xref: /openbmc/linux/drivers/parisc/pdc_stable.c (revision fe998f4c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *    Interfaces to retrieve and set PDC Stable options (firmware)
4  *
5  *    Copyright (C) 2005-2006 Thibaut VARENE <varenet@parisc-linux.org>
6  *
7  *    DEV NOTE: the PDC Procedures reference states that:
8  *    "A minimum of 96 bytes of Stable Storage is required. Providing more than
9  *    96 bytes of Stable Storage is optional [...]. Failure to provide the
10  *    optional locations from 96 to 192 results in the loss of certain
11  *    functionality during boot."
12  *
13  *    Since locations between 96 and 192 are the various paths, most (if not
14  *    all) PA-RISC machines should have them. Anyway, for safety reasons, the
15  *    following code can deal with just 96 bytes of Stable Storage, and all
16  *    sizes between 96 and 192 bytes (provided they are multiple of struct
17  *    pdc_module_path size, eg: 128, 160 and 192) to provide full information.
18  *    One last word: there's one path we can always count on: the primary path.
19  *    Anything above 224 bytes is used for 'osdep2' OS-dependent storage area.
20  *
21  *    The first OS-dependent area should always be available. Obviously, this is
22  *    not true for the other one. Also bear in mind that reading/writing from/to
23  *    osdep2 is much more expensive than from/to osdep1.
24  *    NOTE: We do not handle the 2 bytes OS-dep area at 0x5D, nor the first
25  *    2 bytes of storage available right after OSID. That's a total of 4 bytes
26  *    sacrificed: -ETOOLAZY :P
27  *
28  *    The current policy wrt file permissions is:
29  *	- write: root only
30  *	- read: (reading triggers PDC calls) ? root only : everyone
31  *    The rationale is that PDC calls could hog (DoS) the machine.
32  *
33  *	TODO:
34  *	- timer/fastsize write calls
35  */
36 
37 #undef PDCS_DEBUG
38 #ifdef PDCS_DEBUG
39 #define DPRINTK(fmt, args...)	printk(KERN_DEBUG fmt, ## args)
40 #else
41 #define DPRINTK(fmt, args...)
42 #endif
43 
44 #include <linux/module.h>
45 #include <linux/init.h>
46 #include <linux/kernel.h>
47 #include <linux/string.h>
48 #include <linux/capability.h>
49 #include <linux/ctype.h>
50 #include <linux/sysfs.h>
51 #include <linux/kobject.h>
52 #include <linux/device.h>
53 #include <linux/errno.h>
54 #include <linux/spinlock.h>
55 
56 #include <asm/pdc.h>
57 #include <asm/page.h>
58 #include <linux/uaccess.h>
59 #include <asm/hardware.h>
60 
61 #define PDCS_VERSION	"0.30"
62 #define PDCS_PREFIX	"PDC Stable Storage"
63 
64 #define PDCS_ADDR_PPRI	0x00
65 #define PDCS_ADDR_OSID	0x40
66 #define PDCS_ADDR_OSD1	0x48
67 #define PDCS_ADDR_DIAG	0x58
68 #define PDCS_ADDR_FSIZ	0x5C
69 #define PDCS_ADDR_PCON	0x60
70 #define PDCS_ADDR_PALT	0x80
71 #define PDCS_ADDR_PKBD	0xA0
72 #define PDCS_ADDR_OSD2	0xE0
73 
74 MODULE_AUTHOR("Thibaut VARENE <varenet@parisc-linux.org>");
75 MODULE_DESCRIPTION("sysfs interface to HP PDC Stable Storage data");
76 MODULE_LICENSE("GPL");
77 MODULE_VERSION(PDCS_VERSION);
78 
79 /* holds Stable Storage size. Initialized once and for all, no lock needed */
80 static unsigned long pdcs_size __read_mostly;
81 
82 /* holds OS ID. Initialized once and for all, hopefully to 0x0006 */
83 static u16 pdcs_osid __read_mostly;
84 
85 /* This struct defines what we need to deal with a parisc pdc path entry */
86 struct pdcspath_entry {
87 	rwlock_t rw_lock;		/* to protect path entry access */
88 	short ready;			/* entry record is valid if != 0 */
89 	unsigned long addr;		/* entry address in stable storage */
90 	char *name;			/* entry name */
91 	struct pdc_module_path devpath;	/* device path in parisc representation */
92 	struct device *dev;		/* corresponding device */
93 	struct kobject kobj;
94 };
95 
96 struct pdcspath_attribute {
97 	struct attribute attr;
98 	ssize_t (*show)(struct pdcspath_entry *entry, char *buf);
99 	ssize_t (*store)(struct pdcspath_entry *entry, const char *buf, size_t count);
100 };
101 
102 #define PDCSPATH_ENTRY(_addr, _name) \
103 struct pdcspath_entry pdcspath_entry_##_name = { \
104 	.ready = 0, \
105 	.addr = _addr, \
106 	.name = __stringify(_name), \
107 };
108 
109 #define PDCS_ATTR(_name, _mode, _show, _store) \
110 struct kobj_attribute pdcs_attr_##_name = { \
111 	.attr = {.name = __stringify(_name), .mode = _mode}, \
112 	.show = _show, \
113 	.store = _store, \
114 };
115 
116 #define PATHS_ATTR(_name, _mode, _show, _store) \
117 struct pdcspath_attribute paths_attr_##_name = { \
118 	.attr = {.name = __stringify(_name), .mode = _mode}, \
119 	.show = _show, \
120 	.store = _store, \
121 };
122 
123 #define to_pdcspath_attribute(_attr) container_of(_attr, struct pdcspath_attribute, attr)
124 #define to_pdcspath_entry(obj)  container_of(obj, struct pdcspath_entry, kobj)
125 
126 /**
127  * pdcspath_fetch - This function populates the path entry structs.
128  * @entry: A pointer to an allocated pdcspath_entry.
129  *
130  * The general idea is that you don't read from the Stable Storage every time
131  * you access the files provided by the facilities. We store a copy of the
132  * content of the stable storage WRT various paths in these structs. We read
133  * these structs when reading the files, and we will write to these structs when
134  * writing to the files, and only then write them back to the Stable Storage.
135  *
136  * This function expects to be called with @entry->rw_lock write-hold.
137  */
138 static int
139 pdcspath_fetch(struct pdcspath_entry *entry)
140 {
141 	struct pdc_module_path *devpath;
142 
143 	if (!entry)
144 		return -EINVAL;
145 
146 	devpath = &entry->devpath;
147 
148 	DPRINTK("%s: fetch: 0x%p, 0x%p, addr: 0x%lx\n", __func__,
149 			entry, devpath, entry->addr);
150 
151 	/* addr, devpath and count must be word aligned */
152 	if (pdc_stable_read(entry->addr, devpath, sizeof(*devpath)) != PDC_OK)
153 		return -EIO;
154 
155 	/* Find the matching device.
156 	   NOTE: hardware_path overlays with pdc_module_path, so the nice cast can
157 	   be used */
158 	entry->dev = hwpath_to_device((struct hardware_path *)devpath);
159 
160 	entry->ready = 1;
161 
162 	DPRINTK("%s: device: 0x%p\n", __func__, entry->dev);
163 
164 	return 0;
165 }
166 
167 /**
168  * pdcspath_store - This function writes a path to stable storage.
169  * @entry: A pointer to an allocated pdcspath_entry.
170  *
171  * It can be used in two ways: either by passing it a preset devpath struct
172  * containing an already computed hardware path, or by passing it a device
173  * pointer, from which it'll find out the corresponding hardware path.
174  * For now we do not handle the case where there's an error in writing to the
175  * Stable Storage area, so you'd better not mess up the data :P
176  *
177  * This function expects to be called with @entry->rw_lock write-hold.
178  */
179 static void
180 pdcspath_store(struct pdcspath_entry *entry)
181 {
182 	struct pdc_module_path *devpath;
183 
184 	BUG_ON(!entry);
185 
186 	devpath = &entry->devpath;
187 
188 	/* We expect the caller to set the ready flag to 0 if the hardware
189 	   path struct provided is invalid, so that we know we have to fill it.
190 	   First case, we don't have a preset hwpath... */
191 	if (!entry->ready) {
192 		/* ...but we have a device, map it */
193 		BUG_ON(!entry->dev);
194 		device_to_hwpath(entry->dev, (struct hardware_path *)devpath);
195 	}
196 	/* else, we expect the provided hwpath to be valid. */
197 
198 	DPRINTK("%s: store: 0x%p, 0x%p, addr: 0x%lx\n", __func__,
199 			entry, devpath, entry->addr);
200 
201 	/* addr, devpath and count must be word aligned */
202 	if (pdc_stable_write(entry->addr, devpath, sizeof(*devpath)) != PDC_OK)
203 		WARN(1, KERN_ERR "%s: an error occurred when writing to PDC.\n"
204 				"It is likely that the Stable Storage data has been corrupted.\n"
205 				"Please check it carefully upon next reboot.\n", __func__);
206 
207 	/* kobject is already registered */
208 	entry->ready = 2;
209 
210 	DPRINTK("%s: device: 0x%p\n", __func__, entry->dev);
211 }
212 
213 /**
214  * pdcspath_hwpath_read - This function handles hardware path pretty printing.
215  * @entry: An allocated and populated pdscpath_entry struct.
216  * @buf: The output buffer to write to.
217  *
218  * We will call this function to format the output of the hwpath attribute file.
219  */
220 static ssize_t
221 pdcspath_hwpath_read(struct pdcspath_entry *entry, char *buf)
222 {
223 	char *out = buf;
224 	struct pdc_module_path *devpath;
225 	short i;
226 
227 	if (!entry || !buf)
228 		return -EINVAL;
229 
230 	read_lock(&entry->rw_lock);
231 	devpath = &entry->devpath;
232 	i = entry->ready;
233 	read_unlock(&entry->rw_lock);
234 
235 	if (!i)	/* entry is not ready */
236 		return -ENODATA;
237 
238 	for (i = 0; i < 6; i++) {
239 		if (devpath->path.bc[i] < 0)
240 			continue;
241 		out += sprintf(out, "%d/", devpath->path.bc[i]);
242 	}
243 	out += sprintf(out, "%u\n", (unsigned char)devpath->path.mod);
244 
245 	return out - buf;
246 }
247 
248 /**
249  * pdcspath_hwpath_write - This function handles hardware path modifying.
250  * @entry: An allocated and populated pdscpath_entry struct.
251  * @buf: The input buffer to read from.
252  * @count: The number of bytes to be read.
253  *
254  * We will call this function to change the current hardware path.
255  * Hardware paths are to be given '/'-delimited, without brackets.
256  * We make sure that the provided path actually maps to an existing
257  * device, BUT nothing would prevent some foolish user to set the path to some
258  * PCI bridge or even a CPU...
259  * A better work around would be to make sure we are at the end of a device tree
260  * for instance, but it would be IMHO beyond the simple scope of that driver.
261  * The aim is to provide a facility. Data correctness is left to userland.
262  */
263 static ssize_t
264 pdcspath_hwpath_write(struct pdcspath_entry *entry, const char *buf, size_t count)
265 {
266 	struct hardware_path hwpath;
267 	unsigned short i;
268 	char in[64], *temp;
269 	struct device *dev;
270 	int ret;
271 
272 	if (!entry || !buf || !count)
273 		return -EINVAL;
274 
275 	/* We'll use a local copy of buf */
276 	count = min_t(size_t, count, sizeof(in)-1);
277 	strscpy(in, buf, count + 1);
278 
279 	/* Let's clean up the target. 0xff is a blank pattern */
280 	memset(&hwpath, 0xff, sizeof(hwpath));
281 
282 	/* First, pick the mod field (the last one of the input string) */
283 	if (!(temp = strrchr(in, '/')))
284 		return -EINVAL;
285 
286 	hwpath.mod = simple_strtoul(temp+1, NULL, 10);
287 	in[temp-in] = '\0';	/* truncate the remaining string. just precaution */
288 	DPRINTK("%s: mod: %d\n", __func__, hwpath.mod);
289 
290 	/* Then, loop for each delimiter, making sure we don't have too many.
291 	   we write the bc fields in a down-top way. No matter what, we stop
292 	   before writing the last field. If there are too many fields anyway,
293 	   then the user is a moron and it'll be caught up later when we'll
294 	   check the consistency of the given hwpath. */
295 	for (i=5; ((temp = strrchr(in, '/'))) && (temp-in > 0) && (likely(i)); i--) {
296 		hwpath.bc[i] = simple_strtoul(temp+1, NULL, 10);
297 		in[temp-in] = '\0';
298 		DPRINTK("%s: bc[%d]: %d\n", __func__, i, hwpath.path.bc[i]);
299 	}
300 
301 	/* Store the final field */
302 	hwpath.bc[i] = simple_strtoul(in, NULL, 10);
303 	DPRINTK("%s: bc[%d]: %d\n", __func__, i, hwpath.path.bc[i]);
304 
305 	/* Now we check that the user isn't trying to lure us */
306 	if (!(dev = hwpath_to_device((struct hardware_path *)&hwpath))) {
307 		printk(KERN_WARNING "%s: attempt to set invalid \"%s\" "
308 			"hardware path: %s\n", __func__, entry->name, buf);
309 		return -EINVAL;
310 	}
311 
312 	/* So far so good, let's get in deep */
313 	write_lock(&entry->rw_lock);
314 	entry->ready = 0;
315 	entry->dev = dev;
316 
317 	/* Now, dive in. Write back to the hardware */
318 	pdcspath_store(entry);
319 
320 	/* Update the symlink to the real device */
321 	sysfs_remove_link(&entry->kobj, "device");
322 	write_unlock(&entry->rw_lock);
323 
324 	ret = sysfs_create_link(&entry->kobj, &entry->dev->kobj, "device");
325 	WARN_ON(ret);
326 
327 	printk(KERN_INFO PDCS_PREFIX ": changed \"%s\" path to \"%s\"\n",
328 		entry->name, buf);
329 
330 	return count;
331 }
332 
333 /**
334  * pdcspath_layer_read - Extended layer (eg. SCSI ids) pretty printing.
335  * @entry: An allocated and populated pdscpath_entry struct.
336  * @buf: The output buffer to write to.
337  *
338  * We will call this function to format the output of the layer attribute file.
339  */
340 static ssize_t
341 pdcspath_layer_read(struct pdcspath_entry *entry, char *buf)
342 {
343 	char *out = buf;
344 	struct pdc_module_path *devpath;
345 	short i;
346 
347 	if (!entry || !buf)
348 		return -EINVAL;
349 
350 	read_lock(&entry->rw_lock);
351 	devpath = &entry->devpath;
352 	i = entry->ready;
353 	read_unlock(&entry->rw_lock);
354 
355 	if (!i)	/* entry is not ready */
356 		return -ENODATA;
357 
358 	for (i = 0; i < 6 && devpath->layers[i]; i++)
359 		out += sprintf(out, "%u ", devpath->layers[i]);
360 
361 	out += sprintf(out, "\n");
362 
363 	return out - buf;
364 }
365 
366 /**
367  * pdcspath_layer_write - This function handles extended layer modifying.
368  * @entry: An allocated and populated pdscpath_entry struct.
369  * @buf: The input buffer to read from.
370  * @count: The number of bytes to be read.
371  *
372  * We will call this function to change the current layer value.
373  * Layers are to be given '.'-delimited, without brackets.
374  * XXX beware we are far less checky WRT input data provided than for hwpath.
375  * Potential harm can be done, since there's no way to check the validity of
376  * the layer fields.
377  */
378 static ssize_t
379 pdcspath_layer_write(struct pdcspath_entry *entry, const char *buf, size_t count)
380 {
381 	unsigned int layers[6]; /* device-specific info (ctlr#, unit#, ...) */
382 	unsigned short i;
383 	char in[64], *temp;
384 
385 	if (!entry || !buf || !count)
386 		return -EINVAL;
387 
388 	/* We'll use a local copy of buf */
389 	count = min_t(size_t, count, sizeof(in)-1);
390 	strscpy(in, buf, count + 1);
391 
392 	/* Let's clean up the target. 0 is a blank pattern */
393 	memset(&layers, 0, sizeof(layers));
394 
395 	/* First, pick the first layer */
396 	if (unlikely(!isdigit(*in)))
397 		return -EINVAL;
398 	layers[0] = simple_strtoul(in, NULL, 10);
399 	DPRINTK("%s: layer[0]: %d\n", __func__, layers[0]);
400 
401 	temp = in;
402 	for (i=1; ((temp = strchr(temp, '.'))) && (likely(i<6)); i++) {
403 		if (unlikely(!isdigit(*(++temp))))
404 			return -EINVAL;
405 		layers[i] = simple_strtoul(temp, NULL, 10);
406 		DPRINTK("%s: layer[%d]: %d\n", __func__, i, layers[i]);
407 	}
408 
409 	/* So far so good, let's get in deep */
410 	write_lock(&entry->rw_lock);
411 
412 	/* First, overwrite the current layers with the new ones, not touching
413 	   the hardware path. */
414 	memcpy(&entry->devpath.layers, &layers, sizeof(layers));
415 
416 	/* Now, dive in. Write back to the hardware */
417 	pdcspath_store(entry);
418 	write_unlock(&entry->rw_lock);
419 
420 	printk(KERN_INFO PDCS_PREFIX ": changed \"%s\" layers to \"%s\"\n",
421 		entry->name, buf);
422 
423 	return count;
424 }
425 
426 /**
427  * pdcspath_attr_show - Generic read function call wrapper.
428  * @kobj: The kobject to get info from.
429  * @attr: The attribute looked upon.
430  * @buf: The output buffer.
431  */
432 static ssize_t
433 pdcspath_attr_show(struct kobject *kobj, struct attribute *attr, char *buf)
434 {
435 	struct pdcspath_entry *entry = to_pdcspath_entry(kobj);
436 	struct pdcspath_attribute *pdcs_attr = to_pdcspath_attribute(attr);
437 	ssize_t ret = 0;
438 
439 	if (pdcs_attr->show)
440 		ret = pdcs_attr->show(entry, buf);
441 
442 	return ret;
443 }
444 
445 /**
446  * pdcspath_attr_store - Generic write function call wrapper.
447  * @kobj: The kobject to write info to.
448  * @attr: The attribute to be modified.
449  * @buf: The input buffer.
450  * @count: The size of the buffer.
451  */
452 static ssize_t
453 pdcspath_attr_store(struct kobject *kobj, struct attribute *attr,
454 			const char *buf, size_t count)
455 {
456 	struct pdcspath_entry *entry = to_pdcspath_entry(kobj);
457 	struct pdcspath_attribute *pdcs_attr = to_pdcspath_attribute(attr);
458 	ssize_t ret = 0;
459 
460 	if (!capable(CAP_SYS_ADMIN))
461 		return -EACCES;
462 
463 	if (pdcs_attr->store)
464 		ret = pdcs_attr->store(entry, buf, count);
465 
466 	return ret;
467 }
468 
469 static const struct sysfs_ops pdcspath_attr_ops = {
470 	.show = pdcspath_attr_show,
471 	.store = pdcspath_attr_store,
472 };
473 
474 /* These are the two attributes of any PDC path. */
475 static PATHS_ATTR(hwpath, 0644, pdcspath_hwpath_read, pdcspath_hwpath_write);
476 static PATHS_ATTR(layer, 0644, pdcspath_layer_read, pdcspath_layer_write);
477 
478 static struct attribute *paths_subsys_attrs[] = {
479 	&paths_attr_hwpath.attr,
480 	&paths_attr_layer.attr,
481 	NULL,
482 };
483 ATTRIBUTE_GROUPS(paths_subsys);
484 
485 /* Specific kobject type for our PDC paths */
486 static struct kobj_type ktype_pdcspath = {
487 	.sysfs_ops = &pdcspath_attr_ops,
488 	.default_groups = paths_subsys_groups,
489 };
490 
491 /* We hard define the 4 types of path we expect to find */
492 static PDCSPATH_ENTRY(PDCS_ADDR_PPRI, primary);
493 static PDCSPATH_ENTRY(PDCS_ADDR_PCON, console);
494 static PDCSPATH_ENTRY(PDCS_ADDR_PALT, alternative);
495 static PDCSPATH_ENTRY(PDCS_ADDR_PKBD, keyboard);
496 
497 /* An array containing all PDC paths we will deal with */
498 static struct pdcspath_entry *pdcspath_entries[] = {
499 	&pdcspath_entry_primary,
500 	&pdcspath_entry_alternative,
501 	&pdcspath_entry_console,
502 	&pdcspath_entry_keyboard,
503 	NULL,
504 };
505 
506 
507 /* For more insight of what's going on here, refer to PDC Procedures doc,
508  * Section PDC_STABLE */
509 
510 /**
511  * pdcs_size_read - Stable Storage size output.
512  * @kobj: The kobject used to share data with userspace.
513  * @attr: The kobject attributes.
514  * @buf: The output buffer to write to.
515  */
516 static ssize_t pdcs_size_read(struct kobject *kobj,
517 			      struct kobj_attribute *attr,
518 			      char *buf)
519 {
520 	char *out = buf;
521 
522 	if (!buf)
523 		return -EINVAL;
524 
525 	/* show the size of the stable storage */
526 	out += sprintf(out, "%ld\n", pdcs_size);
527 
528 	return out - buf;
529 }
530 
531 /**
532  * pdcs_auto_read - Stable Storage autoboot/search flag output.
533  * @kobj: The kobject used to share data with userspace.
534  * @attr: The kobject attributes.
535  * @buf: The output buffer to write to.
536  * @knob: The PF_AUTOBOOT or PF_AUTOSEARCH flag
537  */
538 static ssize_t pdcs_auto_read(struct kobject *kobj,
539 			      struct kobj_attribute *attr,
540 			      char *buf, int knob)
541 {
542 	char *out = buf;
543 	struct pdcspath_entry *pathentry;
544 
545 	if (!buf)
546 		return -EINVAL;
547 
548 	/* Current flags are stored in primary boot path entry */
549 	pathentry = &pdcspath_entry_primary;
550 
551 	read_lock(&pathentry->rw_lock);
552 	out += sprintf(out, "%s\n", (pathentry->devpath.path.flags & knob) ?
553 					"On" : "Off");
554 	read_unlock(&pathentry->rw_lock);
555 
556 	return out - buf;
557 }
558 
559 /**
560  * pdcs_autoboot_read - Stable Storage autoboot flag output.
561  * @kobj: The kobject used to share data with userspace.
562  * @attr: The kobject attributes.
563  * @buf: The output buffer to write to.
564  */
565 static ssize_t pdcs_autoboot_read(struct kobject *kobj,
566 				  struct kobj_attribute *attr, char *buf)
567 {
568 	return pdcs_auto_read(kobj, attr, buf, PF_AUTOBOOT);
569 }
570 
571 /**
572  * pdcs_autosearch_read - Stable Storage autoboot flag output.
573  * @kobj: The kobject used to share data with userspace.
574  * @attr: The kobject attributes.
575  * @buf: The output buffer to write to.
576  */
577 static ssize_t pdcs_autosearch_read(struct kobject *kobj,
578 				    struct kobj_attribute *attr, char *buf)
579 {
580 	return pdcs_auto_read(kobj, attr, buf, PF_AUTOSEARCH);
581 }
582 
583 /**
584  * pdcs_timer_read - Stable Storage timer count output (in seconds).
585  * @kobj: The kobject used to share data with userspace.
586  * @attr: The kobject attributes.
587  * @buf: The output buffer to write to.
588  *
589  * The value of the timer field correponds to a number of seconds in powers of 2.
590  */
591 static ssize_t pdcs_timer_read(struct kobject *kobj,
592 			       struct kobj_attribute *attr, char *buf)
593 {
594 	char *out = buf;
595 	struct pdcspath_entry *pathentry;
596 
597 	if (!buf)
598 		return -EINVAL;
599 
600 	/* Current flags are stored in primary boot path entry */
601 	pathentry = &pdcspath_entry_primary;
602 
603 	/* print the timer value in seconds */
604 	read_lock(&pathentry->rw_lock);
605 	out += sprintf(out, "%u\n", (pathentry->devpath.path.flags & PF_TIMER) ?
606 				(1 << (pathentry->devpath.path.flags & PF_TIMER)) : 0);
607 	read_unlock(&pathentry->rw_lock);
608 
609 	return out - buf;
610 }
611 
612 /**
613  * pdcs_osid_read - Stable Storage OS ID register output.
614  * @kobj: The kobject used to share data with userspace.
615  * @attr: The kobject attributes.
616  * @buf: The output buffer to write to.
617  */
618 static ssize_t pdcs_osid_read(struct kobject *kobj,
619 			      struct kobj_attribute *attr, char *buf)
620 {
621 	char *out = buf;
622 
623 	if (!buf)
624 		return -EINVAL;
625 
626 	out += sprintf(out, "%s dependent data (0x%.4x)\n",
627 		os_id_to_string(pdcs_osid), pdcs_osid);
628 
629 	return out - buf;
630 }
631 
632 /**
633  * pdcs_osdep1_read - Stable Storage OS-Dependent data area 1 output.
634  * @kobj: The kobject used to share data with userspace.
635  * @attr: The kobject attributes.
636  * @buf: The output buffer to write to.
637  *
638  * This can hold 16 bytes of OS-Dependent data.
639  */
640 static ssize_t pdcs_osdep1_read(struct kobject *kobj,
641 				struct kobj_attribute *attr, char *buf)
642 {
643 	char *out = buf;
644 	u32 result[4];
645 
646 	if (!buf)
647 		return -EINVAL;
648 
649 	if (pdc_stable_read(PDCS_ADDR_OSD1, &result, sizeof(result)) != PDC_OK)
650 		return -EIO;
651 
652 	out += sprintf(out, "0x%.8x\n", result[0]);
653 	out += sprintf(out, "0x%.8x\n", result[1]);
654 	out += sprintf(out, "0x%.8x\n", result[2]);
655 	out += sprintf(out, "0x%.8x\n", result[3]);
656 
657 	return out - buf;
658 }
659 
660 /**
661  * pdcs_diagnostic_read - Stable Storage Diagnostic register output.
662  * @kobj: The kobject used to share data with userspace.
663  * @attr: The kobject attributes.
664  * @buf: The output buffer to write to.
665  *
666  * I have NFC how to interpret the content of that register ;-).
667  */
668 static ssize_t pdcs_diagnostic_read(struct kobject *kobj,
669 				    struct kobj_attribute *attr, char *buf)
670 {
671 	char *out = buf;
672 	u32 result;
673 
674 	if (!buf)
675 		return -EINVAL;
676 
677 	/* get diagnostic */
678 	if (pdc_stable_read(PDCS_ADDR_DIAG, &result, sizeof(result)) != PDC_OK)
679 		return -EIO;
680 
681 	out += sprintf(out, "0x%.4x\n", (result >> 16));
682 
683 	return out - buf;
684 }
685 
686 /**
687  * pdcs_fastsize_read - Stable Storage FastSize register output.
688  * @kobj: The kobject used to share data with userspace.
689  * @attr: The kobject attributes.
690  * @buf: The output buffer to write to.
691  *
692  * This register holds the amount of system RAM to be tested during boot sequence.
693  */
694 static ssize_t pdcs_fastsize_read(struct kobject *kobj,
695 				  struct kobj_attribute *attr, char *buf)
696 {
697 	char *out = buf;
698 	u32 result;
699 
700 	if (!buf)
701 		return -EINVAL;
702 
703 	/* get fast-size */
704 	if (pdc_stable_read(PDCS_ADDR_FSIZ, &result, sizeof(result)) != PDC_OK)
705 		return -EIO;
706 
707 	if ((result & 0x0F) < 0x0E)
708 		out += sprintf(out, "%d kB", (1<<(result & 0x0F))*256);
709 	else
710 		out += sprintf(out, "All");
711 	out += sprintf(out, "\n");
712 
713 	return out - buf;
714 }
715 
716 /**
717  * pdcs_osdep2_read - Stable Storage OS-Dependent data area 2 output.
718  * @kobj: The kobject used to share data with userspace.
719  * @attr: The kobject attributes.
720  * @buf: The output buffer to write to.
721  *
722  * This can hold pdcs_size - 224 bytes of OS-Dependent data, when available.
723  */
724 static ssize_t pdcs_osdep2_read(struct kobject *kobj,
725 				struct kobj_attribute *attr, char *buf)
726 {
727 	char *out = buf;
728 	unsigned long size;
729 	unsigned short i;
730 	u32 result;
731 
732 	if (unlikely(pdcs_size <= 224))
733 		return -ENODATA;
734 
735 	size = pdcs_size - 224;
736 
737 	if (!buf)
738 		return -EINVAL;
739 
740 	for (i=0; i<size; i+=4) {
741 		if (unlikely(pdc_stable_read(PDCS_ADDR_OSD2 + i, &result,
742 					sizeof(result)) != PDC_OK))
743 			return -EIO;
744 		out += sprintf(out, "0x%.8x\n", result);
745 	}
746 
747 	return out - buf;
748 }
749 
750 /**
751  * pdcs_auto_write - This function handles autoboot/search flag modifying.
752  * @kobj: The kobject used to share data with userspace.
753  * @attr: The kobject attributes.
754  * @buf: The input buffer to read from.
755  * @count: The number of bytes to be read.
756  * @knob: The PF_AUTOBOOT or PF_AUTOSEARCH flag
757  *
758  * We will call this function to change the current autoboot flag.
759  * We expect a precise syntax:
760  *	\"n\" (n == 0 or 1) to toggle AutoBoot Off or On
761  */
762 static ssize_t pdcs_auto_write(struct kobject *kobj,
763 			       struct kobj_attribute *attr, const char *buf,
764 			       size_t count, int knob)
765 {
766 	struct pdcspath_entry *pathentry;
767 	unsigned char flags;
768 	char in[8], *temp;
769 	char c;
770 
771 	if (!capable(CAP_SYS_ADMIN))
772 		return -EACCES;
773 
774 	if (!buf || !count)
775 		return -EINVAL;
776 
777 	/* We'll use a local copy of buf */
778 	count = min_t(size_t, count, sizeof(in)-1);
779 	strscpy(in, buf, count + 1);
780 
781 	/* Current flags are stored in primary boot path entry */
782 	pathentry = &pdcspath_entry_primary;
783 
784 	/* Be nice to the existing flag record */
785 	read_lock(&pathentry->rw_lock);
786 	flags = pathentry->devpath.path.flags;
787 	read_unlock(&pathentry->rw_lock);
788 
789 	DPRINTK("%s: flags before: 0x%X\n", __func__, flags);
790 
791 	temp = skip_spaces(in);
792 
793 	c = *temp++ - '0';
794 	if ((c != 0) && (c != 1))
795 		goto parse_error;
796 	if (c == 0)
797 		flags &= ~knob;
798 	else
799 		flags |= knob;
800 
801 	DPRINTK("%s: flags after: 0x%X\n", __func__, flags);
802 
803 	/* So far so good, let's get in deep */
804 	write_lock(&pathentry->rw_lock);
805 
806 	/* Change the path entry flags first */
807 	pathentry->devpath.path.flags = flags;
808 
809 	/* Now, dive in. Write back to the hardware */
810 	pdcspath_store(pathentry);
811 	write_unlock(&pathentry->rw_lock);
812 
813 	printk(KERN_INFO PDCS_PREFIX ": changed \"%s\" to \"%s\"\n",
814 		(knob & PF_AUTOBOOT) ? "autoboot" : "autosearch",
815 		(flags & knob) ? "On" : "Off");
816 
817 	return count;
818 
819 parse_error:
820 	printk(KERN_WARNING "%s: Parse error: expect \"n\" (n == 0 or 1)\n", __func__);
821 	return -EINVAL;
822 }
823 
824 /**
825  * pdcs_autoboot_write - This function handles autoboot flag modifying.
826  * @kobj: The kobject used to share data with userspace.
827  * @attr: The kobject attributes.
828  * @buf: The input buffer to read from.
829  * @count: The number of bytes to be read.
830  *
831  * We will call this function to change the current boot flags.
832  * We expect a precise syntax:
833  *	\"n\" (n == 0 or 1) to toggle AutoSearch Off or On
834  */
835 static ssize_t pdcs_autoboot_write(struct kobject *kobj,
836 				   struct kobj_attribute *attr,
837 				   const char *buf, size_t count)
838 {
839 	return pdcs_auto_write(kobj, attr, buf, count, PF_AUTOBOOT);
840 }
841 
842 /**
843  * pdcs_autosearch_write - This function handles autosearch flag modifying.
844  * @kobj: The kobject used to share data with userspace.
845  * @attr: The kobject attributes.
846  * @buf: The input buffer to read from.
847  * @count: The number of bytes to be read.
848  *
849  * We will call this function to change the current boot flags.
850  * We expect a precise syntax:
851  *	\"n\" (n == 0 or 1) to toggle AutoSearch Off or On
852  */
853 static ssize_t pdcs_autosearch_write(struct kobject *kobj,
854 				     struct kobj_attribute *attr,
855 				     const char *buf, size_t count)
856 {
857 	return pdcs_auto_write(kobj, attr, buf, count, PF_AUTOSEARCH);
858 }
859 
860 /**
861  * pdcs_osdep1_write - Stable Storage OS-Dependent data area 1 input.
862  * @kobj: The kobject used to share data with userspace.
863  * @attr: The kobject attributes.
864  * @buf: The input buffer to read from.
865  * @count: The number of bytes to be read.
866  *
867  * This can store 16 bytes of OS-Dependent data. We use a byte-by-byte
868  * write approach. It's up to userspace to deal with it when constructing
869  * its input buffer.
870  */
871 static ssize_t pdcs_osdep1_write(struct kobject *kobj,
872 				 struct kobj_attribute *attr,
873 				 const char *buf, size_t count)
874 {
875 	u8 in[16];
876 
877 	if (!capable(CAP_SYS_ADMIN))
878 		return -EACCES;
879 
880 	if (!buf || !count)
881 		return -EINVAL;
882 
883 	if (unlikely(pdcs_osid != OS_ID_LINUX))
884 		return -EPERM;
885 
886 	if (count > 16)
887 		return -EMSGSIZE;
888 
889 	/* We'll use a local copy of buf */
890 	memset(in, 0, 16);
891 	memcpy(in, buf, count);
892 
893 	if (pdc_stable_write(PDCS_ADDR_OSD1, &in, sizeof(in)) != PDC_OK)
894 		return -EIO;
895 
896 	return count;
897 }
898 
899 /**
900  * pdcs_osdep2_write - Stable Storage OS-Dependent data area 2 input.
901  * @kobj: The kobject used to share data with userspace.
902  * @attr: The kobject attributes.
903  * @buf: The input buffer to read from.
904  * @count: The number of bytes to be read.
905  *
906  * This can store pdcs_size - 224 bytes of OS-Dependent data. We use a
907  * byte-by-byte write approach. It's up to userspace to deal with it when
908  * constructing its input buffer.
909  */
910 static ssize_t pdcs_osdep2_write(struct kobject *kobj,
911 				 struct kobj_attribute *attr,
912 				 const char *buf, size_t count)
913 {
914 	unsigned long size;
915 	unsigned short i;
916 	u8 in[4];
917 
918 	if (!capable(CAP_SYS_ADMIN))
919 		return -EACCES;
920 
921 	if (!buf || !count)
922 		return -EINVAL;
923 
924 	if (unlikely(pdcs_size <= 224))
925 		return -ENOSYS;
926 
927 	if (unlikely(pdcs_osid != OS_ID_LINUX))
928 		return -EPERM;
929 
930 	size = pdcs_size - 224;
931 
932 	if (count > size)
933 		return -EMSGSIZE;
934 
935 	/* We'll use a local copy of buf */
936 
937 	for (i=0; i<count; i+=4) {
938 		memset(in, 0, 4);
939 		memcpy(in, buf+i, (count-i < 4) ? count-i : 4);
940 		if (unlikely(pdc_stable_write(PDCS_ADDR_OSD2 + i, &in,
941 					sizeof(in)) != PDC_OK))
942 			return -EIO;
943 	}
944 
945 	return count;
946 }
947 
948 /* The remaining attributes. */
949 static PDCS_ATTR(size, 0444, pdcs_size_read, NULL);
950 static PDCS_ATTR(autoboot, 0644, pdcs_autoboot_read, pdcs_autoboot_write);
951 static PDCS_ATTR(autosearch, 0644, pdcs_autosearch_read, pdcs_autosearch_write);
952 static PDCS_ATTR(timer, 0444, pdcs_timer_read, NULL);
953 static PDCS_ATTR(osid, 0444, pdcs_osid_read, NULL);
954 static PDCS_ATTR(osdep1, 0600, pdcs_osdep1_read, pdcs_osdep1_write);
955 static PDCS_ATTR(diagnostic, 0400, pdcs_diagnostic_read, NULL);
956 static PDCS_ATTR(fastsize, 0400, pdcs_fastsize_read, NULL);
957 static PDCS_ATTR(osdep2, 0600, pdcs_osdep2_read, pdcs_osdep2_write);
958 
959 static struct attribute *pdcs_subsys_attrs[] = {
960 	&pdcs_attr_size.attr,
961 	&pdcs_attr_autoboot.attr,
962 	&pdcs_attr_autosearch.attr,
963 	&pdcs_attr_timer.attr,
964 	&pdcs_attr_osid.attr,
965 	&pdcs_attr_osdep1.attr,
966 	&pdcs_attr_diagnostic.attr,
967 	&pdcs_attr_fastsize.attr,
968 	&pdcs_attr_osdep2.attr,
969 	NULL,
970 };
971 
972 static const struct attribute_group pdcs_attr_group = {
973 	.attrs = pdcs_subsys_attrs,
974 };
975 
976 static struct kobject *stable_kobj;
977 static struct kset *paths_kset;
978 
979 /**
980  * pdcs_register_pathentries - Prepares path entries kobjects for sysfs usage.
981  *
982  * It creates kobjects corresponding to each path entry with nice sysfs
983  * links to the real device. This is where the magic takes place: when
984  * registering the subsystem attributes during module init, each kobject hereby
985  * created will show in the sysfs tree as a folder containing files as defined
986  * by path_subsys_attr[].
987  */
988 static inline int __init
989 pdcs_register_pathentries(void)
990 {
991 	unsigned short i;
992 	struct pdcspath_entry *entry;
993 	int err;
994 
995 	/* Initialize the entries rw_lock before anything else */
996 	for (i = 0; (entry = pdcspath_entries[i]); i++)
997 		rwlock_init(&entry->rw_lock);
998 
999 	for (i = 0; (entry = pdcspath_entries[i]); i++) {
1000 		write_lock(&entry->rw_lock);
1001 		err = pdcspath_fetch(entry);
1002 		write_unlock(&entry->rw_lock);
1003 
1004 		if (err < 0)
1005 			continue;
1006 
1007 		entry->kobj.kset = paths_kset;
1008 		err = kobject_init_and_add(&entry->kobj, &ktype_pdcspath, NULL,
1009 					   "%s", entry->name);
1010 		if (err) {
1011 			kobject_put(&entry->kobj);
1012 			return err;
1013 		}
1014 
1015 		/* kobject is now registered */
1016 		write_lock(&entry->rw_lock);
1017 		entry->ready = 2;
1018 		write_unlock(&entry->rw_lock);
1019 
1020 		/* Add a nice symlink to the real device */
1021 		if (entry->dev) {
1022 			err = sysfs_create_link(&entry->kobj, &entry->dev->kobj, "device");
1023 			WARN_ON(err);
1024 		}
1025 
1026 		kobject_uevent(&entry->kobj, KOBJ_ADD);
1027 	}
1028 
1029 	return 0;
1030 }
1031 
1032 /**
1033  * pdcs_unregister_pathentries - Routine called when unregistering the module.
1034  */
1035 static inline void
1036 pdcs_unregister_pathentries(void)
1037 {
1038 	unsigned short i;
1039 	struct pdcspath_entry *entry;
1040 
1041 	for (i = 0; (entry = pdcspath_entries[i]); i++) {
1042 		read_lock(&entry->rw_lock);
1043 		if (entry->ready >= 2)
1044 			kobject_put(&entry->kobj);
1045 		read_unlock(&entry->rw_lock);
1046 	}
1047 }
1048 
1049 /*
1050  * For now we register the stable subsystem with the firmware subsystem
1051  * and the paths subsystem with the stable subsystem
1052  */
1053 static int __init
1054 pdc_stable_init(void)
1055 {
1056 	int rc = 0, error;
1057 	u32 result;
1058 
1059 	/* find the size of the stable storage */
1060 	if (pdc_stable_get_size(&pdcs_size) != PDC_OK)
1061 		return -ENODEV;
1062 
1063 	/* make sure we have enough data */
1064 	if (pdcs_size < 96)
1065 		return -ENODATA;
1066 
1067 	printk(KERN_INFO PDCS_PREFIX " facility v%s\n", PDCS_VERSION);
1068 
1069 	/* get OSID */
1070 	if (pdc_stable_read(PDCS_ADDR_OSID, &result, sizeof(result)) != PDC_OK)
1071 		return -EIO;
1072 
1073 	/* the actual result is 16 bits away */
1074 	pdcs_osid = (u16)(result >> 16);
1075 
1076 	/* For now we'll register the directory at /sys/firmware/stable */
1077 	stable_kobj = kobject_create_and_add("stable", firmware_kobj);
1078 	if (!stable_kobj) {
1079 		rc = -ENOMEM;
1080 		goto fail_firmreg;
1081 	}
1082 
1083 	/* Don't forget the root entries */
1084 	error = sysfs_create_group(stable_kobj, &pdcs_attr_group);
1085 	if (error) {
1086 		rc = -ENOMEM;
1087 		goto fail_ksetreg;
1088 	}
1089 
1090 	/* register the paths kset as a child of the stable kset */
1091 	paths_kset = kset_create_and_add("paths", NULL, stable_kobj);
1092 	if (!paths_kset) {
1093 		rc = -ENOMEM;
1094 		goto fail_ksetreg;
1095 	}
1096 
1097 	/* now we create all "files" for the paths kset */
1098 	if ((rc = pdcs_register_pathentries()))
1099 		goto fail_pdcsreg;
1100 
1101 	return rc;
1102 
1103 fail_pdcsreg:
1104 	pdcs_unregister_pathentries();
1105 	kset_unregister(paths_kset);
1106 
1107 fail_ksetreg:
1108 	kobject_put(stable_kobj);
1109 
1110 fail_firmreg:
1111 	printk(KERN_INFO PDCS_PREFIX " bailing out\n");
1112 	return rc;
1113 }
1114 
1115 static void __exit
1116 pdc_stable_exit(void)
1117 {
1118 	pdcs_unregister_pathentries();
1119 	kset_unregister(paths_kset);
1120 	kobject_put(stable_kobj);
1121 }
1122 
1123 
1124 module_init(pdc_stable_init);
1125 module_exit(pdc_stable_exit);
1126