xref: /openbmc/linux/drivers/parisc/pdc_stable.c (revision be58f710)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *    Interfaces to retrieve and set PDC Stable options (firmware)
4  *
5  *    Copyright (C) 2005-2006 Thibaut VARENE <varenet@parisc-linux.org>
6  *
7  *    DEV NOTE: the PDC Procedures reference states that:
8  *    "A minimum of 96 bytes of Stable Storage is required. Providing more than
9  *    96 bytes of Stable Storage is optional [...]. Failure to provide the
10  *    optional locations from 96 to 192 results in the loss of certain
11  *    functionality during boot."
12  *
13  *    Since locations between 96 and 192 are the various paths, most (if not
14  *    all) PA-RISC machines should have them. Anyway, for safety reasons, the
15  *    following code can deal with just 96 bytes of Stable Storage, and all
16  *    sizes between 96 and 192 bytes (provided they are multiple of struct
17  *    device_path size, eg: 128, 160 and 192) to provide full information.
18  *    One last word: there's one path we can always count on: the primary path.
19  *    Anything above 224 bytes is used for 'osdep2' OS-dependent storage area.
20  *
21  *    The first OS-dependent area should always be available. Obviously, this is
22  *    not true for the other one. Also bear in mind that reading/writing from/to
23  *    osdep2 is much more expensive than from/to osdep1.
24  *    NOTE: We do not handle the 2 bytes OS-dep area at 0x5D, nor the first
25  *    2 bytes of storage available right after OSID. That's a total of 4 bytes
26  *    sacrificed: -ETOOLAZY :P
27  *
28  *    The current policy wrt file permissions is:
29  *	- write: root only
30  *	- read: (reading triggers PDC calls) ? root only : everyone
31  *    The rationale is that PDC calls could hog (DoS) the machine.
32  *
33  *	TODO:
34  *	- timer/fastsize write calls
35  */
36 
37 #undef PDCS_DEBUG
38 #ifdef PDCS_DEBUG
39 #define DPRINTK(fmt, args...)	printk(KERN_DEBUG fmt, ## args)
40 #else
41 #define DPRINTK(fmt, args...)
42 #endif
43 
44 #include <linux/module.h>
45 #include <linux/init.h>
46 #include <linux/kernel.h>
47 #include <linux/string.h>
48 #include <linux/capability.h>
49 #include <linux/ctype.h>
50 #include <linux/sysfs.h>
51 #include <linux/kobject.h>
52 #include <linux/device.h>
53 #include <linux/errno.h>
54 #include <linux/spinlock.h>
55 
56 #include <asm/pdc.h>
57 #include <asm/page.h>
58 #include <linux/uaccess.h>
59 #include <asm/hardware.h>
60 
61 #define PDCS_VERSION	"0.30"
62 #define PDCS_PREFIX	"PDC Stable Storage"
63 
64 #define PDCS_ADDR_PPRI	0x00
65 #define PDCS_ADDR_OSID	0x40
66 #define PDCS_ADDR_OSD1	0x48
67 #define PDCS_ADDR_DIAG	0x58
68 #define PDCS_ADDR_FSIZ	0x5C
69 #define PDCS_ADDR_PCON	0x60
70 #define PDCS_ADDR_PALT	0x80
71 #define PDCS_ADDR_PKBD	0xA0
72 #define PDCS_ADDR_OSD2	0xE0
73 
74 MODULE_AUTHOR("Thibaut VARENE <varenet@parisc-linux.org>");
75 MODULE_DESCRIPTION("sysfs interface to HP PDC Stable Storage data");
76 MODULE_LICENSE("GPL");
77 MODULE_VERSION(PDCS_VERSION);
78 
79 /* holds Stable Storage size. Initialized once and for all, no lock needed */
80 static unsigned long pdcs_size __read_mostly;
81 
82 /* holds OS ID. Initialized once and for all, hopefully to 0x0006 */
83 static u16 pdcs_osid __read_mostly;
84 
85 /* This struct defines what we need to deal with a parisc pdc path entry */
86 struct pdcspath_entry {
87 	rwlock_t rw_lock;		/* to protect path entry access */
88 	short ready;			/* entry record is valid if != 0 */
89 	unsigned long addr;		/* entry address in stable storage */
90 	char *name;			/* entry name */
91 	struct device_path devpath;	/* device path in parisc representation */
92 	struct device *dev;		/* corresponding device */
93 	struct kobject kobj;
94 };
95 
96 struct pdcspath_attribute {
97 	struct attribute attr;
98 	ssize_t (*show)(struct pdcspath_entry *entry, char *buf);
99 	ssize_t (*store)(struct pdcspath_entry *entry, const char *buf, size_t count);
100 };
101 
102 #define PDCSPATH_ENTRY(_addr, _name) \
103 struct pdcspath_entry pdcspath_entry_##_name = { \
104 	.ready = 0, \
105 	.addr = _addr, \
106 	.name = __stringify(_name), \
107 };
108 
109 #define PDCS_ATTR(_name, _mode, _show, _store) \
110 struct kobj_attribute pdcs_attr_##_name = { \
111 	.attr = {.name = __stringify(_name), .mode = _mode}, \
112 	.show = _show, \
113 	.store = _store, \
114 };
115 
116 #define PATHS_ATTR(_name, _mode, _show, _store) \
117 struct pdcspath_attribute paths_attr_##_name = { \
118 	.attr = {.name = __stringify(_name), .mode = _mode}, \
119 	.show = _show, \
120 	.store = _store, \
121 };
122 
123 #define to_pdcspath_attribute(_attr) container_of(_attr, struct pdcspath_attribute, attr)
124 #define to_pdcspath_entry(obj)  container_of(obj, struct pdcspath_entry, kobj)
125 
126 /**
127  * pdcspath_fetch - This function populates the path entry structs.
128  * @entry: A pointer to an allocated pdcspath_entry.
129  *
130  * The general idea is that you don't read from the Stable Storage every time
131  * you access the files provided by the facilities. We store a copy of the
132  * content of the stable storage WRT various paths in these structs. We read
133  * these structs when reading the files, and we will write to these structs when
134  * writing to the files, and only then write them back to the Stable Storage.
135  *
136  * This function expects to be called with @entry->rw_lock write-hold.
137  */
138 static int
139 pdcspath_fetch(struct pdcspath_entry *entry)
140 {
141 	struct device_path *devpath;
142 
143 	if (!entry)
144 		return -EINVAL;
145 
146 	devpath = &entry->devpath;
147 
148 	DPRINTK("%s: fetch: 0x%p, 0x%p, addr: 0x%lx\n", __func__,
149 			entry, devpath, entry->addr);
150 
151 	/* addr, devpath and count must be word aligned */
152 	if (pdc_stable_read(entry->addr, devpath, sizeof(*devpath)) != PDC_OK)
153 		return -EIO;
154 
155 	/* Find the matching device.
156 	   NOTE: hardware_path overlays with device_path, so the nice cast can
157 	   be used */
158 	entry->dev = hwpath_to_device((struct hardware_path *)devpath);
159 
160 	entry->ready = 1;
161 
162 	DPRINTK("%s: device: 0x%p\n", __func__, entry->dev);
163 
164 	return 0;
165 }
166 
167 /**
168  * pdcspath_store - This function writes a path to stable storage.
169  * @entry: A pointer to an allocated pdcspath_entry.
170  *
171  * It can be used in two ways: either by passing it a preset devpath struct
172  * containing an already computed hardware path, or by passing it a device
173  * pointer, from which it'll find out the corresponding hardware path.
174  * For now we do not handle the case where there's an error in writing to the
175  * Stable Storage area, so you'd better not mess up the data :P
176  *
177  * This function expects to be called with @entry->rw_lock write-hold.
178  */
179 static void
180 pdcspath_store(struct pdcspath_entry *entry)
181 {
182 	struct device_path *devpath;
183 
184 	BUG_ON(!entry);
185 
186 	devpath = &entry->devpath;
187 
188 	/* We expect the caller to set the ready flag to 0 if the hardware
189 	   path struct provided is invalid, so that we know we have to fill it.
190 	   First case, we don't have a preset hwpath... */
191 	if (!entry->ready) {
192 		/* ...but we have a device, map it */
193 		BUG_ON(!entry->dev);
194 		device_to_hwpath(entry->dev, (struct hardware_path *)devpath);
195 	}
196 	/* else, we expect the provided hwpath to be valid. */
197 
198 	DPRINTK("%s: store: 0x%p, 0x%p, addr: 0x%lx\n", __func__,
199 			entry, devpath, entry->addr);
200 
201 	/* addr, devpath and count must be word aligned */
202 	if (pdc_stable_write(entry->addr, devpath, sizeof(*devpath)) != PDC_OK)
203 		WARN(1, KERN_ERR "%s: an error occurred when writing to PDC.\n"
204 				"It is likely that the Stable Storage data has been corrupted.\n"
205 				"Please check it carefully upon next reboot.\n", __func__);
206 
207 	/* kobject is already registered */
208 	entry->ready = 2;
209 
210 	DPRINTK("%s: device: 0x%p\n", __func__, entry->dev);
211 }
212 
213 /**
214  * pdcspath_hwpath_read - This function handles hardware path pretty printing.
215  * @entry: An allocated and populated pdscpath_entry struct.
216  * @buf: The output buffer to write to.
217  *
218  * We will call this function to format the output of the hwpath attribute file.
219  */
220 static ssize_t
221 pdcspath_hwpath_read(struct pdcspath_entry *entry, char *buf)
222 {
223 	char *out = buf;
224 	struct device_path *devpath;
225 	short i;
226 
227 	if (!entry || !buf)
228 		return -EINVAL;
229 
230 	read_lock(&entry->rw_lock);
231 	devpath = &entry->devpath;
232 	i = entry->ready;
233 	read_unlock(&entry->rw_lock);
234 
235 	if (!i)	/* entry is not ready */
236 		return -ENODATA;
237 
238 	for (i = 0; i < 6; i++) {
239 		if (devpath->bc[i] >= 128)
240 			continue;
241 		out += sprintf(out, "%u/", (unsigned char)devpath->bc[i]);
242 	}
243 	out += sprintf(out, "%u\n", (unsigned char)devpath->mod);
244 
245 	return out - buf;
246 }
247 
248 /**
249  * pdcspath_hwpath_write - This function handles hardware path modifying.
250  * @entry: An allocated and populated pdscpath_entry struct.
251  * @buf: The input buffer to read from.
252  * @count: The number of bytes to be read.
253  *
254  * We will call this function to change the current hardware path.
255  * Hardware paths are to be given '/'-delimited, without brackets.
256  * We make sure that the provided path actually maps to an existing
257  * device, BUT nothing would prevent some foolish user to set the path to some
258  * PCI bridge or even a CPU...
259  * A better work around would be to make sure we are at the end of a device tree
260  * for instance, but it would be IMHO beyond the simple scope of that driver.
261  * The aim is to provide a facility. Data correctness is left to userland.
262  */
263 static ssize_t
264 pdcspath_hwpath_write(struct pdcspath_entry *entry, const char *buf, size_t count)
265 {
266 	struct hardware_path hwpath;
267 	unsigned short i;
268 	char in[64], *temp;
269 	struct device *dev;
270 	int ret;
271 
272 	if (!entry || !buf || !count)
273 		return -EINVAL;
274 
275 	/* We'll use a local copy of buf */
276 	count = min_t(size_t, count, sizeof(in)-1);
277 	strncpy(in, buf, count);
278 	in[count] = '\0';
279 
280 	/* Let's clean up the target. 0xff is a blank pattern */
281 	memset(&hwpath, 0xff, sizeof(hwpath));
282 
283 	/* First, pick the mod field (the last one of the input string) */
284 	if (!(temp = strrchr(in, '/')))
285 		return -EINVAL;
286 
287 	hwpath.mod = simple_strtoul(temp+1, NULL, 10);
288 	in[temp-in] = '\0';	/* truncate the remaining string. just precaution */
289 	DPRINTK("%s: mod: %d\n", __func__, hwpath.mod);
290 
291 	/* Then, loop for each delimiter, making sure we don't have too many.
292 	   we write the bc fields in a down-top way. No matter what, we stop
293 	   before writing the last field. If there are too many fields anyway,
294 	   then the user is a moron and it'll be caught up later when we'll
295 	   check the consistency of the given hwpath. */
296 	for (i=5; ((temp = strrchr(in, '/'))) && (temp-in > 0) && (likely(i)); i--) {
297 		hwpath.bc[i] = simple_strtoul(temp+1, NULL, 10);
298 		in[temp-in] = '\0';
299 		DPRINTK("%s: bc[%d]: %d\n", __func__, i, hwpath.bc[i]);
300 	}
301 
302 	/* Store the final field */
303 	hwpath.bc[i] = simple_strtoul(in, NULL, 10);
304 	DPRINTK("%s: bc[%d]: %d\n", __func__, i, hwpath.bc[i]);
305 
306 	/* Now we check that the user isn't trying to lure us */
307 	if (!(dev = hwpath_to_device((struct hardware_path *)&hwpath))) {
308 		printk(KERN_WARNING "%s: attempt to set invalid \"%s\" "
309 			"hardware path: %s\n", __func__, entry->name, buf);
310 		return -EINVAL;
311 	}
312 
313 	/* So far so good, let's get in deep */
314 	write_lock(&entry->rw_lock);
315 	entry->ready = 0;
316 	entry->dev = dev;
317 
318 	/* Now, dive in. Write back to the hardware */
319 	pdcspath_store(entry);
320 
321 	/* Update the symlink to the real device */
322 	sysfs_remove_link(&entry->kobj, "device");
323 	write_unlock(&entry->rw_lock);
324 
325 	ret = sysfs_create_link(&entry->kobj, &entry->dev->kobj, "device");
326 	WARN_ON(ret);
327 
328 	printk(KERN_INFO PDCS_PREFIX ": changed \"%s\" path to \"%s\"\n",
329 		entry->name, buf);
330 
331 	return count;
332 }
333 
334 /**
335  * pdcspath_layer_read - Extended layer (eg. SCSI ids) pretty printing.
336  * @entry: An allocated and populated pdscpath_entry struct.
337  * @buf: The output buffer to write to.
338  *
339  * We will call this function to format the output of the layer attribute file.
340  */
341 static ssize_t
342 pdcspath_layer_read(struct pdcspath_entry *entry, char *buf)
343 {
344 	char *out = buf;
345 	struct device_path *devpath;
346 	short i;
347 
348 	if (!entry || !buf)
349 		return -EINVAL;
350 
351 	read_lock(&entry->rw_lock);
352 	devpath = &entry->devpath;
353 	i = entry->ready;
354 	read_unlock(&entry->rw_lock);
355 
356 	if (!i)	/* entry is not ready */
357 		return -ENODATA;
358 
359 	for (i = 0; i < 6 && devpath->layers[i]; i++)
360 		out += sprintf(out, "%u ", devpath->layers[i]);
361 
362 	out += sprintf(out, "\n");
363 
364 	return out - buf;
365 }
366 
367 /**
368  * pdcspath_layer_write - This function handles extended layer modifying.
369  * @entry: An allocated and populated pdscpath_entry struct.
370  * @buf: The input buffer to read from.
371  * @count: The number of bytes to be read.
372  *
373  * We will call this function to change the current layer value.
374  * Layers are to be given '.'-delimited, without brackets.
375  * XXX beware we are far less checky WRT input data provided than for hwpath.
376  * Potential harm can be done, since there's no way to check the validity of
377  * the layer fields.
378  */
379 static ssize_t
380 pdcspath_layer_write(struct pdcspath_entry *entry, const char *buf, size_t count)
381 {
382 	unsigned int layers[6]; /* device-specific info (ctlr#, unit#, ...) */
383 	unsigned short i;
384 	char in[64], *temp;
385 
386 	if (!entry || !buf || !count)
387 		return -EINVAL;
388 
389 	/* We'll use a local copy of buf */
390 	count = min_t(size_t, count, sizeof(in)-1);
391 	strncpy(in, buf, count);
392 	in[count] = '\0';
393 
394 	/* Let's clean up the target. 0 is a blank pattern */
395 	memset(&layers, 0, sizeof(layers));
396 
397 	/* First, pick the first layer */
398 	if (unlikely(!isdigit(*in)))
399 		return -EINVAL;
400 	layers[0] = simple_strtoul(in, NULL, 10);
401 	DPRINTK("%s: layer[0]: %d\n", __func__, layers[0]);
402 
403 	temp = in;
404 	for (i=1; ((temp = strchr(temp, '.'))) && (likely(i<6)); i++) {
405 		if (unlikely(!isdigit(*(++temp))))
406 			return -EINVAL;
407 		layers[i] = simple_strtoul(temp, NULL, 10);
408 		DPRINTK("%s: layer[%d]: %d\n", __func__, i, layers[i]);
409 	}
410 
411 	/* So far so good, let's get in deep */
412 	write_lock(&entry->rw_lock);
413 
414 	/* First, overwrite the current layers with the new ones, not touching
415 	   the hardware path. */
416 	memcpy(&entry->devpath.layers, &layers, sizeof(layers));
417 
418 	/* Now, dive in. Write back to the hardware */
419 	pdcspath_store(entry);
420 	write_unlock(&entry->rw_lock);
421 
422 	printk(KERN_INFO PDCS_PREFIX ": changed \"%s\" layers to \"%s\"\n",
423 		entry->name, buf);
424 
425 	return count;
426 }
427 
428 /**
429  * pdcspath_attr_show - Generic read function call wrapper.
430  * @kobj: The kobject to get info from.
431  * @attr: The attribute looked upon.
432  * @buf: The output buffer.
433  */
434 static ssize_t
435 pdcspath_attr_show(struct kobject *kobj, struct attribute *attr, char *buf)
436 {
437 	struct pdcspath_entry *entry = to_pdcspath_entry(kobj);
438 	struct pdcspath_attribute *pdcs_attr = to_pdcspath_attribute(attr);
439 	ssize_t ret = 0;
440 
441 	if (pdcs_attr->show)
442 		ret = pdcs_attr->show(entry, buf);
443 
444 	return ret;
445 }
446 
447 /**
448  * pdcspath_attr_store - Generic write function call wrapper.
449  * @kobj: The kobject to write info to.
450  * @attr: The attribute to be modified.
451  * @buf: The input buffer.
452  * @count: The size of the buffer.
453  */
454 static ssize_t
455 pdcspath_attr_store(struct kobject *kobj, struct attribute *attr,
456 			const char *buf, size_t count)
457 {
458 	struct pdcspath_entry *entry = to_pdcspath_entry(kobj);
459 	struct pdcspath_attribute *pdcs_attr = to_pdcspath_attribute(attr);
460 	ssize_t ret = 0;
461 
462 	if (!capable(CAP_SYS_ADMIN))
463 		return -EACCES;
464 
465 	if (pdcs_attr->store)
466 		ret = pdcs_attr->store(entry, buf, count);
467 
468 	return ret;
469 }
470 
471 static const struct sysfs_ops pdcspath_attr_ops = {
472 	.show = pdcspath_attr_show,
473 	.store = pdcspath_attr_store,
474 };
475 
476 /* These are the two attributes of any PDC path. */
477 static PATHS_ATTR(hwpath, 0644, pdcspath_hwpath_read, pdcspath_hwpath_write);
478 static PATHS_ATTR(layer, 0644, pdcspath_layer_read, pdcspath_layer_write);
479 
480 static struct attribute *paths_subsys_attrs[] = {
481 	&paths_attr_hwpath.attr,
482 	&paths_attr_layer.attr,
483 	NULL,
484 };
485 
486 /* Specific kobject type for our PDC paths */
487 static struct kobj_type ktype_pdcspath = {
488 	.sysfs_ops = &pdcspath_attr_ops,
489 	.default_attrs = paths_subsys_attrs,
490 };
491 
492 /* We hard define the 4 types of path we expect to find */
493 static PDCSPATH_ENTRY(PDCS_ADDR_PPRI, primary);
494 static PDCSPATH_ENTRY(PDCS_ADDR_PCON, console);
495 static PDCSPATH_ENTRY(PDCS_ADDR_PALT, alternative);
496 static PDCSPATH_ENTRY(PDCS_ADDR_PKBD, keyboard);
497 
498 /* An array containing all PDC paths we will deal with */
499 static struct pdcspath_entry *pdcspath_entries[] = {
500 	&pdcspath_entry_primary,
501 	&pdcspath_entry_alternative,
502 	&pdcspath_entry_console,
503 	&pdcspath_entry_keyboard,
504 	NULL,
505 };
506 
507 
508 /* For more insight of what's going on here, refer to PDC Procedures doc,
509  * Section PDC_STABLE */
510 
511 /**
512  * pdcs_size_read - Stable Storage size output.
513  * @buf: The output buffer to write to.
514  */
515 static ssize_t pdcs_size_read(struct kobject *kobj,
516 			      struct kobj_attribute *attr,
517 			      char *buf)
518 {
519 	char *out = buf;
520 
521 	if (!buf)
522 		return -EINVAL;
523 
524 	/* show the size of the stable storage */
525 	out += sprintf(out, "%ld\n", pdcs_size);
526 
527 	return out - buf;
528 }
529 
530 /**
531  * pdcs_auto_read - Stable Storage autoboot/search flag output.
532  * @buf: The output buffer to write to.
533  * @knob: The PF_AUTOBOOT or PF_AUTOSEARCH flag
534  */
535 static ssize_t pdcs_auto_read(struct kobject *kobj,
536 			      struct kobj_attribute *attr,
537 			      char *buf, int knob)
538 {
539 	char *out = buf;
540 	struct pdcspath_entry *pathentry;
541 
542 	if (!buf)
543 		return -EINVAL;
544 
545 	/* Current flags are stored in primary boot path entry */
546 	pathentry = &pdcspath_entry_primary;
547 
548 	read_lock(&pathentry->rw_lock);
549 	out += sprintf(out, "%s\n", (pathentry->devpath.flags & knob) ?
550 					"On" : "Off");
551 	read_unlock(&pathentry->rw_lock);
552 
553 	return out - buf;
554 }
555 
556 /**
557  * pdcs_autoboot_read - Stable Storage autoboot flag output.
558  * @buf: The output buffer to write to.
559  */
560 static ssize_t pdcs_autoboot_read(struct kobject *kobj,
561 				  struct kobj_attribute *attr, char *buf)
562 {
563 	return pdcs_auto_read(kobj, attr, buf, PF_AUTOBOOT);
564 }
565 
566 /**
567  * pdcs_autosearch_read - Stable Storage autoboot flag output.
568  * @buf: The output buffer to write to.
569  */
570 static ssize_t pdcs_autosearch_read(struct kobject *kobj,
571 				    struct kobj_attribute *attr, char *buf)
572 {
573 	return pdcs_auto_read(kobj, attr, buf, PF_AUTOSEARCH);
574 }
575 
576 /**
577  * pdcs_timer_read - Stable Storage timer count output (in seconds).
578  * @buf: The output buffer to write to.
579  *
580  * The value of the timer field correponds to a number of seconds in powers of 2.
581  */
582 static ssize_t pdcs_timer_read(struct kobject *kobj,
583 			       struct kobj_attribute *attr, char *buf)
584 {
585 	char *out = buf;
586 	struct pdcspath_entry *pathentry;
587 
588 	if (!buf)
589 		return -EINVAL;
590 
591 	/* Current flags are stored in primary boot path entry */
592 	pathentry = &pdcspath_entry_primary;
593 
594 	/* print the timer value in seconds */
595 	read_lock(&pathentry->rw_lock);
596 	out += sprintf(out, "%u\n", (pathentry->devpath.flags & PF_TIMER) ?
597 				(1 << (pathentry->devpath.flags & PF_TIMER)) : 0);
598 	read_unlock(&pathentry->rw_lock);
599 
600 	return out - buf;
601 }
602 
603 /**
604  * pdcs_osid_read - Stable Storage OS ID register output.
605  * @buf: The output buffer to write to.
606  */
607 static ssize_t pdcs_osid_read(struct kobject *kobj,
608 			      struct kobj_attribute *attr, char *buf)
609 {
610 	char *out = buf;
611 
612 	if (!buf)
613 		return -EINVAL;
614 
615 	out += sprintf(out, "%s dependent data (0x%.4x)\n",
616 		os_id_to_string(pdcs_osid), pdcs_osid);
617 
618 	return out - buf;
619 }
620 
621 /**
622  * pdcs_osdep1_read - Stable Storage OS-Dependent data area 1 output.
623  * @buf: The output buffer to write to.
624  *
625  * This can hold 16 bytes of OS-Dependent data.
626  */
627 static ssize_t pdcs_osdep1_read(struct kobject *kobj,
628 				struct kobj_attribute *attr, char *buf)
629 {
630 	char *out = buf;
631 	u32 result[4];
632 
633 	if (!buf)
634 		return -EINVAL;
635 
636 	if (pdc_stable_read(PDCS_ADDR_OSD1, &result, sizeof(result)) != PDC_OK)
637 		return -EIO;
638 
639 	out += sprintf(out, "0x%.8x\n", result[0]);
640 	out += sprintf(out, "0x%.8x\n", result[1]);
641 	out += sprintf(out, "0x%.8x\n", result[2]);
642 	out += sprintf(out, "0x%.8x\n", result[3]);
643 
644 	return out - buf;
645 }
646 
647 /**
648  * pdcs_diagnostic_read - Stable Storage Diagnostic register output.
649  * @buf: The output buffer to write to.
650  *
651  * I have NFC how to interpret the content of that register ;-).
652  */
653 static ssize_t pdcs_diagnostic_read(struct kobject *kobj,
654 				    struct kobj_attribute *attr, char *buf)
655 {
656 	char *out = buf;
657 	u32 result;
658 
659 	if (!buf)
660 		return -EINVAL;
661 
662 	/* get diagnostic */
663 	if (pdc_stable_read(PDCS_ADDR_DIAG, &result, sizeof(result)) != PDC_OK)
664 		return -EIO;
665 
666 	out += sprintf(out, "0x%.4x\n", (result >> 16));
667 
668 	return out - buf;
669 }
670 
671 /**
672  * pdcs_fastsize_read - Stable Storage FastSize register output.
673  * @buf: The output buffer to write to.
674  *
675  * This register holds the amount of system RAM to be tested during boot sequence.
676  */
677 static ssize_t pdcs_fastsize_read(struct kobject *kobj,
678 				  struct kobj_attribute *attr, char *buf)
679 {
680 	char *out = buf;
681 	u32 result;
682 
683 	if (!buf)
684 		return -EINVAL;
685 
686 	/* get fast-size */
687 	if (pdc_stable_read(PDCS_ADDR_FSIZ, &result, sizeof(result)) != PDC_OK)
688 		return -EIO;
689 
690 	if ((result & 0x0F) < 0x0E)
691 		out += sprintf(out, "%d kB", (1<<(result & 0x0F))*256);
692 	else
693 		out += sprintf(out, "All");
694 	out += sprintf(out, "\n");
695 
696 	return out - buf;
697 }
698 
699 /**
700  * pdcs_osdep2_read - Stable Storage OS-Dependent data area 2 output.
701  * @buf: The output buffer to write to.
702  *
703  * This can hold pdcs_size - 224 bytes of OS-Dependent data, when available.
704  */
705 static ssize_t pdcs_osdep2_read(struct kobject *kobj,
706 				struct kobj_attribute *attr, char *buf)
707 {
708 	char *out = buf;
709 	unsigned long size;
710 	unsigned short i;
711 	u32 result;
712 
713 	if (unlikely(pdcs_size <= 224))
714 		return -ENODATA;
715 
716 	size = pdcs_size - 224;
717 
718 	if (!buf)
719 		return -EINVAL;
720 
721 	for (i=0; i<size; i+=4) {
722 		if (unlikely(pdc_stable_read(PDCS_ADDR_OSD2 + i, &result,
723 					sizeof(result)) != PDC_OK))
724 			return -EIO;
725 		out += sprintf(out, "0x%.8x\n", result);
726 	}
727 
728 	return out - buf;
729 }
730 
731 /**
732  * pdcs_auto_write - This function handles autoboot/search flag modifying.
733  * @buf: The input buffer to read from.
734  * @count: The number of bytes to be read.
735  * @knob: The PF_AUTOBOOT or PF_AUTOSEARCH flag
736  *
737  * We will call this function to change the current autoboot flag.
738  * We expect a precise syntax:
739  *	\"n\" (n == 0 or 1) to toggle AutoBoot Off or On
740  */
741 static ssize_t pdcs_auto_write(struct kobject *kobj,
742 			       struct kobj_attribute *attr, const char *buf,
743 			       size_t count, int knob)
744 {
745 	struct pdcspath_entry *pathentry;
746 	unsigned char flags;
747 	char in[8], *temp;
748 	char c;
749 
750 	if (!capable(CAP_SYS_ADMIN))
751 		return -EACCES;
752 
753 	if (!buf || !count)
754 		return -EINVAL;
755 
756 	/* We'll use a local copy of buf */
757 	count = min_t(size_t, count, sizeof(in)-1);
758 	strncpy(in, buf, count);
759 	in[count] = '\0';
760 
761 	/* Current flags are stored in primary boot path entry */
762 	pathentry = &pdcspath_entry_primary;
763 
764 	/* Be nice to the existing flag record */
765 	read_lock(&pathentry->rw_lock);
766 	flags = pathentry->devpath.flags;
767 	read_unlock(&pathentry->rw_lock);
768 
769 	DPRINTK("%s: flags before: 0x%X\n", __func__, flags);
770 
771 	temp = skip_spaces(in);
772 
773 	c = *temp++ - '0';
774 	if ((c != 0) && (c != 1))
775 		goto parse_error;
776 	if (c == 0)
777 		flags &= ~knob;
778 	else
779 		flags |= knob;
780 
781 	DPRINTK("%s: flags after: 0x%X\n", __func__, flags);
782 
783 	/* So far so good, let's get in deep */
784 	write_lock(&pathentry->rw_lock);
785 
786 	/* Change the path entry flags first */
787 	pathentry->devpath.flags = flags;
788 
789 	/* Now, dive in. Write back to the hardware */
790 	pdcspath_store(pathentry);
791 	write_unlock(&pathentry->rw_lock);
792 
793 	printk(KERN_INFO PDCS_PREFIX ": changed \"%s\" to \"%s\"\n",
794 		(knob & PF_AUTOBOOT) ? "autoboot" : "autosearch",
795 		(flags & knob) ? "On" : "Off");
796 
797 	return count;
798 
799 parse_error:
800 	printk(KERN_WARNING "%s: Parse error: expect \"n\" (n == 0 or 1)\n", __func__);
801 	return -EINVAL;
802 }
803 
804 /**
805  * pdcs_autoboot_write - This function handles autoboot flag modifying.
806  * @buf: The input buffer to read from.
807  * @count: The number of bytes to be read.
808  *
809  * We will call this function to change the current boot flags.
810  * We expect a precise syntax:
811  *	\"n\" (n == 0 or 1) to toggle AutoSearch Off or On
812  */
813 static ssize_t pdcs_autoboot_write(struct kobject *kobj,
814 				   struct kobj_attribute *attr,
815 				   const char *buf, size_t count)
816 {
817 	return pdcs_auto_write(kobj, attr, buf, count, PF_AUTOBOOT);
818 }
819 
820 /**
821  * pdcs_autosearch_write - This function handles autosearch flag modifying.
822  * @buf: The input buffer to read from.
823  * @count: The number of bytes to be read.
824  *
825  * We will call this function to change the current boot flags.
826  * We expect a precise syntax:
827  *	\"n\" (n == 0 or 1) to toggle AutoSearch Off or On
828  */
829 static ssize_t pdcs_autosearch_write(struct kobject *kobj,
830 				     struct kobj_attribute *attr,
831 				     const char *buf, size_t count)
832 {
833 	return pdcs_auto_write(kobj, attr, buf, count, PF_AUTOSEARCH);
834 }
835 
836 /**
837  * pdcs_osdep1_write - Stable Storage OS-Dependent data area 1 input.
838  * @buf: The input buffer to read from.
839  * @count: The number of bytes to be read.
840  *
841  * This can store 16 bytes of OS-Dependent data. We use a byte-by-byte
842  * write approach. It's up to userspace to deal with it when constructing
843  * its input buffer.
844  */
845 static ssize_t pdcs_osdep1_write(struct kobject *kobj,
846 				 struct kobj_attribute *attr,
847 				 const char *buf, size_t count)
848 {
849 	u8 in[16];
850 
851 	if (!capable(CAP_SYS_ADMIN))
852 		return -EACCES;
853 
854 	if (!buf || !count)
855 		return -EINVAL;
856 
857 	if (unlikely(pdcs_osid != OS_ID_LINUX))
858 		return -EPERM;
859 
860 	if (count > 16)
861 		return -EMSGSIZE;
862 
863 	/* We'll use a local copy of buf */
864 	memset(in, 0, 16);
865 	memcpy(in, buf, count);
866 
867 	if (pdc_stable_write(PDCS_ADDR_OSD1, &in, sizeof(in)) != PDC_OK)
868 		return -EIO;
869 
870 	return count;
871 }
872 
873 /**
874  * pdcs_osdep2_write - Stable Storage OS-Dependent data area 2 input.
875  * @buf: The input buffer to read from.
876  * @count: The number of bytes to be read.
877  *
878  * This can store pdcs_size - 224 bytes of OS-Dependent data. We use a
879  * byte-by-byte write approach. It's up to userspace to deal with it when
880  * constructing its input buffer.
881  */
882 static ssize_t pdcs_osdep2_write(struct kobject *kobj,
883 				 struct kobj_attribute *attr,
884 				 const char *buf, size_t count)
885 {
886 	unsigned long size;
887 	unsigned short i;
888 	u8 in[4];
889 
890 	if (!capable(CAP_SYS_ADMIN))
891 		return -EACCES;
892 
893 	if (!buf || !count)
894 		return -EINVAL;
895 
896 	if (unlikely(pdcs_size <= 224))
897 		return -ENOSYS;
898 
899 	if (unlikely(pdcs_osid != OS_ID_LINUX))
900 		return -EPERM;
901 
902 	size = pdcs_size - 224;
903 
904 	if (count > size)
905 		return -EMSGSIZE;
906 
907 	/* We'll use a local copy of buf */
908 
909 	for (i=0; i<count; i+=4) {
910 		memset(in, 0, 4);
911 		memcpy(in, buf+i, (count-i < 4) ? count-i : 4);
912 		if (unlikely(pdc_stable_write(PDCS_ADDR_OSD2 + i, &in,
913 					sizeof(in)) != PDC_OK))
914 			return -EIO;
915 	}
916 
917 	return count;
918 }
919 
920 /* The remaining attributes. */
921 static PDCS_ATTR(size, 0444, pdcs_size_read, NULL);
922 static PDCS_ATTR(autoboot, 0644, pdcs_autoboot_read, pdcs_autoboot_write);
923 static PDCS_ATTR(autosearch, 0644, pdcs_autosearch_read, pdcs_autosearch_write);
924 static PDCS_ATTR(timer, 0444, pdcs_timer_read, NULL);
925 static PDCS_ATTR(osid, 0444, pdcs_osid_read, NULL);
926 static PDCS_ATTR(osdep1, 0600, pdcs_osdep1_read, pdcs_osdep1_write);
927 static PDCS_ATTR(diagnostic, 0400, pdcs_diagnostic_read, NULL);
928 static PDCS_ATTR(fastsize, 0400, pdcs_fastsize_read, NULL);
929 static PDCS_ATTR(osdep2, 0600, pdcs_osdep2_read, pdcs_osdep2_write);
930 
931 static struct attribute *pdcs_subsys_attrs[] = {
932 	&pdcs_attr_size.attr,
933 	&pdcs_attr_autoboot.attr,
934 	&pdcs_attr_autosearch.attr,
935 	&pdcs_attr_timer.attr,
936 	&pdcs_attr_osid.attr,
937 	&pdcs_attr_osdep1.attr,
938 	&pdcs_attr_diagnostic.attr,
939 	&pdcs_attr_fastsize.attr,
940 	&pdcs_attr_osdep2.attr,
941 	NULL,
942 };
943 
944 static const struct attribute_group pdcs_attr_group = {
945 	.attrs = pdcs_subsys_attrs,
946 };
947 
948 static struct kobject *stable_kobj;
949 static struct kset *paths_kset;
950 
951 /**
952  * pdcs_register_pathentries - Prepares path entries kobjects for sysfs usage.
953  *
954  * It creates kobjects corresponding to each path entry with nice sysfs
955  * links to the real device. This is where the magic takes place: when
956  * registering the subsystem attributes during module init, each kobject hereby
957  * created will show in the sysfs tree as a folder containing files as defined
958  * by path_subsys_attr[].
959  */
960 static inline int __init
961 pdcs_register_pathentries(void)
962 {
963 	unsigned short i;
964 	struct pdcspath_entry *entry;
965 	int err;
966 
967 	/* Initialize the entries rw_lock before anything else */
968 	for (i = 0; (entry = pdcspath_entries[i]); i++)
969 		rwlock_init(&entry->rw_lock);
970 
971 	for (i = 0; (entry = pdcspath_entries[i]); i++) {
972 		write_lock(&entry->rw_lock);
973 		err = pdcspath_fetch(entry);
974 		write_unlock(&entry->rw_lock);
975 
976 		if (err < 0)
977 			continue;
978 
979 		entry->kobj.kset = paths_kset;
980 		err = kobject_init_and_add(&entry->kobj, &ktype_pdcspath, NULL,
981 					   "%s", entry->name);
982 		if (err)
983 			return err;
984 
985 		/* kobject is now registered */
986 		write_lock(&entry->rw_lock);
987 		entry->ready = 2;
988 		write_unlock(&entry->rw_lock);
989 
990 		/* Add a nice symlink to the real device */
991 		if (entry->dev) {
992 			err = sysfs_create_link(&entry->kobj, &entry->dev->kobj, "device");
993 			WARN_ON(err);
994 		}
995 
996 		kobject_uevent(&entry->kobj, KOBJ_ADD);
997 	}
998 
999 	return 0;
1000 }
1001 
1002 /**
1003  * pdcs_unregister_pathentries - Routine called when unregistering the module.
1004  */
1005 static inline void
1006 pdcs_unregister_pathentries(void)
1007 {
1008 	unsigned short i;
1009 	struct pdcspath_entry *entry;
1010 
1011 	for (i = 0; (entry = pdcspath_entries[i]); i++) {
1012 		read_lock(&entry->rw_lock);
1013 		if (entry->ready >= 2)
1014 			kobject_put(&entry->kobj);
1015 		read_unlock(&entry->rw_lock);
1016 	}
1017 }
1018 
1019 /*
1020  * For now we register the stable subsystem with the firmware subsystem
1021  * and the paths subsystem with the stable subsystem
1022  */
1023 static int __init
1024 pdc_stable_init(void)
1025 {
1026 	int rc = 0, error = 0;
1027 	u32 result;
1028 
1029 	/* find the size of the stable storage */
1030 	if (pdc_stable_get_size(&pdcs_size) != PDC_OK)
1031 		return -ENODEV;
1032 
1033 	/* make sure we have enough data */
1034 	if (pdcs_size < 96)
1035 		return -ENODATA;
1036 
1037 	printk(KERN_INFO PDCS_PREFIX " facility v%s\n", PDCS_VERSION);
1038 
1039 	/* get OSID */
1040 	if (pdc_stable_read(PDCS_ADDR_OSID, &result, sizeof(result)) != PDC_OK)
1041 		return -EIO;
1042 
1043 	/* the actual result is 16 bits away */
1044 	pdcs_osid = (u16)(result >> 16);
1045 
1046 	/* For now we'll register the directory at /sys/firmware/stable */
1047 	stable_kobj = kobject_create_and_add("stable", firmware_kobj);
1048 	if (!stable_kobj) {
1049 		rc = -ENOMEM;
1050 		goto fail_firmreg;
1051 	}
1052 
1053 	/* Don't forget the root entries */
1054 	error = sysfs_create_group(stable_kobj, &pdcs_attr_group);
1055 
1056 	/* register the paths kset as a child of the stable kset */
1057 	paths_kset = kset_create_and_add("paths", NULL, stable_kobj);
1058 	if (!paths_kset) {
1059 		rc = -ENOMEM;
1060 		goto fail_ksetreg;
1061 	}
1062 
1063 	/* now we create all "files" for the paths kset */
1064 	if ((rc = pdcs_register_pathentries()))
1065 		goto fail_pdcsreg;
1066 
1067 	return rc;
1068 
1069 fail_pdcsreg:
1070 	pdcs_unregister_pathentries();
1071 	kset_unregister(paths_kset);
1072 
1073 fail_ksetreg:
1074 	kobject_put(stable_kobj);
1075 
1076 fail_firmreg:
1077 	printk(KERN_INFO PDCS_PREFIX " bailing out\n");
1078 	return rc;
1079 }
1080 
1081 static void __exit
1082 pdc_stable_exit(void)
1083 {
1084 	pdcs_unregister_pathentries();
1085 	kset_unregister(paths_kset);
1086 	kobject_put(stable_kobj);
1087 }
1088 
1089 
1090 module_init(pdc_stable_init);
1091 module_exit(pdc_stable_exit);
1092