xref: /openbmc/linux/drivers/parisc/pdc_stable.c (revision fa0dadde)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *    Interfaces to retrieve and set PDC Stable options (firmware)
4  *
5  *    Copyright (C) 2005-2006 Thibaut VARENE <varenet@parisc-linux.org>
6  *
7  *    DEV NOTE: the PDC Procedures reference states that:
8  *    "A minimum of 96 bytes of Stable Storage is required. Providing more than
9  *    96 bytes of Stable Storage is optional [...]. Failure to provide the
10  *    optional locations from 96 to 192 results in the loss of certain
11  *    functionality during boot."
12  *
13  *    Since locations between 96 and 192 are the various paths, most (if not
14  *    all) PA-RISC machines should have them. Anyway, for safety reasons, the
15  *    following code can deal with just 96 bytes of Stable Storage, and all
16  *    sizes between 96 and 192 bytes (provided they are multiple of struct
17  *    pdc_module_path size, eg: 128, 160 and 192) to provide full information.
18  *    One last word: there's one path we can always count on: the primary path.
19  *    Anything above 224 bytes is used for 'osdep2' OS-dependent storage area.
20  *
21  *    The first OS-dependent area should always be available. Obviously, this is
22  *    not true for the other one. Also bear in mind that reading/writing from/to
23  *    osdep2 is much more expensive than from/to osdep1.
24  *    NOTE: We do not handle the 2 bytes OS-dep area at 0x5D, nor the first
25  *    2 bytes of storage available right after OSID. That's a total of 4 bytes
26  *    sacrificed: -ETOOLAZY :P
27  *
28  *    The current policy wrt file permissions is:
29  *	- write: root only
30  *	- read: (reading triggers PDC calls) ? root only : everyone
31  *    The rationale is that PDC calls could hog (DoS) the machine.
32  *
33  *	TODO:
34  *	- timer/fastsize write calls
35  */
36 
37 #undef PDCS_DEBUG
38 #ifdef PDCS_DEBUG
39 #define DPRINTK(fmt, args...)	printk(KERN_DEBUG fmt, ## args)
40 #else
41 #define DPRINTK(fmt, args...)
42 #endif
43 
44 #include <linux/module.h>
45 #include <linux/init.h>
46 #include <linux/kernel.h>
47 #include <linux/string.h>
48 #include <linux/capability.h>
49 #include <linux/ctype.h>
50 #include <linux/sysfs.h>
51 #include <linux/kobject.h>
52 #include <linux/device.h>
53 #include <linux/errno.h>
54 #include <linux/spinlock.h>
55 
56 #include <asm/pdc.h>
57 #include <asm/page.h>
58 #include <linux/uaccess.h>
59 #include <asm/hardware.h>
60 
61 #define PDCS_VERSION	"0.30"
62 #define PDCS_PREFIX	"PDC Stable Storage"
63 
64 #define PDCS_ADDR_PPRI	0x00
65 #define PDCS_ADDR_OSID	0x40
66 #define PDCS_ADDR_OSD1	0x48
67 #define PDCS_ADDR_DIAG	0x58
68 #define PDCS_ADDR_FSIZ	0x5C
69 #define PDCS_ADDR_PCON	0x60
70 #define PDCS_ADDR_PALT	0x80
71 #define PDCS_ADDR_PKBD	0xA0
72 #define PDCS_ADDR_OSD2	0xE0
73 
74 MODULE_AUTHOR("Thibaut VARENE <varenet@parisc-linux.org>");
75 MODULE_DESCRIPTION("sysfs interface to HP PDC Stable Storage data");
76 MODULE_LICENSE("GPL");
77 MODULE_VERSION(PDCS_VERSION);
78 
79 /* holds Stable Storage size. Initialized once and for all, no lock needed */
80 static unsigned long pdcs_size __read_mostly;
81 
82 /* holds OS ID. Initialized once and for all, hopefully to 0x0006 */
83 static u16 pdcs_osid __read_mostly;
84 
85 /* This struct defines what we need to deal with a parisc pdc path entry */
86 struct pdcspath_entry {
87 	rwlock_t rw_lock;		/* to protect path entry access */
88 	short ready;			/* entry record is valid if != 0 */
89 	unsigned long addr;		/* entry address in stable storage */
90 	char *name;			/* entry name */
91 	struct pdc_module_path devpath;	/* device path in parisc representation */
92 	struct device *dev;		/* corresponding device */
93 	struct kobject kobj;
94 };
95 
96 struct pdcspath_attribute {
97 	struct attribute attr;
98 	ssize_t (*show)(struct pdcspath_entry *entry, char *buf);
99 	ssize_t (*store)(struct pdcspath_entry *entry, const char *buf, size_t count);
100 };
101 
102 #define PDCSPATH_ENTRY(_addr, _name) \
103 struct pdcspath_entry pdcspath_entry_##_name = { \
104 	.ready = 0, \
105 	.addr = _addr, \
106 	.name = __stringify(_name), \
107 };
108 
109 #define PDCS_ATTR(_name, _mode, _show, _store) \
110 struct kobj_attribute pdcs_attr_##_name = { \
111 	.attr = {.name = __stringify(_name), .mode = _mode}, \
112 	.show = _show, \
113 	.store = _store, \
114 };
115 
116 #define PATHS_ATTR(_name, _mode, _show, _store) \
117 struct pdcspath_attribute paths_attr_##_name = { \
118 	.attr = {.name = __stringify(_name), .mode = _mode}, \
119 	.show = _show, \
120 	.store = _store, \
121 };
122 
123 #define to_pdcspath_attribute(_attr) container_of(_attr, struct pdcspath_attribute, attr)
124 #define to_pdcspath_entry(obj)  container_of(obj, struct pdcspath_entry, kobj)
125 
126 /**
127  * pdcspath_fetch - This function populates the path entry structs.
128  * @entry: A pointer to an allocated pdcspath_entry.
129  *
130  * The general idea is that you don't read from the Stable Storage every time
131  * you access the files provided by the facilities. We store a copy of the
132  * content of the stable storage WRT various paths in these structs. We read
133  * these structs when reading the files, and we will write to these structs when
134  * writing to the files, and only then write them back to the Stable Storage.
135  *
136  * This function expects to be called with @entry->rw_lock write-hold.
137  */
138 static int
139 pdcspath_fetch(struct pdcspath_entry *entry)
140 {
141 	struct pdc_module_path *devpath;
142 
143 	if (!entry)
144 		return -EINVAL;
145 
146 	devpath = &entry->devpath;
147 
148 	DPRINTK("%s: fetch: 0x%p, 0x%p, addr: 0x%lx\n", __func__,
149 			entry, devpath, entry->addr);
150 
151 	/* addr, devpath and count must be word aligned */
152 	if (pdc_stable_read(entry->addr, devpath, sizeof(*devpath)) != PDC_OK)
153 		return -EIO;
154 
155 	/* Find the matching device.
156 	   NOTE: hardware_path overlays with pdc_module_path, so the nice cast can
157 	   be used */
158 	entry->dev = hwpath_to_device((struct hardware_path *)devpath);
159 
160 	entry->ready = 1;
161 
162 	DPRINTK("%s: device: 0x%p\n", __func__, entry->dev);
163 
164 	return 0;
165 }
166 
167 /**
168  * pdcspath_store - This function writes a path to stable storage.
169  * @entry: A pointer to an allocated pdcspath_entry.
170  *
171  * It can be used in two ways: either by passing it a preset devpath struct
172  * containing an already computed hardware path, or by passing it a device
173  * pointer, from which it'll find out the corresponding hardware path.
174  * For now we do not handle the case where there's an error in writing to the
175  * Stable Storage area, so you'd better not mess up the data :P
176  *
177  * This function expects to be called with @entry->rw_lock write-hold.
178  */
179 static void
180 pdcspath_store(struct pdcspath_entry *entry)
181 {
182 	struct pdc_module_path *devpath;
183 
184 	BUG_ON(!entry);
185 
186 	devpath = &entry->devpath;
187 
188 	/* We expect the caller to set the ready flag to 0 if the hardware
189 	   path struct provided is invalid, so that we know we have to fill it.
190 	   First case, we don't have a preset hwpath... */
191 	if (!entry->ready) {
192 		/* ...but we have a device, map it */
193 		BUG_ON(!entry->dev);
194 		device_to_hwpath(entry->dev, (struct hardware_path *)devpath);
195 	}
196 	/* else, we expect the provided hwpath to be valid. */
197 
198 	DPRINTK("%s: store: 0x%p, 0x%p, addr: 0x%lx\n", __func__,
199 			entry, devpath, entry->addr);
200 
201 	/* addr, devpath and count must be word aligned */
202 	if (pdc_stable_write(entry->addr, devpath, sizeof(*devpath)) != PDC_OK)
203 		WARN(1, KERN_ERR "%s: an error occurred when writing to PDC.\n"
204 				"It is likely that the Stable Storage data has been corrupted.\n"
205 				"Please check it carefully upon next reboot.\n", __func__);
206 
207 	/* kobject is already registered */
208 	entry->ready = 2;
209 
210 	DPRINTK("%s: device: 0x%p\n", __func__, entry->dev);
211 }
212 
213 /**
214  * pdcspath_hwpath_read - This function handles hardware path pretty printing.
215  * @entry: An allocated and populated pdscpath_entry struct.
216  * @buf: The output buffer to write to.
217  *
218  * We will call this function to format the output of the hwpath attribute file.
219  */
220 static ssize_t
221 pdcspath_hwpath_read(struct pdcspath_entry *entry, char *buf)
222 {
223 	char *out = buf;
224 	struct pdc_module_path *devpath;
225 	short i;
226 
227 	if (!entry || !buf)
228 		return -EINVAL;
229 
230 	read_lock(&entry->rw_lock);
231 	devpath = &entry->devpath;
232 	i = entry->ready;
233 	read_unlock(&entry->rw_lock);
234 
235 	if (!i)	/* entry is not ready */
236 		return -ENODATA;
237 
238 	for (i = 0; i < 6; i++) {
239 		if (devpath->path.bc[i] < 0)
240 			continue;
241 		out += sprintf(out, "%d/", devpath->path.bc[i]);
242 	}
243 	out += sprintf(out, "%u\n", (unsigned char)devpath->path.mod);
244 
245 	return out - buf;
246 }
247 
248 /**
249  * pdcspath_hwpath_write - This function handles hardware path modifying.
250  * @entry: An allocated and populated pdscpath_entry struct.
251  * @buf: The input buffer to read from.
252  * @count: The number of bytes to be read.
253  *
254  * We will call this function to change the current hardware path.
255  * Hardware paths are to be given '/'-delimited, without brackets.
256  * We make sure that the provided path actually maps to an existing
257  * device, BUT nothing would prevent some foolish user to set the path to some
258  * PCI bridge or even a CPU...
259  * A better work around would be to make sure we are at the end of a device tree
260  * for instance, but it would be IMHO beyond the simple scope of that driver.
261  * The aim is to provide a facility. Data correctness is left to userland.
262  */
263 static ssize_t
264 pdcspath_hwpath_write(struct pdcspath_entry *entry, const char *buf, size_t count)
265 {
266 	struct hardware_path hwpath;
267 	unsigned short i;
268 	char in[64], *temp;
269 	struct device *dev;
270 	int ret;
271 
272 	if (!entry || !buf || !count)
273 		return -EINVAL;
274 
275 	/* We'll use a local copy of buf */
276 	count = min_t(size_t, count, sizeof(in)-1);
277 	strscpy(in, buf, count + 1);
278 
279 	/* Let's clean up the target. 0xff is a blank pattern */
280 	memset(&hwpath, 0xff, sizeof(hwpath));
281 
282 	/* First, pick the mod field (the last one of the input string) */
283 	if (!(temp = strrchr(in, '/')))
284 		return -EINVAL;
285 
286 	hwpath.mod = simple_strtoul(temp+1, NULL, 10);
287 	in[temp-in] = '\0';	/* truncate the remaining string. just precaution */
288 	DPRINTK("%s: mod: %d\n", __func__, hwpath.mod);
289 
290 	/* Then, loop for each delimiter, making sure we don't have too many.
291 	   we write the bc fields in a down-top way. No matter what, we stop
292 	   before writing the last field. If there are too many fields anyway,
293 	   then the user is a moron and it'll be caught up later when we'll
294 	   check the consistency of the given hwpath. */
295 	for (i=5; ((temp = strrchr(in, '/'))) && (temp-in > 0) && (likely(i)); i--) {
296 		hwpath.bc[i] = simple_strtoul(temp+1, NULL, 10);
297 		in[temp-in] = '\0';
298 		DPRINTK("%s: bc[%d]: %d\n", __func__, i, hwpath.path.bc[i]);
299 	}
300 
301 	/* Store the final field */
302 	hwpath.bc[i] = simple_strtoul(in, NULL, 10);
303 	DPRINTK("%s: bc[%d]: %d\n", __func__, i, hwpath.path.bc[i]);
304 
305 	/* Now we check that the user isn't trying to lure us */
306 	if (!(dev = hwpath_to_device((struct hardware_path *)&hwpath))) {
307 		printk(KERN_WARNING "%s: attempt to set invalid \"%s\" "
308 			"hardware path: %s\n", __func__, entry->name, buf);
309 		return -EINVAL;
310 	}
311 
312 	/* So far so good, let's get in deep */
313 	write_lock(&entry->rw_lock);
314 	entry->ready = 0;
315 	entry->dev = dev;
316 
317 	/* Now, dive in. Write back to the hardware */
318 	pdcspath_store(entry);
319 
320 	/* Update the symlink to the real device */
321 	sysfs_remove_link(&entry->kobj, "device");
322 	write_unlock(&entry->rw_lock);
323 
324 	ret = sysfs_create_link(&entry->kobj, &entry->dev->kobj, "device");
325 	WARN_ON(ret);
326 
327 	printk(KERN_INFO PDCS_PREFIX ": changed \"%s\" path to \"%s\"\n",
328 		entry->name, buf);
329 
330 	return count;
331 }
332 
333 /**
334  * pdcspath_layer_read - Extended layer (eg. SCSI ids) pretty printing.
335  * @entry: An allocated and populated pdscpath_entry struct.
336  * @buf: The output buffer to write to.
337  *
338  * We will call this function to format the output of the layer attribute file.
339  */
340 static ssize_t
341 pdcspath_layer_read(struct pdcspath_entry *entry, char *buf)
342 {
343 	char *out = buf;
344 	struct pdc_module_path *devpath;
345 	short i;
346 
347 	if (!entry || !buf)
348 		return -EINVAL;
349 
350 	read_lock(&entry->rw_lock);
351 	devpath = &entry->devpath;
352 	i = entry->ready;
353 	read_unlock(&entry->rw_lock);
354 
355 	if (!i)	/* entry is not ready */
356 		return -ENODATA;
357 
358 	for (i = 0; i < 6 && devpath->layers[i]; i++)
359 		out += sprintf(out, "%u ", devpath->layers[i]);
360 
361 	out += sprintf(out, "\n");
362 
363 	return out - buf;
364 }
365 
366 /**
367  * pdcspath_layer_write - This function handles extended layer modifying.
368  * @entry: An allocated and populated pdscpath_entry struct.
369  * @buf: The input buffer to read from.
370  * @count: The number of bytes to be read.
371  *
372  * We will call this function to change the current layer value.
373  * Layers are to be given '.'-delimited, without brackets.
374  * XXX beware we are far less checky WRT input data provided than for hwpath.
375  * Potential harm can be done, since there's no way to check the validity of
376  * the layer fields.
377  */
378 static ssize_t
379 pdcspath_layer_write(struct pdcspath_entry *entry, const char *buf, size_t count)
380 {
381 	unsigned int layers[6]; /* device-specific info (ctlr#, unit#, ...) */
382 	unsigned short i;
383 	char in[64], *temp;
384 
385 	if (!entry || !buf || !count)
386 		return -EINVAL;
387 
388 	/* We'll use a local copy of buf */
389 	count = min_t(size_t, count, sizeof(in)-1);
390 	strscpy(in, buf, count + 1);
391 
392 	/* Let's clean up the target. 0 is a blank pattern */
393 	memset(&layers, 0, sizeof(layers));
394 
395 	/* First, pick the first layer */
396 	if (unlikely(!isdigit(*in)))
397 		return -EINVAL;
398 	layers[0] = simple_strtoul(in, NULL, 10);
399 	DPRINTK("%s: layer[0]: %d\n", __func__, layers[0]);
400 
401 	temp = in;
402 	for (i=1; ((temp = strchr(temp, '.'))) && (likely(i<6)); i++) {
403 		if (unlikely(!isdigit(*(++temp))))
404 			return -EINVAL;
405 		layers[i] = simple_strtoul(temp, NULL, 10);
406 		DPRINTK("%s: layer[%d]: %d\n", __func__, i, layers[i]);
407 	}
408 
409 	/* So far so good, let's get in deep */
410 	write_lock(&entry->rw_lock);
411 
412 	/* First, overwrite the current layers with the new ones, not touching
413 	   the hardware path. */
414 	memcpy(&entry->devpath.layers, &layers, sizeof(layers));
415 
416 	/* Now, dive in. Write back to the hardware */
417 	pdcspath_store(entry);
418 	write_unlock(&entry->rw_lock);
419 
420 	printk(KERN_INFO PDCS_PREFIX ": changed \"%s\" layers to \"%s\"\n",
421 		entry->name, buf);
422 
423 	return count;
424 }
425 
426 /**
427  * pdcspath_attr_show - Generic read function call wrapper.
428  * @kobj: The kobject to get info from.
429  * @attr: The attribute looked upon.
430  * @buf: The output buffer.
431  */
432 static ssize_t
433 pdcspath_attr_show(struct kobject *kobj, struct attribute *attr, char *buf)
434 {
435 	struct pdcspath_entry *entry = to_pdcspath_entry(kobj);
436 	struct pdcspath_attribute *pdcs_attr = to_pdcspath_attribute(attr);
437 	ssize_t ret = 0;
438 
439 	if (pdcs_attr->show)
440 		ret = pdcs_attr->show(entry, buf);
441 
442 	return ret;
443 }
444 
445 /**
446  * pdcspath_attr_store - Generic write function call wrapper.
447  * @kobj: The kobject to write info to.
448  * @attr: The attribute to be modified.
449  * @buf: The input buffer.
450  * @count: The size of the buffer.
451  */
452 static ssize_t
453 pdcspath_attr_store(struct kobject *kobj, struct attribute *attr,
454 			const char *buf, size_t count)
455 {
456 	struct pdcspath_entry *entry = to_pdcspath_entry(kobj);
457 	struct pdcspath_attribute *pdcs_attr = to_pdcspath_attribute(attr);
458 	ssize_t ret = 0;
459 
460 	if (!capable(CAP_SYS_ADMIN))
461 		return -EACCES;
462 
463 	if (pdcs_attr->store)
464 		ret = pdcs_attr->store(entry, buf, count);
465 
466 	return ret;
467 }
468 
469 static const struct sysfs_ops pdcspath_attr_ops = {
470 	.show = pdcspath_attr_show,
471 	.store = pdcspath_attr_store,
472 };
473 
474 /* These are the two attributes of any PDC path. */
475 static PATHS_ATTR(hwpath, 0644, pdcspath_hwpath_read, pdcspath_hwpath_write);
476 static PATHS_ATTR(layer, 0644, pdcspath_layer_read, pdcspath_layer_write);
477 
478 static struct attribute *paths_subsys_attrs[] = {
479 	&paths_attr_hwpath.attr,
480 	&paths_attr_layer.attr,
481 	NULL,
482 };
483 ATTRIBUTE_GROUPS(paths_subsys);
484 
485 /* Specific kobject type for our PDC paths */
486 static struct kobj_type ktype_pdcspath = {
487 	.sysfs_ops = &pdcspath_attr_ops,
488 	.default_groups = paths_subsys_groups,
489 };
490 
491 /* We hard define the 4 types of path we expect to find */
492 static PDCSPATH_ENTRY(PDCS_ADDR_PPRI, primary);
493 static PDCSPATH_ENTRY(PDCS_ADDR_PCON, console);
494 static PDCSPATH_ENTRY(PDCS_ADDR_PALT, alternative);
495 static PDCSPATH_ENTRY(PDCS_ADDR_PKBD, keyboard);
496 
497 /* An array containing all PDC paths we will deal with */
498 static struct pdcspath_entry *pdcspath_entries[] = {
499 	&pdcspath_entry_primary,
500 	&pdcspath_entry_alternative,
501 	&pdcspath_entry_console,
502 	&pdcspath_entry_keyboard,
503 	NULL,
504 };
505 
506 
507 /* For more insight of what's going on here, refer to PDC Procedures doc,
508  * Section PDC_STABLE */
509 
510 /**
511  * pdcs_size_read - Stable Storage size output.
512  * @buf: The output buffer to write to.
513  */
514 static ssize_t pdcs_size_read(struct kobject *kobj,
515 			      struct kobj_attribute *attr,
516 			      char *buf)
517 {
518 	char *out = buf;
519 
520 	if (!buf)
521 		return -EINVAL;
522 
523 	/* show the size of the stable storage */
524 	out += sprintf(out, "%ld\n", pdcs_size);
525 
526 	return out - buf;
527 }
528 
529 /**
530  * pdcs_auto_read - Stable Storage autoboot/search flag output.
531  * @buf: The output buffer to write to.
532  * @knob: The PF_AUTOBOOT or PF_AUTOSEARCH flag
533  */
534 static ssize_t pdcs_auto_read(struct kobject *kobj,
535 			      struct kobj_attribute *attr,
536 			      char *buf, int knob)
537 {
538 	char *out = buf;
539 	struct pdcspath_entry *pathentry;
540 
541 	if (!buf)
542 		return -EINVAL;
543 
544 	/* Current flags are stored in primary boot path entry */
545 	pathentry = &pdcspath_entry_primary;
546 
547 	read_lock(&pathentry->rw_lock);
548 	out += sprintf(out, "%s\n", (pathentry->devpath.path.flags & knob) ?
549 					"On" : "Off");
550 	read_unlock(&pathentry->rw_lock);
551 
552 	return out - buf;
553 }
554 
555 /**
556  * pdcs_autoboot_read - Stable Storage autoboot flag output.
557  * @buf: The output buffer to write to.
558  */
559 static ssize_t pdcs_autoboot_read(struct kobject *kobj,
560 				  struct kobj_attribute *attr, char *buf)
561 {
562 	return pdcs_auto_read(kobj, attr, buf, PF_AUTOBOOT);
563 }
564 
565 /**
566  * pdcs_autosearch_read - Stable Storage autoboot flag output.
567  * @buf: The output buffer to write to.
568  */
569 static ssize_t pdcs_autosearch_read(struct kobject *kobj,
570 				    struct kobj_attribute *attr, char *buf)
571 {
572 	return pdcs_auto_read(kobj, attr, buf, PF_AUTOSEARCH);
573 }
574 
575 /**
576  * pdcs_timer_read - Stable Storage timer count output (in seconds).
577  * @buf: The output buffer to write to.
578  *
579  * The value of the timer field correponds to a number of seconds in powers of 2.
580  */
581 static ssize_t pdcs_timer_read(struct kobject *kobj,
582 			       struct kobj_attribute *attr, char *buf)
583 {
584 	char *out = buf;
585 	struct pdcspath_entry *pathentry;
586 
587 	if (!buf)
588 		return -EINVAL;
589 
590 	/* Current flags are stored in primary boot path entry */
591 	pathentry = &pdcspath_entry_primary;
592 
593 	/* print the timer value in seconds */
594 	read_lock(&pathentry->rw_lock);
595 	out += sprintf(out, "%u\n", (pathentry->devpath.path.flags & PF_TIMER) ?
596 				(1 << (pathentry->devpath.path.flags & PF_TIMER)) : 0);
597 	read_unlock(&pathentry->rw_lock);
598 
599 	return out - buf;
600 }
601 
602 /**
603  * pdcs_osid_read - Stable Storage OS ID register output.
604  * @buf: The output buffer to write to.
605  */
606 static ssize_t pdcs_osid_read(struct kobject *kobj,
607 			      struct kobj_attribute *attr, char *buf)
608 {
609 	char *out = buf;
610 
611 	if (!buf)
612 		return -EINVAL;
613 
614 	out += sprintf(out, "%s dependent data (0x%.4x)\n",
615 		os_id_to_string(pdcs_osid), pdcs_osid);
616 
617 	return out - buf;
618 }
619 
620 /**
621  * pdcs_osdep1_read - Stable Storage OS-Dependent data area 1 output.
622  * @buf: The output buffer to write to.
623  *
624  * This can hold 16 bytes of OS-Dependent data.
625  */
626 static ssize_t pdcs_osdep1_read(struct kobject *kobj,
627 				struct kobj_attribute *attr, char *buf)
628 {
629 	char *out = buf;
630 	u32 result[4];
631 
632 	if (!buf)
633 		return -EINVAL;
634 
635 	if (pdc_stable_read(PDCS_ADDR_OSD1, &result, sizeof(result)) != PDC_OK)
636 		return -EIO;
637 
638 	out += sprintf(out, "0x%.8x\n", result[0]);
639 	out += sprintf(out, "0x%.8x\n", result[1]);
640 	out += sprintf(out, "0x%.8x\n", result[2]);
641 	out += sprintf(out, "0x%.8x\n", result[3]);
642 
643 	return out - buf;
644 }
645 
646 /**
647  * pdcs_diagnostic_read - Stable Storage Diagnostic register output.
648  * @buf: The output buffer to write to.
649  *
650  * I have NFC how to interpret the content of that register ;-).
651  */
652 static ssize_t pdcs_diagnostic_read(struct kobject *kobj,
653 				    struct kobj_attribute *attr, char *buf)
654 {
655 	char *out = buf;
656 	u32 result;
657 
658 	if (!buf)
659 		return -EINVAL;
660 
661 	/* get diagnostic */
662 	if (pdc_stable_read(PDCS_ADDR_DIAG, &result, sizeof(result)) != PDC_OK)
663 		return -EIO;
664 
665 	out += sprintf(out, "0x%.4x\n", (result >> 16));
666 
667 	return out - buf;
668 }
669 
670 /**
671  * pdcs_fastsize_read - Stable Storage FastSize register output.
672  * @buf: The output buffer to write to.
673  *
674  * This register holds the amount of system RAM to be tested during boot sequence.
675  */
676 static ssize_t pdcs_fastsize_read(struct kobject *kobj,
677 				  struct kobj_attribute *attr, char *buf)
678 {
679 	char *out = buf;
680 	u32 result;
681 
682 	if (!buf)
683 		return -EINVAL;
684 
685 	/* get fast-size */
686 	if (pdc_stable_read(PDCS_ADDR_FSIZ, &result, sizeof(result)) != PDC_OK)
687 		return -EIO;
688 
689 	if ((result & 0x0F) < 0x0E)
690 		out += sprintf(out, "%d kB", (1<<(result & 0x0F))*256);
691 	else
692 		out += sprintf(out, "All");
693 	out += sprintf(out, "\n");
694 
695 	return out - buf;
696 }
697 
698 /**
699  * pdcs_osdep2_read - Stable Storage OS-Dependent data area 2 output.
700  * @buf: The output buffer to write to.
701  *
702  * This can hold pdcs_size - 224 bytes of OS-Dependent data, when available.
703  */
704 static ssize_t pdcs_osdep2_read(struct kobject *kobj,
705 				struct kobj_attribute *attr, char *buf)
706 {
707 	char *out = buf;
708 	unsigned long size;
709 	unsigned short i;
710 	u32 result;
711 
712 	if (unlikely(pdcs_size <= 224))
713 		return -ENODATA;
714 
715 	size = pdcs_size - 224;
716 
717 	if (!buf)
718 		return -EINVAL;
719 
720 	for (i=0; i<size; i+=4) {
721 		if (unlikely(pdc_stable_read(PDCS_ADDR_OSD2 + i, &result,
722 					sizeof(result)) != PDC_OK))
723 			return -EIO;
724 		out += sprintf(out, "0x%.8x\n", result);
725 	}
726 
727 	return out - buf;
728 }
729 
730 /**
731  * pdcs_auto_write - This function handles autoboot/search flag modifying.
732  * @buf: The input buffer to read from.
733  * @count: The number of bytes to be read.
734  * @knob: The PF_AUTOBOOT or PF_AUTOSEARCH flag
735  *
736  * We will call this function to change the current autoboot flag.
737  * We expect a precise syntax:
738  *	\"n\" (n == 0 or 1) to toggle AutoBoot Off or On
739  */
740 static ssize_t pdcs_auto_write(struct kobject *kobj,
741 			       struct kobj_attribute *attr, const char *buf,
742 			       size_t count, int knob)
743 {
744 	struct pdcspath_entry *pathentry;
745 	unsigned char flags;
746 	char in[8], *temp;
747 	char c;
748 
749 	if (!capable(CAP_SYS_ADMIN))
750 		return -EACCES;
751 
752 	if (!buf || !count)
753 		return -EINVAL;
754 
755 	/* We'll use a local copy of buf */
756 	count = min_t(size_t, count, sizeof(in)-1);
757 	strscpy(in, buf, count + 1);
758 
759 	/* Current flags are stored in primary boot path entry */
760 	pathentry = &pdcspath_entry_primary;
761 
762 	/* Be nice to the existing flag record */
763 	read_lock(&pathentry->rw_lock);
764 	flags = pathentry->devpath.path.flags;
765 	read_unlock(&pathentry->rw_lock);
766 
767 	DPRINTK("%s: flags before: 0x%X\n", __func__, flags);
768 
769 	temp = skip_spaces(in);
770 
771 	c = *temp++ - '0';
772 	if ((c != 0) && (c != 1))
773 		goto parse_error;
774 	if (c == 0)
775 		flags &= ~knob;
776 	else
777 		flags |= knob;
778 
779 	DPRINTK("%s: flags after: 0x%X\n", __func__, flags);
780 
781 	/* So far so good, let's get in deep */
782 	write_lock(&pathentry->rw_lock);
783 
784 	/* Change the path entry flags first */
785 	pathentry->devpath.path.flags = flags;
786 
787 	/* Now, dive in. Write back to the hardware */
788 	pdcspath_store(pathentry);
789 	write_unlock(&pathentry->rw_lock);
790 
791 	printk(KERN_INFO PDCS_PREFIX ": changed \"%s\" to \"%s\"\n",
792 		(knob & PF_AUTOBOOT) ? "autoboot" : "autosearch",
793 		(flags & knob) ? "On" : "Off");
794 
795 	return count;
796 
797 parse_error:
798 	printk(KERN_WARNING "%s: Parse error: expect \"n\" (n == 0 or 1)\n", __func__);
799 	return -EINVAL;
800 }
801 
802 /**
803  * pdcs_autoboot_write - This function handles autoboot flag modifying.
804  * @buf: The input buffer to read from.
805  * @count: The number of bytes to be read.
806  *
807  * We will call this function to change the current boot flags.
808  * We expect a precise syntax:
809  *	\"n\" (n == 0 or 1) to toggle AutoSearch Off or On
810  */
811 static ssize_t pdcs_autoboot_write(struct kobject *kobj,
812 				   struct kobj_attribute *attr,
813 				   const char *buf, size_t count)
814 {
815 	return pdcs_auto_write(kobj, attr, buf, count, PF_AUTOBOOT);
816 }
817 
818 /**
819  * pdcs_autosearch_write - This function handles autosearch flag modifying.
820  * @buf: The input buffer to read from.
821  * @count: The number of bytes to be read.
822  *
823  * We will call this function to change the current boot flags.
824  * We expect a precise syntax:
825  *	\"n\" (n == 0 or 1) to toggle AutoSearch Off or On
826  */
827 static ssize_t pdcs_autosearch_write(struct kobject *kobj,
828 				     struct kobj_attribute *attr,
829 				     const char *buf, size_t count)
830 {
831 	return pdcs_auto_write(kobj, attr, buf, count, PF_AUTOSEARCH);
832 }
833 
834 /**
835  * pdcs_osdep1_write - Stable Storage OS-Dependent data area 1 input.
836  * @buf: The input buffer to read from.
837  * @count: The number of bytes to be read.
838  *
839  * This can store 16 bytes of OS-Dependent data. We use a byte-by-byte
840  * write approach. It's up to userspace to deal with it when constructing
841  * its input buffer.
842  */
843 static ssize_t pdcs_osdep1_write(struct kobject *kobj,
844 				 struct kobj_attribute *attr,
845 				 const char *buf, size_t count)
846 {
847 	u8 in[16];
848 
849 	if (!capable(CAP_SYS_ADMIN))
850 		return -EACCES;
851 
852 	if (!buf || !count)
853 		return -EINVAL;
854 
855 	if (unlikely(pdcs_osid != OS_ID_LINUX))
856 		return -EPERM;
857 
858 	if (count > 16)
859 		return -EMSGSIZE;
860 
861 	/* We'll use a local copy of buf */
862 	memset(in, 0, 16);
863 	memcpy(in, buf, count);
864 
865 	if (pdc_stable_write(PDCS_ADDR_OSD1, &in, sizeof(in)) != PDC_OK)
866 		return -EIO;
867 
868 	return count;
869 }
870 
871 /**
872  * pdcs_osdep2_write - Stable Storage OS-Dependent data area 2 input.
873  * @buf: The input buffer to read from.
874  * @count: The number of bytes to be read.
875  *
876  * This can store pdcs_size - 224 bytes of OS-Dependent data. We use a
877  * byte-by-byte write approach. It's up to userspace to deal with it when
878  * constructing its input buffer.
879  */
880 static ssize_t pdcs_osdep2_write(struct kobject *kobj,
881 				 struct kobj_attribute *attr,
882 				 const char *buf, size_t count)
883 {
884 	unsigned long size;
885 	unsigned short i;
886 	u8 in[4];
887 
888 	if (!capable(CAP_SYS_ADMIN))
889 		return -EACCES;
890 
891 	if (!buf || !count)
892 		return -EINVAL;
893 
894 	if (unlikely(pdcs_size <= 224))
895 		return -ENOSYS;
896 
897 	if (unlikely(pdcs_osid != OS_ID_LINUX))
898 		return -EPERM;
899 
900 	size = pdcs_size - 224;
901 
902 	if (count > size)
903 		return -EMSGSIZE;
904 
905 	/* We'll use a local copy of buf */
906 
907 	for (i=0; i<count; i+=4) {
908 		memset(in, 0, 4);
909 		memcpy(in, buf+i, (count-i < 4) ? count-i : 4);
910 		if (unlikely(pdc_stable_write(PDCS_ADDR_OSD2 + i, &in,
911 					sizeof(in)) != PDC_OK))
912 			return -EIO;
913 	}
914 
915 	return count;
916 }
917 
918 /* The remaining attributes. */
919 static PDCS_ATTR(size, 0444, pdcs_size_read, NULL);
920 static PDCS_ATTR(autoboot, 0644, pdcs_autoboot_read, pdcs_autoboot_write);
921 static PDCS_ATTR(autosearch, 0644, pdcs_autosearch_read, pdcs_autosearch_write);
922 static PDCS_ATTR(timer, 0444, pdcs_timer_read, NULL);
923 static PDCS_ATTR(osid, 0444, pdcs_osid_read, NULL);
924 static PDCS_ATTR(osdep1, 0600, pdcs_osdep1_read, pdcs_osdep1_write);
925 static PDCS_ATTR(diagnostic, 0400, pdcs_diagnostic_read, NULL);
926 static PDCS_ATTR(fastsize, 0400, pdcs_fastsize_read, NULL);
927 static PDCS_ATTR(osdep2, 0600, pdcs_osdep2_read, pdcs_osdep2_write);
928 
929 static struct attribute *pdcs_subsys_attrs[] = {
930 	&pdcs_attr_size.attr,
931 	&pdcs_attr_autoboot.attr,
932 	&pdcs_attr_autosearch.attr,
933 	&pdcs_attr_timer.attr,
934 	&pdcs_attr_osid.attr,
935 	&pdcs_attr_osdep1.attr,
936 	&pdcs_attr_diagnostic.attr,
937 	&pdcs_attr_fastsize.attr,
938 	&pdcs_attr_osdep2.attr,
939 	NULL,
940 };
941 
942 static const struct attribute_group pdcs_attr_group = {
943 	.attrs = pdcs_subsys_attrs,
944 };
945 
946 static struct kobject *stable_kobj;
947 static struct kset *paths_kset;
948 
949 /**
950  * pdcs_register_pathentries - Prepares path entries kobjects for sysfs usage.
951  *
952  * It creates kobjects corresponding to each path entry with nice sysfs
953  * links to the real device. This is where the magic takes place: when
954  * registering the subsystem attributes during module init, each kobject hereby
955  * created will show in the sysfs tree as a folder containing files as defined
956  * by path_subsys_attr[].
957  */
958 static inline int __init
959 pdcs_register_pathentries(void)
960 {
961 	unsigned short i;
962 	struct pdcspath_entry *entry;
963 	int err;
964 
965 	/* Initialize the entries rw_lock before anything else */
966 	for (i = 0; (entry = pdcspath_entries[i]); i++)
967 		rwlock_init(&entry->rw_lock);
968 
969 	for (i = 0; (entry = pdcspath_entries[i]); i++) {
970 		write_lock(&entry->rw_lock);
971 		err = pdcspath_fetch(entry);
972 		write_unlock(&entry->rw_lock);
973 
974 		if (err < 0)
975 			continue;
976 
977 		entry->kobj.kset = paths_kset;
978 		err = kobject_init_and_add(&entry->kobj, &ktype_pdcspath, NULL,
979 					   "%s", entry->name);
980 		if (err) {
981 			kobject_put(&entry->kobj);
982 			return err;
983 		}
984 
985 		/* kobject is now registered */
986 		write_lock(&entry->rw_lock);
987 		entry->ready = 2;
988 		write_unlock(&entry->rw_lock);
989 
990 		/* Add a nice symlink to the real device */
991 		if (entry->dev) {
992 			err = sysfs_create_link(&entry->kobj, &entry->dev->kobj, "device");
993 			WARN_ON(err);
994 		}
995 
996 		kobject_uevent(&entry->kobj, KOBJ_ADD);
997 	}
998 
999 	return 0;
1000 }
1001 
1002 /**
1003  * pdcs_unregister_pathentries - Routine called when unregistering the module.
1004  */
1005 static inline void
1006 pdcs_unregister_pathentries(void)
1007 {
1008 	unsigned short i;
1009 	struct pdcspath_entry *entry;
1010 
1011 	for (i = 0; (entry = pdcspath_entries[i]); i++) {
1012 		read_lock(&entry->rw_lock);
1013 		if (entry->ready >= 2)
1014 			kobject_put(&entry->kobj);
1015 		read_unlock(&entry->rw_lock);
1016 	}
1017 }
1018 
1019 /*
1020  * For now we register the stable subsystem with the firmware subsystem
1021  * and the paths subsystem with the stable subsystem
1022  */
1023 static int __init
1024 pdc_stable_init(void)
1025 {
1026 	int rc = 0, error = 0;
1027 	u32 result;
1028 
1029 	/* find the size of the stable storage */
1030 	if (pdc_stable_get_size(&pdcs_size) != PDC_OK)
1031 		return -ENODEV;
1032 
1033 	/* make sure we have enough data */
1034 	if (pdcs_size < 96)
1035 		return -ENODATA;
1036 
1037 	printk(KERN_INFO PDCS_PREFIX " facility v%s\n", PDCS_VERSION);
1038 
1039 	/* get OSID */
1040 	if (pdc_stable_read(PDCS_ADDR_OSID, &result, sizeof(result)) != PDC_OK)
1041 		return -EIO;
1042 
1043 	/* the actual result is 16 bits away */
1044 	pdcs_osid = (u16)(result >> 16);
1045 
1046 	/* For now we'll register the directory at /sys/firmware/stable */
1047 	stable_kobj = kobject_create_and_add("stable", firmware_kobj);
1048 	if (!stable_kobj) {
1049 		rc = -ENOMEM;
1050 		goto fail_firmreg;
1051 	}
1052 
1053 	/* Don't forget the root entries */
1054 	error = sysfs_create_group(stable_kobj, &pdcs_attr_group);
1055 
1056 	/* register the paths kset as a child of the stable kset */
1057 	paths_kset = kset_create_and_add("paths", NULL, stable_kobj);
1058 	if (!paths_kset) {
1059 		rc = -ENOMEM;
1060 		goto fail_ksetreg;
1061 	}
1062 
1063 	/* now we create all "files" for the paths kset */
1064 	if ((rc = pdcs_register_pathentries()))
1065 		goto fail_pdcsreg;
1066 
1067 	return rc;
1068 
1069 fail_pdcsreg:
1070 	pdcs_unregister_pathentries();
1071 	kset_unregister(paths_kset);
1072 
1073 fail_ksetreg:
1074 	kobject_put(stable_kobj);
1075 
1076 fail_firmreg:
1077 	printk(KERN_INFO PDCS_PREFIX " bailing out\n");
1078 	return rc;
1079 }
1080 
1081 static void __exit
1082 pdc_stable_exit(void)
1083 {
1084 	pdcs_unregister_pathentries();
1085 	kset_unregister(paths_kset);
1086 	kobject_put(stable_kobj);
1087 }
1088 
1089 
1090 module_init(pdc_stable_init);
1091 module_exit(pdc_stable_exit);
1092