_ptr);
363 		while(res_ptr < res_end)
364 		{
365 			DBG_RES("    %p %lx %lx\n", res_ptr, mask, *res_ptr);
366 			WARN_ON(mask == 0);
367 			if(((*res_ptr) & mask) == 0) {
368 				*res_ptr |= mask;     /* mark resources busy! */
369 				pide = ((unsigned long)res_ptr - (unsigned long)ioc->res_map);
370 				pide <<= 3;	/* convert to bit address */
371 				pide += bitshiftcnt;
372 				break;
373 			}
374 			mask >>= o;
375 			bitshiftcnt += o;
376 			if (mask == 0) {
377 				mask = RESMAP_MASK(bits_wanted);
378 				bitshiftcnt=0;
379 				res_ptr++;
380 			}
381 		}
382 		/* look in the same word on the next pass */
383 		ioc->res_bitshift = bitshiftcnt + bits_wanted;
384 	}
385 
386 	/* wrapped ? */
387 	if (res_end <= res_ptr) {
388 		ioc->res_hint = (unsigned long *) ioc->res_map;
389 		ioc->res_bitshift = 0;
390 	} else {
391 		ioc->res_hint = res_ptr;
392 	}
393 	return (pide);
394 }
395 
396 
397 /**
398  * sba_alloc_range - find free bits and mark them in IO PDIR resource bitmap
399  * @ioc: IO MMU structure which owns the pdir we are interested in.
400  * @size: number of bytes to create a mapping for
401  *
402  * Given a size, find consecutive unmarked and then mark those bits in the
403  * resource bit map.
404  */
405 static int
406 sba_alloc_range(struct ioc *ioc, size_t size)
407 {
408 	unsigned int pages_needed = size >> IOVP_SHIFT;
409 #ifdef SBA_COLLECT_STATS
410 	unsigned long cr_start = mfctl(16);
411 #endif
412 	unsigned long pide;
413 
414 	pide = sba_search_bitmap(ioc, pages_needed);
415 	if (pide >= (ioc->res_size << 3)) {
416 		pide = sba_search_bitmap(ioc, pages_needed);
417 		if (pide >= (ioc->res_size << 3))
418 			panic("%s: I/O MMU @ %p is out of mapping resources\n",
419 			      __FILE__, ioc->ioc_hpa);
420 	}
421 
422 #ifdef ASSERT_PDIR_SANITY
423 	/* verify the first enable bit is clear */
424 	if(0x00 != ((u8 *) ioc->pdir_base)[pide*sizeof(u64) + 7]) {
425 		sba_dump_pdir_entry(ioc, "sba_search_bitmap() botched it?", pide);
426 	}
427 #endif
428 
429 	DBG_RES("%s(%x) %d -> %lx hint %x/%x\n",
430 		__FUNCTION__, size, pages_needed, pide,
431 		(uint) ((unsigned long) ioc->res_hint - (unsigned long) ioc->res_map),
432 		ioc->res_bitshift );
433 
434 #ifdef SBA_COLLECT_STATS
435 	{
436 		unsigned long cr_end = mfctl(16);
437 		unsigned long tmp = cr_end - cr_start;
438 		/* check for roll over */
439 		cr_start = (cr_end < cr_start) ?  -(tmp) : (tmp);
440 	}
441 	ioc->avg_search[ioc->avg_idx++] = cr_start;
442 	ioc->avg_idx &= SBA_SEARCH_SAMPLE - 1;
443 
444 	ioc->used_pages += pages_needed;
445 #endif
446 
447 	return (pide);
448 }
449 
450 
451 /**
452  * sba_free_range - unmark bits in IO PDIR resource bitmap
453  * @ioc: IO MMU structure which owns the pdir we are interested in.
454  * @iova: IO virtual address which was previously allocated.
455  * @size: number of bytes to create a mapping for
456  *
457  * clear bits in the ioc's resource map
458  */
459 static SBA_INLINE void
460 sba_free_range(struct ioc *ioc, dma_addr_t iova, size_t size)
461 {
462 	unsigned long iovp = SBA_IOVP(ioc, iova);
463 	unsigned int pide = PDIR_INDEX(iovp);
464 	unsigned int ridx = pide >> 3;	/* convert bit to byte address */
465 	unsigned long *res_ptr = (unsigned long *) &((ioc)->res_map[ridx & ~RESMAP_IDX_MASK]);
466 
467 	int bits_not_wanted = size >> IOVP_SHIFT;
468 
469 	/* 3-bits "bit" address plus 2 (or 3) bits for "byte" == bit in word */
470 	unsigned long m = RESMAP_MASK(bits_not_wanted) >> (pide & (BITS_PER_LONG - 1));
471 
472 	DBG_RES("%s( ,%x,%x) %x/%lx %x %p %lx\n",
473 		__FUNCTION__, (uint) iova, size,
474 		bits_not_wanted, m, pide, res_ptr, *res_ptr);
475 
476 #ifdef SBA_COLLECT_STATS
477 	ioc->used_pages -= bits_not_wanted;
478 #endif
479 
480 	*res_ptr &= ~m;
481 }
482 
483 
484 /**************************************************************
485 *
486 *   "Dynamic DMA Mapping" support (aka "Coherent I/O")
487 *
488 ***************************************************************/
489 
490 #ifdef SBA_HINT_SUPPORT
491 #define SBA_DMA_HINT(ioc, val) ((val) << (ioc)->hint_shift_pdir)
492 #endif
493 
494 typedef unsigned long space_t;
495 #define KERNEL_SPACE 0
496 
497 /**
498  * sba_io_pdir_entry - fill in one IO PDIR entry
499  * @pdir_ptr:  pointer to IO PDIR entry
500  * @sid: process Space ID - currently only support KERNEL_SPACE
501  * @vba: Virtual CPU address of buffer to map
502  * @hint: DMA hint set to use for this mapping
503  *
504  * SBA Mapping Routine
505  *
506  * Given a virtual address (vba, arg2) and space id, (sid, arg1)
507  * sba_io_pdir_entry() loads the I/O PDIR entry pointed to by
508  * pdir_ptr (arg0).
509  * Using the bass-ackwards HP bit numbering, Each IO Pdir entry
510  * for Astro/Ike looks like:
511  *
512  *
513  *  0                    19                                 51   55       63
514  * +-+---------------------+----------------------------------+----+--------+
515  * |V|        U            |            PPN[43:12]            | U  |   VI   |
516  * +-+---------------------+----------------------------------+----+--------+
517  *
518  * Pluto is basically identical, supports fewer physical address bits:
519  *
520  *  0                       23                              51   55       63
521  * +-+------------------------+-------------------------------+----+--------+
522  * |V|        U               |         PPN[39:12]            | U  |   VI   |
523  * +-+------------------------+-------------------------------+----+--------+
524  *
525  *  V  == Valid Bit  (Most Significant Bit is bit 0)
526  *  U  == Unused
527  * PPN == Physical Page Number
528  * VI  == Virtual Index (aka Coherent Index)
529  *
530  * LPA instruction output is put into PPN field.
531  * LCI (Load Coherence Index) instruction provides the "VI" bits.
532  *
533  * We pre-swap the bytes since PCX-W is Big Endian and the
534  * IOMMU uses little endian for the pdir.
535  */
536 
537 void SBA_INLINE
538 sba_io_pdir_entry(u64 *pdir_ptr, space_t sid, unsigned long vba,
539 		  unsigned long hint)
540 {
541 	u64 pa; /* physical address */
542 	register unsigned ci; /* coherent index */
543 
544 	pa = virt_to_phys(vba);
545 	pa &= IOVP_MASK;
546 
547 	mtsp(sid,1);
548 	asm("lci 0(%%sr1, %1), %0" : "=r" (ci) : "r" (vba));
549 	pa |= (ci >> 12) & 0xff;  /* move CI (8 bits) into lowest byte */
550 
551 	pa |= SBA_PDIR_VALID_BIT;	/* set "valid" bit */
552 	*pdir_ptr = cpu_to_le64(pa);	/* swap and store into I/O Pdir */
553 
554 	/*
555 	 * If the PDC_MODEL capabilities has Non-coherent IO-PDIR bit set
556 	 * (bit #61, big endian), we have to flush and sync every time
557 	 * IO-PDIR is changed in Ike/Astro.
558 	 */
559 	if (ioc_needs_fdc)
560 		asm volatile("fdc %%r0(%0)" : : "r" (pdir_ptr));
561 }
562 
563 
564 /**
565  * sba_mark_invalid - invalidate one or more IO PDIR entries
566  * @ioc: IO MMU structure which owns the pdir we are interested in.
567  * @iova:  IO Virtual Address mapped earlier
568  * @byte_cnt:  number of bytes this mapping covers.
569  *
570  * Marking the IO PDIR entry(ies) as Invalid and invalidate
571  * corresponding IO TLB entry. The Ike PCOM (Purge Command Register)
572  * is to purge stale entries in the IO TLB when unmapping entries.
573  *
574  * The PCOM register supports purging of multiple pages, with a minium
575  * of 1 page and a maximum of 2GB. Hardware requires the address be
576  * aligned to the size of the range being purged. The size of the range
577  * must be a power of 2. The "Cool perf optimization" in the
578  * allocation routine helps keep that true.
579  */
580 static SBA_INLINE void
581 sba_mark_invalid(struct ioc *ioc, dma_addr_t iova, size_t byte_cnt)
582 {
583 	u32 iovp = (u32) SBA_IOVP(ioc,iova);
584 	u64 *pdir_ptr = &ioc->pdir_base[PDIR_INDEX(iovp)];
585 
586 #ifdef ASSERT_PDIR_SANITY
587 	/* Assert first pdir entry is set.
588 	**
589 	** Even though this is a big-endian machine, the entries
590 	** in the iopdir are little endian. That's why we look at
591 	** the byte at +7 instead of at +0.
592 	*/
593 	if (0x80 != (((u8 *) pdir_ptr)[7])) {
594 		sba_dump_pdir_entry(ioc,"sba_mark_invalid()", PDIR_INDEX(iovp));
595 	}
596 #endif
597 
598 	if (byte_cnt > IOVP_SIZE)
599 	{
600 #if 0
601 		unsigned long entries_per_cacheline = ioc_needs_fdc ?
602 				L1_CACHE_ALIGN(((unsigned long) pdir_ptr))
603 					- (unsigned long) pdir_ptr;
604 				: 262144;
605 #endif
606 
607 		/* set "size" field for PCOM */
608 		iovp |= get_order(byte_cnt) + PAGE_SHIFT;
609 
610 		do {
611 			/* clear I/O Pdir entry "valid" bit first */
612 			((u8 *) pdir_ptr)[7] = 0;
613 			if (ioc_needs_fdc) {
614 				asm volatile("fdc %%r0(%0)" : : "r" (pdir_ptr));
615 #if 0
616 				entries_per_cacheline = L1_CACHE_SHIFT - 3;
617 #endif
618 			}
619 			pdir_ptr++;
620 			byte_cnt -= IOVP_SIZE;
621 		} while (byte_cnt > IOVP_SIZE);
622 	} else
623 		iovp |= IOVP_SHIFT;     /* set "size" field for PCOM */
624 
625 	/*
626 	** clear I/O PDIR entry "valid" bit.
627 	** We have to R/M/W the cacheline regardless how much of the
628 	** pdir entry that we clobber.
629 	** The rest of the entry would be useful for debugging if we
630 	** could dump core on HPMC.
631 	*/
632 	((u8 *) pdir_ptr)[7] = 0;
633 	if (ioc_needs_fdc)
634 		asm volatile("fdc %%r0(%0)" : : "r" (pdir_ptr));
635 
636 	WRITE_REG( SBA_IOVA(ioc, iovp, 0, 0), ioc->ioc_hpa+IOC_PCOM);
637 }
638 
639 /**
640  * sba_dma_supported - PCI driver can query DMA support
641  * @dev: instance of PCI owned by the driver that's asking
642  * @mask:  number of address bits this PCI device can handle
643  *
644  * See Documentation/DMA-mapping.txt
645  */
646 static int sba_dma_supported( struct device *dev, u64 mask)
647 {
648 	struct ioc *ioc;
649 
650 	if (dev == NULL) {
651 		printk(KERN_ERR MODULE_NAME ": EISA/ISA/et al not supported\n");
652 		BUG();
653 		return(0);
654 	}
655 
656 	/* Documentation/DMA-mapping.txt tells drivers to try 64-bit first,
657 	 * then fall back to 32-bit if that fails.
658 	 * We are just "encouraging" 32-bit DMA masks here since we can
659 	 * never allow IOMMU bypass unless we add special support for ZX1.
660 	 */
661 	if (mask > ~0U)
662 		return 0;
663 
664 	ioc = GET_IOC(dev);
665 
666 	/*
667 	 * check if mask is >= than the current max IO Virt Address
668 	 * The max IO Virt address will *always* < 30 bits.
669 	 */
670 	return((int)(mask >= (ioc->ibase - 1 +
671 			(ioc->pdir_size / sizeof(u64) * IOVP_SIZE) )));
672 }
673 
674 
675 /**
676  * sba_map_single - map one buffer and return IOVA for DMA
677  * @dev: instance of PCI owned by the driver that's asking.
678  * @addr:  driver buffer to map.
679  * @size:  number of bytes to map in driver buffer.
680  * @direction:  R/W or both.
681  *
682  * See Documentation/DMA-mapping.txt
683  */
684 static dma_addr_t
685 sba_map_single(struct device *dev, void *addr, size_t size,
686 	       enum dma_data_direction direction)
687 {
688 	struct ioc *ioc;
689 	unsigned long flags;
690 	dma_addr_t iovp;
691 	dma_addr_t offset;
692 	u64 *pdir_start;
693 	int pide;
694 
695 	ioc = GET_IOC(dev);
696 
697 	/* save offset bits */
698 	offset = ((dma_addr_t) (long) addr) & ~IOVP_MASK;
699 
700 	/* round up to nearest IOVP_SIZE */
701 	size = (size + offset + ~IOVP_MASK) & IOVP_MASK;
702 
703 	spin_lock_irqsave(&ioc->res_lock, flags);
704 #ifdef ASSERT_PDIR_SANITY
705 	sba_check_pdir(ioc,"Check before sba_map_single()");
706 #endif
707 
708 #ifdef SBA_COLLECT_STATS
709 	ioc->msingle_calls++;
710 	ioc->msingle_pages += size >> IOVP_SHIFT;
711 #endif
712 	pide = sba_alloc_range(ioc, size);
713 	iovp = (dma_addr_t) pide << IOVP_SHIFT;
714 
715 	DBG_RUN("%s() 0x%p -> 0x%lx\n",
716 		__FUNCTION__, addr, (long) iovp | offset);
717 
718 	pdir_start = &(ioc->pdir_base[pide]);
719 
720 	while (size > 0) {
721 		sba_io_pdir_entry(pdir_start, KERNEL_SPACE, (unsigned long) addr, 0);
722 
723 		DBG_RUN("	pdir 0x%p %02x%02x%02x%02x%02x%02x%02x%02x\n",
724 			pdir_start,
725 			(u8) (((u8 *) pdir_start)[7]),
726 			(u8) (((u8 *) pdir_start)[6]),
727 			(u8) (((u8 *) pdir_start)[5]),
728 			(u8) (((u8 *) pdir_start)[4]),
729 			(u8) (((u8 *) pdir_start)[3]),
730 			(u8) (((u8 *) pdir_start)[2]),
731 			(u8) (((u8 *) pdir_start)[1]),
732 			(u8) (((u8 *) pdir_start)[0])
733 			);
734 
735 		addr += IOVP_SIZE;
736 		size -= IOVP_SIZE;
737 		pdir_start++;
738 	}
739 
740 	/* force FDC ops in io_pdir_entry() to be visible to IOMMU */
741 	if (ioc_needs_fdc)
742 		asm volatile("sync" : : );
743 
744 #ifdef ASSERT_PDIR_SANITY
745 	sba_check_pdir(ioc,"Check after sba_map_single()");
746 #endif
747 	spin_unlock_irqrestore(&ioc->res_lock, flags);
748 
749 	/* form complete address */
750 	return SBA_IOVA(ioc, iovp, offset, DEFAULT_DMA_HINT_REG);
751 }
752 
753 
754 /**
755  * sba_unmap_single - unmap one IOVA and free resources
756  * @dev: instance of PCI owned by the driver that's asking.
757  * @iova:  IOVA of driver buffer previously mapped.
758  * @size:  number of bytes mapped in driver buffer.
759  * @direction:  R/W or both.
760  *
761  * See Documentation/DMA-mapping.txt
762  */
763 static void
764 sba_unmap_single(struct device *dev, dma_addr_t iova, size_t size,
765 		 enum dma_data_direction direction)
766 {
767 	struct ioc *ioc;
768 #if DELAYED_RESOURCE_CNT > 0
769 	struct sba_dma_pair *d;
770 #endif
771 	unsigned long flags;
772 	dma_addr_t offset;
773 
774 	DBG_RUN("%s() iovp 0x%lx/%x\n", __FUNCTION__, (long) iova, size);
775 
776 	ioc = GET_IOC(dev);
777 	offset = iova & ~IOVP_MASK;
778 	iova ^= offset;        /* clear offset bits */
779 	size += offset;
780 	size = ALIGN(size, IOVP_SIZE);
781 
782 	spin_lock_irqsave(&ioc->res_lock, flags);
783 
784 #ifdef SBA_COLLECT_STATS
785 	ioc->usingle_calls++;
786 	ioc->usingle_pages += size >> IOVP_SHIFT;
787 #endif
788 
789 	sba_mark_invalid(ioc, iova, size);
790 
791 #if DELAYED_RESOURCE_CNT > 0
792 	/* Delaying when we re-use a IO Pdir entry reduces the number
793 	 * of MMIO reads needed to flush writes to the PCOM register.
794 	 */
795 	d = &(ioc->saved[ioc->saved_cnt]);
796 	d->iova = iova;
797 	d->size = size;
798 	if (++(ioc->saved_cnt) >= DELAYED_RESOURCE_CNT) {
799 		int cnt = ioc->saved_cnt;
800 		while (cnt--) {
801 			sba_free_range(ioc, d->iova, d->size);
802 			d--;
803 		}
804 		ioc->saved_cnt = 0;
805 
806 		READ_REG(ioc->ioc_hpa+IOC_PCOM);	/* flush purges */
807 	}
808 #else /* DELAYED_RESOURCE_CNT == 0 */
809 	sba_free_range(ioc, iova, size);
810 
811 	/* If fdc's were issued, force fdc's to be visible now */
812 	if (ioc_needs_fdc)
813 		asm volatile("sync" : : );
814 
815 	READ_REG(ioc->ioc_hpa+IOC_PCOM);	/* flush purges */
816 #endif /* DELAYED_RESOURCE_CNT == 0 */
817 
818 	spin_unlock_irqrestore(&ioc->res_lock, flags);
819 
820 	/* XXX REVISIT for 2.5 Linux - need syncdma for zero-copy support.
821 	** For Astro based systems this isn't a big deal WRT performance.
822 	** As long as 2.4 kernels copyin/copyout data from/to userspace,
823 	** we don't need the syncdma. The issue here is I/O MMU cachelines
824 	** are *not* coherent in all cases.  May be hwrev dependent.
825 	** Need to investigate more.
826 	asm volatile("syncdma");
827 	*/
828 }
829 
830 
831 /**
832  * sba_alloc_consistent - allocate/map shared mem for DMA
833  * @hwdev: instance of PCI owned by the driver that's asking.
834  * @size:  number of bytes mapped in driver buffer.
835  * @dma_handle:  IOVA of new buffer.
836  *
837  * See Documentation/DMA-mapping.txt
838  */
839 static void *sba_alloc_consistent(struct device *hwdev, size_t size,
840 					dma_addr_t *dma_handle, gfp_t gfp)
841 {
842 	void *ret;
843 
844 	if (!hwdev) {
845 		/* only support PCI */
846 		*dma_handle = 0;
847 		return NULL;
848 	}
849 
850         ret = (void *) __get_free_pages(gfp, get_order(size));
851 
852 	if (ret) {
853 		memset(ret, 0, size);
854 		*dma_handle = sba_map_single(hwdev, ret, size, 0);
855 	}
856 
857 	return ret;
858 }
859 
860 
861 /**
862  * sba_free_consistent - free/unmap shared mem for DMA
863  * @hwdev: instance of PCI owned by the driver that's asking.
864  * @size:  number of bytes mapped in driver buffer.
865  * @vaddr:  virtual address IOVA of "consistent" buffer.
866  * @dma_handler:  IO virtual address of "consistent" buffer.
867  *
868  * See Documentation/DMA-mapping.txt
869  */
870 static void
871 sba_free_consistent(struct device *hwdev, size_t size, void *vaddr,
872 		    dma_addr_t dma_handle)
873 {
874 	sba_unmap_single(hwdev, dma_handle, size, 0);
875 	free_pages((unsigned long) vaddr, get_order(size));
876 }
877 
878 
879 /*
880 ** Since 0 is a valid pdir_base index value, can't use that
881 ** to determine if a value is valid or not. Use a flag to indicate
882 ** the SG list entry contains a valid pdir index.
883 */
884 #define PIDE_FLAG 0x80000000UL
885 
886 #ifdef SBA_COLLECT_STATS
887 #define IOMMU_MAP_STATS
888 #endif
889 #include "iommu-helpers.h"
890 
891 #ifdef DEBUG_LARGE_SG_ENTRIES
892 int dump_run_sg = 0;
893 #endif
894 
895 
896 /**
897  * sba_map_sg - map Scatter/Gather list
898  * @dev: instance of PCI owned by the driver that's asking.
899  * @sglist:  array of buffer/length pairs
900  * @nents:  number of entries in list
901  * @direction:  R/W or both.
902  *
903  * See Documentation/DMA-mapping.txt
904  */
905 static int
906 sba_map_sg(struct device *dev, struct scatterlist *sglist, int nents,
907 	   enum dma_data_direction direction)
908 {
909 	struct ioc *ioc;
910 	int coalesced, filled = 0;
911 	unsigned long flags;
912 
913 	DBG_RUN_SG("%s() START %d entries\n", __FUNCTION__, nents);
914 
915 	ioc = GET_IOC(dev);
916 
917 	/* Fast path single entry scatterlists. */
918 	if (nents == 1) {
919 		sg_dma_address(sglist) = sba_map_single(dev,
920 						(void *)sg_virt_addr(sglist),
921 						sglist->length, direction);
922 		sg_dma_len(sglist)     = sglist->length;
923 		return 1;
924 	}
925 
926 	spin_lock_irqsave(&ioc->res_lock, flags);
927 
928 #ifdef ASSERT_PDIR_SANITY
929 	if (sba_check_pdir(ioc,"Check before sba_map_sg()"))
930 	{
931 		sba_dump_sg(ioc, sglist, nents);
932 		panic("Check before sba_map_sg()");
933 	}
934 #endif
935 
936 #ifdef SBA_COLLECT_STATS
937 	ioc->msg_calls++;
938 #endif
939 
940 	/*
941 	** First coalesce the chunks and allocate I/O pdir space
942 	**
943 	** If this is one DMA stream, we can properly map using the
944 	** correct virtual address associated with each DMA page.
945 	** w/o this association, we wouldn't have coherent DMA!
946 	** Access to the virtual address is what forces a two pass algorithm.
947 	*/
948 	coalesced = iommu_coalesce_chunks(ioc, sglist, nents, sba_alloc_range);
949 
950 	/*
951 	** Program the I/O Pdir
952 	**
953 	** map the virtual addresses to the I/O Pdir
954 	** o dma_address will contain the pdir index
955 	** o dma_len will contain the number of bytes to map
956 	** o address contains the virtual address.
957 	*/
958 	filled = iommu_fill_pdir(ioc, sglist, nents, 0, sba_io_pdir_entry);
959 
960 	/* force FDC ops in io_pdir_entry() to be visible to IOMMU */
961 	if (ioc_needs_fdc)
962 		asm volatile("sync" : : );
963 
964 #ifdef ASSERT_PDIR_SANITY
965 	if (sba_check_pdir(ioc,"Check after sba_map_sg()"))
966 	{
967 		sba_dump_sg(ioc, sglist, nents);
968 		panic("Check after sba_map_sg()\n");
969 	}
970 #endif
971 
972 	spin_unlock_irqrestore(&ioc->res_lock, flags);
973 
974 	DBG_RUN_SG("%s() DONE %d mappings\n", __FUNCTION__, filled);
975 
976 	return filled;
977 }
978 
979 
980 /**
981  * sba_unmap_sg - unmap Scatter/Gather list
982  * @dev: instance of PCI owned by the driver that's asking.
983  * @sglist:  array of buffer/length pairs
984  * @nents:  number of entries in list
985  * @direction:  R/W or both.
986  *
987  * See Documentation/DMA-mapping.txt
988  */
989 static void
990 sba_unmap_sg(struct device *dev, struct scatterlist *sglist, int nents,
991 	     enum dma_data_direction direction)
992 {
993 	struct ioc *ioc;
994 #ifdef ASSERT_PDIR_SANITY
995 	unsigned long flags;
996 #endif
997 
998 	DBG_RUN_SG("%s() START %d entries,  %p,%x\n",
999 		__FUNCTION__, nents, sg_virt_addr(sglist), sglist->length);
1000 
1001 	ioc = GET_IOC(dev);
1002 
1003 #ifdef SBA_COLLECT_STATS
1004 	ioc->usg_calls++;
1005 #endif
1006 
1007 #ifdef ASSERT_PDIR_SANITY
1008 	spin_lock_irqsave(&ioc->res_lock, flags);
1009 	sba_check_pdir(ioc,"Check before sba_unmap_sg()");
1010 	spin_unlock_irqrestore(&ioc->res_lock, flags);
1011 #endif
1012 
1013 	while (sg_dma_len(sglist) && nents--) {
1014 
1015 		sba_unmap_single(dev, sg_dma_address(sglist), sg_dma_len(sglist), direction);
1016 #ifdef SBA_COLLECT_STATS
1017 		ioc->usg_pages += ((sg_dma_address(sglist) & ~IOVP_MASK) + sg_dma_len(sglist) + IOVP_SIZE - 1) >> PAGE_SHIFT;
1018 		ioc->usingle_calls--;	/* kluge since call is unmap_sg() */
1019 #endif
1020 		++sglist;
1021 	}
1022 
1023 	DBG_RUN_SG("%s() DONE (nents %d)\n", __FUNCTION__,  nents);
1024 
1025 #ifdef ASSERT_PDIR_SANITY
1026 	spin_lock_irqsave(&ioc->res_lock, flags);
1027 	sba_check_pdir(ioc,"Check after sba_unmap_sg()");
1028 	spin_unlock_irqrestore(&ioc->res_lock, flags);
1029 #endif
1030 
1031 }
1032 
1033 static struct hppa_dma_ops sba_ops = {
1034 	.dma_supported =	sba_dma_supported,
1035 	.alloc_consistent =	sba_alloc_consistent,
1036 	.alloc_noncoherent =	sba_alloc_consistent,
1037 	.free_consistent =	sba_free_consistent,
1038 	.map_single =		sba_map_single,
1039 	.unmap_single =		sba_unmap_single,
1040 	.map_sg =		sba_map_sg,
1041 	.unmap_sg =		sba_unmap_sg,
1042 	.dma_sync_single_for_cpu =	NULL,
1043 	.dma_sync_single_for_device =	NULL,
1044 	.dma_sync_sg_for_cpu =		NULL,
1045 	.dma_sync_sg_for_device =	NULL,
1046 };
1047 
1048 
1049 /**************************************************************************
1050 **
1051 **   SBA PAT PDC support
1052 **
1053 **   o call pdc_pat_cell_module()
1054 **   o store ranges in PCI "resource" structures
1055 **
1056 **************************************************************************/
1057 
1058 static void
1059 sba_get_pat_resources(struct sba_device *sba_dev)
1060 {
1061 #if 0
1062 /*
1063 ** TODO/REVISIT/FIXME: support for directed ranges requires calls to
1064 **      PAT PDC to program the SBA/LBA directed range registers...this
1065 **      burden may fall on the LBA code since it directly supports the
1066 **      PCI subsystem. It's not clear yet. - ggg
1067 */
1068 PAT_MOD(mod)->mod_info.mod_pages   = PAT_GET_MOD_PAGES(temp);
1069 	FIXME : ???
1070 PAT_MOD(mod)->mod_info.dvi         = PAT_GET_DVI(temp);
1071 	Tells where the dvi bits are located in the address.
1072 PAT_MOD(mod)->mod_info.ioc         = PAT_GET_IOC(temp);
1073 	FIXME : ???
1074 #endif
1075 }
1076 
1077 
1078 /**************************************************************
1079 *
1080 *   Initialization and claim
1081 *
1082 ***************************************************************/
1083 #define PIRANHA_ADDR_MASK	0x00160000UL /* bit 17,18,20 */
1084 #define PIRANHA_ADDR_VAL	0x00060000UL /* bit 17,18 on */
1085 static void *
1086 sba_alloc_pdir(unsigned int pdir_size)
1087 {
1088         unsigned long pdir_base;
1089 	unsigned long pdir_order = get_order(pdir_size);
1090 
1091 	pdir_base = __get_free_pages(GFP_KERNEL, pdir_order);
1092 	if (NULL == (void *) pdir_base)	{
1093 		panic("%s() could not allocate I/O Page Table\n",
1094 			__FUNCTION__);
1095 	}
1096 
1097 	/* If this is not PA8700 (PCX-W2)
1098 	**	OR newer than ver 2.2
1099 	**	OR in a system that doesn't need VINDEX bits from SBA,
1100 	**
1101 	** then we aren't exposed to the HW bug.
1102 	*/
1103 	if ( ((boot_cpu_data.pdc.cpuid >> 5) & 0x7f) != 0x13
1104 			|| (boot_cpu_data.pdc.versions > 0x202)
1105 			|| (boot_cpu_data.pdc.capabilities & 0x08L) )
1106 		return (void *) pdir_base;
1107 
1108 	/*
1109 	 * PA8700 (PCX-W2, aka piranha) silent data corruption fix
1110 	 *
1111 	 * An interaction between PA8700 CPU (Ver 2.2 or older) and
1112 	 * Ike/Astro can cause silent data corruption. This is only
1113 	 * a problem if the I/O PDIR is located in memory such that
1114 	 * (little-endian)  bits 17 and 18 are on and bit 20 is off.
1115 	 *
1116 	 * Since the max IO Pdir size is 2MB, by cleverly allocating the
1117 	 * right physical address, we can either avoid (IOPDIR <= 1MB)
1118 	 * or minimize (2MB IO Pdir) the problem if we restrict the
1119 	 * IO Pdir to a maximum size of 2MB-128K (1902K).
1120 	 *
1121 	 * Because we always allocate 2^N sized IO pdirs, either of the
1122 	 * "bad" regions will be the last 128K if at all. That's easy
1123 	 * to test for.
1124 	 *
1125 	 */
1126 	if (pdir_order <= (19-12)) {
1127 		if (((virt_to_phys(pdir_base)+pdir_size-1) & PIRANHA_ADDR_MASK) == PIRANHA_ADDR_VAL) {
1128 			/* allocate a new one on 512k alignment */
1129 			unsigned long new_pdir = __get_free_pages(GFP_KERNEL, (19-12));
1130 			/* release original */
1131 			free_pages(pdir_base, pdir_order);
1132 
1133 			pdir_base = new_pdir;
1134 
1135 			/* release excess */
1136 			while (pdir_order < (19-12)) {
1137 				new_pdir += pdir_size;
1138 				free_pages(new_pdir, pdir_order);
1139 				pdir_order +=1;
1140 				pdir_size <<=1;
1141 			}
1142 		}
1143 	} else {
1144 		/*
1145 		** 1MB or 2MB Pdir
1146 		** Needs to be aligned on an "odd" 1MB boundary.
1147 		*/
1148 		unsigned long new_pdir = __get_free_pages(GFP_KERNEL, pdir_order+1); /* 2 or 4MB */
1149 
1150 		/* release original */
1151 		free_pages( pdir_base, pdir_order);
1152 
1153 		/* release first 1MB */
1154 		free_pages(new_pdir, 20-12);
1155 
1156 		pdir_base = new_pdir + 1024*1024;
1157 
1158 		if (pdir_order > (20-12)) {
1159 			/*
1160 			** 2MB Pdir.
1161 			**
1162 			** Flag tells init_bitmap() to mark bad 128k as used
1163 			** and to reduce the size by 128k.
1164 			*/
1165 			piranha_bad_128k = 1;
1166 
1167 			new_pdir += 3*1024*1024;
1168 			/* release last 1MB */
1169 			free_pages(new_pdir, 20-12);
1170 
1171 			/* release unusable 128KB */
1172 			free_pages(new_pdir - 128*1024 , 17-12);
1173 
1174 			pdir_size -= 128*1024;
1175 		}
1176 	}
1177 
1178 	memset((void *) pdir_base, 0, pdir_size);
1179 	return (void *) pdir_base;
1180 }
1181 
1182 static struct device *next_device(struct klist_iter *i)
1183 {
1184         struct klist_node * n = klist_next(i);
1185         return n ? container_of(n, struct device, knode_parent) : NULL;
1186 }
1187 
1188 /* setup Mercury or Elroy IBASE/IMASK registers. */
1189 static void
1190 setup_ibase_imask(struct parisc_device *sba, struct ioc *ioc, int ioc_num)
1191 {
1192 	/* lba_set_iregs() is in drivers/parisc/lba_pci.c */
1193         extern void lba_set_iregs(struct parisc_device *, u32, u32);
1194 	struct device *dev;
1195 	struct klist_iter i;
1196 
1197 	klist_iter_init(&sba->dev.klist_children, &i);
1198 	while ((dev = next_device(&i))) {
1199 		struct parisc_device *lba = to_parisc_device(dev);
1200 		int rope_num = (lba->hpa.start >> 13) & 0xf;
1201 		if (rope_num >> 3 == ioc_num)
1202 			lba_set_iregs(lba, ioc->ibase, ioc->imask);
1203 	}
1204 	klist_iter_exit(&i);
1205 }
1206 
1207 static void
1208 sba_ioc_init_pluto(struct parisc_device *sba, struct ioc *ioc, int ioc_num)
1209 {
1210 	u32 iova_space_mask;
1211 	u32 iova_space_size;
1212 	int iov_order, tcnfg;
1213 #ifdef SBA_AGP_SUPPORT
1214 	int agp_found = 0;
1215 #endif
1216 	/*
1217 	** Firmware programs the base and size of a "safe IOVA space"
1218 	** (one that doesn't overlap memory or LMMIO space) in the
1219 	** IBASE and IMASK registers.
1220 	*/
1221 	ioc->ibase = READ_REG(ioc->ioc_hpa + IOC_IBASE);
1222 	iova_space_size = ~(READ_REG(ioc->ioc_hpa + IOC_IMASK) & 0xFFFFFFFFUL) + 1;
1223 
1224 	if ((ioc->ibase < 0xfed00000UL) && ((ioc->ibase + iova_space_size) > 0xfee00000UL)) {
1225 		printk("WARNING: IOV space overlaps local config and interrupt message, truncating\n");
1226 		iova_space_size /= 2;
1227 	}
1228 
1229 	/*
1230 	** iov_order is always based on a 1GB IOVA space since we want to
1231 	** turn on the other half for AGP GART.
1232 	*/
1233 	iov_order = get_order(iova_space_size >> (IOVP_SHIFT - PAGE_SHIFT));
1234 	ioc->pdir_size = (iova_space_size / IOVP_SIZE) * sizeof(u64);
1235 
1236 	DBG_INIT("%s() hpa 0x%p IOV %dMB (%d bits)\n",
1237 		__FUNCTION__, ioc->ioc_hpa, iova_space_size >> 20,
1238 		iov_order + PAGE_SHIFT);
1239 
1240 	ioc->pdir_base = (void *) __get_free_pages(GFP_KERNEL,
1241 						   get_order(ioc->pdir_size));
1242 	if (!ioc->pdir_base)
1243 		panic("Couldn't allocate I/O Page Table\n");
1244 
1245 	memset(ioc->pdir_base, 0, ioc->pdir_size);
1246 
1247 	DBG_INIT("%s() pdir %p size %x\n",
1248 			__FUNCTION__, ioc->pdir_base, ioc->pdir_size);
1249 
1250 #ifdef SBA_HINT_SUPPORT
1251 	ioc->hint_shift_pdir = iov_order + PAGE_SHIFT;
1252 	ioc->hint_mask_pdir = ~(0x3 << (iov_order + PAGE_SHIFT));
1253 
1254 	DBG_INIT("	hint_shift_pdir %x hint_mask_pdir %lx\n",
1255 		ioc->hint_shift_pdir, ioc->hint_mask_pdir);
1256 #endif
1257 
1258 	WARN_ON((((unsigned long) ioc->pdir_base) & PAGE_MASK) != (unsigned long) ioc->pdir_base);
1259 	WRITE_REG(virt_to_phys(ioc->pdir_base), ioc->ioc_hpa + IOC_PDIR_BASE);
1260 
1261 	/* build IMASK for IOC and Elroy */
1262 	iova_space_mask =  0xffffffff;
1263 	iova_space_mask <<= (iov_order + PAGE_SHIFT);
1264 	ioc->imask = iova_space_mask;
1265 #ifdef ZX1_SUPPORT
1266 	ioc->iovp_mask = ~(iova_space_mask + PAGE_SIZE - 1);
1267 #endif
1268 	sba_dump_tlb(ioc->ioc_hpa);
1269 
1270 	setup_ibase_imask(sba, ioc, ioc_num);
1271 
1272 	WRITE_REG(ioc->imask, ioc->ioc_hpa + IOC_IMASK);
1273 
1274 #ifdef CONFIG_64BIT
1275 	/*
1276 	** Setting the upper bits makes checking for bypass addresses
1277 	** a little faster later on.
1278 	*/
1279 	ioc->imask |= 0xFFFFFFFF00000000UL;
1280 #endif
1281 
1282 	/* Set I/O PDIR Page size to system page size */
1283 	switch (PAGE_SHIFT) {
1284 		case 12: tcnfg = 0; break;	/*  4K */
1285 		case 13: tcnfg = 1; break;	/*  8K */
1286 		case 14: tcnfg = 2; break;	/* 16K */
1287 		case 16: tcnfg = 3; break;	/* 64K */
1288 		default:
1289 			panic(__FILE__ "Unsupported system page size %d",
1290 				1 << PAGE_SHIFT);
1291 			break;
1292 	}
1293 	WRITE_REG(tcnfg, ioc->ioc_hpa + IOC_TCNFG);
1294 
1295 	/*
1296 	** Program the IOC's ibase and enable IOVA translation
1297 	** Bit zero == enable bit.
1298 	*/
1299 	WRITE_REG(ioc->ibase | 1, ioc->ioc_hpa + IOC_IBASE);
1300 
1301 	/*
1302 	** Clear I/O TLB of any possible entries.
1303 	** (Yes. This is a bit paranoid...but so what)
1304 	*/
1305 	WRITE_REG(ioc->ibase | 31, ioc->ioc_hpa + IOC_PCOM);
1306 
1307 #ifdef SBA_AGP_SUPPORT
1308 {
1309 	struct klist_iter i;
1310 	struct device *dev = NULL;
1311 
1312 	/*
1313 	** If an AGP device is present, only use half of the IOV space
1314 	** for PCI DMA.  Unfortunately we can't know ahead of time
1315 	** whether GART support will actually be used, for now we
1316 	** can just key on any AGP device found in the system.
1317 	** We program the next pdir index after we stop w/ a key for
1318 	** the GART code to handshake on.
1319 	*/
1320 	klist_iter_init(&sba->dev.klist_children, &i);
1321 	while ((dev = next_device(&i))) {
1322 		struct parisc_device *lba = to_parisc_device(dev);
1323 		if (IS_QUICKSILVER(lba))
1324 			agp_found = 1;
1325 	}
1326 	klist_iter_exit(&i);
1327 
1328 	if (agp_found && sba_reserve_agpgart) {
1329 		printk(KERN_INFO "%s: reserving %dMb of IOVA space for agpgart\n",
1330 		       __FUNCTION__, (iova_space_size/2) >> 20);
1331 		ioc->pdir_size /= 2;
1332 		ioc->pdir_base[PDIR_INDEX(iova_space_size/2)] = SBA_AGPGART_COOKIE;
1333 	}
1334 }
1335 #endif /*SBA_AGP_SUPPORT*/
1336 
1337 }
1338 
1339 static void
1340 sba_ioc_init(struct parisc_device *sba, struct ioc *ioc, int ioc_num)
1341 {
1342 	u32 iova_space_size, iova_space_mask;
1343 	unsigned int pdir_size, iov_order;
1344 
1345 	/*
1346 	** Determine IOVA Space size from memory size.
1347 	**
1348 	** Ideally, PCI drivers would register the maximum number
1349 	** of DMA they can have outstanding for each device they
1350 	** own.  Next best thing would be to guess how much DMA
1351 	** can be outstanding based on PCI Class/sub-class. Both
1352 	** methods still require some "extra" to support PCI
1353 	** Hot-Plug/Removal of PCI cards. (aka PCI OLARD).
1354 	**
1355 	** While we have 32-bits "IOVA" space, top two 2 bits are used
1356 	** for DMA hints - ergo only 30 bits max.
1357 	*/
1358 
1359 	iova_space_size = (u32) (num_physpages/global_ioc_cnt);
1360 
1361 	/* limit IOVA space size to 1MB-1GB */
1362 	if (iova_space_size < (1 << (20 - PAGE_SHIFT))) {
1363 		iova_space_size = 1 << (20 - PAGE_SHIFT);
1364 	}
1365 	else if (iova_space_size > (1 << (30 - PAGE_SHIFT))) {
1366 		iova_space_size = 1 << (30 - PAGE_SHIFT);
1367 	}
1368 
1369 	/*
1370 	** iova space must be log2() in size.
1371 	** thus, pdir/res_map will also be log2().
1372 	** PIRANHA BUG: Exception is when IO Pdir is 2MB (gets reduced)
1373 	*/
1374 	iov_order = get_order(iova_space_size << PAGE_SHIFT);
1375 
1376 	/* iova_space_size is now bytes, not pages */
1377 	iova_space_size = 1 << (iov_order + PAGE_SHIFT);
1378 
1379 	ioc->pdir_size = pdir_size = (iova_space_size/IOVP_SIZE) * sizeof(u64);
1380 
1381 	DBG_INIT("%s() hpa 0x%lx mem %ldMB IOV %dMB (%d bits)\n",
1382 			__FUNCTION__,
1383 			ioc->ioc_hpa,
1384 			(unsigned long) num_physpages >> (20 - PAGE_SHIFT),
1385 			iova_space_size>>20,
1386 			iov_order + PAGE_SHIFT);
1387 
1388 	ioc->pdir_base = sba_alloc_pdir(pdir_size);
1389 
1390 	DBG_INIT("%s() pdir %p size %x\n",
1391 			__FUNCTION__, ioc->pdir_base, pdir_size);
1392 
1393 #ifdef SBA_HINT_SUPPORT
1394 	/* FIXME : DMA HINTs not used */
1395 	ioc->hint_shift_pdir = iov_order + PAGE_SHIFT;
1396 	ioc->hint_mask_pdir = ~(0x3 << (iov_order + PAGE_SHIFT));
1397 
1398 	DBG_INIT("	hint_shift_pdir %x hint_mask_pdir %lx\n",
1399 			ioc->hint_shift_pdir, ioc->hint_mask_pdir);
1400 #endif
1401 
1402 	WRITE_REG64(virt_to_phys(ioc->pdir_base), ioc->ioc_hpa + IOC_PDIR_BASE);
1403 
1404 	/* build IMASK for IOC and Elroy */
1405 	iova_space_mask =  0xffffffff;
1406 	iova_space_mask <<= (iov_order + PAGE_SHIFT);
1407 
1408 	/*
1409 	** On C3000 w/512MB mem, HP-UX 10.20 reports:
1410 	**     ibase=0, imask=0xFE000000, size=0x2000000.
1411 	*/
1412 	ioc->ibase = 0;
1413 	ioc->imask = iova_space_mask;	/* save it */
1414 #ifdef ZX1_SUPPORT
1415 	ioc->iovp_mask = ~(iova_space_mask + PAGE_SIZE - 1);
1416 #endif
1417 
1418 	DBG_INIT("%s() IOV base 0x%lx mask 0x%0lx\n",
1419 		__FUNCTION__, ioc->ibase, ioc->imask);
1420 
1421 	/*
1422 	** FIXME: Hint registers are programmed with default hint
1423 	** values during boot, so hints should be sane even if we
1424 	** can't reprogram them the way drivers want.
1425 	*/
1426 
1427 	setup_ibase_imask(sba, ioc, ioc_num);
1428 
1429 	/*
1430 	** Program the IOC's ibase and enable IOVA translation
1431 	*/
1432 	WRITE_REG(ioc->ibase | 1, ioc->ioc_hpa+IOC_IBASE);
1433 	WRITE_REG(ioc->imask, ioc->ioc_hpa+IOC_IMASK);
1434 
1435 	/* Set I/O PDIR Page size to 4K */
1436 	WRITE_REG(0, ioc->ioc_hpa+IOC_TCNFG);
1437 
1438 	/*
1439 	** Clear I/O TLB of any possible entries.
1440 	** (Yes. This is a bit paranoid...but so what)
1441 	*/
1442 	WRITE_REG(0 | 31, ioc->ioc_hpa+IOC_PCOM);
1443 
1444 	ioc->ibase = 0; /* used by SBA_IOVA and related macros */
1445 
1446 	DBG_INIT("%s() DONE\n", __FUNCTION__);
1447 }
1448 
1449 
1450 
1451 /**************************************************************************
1452 **
1453 **   SBA initialization code (HW and SW)
1454 **
1455 **   o identify SBA chip itself
1456 **   o initialize SBA chip modes (HardFail)
1457 **   o initialize SBA chip modes (HardFail)
1458 **   o FIXME: initialize DMA hints for reasonable defaults
1459 **
1460 **************************************************************************/
1461 
1462 static void __iomem *ioc_remap(struct sba_device *sba_dev, unsigned int offset)
1463 {
1464 	return ioremap_nocache(sba_dev->dev->hpa.start + offset, SBA_FUNC_SIZE);
1465 }
1466 
1467 static void sba_hw_init(struct sba_device *sba_dev)
1468 {
1469 	int i;
1470 	int num_ioc;
1471 	u64 ioc_ctl;
1472 
1473 	if (!is_pdc_pat()) {
1474 		/* Shutdown the USB controller on Astro-based workstations.
1475 		** Once we reprogram the IOMMU, the next DMA performed by
1476 		** USB will HPMC the box. USB is only enabled if a
1477 		** keyboard is present and found.
1478 		**
1479 		** With serial console, j6k v5.0 firmware says:
1480 		**   mem_kbd hpa 0xfee003f8 sba 0x0 pad 0x0 cl_class 0x7
1481 		**
1482 		** FIXME: Using GFX+USB console at power up but direct
1483 		**	linux to serial console is still broken.
1484 		**	USB could generate DMA so we must reset USB.
1485 		**	The proper sequence would be:
1486 		**	o block console output
1487 		**	o reset USB device
1488 		**	o reprogram serial port
1489 		**	o unblock console output
1490 		*/
1491 		if (PAGE0->mem_kbd.cl_class == CL_KEYBD) {
1492 			pdc_io_reset_devices();
1493 		}
1494 
1495 	}
1496 
1497 
1498 #if 0
1499 printk("sba_hw_init(): mem_boot 0x%x 0x%x 0x%x 0x%x\n", PAGE0->mem_boot.hpa,
1500 	PAGE0->mem_boot.spa, PAGE0->mem_boot.pad, PAGE0->mem_boot.cl_class);
1501 
1502 	/*
1503 	** Need to deal with DMA from LAN.
1504 	**	Maybe use page zero boot device as a handle to talk
1505 	**	to PDC about which device to shutdown.
1506 	**
1507 	** Netbooting, j6k v5.0 firmware says:
1508 	** 	mem_boot hpa 0xf4008000 sba 0x0 pad 0x0 cl_class 0x1002
1509 	** ARGH! invalid class.
1510 	*/
1511 	if ((PAGE0->mem_boot.cl_class != CL_RANDOM)
1512 		&& (PAGE0->mem_boot.cl_class != CL_SEQU)) {
1513 			pdc_io_reset();
1514 	}
1515 #endif
1516 
1517 	if (!IS_PLUTO(sba_dev->dev)) {
1518 		ioc_ctl = READ_REG(sba_dev->sba_hpa+IOC_CTRL);
1519 		DBG_INIT("%s() hpa 0x%lx ioc_ctl 0x%Lx ->",
1520 			__FUNCTION__, sba_dev->sba_hpa, ioc_ctl);
1521 		ioc_ctl &= ~(IOC_CTRL_RM | IOC_CTRL_NC | IOC_CTRL_CE);
1522 		ioc_ctl |= IOC_CTRL_DD | IOC_CTRL_D4 | IOC_CTRL_TC;
1523 			/* j6700 v1.6 firmware sets 0x294f */
1524 			/* A500 firmware sets 0x4d */
1525 
1526 		WRITE_REG(ioc_ctl, sba_dev->sba_hpa+IOC_CTRL);
1527 
1528 #ifdef DEBUG_SBA_INIT
1529 		ioc_ctl = READ_REG64(sba_dev->sba_hpa+IOC_CTRL);
1530 		DBG_INIT(" 0x%Lx\n", ioc_ctl);
1531 #endif
1532 	} /* if !PLUTO */
1533 
1534 	if (IS_ASTRO(sba_dev->dev)) {
1535 		int err;
1536 		sba_dev->ioc[0].ioc_hpa = ioc_remap(sba_dev, ASTRO_IOC_OFFSET);
1537 		num_ioc = 1;
1538 
1539 		sba_dev->chip_resv.name = "Astro Intr Ack";
1540 		sba_dev->chip_resv.start = PCI_F_EXTEND | 0xfef00000UL;
1541 		sba_dev->chip_resv.end   = PCI_F_EXTEND | (0xff000000UL - 1) ;
1542 		err = request_resource(&iomem_resource, &(sba_dev->chip_resv));
1543 		BUG_ON(err < 0);
1544 
1545 	} else if (IS_PLUTO(sba_dev->dev)) {
1546 		int err;
1547 
1548 		sba_dev->ioc[0].ioc_hpa = ioc_remap(sba_dev, PLUTO_IOC_OFFSET);
1549 		num_ioc = 1;
1550 
1551 		sba_dev->chip_resv.name = "Pluto Intr/PIOP/VGA";
1552 		sba_dev->chip_resv.start = PCI_F_EXTEND | 0xfee00000UL;
1553 		sba_dev->chip_resv.end   = PCI_F_EXTEND | (0xff200000UL - 1);
1554 		err = request_resource(&iomem_resource, &(sba_dev->chip_resv));
1555 		WARN_ON(err < 0);
1556 
1557 		sba_dev->iommu_resv.name = "IOVA Space";
1558 		sba_dev->iommu_resv.start = 0x40000000UL;
1559 		sba_dev->iommu_resv.end   = 0x50000000UL - 1;
1560 		err = request_resource(&iomem_resource, &(sba_dev->iommu_resv));
1561 		WARN_ON(err < 0);
1562 	} else {
1563 		/* IKE, REO */
1564 		sba_dev->ioc[0].ioc_hpa = ioc_remap(sba_dev, IKE_IOC_OFFSET(0));
1565 		sba_dev->ioc[1].ioc_hpa = ioc_remap(sba_dev, IKE_IOC_OFFSET(1));
1566 		num_ioc = 2;
1567 
1568 		/* TODO - LOOKUP Ike/Stretch chipset mem map */
1569 	}
1570 	/* XXX: What about Reo Grande? */
1571 
1572 	sba_dev->num_ioc = num_ioc;
1573 	for (i = 0; i < num_ioc; i++) {
1574 		void __iomem *ioc_hpa = sba_dev->ioc[i].ioc_hpa;
1575 		unsigned int j;
1576 
1577 		for (j=0; j < sizeof(u64) * ROPES_PER_IOC; j+=sizeof(u64)) {
1578 
1579 			/*
1580 			 * Clear ROPE(N)_CONFIG AO bit.
1581 			 * Disables "NT Ordering" (~= !"Relaxed Ordering")
1582 			 * Overrides bit 1 in DMA Hint Sets.
1583 			 * Improves netperf UDP_STREAM by ~10% for bcm5701.
1584 			 */
1585 			if (IS_PLUTO(sba_dev->dev)) {
1586 				void __iomem *rope_cfg;
1587 				unsigned long cfg_val;
1588 
1589 				rope_cfg = ioc_hpa + IOC_ROPE0_CFG + j;
1590 				cfg_val = READ_REG(rope_cfg);
1591 				cfg_val &= ~IOC_ROPE_AO;
1592 				WRITE_REG(cfg_val, rope_cfg);
1593 			}
1594 
1595 			/*
1596 			** Make sure the box crashes on rope errors.
1597 			*/
1598 			WRITE_REG(HF_ENABLE, ioc_hpa + ROPE0_CTL + j);
1599 		}
1600 
1601 		/* flush out the last writes */
1602 		READ_REG(sba_dev->ioc[i].ioc_hpa + ROPE7_CTL);
1603 
1604 		DBG_INIT("	ioc[%d] ROPE_CFG 0x%Lx  ROPE_DBG 0x%Lx\n",
1605 				i,
1606 				READ_REG(sba_dev->ioc[i].ioc_hpa + 0x40),
1607 				READ_REG(sba_dev->ioc[i].ioc_hpa + 0x50)
1608 			);
1609 		DBG_INIT("	STATUS_CONTROL 0x%Lx  FLUSH_CTRL 0x%Lx\n",
1610 				READ_REG(sba_dev->ioc[i].ioc_hpa + 0x108),
1611 				READ_REG(sba_dev->ioc[i].ioc_hpa + 0x400)
1612 			);
1613 
1614 		if (IS_PLUTO(sba_dev->dev)) {
1615 			sba_ioc_init_pluto(sba_dev->dev, &(sba_dev->ioc[i]), i);
1616 		} else {
1617 			sba_ioc_init(sba_dev->dev, &(sba_dev->ioc[i]), i);
1618 		}
1619 	}
1620 }
1621 
1622 static void
1623 sba_common_init(struct sba_device *sba_dev)
1624 {
1625 	int i;
1626 
1627 	/* add this one to the head of the list (order doesn't matter)
1628 	** This will be useful for debugging - especially if we get coredumps
1629 	*/
1630 	sba_dev->next = sba_list;
1631 	sba_list = sba_dev;
1632 
1633 	for(i=0; i< sba_dev->num_ioc; i++) {
1634 		int res_size;
1635 #ifdef DEBUG_DMB_TRAP
1636 		extern void iterate_pages(unsigned long , unsigned long ,
1637 					  void (*)(pte_t * , unsigned long),
1638 					  unsigned long );
1639 		void set_data_memory_break(pte_t * , unsigned long);
1640 #endif
1641 		/* resource map size dictated by pdir_size */
1642 		res_size = sba_dev->ioc[i].pdir_size/sizeof(u64); /* entries */
1643 
1644 		/* Second part of PIRANHA BUG */
1645 		if (piranha_bad_128k) {
1646 			res_size -= (128*1024)/sizeof(u64);
1647 		}
1648 
1649 		res_size >>= 3;  /* convert bit count to byte count */
1650 		DBG_INIT("%s() res_size 0x%x\n",
1651 			__FUNCTION__, res_size);
1652 
1653 		sba_dev->ioc[i].res_size = res_size;
1654 		sba_dev->ioc[i].res_map = (char *) __get_free_pages(GFP_KERNEL, get_order(res_size));
1655 
1656 #ifdef DEBUG_DMB_TRAP
1657 		iterate_pages( sba_dev->ioc[i].res_map, res_size,
1658 				set_data_memory_break, 0);
1659 #endif
1660 
1661 		if (NULL == sba_dev->ioc[i].res_map)
1662 		{
1663 			panic("%s:%s() could not allocate resource map\n",
1664 			      __FILE__, __FUNCTION__ );
1665 		}
1666 
1667 		memset(sba_dev->ioc[i].res_map, 0, res_size);
1668 		/* next available IOVP - circular search */
1669 		sba_dev->ioc[i].res_hint = (unsigned long *)
1670 				&(sba_dev->ioc[i].res_map[L1_CACHE_BYTES]);
1671 
1672 #ifdef ASSERT_PDIR_SANITY
1673 		/* Mark first bit busy - ie no IOVA 0 */
1674 		sba_dev->ioc[i].res_map[0] = 0x80;
1675 		sba_dev->ioc[i].pdir_base[0] = 0xeeffc0addbba0080ULL;
1676 #endif
1677 
1678 		/* Third (and last) part of PIRANHA BUG */
1679 		if (piranha_bad_128k) {
1680 			/* region from +1408K to +1536 is un-usable. */
1681 
1682 			int idx_start = (1408*1024/sizeof(u64)) >> 3;
1683 			int idx_end   = (1536*1024/sizeof(u64)) >> 3;
1684 			long *p_start = (long *) &(sba_dev->ioc[i].res_map[idx_start]);
1685 			long *p_end   = (long *) &(sba_dev->ioc[i].res_map[idx_end]);
1686 
1687 			/* mark that part of the io pdir busy */
1688 			while (p_start < p_end)
1689 				*p_start++ = -1;
1690 
1691 		}
1692 
1693 #ifdef DEBUG_DMB_TRAP
1694 		iterate_pages( sba_dev->ioc[i].res_map, res_size,
1695 				set_data_memory_break, 0);
1696 		iterate_pages( sba_dev->ioc[i].pdir_base, sba_dev->ioc[i].pdir_size,
1697 				set_data_memory_break, 0);
1698 #endif
1699 
1700 		DBG_INIT("%s() %d res_map %x %p\n",
1701 			__FUNCTION__, i, res_size, sba_dev->ioc[i].res_map);
1702 	}
1703 
1704 	spin_lock_init(&sba_dev->sba_lock);
1705 	ioc_needs_fdc = boot_cpu_data.pdc.capabilities & PDC_MODEL_IOPDIR_FDC;
1706 
1707 #ifdef DEBUG_SBA_INIT
1708 	/*
1709 	 * If the PDC_MODEL capabilities has Non-coherent IO-PDIR bit set
1710 	 * (bit #61, big endian), we have to flush and sync every time
1711 	 * IO-PDIR is changed in Ike/Astro.
1712 	 */
1713 	if (ioc_needs_fdc) {
1714 		printk(KERN_INFO MODULE_NAME " FDC/SYNC required.\n");
1715 	} else {
1716 		printk(KERN_INFO MODULE_NAME " IOC has cache coherent PDIR.\n");
1717 	}
1718 #endif
1719 }
1720 
1721 #ifdef CONFIG_PROC_FS
1722 static int sba_proc_info(struct seq_file *m, void *p)
1723 {
1724 	struct sba_device *sba_dev = sba_list;
1725 	struct ioc *ioc = &sba_dev->ioc[0];	/* FIXME: Multi-IOC support! */
1726 	int total_pages = (int) (ioc->res_size << 3); /* 8 bits per byte */
1727 #ifdef SBA_COLLECT_STATS
1728 	unsigned long avg = 0, min, max;
1729 #endif
1730 	int i, len = 0;
1731 
1732 	len += seq_printf(m, "%s rev %d.%d\n",
1733 		sba_dev->name,
1734 		(sba_dev->hw_rev & 0x7) + 1,
1735 		(sba_dev->hw_rev & 0x18) >> 3
1736 		);
1737 	len += seq_printf(m, "IO PDIR size    : %d bytes (%d entries)\n",
1738 		(int) ((ioc->res_size << 3) * sizeof(u64)), /* 8 bits/byte */
1739 		total_pages);
1740 
1741 	len += seq_printf(m, "Resource bitmap : %d bytes (%d pages)\n",
1742 		ioc->res_size, ioc->res_size << 3);   /* 8 bits per byte */
1743 
1744 	len += seq_printf(m, "LMMIO_BASE/MASK/ROUTE %08x %08x %08x\n",
1745 		READ_REG32(sba_dev->sba_hpa + LMMIO_DIST_BASE),
1746 		READ_REG32(sba_dev->sba_hpa + LMMIO_DIST_MASK),
1747 		READ_REG32(sba_dev->sba_hpa + LMMIO_DIST_ROUTE)
1748 		);
1749 
1750 	for (i=0; i<4; i++)
1751 		len += seq_printf(m, "DIR%d_BASE/MASK/ROUTE %08x %08x %08x\n", i,
1752 			READ_REG32(sba_dev->sba_hpa + LMMIO_DIRECT0_BASE  + i*0x18),
1753 			READ_REG32(sba_dev->sba_hpa + LMMIO_DIRECT0_MASK  + i*0x18),
1754 			READ_REG32(sba_dev->sba_hpa + LMMIO_DIRECT0_ROUTE + i*0x18)
1755 		);
1756 
1757 #ifdef SBA_COLLECT_STATS
1758 	len += seq_printf(m, "IO PDIR entries : %ld free  %ld used (%d%%)\n",
1759 		total_pages - ioc->used_pages, ioc->used_pages,
1760 		(int) (ioc->used_pages * 100 / total_pages));
1761 
1762 	min = max = ioc->avg_search[0];
1763 	for (i = 0; i < SBA_SEARCH_SAMPLE; i++) {
1764 		avg += ioc->avg_search[i];
1765 		if (ioc->avg_search[i] > max) max = ioc->avg_search[i];
1766 		if (ioc->avg_search[i] < min) min = ioc->avg_search[i];
1767 	}
1768 	avg /= SBA_SEARCH_SAMPLE;
1769 	len += seq_printf(m, "  Bitmap search : %ld/%ld/%ld (min/avg/max CPU Cycles)\n",
1770 		min, avg, max);
1771 
1772 	len += seq_printf(m, "pci_map_single(): %12ld calls  %12ld pages (avg %d/1000)\n",
1773 		ioc->msingle_calls, ioc->msingle_pages,
1774 		(int) ((ioc->msingle_pages * 1000)/ioc->msingle_calls));
1775 
1776 	/* KLUGE - unmap_sg calls unmap_single for each mapped page */
1777 	min = ioc->usingle_calls;
1778 	max = ioc->usingle_pages - ioc->usg_pages;
1779 	len += seq_printf(m, "pci_unmap_single: %12ld calls  %12ld pages (avg %d/1000)\n",
1780 		min, max, (int) ((max * 1000)/min));
1781 
1782 	len += seq_printf(m, "pci_map_sg()    : %12ld calls  %12ld pages (avg %d/1000)\n",
1783 		ioc->msg_calls, ioc->msg_pages,
1784 		(int) ((ioc->msg_pages * 1000)/ioc->msg_calls));
1785 
1786 	len += seq_printf(m, "pci_unmap_sg()  : %12ld calls  %12ld pages (avg %d/1000)\n",
1787 		ioc->usg_calls, ioc->usg_pages,
1788 		(int) ((ioc->usg_pages * 1000)/ioc->usg_calls));
1789 #endif
1790 
1791 	return 0;
1792 }
1793 
1794 static int
1795 sba_proc_open(struct inode *i, struct file *f)
1796 {
1797 	return single_open(f, &sba_proc_info, NULL);
1798 }
1799 
1800 static const struct file_operations sba_proc_fops = {
1801 	.owner = THIS_MODULE,
1802 	.open = sba_proc_open,
1803 	.read = seq_read,
1804 	.llseek = seq_lseek,
1805 	.release = single_release,
1806 };
1807 
1808 static int
1809 sba_proc_bitmap_info(struct seq_file *m, void *p)
1810 {
1811 	struct sba_device *sba_dev = sba_list;
1812 	struct ioc *ioc = &sba_dev->ioc[0];	/* FIXME: Multi-IOC support! */
1813 	unsigned int *res_ptr = (unsigned int *)ioc->res_map;
1814 	int i, len = 0;
1815 
1816 	for (i = 0; i < (ioc->res_size/sizeof(unsigned int)); ++i, ++res_ptr) {
1817 		if ((i & 7) == 0)
1818 			len += seq_printf(m, "\n   ");
1819 		len += seq_printf(m, " %08x", *res_ptr);
1820 	}
1821 	len += seq_printf(m, "\n");
1822 
1823 	return 0;
1824 }
1825 
1826 static int
1827 sba_proc_bitmap_open(struct inode *i, struct file *f)
1828 {
1829 	return single_open(f, &sba_proc_bitmap_info, NULL);
1830 }
1831 
1832 static const struct file_operations sba_proc_bitmap_fops = {
1833 	.owner = THIS_MODULE,
1834 	.open = sba_proc_bitmap_open,
1835 	.read = seq_read,
1836 	.llseek = seq_lseek,
1837 	.release = single_release,
1838 };
1839 #endif /* CONFIG_PROC_FS */
1840 
1841 static struct parisc_device_id sba_tbl[] = {
1842 	{ HPHW_IOA, HVERSION_REV_ANY_ID, ASTRO_RUNWAY_PORT, 0xb },
1843 	{ HPHW_BCPORT, HVERSION_REV_ANY_ID, IKE_MERCED_PORT, 0xc },
1844 	{ HPHW_BCPORT, HVERSION_REV_ANY_ID, REO_MERCED_PORT, 0xc },
1845 	{ HPHW_BCPORT, HVERSION_REV_ANY_ID, REOG_MERCED_PORT, 0xc },
1846 	{ HPHW_IOA, HVERSION_REV_ANY_ID, PLUTO_MCKINLEY_PORT, 0xc },
1847 	{ 0, }
1848 };
1849 
1850 int sba_driver_callback(struct parisc_device *);
1851 
1852 static struct parisc_driver sba_driver = {
1853 	.name =		MODULE_NAME,
1854 	.id_table =	sba_tbl,
1855 	.probe =	sba_driver_callback,
1856 };
1857 
1858 /*
1859 ** Determine if sba should claim this chip (return 0) or not (return 1).
1860 ** If so, initialize the chip and tell other partners in crime they
1861 ** have work to do.
1862 */
1863 int
1864 sba_driver_callback(struct parisc_device *dev)
1865 {
1866 	struct sba_device *sba_dev;
1867 	u32 func_class;
1868 	int i;
1869 	char *version;
1870 	void __iomem *sba_addr = ioremap_nocache(dev->hpa.start, SBA_FUNC_SIZE);
1871 	struct proc_dir_entry *info_entry, *bitmap_entry, *root;
1872 
1873 	sba_dump_ranges(sba_addr);
1874 
1875 	/* Read HW Rev First */
1876 	func_class = READ_REG(sba_addr + SBA_FCLASS);
1877 
1878 	if (IS_ASTRO(dev)) {
1879 		unsigned long fclass;
1880 		static char astro_rev[]="Astro ?.?";
1881 
1882 		/* Astro is broken...Read HW Rev First */
1883 		fclass = READ_REG(sba_addr);
1884 
1885 		astro_rev[6] = '1' + (char) (fclass & 0x7);
1886 		astro_rev[8] = '0' + (char) ((fclass & 0x18) >> 3);
1887 		version = astro_rev;
1888 
1889 	} else if (IS_IKE(dev)) {
1890 		static char ike_rev[] = "Ike rev ?";
1891 		ike_rev[8] = '0' + (char) (func_class & 0xff);
1892 		version = ike_rev;
1893 	} else if (IS_PLUTO(dev)) {
1894 		static char pluto_rev[]="Pluto ?.?";
1895 		pluto_rev[6] = '0' + (char) ((func_class & 0xf0) >> 4);
1896 		pluto_rev[8] = '0' + (char) (func_class & 0x0f);
1897 		version = pluto_rev;
1898 	} else {
1899 		static char reo_rev[] = "REO rev ?";
1900 		reo_rev[8] = '0' + (char) (func_class & 0xff);
1901 		version = reo_rev;
1902 	}
1903 
1904 	if (!global_ioc_cnt) {
1905 		global_ioc_cnt = count_parisc_driver(&sba_driver);
1906 
1907 		/* Astro and Pluto have one IOC per SBA */
1908 		if ((!IS_ASTRO(dev)) || (!IS_PLUTO(dev)))
1909 			global_ioc_cnt *= 2;
1910 	}
1911 
1912 	printk(KERN_INFO "%s found %s at 0x%lx\n",
1913 		MODULE_NAME, version, dev->hpa.start);
1914 
1915 	sba_dev = kzalloc(sizeof(struct sba_device), GFP_KERNEL);
1916 	if (!sba_dev) {
1917 		printk(KERN_ERR MODULE_NAME " - couldn't alloc sba_device\n");
1918 		return -ENOMEM;
1919 	}
1920 
1921 	parisc_set_drvdata(dev, sba_dev);
1922 
1923 	for(i=0; i<MAX_IOC; i++)
1924 		spin_lock_init(&(sba_dev->ioc[i].res_lock));
1925 
1926 	sba_dev->dev = dev;
1927 	sba_dev->hw_rev = func_class;
1928 	sba_dev->name = dev->name;
1929 	sba_dev->sba_hpa = sba_addr;
1930 
1931 	sba_get_pat_resources(sba_dev);
1932 	sba_hw_init(sba_dev);
1933 	sba_common_init(sba_dev);
1934 
1935 	hppa_dma_ops = &sba_ops;
1936 
1937 #ifdef CONFIG_PROC_FS
1938 	switch (dev->id.hversion) {
1939 	case PLUTO_MCKINLEY_PORT:
1940 		root = proc_mckinley_root;
1941 		break;
1942 	case ASTRO_RUNWAY_PORT:
1943 	case IKE_MERCED_PORT:
1944 	default:
1945 		root = proc_runway_root;
1946 		break;
1947 	}
1948 
1949 	info_entry = create_proc_entry("sba_iommu", 0, root);
1950 	bitmap_entry = create_proc_entry("sba_iommu-bitmap", 0, root);
1951 
1952 	if (info_entry)
1953 		info_entry->proc_fops = &sba_proc_fops;
1954 
1955 	if (bitmap_entry)
1956 		bitmap_entry->proc_fops = &sba_proc_bitmap_fops;
1957 #endif
1958 
1959 	parisc_vmerge_boundary = IOVP_SIZE;
1960 	parisc_vmerge_max_size = IOVP_SIZE * BITS_PER_LONG;
1961 	parisc_has_iommu();
1962 	return 0;
1963 }
1964 
1965 /*
1966 ** One time initialization to let the world know the SBA was found.
1967 ** This is the only routine which is NOT static.
1968 ** Must be called exactly once before pci_init().
1969 */
1970 void __init sba_init(void)
1971 {
1972 	register_parisc_driver(&sba_driver);
1973 }
1974 
1975 
1976 /**
1977  * sba_get_iommu - Assign the iommu pointer for the pci bus controller.
1978  * @dev: The parisc device.
1979  *
1980  * Returns the appropriate IOMMU data for the given parisc PCI controller.
1981  * This is cached and used later for PCI DMA Mapping.
1982  */
1983 void * sba_get_iommu(struct parisc_device *pci_hba)
1984 {
1985 	struct parisc_device *sba_dev = parisc_parent(pci_hba);
1986 	struct sba_device *sba = sba_dev->dev.driver_data;
1987 	char t = sba_dev->id.hw_type;
1988 	int iocnum = (pci_hba->hw_path >> 3);	/* rope # */
1989 
1990 	WARN_ON((t != HPHW_IOA) && (t != HPHW_BCPORT));
1991 
1992 	return &(sba->ioc[iocnum]);
1993 }
1994 
1995 
1996 /**
1997  * sba_directed_lmmio - return first directed LMMIO range routed to rope
1998  * @pa_dev: The parisc device.
1999  * @r: resource PCI host controller wants start/end fields assigned.
2000  *
2001  * For the given parisc PCI controller, determine if any direct ranges
2002  * are routed down the corresponding rope.
2003  */
2004 void sba_directed_lmmio(struct parisc_device *pci_hba, struct resource *r)
2005 {
2006 	struct parisc_device *sba_dev = parisc_parent(pci_hba);
2007 	struct sba_device *sba = sba_dev->dev.driver_data;
2008 	char t = sba_dev->id.hw_type;
2009 	int i;
2010 	int rope = (pci_hba->hw_path & (ROPES_PER_IOC-1));  /* rope # */
2011 
2012 	BUG_ON((t!=HPHW_IOA) && (t!=HPHW_BCPORT));
2013 
2014 	r->start = r->end = 0;
2015 
2016 	/* Astro has 4 directed ranges. Not sure about Ike/Pluto/et al */
2017 	for (i=0; i<4; i++) {
2018 		int base, size;
2019 		void __iomem *reg = sba->sba_hpa + i*0x18;
2020 
2021 		base = READ_REG32(reg + LMMIO_DIRECT0_BASE);
2022 		if ((base & 1) == 0)
2023 			continue;	/* not enabled */
2024 
2025 		size = READ_REG32(reg + LMMIO_DIRECT0_ROUTE);
2026 
2027 		if ((size & (ROPES_PER_IOC-1)) != rope)
2028 			continue;	/* directed down different rope */
2029 
2030 		r->start = (base & ~1UL) | PCI_F_EXTEND;
2031 		size = ~ READ_REG32(reg + LMMIO_DIRECT0_MASK);
2032 		r->end = r->start + size;
2033 	}
2034 }
2035 
2036 
2037 /**
2038  * sba_distributed_lmmio - return portion of distributed LMMIO range
2039  * @pa_dev: The parisc device.
2040  * @r: resource PCI host controller wants start/end fields assigned.
2041  *
2042  * For the given parisc PCI controller, return portion of distributed LMMIO
2043  * range. The distributed LMMIO is always present and it's just a question
2044  * of the base address and size of the range.
2045  */
2046 void sba_distributed_lmmio(struct parisc_device *pci_hba, struct resource *r )
2047 {
2048 	struct parisc_device *sba_dev = parisc_parent(pci_hba);
2049 	struct sba_device *sba = sba_dev->dev.driver_data;
2050 	char t = sba_dev->id.hw_type;
2051 	int base, size;
2052 	int rope = (pci_hba->hw_path & (ROPES_PER_IOC-1));  /* rope # */
2053 
2054 	BUG_ON((t!=HPHW_IOA) && (t!=HPHW_BCPORT));
2055 
2056 	r->start = r->end = 0;
2057 
2058 	base = READ_REG32(sba->sba_hpa + LMMIO_DIST_BASE);
2059 	if ((base & 1) == 0) {
2060 		BUG();	/* Gah! Distr Range wasn't enabled! */
2061 		return;
2062 	}
2063 
2064 	r->start = (base & ~1UL) | PCI_F_EXTEND;
2065 
2066 	size = (~READ_REG32(sba->sba_hpa + LMMIO_DIST_MASK)) / ROPES_PER_IOC;
2067 	r->start += rope * (size + 1);	/* adjust base for this rope */
2068 	r->end = r->start + size;
2069 }
2070